Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 
 12#include <linux/gfp.h>
 13#include <linux/mm.h>
 14#include <linux/swap.h>
 15#include <linux/module.h>
 16#include <linux/pagemap.h>
 17#include <linux/highmem.h>
 18#include <linux/pagevec.h>
 19#include <linux/task_io_accounting_ops.h>
 20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 21				   do_invalidatepage */
 22#include <linux/cleancache.h>
 23#include "internal.h"
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26/**
 27 * do_invalidatepage - invalidate part or all of a page
 28 * @page: the page which is affected
 29 * @offset: the index of the truncation point
 
 30 *
 31 * do_invalidatepage() is called when all or part of the page has become
 32 * invalidated by a truncate operation.
 33 *
 34 * do_invalidatepage() does not have to release all buffers, but it must
 35 * ensure that no dirty buffer is left outside @offset and that no I/O
 36 * is underway against any of the blocks which are outside the truncation
 37 * point.  Because the caller is about to free (and possibly reuse) those
 38 * blocks on-disk.
 39 */
 40void do_invalidatepage(struct page *page, unsigned long offset)
 41{
 42	void (*invalidatepage)(struct page *, unsigned long);
 43	invalidatepage = page->mapping->a_ops->invalidatepage;
 44#ifdef CONFIG_BLOCK
 45	if (!invalidatepage)
 46		invalidatepage = block_invalidatepage;
 47#endif
 48	if (invalidatepage)
 49		(*invalidatepage)(page, offset);
 50}
 51
 52static inline void truncate_partial_page(struct page *page, unsigned partial)
 53{
 54	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 55	cleancache_flush_page(page->mapping, page);
 56	if (page_has_private(page))
 57		do_invalidatepage(page, partial);
 58}
 59
 60/*
 61 * This cancels just the dirty bit on the kernel page itself, it
 62 * does NOT actually remove dirty bits on any mmap's that may be
 63 * around. It also leaves the page tagged dirty, so any sync
 64 * activity will still find it on the dirty lists, and in particular,
 65 * clear_page_dirty_for_io() will still look at the dirty bits in
 66 * the VM.
 67 *
 68 * Doing this should *normally* only ever be done when a page
 69 * is truncated, and is not actually mapped anywhere at all. However,
 70 * fs/buffer.c does this when it notices that somebody has cleaned
 71 * out all the buffers on a page without actually doing it through
 72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
 73 */
 74void cancel_dirty_page(struct page *page, unsigned int account_size)
 75{
 76	if (TestClearPageDirty(page)) {
 77		struct address_space *mapping = page->mapping;
 78		if (mapping && mapping_cap_account_dirty(mapping)) {
 79			dec_zone_page_state(page, NR_FILE_DIRTY);
 80			dec_bdi_stat(mapping->backing_dev_info,
 81					BDI_RECLAIMABLE);
 82			if (account_size)
 83				task_io_account_cancelled_write(account_size);
 84		}
 85	}
 86}
 87EXPORT_SYMBOL(cancel_dirty_page);
 88
 89/*
 90 * If truncate cannot remove the fs-private metadata from the page, the page
 91 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 92 * user pagetables if we're racing with filemap_fault().
 93 *
 94 * We need to bale out if page->mapping is no longer equal to the original
 95 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 98 */
 99static int
100truncate_complete_page(struct address_space *mapping, struct page *page)
101{
102	if (page->mapping != mapping)
103		return -EIO;
104
105	if (page_has_private(page))
106		do_invalidatepage(page, 0);
107
108	cancel_dirty_page(page, PAGE_CACHE_SIZE);
 
109
110	clear_page_mlock(page);
111	ClearPageMappedToDisk(page);
112	delete_from_page_cache(page);
113	return 0;
 
 
114}
115
116/*
117 * This is for invalidate_mapping_pages().  That function can be called at
118 * any time, and is not supposed to throw away dirty pages.  But pages can
119 * be marked dirty at any time too, so use remove_mapping which safely
120 * discards clean, unused pages.
121 *
122 * Returns non-zero if the page was successfully invalidated.
123 */
124static int
125invalidate_complete_page(struct address_space *mapping, struct page *page)
126{
127	int ret;
128
129	if (page->mapping != mapping)
130		return 0;
131
132	if (page_has_private(page) && !try_to_release_page(page, 0))
133		return 0;
134
135	clear_page_mlock(page);
136	ret = remove_mapping(mapping, page);
137
138	return ret;
 
 
139}
140
141int truncate_inode_page(struct address_space *mapping, struct page *page)
142{
143	if (page_mapped(page)) {
144		unmap_mapping_range(mapping,
145				   (loff_t)page->index << PAGE_CACHE_SHIFT,
146				   PAGE_CACHE_SIZE, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147	}
148	return truncate_complete_page(mapping, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149}
150
151/*
152 * Used to get rid of pages on hardware memory corruption.
153 */
154int generic_error_remove_page(struct address_space *mapping, struct page *page)
 
155{
156	if (!mapping)
157		return -EINVAL;
158	/*
159	 * Only punch for normal data pages for now.
160	 * Handling other types like directories would need more auditing.
161	 */
162	if (!S_ISREG(mapping->host->i_mode))
163		return -EIO;
164	return truncate_inode_page(mapping, page);
165}
166EXPORT_SYMBOL(generic_error_remove_page);
167
168/*
169 * Safely invalidate one page from its pagecache mapping.
170 * It only drops clean, unused pages. The page must be locked.
 
 
 
 
171 *
172 * Returns 1 if the page is successfully invalidated, otherwise 0.
 
173 */
174int invalidate_inode_page(struct page *page)
175{
176	struct address_space *mapping = page_mapping(page);
177	if (!mapping)
178		return 0;
179	if (PageDirty(page) || PageWriteback(page))
 
 
 
 
180		return 0;
181	if (page_mapped(page))
182		return 0;
183	return invalidate_complete_page(mapping, page);
 
184}
185
186/**
187 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
188 * @mapping: mapping to truncate
189 * @lstart: offset from which to truncate
190 * @lend: offset to which to truncate
191 *
192 * Truncate the page cache, removing the pages that are between
193 * specified offsets (and zeroing out partial page
194 * (if lstart is not page aligned)).
195 *
196 * Truncate takes two passes - the first pass is nonblocking.  It will not
197 * block on page locks and it will not block on writeback.  The second pass
198 * will wait.  This is to prevent as much IO as possible in the affected region.
199 * The first pass will remove most pages, so the search cost of the second pass
200 * is low.
201 *
202 * We pass down the cache-hot hint to the page freeing code.  Even if the
203 * mapping is large, it is probably the case that the final pages are the most
204 * recently touched, and freeing happens in ascending file offset order.
 
 
 
 
205 */
206void truncate_inode_pages_range(struct address_space *mapping,
207				loff_t lstart, loff_t lend)
208{
209	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
210	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
211	struct pagevec pvec;
212	pgoff_t index;
213	pgoff_t end;
214	int i;
 
 
215
216	cleancache_flush_inode(mapping);
217	if (mapping->nrpages == 0)
218		return;
219
220	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221	end = (lend >> PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223	pagevec_init(&pvec, 0);
224	index = start;
225	while (index <= end && pagevec_lookup(&pvec, mapping, index,
226			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
227		mem_cgroup_uncharge_start();
228		for (i = 0; i < pagevec_count(&pvec); i++) {
229			struct page *page = pvec.pages[i];
230
231			/* We rely upon deletion not changing page->index */
232			index = page->index;
233			if (index > end)
234				break;
 
235
236			if (!trylock_page(page))
237				continue;
238			WARN_ON(page->index != index);
239			if (PageWriteback(page)) {
240				unlock_page(page);
241				continue;
242			}
243			truncate_inode_page(mapping, page);
244			unlock_page(page);
245		}
246		pagevec_release(&pvec);
247		mem_cgroup_uncharge_end();
248		cond_resched();
249		index++;
250	}
251
252	if (partial) {
253		struct page *page = find_lock_page(mapping, start - 1);
254		if (page) {
255			wait_on_page_writeback(page);
256			truncate_partial_page(page, partial);
257			unlock_page(page);
258			page_cache_release(page);
 
259		}
260	}
261
262	index = start;
263	for ( ; ; ) {
264		cond_resched();
265		if (!pagevec_lookup(&pvec, mapping, index,
266			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 
267			if (index == start)
268				break;
 
269			index = start;
270			continue;
271		}
272		if (index == start && pvec.pages[0]->index > end) {
273			pagevec_release(&pvec);
274			break;
275		}
276		mem_cgroup_uncharge_start();
277		for (i = 0; i < pagevec_count(&pvec); i++) {
278			struct page *page = pvec.pages[i];
279
280			/* We rely upon deletion not changing page->index */
281			index = page->index;
282			if (index > end)
283				break;
284
285			lock_page(page);
286			WARN_ON(page->index != index);
287			wait_on_page_writeback(page);
288			truncate_inode_page(mapping, page);
289			unlock_page(page);
 
 
 
290		}
291		pagevec_release(&pvec);
292		mem_cgroup_uncharge_end();
293		index++;
294	}
295	cleancache_flush_inode(mapping);
296}
297EXPORT_SYMBOL(truncate_inode_pages_range);
298
299/**
300 * truncate_inode_pages - truncate *all* the pages from an offset
301 * @mapping: mapping to truncate
302 * @lstart: offset from which to truncate
303 *
304 * Called under (and serialised by) inode->i_mutex.
 
305 *
306 * Note: When this function returns, there can be a page in the process of
307 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
308 * mapping->nrpages can be non-zero when this function returns even after
309 * truncation of the whole mapping.
310 */
311void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
312{
313	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
314}
315EXPORT_SYMBOL(truncate_inode_pages);
316
317/**
318 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319 * @mapping: the address_space which holds the pages to invalidate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320 * @start: the offset 'from' which to invalidate
321 * @end: the offset 'to' which to invalidate (inclusive)
 
322 *
323 * This function only removes the unlocked pages, if you want to
324 * remove all the pages of one inode, you must call truncate_inode_pages.
325 *
326 * invalidate_mapping_pages() will not block on IO activity. It will not
327 * invalidate pages which are dirty, locked, under writeback or mapped into
328 * pagetables.
329 */
330unsigned long invalidate_mapping_pages(struct address_space *mapping,
331		pgoff_t start, pgoff_t end)
332{
333	struct pagevec pvec;
 
334	pgoff_t index = start;
335	unsigned long ret;
336	unsigned long count = 0;
337	int i;
338
339	/*
340	 * Note: this function may get called on a shmem/tmpfs mapping:
341	 * pagevec_lookup() might then return 0 prematurely (because it
342	 * got a gangful of swap entries); but it's hardly worth worrying
343	 * about - it can rarely have anything to free from such a mapping
344	 * (most pages are dirty), and already skips over any difficulties.
345	 */
346
347	pagevec_init(&pvec, 0);
348	while (index <= end && pagevec_lookup(&pvec, mapping, index,
349			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
350		mem_cgroup_uncharge_start();
351		for (i = 0; i < pagevec_count(&pvec); i++) {
352			struct page *page = pvec.pages[i];
353
354			/* We rely upon deletion not changing page->index */
355			index = page->index;
356			if (index > end)
357				break;
358
359			if (!trylock_page(page))
360				continue;
361			WARN_ON(page->index != index);
362			ret = invalidate_inode_page(page);
363			unlock_page(page);
 
364			/*
365			 * Invalidation is a hint that the page is no longer
366			 * of interest and try to speed up its reclaim.
367			 */
368			if (!ret)
369				deactivate_page(page);
 
 
 
 
370			count += ret;
371		}
372		pagevec_release(&pvec);
373		mem_cgroup_uncharge_end();
 
 
 
 
374		cond_resched();
375		index++;
376	}
377	return count;
378}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379EXPORT_SYMBOL(invalidate_mapping_pages);
380
381/*
382 * This is like invalidate_complete_page(), except it ignores the page's
383 * refcount.  We do this because invalidate_inode_pages2() needs stronger
384 * invalidation guarantees, and cannot afford to leave pages behind because
385 * shrink_page_list() has a temp ref on them, or because they're transiently
386 * sitting in the lru_cache_add() pagevecs.
387 */
388static int
389invalidate_complete_page2(struct address_space *mapping, struct page *page)
390{
391	if (page->mapping != mapping)
392		return 0;
393
394	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
395		return 0;
396
397	spin_lock_irq(&mapping->tree_lock);
398	if (PageDirty(page))
 
399		goto failed;
400
401	clear_page_mlock(page);
402	BUG_ON(page_has_private(page));
403	__delete_from_page_cache(page);
404	spin_unlock_irq(&mapping->tree_lock);
405	mem_cgroup_uncharge_cache_page(page);
 
406
407	if (mapping->a_ops->freepage)
408		mapping->a_ops->freepage(page);
409
410	page_cache_release(page);	/* pagecache ref */
411	return 1;
412failed:
413	spin_unlock_irq(&mapping->tree_lock);
 
414	return 0;
415}
416
417static int do_launder_page(struct address_space *mapping, struct page *page)
418{
419	if (!PageDirty(page))
420		return 0;
421	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
422		return 0;
423	return mapping->a_ops->launder_page(page);
424}
425
426/**
427 * invalidate_inode_pages2_range - remove range of pages from an address_space
428 * @mapping: the address_space
429 * @start: the page offset 'from' which to invalidate
430 * @end: the page offset 'to' which to invalidate (inclusive)
431 *
432 * Any pages which are found to be mapped into pagetables are unmapped prior to
433 * invalidation.
434 *
435 * Returns -EBUSY if any pages could not be invalidated.
436 */
437int invalidate_inode_pages2_range(struct address_space *mapping,
438				  pgoff_t start, pgoff_t end)
439{
440	struct pagevec pvec;
 
441	pgoff_t index;
442	int i;
443	int ret = 0;
444	int ret2 = 0;
445	int did_range_unmap = 0;
446
447	cleancache_flush_inode(mapping);
448	pagevec_init(&pvec, 0);
 
 
449	index = start;
450	while (index <= end && pagevec_lookup(&pvec, mapping, index,
451			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
452		mem_cgroup_uncharge_start();
453		for (i = 0; i < pagevec_count(&pvec); i++) {
454			struct page *page = pvec.pages[i];
 
 
 
 
 
 
 
 
 
 
 
455
456			/* We rely upon deletion not changing page->index */
457			index = page->index;
458			if (index > end)
459				break;
 
 
 
 
 
460
461			lock_page(page);
462			WARN_ON(page->index != index);
463			if (page->mapping != mapping) {
464				unlock_page(page);
465				continue;
466			}
467			wait_on_page_writeback(page);
468			if (page_mapped(page)) {
469				if (!did_range_unmap) {
470					/*
471					 * Zap the rest of the file in one hit.
472					 */
473					unmap_mapping_range(mapping,
474					   (loff_t)index << PAGE_CACHE_SHIFT,
475					   (loff_t)(1 + end - index)
476							 << PAGE_CACHE_SHIFT,
477					    0);
478					did_range_unmap = 1;
479				} else {
480					/*
481					 * Just zap this page
482					 */
483					unmap_mapping_range(mapping,
484					   (loff_t)index << PAGE_CACHE_SHIFT,
485					   PAGE_CACHE_SIZE, 0);
486				}
487			}
488			BUG_ON(page_mapped(page));
489			ret2 = do_launder_page(mapping, page);
490			if (ret2 == 0) {
491				if (!invalidate_complete_page2(mapping, page))
492					ret2 = -EBUSY;
493			}
494			if (ret2 < 0)
495				ret = ret2;
496			unlock_page(page);
497		}
498		pagevec_release(&pvec);
499		mem_cgroup_uncharge_end();
 
 
 
 
500		cond_resched();
501		index++;
502	}
503	cleancache_flush_inode(mapping);
 
 
 
 
 
 
 
 
 
504	return ret;
505}
506EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
507
508/**
509 * invalidate_inode_pages2 - remove all pages from an address_space
510 * @mapping: the address_space
511 *
512 * Any pages which are found to be mapped into pagetables are unmapped prior to
513 * invalidation.
514 *
515 * Returns -EBUSY if any pages could not be invalidated.
516 */
517int invalidate_inode_pages2(struct address_space *mapping)
518{
519	return invalidate_inode_pages2_range(mapping, 0, -1);
520}
521EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
522
523/**
524 * truncate_pagecache - unmap and remove pagecache that has been truncated
525 * @inode: inode
526 * @oldsize: old file size
527 * @newsize: new file size
528 *
529 * inode's new i_size must already be written before truncate_pagecache
530 * is called.
531 *
532 * This function should typically be called before the filesystem
533 * releases resources associated with the freed range (eg. deallocates
534 * blocks). This way, pagecache will always stay logically coherent
535 * with on-disk format, and the filesystem would not have to deal with
536 * situations such as writepage being called for a page that has already
537 * had its underlying blocks deallocated.
538 */
539void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
540{
541	struct address_space *mapping = inode->i_mapping;
542	loff_t holebegin = round_up(newsize, PAGE_SIZE);
543
544	/*
545	 * unmap_mapping_range is called twice, first simply for
546	 * efficiency so that truncate_inode_pages does fewer
547	 * single-page unmaps.  However after this first call, and
548	 * before truncate_inode_pages finishes, it is possible for
549	 * private pages to be COWed, which remain after
550	 * truncate_inode_pages finishes, hence the second
551	 * unmap_mapping_range call must be made for correctness.
552	 */
553	unmap_mapping_range(mapping, holebegin, 0, 1);
554	truncate_inode_pages(mapping, newsize);
555	unmap_mapping_range(mapping, holebegin, 0, 1);
556}
557EXPORT_SYMBOL(truncate_pagecache);
558
559/**
560 * truncate_setsize - update inode and pagecache for a new file size
561 * @inode: inode
562 * @newsize: new file size
563 *
564 * truncate_setsize updates i_size and performs pagecache truncation (if
565 * necessary) to @newsize. It will be typically be called from the filesystem's
566 * setattr function when ATTR_SIZE is passed in.
567 *
568 * Must be called with inode_mutex held and before all filesystem specific
569 * block truncation has been performed.
 
570 */
571void truncate_setsize(struct inode *inode, loff_t newsize)
572{
573	loff_t oldsize;
574
575	oldsize = inode->i_size;
576	i_size_write(inode, newsize);
577
578	truncate_pagecache(inode, oldsize, newsize);
 
579}
580EXPORT_SYMBOL(truncate_setsize);
581
582/**
583 * vmtruncate - unmap mappings "freed" by truncate() syscall
584 * @inode: inode of the file used
585 * @newsize: file offset to start truncating
586 *
587 * This function is deprecated and truncate_setsize or truncate_pagecache
588 * should be used instead, together with filesystem specific block truncation.
589 */
590int vmtruncate(struct inode *inode, loff_t newsize)
591{
592	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
593
594	error = inode_newsize_ok(inode, newsize);
595	if (error)
596		return error;
597
598	truncate_setsize(inode, newsize);
599	if (inode->i_op->truncate)
600		inode->i_op->truncate(inode);
601	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602}
603EXPORT_SYMBOL(vmtruncate);
604
605int vmtruncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 
 
 
 
 
 
 
 
 
 
 
 
 
606{
607	struct address_space *mapping = inode->i_mapping;
608	loff_t holebegin = round_up(lstart, PAGE_SIZE);
609	loff_t holelen = 1 + lend - holebegin;
610
611	/*
612	 * If the underlying filesystem is not going to provide
613	 * a way to truncate a range of blocks (punch a hole) -
614	 * we should return failure right now.
615	 */
616	if (!inode->i_op->truncate_range)
617		return -ENOSYS;
618
619	mutex_lock(&inode->i_mutex);
620	inode_dio_wait(inode);
621	unmap_mapping_range(mapping, holebegin, holelen, 1);
622	inode->i_op->truncate_range(inode, lstart, lend);
623	/* unmap again to remove racily COWed private pages */
624	unmap_mapping_range(mapping, holebegin, holelen, 1);
625	mutex_unlock(&inode->i_mutex);
626
627	return 0;
 
 
 
 
 
 
 
 
628}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/truncate.c - code for taking down pages from address_spaces
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 10Sep2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/backing-dev.h>
 13#include <linux/dax.h>
 14#include <linux/gfp.h>
 15#include <linux/mm.h>
 16#include <linux/swap.h>
 17#include <linux/export.h>
 18#include <linux/pagemap.h>
 19#include <linux/highmem.h>
 20#include <linux/pagevec.h>
 21#include <linux/task_io_accounting_ops.h>
 22#include <linux/shmem_fs.h>
 23#include <linux/rmap.h>
 
 24#include "internal.h"
 25
 26static void clear_shadow_entries(struct address_space *mapping,
 27				 unsigned long start, unsigned long max)
 28{
 29	XA_STATE(xas, &mapping->i_pages, start);
 30	struct folio *folio;
 31
 32	/* Handled by shmem itself, or for DAX we do nothing. */
 33	if (shmem_mapping(mapping) || dax_mapping(mapping))
 34		return;
 35
 36	xas_set_update(&xas, workingset_update_node);
 37
 38	spin_lock(&mapping->host->i_lock);
 39	xas_lock_irq(&xas);
 40
 41	/* Clear all shadow entries from start to max */
 42	xas_for_each(&xas, folio, max) {
 43		if (xa_is_value(folio))
 44			xas_store(&xas, NULL);
 45	}
 46
 47	xas_unlock_irq(&xas);
 48	if (mapping_shrinkable(mapping))
 49		inode_add_lru(mapping->host);
 50	spin_unlock(&mapping->host->i_lock);
 51}
 52
 53/*
 54 * Unconditionally remove exceptional entries. Usually called from truncate
 55 * path. Note that the folio_batch may be altered by this function by removing
 56 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
 57 * Please note that indices[] has entries in ascending order as guaranteed by
 58 * either find_get_entries() or find_lock_entries().
 59 */
 60static void truncate_folio_batch_exceptionals(struct address_space *mapping,
 61				struct folio_batch *fbatch, pgoff_t *indices)
 62{
 63	XA_STATE(xas, &mapping->i_pages, indices[0]);
 64	int nr = folio_batch_count(fbatch);
 65	struct folio *folio;
 66	int i, j;
 67
 68	/* Handled by shmem itself */
 69	if (shmem_mapping(mapping))
 70		return;
 71
 72	for (j = 0; j < nr; j++)
 73		if (xa_is_value(fbatch->folios[j]))
 74			break;
 75
 76	if (j == nr)
 77		return;
 78
 79	if (dax_mapping(mapping)) {
 80		for (i = j; i < nr; i++) {
 81			if (xa_is_value(fbatch->folios[i]))
 82				dax_delete_mapping_entry(mapping, indices[i]);
 83		}
 84		goto out;
 85	}
 86
 87	xas_set(&xas, indices[j]);
 88	xas_set_update(&xas, workingset_update_node);
 89
 90	spin_lock(&mapping->host->i_lock);
 91	xas_lock_irq(&xas);
 92
 93	xas_for_each(&xas, folio, indices[nr-1]) {
 94		if (xa_is_value(folio))
 95			xas_store(&xas, NULL);
 96	}
 97
 98	xas_unlock_irq(&xas);
 99	if (mapping_shrinkable(mapping))
100		inode_add_lru(mapping->host);
101	spin_unlock(&mapping->host->i_lock);
102out:
103	folio_batch_remove_exceptionals(fbatch);
104}
105
106/**
107 * folio_invalidate - Invalidate part or all of a folio.
108 * @folio: The folio which is affected.
109 * @offset: start of the range to invalidate
110 * @length: length of the range to invalidate
111 *
112 * folio_invalidate() is called when all or part of the folio has become
113 * invalidated by a truncate operation.
114 *
115 * folio_invalidate() does not have to release all buffers, but it must
116 * ensure that no dirty buffer is left outside @offset and that no I/O
117 * is underway against any of the blocks which are outside the truncation
118 * point.  Because the caller is about to free (and possibly reuse) those
119 * blocks on-disk.
120 */
121void folio_invalidate(struct folio *folio, size_t offset, size_t length)
122{
123	const struct address_space_operations *aops = folio->mapping->a_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125	if (aops->invalidate_folio)
126		aops->invalidate_folio(folio, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
128EXPORT_SYMBOL_GPL(folio_invalidate);
129
130/*
131 * If truncate cannot remove the fs-private metadata from the page, the page
132 * becomes orphaned.  It will be left on the LRU and may even be mapped into
133 * user pagetables if we're racing with filemap_fault().
134 *
135 * We need to bail out if page->mapping is no longer equal to the original
136 * mapping.  This happens a) when the VM reclaimed the page while we waited on
137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
139 */
140static void truncate_cleanup_folio(struct folio *folio)
 
141{
142	if (folio_mapped(folio))
143		unmap_mapping_folio(folio);
 
 
 
144
145	if (folio_needs_release(folio))
146		folio_invalidate(folio, 0, folio_size(folio));
147
148	/*
149	 * Some filesystems seem to re-dirty the page even after
150	 * the VM has canceled the dirty bit (eg ext3 journaling).
151	 * Hence dirty accounting check is placed after invalidation.
152	 */
153	folio_cancel_dirty(folio);
154}
155
156int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
 
 
 
 
 
 
 
 
 
157{
158	if (folio->mapping != mapping)
159		return -EIO;
 
 
 
 
 
 
 
 
160
161	truncate_cleanup_folio(folio);
162	filemap_remove_folio(folio);
163	return 0;
164}
165
166/*
167 * Handle partial folios.  The folio may be entirely within the
168 * range if a split has raced with us.  If not, we zero the part of the
169 * folio that's within the [start, end] range, and then split the folio if
170 * it's large.  split_page_range() will discard pages which now lie beyond
171 * i_size, and we rely on the caller to discard pages which lie within a
172 * newly created hole.
173 *
174 * Returns false if splitting failed so the caller can avoid
175 * discarding the entire folio which is stubbornly unsplit.
176 */
177bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
178{
179	loff_t pos = folio_pos(folio);
180	unsigned int offset, length;
181
182	if (pos < start)
183		offset = start - pos;
184	else
185		offset = 0;
186	length = folio_size(folio);
187	if (pos + length <= (u64)end)
188		length = length - offset;
189	else
190		length = end + 1 - pos - offset;
191
192	folio_wait_writeback(folio);
193	if (length == folio_size(folio)) {
194		truncate_inode_folio(folio->mapping, folio);
195		return true;
196	}
197
198	/*
199	 * We may be zeroing pages we're about to discard, but it avoids
200	 * doing a complex calculation here, and then doing the zeroing
201	 * anyway if the page split fails.
202	 */
203	if (!mapping_inaccessible(folio->mapping))
204		folio_zero_range(folio, offset, length);
205
206	if (folio_needs_release(folio))
207		folio_invalidate(folio, offset, length);
208	if (!folio_test_large(folio))
209		return true;
210	if (split_folio(folio) == 0)
211		return true;
212	if (folio_test_dirty(folio))
213		return false;
214	truncate_inode_folio(folio->mapping, folio);
215	return true;
216}
217
218/*
219 * Used to get rid of pages on hardware memory corruption.
220 */
221int generic_error_remove_folio(struct address_space *mapping,
222		struct folio *folio)
223{
224	if (!mapping)
225		return -EINVAL;
226	/*
227	 * Only punch for normal data pages for now.
228	 * Handling other types like directories would need more auditing.
229	 */
230	if (!S_ISREG(mapping->host->i_mode))
231		return -EIO;
232	return truncate_inode_folio(mapping, folio);
233}
234EXPORT_SYMBOL(generic_error_remove_folio);
235
236/**
237 * mapping_evict_folio() - Remove an unused folio from the page-cache.
238 * @mapping: The mapping this folio belongs to.
239 * @folio: The folio to remove.
240 *
241 * Safely remove one folio from the page cache.
242 * It only drops clean, unused folios.
243 *
244 * Context: Folio must be locked.
245 * Return: The number of pages successfully removed.
246 */
247long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
248{
249	/* The page may have been truncated before it was locked */
250	if (!mapping)
251		return 0;
252	if (folio_test_dirty(folio) || folio_test_writeback(folio))
253		return 0;
254	/* The refcount will be elevated if any page in the folio is mapped */
255	if (folio_ref_count(folio) >
256			folio_nr_pages(folio) + folio_has_private(folio) + 1)
257		return 0;
258	if (!filemap_release_folio(folio, 0))
259		return 0;
260
261	return remove_mapping(mapping, folio);
262}
263
264/**
265 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266 * @mapping: mapping to truncate
267 * @lstart: offset from which to truncate
268 * @lend: offset to which to truncate (inclusive)
269 *
270 * Truncate the page cache, removing the pages that are between
271 * specified offsets (and zeroing out partial pages
272 * if lstart or lend + 1 is not page aligned).
273 *
274 * Truncate takes two passes - the first pass is nonblocking.  It will not
275 * block on page locks and it will not block on writeback.  The second pass
276 * will wait.  This is to prevent as much IO as possible in the affected region.
277 * The first pass will remove most pages, so the search cost of the second pass
278 * is low.
279 *
280 * We pass down the cache-hot hint to the page freeing code.  Even if the
281 * mapping is large, it is probably the case that the final pages are the most
282 * recently touched, and freeing happens in ascending file offset order.
283 *
284 * Note that since ->invalidate_folio() accepts range to invalidate
285 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286 * page aligned properly.
287 */
288void truncate_inode_pages_range(struct address_space *mapping,
289				loff_t lstart, loff_t lend)
290{
291	pgoff_t		start;		/* inclusive */
292	pgoff_t		end;		/* exclusive */
293	struct folio_batch fbatch;
294	pgoff_t		indices[PAGEVEC_SIZE];
295	pgoff_t		index;
296	int		i;
297	struct folio	*folio;
298	bool		same_folio;
299
300	if (mapping_empty(mapping))
 
301		return;
302
303	/*
304	 * 'start' and 'end' always covers the range of pages to be fully
305	 * truncated. Partial pages are covered with 'partial_start' at the
306	 * start of the range and 'partial_end' at the end of the range.
307	 * Note that 'end' is exclusive while 'lend' is inclusive.
308	 */
309	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
310	if (lend == -1)
311		/*
312		 * lend == -1 indicates end-of-file so we have to set 'end'
313		 * to the highest possible pgoff_t and since the type is
314		 * unsigned we're using -1.
315		 */
316		end = -1;
317	else
318		end = (lend + 1) >> PAGE_SHIFT;
319
320	folio_batch_init(&fbatch);
321	index = start;
322	while (index < end && find_lock_entries(mapping, &index, end - 1,
323			&fbatch, indices)) {
324		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
325		for (i = 0; i < folio_batch_count(&fbatch); i++)
326			truncate_cleanup_folio(fbatch.folios[i]);
327		delete_from_page_cache_batch(mapping, &fbatch);
328		for (i = 0; i < folio_batch_count(&fbatch); i++)
329			folio_unlock(fbatch.folios[i]);
330		folio_batch_release(&fbatch);
331		cond_resched();
332	}
333
334	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
335	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
336	if (!IS_ERR(folio)) {
337		same_folio = lend < folio_pos(folio) + folio_size(folio);
338		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
339			start = folio_next_index(folio);
340			if (same_folio)
341				end = folio->index;
 
342		}
343		folio_unlock(folio);
344		folio_put(folio);
345		folio = NULL;
 
346	}
347
348	if (!same_folio) {
349		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
350						FGP_LOCK, 0);
351		if (!IS_ERR(folio)) {
352			if (!truncate_inode_partial_folio(folio, lstart, lend))
353				end = folio->index;
354			folio_unlock(folio);
355			folio_put(folio);
356		}
357	}
358
359	index = start;
360	while (index < end) {
361		cond_resched();
362		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
363				indices)) {
364			/* If all gone from start onwards, we're done */
365			if (index == start)
366				break;
367			/* Otherwise restart to make sure all gone */
368			index = start;
369			continue;
370		}
371
372		for (i = 0; i < folio_batch_count(&fbatch); i++) {
373			struct folio *folio = fbatch.folios[i];
 
 
 
 
374
375			/* We rely upon deletion not changing page->index */
 
 
 
376
377			if (xa_is_value(folio))
378				continue;
379
380			folio_lock(folio);
381			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
382			folio_wait_writeback(folio);
383			truncate_inode_folio(mapping, folio);
384			folio_unlock(folio);
385		}
386		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
387		folio_batch_release(&fbatch);
 
388	}
 
389}
390EXPORT_SYMBOL(truncate_inode_pages_range);
391
392/**
393 * truncate_inode_pages - truncate *all* the pages from an offset
394 * @mapping: mapping to truncate
395 * @lstart: offset from which to truncate
396 *
397 * Called under (and serialised by) inode->i_rwsem and
398 * mapping->invalidate_lock.
399 *
400 * Note: When this function returns, there can be a page in the process of
401 * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
402 * mapping->nrpages can be non-zero when this function returns even after
403 * truncation of the whole mapping.
404 */
405void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
406{
407	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
408}
409EXPORT_SYMBOL(truncate_inode_pages);
410
411/**
412 * truncate_inode_pages_final - truncate *all* pages before inode dies
413 * @mapping: mapping to truncate
414 *
415 * Called under (and serialized by) inode->i_rwsem.
416 *
417 * Filesystems have to use this in the .evict_inode path to inform the
418 * VM that this is the final truncate and the inode is going away.
419 */
420void truncate_inode_pages_final(struct address_space *mapping)
421{
422	/*
423	 * Page reclaim can not participate in regular inode lifetime
424	 * management (can't call iput()) and thus can race with the
425	 * inode teardown.  Tell it when the address space is exiting,
426	 * so that it does not install eviction information after the
427	 * final truncate has begun.
428	 */
429	mapping_set_exiting(mapping);
430
431	if (!mapping_empty(mapping)) {
432		/*
433		 * As truncation uses a lockless tree lookup, cycle
434		 * the tree lock to make sure any ongoing tree
435		 * modification that does not see AS_EXITING is
436		 * completed before starting the final truncate.
437		 */
438		xa_lock_irq(&mapping->i_pages);
439		xa_unlock_irq(&mapping->i_pages);
440	}
441
442	truncate_inode_pages(mapping, 0);
443}
444EXPORT_SYMBOL(truncate_inode_pages_final);
445
446/**
447 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
448 * @mapping: the address_space which holds the folios to invalidate
449 * @start: the offset 'from' which to invalidate
450 * @end: the offset 'to' which to invalidate (inclusive)
451 * @nr_failed: How many folio invalidations failed
452 *
453 * This function is similar to invalidate_mapping_pages(), except that it
454 * returns the number of folios which could not be evicted in @nr_failed.
 
 
 
 
455 */
456unsigned long mapping_try_invalidate(struct address_space *mapping,
457		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
458{
459	pgoff_t indices[PAGEVEC_SIZE];
460	struct folio_batch fbatch;
461	pgoff_t index = start;
462	unsigned long ret;
463	unsigned long count = 0;
464	int i;
465
466	folio_batch_init(&fbatch);
467	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
468		bool xa_has_values = false;
469		int nr = folio_batch_count(&fbatch);
470
471		for (i = 0; i < nr; i++) {
472			struct folio *folio = fbatch.folios[i];
473
474			/* We rely upon deletion not changing folio->index */
475
476			if (xa_is_value(folio)) {
477				xa_has_values = true;
478				count++;
 
 
 
 
 
 
 
 
479				continue;
480			}
481
482			ret = mapping_evict_folio(mapping, folio);
483			folio_unlock(folio);
484			/*
485			 * Invalidation is a hint that the folio is no longer
486			 * of interest and try to speed up its reclaim.
487			 */
488			if (!ret) {
489				deactivate_file_folio(folio);
490				/* Likely in the lru cache of a remote CPU */
491				if (nr_failed)
492					(*nr_failed)++;
493			}
494			count += ret;
495		}
496
497		if (xa_has_values)
498			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
499
500		folio_batch_remove_exceptionals(&fbatch);
501		folio_batch_release(&fbatch);
502		cond_resched();
 
503	}
504	return count;
505}
506
507/**
508 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
509 * @mapping: the address_space which holds the cache to invalidate
510 * @start: the offset 'from' which to invalidate
511 * @end: the offset 'to' which to invalidate (inclusive)
512 *
513 * This function removes pages that are clean, unmapped and unlocked,
514 * as well as shadow entries. It will not block on IO activity.
515 *
516 * If you want to remove all the pages of one inode, regardless of
517 * their use and writeback state, use truncate_inode_pages().
518 *
519 * Return: The number of indices that had their contents invalidated
520 */
521unsigned long invalidate_mapping_pages(struct address_space *mapping,
522		pgoff_t start, pgoff_t end)
523{
524	return mapping_try_invalidate(mapping, start, end, NULL);
525}
526EXPORT_SYMBOL(invalidate_mapping_pages);
527
528/*
529 * This is like mapping_evict_folio(), except it ignores the folio's
530 * refcount.  We do this because invalidate_inode_pages2() needs stronger
531 * invalidation guarantees, and cannot afford to leave folios behind because
532 * shrink_folio_list() has a temp ref on them, or because they're transiently
533 * sitting in the folio_add_lru() caches.
534 */
535static int invalidate_complete_folio2(struct address_space *mapping,
536					struct folio *folio)
537{
538	if (folio->mapping != mapping)
539		return 0;
540
541	if (!filemap_release_folio(folio, GFP_KERNEL))
542		return 0;
543
544	spin_lock(&mapping->host->i_lock);
545	xa_lock_irq(&mapping->i_pages);
546	if (folio_test_dirty(folio))
547		goto failed;
548
549	BUG_ON(folio_has_private(folio));
550	__filemap_remove_folio(folio, NULL);
551	xa_unlock_irq(&mapping->i_pages);
552	if (mapping_shrinkable(mapping))
553		inode_add_lru(mapping->host);
554	spin_unlock(&mapping->host->i_lock);
555
556	filemap_free_folio(mapping, folio);
 
 
 
557	return 1;
558failed:
559	xa_unlock_irq(&mapping->i_pages);
560	spin_unlock(&mapping->host->i_lock);
561	return 0;
562}
563
564static int folio_launder(struct address_space *mapping, struct folio *folio)
565{
566	if (!folio_test_dirty(folio))
567		return 0;
568	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
569		return 0;
570	return mapping->a_ops->launder_folio(folio);
571}
572
573/**
574 * invalidate_inode_pages2_range - remove range of pages from an address_space
575 * @mapping: the address_space
576 * @start: the page offset 'from' which to invalidate
577 * @end: the page offset 'to' which to invalidate (inclusive)
578 *
579 * Any pages which are found to be mapped into pagetables are unmapped prior to
580 * invalidation.
581 *
582 * Return: -EBUSY if any pages could not be invalidated.
583 */
584int invalidate_inode_pages2_range(struct address_space *mapping,
585				  pgoff_t start, pgoff_t end)
586{
587	pgoff_t indices[PAGEVEC_SIZE];
588	struct folio_batch fbatch;
589	pgoff_t index;
590	int i;
591	int ret = 0;
592	int ret2 = 0;
593	int did_range_unmap = 0;
594
595	if (mapping_empty(mapping))
596		return 0;
597
598	folio_batch_init(&fbatch);
599	index = start;
600	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
601		bool xa_has_values = false;
602		int nr = folio_batch_count(&fbatch);
603
604		for (i = 0; i < nr; i++) {
605			struct folio *folio = fbatch.folios[i];
606
607			/* We rely upon deletion not changing folio->index */
608
609			if (xa_is_value(folio)) {
610				xa_has_values = true;
611				if (dax_mapping(mapping) &&
612				    !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
613					ret = -EBUSY;
614				continue;
615			}
616
617			if (!did_range_unmap && folio_mapped(folio)) {
618				/*
619				 * If folio is mapped, before taking its lock,
620				 * zap the rest of the file in one hit.
621				 */
622				unmap_mapping_pages(mapping, indices[i],
623						(1 + end - indices[i]), false);
624				did_range_unmap = 1;
625			}
626
627			folio_lock(folio);
628			if (unlikely(folio->mapping != mapping)) {
629				folio_unlock(folio);
 
630				continue;
631			}
632			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
633			folio_wait_writeback(folio);
634
635			if (folio_mapped(folio))
636				unmap_mapping_folio(folio);
637			BUG_ON(folio_mapped(folio));
638
639			ret2 = folio_launder(mapping, folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640			if (ret2 == 0) {
641				if (!invalidate_complete_folio2(mapping, folio))
642					ret2 = -EBUSY;
643			}
644			if (ret2 < 0)
645				ret = ret2;
646			folio_unlock(folio);
647		}
648
649		if (xa_has_values)
650			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
651
652		folio_batch_remove_exceptionals(&fbatch);
653		folio_batch_release(&fbatch);
654		cond_resched();
 
655	}
656	/*
657	 * For DAX we invalidate page tables after invalidating page cache.  We
658	 * could invalidate page tables while invalidating each entry however
659	 * that would be expensive. And doing range unmapping before doesn't
660	 * work as we have no cheap way to find whether page cache entry didn't
661	 * get remapped later.
662	 */
663	if (dax_mapping(mapping)) {
664		unmap_mapping_pages(mapping, start, end - start + 1, false);
665	}
666	return ret;
667}
668EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
669
670/**
671 * invalidate_inode_pages2 - remove all pages from an address_space
672 * @mapping: the address_space
673 *
674 * Any pages which are found to be mapped into pagetables are unmapped prior to
675 * invalidation.
676 *
677 * Return: -EBUSY if any pages could not be invalidated.
678 */
679int invalidate_inode_pages2(struct address_space *mapping)
680{
681	return invalidate_inode_pages2_range(mapping, 0, -1);
682}
683EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
684
685/**
686 * truncate_pagecache - unmap and remove pagecache that has been truncated
687 * @inode: inode
 
688 * @newsize: new file size
689 *
690 * inode's new i_size must already be written before truncate_pagecache
691 * is called.
692 *
693 * This function should typically be called before the filesystem
694 * releases resources associated with the freed range (eg. deallocates
695 * blocks). This way, pagecache will always stay logically coherent
696 * with on-disk format, and the filesystem would not have to deal with
697 * situations such as writepage being called for a page that has already
698 * had its underlying blocks deallocated.
699 */
700void truncate_pagecache(struct inode *inode, loff_t newsize)
701{
702	struct address_space *mapping = inode->i_mapping;
703	loff_t holebegin = round_up(newsize, PAGE_SIZE);
704
705	/*
706	 * unmap_mapping_range is called twice, first simply for
707	 * efficiency so that truncate_inode_pages does fewer
708	 * single-page unmaps.  However after this first call, and
709	 * before truncate_inode_pages finishes, it is possible for
710	 * private pages to be COWed, which remain after
711	 * truncate_inode_pages finishes, hence the second
712	 * unmap_mapping_range call must be made for correctness.
713	 */
714	unmap_mapping_range(mapping, holebegin, 0, 1);
715	truncate_inode_pages(mapping, newsize);
716	unmap_mapping_range(mapping, holebegin, 0, 1);
717}
718EXPORT_SYMBOL(truncate_pagecache);
719
720/**
721 * truncate_setsize - update inode and pagecache for a new file size
722 * @inode: inode
723 * @newsize: new file size
724 *
725 * truncate_setsize updates i_size and performs pagecache truncation (if
726 * necessary) to @newsize. It will be typically be called from the filesystem's
727 * setattr function when ATTR_SIZE is passed in.
728 *
729 * Must be called with a lock serializing truncates and writes (generally
730 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
731 * specific block truncation has been performed.
732 */
733void truncate_setsize(struct inode *inode, loff_t newsize)
734{
735	loff_t oldsize = inode->i_size;
736
 
737	i_size_write(inode, newsize);
738	if (newsize > oldsize)
739		pagecache_isize_extended(inode, oldsize, newsize);
740	truncate_pagecache(inode, newsize);
741}
742EXPORT_SYMBOL(truncate_setsize);
743
744/**
745 * pagecache_isize_extended - update pagecache after extension of i_size
746 * @inode:	inode for which i_size was extended
747 * @from:	original inode size
748 * @to:		new inode size
749 *
750 * Handle extension of inode size either caused by extending truncate or
751 * by write starting after current i_size.  We mark the page straddling
752 * current i_size RO so that page_mkwrite() is called on the first
753 * write access to the page.  The filesystem will update its per-block
754 * information before user writes to the page via mmap after the i_size
755 * has been changed.
756 *
757 * The function must be called after i_size is updated so that page fault
758 * coming after we unlock the folio will already see the new i_size.
759 * The function must be called while we still hold i_rwsem - this not only
760 * makes sure i_size is stable but also that userspace cannot observe new
761 * i_size value before we are prepared to store mmap writes at new inode size.
762 */
763void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
764{
765	int bsize = i_blocksize(inode);
766	loff_t rounded_from;
767	struct folio *folio;
768
769	WARN_ON(to > inode->i_size);
 
 
770
771	if (from >= to || bsize >= PAGE_SIZE)
772		return;
773	/* Page straddling @from will not have any hole block created? */
774	rounded_from = round_up(from, bsize);
775	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
776		return;
777
778	folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
779	/* Folio not cached? Nothing to do */
780	if (IS_ERR(folio))
781		return;
782	/*
783	 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
784	 * is needed.
785	 */
786	if (folio_mkclean(folio))
787		folio_mark_dirty(folio);
788
789	/*
790	 * The post-eof range of the folio must be zeroed before it is exposed
791	 * to the file. Writeback normally does this, but since i_size has been
792	 * increased we handle it here.
793	 */
794	if (folio_test_dirty(folio)) {
795		unsigned int offset, end;
796
797		offset = from - folio_pos(folio);
798		end = min_t(unsigned int, to - folio_pos(folio),
799			    folio_size(folio));
800		folio_zero_segment(folio, offset, end);
801	}
802
803	folio_unlock(folio);
804	folio_put(folio);
805}
806EXPORT_SYMBOL(pagecache_isize_extended);
807
808/**
809 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
810 * @inode: inode
811 * @lstart: offset of beginning of hole
812 * @lend: offset of last byte of hole
813 *
814 * This function should typically be called before the filesystem
815 * releases resources associated with the freed range (eg. deallocates
816 * blocks). This way, pagecache will always stay logically coherent
817 * with on-disk format, and the filesystem would not have to deal with
818 * situations such as writepage being called for a page that has already
819 * had its underlying blocks deallocated.
820 */
821void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
822{
823	struct address_space *mapping = inode->i_mapping;
824	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
825	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 
826	/*
827	 * This rounding is currently just for example: unmap_mapping_range
828	 * expands its hole outwards, whereas we want it to contract the hole
829	 * inwards.  However, existing callers of truncate_pagecache_range are
830	 * doing their own page rounding first.  Note that unmap_mapping_range
831	 * allows holelen 0 for all, and we allow lend -1 for end of file.
832	 */
 
 
 
 
 
 
 
 
833
834	/*
835	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
836	 * once (before truncating pagecache), and without "even_cows" flag:
837	 * hole-punching should not remove private COWed pages from the hole.
838	 */
839	if ((u64)unmap_end > (u64)unmap_start)
840		unmap_mapping_range(mapping, unmap_start,
841				    1 + unmap_end - unmap_start, 0);
842	truncate_inode_pages_range(mapping, lstart, lend);
843}
844EXPORT_SYMBOL(truncate_pagecache_range);