Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/gfp.h>
 13#include <linux/mm.h>
 14#include <linux/swap.h>
 15#include <linux/module.h>
 16#include <linux/pagemap.h>
 17#include <linux/highmem.h>
 18#include <linux/pagevec.h>
 19#include <linux/task_io_accounting_ops.h>
 20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 21				   do_invalidatepage */
 22#include <linux/cleancache.h>
 23#include "internal.h"
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26/**
 27 * do_invalidatepage - invalidate part or all of a page
 28 * @page: the page which is affected
 29 * @offset: the index of the truncation point
 
 30 *
 31 * do_invalidatepage() is called when all or part of the page has become
 32 * invalidated by a truncate operation.
 33 *
 34 * do_invalidatepage() does not have to release all buffers, but it must
 35 * ensure that no dirty buffer is left outside @offset and that no I/O
 36 * is underway against any of the blocks which are outside the truncation
 37 * point.  Because the caller is about to free (and possibly reuse) those
 38 * blocks on-disk.
 39 */
 40void do_invalidatepage(struct page *page, unsigned long offset)
 
 41{
 42	void (*invalidatepage)(struct page *, unsigned long);
 
 43	invalidatepage = page->mapping->a_ops->invalidatepage;
 44#ifdef CONFIG_BLOCK
 45	if (!invalidatepage)
 46		invalidatepage = block_invalidatepage;
 47#endif
 48	if (invalidatepage)
 49		(*invalidatepage)(page, offset);
 50}
 51
 52static inline void truncate_partial_page(struct page *page, unsigned partial)
 53{
 54	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 55	cleancache_flush_page(page->mapping, page);
 56	if (page_has_private(page))
 57		do_invalidatepage(page, partial);
 58}
 59
 60/*
 61 * This cancels just the dirty bit on the kernel page itself, it
 62 * does NOT actually remove dirty bits on any mmap's that may be
 63 * around. It also leaves the page tagged dirty, so any sync
 64 * activity will still find it on the dirty lists, and in particular,
 65 * clear_page_dirty_for_io() will still look at the dirty bits in
 66 * the VM.
 67 *
 68 * Doing this should *normally* only ever be done when a page
 69 * is truncated, and is not actually mapped anywhere at all. However,
 70 * fs/buffer.c does this when it notices that somebody has cleaned
 71 * out all the buffers on a page without actually doing it through
 72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
 73 */
 74void cancel_dirty_page(struct page *page, unsigned int account_size)
 75{
 76	if (TestClearPageDirty(page)) {
 77		struct address_space *mapping = page->mapping;
 78		if (mapping && mapping_cap_account_dirty(mapping)) {
 79			dec_zone_page_state(page, NR_FILE_DIRTY);
 80			dec_bdi_stat(mapping->backing_dev_info,
 81					BDI_RECLAIMABLE);
 82			if (account_size)
 83				task_io_account_cancelled_write(account_size);
 84		}
 85	}
 86}
 87EXPORT_SYMBOL(cancel_dirty_page);
 88
 89/*
 90 * If truncate cannot remove the fs-private metadata from the page, the page
 91 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 92 * user pagetables if we're racing with filemap_fault().
 93 *
 94 * We need to bale out if page->mapping is no longer equal to the original
 95 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 98 */
 99static int
100truncate_complete_page(struct address_space *mapping, struct page *page)
101{
102	if (page->mapping != mapping)
103		return -EIO;
104
105	if (page_has_private(page))
106		do_invalidatepage(page, 0);
107
108	cancel_dirty_page(page, PAGE_CACHE_SIZE);
109
110	clear_page_mlock(page);
111	ClearPageMappedToDisk(page);
112	delete_from_page_cache(page);
113	return 0;
114}
115
116/*
117 * This is for invalidate_mapping_pages().  That function can be called at
118 * any time, and is not supposed to throw away dirty pages.  But pages can
119 * be marked dirty at any time too, so use remove_mapping which safely
120 * discards clean, unused pages.
121 *
122 * Returns non-zero if the page was successfully invalidated.
123 */
124static int
125invalidate_complete_page(struct address_space *mapping, struct page *page)
126{
127	int ret;
128
129	if (page->mapping != mapping)
130		return 0;
131
132	if (page_has_private(page) && !try_to_release_page(page, 0))
133		return 0;
134
135	clear_page_mlock(page);
136	ret = remove_mapping(mapping, page);
137
138	return ret;
139}
140
141int truncate_inode_page(struct address_space *mapping, struct page *page)
142{
143	if (page_mapped(page)) {
144		unmap_mapping_range(mapping,
145				   (loff_t)page->index << PAGE_CACHE_SHIFT,
146				   PAGE_CACHE_SIZE, 0);
147	}
148	return truncate_complete_page(mapping, page);
149}
150
151/*
152 * Used to get rid of pages on hardware memory corruption.
153 */
154int generic_error_remove_page(struct address_space *mapping, struct page *page)
155{
156	if (!mapping)
157		return -EINVAL;
158	/*
159	 * Only punch for normal data pages for now.
160	 * Handling other types like directories would need more auditing.
161	 */
162	if (!S_ISREG(mapping->host->i_mode))
163		return -EIO;
164	return truncate_inode_page(mapping, page);
165}
166EXPORT_SYMBOL(generic_error_remove_page);
167
168/*
169 * Safely invalidate one page from its pagecache mapping.
170 * It only drops clean, unused pages. The page must be locked.
171 *
172 * Returns 1 if the page is successfully invalidated, otherwise 0.
173 */
174int invalidate_inode_page(struct page *page)
175{
176	struct address_space *mapping = page_mapping(page);
177	if (!mapping)
178		return 0;
179	if (PageDirty(page) || PageWriteback(page))
180		return 0;
181	if (page_mapped(page))
182		return 0;
183	return invalidate_complete_page(mapping, page);
184}
185
186/**
187 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
188 * @mapping: mapping to truncate
189 * @lstart: offset from which to truncate
190 * @lend: offset to which to truncate
191 *
192 * Truncate the page cache, removing the pages that are between
193 * specified offsets (and zeroing out partial page
194 * (if lstart is not page aligned)).
195 *
196 * Truncate takes two passes - the first pass is nonblocking.  It will not
197 * block on page locks and it will not block on writeback.  The second pass
198 * will wait.  This is to prevent as much IO as possible in the affected region.
199 * The first pass will remove most pages, so the search cost of the second pass
200 * is low.
201 *
202 * We pass down the cache-hot hint to the page freeing code.  Even if the
203 * mapping is large, it is probably the case that the final pages are the most
204 * recently touched, and freeing happens in ascending file offset order.
 
 
 
 
205 */
206void truncate_inode_pages_range(struct address_space *mapping,
207				loff_t lstart, loff_t lend)
208{
209	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
210	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
211	struct pagevec pvec;
212	pgoff_t index;
213	pgoff_t end;
214	int i;
 
 
215
216	cleancache_flush_inode(mapping);
217	if (mapping->nrpages == 0)
218		return;
219
220	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221	end = (lend >> PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223	pagevec_init(&pvec, 0);
224	index = start;
225	while (index <= end && pagevec_lookup(&pvec, mapping, index,
226			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 
227		mem_cgroup_uncharge_start();
228		for (i = 0; i < pagevec_count(&pvec); i++) {
229			struct page *page = pvec.pages[i];
230
231			/* We rely upon deletion not changing page->index */
232			index = page->index;
233			if (index > end)
234				break;
235
 
 
 
 
 
236			if (!trylock_page(page))
237				continue;
238			WARN_ON(page->index != index);
239			if (PageWriteback(page)) {
240				unlock_page(page);
241				continue;
242			}
243			truncate_inode_page(mapping, page);
244			unlock_page(page);
245		}
 
246		pagevec_release(&pvec);
247		mem_cgroup_uncharge_end();
248		cond_resched();
249		index++;
250	}
251
252	if (partial) {
253		struct page *page = find_lock_page(mapping, start - 1);
254		if (page) {
 
 
 
 
 
 
255			wait_on_page_writeback(page);
256			truncate_partial_page(page, partial);
 
 
 
 
257			unlock_page(page);
258			page_cache_release(page);
259		}
260	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
262	index = start;
263	for ( ; ; ) {
264		cond_resched();
265		if (!pagevec_lookup(&pvec, mapping, index,
266			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 
267			if (index == start)
268				break;
269			index = start;
270			continue;
271		}
272		if (index == start && pvec.pages[0]->index > end) {
 
273			pagevec_release(&pvec);
274			break;
275		}
276		mem_cgroup_uncharge_start();
277		for (i = 0; i < pagevec_count(&pvec); i++) {
278			struct page *page = pvec.pages[i];
279
280			/* We rely upon deletion not changing page->index */
281			index = page->index;
282			if (index > end)
283				break;
284
 
 
 
 
 
285			lock_page(page);
286			WARN_ON(page->index != index);
287			wait_on_page_writeback(page);
288			truncate_inode_page(mapping, page);
289			unlock_page(page);
290		}
 
291		pagevec_release(&pvec);
292		mem_cgroup_uncharge_end();
293		index++;
294	}
295	cleancache_flush_inode(mapping);
296}
297EXPORT_SYMBOL(truncate_inode_pages_range);
298
299/**
300 * truncate_inode_pages - truncate *all* the pages from an offset
301 * @mapping: mapping to truncate
302 * @lstart: offset from which to truncate
303 *
304 * Called under (and serialised by) inode->i_mutex.
305 *
306 * Note: When this function returns, there can be a page in the process of
307 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
308 * mapping->nrpages can be non-zero when this function returns even after
309 * truncation of the whole mapping.
310 */
311void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
312{
313	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
314}
315EXPORT_SYMBOL(truncate_inode_pages);
316
317/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319 * @mapping: the address_space which holds the pages to invalidate
320 * @start: the offset 'from' which to invalidate
321 * @end: the offset 'to' which to invalidate (inclusive)
322 *
323 * This function only removes the unlocked pages, if you want to
324 * remove all the pages of one inode, you must call truncate_inode_pages.
325 *
326 * invalidate_mapping_pages() will not block on IO activity. It will not
327 * invalidate pages which are dirty, locked, under writeback or mapped into
328 * pagetables.
329 */
330unsigned long invalidate_mapping_pages(struct address_space *mapping,
331		pgoff_t start, pgoff_t end)
332{
 
333	struct pagevec pvec;
334	pgoff_t index = start;
335	unsigned long ret;
336	unsigned long count = 0;
337	int i;
338
339	/*
340	 * Note: this function may get called on a shmem/tmpfs mapping:
341	 * pagevec_lookup() might then return 0 prematurely (because it
342	 * got a gangful of swap entries); but it's hardly worth worrying
343	 * about - it can rarely have anything to free from such a mapping
344	 * (most pages are dirty), and already skips over any difficulties.
345	 */
346
347	pagevec_init(&pvec, 0);
348	while (index <= end && pagevec_lookup(&pvec, mapping, index,
349			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 
350		mem_cgroup_uncharge_start();
351		for (i = 0; i < pagevec_count(&pvec); i++) {
352			struct page *page = pvec.pages[i];
353
354			/* We rely upon deletion not changing page->index */
355			index = page->index;
356			if (index > end)
357				break;
358
 
 
 
 
 
359			if (!trylock_page(page))
360				continue;
361			WARN_ON(page->index != index);
362			ret = invalidate_inode_page(page);
363			unlock_page(page);
364			/*
365			 * Invalidation is a hint that the page is no longer
366			 * of interest and try to speed up its reclaim.
367			 */
368			if (!ret)
369				deactivate_page(page);
370			count += ret;
371		}
 
372		pagevec_release(&pvec);
373		mem_cgroup_uncharge_end();
374		cond_resched();
375		index++;
376	}
377	return count;
378}
379EXPORT_SYMBOL(invalidate_mapping_pages);
380
381/*
382 * This is like invalidate_complete_page(), except it ignores the page's
383 * refcount.  We do this because invalidate_inode_pages2() needs stronger
384 * invalidation guarantees, and cannot afford to leave pages behind because
385 * shrink_page_list() has a temp ref on them, or because they're transiently
386 * sitting in the lru_cache_add() pagevecs.
387 */
388static int
389invalidate_complete_page2(struct address_space *mapping, struct page *page)
390{
391	if (page->mapping != mapping)
392		return 0;
393
394	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
395		return 0;
396
397	spin_lock_irq(&mapping->tree_lock);
398	if (PageDirty(page))
399		goto failed;
400
401	clear_page_mlock(page);
402	BUG_ON(page_has_private(page));
403	__delete_from_page_cache(page);
404	spin_unlock_irq(&mapping->tree_lock);
405	mem_cgroup_uncharge_cache_page(page);
406
407	if (mapping->a_ops->freepage)
408		mapping->a_ops->freepage(page);
409
410	page_cache_release(page);	/* pagecache ref */
411	return 1;
412failed:
413	spin_unlock_irq(&mapping->tree_lock);
414	return 0;
415}
416
417static int do_launder_page(struct address_space *mapping, struct page *page)
418{
419	if (!PageDirty(page))
420		return 0;
421	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
422		return 0;
423	return mapping->a_ops->launder_page(page);
424}
425
426/**
427 * invalidate_inode_pages2_range - remove range of pages from an address_space
428 * @mapping: the address_space
429 * @start: the page offset 'from' which to invalidate
430 * @end: the page offset 'to' which to invalidate (inclusive)
431 *
432 * Any pages which are found to be mapped into pagetables are unmapped prior to
433 * invalidation.
434 *
435 * Returns -EBUSY if any pages could not be invalidated.
436 */
437int invalidate_inode_pages2_range(struct address_space *mapping,
438				  pgoff_t start, pgoff_t end)
439{
 
440	struct pagevec pvec;
441	pgoff_t index;
442	int i;
443	int ret = 0;
444	int ret2 = 0;
445	int did_range_unmap = 0;
446
447	cleancache_flush_inode(mapping);
448	pagevec_init(&pvec, 0);
449	index = start;
450	while (index <= end && pagevec_lookup(&pvec, mapping, index,
451			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 
452		mem_cgroup_uncharge_start();
453		for (i = 0; i < pagevec_count(&pvec); i++) {
454			struct page *page = pvec.pages[i];
455
456			/* We rely upon deletion not changing page->index */
457			index = page->index;
458			if (index > end)
459				break;
460
 
 
 
 
 
461			lock_page(page);
462			WARN_ON(page->index != index);
463			if (page->mapping != mapping) {
464				unlock_page(page);
465				continue;
466			}
467			wait_on_page_writeback(page);
468			if (page_mapped(page)) {
469				if (!did_range_unmap) {
470					/*
471					 * Zap the rest of the file in one hit.
472					 */
473					unmap_mapping_range(mapping,
474					   (loff_t)index << PAGE_CACHE_SHIFT,
475					   (loff_t)(1 + end - index)
476							 << PAGE_CACHE_SHIFT,
477					    0);
478					did_range_unmap = 1;
479				} else {
480					/*
481					 * Just zap this page
482					 */
483					unmap_mapping_range(mapping,
484					   (loff_t)index << PAGE_CACHE_SHIFT,
485					   PAGE_CACHE_SIZE, 0);
486				}
487			}
488			BUG_ON(page_mapped(page));
489			ret2 = do_launder_page(mapping, page);
490			if (ret2 == 0) {
491				if (!invalidate_complete_page2(mapping, page))
492					ret2 = -EBUSY;
493			}
494			if (ret2 < 0)
495				ret = ret2;
496			unlock_page(page);
497		}
 
498		pagevec_release(&pvec);
499		mem_cgroup_uncharge_end();
500		cond_resched();
501		index++;
502	}
503	cleancache_flush_inode(mapping);
504	return ret;
505}
506EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
507
508/**
509 * invalidate_inode_pages2 - remove all pages from an address_space
510 * @mapping: the address_space
511 *
512 * Any pages which are found to be mapped into pagetables are unmapped prior to
513 * invalidation.
514 *
515 * Returns -EBUSY if any pages could not be invalidated.
516 */
517int invalidate_inode_pages2(struct address_space *mapping)
518{
519	return invalidate_inode_pages2_range(mapping, 0, -1);
520}
521EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
522
523/**
524 * truncate_pagecache - unmap and remove pagecache that has been truncated
525 * @inode: inode
526 * @oldsize: old file size
527 * @newsize: new file size
528 *
529 * inode's new i_size must already be written before truncate_pagecache
530 * is called.
531 *
532 * This function should typically be called before the filesystem
533 * releases resources associated with the freed range (eg. deallocates
534 * blocks). This way, pagecache will always stay logically coherent
535 * with on-disk format, and the filesystem would not have to deal with
536 * situations such as writepage being called for a page that has already
537 * had its underlying blocks deallocated.
538 */
539void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
540{
541	struct address_space *mapping = inode->i_mapping;
542	loff_t holebegin = round_up(newsize, PAGE_SIZE);
543
544	/*
545	 * unmap_mapping_range is called twice, first simply for
546	 * efficiency so that truncate_inode_pages does fewer
547	 * single-page unmaps.  However after this first call, and
548	 * before truncate_inode_pages finishes, it is possible for
549	 * private pages to be COWed, which remain after
550	 * truncate_inode_pages finishes, hence the second
551	 * unmap_mapping_range call must be made for correctness.
552	 */
553	unmap_mapping_range(mapping, holebegin, 0, 1);
554	truncate_inode_pages(mapping, newsize);
555	unmap_mapping_range(mapping, holebegin, 0, 1);
556}
557EXPORT_SYMBOL(truncate_pagecache);
558
559/**
560 * truncate_setsize - update inode and pagecache for a new file size
561 * @inode: inode
562 * @newsize: new file size
563 *
564 * truncate_setsize updates i_size and performs pagecache truncation (if
565 * necessary) to @newsize. It will be typically be called from the filesystem's
566 * setattr function when ATTR_SIZE is passed in.
567 *
568 * Must be called with inode_mutex held and before all filesystem specific
569 * block truncation has been performed.
570 */
571void truncate_setsize(struct inode *inode, loff_t newsize)
572{
573	loff_t oldsize;
574
575	oldsize = inode->i_size;
576	i_size_write(inode, newsize);
577
578	truncate_pagecache(inode, oldsize, newsize);
579}
580EXPORT_SYMBOL(truncate_setsize);
581
582/**
583 * vmtruncate - unmap mappings "freed" by truncate() syscall
584 * @inode: inode of the file used
585 * @newsize: file offset to start truncating
 
586 *
587 * This function is deprecated and truncate_setsize or truncate_pagecache
588 * should be used instead, together with filesystem specific block truncation.
 
 
 
 
589 */
590int vmtruncate(struct inode *inode, loff_t newsize)
591{
592	int error;
593
594	error = inode_newsize_ok(inode, newsize);
595	if (error)
596		return error;
597
598	truncate_setsize(inode, newsize);
599	if (inode->i_op->truncate)
600		inode->i_op->truncate(inode);
601	return 0;
602}
603EXPORT_SYMBOL(vmtruncate);
604
605int vmtruncate_range(struct inode *inode, loff_t lstart, loff_t lend)
606{
607	struct address_space *mapping = inode->i_mapping;
608	loff_t holebegin = round_up(lstart, PAGE_SIZE);
609	loff_t holelen = 1 + lend - holebegin;
610
611	/*
612	 * If the underlying filesystem is not going to provide
613	 * a way to truncate a range of blocks (punch a hole) -
614	 * we should return failure right now.
 
 
615	 */
616	if (!inode->i_op->truncate_range)
617		return -ENOSYS;
618
619	mutex_lock(&inode->i_mutex);
620	inode_dio_wait(inode);
621	unmap_mapping_range(mapping, holebegin, holelen, 1);
622	inode->i_op->truncate_range(inode, lstart, lend);
623	/* unmap again to remove racily COWed private pages */
624	unmap_mapping_range(mapping, holebegin, holelen, 1);
625	mutex_unlock(&inode->i_mutex);
626
627	return 0;
 
 
 
 
 
 
 
 
628}
v3.15
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/gfp.h>
 13#include <linux/mm.h>
 14#include <linux/swap.h>
 15#include <linux/export.h>
 16#include <linux/pagemap.h>
 17#include <linux/highmem.h>
 18#include <linux/pagevec.h>
 19#include <linux/task_io_accounting_ops.h>
 20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 21				   do_invalidatepage */
 22#include <linux/cleancache.h>
 23#include "internal.h"
 24
 25static void clear_exceptional_entry(struct address_space *mapping,
 26				    pgoff_t index, void *entry)
 27{
 28	struct radix_tree_node *node;
 29	void **slot;
 30
 31	/* Handled by shmem itself */
 32	if (shmem_mapping(mapping))
 33		return;
 34
 35	spin_lock_irq(&mapping->tree_lock);
 36	/*
 37	 * Regular page slots are stabilized by the page lock even
 38	 * without the tree itself locked.  These unlocked entries
 39	 * need verification under the tree lock.
 40	 */
 41	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
 42		goto unlock;
 43	if (*slot != entry)
 44		goto unlock;
 45	radix_tree_replace_slot(slot, NULL);
 46	mapping->nrshadows--;
 47	if (!node)
 48		goto unlock;
 49	workingset_node_shadows_dec(node);
 50	/*
 51	 * Don't track node without shadow entries.
 52	 *
 53	 * Avoid acquiring the list_lru lock if already untracked.
 54	 * The list_empty() test is safe as node->private_list is
 55	 * protected by mapping->tree_lock.
 56	 */
 57	if (!workingset_node_shadows(node) &&
 58	    !list_empty(&node->private_list))
 59		list_lru_del(&workingset_shadow_nodes, &node->private_list);
 60	__radix_tree_delete_node(&mapping->page_tree, node);
 61unlock:
 62	spin_unlock_irq(&mapping->tree_lock);
 63}
 64
 65/**
 66 * do_invalidatepage - invalidate part or all of a page
 67 * @page: the page which is affected
 68 * @offset: start of the range to invalidate
 69 * @length: length of the range to invalidate
 70 *
 71 * do_invalidatepage() is called when all or part of the page has become
 72 * invalidated by a truncate operation.
 73 *
 74 * do_invalidatepage() does not have to release all buffers, but it must
 75 * ensure that no dirty buffer is left outside @offset and that no I/O
 76 * is underway against any of the blocks which are outside the truncation
 77 * point.  Because the caller is about to free (and possibly reuse) those
 78 * blocks on-disk.
 79 */
 80void do_invalidatepage(struct page *page, unsigned int offset,
 81		       unsigned int length)
 82{
 83	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 84
 85	invalidatepage = page->mapping->a_ops->invalidatepage;
 86#ifdef CONFIG_BLOCK
 87	if (!invalidatepage)
 88		invalidatepage = block_invalidatepage;
 89#endif
 90	if (invalidatepage)
 91		(*invalidatepage)(page, offset, length);
 
 
 
 
 
 
 
 
 92}
 93
 94/*
 95 * This cancels just the dirty bit on the kernel page itself, it
 96 * does NOT actually remove dirty bits on any mmap's that may be
 97 * around. It also leaves the page tagged dirty, so any sync
 98 * activity will still find it on the dirty lists, and in particular,
 99 * clear_page_dirty_for_io() will still look at the dirty bits in
100 * the VM.
101 *
102 * Doing this should *normally* only ever be done when a page
103 * is truncated, and is not actually mapped anywhere at all. However,
104 * fs/buffer.c does this when it notices that somebody has cleaned
105 * out all the buffers on a page without actually doing it through
106 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
107 */
108void cancel_dirty_page(struct page *page, unsigned int account_size)
109{
110	if (TestClearPageDirty(page)) {
111		struct address_space *mapping = page->mapping;
112		if (mapping && mapping_cap_account_dirty(mapping)) {
113			dec_zone_page_state(page, NR_FILE_DIRTY);
114			dec_bdi_stat(mapping->backing_dev_info,
115					BDI_RECLAIMABLE);
116			if (account_size)
117				task_io_account_cancelled_write(account_size);
118		}
119	}
120}
121EXPORT_SYMBOL(cancel_dirty_page);
122
123/*
124 * If truncate cannot remove the fs-private metadata from the page, the page
125 * becomes orphaned.  It will be left on the LRU and may even be mapped into
126 * user pagetables if we're racing with filemap_fault().
127 *
128 * We need to bale out if page->mapping is no longer equal to the original
129 * mapping.  This happens a) when the VM reclaimed the page while we waited on
130 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
131 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
132 */
133static int
134truncate_complete_page(struct address_space *mapping, struct page *page)
135{
136	if (page->mapping != mapping)
137		return -EIO;
138
139	if (page_has_private(page))
140		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
141
142	cancel_dirty_page(page, PAGE_CACHE_SIZE);
143
 
144	ClearPageMappedToDisk(page);
145	delete_from_page_cache(page);
146	return 0;
147}
148
149/*
150 * This is for invalidate_mapping_pages().  That function can be called at
151 * any time, and is not supposed to throw away dirty pages.  But pages can
152 * be marked dirty at any time too, so use remove_mapping which safely
153 * discards clean, unused pages.
154 *
155 * Returns non-zero if the page was successfully invalidated.
156 */
157static int
158invalidate_complete_page(struct address_space *mapping, struct page *page)
159{
160	int ret;
161
162	if (page->mapping != mapping)
163		return 0;
164
165	if (page_has_private(page) && !try_to_release_page(page, 0))
166		return 0;
167
 
168	ret = remove_mapping(mapping, page);
169
170	return ret;
171}
172
173int truncate_inode_page(struct address_space *mapping, struct page *page)
174{
175	if (page_mapped(page)) {
176		unmap_mapping_range(mapping,
177				   (loff_t)page->index << PAGE_CACHE_SHIFT,
178				   PAGE_CACHE_SIZE, 0);
179	}
180	return truncate_complete_page(mapping, page);
181}
182
183/*
184 * Used to get rid of pages on hardware memory corruption.
185 */
186int generic_error_remove_page(struct address_space *mapping, struct page *page)
187{
188	if (!mapping)
189		return -EINVAL;
190	/*
191	 * Only punch for normal data pages for now.
192	 * Handling other types like directories would need more auditing.
193	 */
194	if (!S_ISREG(mapping->host->i_mode))
195		return -EIO;
196	return truncate_inode_page(mapping, page);
197}
198EXPORT_SYMBOL(generic_error_remove_page);
199
200/*
201 * Safely invalidate one page from its pagecache mapping.
202 * It only drops clean, unused pages. The page must be locked.
203 *
204 * Returns 1 if the page is successfully invalidated, otherwise 0.
205 */
206int invalidate_inode_page(struct page *page)
207{
208	struct address_space *mapping = page_mapping(page);
209	if (!mapping)
210		return 0;
211	if (PageDirty(page) || PageWriteback(page))
212		return 0;
213	if (page_mapped(page))
214		return 0;
215	return invalidate_complete_page(mapping, page);
216}
217
218/**
219 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
220 * @mapping: mapping to truncate
221 * @lstart: offset from which to truncate
222 * @lend: offset to which to truncate (inclusive)
223 *
224 * Truncate the page cache, removing the pages that are between
225 * specified offsets (and zeroing out partial pages
226 * if lstart or lend + 1 is not page aligned).
227 *
228 * Truncate takes two passes - the first pass is nonblocking.  It will not
229 * block on page locks and it will not block on writeback.  The second pass
230 * will wait.  This is to prevent as much IO as possible in the affected region.
231 * The first pass will remove most pages, so the search cost of the second pass
232 * is low.
233 *
234 * We pass down the cache-hot hint to the page freeing code.  Even if the
235 * mapping is large, it is probably the case that the final pages are the most
236 * recently touched, and freeing happens in ascending file offset order.
237 *
238 * Note that since ->invalidatepage() accepts range to invalidate
239 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
240 * page aligned properly.
241 */
242void truncate_inode_pages_range(struct address_space *mapping,
243				loff_t lstart, loff_t lend)
244{
245	pgoff_t		start;		/* inclusive */
246	pgoff_t		end;		/* exclusive */
247	unsigned int	partial_start;	/* inclusive */
248	unsigned int	partial_end;	/* exclusive */
249	struct pagevec	pvec;
250	pgoff_t		indices[PAGEVEC_SIZE];
251	pgoff_t		index;
252	int		i;
253
254	cleancache_invalidate_inode(mapping);
255	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
256		return;
257
258	/* Offsets within partial pages */
259	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
260	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
261
262	/*
263	 * 'start' and 'end' always covers the range of pages to be fully
264	 * truncated. Partial pages are covered with 'partial_start' at the
265	 * start of the range and 'partial_end' at the end of the range.
266	 * Note that 'end' is exclusive while 'lend' is inclusive.
267	 */
268	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
269	if (lend == -1)
270		/*
271		 * lend == -1 indicates end-of-file so we have to set 'end'
272		 * to the highest possible pgoff_t and since the type is
273		 * unsigned we're using -1.
274		 */
275		end = -1;
276	else
277		end = (lend + 1) >> PAGE_CACHE_SHIFT;
278
279	pagevec_init(&pvec, 0);
280	index = start;
281	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
282			min(end - index, (pgoff_t)PAGEVEC_SIZE),
283			indices)) {
284		mem_cgroup_uncharge_start();
285		for (i = 0; i < pagevec_count(&pvec); i++) {
286			struct page *page = pvec.pages[i];
287
288			/* We rely upon deletion not changing page->index */
289			index = indices[i];
290			if (index >= end)
291				break;
292
293			if (radix_tree_exceptional_entry(page)) {
294				clear_exceptional_entry(mapping, index, page);
295				continue;
296			}
297
298			if (!trylock_page(page))
299				continue;
300			WARN_ON(page->index != index);
301			if (PageWriteback(page)) {
302				unlock_page(page);
303				continue;
304			}
305			truncate_inode_page(mapping, page);
306			unlock_page(page);
307		}
308		pagevec_remove_exceptionals(&pvec);
309		pagevec_release(&pvec);
310		mem_cgroup_uncharge_end();
311		cond_resched();
312		index++;
313	}
314
315	if (partial_start) {
316		struct page *page = find_lock_page(mapping, start - 1);
317		if (page) {
318			unsigned int top = PAGE_CACHE_SIZE;
319			if (start > end) {
320				/* Truncation within a single page */
321				top = partial_end;
322				partial_end = 0;
323			}
324			wait_on_page_writeback(page);
325			zero_user_segment(page, partial_start, top);
326			cleancache_invalidate_page(mapping, page);
327			if (page_has_private(page))
328				do_invalidatepage(page, partial_start,
329						  top - partial_start);
330			unlock_page(page);
331			page_cache_release(page);
332		}
333	}
334	if (partial_end) {
335		struct page *page = find_lock_page(mapping, end);
336		if (page) {
337			wait_on_page_writeback(page);
338			zero_user_segment(page, 0, partial_end);
339			cleancache_invalidate_page(mapping, page);
340			if (page_has_private(page))
341				do_invalidatepage(page, 0,
342						  partial_end);
343			unlock_page(page);
344			page_cache_release(page);
345		}
346	}
347	/*
348	 * If the truncation happened within a single page no pages
349	 * will be released, just zeroed, so we can bail out now.
350	 */
351	if (start >= end)
352		return;
353
354	index = start;
355	for ( ; ; ) {
356		cond_resched();
357		if (!pagevec_lookup_entries(&pvec, mapping, index,
358			min(end - index, (pgoff_t)PAGEVEC_SIZE),
359			indices)) {
360			if (index == start)
361				break;
362			index = start;
363			continue;
364		}
365		if (index == start && indices[0] >= end) {
366			pagevec_remove_exceptionals(&pvec);
367			pagevec_release(&pvec);
368			break;
369		}
370		mem_cgroup_uncharge_start();
371		for (i = 0; i < pagevec_count(&pvec); i++) {
372			struct page *page = pvec.pages[i];
373
374			/* We rely upon deletion not changing page->index */
375			index = indices[i];
376			if (index >= end)
377				break;
378
379			if (radix_tree_exceptional_entry(page)) {
380				clear_exceptional_entry(mapping, index, page);
381				continue;
382			}
383
384			lock_page(page);
385			WARN_ON(page->index != index);
386			wait_on_page_writeback(page);
387			truncate_inode_page(mapping, page);
388			unlock_page(page);
389		}
390		pagevec_remove_exceptionals(&pvec);
391		pagevec_release(&pvec);
392		mem_cgroup_uncharge_end();
393		index++;
394	}
395	cleancache_invalidate_inode(mapping);
396}
397EXPORT_SYMBOL(truncate_inode_pages_range);
398
399/**
400 * truncate_inode_pages - truncate *all* the pages from an offset
401 * @mapping: mapping to truncate
402 * @lstart: offset from which to truncate
403 *
404 * Called under (and serialised by) inode->i_mutex.
405 *
406 * Note: When this function returns, there can be a page in the process of
407 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
408 * mapping->nrpages can be non-zero when this function returns even after
409 * truncation of the whole mapping.
410 */
411void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
412{
413	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
414}
415EXPORT_SYMBOL(truncate_inode_pages);
416
417/**
418 * truncate_inode_pages_final - truncate *all* pages before inode dies
419 * @mapping: mapping to truncate
420 *
421 * Called under (and serialized by) inode->i_mutex.
422 *
423 * Filesystems have to use this in the .evict_inode path to inform the
424 * VM that this is the final truncate and the inode is going away.
425 */
426void truncate_inode_pages_final(struct address_space *mapping)
427{
428	unsigned long nrshadows;
429	unsigned long nrpages;
430
431	/*
432	 * Page reclaim can not participate in regular inode lifetime
433	 * management (can't call iput()) and thus can race with the
434	 * inode teardown.  Tell it when the address space is exiting,
435	 * so that it does not install eviction information after the
436	 * final truncate has begun.
437	 */
438	mapping_set_exiting(mapping);
439
440	/*
441	 * When reclaim installs eviction entries, it increases
442	 * nrshadows first, then decreases nrpages.  Make sure we see
443	 * this in the right order or we might miss an entry.
444	 */
445	nrpages = mapping->nrpages;
446	smp_rmb();
447	nrshadows = mapping->nrshadows;
448
449	if (nrpages || nrshadows) {
450		/*
451		 * As truncation uses a lockless tree lookup, cycle
452		 * the tree lock to make sure any ongoing tree
453		 * modification that does not see AS_EXITING is
454		 * completed before starting the final truncate.
455		 */
456		spin_lock_irq(&mapping->tree_lock);
457		spin_unlock_irq(&mapping->tree_lock);
458
459		truncate_inode_pages(mapping, 0);
460	}
461}
462EXPORT_SYMBOL(truncate_inode_pages_final);
463
464/**
465 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
466 * @mapping: the address_space which holds the pages to invalidate
467 * @start: the offset 'from' which to invalidate
468 * @end: the offset 'to' which to invalidate (inclusive)
469 *
470 * This function only removes the unlocked pages, if you want to
471 * remove all the pages of one inode, you must call truncate_inode_pages.
472 *
473 * invalidate_mapping_pages() will not block on IO activity. It will not
474 * invalidate pages which are dirty, locked, under writeback or mapped into
475 * pagetables.
476 */
477unsigned long invalidate_mapping_pages(struct address_space *mapping,
478		pgoff_t start, pgoff_t end)
479{
480	pgoff_t indices[PAGEVEC_SIZE];
481	struct pagevec pvec;
482	pgoff_t index = start;
483	unsigned long ret;
484	unsigned long count = 0;
485	int i;
486
 
 
 
 
 
 
 
 
487	pagevec_init(&pvec, 0);
488	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
489			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
490			indices)) {
491		mem_cgroup_uncharge_start();
492		for (i = 0; i < pagevec_count(&pvec); i++) {
493			struct page *page = pvec.pages[i];
494
495			/* We rely upon deletion not changing page->index */
496			index = indices[i];
497			if (index > end)
498				break;
499
500			if (radix_tree_exceptional_entry(page)) {
501				clear_exceptional_entry(mapping, index, page);
502				continue;
503			}
504
505			if (!trylock_page(page))
506				continue;
507			WARN_ON(page->index != index);
508			ret = invalidate_inode_page(page);
509			unlock_page(page);
510			/*
511			 * Invalidation is a hint that the page is no longer
512			 * of interest and try to speed up its reclaim.
513			 */
514			if (!ret)
515				deactivate_page(page);
516			count += ret;
517		}
518		pagevec_remove_exceptionals(&pvec);
519		pagevec_release(&pvec);
520		mem_cgroup_uncharge_end();
521		cond_resched();
522		index++;
523	}
524	return count;
525}
526EXPORT_SYMBOL(invalidate_mapping_pages);
527
528/*
529 * This is like invalidate_complete_page(), except it ignores the page's
530 * refcount.  We do this because invalidate_inode_pages2() needs stronger
531 * invalidation guarantees, and cannot afford to leave pages behind because
532 * shrink_page_list() has a temp ref on them, or because they're transiently
533 * sitting in the lru_cache_add() pagevecs.
534 */
535static int
536invalidate_complete_page2(struct address_space *mapping, struct page *page)
537{
538	if (page->mapping != mapping)
539		return 0;
540
541	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
542		return 0;
543
544	spin_lock_irq(&mapping->tree_lock);
545	if (PageDirty(page))
546		goto failed;
547
 
548	BUG_ON(page_has_private(page));
549	__delete_from_page_cache(page, NULL);
550	spin_unlock_irq(&mapping->tree_lock);
551	mem_cgroup_uncharge_cache_page(page);
552
553	if (mapping->a_ops->freepage)
554		mapping->a_ops->freepage(page);
555
556	page_cache_release(page);	/* pagecache ref */
557	return 1;
558failed:
559	spin_unlock_irq(&mapping->tree_lock);
560	return 0;
561}
562
563static int do_launder_page(struct address_space *mapping, struct page *page)
564{
565	if (!PageDirty(page))
566		return 0;
567	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
568		return 0;
569	return mapping->a_ops->launder_page(page);
570}
571
572/**
573 * invalidate_inode_pages2_range - remove range of pages from an address_space
574 * @mapping: the address_space
575 * @start: the page offset 'from' which to invalidate
576 * @end: the page offset 'to' which to invalidate (inclusive)
577 *
578 * Any pages which are found to be mapped into pagetables are unmapped prior to
579 * invalidation.
580 *
581 * Returns -EBUSY if any pages could not be invalidated.
582 */
583int invalidate_inode_pages2_range(struct address_space *mapping,
584				  pgoff_t start, pgoff_t end)
585{
586	pgoff_t indices[PAGEVEC_SIZE];
587	struct pagevec pvec;
588	pgoff_t index;
589	int i;
590	int ret = 0;
591	int ret2 = 0;
592	int did_range_unmap = 0;
593
594	cleancache_invalidate_inode(mapping);
595	pagevec_init(&pvec, 0);
596	index = start;
597	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
598			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
599			indices)) {
600		mem_cgroup_uncharge_start();
601		for (i = 0; i < pagevec_count(&pvec); i++) {
602			struct page *page = pvec.pages[i];
603
604			/* We rely upon deletion not changing page->index */
605			index = indices[i];
606			if (index > end)
607				break;
608
609			if (radix_tree_exceptional_entry(page)) {
610				clear_exceptional_entry(mapping, index, page);
611				continue;
612			}
613
614			lock_page(page);
615			WARN_ON(page->index != index);
616			if (page->mapping != mapping) {
617				unlock_page(page);
618				continue;
619			}
620			wait_on_page_writeback(page);
621			if (page_mapped(page)) {
622				if (!did_range_unmap) {
623					/*
624					 * Zap the rest of the file in one hit.
625					 */
626					unmap_mapping_range(mapping,
627					   (loff_t)index << PAGE_CACHE_SHIFT,
628					   (loff_t)(1 + end - index)
629							 << PAGE_CACHE_SHIFT,
630					    0);
631					did_range_unmap = 1;
632				} else {
633					/*
634					 * Just zap this page
635					 */
636					unmap_mapping_range(mapping,
637					   (loff_t)index << PAGE_CACHE_SHIFT,
638					   PAGE_CACHE_SIZE, 0);
639				}
640			}
641			BUG_ON(page_mapped(page));
642			ret2 = do_launder_page(mapping, page);
643			if (ret2 == 0) {
644				if (!invalidate_complete_page2(mapping, page))
645					ret2 = -EBUSY;
646			}
647			if (ret2 < 0)
648				ret = ret2;
649			unlock_page(page);
650		}
651		pagevec_remove_exceptionals(&pvec);
652		pagevec_release(&pvec);
653		mem_cgroup_uncharge_end();
654		cond_resched();
655		index++;
656	}
657	cleancache_invalidate_inode(mapping);
658	return ret;
659}
660EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
661
662/**
663 * invalidate_inode_pages2 - remove all pages from an address_space
664 * @mapping: the address_space
665 *
666 * Any pages which are found to be mapped into pagetables are unmapped prior to
667 * invalidation.
668 *
669 * Returns -EBUSY if any pages could not be invalidated.
670 */
671int invalidate_inode_pages2(struct address_space *mapping)
672{
673	return invalidate_inode_pages2_range(mapping, 0, -1);
674}
675EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
676
677/**
678 * truncate_pagecache - unmap and remove pagecache that has been truncated
679 * @inode: inode
 
680 * @newsize: new file size
681 *
682 * inode's new i_size must already be written before truncate_pagecache
683 * is called.
684 *
685 * This function should typically be called before the filesystem
686 * releases resources associated with the freed range (eg. deallocates
687 * blocks). This way, pagecache will always stay logically coherent
688 * with on-disk format, and the filesystem would not have to deal with
689 * situations such as writepage being called for a page that has already
690 * had its underlying blocks deallocated.
691 */
692void truncate_pagecache(struct inode *inode, loff_t newsize)
693{
694	struct address_space *mapping = inode->i_mapping;
695	loff_t holebegin = round_up(newsize, PAGE_SIZE);
696
697	/*
698	 * unmap_mapping_range is called twice, first simply for
699	 * efficiency so that truncate_inode_pages does fewer
700	 * single-page unmaps.  However after this first call, and
701	 * before truncate_inode_pages finishes, it is possible for
702	 * private pages to be COWed, which remain after
703	 * truncate_inode_pages finishes, hence the second
704	 * unmap_mapping_range call must be made for correctness.
705	 */
706	unmap_mapping_range(mapping, holebegin, 0, 1);
707	truncate_inode_pages(mapping, newsize);
708	unmap_mapping_range(mapping, holebegin, 0, 1);
709}
710EXPORT_SYMBOL(truncate_pagecache);
711
712/**
713 * truncate_setsize - update inode and pagecache for a new file size
714 * @inode: inode
715 * @newsize: new file size
716 *
717 * truncate_setsize updates i_size and performs pagecache truncation (if
718 * necessary) to @newsize. It will be typically be called from the filesystem's
719 * setattr function when ATTR_SIZE is passed in.
720 *
721 * Must be called with inode_mutex held and before all filesystem specific
722 * block truncation has been performed.
723 */
724void truncate_setsize(struct inode *inode, loff_t newsize)
725{
 
 
 
726	i_size_write(inode, newsize);
727	truncate_pagecache(inode, newsize);
 
728}
729EXPORT_SYMBOL(truncate_setsize);
730
731/**
732 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
733 * @inode: inode
734 * @lstart: offset of beginning of hole
735 * @lend: offset of last byte of hole
736 *
737 * This function should typically be called before the filesystem
738 * releases resources associated with the freed range (eg. deallocates
739 * blocks). This way, pagecache will always stay logically coherent
740 * with on-disk format, and the filesystem would not have to deal with
741 * situations such as writepage being called for a page that has already
742 * had its underlying blocks deallocated.
743 */
744void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
745{
746	struct address_space *mapping = inode->i_mapping;
747	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
748	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 
749	/*
750	 * This rounding is currently just for example: unmap_mapping_range
751	 * expands its hole outwards, whereas we want it to contract the hole
752	 * inwards.  However, existing callers of truncate_pagecache_range are
753	 * doing their own page rounding first.  Note that unmap_mapping_range
754	 * allows holelen 0 for all, and we allow lend -1 for end of file.
755	 */
 
 
 
 
 
 
 
 
 
 
756
757	/*
758	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
759	 * once (before truncating pagecache), and without "even_cows" flag:
760	 * hole-punching should not remove private COWed pages from the hole.
761	 */
762	if ((u64)unmap_end > (u64)unmap_start)
763		unmap_mapping_range(mapping, unmap_start,
764				    1 + unmap_end - unmap_start, 0);
765	truncate_inode_pages_range(mapping, lstart, lend);
766}
767EXPORT_SYMBOL(truncate_pagecache_range);