Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
  1/*
  2 *  bootmem - A boot-time physical memory allocator and configurator
  3 *
  4 *  Copyright (C) 1999 Ingo Molnar
  5 *                1999 Kanoj Sarcar, SGI
  6 *                2008 Johannes Weiner
  7 *
  8 * Access to this subsystem has to be serialized externally (which is true
  9 * for the boot process anyway).
 10 */
 11#include <linux/init.h>
 12#include <linux/pfn.h>
 13#include <linux/slab.h>
 14#include <linux/bootmem.h>
 15#include <linux/module.h>
 16#include <linux/kmemleak.h>
 17#include <linux/range.h>
 18#include <linux/memblock.h>
 
 
 19
 20#include <asm/bug.h>
 21#include <asm/io.h>
 22#include <asm/processor.h>
 23
 24#include "internal.h"
 25
 26#ifndef CONFIG_NEED_MULTIPLE_NODES
 27struct pglist_data __refdata contig_page_data = {
 28	.bdata = &bootmem_node_data[0]
 29};
 30EXPORT_SYMBOL(contig_page_data);
 31#endif
 32
 33unsigned long max_low_pfn;
 34unsigned long min_low_pfn;
 35unsigned long max_pfn;
 
 36
 37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
 38
 39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
 40
 41static int bootmem_debug;
 42
 43static int __init bootmem_debug_setup(char *buf)
 44{
 45	bootmem_debug = 1;
 46	return 0;
 47}
 48early_param("bootmem_debug", bootmem_debug_setup);
 49
 50#define bdebug(fmt, args...) ({				\
 51	if (unlikely(bootmem_debug))			\
 52		printk(KERN_INFO			\
 53			"bootmem::%s " fmt,		\
 54			__func__, ## args);		\
 55})
 56
 57static unsigned long __init bootmap_bytes(unsigned long pages)
 58{
 59	unsigned long bytes = (pages + 7) / 8;
 60
 61	return ALIGN(bytes, sizeof(long));
 62}
 63
 64/**
 65 * bootmem_bootmap_pages - calculate bitmap size in pages
 66 * @pages: number of pages the bitmap has to represent
 67 */
 68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
 69{
 70	unsigned long bytes = bootmap_bytes(pages);
 71
 72	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
 73}
 74
 75/*
 76 * link bdata in order
 77 */
 78static void __init link_bootmem(bootmem_data_t *bdata)
 79{
 80	struct list_head *iter;
 81
 82	list_for_each(iter, &bdata_list) {
 83		bootmem_data_t *ent;
 84
 85		ent = list_entry(iter, bootmem_data_t, list);
 86		if (bdata->node_min_pfn < ent->node_min_pfn)
 87			break;
 88	}
 89	list_add_tail(&bdata->list, iter);
 
 90}
 91
 92/*
 93 * Called once to set up the allocator itself.
 94 */
 95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
 96	unsigned long mapstart, unsigned long start, unsigned long end)
 97{
 98	unsigned long mapsize;
 99
100	mminit_validate_memmodel_limits(&start, &end);
101	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102	bdata->node_min_pfn = start;
103	bdata->node_low_pfn = end;
104	link_bootmem(bdata);
105
106	/*
107	 * Initially all pages are reserved - setup_arch() has to
108	 * register free RAM areas explicitly.
109	 */
110	mapsize = bootmap_bytes(end - start);
111	memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114		bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116	return mapsize;
117}
118
119/**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129				unsigned long startpfn, unsigned long endpfn)
130{
131	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132}
133
134/**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142{
143	max_low_pfn = pages;
144	min_low_pfn = start;
145	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146}
147
148/*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system.  Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157void __init free_bootmem_late(unsigned long addr, unsigned long size)
158{
159	unsigned long cursor, end;
160
161	kmemleak_free_part(__va(addr), size);
162
163	cursor = PFN_UP(addr);
164	end = PFN_DOWN(addr + size);
165
166	for (; cursor < end; cursor++) {
167		__free_pages_bootmem(pfn_to_page(cursor), 0);
168		totalram_pages++;
169	}
170}
171
172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173{
174	int aligned;
175	struct page *page;
176	unsigned long start, end, pages, count = 0;
177
178	if (!bdata->node_bootmem_map)
179		return 0;
180
 
181	start = bdata->node_min_pfn;
182	end = bdata->node_low_pfn;
183
184	/*
185	 * If the start is aligned to the machines wordsize, we might
186	 * be able to free pages in bulks of that order.
187	 */
188	aligned = !(start & (BITS_PER_LONG - 1));
189
190	bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
191		bdata - bootmem_node_data, start, end, aligned);
192
193	while (start < end) {
194		unsigned long *map, idx, vec;
 
195
196		map = bdata->node_bootmem_map;
197		idx = start - bdata->node_min_pfn;
 
 
 
 
 
198		vec = ~map[idx / BITS_PER_LONG];
199
200		if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
 
 
 
 
 
 
 
 
 
 
 
201			int order = ilog2(BITS_PER_LONG);
202
203			__free_pages_bootmem(pfn_to_page(start), order);
204			count += BITS_PER_LONG;
 
205		} else {
206			unsigned long off = 0;
207
208			while (vec && off < BITS_PER_LONG) {
 
209				if (vec & 1) {
210					page = pfn_to_page(start + off);
211					__free_pages_bootmem(page, 0);
212					count++;
213				}
214				vec >>= 1;
215				off++;
216			}
217		}
218		start += BITS_PER_LONG;
219	}
220
 
221	page = virt_to_page(bdata->node_bootmem_map);
222	pages = bdata->node_low_pfn - bdata->node_min_pfn;
223	pages = bootmem_bootmap_pages(pages);
224	count += pages;
225	while (pages--)
226		__free_pages_bootmem(page++, 0);
 
227
228	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
229
230	return count;
231}
232
233/**
234 * free_all_bootmem_node - release a node's free pages to the buddy allocator
235 * @pgdat: node to be released
236 *
237 * Returns the number of pages actually released.
238 */
239unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
240{
241	register_page_bootmem_info_node(pgdat);
242	return free_all_bootmem_core(pgdat->bdata);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
244
245/**
246 * free_all_bootmem - release free pages to the buddy allocator
247 *
248 * Returns the number of pages actually released.
249 */
250unsigned long __init free_all_bootmem(void)
251{
252	unsigned long total_pages = 0;
253	bootmem_data_t *bdata;
254
 
 
255	list_for_each_entry(bdata, &bdata_list, list)
256		total_pages += free_all_bootmem_core(bdata);
257
 
 
258	return total_pages;
259}
260
261static void __init __free(bootmem_data_t *bdata,
262			unsigned long sidx, unsigned long eidx)
263{
264	unsigned long idx;
265
266	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
267		sidx + bdata->node_min_pfn,
268		eidx + bdata->node_min_pfn);
269
 
 
 
270	if (bdata->hint_idx > sidx)
271		bdata->hint_idx = sidx;
272
273	for (idx = sidx; idx < eidx; idx++)
274		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
275			BUG();
276}
277
278static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
279			unsigned long eidx, int flags)
280{
281	unsigned long idx;
282	int exclusive = flags & BOOTMEM_EXCLUSIVE;
283
284	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
285		bdata - bootmem_node_data,
286		sidx + bdata->node_min_pfn,
287		eidx + bdata->node_min_pfn,
288		flags);
289
 
 
 
290	for (idx = sidx; idx < eidx; idx++)
291		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
292			if (exclusive) {
293				__free(bdata, sidx, idx);
294				return -EBUSY;
295			}
296			bdebug("silent double reserve of PFN %lx\n",
297				idx + bdata->node_min_pfn);
298		}
299	return 0;
300}
301
302static int __init mark_bootmem_node(bootmem_data_t *bdata,
303				unsigned long start, unsigned long end,
304				int reserve, int flags)
305{
306	unsigned long sidx, eidx;
307
308	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
309		bdata - bootmem_node_data, start, end, reserve, flags);
310
311	BUG_ON(start < bdata->node_min_pfn);
312	BUG_ON(end > bdata->node_low_pfn);
313
314	sidx = start - bdata->node_min_pfn;
315	eidx = end - bdata->node_min_pfn;
316
317	if (reserve)
318		return __reserve(bdata, sidx, eidx, flags);
319	else
320		__free(bdata, sidx, eidx);
321	return 0;
322}
323
324static int __init mark_bootmem(unsigned long start, unsigned long end,
325				int reserve, int flags)
326{
327	unsigned long pos;
328	bootmem_data_t *bdata;
329
330	pos = start;
331	list_for_each_entry(bdata, &bdata_list, list) {
332		int err;
333		unsigned long max;
334
335		if (pos < bdata->node_min_pfn ||
336		    pos >= bdata->node_low_pfn) {
337			BUG_ON(pos != start);
338			continue;
339		}
340
341		max = min(bdata->node_low_pfn, end);
342
343		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
344		if (reserve && err) {
345			mark_bootmem(start, pos, 0, 0);
346			return err;
347		}
348
349		if (max == end)
350			return 0;
351		pos = bdata->node_low_pfn;
352	}
353	BUG();
354}
355
356/**
357 * free_bootmem_node - mark a page range as usable
358 * @pgdat: node the range resides on
359 * @physaddr: starting address of the range
360 * @size: size of the range in bytes
361 *
362 * Partial pages will be considered reserved and left as they are.
363 *
364 * The range must reside completely on the specified node.
365 */
366void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
367			      unsigned long size)
368{
369	unsigned long start, end;
370
371	kmemleak_free_part(__va(physaddr), size);
372
373	start = PFN_UP(physaddr);
374	end = PFN_DOWN(physaddr + size);
375
376	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
377}
378
379/**
380 * free_bootmem - mark a page range as usable
381 * @addr: starting address of the range
382 * @size: size of the range in bytes
383 *
384 * Partial pages will be considered reserved and left as they are.
385 *
386 * The range must be contiguous but may span node boundaries.
387 */
388void __init free_bootmem(unsigned long addr, unsigned long size)
389{
390	unsigned long start, end;
391
392	kmemleak_free_part(__va(addr), size);
393
394	start = PFN_UP(addr);
395	end = PFN_DOWN(addr + size);
396
397	mark_bootmem(start, end, 0, 0);
398}
399
400/**
401 * reserve_bootmem_node - mark a page range as reserved
402 * @pgdat: node the range resides on
403 * @physaddr: starting address of the range
404 * @size: size of the range in bytes
405 * @flags: reservation flags (see linux/bootmem.h)
406 *
407 * Partial pages will be reserved.
408 *
409 * The range must reside completely on the specified node.
410 */
411int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
412				 unsigned long size, int flags)
413{
414	unsigned long start, end;
415
416	start = PFN_DOWN(physaddr);
417	end = PFN_UP(physaddr + size);
418
419	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
420}
421
422/**
423 * reserve_bootmem - mark a page range as usable
424 * @addr: starting address of the range
425 * @size: size of the range in bytes
426 * @flags: reservation flags (see linux/bootmem.h)
427 *
428 * Partial pages will be reserved.
429 *
430 * The range must be contiguous but may span node boundaries.
431 */
432int __init reserve_bootmem(unsigned long addr, unsigned long size,
433			    int flags)
434{
435	unsigned long start, end;
436
437	start = PFN_DOWN(addr);
438	end = PFN_UP(addr + size);
439
440	return mark_bootmem(start, end, 1, flags);
441}
442
443int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
444				   int flags)
445{
446	return reserve_bootmem(phys, len, flags);
447}
448
449static unsigned long __init align_idx(struct bootmem_data *bdata,
450				      unsigned long idx, unsigned long step)
451{
452	unsigned long base = bdata->node_min_pfn;
453
454	/*
455	 * Align the index with respect to the node start so that the
456	 * combination of both satisfies the requested alignment.
457	 */
458
459	return ALIGN(base + idx, step) - base;
460}
461
462static unsigned long __init align_off(struct bootmem_data *bdata,
463				      unsigned long off, unsigned long align)
464{
465	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
466
467	/* Same as align_idx for byte offsets */
468
469	return ALIGN(base + off, align) - base;
470}
471
472static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
473					unsigned long size, unsigned long align,
474					unsigned long goal, unsigned long limit)
475{
476	unsigned long fallback = 0;
477	unsigned long min, max, start, sidx, midx, step;
478
479	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
480		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
481		align, goal, limit);
482
483	BUG_ON(!size);
484	BUG_ON(align & (align - 1));
485	BUG_ON(limit && goal + size > limit);
486
487	if (!bdata->node_bootmem_map)
488		return NULL;
489
490	min = bdata->node_min_pfn;
491	max = bdata->node_low_pfn;
492
493	goal >>= PAGE_SHIFT;
494	limit >>= PAGE_SHIFT;
495
496	if (limit && max > limit)
497		max = limit;
498	if (max <= min)
499		return NULL;
500
501	step = max(align >> PAGE_SHIFT, 1UL);
502
503	if (goal && min < goal && goal < max)
504		start = ALIGN(goal, step);
505	else
506		start = ALIGN(min, step);
507
508	sidx = start - bdata->node_min_pfn;
509	midx = max - bdata->node_min_pfn;
510
511	if (bdata->hint_idx > sidx) {
512		/*
513		 * Handle the valid case of sidx being zero and still
514		 * catch the fallback below.
515		 */
516		fallback = sidx + 1;
517		sidx = align_idx(bdata, bdata->hint_idx, step);
518	}
519
520	while (1) {
521		int merge;
522		void *region;
523		unsigned long eidx, i, start_off, end_off;
524find_block:
525		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
526		sidx = align_idx(bdata, sidx, step);
527		eidx = sidx + PFN_UP(size);
528
529		if (sidx >= midx || eidx > midx)
530			break;
531
532		for (i = sidx; i < eidx; i++)
533			if (test_bit(i, bdata->node_bootmem_map)) {
534				sidx = align_idx(bdata, i, step);
535				if (sidx == i)
536					sidx += step;
537				goto find_block;
538			}
539
540		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
541				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
542			start_off = align_off(bdata, bdata->last_end_off, align);
543		else
544			start_off = PFN_PHYS(sidx);
545
546		merge = PFN_DOWN(start_off) < sidx;
547		end_off = start_off + size;
548
549		bdata->last_end_off = end_off;
550		bdata->hint_idx = PFN_UP(end_off);
551
552		/*
553		 * Reserve the area now:
554		 */
555		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
556				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
557			BUG();
558
559		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
560				start_off);
561		memset(region, 0, size);
562		/*
563		 * The min_count is set to 0 so that bootmem allocated blocks
564		 * are never reported as leaks.
565		 */
566		kmemleak_alloc(region, size, 0, 0);
567		return region;
568	}
569
570	if (fallback) {
571		sidx = align_idx(bdata, fallback - 1, step);
572		fallback = 0;
573		goto find_block;
574	}
575
576	return NULL;
577}
578
579static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
580					unsigned long size, unsigned long align,
581					unsigned long goal, unsigned long limit)
582{
583	if (WARN_ON_ONCE(slab_is_available()))
584		return kzalloc(size, GFP_NOWAIT);
585
586#ifdef CONFIG_HAVE_ARCH_BOOTMEM
587	{
588		bootmem_data_t *p_bdata;
589
590		p_bdata = bootmem_arch_preferred_node(bdata, size, align,
591							goal, limit);
592		if (p_bdata)
593			return alloc_bootmem_core(p_bdata, size, align,
594							goal, limit);
595	}
596#endif
597	return NULL;
598}
599
600static void * __init ___alloc_bootmem_nopanic(unsigned long size,
601					unsigned long align,
602					unsigned long goal,
603					unsigned long limit)
604{
605	bootmem_data_t *bdata;
606	void *region;
607
608restart:
609	region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
610	if (region)
611		return region;
612
613	list_for_each_entry(bdata, &bdata_list, list) {
614		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
615			continue;
616		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
617			break;
618
619		region = alloc_bootmem_core(bdata, size, align, goal, limit);
620		if (region)
621			return region;
622	}
623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624	if (goal) {
625		goal = 0;
626		goto restart;
627	}
628
629	return NULL;
630}
631
632/**
633 * __alloc_bootmem_nopanic - allocate boot memory without panicking
634 * @size: size of the request in bytes
635 * @align: alignment of the region
636 * @goal: preferred starting address of the region
637 *
638 * The goal is dropped if it can not be satisfied and the allocation will
639 * fall back to memory below @goal.
640 *
641 * Allocation may happen on any node in the system.
642 *
643 * Returns NULL on failure.
644 */
645void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
646					unsigned long goal)
647{
648	unsigned long limit = 0;
649
650	return ___alloc_bootmem_nopanic(size, align, goal, limit);
651}
652
653static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
654					unsigned long goal, unsigned long limit)
655{
656	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
657
658	if (mem)
659		return mem;
660	/*
661	 * Whoops, we cannot satisfy the allocation request.
662	 */
663	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
664	panic("Out of memory");
665	return NULL;
666}
667
668/**
669 * __alloc_bootmem - allocate boot memory
670 * @size: size of the request in bytes
671 * @align: alignment of the region
672 * @goal: preferred starting address of the region
673 *
674 * The goal is dropped if it can not be satisfied and the allocation will
675 * fall back to memory below @goal.
676 *
677 * Allocation may happen on any node in the system.
678 *
679 * The function panics if the request can not be satisfied.
680 */
681void * __init __alloc_bootmem(unsigned long size, unsigned long align,
682			      unsigned long goal)
683{
684	unsigned long limit = 0;
685
686	return ___alloc_bootmem(size, align, goal, limit);
687}
688
689static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
690				unsigned long size, unsigned long align,
691				unsigned long goal, unsigned long limit)
692{
693	void *ptr;
694
695	ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
 
 
 
 
 
 
 
 
696	if (ptr)
697		return ptr;
698
699	ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
700	if (ptr)
701		return ptr;
702
703	return ___alloc_bootmem(size, align, goal, limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704}
705
706/**
707 * __alloc_bootmem_node - allocate boot memory from a specific node
708 * @pgdat: node to allocate from
709 * @size: size of the request in bytes
710 * @align: alignment of the region
711 * @goal: preferred starting address of the region
712 *
713 * The goal is dropped if it can not be satisfied and the allocation will
714 * fall back to memory below @goal.
715 *
716 * Allocation may fall back to any node in the system if the specified node
717 * can not hold the requested memory.
718 *
719 * The function panics if the request can not be satisfied.
720 */
721void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
722				   unsigned long align, unsigned long goal)
723{
724	if (WARN_ON_ONCE(slab_is_available()))
725		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
726
727	return  ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
728}
729
730void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
731				   unsigned long align, unsigned long goal)
732{
733#ifdef MAX_DMA32_PFN
734	unsigned long end_pfn;
735
736	if (WARN_ON_ONCE(slab_is_available()))
737		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
738
739	/* update goal according ...MAX_DMA32_PFN */
740	end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
741
742	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
743	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
744		void *ptr;
745		unsigned long new_goal;
746
747		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
748		ptr = alloc_bootmem_core(pgdat->bdata, size, align,
749						 new_goal, 0);
750		if (ptr)
751			return ptr;
752	}
753#endif
754
755	return __alloc_bootmem_node(pgdat, size, align, goal);
756
757}
758
759#ifdef CONFIG_SPARSEMEM
760/**
761 * alloc_bootmem_section - allocate boot memory from a specific section
762 * @size: size of the request in bytes
763 * @section_nr: sparse map section to allocate from
764 *
765 * Return NULL on failure.
766 */
767void * __init alloc_bootmem_section(unsigned long size,
768				    unsigned long section_nr)
769{
770	bootmem_data_t *bdata;
771	unsigned long pfn, goal, limit;
772
773	pfn = section_nr_to_pfn(section_nr);
774	goal = pfn << PAGE_SHIFT;
775	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
776	bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
777
778	return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
779}
780#endif
781
782void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
783				   unsigned long align, unsigned long goal)
784{
785	void *ptr;
786
787	if (WARN_ON_ONCE(slab_is_available()))
788		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
789
790	ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
791	if (ptr)
792		return ptr;
793
794	ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
795	if (ptr)
796		return ptr;
797
798	return __alloc_bootmem_nopanic(size, align, goal);
799}
800
801#ifndef ARCH_LOW_ADDRESS_LIMIT
802#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
803#endif
804
805/**
806 * __alloc_bootmem_low - allocate low boot memory
807 * @size: size of the request in bytes
808 * @align: alignment of the region
809 * @goal: preferred starting address of the region
810 *
811 * The goal is dropped if it can not be satisfied and the allocation will
812 * fall back to memory below @goal.
813 *
814 * Allocation may happen on any node in the system.
815 *
816 * The function panics if the request can not be satisfied.
817 */
818void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
819				  unsigned long goal)
820{
821	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
822}
823
 
 
 
 
 
 
 
 
824/**
825 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
826 * @pgdat: node to allocate from
827 * @size: size of the request in bytes
828 * @align: alignment of the region
829 * @goal: preferred starting address of the region
830 *
831 * The goal is dropped if it can not be satisfied and the allocation will
832 * fall back to memory below @goal.
833 *
834 * Allocation may fall back to any node in the system if the specified node
835 * can not hold the requested memory.
836 *
837 * The function panics if the request can not be satisfied.
838 */
839void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
840				       unsigned long align, unsigned long goal)
841{
842	if (WARN_ON_ONCE(slab_is_available()))
843		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
844
845	return ___alloc_bootmem_node(pgdat->bdata, size, align,
846				goal, ARCH_LOW_ADDRESS_LIMIT);
847}
v4.6
  1/*
  2 *  bootmem - A boot-time physical memory allocator and configurator
  3 *
  4 *  Copyright (C) 1999 Ingo Molnar
  5 *                1999 Kanoj Sarcar, SGI
  6 *                2008 Johannes Weiner
  7 *
  8 * Access to this subsystem has to be serialized externally (which is true
  9 * for the boot process anyway).
 10 */
 11#include <linux/init.h>
 12#include <linux/pfn.h>
 13#include <linux/slab.h>
 14#include <linux/bootmem.h>
 15#include <linux/export.h>
 16#include <linux/kmemleak.h>
 17#include <linux/range.h>
 18#include <linux/memblock.h>
 19#include <linux/bug.h>
 20#include <linux/io.h>
 21
 
 
 22#include <asm/processor.h>
 23
 24#include "internal.h"
 25
 26#ifndef CONFIG_NEED_MULTIPLE_NODES
 27struct pglist_data __refdata contig_page_data = {
 28	.bdata = &bootmem_node_data[0]
 29};
 30EXPORT_SYMBOL(contig_page_data);
 31#endif
 32
 33unsigned long max_low_pfn;
 34unsigned long min_low_pfn;
 35unsigned long max_pfn;
 36unsigned long long max_possible_pfn;
 37
 38bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
 39
 40static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
 41
 42static int bootmem_debug;
 43
 44static int __init bootmem_debug_setup(char *buf)
 45{
 46	bootmem_debug = 1;
 47	return 0;
 48}
 49early_param("bootmem_debug", bootmem_debug_setup);
 50
 51#define bdebug(fmt, args...) ({				\
 52	if (unlikely(bootmem_debug))			\
 53		pr_info("bootmem::%s " fmt,		\
 
 54			__func__, ## args);		\
 55})
 56
 57static unsigned long __init bootmap_bytes(unsigned long pages)
 58{
 59	unsigned long bytes = DIV_ROUND_UP(pages, 8);
 60
 61	return ALIGN(bytes, sizeof(long));
 62}
 63
 64/**
 65 * bootmem_bootmap_pages - calculate bitmap size in pages
 66 * @pages: number of pages the bitmap has to represent
 67 */
 68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
 69{
 70	unsigned long bytes = bootmap_bytes(pages);
 71
 72	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
 73}
 74
 75/*
 76 * link bdata in order
 77 */
 78static void __init link_bootmem(bootmem_data_t *bdata)
 79{
 80	bootmem_data_t *ent;
 81
 82	list_for_each_entry(ent, &bdata_list, list) {
 83		if (bdata->node_min_pfn < ent->node_min_pfn) {
 84			list_add_tail(&bdata->list, &ent->list);
 85			return;
 86		}
 
 87	}
 88
 89	list_add_tail(&bdata->list, &bdata_list);
 90}
 91
 92/*
 93 * Called once to set up the allocator itself.
 94 */
 95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
 96	unsigned long mapstart, unsigned long start, unsigned long end)
 97{
 98	unsigned long mapsize;
 99
100	mminit_validate_memmodel_limits(&start, &end);
101	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102	bdata->node_min_pfn = start;
103	bdata->node_low_pfn = end;
104	link_bootmem(bdata);
105
106	/*
107	 * Initially all pages are reserved - setup_arch() has to
108	 * register free RAM areas explicitly.
109	 */
110	mapsize = bootmap_bytes(end - start);
111	memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114		bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116	return mapsize;
117}
118
119/**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129				unsigned long startpfn, unsigned long endpfn)
130{
131	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132}
133
134/**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142{
143	max_low_pfn = pages;
144	min_low_pfn = start;
145	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146}
147
148/*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting physical address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system.  Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158{
159	unsigned long cursor, end;
160
161	kmemleak_free_part(__va(physaddr), size);
162
163	cursor = PFN_UP(physaddr);
164	end = PFN_DOWN(physaddr + size);
165
166	for (; cursor < end; cursor++) {
167		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
168		totalram_pages++;
169	}
170}
171
172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173{
 
174	struct page *page;
175	unsigned long *map, start, end, pages, cur, count = 0;
176
177	if (!bdata->node_bootmem_map)
178		return 0;
179
180	map = bdata->node_bootmem_map;
181	start = bdata->node_min_pfn;
182	end = bdata->node_low_pfn;
183
184	bdebug("nid=%td start=%lx end=%lx\n",
185		bdata - bootmem_node_data, start, end);
 
 
 
 
 
 
186
187	while (start < end) {
188		unsigned long idx, vec;
189		unsigned shift;
190
 
191		idx = start - bdata->node_min_pfn;
192		shift = idx & (BITS_PER_LONG - 1);
193		/*
194		 * vec holds at most BITS_PER_LONG map bits,
195		 * bit 0 corresponds to start.
196		 */
197		vec = ~map[idx / BITS_PER_LONG];
198
199		if (shift) {
200			vec >>= shift;
201			if (end - start >= BITS_PER_LONG)
202				vec |= ~map[idx / BITS_PER_LONG + 1] <<
203					(BITS_PER_LONG - shift);
204		}
205		/*
206		 * If we have a properly aligned and fully unreserved
207		 * BITS_PER_LONG block of pages in front of us, free
208		 * it in one go.
209		 */
210		if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211			int order = ilog2(BITS_PER_LONG);
212
213			__free_pages_bootmem(pfn_to_page(start), start, order);
214			count += BITS_PER_LONG;
215			start += BITS_PER_LONG;
216		} else {
217			cur = start;
218
219			start = ALIGN(start + 1, BITS_PER_LONG);
220			while (vec && cur != start) {
221				if (vec & 1) {
222					page = pfn_to_page(cur);
223					__free_pages_bootmem(page, cur, 0);
224					count++;
225				}
226				vec >>= 1;
227				++cur;
228			}
229		}
 
230	}
231
232	cur = bdata->node_min_pfn;
233	page = virt_to_page(bdata->node_bootmem_map);
234	pages = bdata->node_low_pfn - bdata->node_min_pfn;
235	pages = bootmem_bootmap_pages(pages);
236	count += pages;
237	while (pages--)
238		__free_pages_bootmem(page++, cur++, 0);
239	bdata->node_bootmem_map = NULL;
240
241	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
242
243	return count;
244}
245
246static int reset_managed_pages_done __initdata;
247
248void reset_node_managed_pages(pg_data_t *pgdat)
 
 
 
 
249{
250	struct zone *z;
251
252	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
253		z->managed_pages = 0;
254}
255
256void __init reset_all_zones_managed_pages(void)
257{
258	struct pglist_data *pgdat;
259
260	if (reset_managed_pages_done)
261		return;
262
263	for_each_online_pgdat(pgdat)
264		reset_node_managed_pages(pgdat);
265
266	reset_managed_pages_done = 1;
267}
268
269/**
270 * free_all_bootmem - release free pages to the buddy allocator
271 *
272 * Returns the number of pages actually released.
273 */
274unsigned long __init free_all_bootmem(void)
275{
276	unsigned long total_pages = 0;
277	bootmem_data_t *bdata;
278
279	reset_all_zones_managed_pages();
280
281	list_for_each_entry(bdata, &bdata_list, list)
282		total_pages += free_all_bootmem_core(bdata);
283
284	totalram_pages += total_pages;
285
286	return total_pages;
287}
288
289static void __init __free(bootmem_data_t *bdata,
290			unsigned long sidx, unsigned long eidx)
291{
292	unsigned long idx;
293
294	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
295		sidx + bdata->node_min_pfn,
296		eidx + bdata->node_min_pfn);
297
298	if (WARN_ON(bdata->node_bootmem_map == NULL))
299		return;
300
301	if (bdata->hint_idx > sidx)
302		bdata->hint_idx = sidx;
303
304	for (idx = sidx; idx < eidx; idx++)
305		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
306			BUG();
307}
308
309static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
310			unsigned long eidx, int flags)
311{
312	unsigned long idx;
313	int exclusive = flags & BOOTMEM_EXCLUSIVE;
314
315	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
316		bdata - bootmem_node_data,
317		sidx + bdata->node_min_pfn,
318		eidx + bdata->node_min_pfn,
319		flags);
320
321	if (WARN_ON(bdata->node_bootmem_map == NULL))
322		return 0;
323
324	for (idx = sidx; idx < eidx; idx++)
325		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
326			if (exclusive) {
327				__free(bdata, sidx, idx);
328				return -EBUSY;
329			}
330			bdebug("silent double reserve of PFN %lx\n",
331				idx + bdata->node_min_pfn);
332		}
333	return 0;
334}
335
336static int __init mark_bootmem_node(bootmem_data_t *bdata,
337				unsigned long start, unsigned long end,
338				int reserve, int flags)
339{
340	unsigned long sidx, eidx;
341
342	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
343		bdata - bootmem_node_data, start, end, reserve, flags);
344
345	BUG_ON(start < bdata->node_min_pfn);
346	BUG_ON(end > bdata->node_low_pfn);
347
348	sidx = start - bdata->node_min_pfn;
349	eidx = end - bdata->node_min_pfn;
350
351	if (reserve)
352		return __reserve(bdata, sidx, eidx, flags);
353	else
354		__free(bdata, sidx, eidx);
355	return 0;
356}
357
358static int __init mark_bootmem(unsigned long start, unsigned long end,
359				int reserve, int flags)
360{
361	unsigned long pos;
362	bootmem_data_t *bdata;
363
364	pos = start;
365	list_for_each_entry(bdata, &bdata_list, list) {
366		int err;
367		unsigned long max;
368
369		if (pos < bdata->node_min_pfn ||
370		    pos >= bdata->node_low_pfn) {
371			BUG_ON(pos != start);
372			continue;
373		}
374
375		max = min(bdata->node_low_pfn, end);
376
377		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
378		if (reserve && err) {
379			mark_bootmem(start, pos, 0, 0);
380			return err;
381		}
382
383		if (max == end)
384			return 0;
385		pos = bdata->node_low_pfn;
386	}
387	BUG();
388}
389
390/**
391 * free_bootmem_node - mark a page range as usable
392 * @pgdat: node the range resides on
393 * @physaddr: starting address of the range
394 * @size: size of the range in bytes
395 *
396 * Partial pages will be considered reserved and left as they are.
397 *
398 * The range must reside completely on the specified node.
399 */
400void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
401			      unsigned long size)
402{
403	unsigned long start, end;
404
405	kmemleak_free_part(__va(physaddr), size);
406
407	start = PFN_UP(physaddr);
408	end = PFN_DOWN(physaddr + size);
409
410	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
411}
412
413/**
414 * free_bootmem - mark a page range as usable
415 * @addr: starting physical address of the range
416 * @size: size of the range in bytes
417 *
418 * Partial pages will be considered reserved and left as they are.
419 *
420 * The range must be contiguous but may span node boundaries.
421 */
422void __init free_bootmem(unsigned long physaddr, unsigned long size)
423{
424	unsigned long start, end;
425
426	kmemleak_free_part(__va(physaddr), size);
427
428	start = PFN_UP(physaddr);
429	end = PFN_DOWN(physaddr + size);
430
431	mark_bootmem(start, end, 0, 0);
432}
433
434/**
435 * reserve_bootmem_node - mark a page range as reserved
436 * @pgdat: node the range resides on
437 * @physaddr: starting address of the range
438 * @size: size of the range in bytes
439 * @flags: reservation flags (see linux/bootmem.h)
440 *
441 * Partial pages will be reserved.
442 *
443 * The range must reside completely on the specified node.
444 */
445int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
446				 unsigned long size, int flags)
447{
448	unsigned long start, end;
449
450	start = PFN_DOWN(physaddr);
451	end = PFN_UP(physaddr + size);
452
453	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
454}
455
456/**
457 * reserve_bootmem - mark a page range as reserved
458 * @addr: starting address of the range
459 * @size: size of the range in bytes
460 * @flags: reservation flags (see linux/bootmem.h)
461 *
462 * Partial pages will be reserved.
463 *
464 * The range must be contiguous but may span node boundaries.
465 */
466int __init reserve_bootmem(unsigned long addr, unsigned long size,
467			    int flags)
468{
469	unsigned long start, end;
470
471	start = PFN_DOWN(addr);
472	end = PFN_UP(addr + size);
473
474	return mark_bootmem(start, end, 1, flags);
475}
476
 
 
 
 
 
 
477static unsigned long __init align_idx(struct bootmem_data *bdata,
478				      unsigned long idx, unsigned long step)
479{
480	unsigned long base = bdata->node_min_pfn;
481
482	/*
483	 * Align the index with respect to the node start so that the
484	 * combination of both satisfies the requested alignment.
485	 */
486
487	return ALIGN(base + idx, step) - base;
488}
489
490static unsigned long __init align_off(struct bootmem_data *bdata,
491				      unsigned long off, unsigned long align)
492{
493	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
494
495	/* Same as align_idx for byte offsets */
496
497	return ALIGN(base + off, align) - base;
498}
499
500static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
501					unsigned long size, unsigned long align,
502					unsigned long goal, unsigned long limit)
503{
504	unsigned long fallback = 0;
505	unsigned long min, max, start, sidx, midx, step;
506
507	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
508		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
509		align, goal, limit);
510
511	BUG_ON(!size);
512	BUG_ON(align & (align - 1));
513	BUG_ON(limit && goal + size > limit);
514
515	if (!bdata->node_bootmem_map)
516		return NULL;
517
518	min = bdata->node_min_pfn;
519	max = bdata->node_low_pfn;
520
521	goal >>= PAGE_SHIFT;
522	limit >>= PAGE_SHIFT;
523
524	if (limit && max > limit)
525		max = limit;
526	if (max <= min)
527		return NULL;
528
529	step = max(align >> PAGE_SHIFT, 1UL);
530
531	if (goal && min < goal && goal < max)
532		start = ALIGN(goal, step);
533	else
534		start = ALIGN(min, step);
535
536	sidx = start - bdata->node_min_pfn;
537	midx = max - bdata->node_min_pfn;
538
539	if (bdata->hint_idx > sidx) {
540		/*
541		 * Handle the valid case of sidx being zero and still
542		 * catch the fallback below.
543		 */
544		fallback = sidx + 1;
545		sidx = align_idx(bdata, bdata->hint_idx, step);
546	}
547
548	while (1) {
549		int merge;
550		void *region;
551		unsigned long eidx, i, start_off, end_off;
552find_block:
553		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
554		sidx = align_idx(bdata, sidx, step);
555		eidx = sidx + PFN_UP(size);
556
557		if (sidx >= midx || eidx > midx)
558			break;
559
560		for (i = sidx; i < eidx; i++)
561			if (test_bit(i, bdata->node_bootmem_map)) {
562				sidx = align_idx(bdata, i, step);
563				if (sidx == i)
564					sidx += step;
565				goto find_block;
566			}
567
568		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
569				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
570			start_off = align_off(bdata, bdata->last_end_off, align);
571		else
572			start_off = PFN_PHYS(sidx);
573
574		merge = PFN_DOWN(start_off) < sidx;
575		end_off = start_off + size;
576
577		bdata->last_end_off = end_off;
578		bdata->hint_idx = PFN_UP(end_off);
579
580		/*
581		 * Reserve the area now:
582		 */
583		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
584				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
585			BUG();
586
587		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
588				start_off);
589		memset(region, 0, size);
590		/*
591		 * The min_count is set to 0 so that bootmem allocated blocks
592		 * are never reported as leaks.
593		 */
594		kmemleak_alloc(region, size, 0, 0);
595		return region;
596	}
597
598	if (fallback) {
599		sidx = align_idx(bdata, fallback - 1, step);
600		fallback = 0;
601		goto find_block;
602	}
603
604	return NULL;
605}
606
607static void * __init alloc_bootmem_core(unsigned long size,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608					unsigned long align,
609					unsigned long goal,
610					unsigned long limit)
611{
612	bootmem_data_t *bdata;
613	void *region;
614
615	if (WARN_ON_ONCE(slab_is_available()))
616		return kzalloc(size, GFP_NOWAIT);
 
 
617
618	list_for_each_entry(bdata, &bdata_list, list) {
619		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
620			continue;
621		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
622			break;
623
624		region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
625		if (region)
626			return region;
627	}
628
629	return NULL;
630}
631
632static void * __init ___alloc_bootmem_nopanic(unsigned long size,
633					      unsigned long align,
634					      unsigned long goal,
635					      unsigned long limit)
636{
637	void *ptr;
638
639restart:
640	ptr = alloc_bootmem_core(size, align, goal, limit);
641	if (ptr)
642		return ptr;
643	if (goal) {
644		goal = 0;
645		goto restart;
646	}
647
648	return NULL;
649}
650
651/**
652 * __alloc_bootmem_nopanic - allocate boot memory without panicking
653 * @size: size of the request in bytes
654 * @align: alignment of the region
655 * @goal: preferred starting address of the region
656 *
657 * The goal is dropped if it can not be satisfied and the allocation will
658 * fall back to memory below @goal.
659 *
660 * Allocation may happen on any node in the system.
661 *
662 * Returns NULL on failure.
663 */
664void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
665					unsigned long goal)
666{
667	unsigned long limit = 0;
668
669	return ___alloc_bootmem_nopanic(size, align, goal, limit);
670}
671
672static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
673					unsigned long goal, unsigned long limit)
674{
675	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
676
677	if (mem)
678		return mem;
679	/*
680	 * Whoops, we cannot satisfy the allocation request.
681	 */
682	pr_alert("bootmem alloc of %lu bytes failed!\n", size);
683	panic("Out of memory");
684	return NULL;
685}
686
687/**
688 * __alloc_bootmem - allocate boot memory
689 * @size: size of the request in bytes
690 * @align: alignment of the region
691 * @goal: preferred starting address of the region
692 *
693 * The goal is dropped if it can not be satisfied and the allocation will
694 * fall back to memory below @goal.
695 *
696 * Allocation may happen on any node in the system.
697 *
698 * The function panics if the request can not be satisfied.
699 */
700void * __init __alloc_bootmem(unsigned long size, unsigned long align,
701			      unsigned long goal)
702{
703	unsigned long limit = 0;
704
705	return ___alloc_bootmem(size, align, goal, limit);
706}
707
708void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
709				unsigned long size, unsigned long align,
710				unsigned long goal, unsigned long limit)
711{
712	void *ptr;
713
714	if (WARN_ON_ONCE(slab_is_available()))
715		return kzalloc(size, GFP_NOWAIT);
716again:
717
718	/* do not panic in alloc_bootmem_bdata() */
719	if (limit && goal + size > limit)
720		limit = 0;
721
722	ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
723	if (ptr)
724		return ptr;
725
726	ptr = alloc_bootmem_core(size, align, goal, limit);
727	if (ptr)
728		return ptr;
729
730	if (goal) {
731		goal = 0;
732		goto again;
733	}
734
735	return NULL;
736}
737
738void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
739				   unsigned long align, unsigned long goal)
740{
741	if (WARN_ON_ONCE(slab_is_available()))
742		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
743
744	return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
745}
746
747void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
748				    unsigned long align, unsigned long goal,
749				    unsigned long limit)
750{
751	void *ptr;
752
753	ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
754	if (ptr)
755		return ptr;
756
757	pr_alert("bootmem alloc of %lu bytes failed!\n", size);
758	panic("Out of memory");
759	return NULL;
760}
761
762/**
763 * __alloc_bootmem_node - allocate boot memory from a specific node
764 * @pgdat: node to allocate from
765 * @size: size of the request in bytes
766 * @align: alignment of the region
767 * @goal: preferred starting address of the region
768 *
769 * The goal is dropped if it can not be satisfied and the allocation will
770 * fall back to memory below @goal.
771 *
772 * Allocation may fall back to any node in the system if the specified node
773 * can not hold the requested memory.
774 *
775 * The function panics if the request can not be satisfied.
776 */
777void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
778				   unsigned long align, unsigned long goal)
779{
780	if (WARN_ON_ONCE(slab_is_available()))
781		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
782
783	return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
784}
785
786void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
787				   unsigned long align, unsigned long goal)
788{
789#ifdef MAX_DMA32_PFN
790	unsigned long end_pfn;
791
792	if (WARN_ON_ONCE(slab_is_available()))
793		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
794
795	/* update goal according ...MAX_DMA32_PFN */
796	end_pfn = pgdat_end_pfn(pgdat);
797
798	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
799	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
800		void *ptr;
801		unsigned long new_goal;
802
803		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
804		ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
805						 new_goal, 0);
806		if (ptr)
807			return ptr;
808	}
809#endif
810
811	return __alloc_bootmem_node(pgdat, size, align, goal);
812
813}
814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815#ifndef ARCH_LOW_ADDRESS_LIMIT
816#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
817#endif
818
819/**
820 * __alloc_bootmem_low - allocate low boot memory
821 * @size: size of the request in bytes
822 * @align: alignment of the region
823 * @goal: preferred starting address of the region
824 *
825 * The goal is dropped if it can not be satisfied and the allocation will
826 * fall back to memory below @goal.
827 *
828 * Allocation may happen on any node in the system.
829 *
830 * The function panics if the request can not be satisfied.
831 */
832void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
833				  unsigned long goal)
834{
835	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
836}
837
838void * __init __alloc_bootmem_low_nopanic(unsigned long size,
839					  unsigned long align,
840					  unsigned long goal)
841{
842	return ___alloc_bootmem_nopanic(size, align, goal,
843					ARCH_LOW_ADDRESS_LIMIT);
844}
845
846/**
847 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
848 * @pgdat: node to allocate from
849 * @size: size of the request in bytes
850 * @align: alignment of the region
851 * @goal: preferred starting address of the region
852 *
853 * The goal is dropped if it can not be satisfied and the allocation will
854 * fall back to memory below @goal.
855 *
856 * Allocation may fall back to any node in the system if the specified node
857 * can not hold the requested memory.
858 *
859 * The function panics if the request can not be satisfied.
860 */
861void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
862				       unsigned long align, unsigned long goal)
863{
864	if (WARN_ON_ONCE(slab_is_available()))
865		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
866
867	return ___alloc_bootmem_node(pgdat, size, align,
868				     goal, ARCH_LOW_ADDRESS_LIMIT);
869}