Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 
 12#include <linux/gfp.h>
 13#include <linux/mm.h>
 14#include <linux/swap.h>
 15#include <linux/module.h>
 16#include <linux/pagemap.h>
 17#include <linux/highmem.h>
 18#include <linux/pagevec.h>
 19#include <linux/task_io_accounting_ops.h>
 20#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 21				   do_invalidatepage */
 
 22#include <linux/cleancache.h>
 
 23#include "internal.h"
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26/**
 27 * do_invalidatepage - invalidate part or all of a page
 28 * @page: the page which is affected
 29 * @offset: the index of the truncation point
 
 30 *
 31 * do_invalidatepage() is called when all or part of the page has become
 32 * invalidated by a truncate operation.
 33 *
 34 * do_invalidatepage() does not have to release all buffers, but it must
 35 * ensure that no dirty buffer is left outside @offset and that no I/O
 36 * is underway against any of the blocks which are outside the truncation
 37 * point.  Because the caller is about to free (and possibly reuse) those
 38 * blocks on-disk.
 39 */
 40void do_invalidatepage(struct page *page, unsigned long offset)
 
 41{
 42	void (*invalidatepage)(struct page *, unsigned long);
 
 43	invalidatepage = page->mapping->a_ops->invalidatepage;
 44#ifdef CONFIG_BLOCK
 45	if (!invalidatepage)
 46		invalidatepage = block_invalidatepage;
 47#endif
 48	if (invalidatepage)
 49		(*invalidatepage)(page, offset);
 50}
 51
 52static inline void truncate_partial_page(struct page *page, unsigned partial)
 53{
 54	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 55	cleancache_flush_page(page->mapping, page);
 56	if (page_has_private(page))
 57		do_invalidatepage(page, partial);
 58}
 59
 60/*
 61 * This cancels just the dirty bit on the kernel page itself, it
 62 * does NOT actually remove dirty bits on any mmap's that may be
 63 * around. It also leaves the page tagged dirty, so any sync
 64 * activity will still find it on the dirty lists, and in particular,
 65 * clear_page_dirty_for_io() will still look at the dirty bits in
 66 * the VM.
 67 *
 68 * Doing this should *normally* only ever be done when a page
 69 * is truncated, and is not actually mapped anywhere at all. However,
 70 * fs/buffer.c does this when it notices that somebody has cleaned
 71 * out all the buffers on a page without actually doing it through
 72 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
 73 */
 74void cancel_dirty_page(struct page *page, unsigned int account_size)
 75{
 76	if (TestClearPageDirty(page)) {
 77		struct address_space *mapping = page->mapping;
 78		if (mapping && mapping_cap_account_dirty(mapping)) {
 79			dec_zone_page_state(page, NR_FILE_DIRTY);
 80			dec_bdi_stat(mapping->backing_dev_info,
 81					BDI_RECLAIMABLE);
 82			if (account_size)
 83				task_io_account_cancelled_write(account_size);
 84		}
 85	}
 86}
 87EXPORT_SYMBOL(cancel_dirty_page);
 88
 89/*
 90 * If truncate cannot remove the fs-private metadata from the page, the page
 91 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 92 * user pagetables if we're racing with filemap_fault().
 93 *
 94 * We need to bale out if page->mapping is no longer equal to the original
 95 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 96 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 97 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 98 */
 99static int
100truncate_complete_page(struct address_space *mapping, struct page *page)
101{
102	if (page->mapping != mapping)
103		return -EIO;
 
 
104
105	if (page_has_private(page))
106		do_invalidatepage(page, 0);
107
108	cancel_dirty_page(page, PAGE_CACHE_SIZE);
109
110	clear_page_mlock(page);
 
 
 
111	ClearPageMappedToDisk(page);
112	delete_from_page_cache(page);
113	return 0;
114}
115
116/*
117 * This is for invalidate_mapping_pages().  That function can be called at
118 * any time, and is not supposed to throw away dirty pages.  But pages can
119 * be marked dirty at any time too, so use remove_mapping which safely
120 * discards clean, unused pages.
121 *
122 * Returns non-zero if the page was successfully invalidated.
123 */
124static int
125invalidate_complete_page(struct address_space *mapping, struct page *page)
126{
127	int ret;
128
129	if (page->mapping != mapping)
130		return 0;
131
132	if (page_has_private(page) && !try_to_release_page(page, 0))
133		return 0;
134
135	clear_page_mlock(page);
136	ret = remove_mapping(mapping, page);
137
138	return ret;
139}
140
141int truncate_inode_page(struct address_space *mapping, struct page *page)
142{
143	if (page_mapped(page)) {
144		unmap_mapping_range(mapping,
145				   (loff_t)page->index << PAGE_CACHE_SHIFT,
146				   PAGE_CACHE_SIZE, 0);
147	}
148	return truncate_complete_page(mapping, page);
 
 
149}
150
151/*
152 * Used to get rid of pages on hardware memory corruption.
153 */
154int generic_error_remove_page(struct address_space *mapping, struct page *page)
155{
156	if (!mapping)
157		return -EINVAL;
158	/*
159	 * Only punch for normal data pages for now.
160	 * Handling other types like directories would need more auditing.
161	 */
162	if (!S_ISREG(mapping->host->i_mode))
163		return -EIO;
164	return truncate_inode_page(mapping, page);
165}
166EXPORT_SYMBOL(generic_error_remove_page);
167
168/*
169 * Safely invalidate one page from its pagecache mapping.
170 * It only drops clean, unused pages. The page must be locked.
171 *
172 * Returns 1 if the page is successfully invalidated, otherwise 0.
173 */
174int invalidate_inode_page(struct page *page)
175{
176	struct address_space *mapping = page_mapping(page);
177	if (!mapping)
178		return 0;
179	if (PageDirty(page) || PageWriteback(page))
180		return 0;
181	if (page_mapped(page))
182		return 0;
183	return invalidate_complete_page(mapping, page);
184}
185
186/**
187 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
188 * @mapping: mapping to truncate
189 * @lstart: offset from which to truncate
190 * @lend: offset to which to truncate
191 *
192 * Truncate the page cache, removing the pages that are between
193 * specified offsets (and zeroing out partial page
194 * (if lstart is not page aligned)).
195 *
196 * Truncate takes two passes - the first pass is nonblocking.  It will not
197 * block on page locks and it will not block on writeback.  The second pass
198 * will wait.  This is to prevent as much IO as possible in the affected region.
199 * The first pass will remove most pages, so the search cost of the second pass
200 * is low.
201 *
202 * We pass down the cache-hot hint to the page freeing code.  Even if the
203 * mapping is large, it is probably the case that the final pages are the most
204 * recently touched, and freeing happens in ascending file offset order.
 
 
 
 
205 */
206void truncate_inode_pages_range(struct address_space *mapping,
207				loff_t lstart, loff_t lend)
208{
209	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
210	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
211	struct pagevec pvec;
212	pgoff_t index;
213	pgoff_t end;
214	int i;
215
216	cleancache_flush_inode(mapping);
217	if (mapping->nrpages == 0)
218		return;
 
 
 
 
 
219
220	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221	end = (lend >> PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223	pagevec_init(&pvec, 0);
224	index = start;
225	while (index <= end && pagevec_lookup(&pvec, mapping, index,
226			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
227		mem_cgroup_uncharge_start();
 
 
 
 
 
 
 
 
228		for (i = 0; i < pagevec_count(&pvec); i++) {
229			struct page *page = pvec.pages[i];
230
231			/* We rely upon deletion not changing page->index */
232			index = page->index;
233			if (index > end)
234				break;
235
 
 
 
236			if (!trylock_page(page))
237				continue;
238			WARN_ON(page->index != index);
239			if (PageWriteback(page)) {
240				unlock_page(page);
241				continue;
242			}
243			truncate_inode_page(mapping, page);
244			unlock_page(page);
 
 
 
245		}
 
 
 
 
 
 
246		pagevec_release(&pvec);
247		mem_cgroup_uncharge_end();
248		cond_resched();
249		index++;
250	}
251
252	if (partial) {
253		struct page *page = find_lock_page(mapping, start - 1);
254		if (page) {
 
 
 
 
 
 
255			wait_on_page_writeback(page);
256			truncate_partial_page(page, partial);
 
 
 
 
257			unlock_page(page);
258			page_cache_release(page);
259		}
260	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
262	index = start;
263	for ( ; ; ) {
264		cond_resched();
265		if (!pagevec_lookup(&pvec, mapping, index,
266			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 
267			if (index == start)
268				break;
 
269			index = start;
270			continue;
271		}
272		if (index == start && pvec.pages[0]->index > end) {
 
 
273			pagevec_release(&pvec);
274			break;
275		}
276		mem_cgroup_uncharge_start();
277		for (i = 0; i < pagevec_count(&pvec); i++) {
278			struct page *page = pvec.pages[i];
279
280			/* We rely upon deletion not changing page->index */
281			index = page->index;
282			if (index > end)
 
 
283				break;
 
 
 
 
284
285			lock_page(page);
286			WARN_ON(page->index != index);
287			wait_on_page_writeback(page);
288			truncate_inode_page(mapping, page);
289			unlock_page(page);
290		}
 
291		pagevec_release(&pvec);
292		mem_cgroup_uncharge_end();
293		index++;
294	}
295	cleancache_flush_inode(mapping);
 
 
296}
297EXPORT_SYMBOL(truncate_inode_pages_range);
298
299/**
300 * truncate_inode_pages - truncate *all* the pages from an offset
301 * @mapping: mapping to truncate
302 * @lstart: offset from which to truncate
303 *
304 * Called under (and serialised by) inode->i_mutex.
305 *
306 * Note: When this function returns, there can be a page in the process of
307 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
308 * mapping->nrpages can be non-zero when this function returns even after
309 * truncation of the whole mapping.
310 */
311void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
312{
313	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
314}
315EXPORT_SYMBOL(truncate_inode_pages);
316
317/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319 * @mapping: the address_space which holds the pages to invalidate
320 * @start: the offset 'from' which to invalidate
321 * @end: the offset 'to' which to invalidate (inclusive)
322 *
323 * This function only removes the unlocked pages, if you want to
324 * remove all the pages of one inode, you must call truncate_inode_pages.
325 *
326 * invalidate_mapping_pages() will not block on IO activity. It will not
327 * invalidate pages which are dirty, locked, under writeback or mapped into
328 * pagetables.
329 */
330unsigned long invalidate_mapping_pages(struct address_space *mapping,
331		pgoff_t start, pgoff_t end)
332{
 
333	struct pagevec pvec;
334	pgoff_t index = start;
335	unsigned long ret;
336	unsigned long count = 0;
337	int i;
338
339	/*
340	 * Note: this function may get called on a shmem/tmpfs mapping:
341	 * pagevec_lookup() might then return 0 prematurely (because it
342	 * got a gangful of swap entries); but it's hardly worth worrying
343	 * about - it can rarely have anything to free from such a mapping
344	 * (most pages are dirty), and already skips over any difficulties.
345	 */
346
347	pagevec_init(&pvec, 0);
348	while (index <= end && pagevec_lookup(&pvec, mapping, index,
349			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
350		mem_cgroup_uncharge_start();
351		for (i = 0; i < pagevec_count(&pvec); i++) {
352			struct page *page = pvec.pages[i];
353
354			/* We rely upon deletion not changing page->index */
355			index = page->index;
356			if (index > end)
357				break;
358
 
 
 
 
 
 
359			if (!trylock_page(page))
360				continue;
361			WARN_ON(page->index != index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362			ret = invalidate_inode_page(page);
363			unlock_page(page);
364			/*
365			 * Invalidation is a hint that the page is no longer
366			 * of interest and try to speed up its reclaim.
367			 */
368			if (!ret)
369				deactivate_page(page);
370			count += ret;
371		}
 
372		pagevec_release(&pvec);
373		mem_cgroup_uncharge_end();
374		cond_resched();
375		index++;
376	}
377	return count;
378}
379EXPORT_SYMBOL(invalidate_mapping_pages);
380
381/*
382 * This is like invalidate_complete_page(), except it ignores the page's
383 * refcount.  We do this because invalidate_inode_pages2() needs stronger
384 * invalidation guarantees, and cannot afford to leave pages behind because
385 * shrink_page_list() has a temp ref on them, or because they're transiently
386 * sitting in the lru_cache_add() pagevecs.
387 */
388static int
389invalidate_complete_page2(struct address_space *mapping, struct page *page)
390{
 
 
391	if (page->mapping != mapping)
392		return 0;
393
394	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
395		return 0;
396
397	spin_lock_irq(&mapping->tree_lock);
398	if (PageDirty(page))
399		goto failed;
400
401	clear_page_mlock(page);
402	BUG_ON(page_has_private(page));
403	__delete_from_page_cache(page);
404	spin_unlock_irq(&mapping->tree_lock);
405	mem_cgroup_uncharge_cache_page(page);
406
407	if (mapping->a_ops->freepage)
408		mapping->a_ops->freepage(page);
409
410	page_cache_release(page);	/* pagecache ref */
411	return 1;
412failed:
413	spin_unlock_irq(&mapping->tree_lock);
414	return 0;
415}
416
417static int do_launder_page(struct address_space *mapping, struct page *page)
418{
419	if (!PageDirty(page))
420		return 0;
421	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
422		return 0;
423	return mapping->a_ops->launder_page(page);
424}
425
426/**
427 * invalidate_inode_pages2_range - remove range of pages from an address_space
428 * @mapping: the address_space
429 * @start: the page offset 'from' which to invalidate
430 * @end: the page offset 'to' which to invalidate (inclusive)
431 *
432 * Any pages which are found to be mapped into pagetables are unmapped prior to
433 * invalidation.
434 *
435 * Returns -EBUSY if any pages could not be invalidated.
436 */
437int invalidate_inode_pages2_range(struct address_space *mapping,
438				  pgoff_t start, pgoff_t end)
439{
 
440	struct pagevec pvec;
441	pgoff_t index;
442	int i;
443	int ret = 0;
444	int ret2 = 0;
445	int did_range_unmap = 0;
446
447	cleancache_flush_inode(mapping);
448	pagevec_init(&pvec, 0);
 
 
449	index = start;
450	while (index <= end && pagevec_lookup(&pvec, mapping, index,
451			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
452		mem_cgroup_uncharge_start();
453		for (i = 0; i < pagevec_count(&pvec); i++) {
454			struct page *page = pvec.pages[i];
455
456			/* We rely upon deletion not changing page->index */
457			index = page->index;
458			if (index > end)
459				break;
460
 
 
 
 
 
 
 
461			lock_page(page);
462			WARN_ON(page->index != index);
463			if (page->mapping != mapping) {
464				unlock_page(page);
465				continue;
466			}
467			wait_on_page_writeback(page);
468			if (page_mapped(page)) {
469				if (!did_range_unmap) {
470					/*
471					 * Zap the rest of the file in one hit.
472					 */
473					unmap_mapping_range(mapping,
474					   (loff_t)index << PAGE_CACHE_SHIFT,
475					   (loff_t)(1 + end - index)
476							 << PAGE_CACHE_SHIFT,
477					    0);
478					did_range_unmap = 1;
479				} else {
480					/*
481					 * Just zap this page
482					 */
483					unmap_mapping_range(mapping,
484					   (loff_t)index << PAGE_CACHE_SHIFT,
485					   PAGE_CACHE_SIZE, 0);
486				}
487			}
488			BUG_ON(page_mapped(page));
489			ret2 = do_launder_page(mapping, page);
490			if (ret2 == 0) {
491				if (!invalidate_complete_page2(mapping, page))
492					ret2 = -EBUSY;
493			}
494			if (ret2 < 0)
495				ret = ret2;
496			unlock_page(page);
497		}
 
498		pagevec_release(&pvec);
499		mem_cgroup_uncharge_end();
500		cond_resched();
501		index++;
502	}
503	cleancache_flush_inode(mapping);
 
 
 
 
 
 
 
 
 
 
 
504	return ret;
505}
506EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
507
508/**
509 * invalidate_inode_pages2 - remove all pages from an address_space
510 * @mapping: the address_space
511 *
512 * Any pages which are found to be mapped into pagetables are unmapped prior to
513 * invalidation.
514 *
515 * Returns -EBUSY if any pages could not be invalidated.
516 */
517int invalidate_inode_pages2(struct address_space *mapping)
518{
519	return invalidate_inode_pages2_range(mapping, 0, -1);
520}
521EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
522
523/**
524 * truncate_pagecache - unmap and remove pagecache that has been truncated
525 * @inode: inode
526 * @oldsize: old file size
527 * @newsize: new file size
528 *
529 * inode's new i_size must already be written before truncate_pagecache
530 * is called.
531 *
532 * This function should typically be called before the filesystem
533 * releases resources associated with the freed range (eg. deallocates
534 * blocks). This way, pagecache will always stay logically coherent
535 * with on-disk format, and the filesystem would not have to deal with
536 * situations such as writepage being called for a page that has already
537 * had its underlying blocks deallocated.
538 */
539void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
540{
541	struct address_space *mapping = inode->i_mapping;
542	loff_t holebegin = round_up(newsize, PAGE_SIZE);
543
544	/*
545	 * unmap_mapping_range is called twice, first simply for
546	 * efficiency so that truncate_inode_pages does fewer
547	 * single-page unmaps.  However after this first call, and
548	 * before truncate_inode_pages finishes, it is possible for
549	 * private pages to be COWed, which remain after
550	 * truncate_inode_pages finishes, hence the second
551	 * unmap_mapping_range call must be made for correctness.
552	 */
553	unmap_mapping_range(mapping, holebegin, 0, 1);
554	truncate_inode_pages(mapping, newsize);
555	unmap_mapping_range(mapping, holebegin, 0, 1);
556}
557EXPORT_SYMBOL(truncate_pagecache);
558
559/**
560 * truncate_setsize - update inode and pagecache for a new file size
561 * @inode: inode
562 * @newsize: new file size
563 *
564 * truncate_setsize updates i_size and performs pagecache truncation (if
565 * necessary) to @newsize. It will be typically be called from the filesystem's
566 * setattr function when ATTR_SIZE is passed in.
567 *
568 * Must be called with inode_mutex held and before all filesystem specific
569 * block truncation has been performed.
 
570 */
571void truncate_setsize(struct inode *inode, loff_t newsize)
572{
573	loff_t oldsize;
574
575	oldsize = inode->i_size;
576	i_size_write(inode, newsize);
577
578	truncate_pagecache(inode, oldsize, newsize);
 
579}
580EXPORT_SYMBOL(truncate_setsize);
581
582/**
583 * vmtruncate - unmap mappings "freed" by truncate() syscall
584 * @inode: inode of the file used
585 * @newsize: file offset to start truncating
586 *
587 * This function is deprecated and truncate_setsize or truncate_pagecache
588 * should be used instead, together with filesystem specific block truncation.
589 */
590int vmtruncate(struct inode *inode, loff_t newsize)
591{
592	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593
594	error = inode_newsize_ok(inode, newsize);
595	if (error)
596		return error;
597
598	truncate_setsize(inode, newsize);
599	if (inode->i_op->truncate)
600		inode->i_op->truncate(inode);
601	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602}
603EXPORT_SYMBOL(vmtruncate);
604
605int vmtruncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 
 
 
 
 
 
 
 
 
 
 
 
 
606{
607	struct address_space *mapping = inode->i_mapping;
608	loff_t holebegin = round_up(lstart, PAGE_SIZE);
609	loff_t holelen = 1 + lend - holebegin;
610
611	/*
612	 * If the underlying filesystem is not going to provide
613	 * a way to truncate a range of blocks (punch a hole) -
614	 * we should return failure right now.
615	 */
616	if (!inode->i_op->truncate_range)
617		return -ENOSYS;
618
619	mutex_lock(&inode->i_mutex);
620	inode_dio_wait(inode);
621	unmap_mapping_range(mapping, holebegin, holelen, 1);
622	inode->i_op->truncate_range(inode, lstart, lend);
623	/* unmap again to remove racily COWed private pages */
624	unmap_mapping_range(mapping, holebegin, holelen, 1);
625	mutex_unlock(&inode->i_mutex);
626
627	return 0;
 
 
 
 
 
 
 
 
628}
v4.17
  1/*
  2 * mm/truncate.c - code for taking down pages from address_spaces
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 10Sep2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/backing-dev.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/mm.h>
 15#include <linux/swap.h>
 16#include <linux/export.h>
 17#include <linux/pagemap.h>
 18#include <linux/highmem.h>
 19#include <linux/pagevec.h>
 20#include <linux/task_io_accounting_ops.h>
 21#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 22				   do_invalidatepage */
 23#include <linux/shmem_fs.h>
 24#include <linux/cleancache.h>
 25#include <linux/rmap.h>
 26#include "internal.h"
 27
 28/*
 29 * Regular page slots are stabilized by the page lock even without the tree
 30 * itself locked.  These unlocked entries need verification under the tree
 31 * lock.
 32 */
 33static inline void __clear_shadow_entry(struct address_space *mapping,
 34				pgoff_t index, void *entry)
 35{
 36	struct radix_tree_node *node;
 37	void **slot;
 38
 39	if (!__radix_tree_lookup(&mapping->i_pages, index, &node, &slot))
 40		return;
 41	if (*slot != entry)
 42		return;
 43	__radix_tree_replace(&mapping->i_pages, node, slot, NULL,
 44			     workingset_update_node);
 45	mapping->nrexceptional--;
 46}
 47
 48static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 49			       void *entry)
 50{
 51	xa_lock_irq(&mapping->i_pages);
 52	__clear_shadow_entry(mapping, index, entry);
 53	xa_unlock_irq(&mapping->i_pages);
 54}
 55
 56/*
 57 * Unconditionally remove exceptional entries. Usually called from truncate
 58 * path. Note that the pagevec may be altered by this function by removing
 59 * exceptional entries similar to what pagevec_remove_exceptionals does.
 60 */
 61static void truncate_exceptional_pvec_entries(struct address_space *mapping,
 62				struct pagevec *pvec, pgoff_t *indices,
 63				pgoff_t end)
 64{
 65	int i, j;
 66	bool dax, lock;
 67
 68	/* Handled by shmem itself */
 69	if (shmem_mapping(mapping))
 70		return;
 71
 72	for (j = 0; j < pagevec_count(pvec); j++)
 73		if (radix_tree_exceptional_entry(pvec->pages[j]))
 74			break;
 75
 76	if (j == pagevec_count(pvec))
 77		return;
 78
 79	dax = dax_mapping(mapping);
 80	lock = !dax && indices[j] < end;
 81	if (lock)
 82		xa_lock_irq(&mapping->i_pages);
 83
 84	for (i = j; i < pagevec_count(pvec); i++) {
 85		struct page *page = pvec->pages[i];
 86		pgoff_t index = indices[i];
 87
 88		if (!radix_tree_exceptional_entry(page)) {
 89			pvec->pages[j++] = page;
 90			continue;
 91		}
 92
 93		if (index >= end)
 94			continue;
 95
 96		if (unlikely(dax)) {
 97			dax_delete_mapping_entry(mapping, index);
 98			continue;
 99		}
100
101		__clear_shadow_entry(mapping, index, page);
102	}
103
104	if (lock)
105		xa_unlock_irq(&mapping->i_pages);
106	pvec->nr = j;
107}
108
109/*
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
112 */
113static int invalidate_exceptional_entry(struct address_space *mapping,
114					pgoff_t index, void *entry)
115{
116	/* Handled by shmem itself, or for DAX we do nothing. */
117	if (shmem_mapping(mapping) || dax_mapping(mapping))
118		return 1;
119	clear_shadow_entry(mapping, index, entry);
120	return 1;
121}
122
123/*
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126 */
127static int invalidate_exceptional_entry2(struct address_space *mapping,
128					 pgoff_t index, void *entry)
129{
130	/* Handled by shmem itself */
131	if (shmem_mapping(mapping))
132		return 1;
133	if (dax_mapping(mapping))
134		return dax_invalidate_mapping_entry_sync(mapping, index);
135	clear_shadow_entry(mapping, index, entry);
136	return 1;
137}
138
139/**
140 * do_invalidatepage - invalidate part or all of a page
141 * @page: the page which is affected
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
144 *
145 * do_invalidatepage() is called when all or part of the page has become
146 * invalidated by a truncate operation.
147 *
148 * do_invalidatepage() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point.  Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
153 */
154void do_invalidatepage(struct page *page, unsigned int offset,
155		       unsigned int length)
156{
157	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
158
159	invalidatepage = page->mapping->a_ops->invalidatepage;
160#ifdef CONFIG_BLOCK
161	if (!invalidatepage)
162		invalidatepage = block_invalidatepage;
163#endif
164	if (invalidatepage)
165		(*invalidatepage)(page, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166}
 
167
168/*
169 * If truncate cannot remove the fs-private metadata from the page, the page
170 * becomes orphaned.  It will be left on the LRU and may even be mapped into
171 * user pagetables if we're racing with filemap_fault().
172 *
173 * We need to bale out if page->mapping is no longer equal to the original
174 * mapping.  This happens a) when the VM reclaimed the page while we waited on
175 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
176 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
177 */
178static void
179truncate_cleanup_page(struct address_space *mapping, struct page *page)
180{
181	if (page_mapped(page)) {
182		pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
183		unmap_mapping_pages(mapping, page->index, nr, false);
184	}
185
186	if (page_has_private(page))
187		do_invalidatepage(page, 0, PAGE_SIZE);
188
189	/*
190	 * Some filesystems seem to re-dirty the page even after
191	 * the VM has canceled the dirty bit (eg ext3 journaling).
192	 * Hence dirty accounting check is placed after invalidation.
193	 */
194	cancel_dirty_page(page);
195	ClearPageMappedToDisk(page);
 
 
196}
197
198/*
199 * This is for invalidate_mapping_pages().  That function can be called at
200 * any time, and is not supposed to throw away dirty pages.  But pages can
201 * be marked dirty at any time too, so use remove_mapping which safely
202 * discards clean, unused pages.
203 *
204 * Returns non-zero if the page was successfully invalidated.
205 */
206static int
207invalidate_complete_page(struct address_space *mapping, struct page *page)
208{
209	int ret;
210
211	if (page->mapping != mapping)
212		return 0;
213
214	if (page_has_private(page) && !try_to_release_page(page, 0))
215		return 0;
216
 
217	ret = remove_mapping(mapping, page);
218
219	return ret;
220}
221
222int truncate_inode_page(struct address_space *mapping, struct page *page)
223{
224	VM_BUG_ON_PAGE(PageTail(page), page);
225
226	if (page->mapping != mapping)
227		return -EIO;
228
229	truncate_cleanup_page(mapping, page);
230	delete_from_page_cache(page);
231	return 0;
232}
233
234/*
235 * Used to get rid of pages on hardware memory corruption.
236 */
237int generic_error_remove_page(struct address_space *mapping, struct page *page)
238{
239	if (!mapping)
240		return -EINVAL;
241	/*
242	 * Only punch for normal data pages for now.
243	 * Handling other types like directories would need more auditing.
244	 */
245	if (!S_ISREG(mapping->host->i_mode))
246		return -EIO;
247	return truncate_inode_page(mapping, page);
248}
249EXPORT_SYMBOL(generic_error_remove_page);
250
251/*
252 * Safely invalidate one page from its pagecache mapping.
253 * It only drops clean, unused pages. The page must be locked.
254 *
255 * Returns 1 if the page is successfully invalidated, otherwise 0.
256 */
257int invalidate_inode_page(struct page *page)
258{
259	struct address_space *mapping = page_mapping(page);
260	if (!mapping)
261		return 0;
262	if (PageDirty(page) || PageWriteback(page))
263		return 0;
264	if (page_mapped(page))
265		return 0;
266	return invalidate_complete_page(mapping, page);
267}
268
269/**
270 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
271 * @mapping: mapping to truncate
272 * @lstart: offset from which to truncate
273 * @lend: offset to which to truncate (inclusive)
274 *
275 * Truncate the page cache, removing the pages that are between
276 * specified offsets (and zeroing out partial pages
277 * if lstart or lend + 1 is not page aligned).
278 *
279 * Truncate takes two passes - the first pass is nonblocking.  It will not
280 * block on page locks and it will not block on writeback.  The second pass
281 * will wait.  This is to prevent as much IO as possible in the affected region.
282 * The first pass will remove most pages, so the search cost of the second pass
283 * is low.
284 *
285 * We pass down the cache-hot hint to the page freeing code.  Even if the
286 * mapping is large, it is probably the case that the final pages are the most
287 * recently touched, and freeing happens in ascending file offset order.
288 *
289 * Note that since ->invalidatepage() accepts range to invalidate
290 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
291 * page aligned properly.
292 */
293void truncate_inode_pages_range(struct address_space *mapping,
294				loff_t lstart, loff_t lend)
295{
296	pgoff_t		start;		/* inclusive */
297	pgoff_t		end;		/* exclusive */
298	unsigned int	partial_start;	/* inclusive */
299	unsigned int	partial_end;	/* exclusive */
300	struct pagevec	pvec;
301	pgoff_t		indices[PAGEVEC_SIZE];
302	pgoff_t		index;
303	int		i;
304
305	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
306		goto out;
307
308	/* Offsets within partial pages */
309	partial_start = lstart & (PAGE_SIZE - 1);
310	partial_end = (lend + 1) & (PAGE_SIZE - 1);
311
312	/*
313	 * 'start' and 'end' always covers the range of pages to be fully
314	 * truncated. Partial pages are covered with 'partial_start' at the
315	 * start of the range and 'partial_end' at the end of the range.
316	 * Note that 'end' is exclusive while 'lend' is inclusive.
317	 */
318	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
319	if (lend == -1)
320		/*
321		 * lend == -1 indicates end-of-file so we have to set 'end'
322		 * to the highest possible pgoff_t and since the type is
323		 * unsigned we're using -1.
324		 */
325		end = -1;
326	else
327		end = (lend + 1) >> PAGE_SHIFT;
328
329	pagevec_init(&pvec);
330	index = start;
331	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
332			min(end - index, (pgoff_t)PAGEVEC_SIZE),
333			indices)) {
334		/*
335		 * Pagevec array has exceptional entries and we may also fail
336		 * to lock some pages. So we store pages that can be deleted
337		 * in a new pagevec.
338		 */
339		struct pagevec locked_pvec;
340
341		pagevec_init(&locked_pvec);
342		for (i = 0; i < pagevec_count(&pvec); i++) {
343			struct page *page = pvec.pages[i];
344
345			/* We rely upon deletion not changing page->index */
346			index = indices[i];
347			if (index >= end)
348				break;
349
350			if (radix_tree_exceptional_entry(page))
351				continue;
352
353			if (!trylock_page(page))
354				continue;
355			WARN_ON(page_to_index(page) != index);
356			if (PageWriteback(page)) {
357				unlock_page(page);
358				continue;
359			}
360			if (page->mapping != mapping) {
361				unlock_page(page);
362				continue;
363			}
364			pagevec_add(&locked_pvec, page);
365		}
366		for (i = 0; i < pagevec_count(&locked_pvec); i++)
367			truncate_cleanup_page(mapping, locked_pvec.pages[i]);
368		delete_from_page_cache_batch(mapping, &locked_pvec);
369		for (i = 0; i < pagevec_count(&locked_pvec); i++)
370			unlock_page(locked_pvec.pages[i]);
371		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
372		pagevec_release(&pvec);
 
373		cond_resched();
374		index++;
375	}
376	if (partial_start) {
 
377		struct page *page = find_lock_page(mapping, start - 1);
378		if (page) {
379			unsigned int top = PAGE_SIZE;
380			if (start > end) {
381				/* Truncation within a single page */
382				top = partial_end;
383				partial_end = 0;
384			}
385			wait_on_page_writeback(page);
386			zero_user_segment(page, partial_start, top);
387			cleancache_invalidate_page(mapping, page);
388			if (page_has_private(page))
389				do_invalidatepage(page, partial_start,
390						  top - partial_start);
391			unlock_page(page);
392			put_page(page);
393		}
394	}
395	if (partial_end) {
396		struct page *page = find_lock_page(mapping, end);
397		if (page) {
398			wait_on_page_writeback(page);
399			zero_user_segment(page, 0, partial_end);
400			cleancache_invalidate_page(mapping, page);
401			if (page_has_private(page))
402				do_invalidatepage(page, 0,
403						  partial_end);
404			unlock_page(page);
405			put_page(page);
406		}
407	}
408	/*
409	 * If the truncation happened within a single page no pages
410	 * will be released, just zeroed, so we can bail out now.
411	 */
412	if (start >= end)
413		goto out;
414
415	index = start;
416	for ( ; ; ) {
417		cond_resched();
418		if (!pagevec_lookup_entries(&pvec, mapping, index,
419			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
420			/* If all gone from start onwards, we're done */
421			if (index == start)
422				break;
423			/* Otherwise restart to make sure all gone */
424			index = start;
425			continue;
426		}
427		if (index == start && indices[0] >= end) {
428			/* All gone out of hole to be punched, we're done */
429			pagevec_remove_exceptionals(&pvec);
430			pagevec_release(&pvec);
431			break;
432		}
433
434		for (i = 0; i < pagevec_count(&pvec); i++) {
435			struct page *page = pvec.pages[i];
436
437			/* We rely upon deletion not changing page->index */
438			index = indices[i];
439			if (index >= end) {
440				/* Restart punch to make sure all gone */
441				index = start - 1;
442				break;
443			}
444
445			if (radix_tree_exceptional_entry(page))
446				continue;
447
448			lock_page(page);
449			WARN_ON(page_to_index(page) != index);
450			wait_on_page_writeback(page);
451			truncate_inode_page(mapping, page);
452			unlock_page(page);
453		}
454		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
455		pagevec_release(&pvec);
 
456		index++;
457	}
458
459out:
460	cleancache_invalidate_inode(mapping);
461}
462EXPORT_SYMBOL(truncate_inode_pages_range);
463
464/**
465 * truncate_inode_pages - truncate *all* the pages from an offset
466 * @mapping: mapping to truncate
467 * @lstart: offset from which to truncate
468 *
469 * Called under (and serialised by) inode->i_mutex.
470 *
471 * Note: When this function returns, there can be a page in the process of
472 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
473 * mapping->nrpages can be non-zero when this function returns even after
474 * truncation of the whole mapping.
475 */
476void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
477{
478	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
479}
480EXPORT_SYMBOL(truncate_inode_pages);
481
482/**
483 * truncate_inode_pages_final - truncate *all* pages before inode dies
484 * @mapping: mapping to truncate
485 *
486 * Called under (and serialized by) inode->i_mutex.
487 *
488 * Filesystems have to use this in the .evict_inode path to inform the
489 * VM that this is the final truncate and the inode is going away.
490 */
491void truncate_inode_pages_final(struct address_space *mapping)
492{
493	unsigned long nrexceptional;
494	unsigned long nrpages;
495
496	/*
497	 * Page reclaim can not participate in regular inode lifetime
498	 * management (can't call iput()) and thus can race with the
499	 * inode teardown.  Tell it when the address space is exiting,
500	 * so that it does not install eviction information after the
501	 * final truncate has begun.
502	 */
503	mapping_set_exiting(mapping);
504
505	/*
506	 * When reclaim installs eviction entries, it increases
507	 * nrexceptional first, then decreases nrpages.  Make sure we see
508	 * this in the right order or we might miss an entry.
509	 */
510	nrpages = mapping->nrpages;
511	smp_rmb();
512	nrexceptional = mapping->nrexceptional;
513
514	if (nrpages || nrexceptional) {
515		/*
516		 * As truncation uses a lockless tree lookup, cycle
517		 * the tree lock to make sure any ongoing tree
518		 * modification that does not see AS_EXITING is
519		 * completed before starting the final truncate.
520		 */
521		xa_lock_irq(&mapping->i_pages);
522		xa_unlock_irq(&mapping->i_pages);
523
524		truncate_inode_pages(mapping, 0);
525	}
526}
527EXPORT_SYMBOL(truncate_inode_pages_final);
528
529/**
530 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
531 * @mapping: the address_space which holds the pages to invalidate
532 * @start: the offset 'from' which to invalidate
533 * @end: the offset 'to' which to invalidate (inclusive)
534 *
535 * This function only removes the unlocked pages, if you want to
536 * remove all the pages of one inode, you must call truncate_inode_pages.
537 *
538 * invalidate_mapping_pages() will not block on IO activity. It will not
539 * invalidate pages which are dirty, locked, under writeback or mapped into
540 * pagetables.
541 */
542unsigned long invalidate_mapping_pages(struct address_space *mapping,
543		pgoff_t start, pgoff_t end)
544{
545	pgoff_t indices[PAGEVEC_SIZE];
546	struct pagevec pvec;
547	pgoff_t index = start;
548	unsigned long ret;
549	unsigned long count = 0;
550	int i;
551
552	pagevec_init(&pvec);
553	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
554			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
555			indices)) {
 
 
 
 
 
 
 
 
556		for (i = 0; i < pagevec_count(&pvec); i++) {
557			struct page *page = pvec.pages[i];
558
559			/* We rely upon deletion not changing page->index */
560			index = indices[i];
561			if (index > end)
562				break;
563
564			if (radix_tree_exceptional_entry(page)) {
565				invalidate_exceptional_entry(mapping, index,
566							     page);
567				continue;
568			}
569
570			if (!trylock_page(page))
571				continue;
572
573			WARN_ON(page_to_index(page) != index);
574
575			/* Middle of THP: skip */
576			if (PageTransTail(page)) {
577				unlock_page(page);
578				continue;
579			} else if (PageTransHuge(page)) {
580				index += HPAGE_PMD_NR - 1;
581				i += HPAGE_PMD_NR - 1;
582				/*
583				 * 'end' is in the middle of THP. Don't
584				 * invalidate the page as the part outside of
585				 * 'end' could be still useful.
586				 */
587				if (index > end) {
588					unlock_page(page);
589					continue;
590				}
591			}
592
593			ret = invalidate_inode_page(page);
594			unlock_page(page);
595			/*
596			 * Invalidation is a hint that the page is no longer
597			 * of interest and try to speed up its reclaim.
598			 */
599			if (!ret)
600				deactivate_file_page(page);
601			count += ret;
602		}
603		pagevec_remove_exceptionals(&pvec);
604		pagevec_release(&pvec);
 
605		cond_resched();
606		index++;
607	}
608	return count;
609}
610EXPORT_SYMBOL(invalidate_mapping_pages);
611
612/*
613 * This is like invalidate_complete_page(), except it ignores the page's
614 * refcount.  We do this because invalidate_inode_pages2() needs stronger
615 * invalidation guarantees, and cannot afford to leave pages behind because
616 * shrink_page_list() has a temp ref on them, or because they're transiently
617 * sitting in the lru_cache_add() pagevecs.
618 */
619static int
620invalidate_complete_page2(struct address_space *mapping, struct page *page)
621{
622	unsigned long flags;
623
624	if (page->mapping != mapping)
625		return 0;
626
627	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
628		return 0;
629
630	xa_lock_irqsave(&mapping->i_pages, flags);
631	if (PageDirty(page))
632		goto failed;
633
 
634	BUG_ON(page_has_private(page));
635	__delete_from_page_cache(page, NULL);
636	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
637
638	if (mapping->a_ops->freepage)
639		mapping->a_ops->freepage(page);
640
641	put_page(page);	/* pagecache ref */
642	return 1;
643failed:
644	xa_unlock_irqrestore(&mapping->i_pages, flags);
645	return 0;
646}
647
648static int do_launder_page(struct address_space *mapping, struct page *page)
649{
650	if (!PageDirty(page))
651		return 0;
652	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
653		return 0;
654	return mapping->a_ops->launder_page(page);
655}
656
657/**
658 * invalidate_inode_pages2_range - remove range of pages from an address_space
659 * @mapping: the address_space
660 * @start: the page offset 'from' which to invalidate
661 * @end: the page offset 'to' which to invalidate (inclusive)
662 *
663 * Any pages which are found to be mapped into pagetables are unmapped prior to
664 * invalidation.
665 *
666 * Returns -EBUSY if any pages could not be invalidated.
667 */
668int invalidate_inode_pages2_range(struct address_space *mapping,
669				  pgoff_t start, pgoff_t end)
670{
671	pgoff_t indices[PAGEVEC_SIZE];
672	struct pagevec pvec;
673	pgoff_t index;
674	int i;
675	int ret = 0;
676	int ret2 = 0;
677	int did_range_unmap = 0;
678
679	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
680		goto out;
681
682	pagevec_init(&pvec);
683	index = start;
684	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
685			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
686			indices)) {
687		for (i = 0; i < pagevec_count(&pvec); i++) {
688			struct page *page = pvec.pages[i];
689
690			/* We rely upon deletion not changing page->index */
691			index = indices[i];
692			if (index > end)
693				break;
694
695			if (radix_tree_exceptional_entry(page)) {
696				if (!invalidate_exceptional_entry2(mapping,
697								   index, page))
698					ret = -EBUSY;
699				continue;
700			}
701
702			lock_page(page);
703			WARN_ON(page_to_index(page) != index);
704			if (page->mapping != mapping) {
705				unlock_page(page);
706				continue;
707			}
708			wait_on_page_writeback(page);
709			if (page_mapped(page)) {
710				if (!did_range_unmap) {
711					/*
712					 * Zap the rest of the file in one hit.
713					 */
714					unmap_mapping_pages(mapping, index,
715						(1 + end - index), false);
 
 
 
716					did_range_unmap = 1;
717				} else {
718					/*
719					 * Just zap this page
720					 */
721					unmap_mapping_pages(mapping, index,
722								1, false);
 
723				}
724			}
725			BUG_ON(page_mapped(page));
726			ret2 = do_launder_page(mapping, page);
727			if (ret2 == 0) {
728				if (!invalidate_complete_page2(mapping, page))
729					ret2 = -EBUSY;
730			}
731			if (ret2 < 0)
732				ret = ret2;
733			unlock_page(page);
734		}
735		pagevec_remove_exceptionals(&pvec);
736		pagevec_release(&pvec);
 
737		cond_resched();
738		index++;
739	}
740	/*
741	 * For DAX we invalidate page tables after invalidating radix tree.  We
742	 * could invalidate page tables while invalidating each entry however
743	 * that would be expensive. And doing range unmapping before doesn't
744	 * work as we have no cheap way to find whether radix tree entry didn't
745	 * get remapped later.
746	 */
747	if (dax_mapping(mapping)) {
748		unmap_mapping_pages(mapping, start, end - start + 1, false);
749	}
750out:
751	cleancache_invalidate_inode(mapping);
752	return ret;
753}
754EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
755
756/**
757 * invalidate_inode_pages2 - remove all pages from an address_space
758 * @mapping: the address_space
759 *
760 * Any pages which are found to be mapped into pagetables are unmapped prior to
761 * invalidation.
762 *
763 * Returns -EBUSY if any pages could not be invalidated.
764 */
765int invalidate_inode_pages2(struct address_space *mapping)
766{
767	return invalidate_inode_pages2_range(mapping, 0, -1);
768}
769EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
770
771/**
772 * truncate_pagecache - unmap and remove pagecache that has been truncated
773 * @inode: inode
 
774 * @newsize: new file size
775 *
776 * inode's new i_size must already be written before truncate_pagecache
777 * is called.
778 *
779 * This function should typically be called before the filesystem
780 * releases resources associated with the freed range (eg. deallocates
781 * blocks). This way, pagecache will always stay logically coherent
782 * with on-disk format, and the filesystem would not have to deal with
783 * situations such as writepage being called for a page that has already
784 * had its underlying blocks deallocated.
785 */
786void truncate_pagecache(struct inode *inode, loff_t newsize)
787{
788	struct address_space *mapping = inode->i_mapping;
789	loff_t holebegin = round_up(newsize, PAGE_SIZE);
790
791	/*
792	 * unmap_mapping_range is called twice, first simply for
793	 * efficiency so that truncate_inode_pages does fewer
794	 * single-page unmaps.  However after this first call, and
795	 * before truncate_inode_pages finishes, it is possible for
796	 * private pages to be COWed, which remain after
797	 * truncate_inode_pages finishes, hence the second
798	 * unmap_mapping_range call must be made for correctness.
799	 */
800	unmap_mapping_range(mapping, holebegin, 0, 1);
801	truncate_inode_pages(mapping, newsize);
802	unmap_mapping_range(mapping, holebegin, 0, 1);
803}
804EXPORT_SYMBOL(truncate_pagecache);
805
806/**
807 * truncate_setsize - update inode and pagecache for a new file size
808 * @inode: inode
809 * @newsize: new file size
810 *
811 * truncate_setsize updates i_size and performs pagecache truncation (if
812 * necessary) to @newsize. It will be typically be called from the filesystem's
813 * setattr function when ATTR_SIZE is passed in.
814 *
815 * Must be called with a lock serializing truncates and writes (generally
816 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
817 * specific block truncation has been performed.
818 */
819void truncate_setsize(struct inode *inode, loff_t newsize)
820{
821	loff_t oldsize = inode->i_size;
822
 
823	i_size_write(inode, newsize);
824	if (newsize > oldsize)
825		pagecache_isize_extended(inode, oldsize, newsize);
826	truncate_pagecache(inode, newsize);
827}
828EXPORT_SYMBOL(truncate_setsize);
829
830/**
831 * pagecache_isize_extended - update pagecache after extension of i_size
832 * @inode:	inode for which i_size was extended
833 * @from:	original inode size
834 * @to:		new inode size
835 *
836 * Handle extension of inode size either caused by extending truncate or by
837 * write starting after current i_size. We mark the page straddling current
838 * i_size RO so that page_mkwrite() is called on the nearest write access to
839 * the page.  This way filesystem can be sure that page_mkwrite() is called on
840 * the page before user writes to the page via mmap after the i_size has been
841 * changed.
842 *
843 * The function must be called after i_size is updated so that page fault
844 * coming after we unlock the page will already see the new i_size.
845 * The function must be called while we still hold i_mutex - this not only
846 * makes sure i_size is stable but also that userspace cannot observe new
847 * i_size value before we are prepared to store mmap writes at new inode size.
848 */
849void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
850{
851	int bsize = i_blocksize(inode);
852	loff_t rounded_from;
853	struct page *page;
854	pgoff_t index;
855
856	WARN_ON(to > inode->i_size);
 
 
857
858	if (from >= to || bsize == PAGE_SIZE)
859		return;
860	/* Page straddling @from will not have any hole block created? */
861	rounded_from = round_up(from, bsize);
862	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
863		return;
864
865	index = from >> PAGE_SHIFT;
866	page = find_lock_page(inode->i_mapping, index);
867	/* Page not cached? Nothing to do */
868	if (!page)
869		return;
870	/*
871	 * See clear_page_dirty_for_io() for details why set_page_dirty()
872	 * is needed.
873	 */
874	if (page_mkclean(page))
875		set_page_dirty(page);
876	unlock_page(page);
877	put_page(page);
878}
879EXPORT_SYMBOL(pagecache_isize_extended);
880
881/**
882 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
883 * @inode: inode
884 * @lstart: offset of beginning of hole
885 * @lend: offset of last byte of hole
886 *
887 * This function should typically be called before the filesystem
888 * releases resources associated with the freed range (eg. deallocates
889 * blocks). This way, pagecache will always stay logically coherent
890 * with on-disk format, and the filesystem would not have to deal with
891 * situations such as writepage being called for a page that has already
892 * had its underlying blocks deallocated.
893 */
894void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
895{
896	struct address_space *mapping = inode->i_mapping;
897	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
898	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 
899	/*
900	 * This rounding is currently just for example: unmap_mapping_range
901	 * expands its hole outwards, whereas we want it to contract the hole
902	 * inwards.  However, existing callers of truncate_pagecache_range are
903	 * doing their own page rounding first.  Note that unmap_mapping_range
904	 * allows holelen 0 for all, and we allow lend -1 for end of file.
905	 */
 
 
 
 
 
 
 
 
906
907	/*
908	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
909	 * once (before truncating pagecache), and without "even_cows" flag:
910	 * hole-punching should not remove private COWed pages from the hole.
911	 */
912	if ((u64)unmap_end > (u64)unmap_start)
913		unmap_mapping_range(mapping, unmap_start,
914				    1 + unmap_end - unmap_start, 0);
915	truncate_inode_pages_range(mapping, lstart, lend);
916}
917EXPORT_SYMBOL(truncate_pagecache_range);