Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 *  bootmem - A boot-time physical memory allocator and configurator
  3 *
  4 *  Copyright (C) 1999 Ingo Molnar
  5 *                1999 Kanoj Sarcar, SGI
  6 *                2008 Johannes Weiner
  7 *
  8 * Access to this subsystem has to be serialized externally (which is true
  9 * for the boot process anyway).
 10 */
 11#include <linux/init.h>
 12#include <linux/pfn.h>
 13#include <linux/slab.h>
 14#include <linux/bootmem.h>
 15#include <linux/module.h>
 16#include <linux/kmemleak.h>
 17#include <linux/range.h>
 18#include <linux/memblock.h>
 19
 20#include <asm/bug.h>
 21#include <asm/io.h>
 22#include <asm/processor.h>
 23
 24#include "internal.h"
 25
 26#ifndef CONFIG_NEED_MULTIPLE_NODES
 27struct pglist_data __refdata contig_page_data = {
 28	.bdata = &bootmem_node_data[0]
 29};
 30EXPORT_SYMBOL(contig_page_data);
 31#endif
 32
 33unsigned long max_low_pfn;
 34unsigned long min_low_pfn;
 35unsigned long max_pfn;
 36
 37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
 38
 39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
 40
 41static int bootmem_debug;
 42
 43static int __init bootmem_debug_setup(char *buf)
 44{
 45	bootmem_debug = 1;
 46	return 0;
 47}
 48early_param("bootmem_debug", bootmem_debug_setup);
 49
 50#define bdebug(fmt, args...) ({				\
 51	if (unlikely(bootmem_debug))			\
 52		printk(KERN_INFO			\
 53			"bootmem::%s " fmt,		\
 54			__func__, ## args);		\
 55})
 56
 57static unsigned long __init bootmap_bytes(unsigned long pages)
 58{
 59	unsigned long bytes = (pages + 7) / 8;
 60
 61	return ALIGN(bytes, sizeof(long));
 62}
 63
 64/**
 65 * bootmem_bootmap_pages - calculate bitmap size in pages
 66 * @pages: number of pages the bitmap has to represent
 67 */
 68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
 69{
 70	unsigned long bytes = bootmap_bytes(pages);
 71
 72	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
 73}
 74
 75/*
 76 * link bdata in order
 77 */
 78static void __init link_bootmem(bootmem_data_t *bdata)
 79{
 80	struct list_head *iter;
 81
 82	list_for_each(iter, &bdata_list) {
 83		bootmem_data_t *ent;
 84
 85		ent = list_entry(iter, bootmem_data_t, list);
 86		if (bdata->node_min_pfn < ent->node_min_pfn)
 87			break;
 88	}
 89	list_add_tail(&bdata->list, iter);
 90}
 91
 92/*
 93 * Called once to set up the allocator itself.
 94 */
 95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
 96	unsigned long mapstart, unsigned long start, unsigned long end)
 97{
 98	unsigned long mapsize;
 99
100	mminit_validate_memmodel_limits(&start, &end);
101	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102	bdata->node_min_pfn = start;
103	bdata->node_low_pfn = end;
104	link_bootmem(bdata);
105
106	/*
107	 * Initially all pages are reserved - setup_arch() has to
108	 * register free RAM areas explicitly.
109	 */
110	mapsize = bootmap_bytes(end - start);
111	memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114		bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116	return mapsize;
117}
118
119/**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129				unsigned long startpfn, unsigned long endpfn)
130{
131	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132}
133
134/**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142{
143	max_low_pfn = pages;
144	min_low_pfn = start;
145	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146}
147
148/*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system.  Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157void __init free_bootmem_late(unsigned long addr, unsigned long size)
158{
159	unsigned long cursor, end;
160
161	kmemleak_free_part(__va(addr), size);
162
163	cursor = PFN_UP(addr);
164	end = PFN_DOWN(addr + size);
165
166	for (; cursor < end; cursor++) {
167		__free_pages_bootmem(pfn_to_page(cursor), 0);
168		totalram_pages++;
169	}
170}
171
172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173{
174	int aligned;
175	struct page *page;
176	unsigned long start, end, pages, count = 0;
177
178	if (!bdata->node_bootmem_map)
179		return 0;
180
181	start = bdata->node_min_pfn;
182	end = bdata->node_low_pfn;
183
184	/*
185	 * If the start is aligned to the machines wordsize, we might
186	 * be able to free pages in bulks of that order.
187	 */
188	aligned = !(start & (BITS_PER_LONG - 1));
189
190	bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
191		bdata - bootmem_node_data, start, end, aligned);
192
193	while (start < end) {
194		unsigned long *map, idx, vec;
195
196		map = bdata->node_bootmem_map;
197		idx = start - bdata->node_min_pfn;
198		vec = ~map[idx / BITS_PER_LONG];
199
200		if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
201			int order = ilog2(BITS_PER_LONG);
202
203			__free_pages_bootmem(pfn_to_page(start), order);
204			count += BITS_PER_LONG;
205		} else {
206			unsigned long off = 0;
207
208			while (vec && off < BITS_PER_LONG) {
209				if (vec & 1) {
210					page = pfn_to_page(start + off);
211					__free_pages_bootmem(page, 0);
212					count++;
213				}
214				vec >>= 1;
215				off++;
216			}
217		}
218		start += BITS_PER_LONG;
219	}
220
221	page = virt_to_page(bdata->node_bootmem_map);
222	pages = bdata->node_low_pfn - bdata->node_min_pfn;
223	pages = bootmem_bootmap_pages(pages);
224	count += pages;
225	while (pages--)
226		__free_pages_bootmem(page++, 0);
227
228	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
229
230	return count;
231}
232
233/**
234 * free_all_bootmem_node - release a node's free pages to the buddy allocator
235 * @pgdat: node to be released
236 *
237 * Returns the number of pages actually released.
238 */
239unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
240{
241	register_page_bootmem_info_node(pgdat);
242	return free_all_bootmem_core(pgdat->bdata);
243}
244
245/**
246 * free_all_bootmem - release free pages to the buddy allocator
247 *
248 * Returns the number of pages actually released.
249 */
250unsigned long __init free_all_bootmem(void)
251{
252	unsigned long total_pages = 0;
253	bootmem_data_t *bdata;
254
255	list_for_each_entry(bdata, &bdata_list, list)
256		total_pages += free_all_bootmem_core(bdata);
257
258	return total_pages;
259}
260
261static void __init __free(bootmem_data_t *bdata,
262			unsigned long sidx, unsigned long eidx)
263{
264	unsigned long idx;
265
266	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
267		sidx + bdata->node_min_pfn,
268		eidx + bdata->node_min_pfn);
269
270	if (bdata->hint_idx > sidx)
271		bdata->hint_idx = sidx;
272
273	for (idx = sidx; idx < eidx; idx++)
274		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
275			BUG();
276}
277
278static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
279			unsigned long eidx, int flags)
280{
281	unsigned long idx;
282	int exclusive = flags & BOOTMEM_EXCLUSIVE;
283
284	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
285		bdata - bootmem_node_data,
286		sidx + bdata->node_min_pfn,
287		eidx + bdata->node_min_pfn,
288		flags);
289
290	for (idx = sidx; idx < eidx; idx++)
291		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
292			if (exclusive) {
293				__free(bdata, sidx, idx);
294				return -EBUSY;
295			}
296			bdebug("silent double reserve of PFN %lx\n",
297				idx + bdata->node_min_pfn);
298		}
299	return 0;
300}
301
302static int __init mark_bootmem_node(bootmem_data_t *bdata,
303				unsigned long start, unsigned long end,
304				int reserve, int flags)
305{
306	unsigned long sidx, eidx;
307
308	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
309		bdata - bootmem_node_data, start, end, reserve, flags);
310
311	BUG_ON(start < bdata->node_min_pfn);
312	BUG_ON(end > bdata->node_low_pfn);
313
314	sidx = start - bdata->node_min_pfn;
315	eidx = end - bdata->node_min_pfn;
316
317	if (reserve)
318		return __reserve(bdata, sidx, eidx, flags);
319	else
320		__free(bdata, sidx, eidx);
321	return 0;
322}
323
324static int __init mark_bootmem(unsigned long start, unsigned long end,
325				int reserve, int flags)
326{
327	unsigned long pos;
328	bootmem_data_t *bdata;
329
330	pos = start;
331	list_for_each_entry(bdata, &bdata_list, list) {
332		int err;
333		unsigned long max;
334
335		if (pos < bdata->node_min_pfn ||
336		    pos >= bdata->node_low_pfn) {
337			BUG_ON(pos != start);
338			continue;
339		}
340
341		max = min(bdata->node_low_pfn, end);
342
343		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
344		if (reserve && err) {
345			mark_bootmem(start, pos, 0, 0);
346			return err;
347		}
348
349		if (max == end)
350			return 0;
351		pos = bdata->node_low_pfn;
352	}
353	BUG();
354}
355
356/**
357 * free_bootmem_node - mark a page range as usable
358 * @pgdat: node the range resides on
359 * @physaddr: starting address of the range
360 * @size: size of the range in bytes
361 *
362 * Partial pages will be considered reserved and left as they are.
363 *
364 * The range must reside completely on the specified node.
365 */
366void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
367			      unsigned long size)
368{
369	unsigned long start, end;
370
371	kmemleak_free_part(__va(physaddr), size);
372
373	start = PFN_UP(physaddr);
374	end = PFN_DOWN(physaddr + size);
375
376	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
377}
378
379/**
380 * free_bootmem - mark a page range as usable
381 * @addr: starting address of the range
382 * @size: size of the range in bytes
383 *
384 * Partial pages will be considered reserved and left as they are.
385 *
386 * The range must be contiguous but may span node boundaries.
387 */
388void __init free_bootmem(unsigned long addr, unsigned long size)
389{
390	unsigned long start, end;
391
392	kmemleak_free_part(__va(addr), size);
393
394	start = PFN_UP(addr);
395	end = PFN_DOWN(addr + size);
396
397	mark_bootmem(start, end, 0, 0);
398}
399
400/**
401 * reserve_bootmem_node - mark a page range as reserved
402 * @pgdat: node the range resides on
403 * @physaddr: starting address of the range
404 * @size: size of the range in bytes
405 * @flags: reservation flags (see linux/bootmem.h)
406 *
407 * Partial pages will be reserved.
408 *
409 * The range must reside completely on the specified node.
410 */
411int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
412				 unsigned long size, int flags)
413{
414	unsigned long start, end;
415
416	start = PFN_DOWN(physaddr);
417	end = PFN_UP(physaddr + size);
418
419	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
420}
421
422/**
423 * reserve_bootmem - mark a page range as usable
424 * @addr: starting address of the range
425 * @size: size of the range in bytes
426 * @flags: reservation flags (see linux/bootmem.h)
427 *
428 * Partial pages will be reserved.
429 *
430 * The range must be contiguous but may span node boundaries.
431 */
432int __init reserve_bootmem(unsigned long addr, unsigned long size,
433			    int flags)
434{
435	unsigned long start, end;
436
437	start = PFN_DOWN(addr);
438	end = PFN_UP(addr + size);
439
440	return mark_bootmem(start, end, 1, flags);
441}
442
443int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
444				   int flags)
445{
446	return reserve_bootmem(phys, len, flags);
447}
448
449static unsigned long __init align_idx(struct bootmem_data *bdata,
450				      unsigned long idx, unsigned long step)
451{
452	unsigned long base = bdata->node_min_pfn;
453
454	/*
455	 * Align the index with respect to the node start so that the
456	 * combination of both satisfies the requested alignment.
457	 */
458
459	return ALIGN(base + idx, step) - base;
460}
461
462static unsigned long __init align_off(struct bootmem_data *bdata,
463				      unsigned long off, unsigned long align)
464{
465	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
466
467	/* Same as align_idx for byte offsets */
468
469	return ALIGN(base + off, align) - base;
470}
471
472static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
473					unsigned long size, unsigned long align,
474					unsigned long goal, unsigned long limit)
475{
476	unsigned long fallback = 0;
477	unsigned long min, max, start, sidx, midx, step;
478
479	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
480		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
481		align, goal, limit);
482
483	BUG_ON(!size);
484	BUG_ON(align & (align - 1));
485	BUG_ON(limit && goal + size > limit);
486
487	if (!bdata->node_bootmem_map)
488		return NULL;
489
490	min = bdata->node_min_pfn;
491	max = bdata->node_low_pfn;
492
493	goal >>= PAGE_SHIFT;
494	limit >>= PAGE_SHIFT;
495
496	if (limit && max > limit)
497		max = limit;
498	if (max <= min)
499		return NULL;
500
501	step = max(align >> PAGE_SHIFT, 1UL);
502
503	if (goal && min < goal && goal < max)
504		start = ALIGN(goal, step);
505	else
506		start = ALIGN(min, step);
507
508	sidx = start - bdata->node_min_pfn;
509	midx = max - bdata->node_min_pfn;
510
511	if (bdata->hint_idx > sidx) {
512		/*
513		 * Handle the valid case of sidx being zero and still
514		 * catch the fallback below.
515		 */
516		fallback = sidx + 1;
517		sidx = align_idx(bdata, bdata->hint_idx, step);
518	}
519
520	while (1) {
521		int merge;
522		void *region;
523		unsigned long eidx, i, start_off, end_off;
524find_block:
525		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
526		sidx = align_idx(bdata, sidx, step);
527		eidx = sidx + PFN_UP(size);
528
529		if (sidx >= midx || eidx > midx)
530			break;
531
532		for (i = sidx; i < eidx; i++)
533			if (test_bit(i, bdata->node_bootmem_map)) {
534				sidx = align_idx(bdata, i, step);
535				if (sidx == i)
536					sidx += step;
537				goto find_block;
538			}
539
540		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
541				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
542			start_off = align_off(bdata, bdata->last_end_off, align);
543		else
544			start_off = PFN_PHYS(sidx);
545
546		merge = PFN_DOWN(start_off) < sidx;
547		end_off = start_off + size;
548
549		bdata->last_end_off = end_off;
550		bdata->hint_idx = PFN_UP(end_off);
551
552		/*
553		 * Reserve the area now:
554		 */
555		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
556				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
557			BUG();
558
559		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
560				start_off);
561		memset(region, 0, size);
562		/*
563		 * The min_count is set to 0 so that bootmem allocated blocks
564		 * are never reported as leaks.
565		 */
566		kmemleak_alloc(region, size, 0, 0);
567		return region;
568	}
569
570	if (fallback) {
571		sidx = align_idx(bdata, fallback - 1, step);
572		fallback = 0;
573		goto find_block;
574	}
575
576	return NULL;
577}
578
579static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
580					unsigned long size, unsigned long align,
581					unsigned long goal, unsigned long limit)
582{
583	if (WARN_ON_ONCE(slab_is_available()))
584		return kzalloc(size, GFP_NOWAIT);
585
586#ifdef CONFIG_HAVE_ARCH_BOOTMEM
587	{
588		bootmem_data_t *p_bdata;
589
590		p_bdata = bootmem_arch_preferred_node(bdata, size, align,
591							goal, limit);
592		if (p_bdata)
593			return alloc_bootmem_core(p_bdata, size, align,
594							goal, limit);
595	}
596#endif
597	return NULL;
598}
599
600static void * __init ___alloc_bootmem_nopanic(unsigned long size,
601					unsigned long align,
602					unsigned long goal,
603					unsigned long limit)
604{
605	bootmem_data_t *bdata;
606	void *region;
607
608restart:
609	region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
610	if (region)
611		return region;
612
613	list_for_each_entry(bdata, &bdata_list, list) {
614		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
615			continue;
616		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
617			break;
618
619		region = alloc_bootmem_core(bdata, size, align, goal, limit);
620		if (region)
621			return region;
622	}
623
624	if (goal) {
625		goal = 0;
626		goto restart;
627	}
628
629	return NULL;
630}
631
632/**
633 * __alloc_bootmem_nopanic - allocate boot memory without panicking
634 * @size: size of the request in bytes
635 * @align: alignment of the region
636 * @goal: preferred starting address of the region
637 *
638 * The goal is dropped if it can not be satisfied and the allocation will
639 * fall back to memory below @goal.
640 *
641 * Allocation may happen on any node in the system.
642 *
643 * Returns NULL on failure.
644 */
645void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
646					unsigned long goal)
647{
648	unsigned long limit = 0;
649
650	return ___alloc_bootmem_nopanic(size, align, goal, limit);
651}
652
653static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
654					unsigned long goal, unsigned long limit)
655{
656	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
657
658	if (mem)
659		return mem;
660	/*
661	 * Whoops, we cannot satisfy the allocation request.
662	 */
663	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
664	panic("Out of memory");
665	return NULL;
666}
667
668/**
669 * __alloc_bootmem - allocate boot memory
670 * @size: size of the request in bytes
671 * @align: alignment of the region
672 * @goal: preferred starting address of the region
673 *
674 * The goal is dropped if it can not be satisfied and the allocation will
675 * fall back to memory below @goal.
676 *
677 * Allocation may happen on any node in the system.
678 *
679 * The function panics if the request can not be satisfied.
680 */
681void * __init __alloc_bootmem(unsigned long size, unsigned long align,
682			      unsigned long goal)
683{
684	unsigned long limit = 0;
685
686	return ___alloc_bootmem(size, align, goal, limit);
687}
688
689static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
690				unsigned long size, unsigned long align,
691				unsigned long goal, unsigned long limit)
692{
693	void *ptr;
694
695	ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
696	if (ptr)
697		return ptr;
698
699	ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
700	if (ptr)
701		return ptr;
702
703	return ___alloc_bootmem(size, align, goal, limit);
704}
705
706/**
707 * __alloc_bootmem_node - allocate boot memory from a specific node
708 * @pgdat: node to allocate from
709 * @size: size of the request in bytes
710 * @align: alignment of the region
711 * @goal: preferred starting address of the region
712 *
713 * The goal is dropped if it can not be satisfied and the allocation will
714 * fall back to memory below @goal.
715 *
716 * Allocation may fall back to any node in the system if the specified node
717 * can not hold the requested memory.
718 *
719 * The function panics if the request can not be satisfied.
720 */
721void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
722				   unsigned long align, unsigned long goal)
723{
724	if (WARN_ON_ONCE(slab_is_available()))
725		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
726
727	return  ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
728}
729
730void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
731				   unsigned long align, unsigned long goal)
732{
733#ifdef MAX_DMA32_PFN
734	unsigned long end_pfn;
735
736	if (WARN_ON_ONCE(slab_is_available()))
737		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
738
739	/* update goal according ...MAX_DMA32_PFN */
740	end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
741
742	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
743	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
744		void *ptr;
745		unsigned long new_goal;
746
747		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
748		ptr = alloc_bootmem_core(pgdat->bdata, size, align,
749						 new_goal, 0);
750		if (ptr)
751			return ptr;
752	}
753#endif
754
755	return __alloc_bootmem_node(pgdat, size, align, goal);
756
757}
758
759#ifdef CONFIG_SPARSEMEM
760/**
761 * alloc_bootmem_section - allocate boot memory from a specific section
762 * @size: size of the request in bytes
763 * @section_nr: sparse map section to allocate from
764 *
765 * Return NULL on failure.
766 */
767void * __init alloc_bootmem_section(unsigned long size,
768				    unsigned long section_nr)
769{
770	bootmem_data_t *bdata;
771	unsigned long pfn, goal, limit;
772
773	pfn = section_nr_to_pfn(section_nr);
774	goal = pfn << PAGE_SHIFT;
775	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
776	bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
777
778	return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
779}
780#endif
781
782void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
783				   unsigned long align, unsigned long goal)
784{
785	void *ptr;
786
787	if (WARN_ON_ONCE(slab_is_available()))
788		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
789
790	ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
791	if (ptr)
792		return ptr;
793
794	ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
795	if (ptr)
796		return ptr;
797
798	return __alloc_bootmem_nopanic(size, align, goal);
799}
800
801#ifndef ARCH_LOW_ADDRESS_LIMIT
802#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
803#endif
804
805/**
806 * __alloc_bootmem_low - allocate low boot memory
807 * @size: size of the request in bytes
808 * @align: alignment of the region
809 * @goal: preferred starting address of the region
810 *
811 * The goal is dropped if it can not be satisfied and the allocation will
812 * fall back to memory below @goal.
813 *
814 * Allocation may happen on any node in the system.
815 *
816 * The function panics if the request can not be satisfied.
817 */
818void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
819				  unsigned long goal)
820{
821	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
822}
823
824/**
825 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
826 * @pgdat: node to allocate from
827 * @size: size of the request in bytes
828 * @align: alignment of the region
829 * @goal: preferred starting address of the region
830 *
831 * The goal is dropped if it can not be satisfied and the allocation will
832 * fall back to memory below @goal.
833 *
834 * Allocation may fall back to any node in the system if the specified node
835 * can not hold the requested memory.
836 *
837 * The function panics if the request can not be satisfied.
838 */
839void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
840				       unsigned long align, unsigned long goal)
841{
842	if (WARN_ON_ONCE(slab_is_available()))
843		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
844
845	return ___alloc_bootmem_node(pgdat->bdata, size, align,
846				goal, ARCH_LOW_ADDRESS_LIMIT);
847}