Loading...
1/*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/module.h>
16#include <linux/kmemleak.h>
17#include <linux/range.h>
18#include <linux/memblock.h>
19
20#include <asm/bug.h>
21#include <asm/io.h>
22#include <asm/processor.h>
23
24#include "internal.h"
25
26#ifndef CONFIG_NEED_MULTIPLE_NODES
27struct pglist_data __refdata contig_page_data = {
28 .bdata = &bootmem_node_data[0]
29};
30EXPORT_SYMBOL(contig_page_data);
31#endif
32
33unsigned long max_low_pfn;
34unsigned long min_low_pfn;
35unsigned long max_pfn;
36
37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41static int bootmem_debug;
42
43static int __init bootmem_debug_setup(char *buf)
44{
45 bootmem_debug = 1;
46 return 0;
47}
48early_param("bootmem_debug", bootmem_debug_setup);
49
50#define bdebug(fmt, args...) ({ \
51 if (unlikely(bootmem_debug)) \
52 printk(KERN_INFO \
53 "bootmem::%s " fmt, \
54 __func__, ## args); \
55})
56
57static unsigned long __init bootmap_bytes(unsigned long pages)
58{
59 unsigned long bytes = (pages + 7) / 8;
60
61 return ALIGN(bytes, sizeof(long));
62}
63
64/**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69{
70 unsigned long bytes = bootmap_bytes(pages);
71
72 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73}
74
75/*
76 * link bdata in order
77 */
78static void __init link_bootmem(bootmem_data_t *bdata)
79{
80 struct list_head *iter;
81
82 list_for_each(iter, &bdata_list) {
83 bootmem_data_t *ent;
84
85 ent = list_entry(iter, bootmem_data_t, list);
86 if (bdata->node_min_pfn < ent->node_min_pfn)
87 break;
88 }
89 list_add_tail(&bdata->list, iter);
90}
91
92/*
93 * Called once to set up the allocator itself.
94 */
95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 unsigned long mapstart, unsigned long start, unsigned long end)
97{
98 unsigned long mapsize;
99
100 mminit_validate_memmodel_limits(&start, &end);
101 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 bdata->node_min_pfn = start;
103 bdata->node_low_pfn = end;
104 link_bootmem(bdata);
105
106 /*
107 * Initially all pages are reserved - setup_arch() has to
108 * register free RAM areas explicitly.
109 */
110 mapsize = bootmap_bytes(end - start);
111 memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116 return mapsize;
117}
118
119/**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 unsigned long startpfn, unsigned long endpfn)
130{
131 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132}
133
134/**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142{
143 max_low_pfn = pages;
144 min_low_pfn = start;
145 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146}
147
148/*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157void __init free_bootmem_late(unsigned long addr, unsigned long size)
158{
159 unsigned long cursor, end;
160
161 kmemleak_free_part(__va(addr), size);
162
163 cursor = PFN_UP(addr);
164 end = PFN_DOWN(addr + size);
165
166 for (; cursor < end; cursor++) {
167 __free_pages_bootmem(pfn_to_page(cursor), 0);
168 totalram_pages++;
169 }
170}
171
172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173{
174 int aligned;
175 struct page *page;
176 unsigned long start, end, pages, count = 0;
177
178 if (!bdata->node_bootmem_map)
179 return 0;
180
181 start = bdata->node_min_pfn;
182 end = bdata->node_low_pfn;
183
184 /*
185 * If the start is aligned to the machines wordsize, we might
186 * be able to free pages in bulks of that order.
187 */
188 aligned = !(start & (BITS_PER_LONG - 1));
189
190 bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
191 bdata - bootmem_node_data, start, end, aligned);
192
193 while (start < end) {
194 unsigned long *map, idx, vec;
195
196 map = bdata->node_bootmem_map;
197 idx = start - bdata->node_min_pfn;
198 vec = ~map[idx / BITS_PER_LONG];
199
200 if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
201 int order = ilog2(BITS_PER_LONG);
202
203 __free_pages_bootmem(pfn_to_page(start), order);
204 count += BITS_PER_LONG;
205 } else {
206 unsigned long off = 0;
207
208 while (vec && off < BITS_PER_LONG) {
209 if (vec & 1) {
210 page = pfn_to_page(start + off);
211 __free_pages_bootmem(page, 0);
212 count++;
213 }
214 vec >>= 1;
215 off++;
216 }
217 }
218 start += BITS_PER_LONG;
219 }
220
221 page = virt_to_page(bdata->node_bootmem_map);
222 pages = bdata->node_low_pfn - bdata->node_min_pfn;
223 pages = bootmem_bootmap_pages(pages);
224 count += pages;
225 while (pages--)
226 __free_pages_bootmem(page++, 0);
227
228 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
229
230 return count;
231}
232
233/**
234 * free_all_bootmem_node - release a node's free pages to the buddy allocator
235 * @pgdat: node to be released
236 *
237 * Returns the number of pages actually released.
238 */
239unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
240{
241 register_page_bootmem_info_node(pgdat);
242 return free_all_bootmem_core(pgdat->bdata);
243}
244
245/**
246 * free_all_bootmem - release free pages to the buddy allocator
247 *
248 * Returns the number of pages actually released.
249 */
250unsigned long __init free_all_bootmem(void)
251{
252 unsigned long total_pages = 0;
253 bootmem_data_t *bdata;
254
255 list_for_each_entry(bdata, &bdata_list, list)
256 total_pages += free_all_bootmem_core(bdata);
257
258 return total_pages;
259}
260
261static void __init __free(bootmem_data_t *bdata,
262 unsigned long sidx, unsigned long eidx)
263{
264 unsigned long idx;
265
266 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
267 sidx + bdata->node_min_pfn,
268 eidx + bdata->node_min_pfn);
269
270 if (bdata->hint_idx > sidx)
271 bdata->hint_idx = sidx;
272
273 for (idx = sidx; idx < eidx; idx++)
274 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
275 BUG();
276}
277
278static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
279 unsigned long eidx, int flags)
280{
281 unsigned long idx;
282 int exclusive = flags & BOOTMEM_EXCLUSIVE;
283
284 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
285 bdata - bootmem_node_data,
286 sidx + bdata->node_min_pfn,
287 eidx + bdata->node_min_pfn,
288 flags);
289
290 for (idx = sidx; idx < eidx; idx++)
291 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
292 if (exclusive) {
293 __free(bdata, sidx, idx);
294 return -EBUSY;
295 }
296 bdebug("silent double reserve of PFN %lx\n",
297 idx + bdata->node_min_pfn);
298 }
299 return 0;
300}
301
302static int __init mark_bootmem_node(bootmem_data_t *bdata,
303 unsigned long start, unsigned long end,
304 int reserve, int flags)
305{
306 unsigned long sidx, eidx;
307
308 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
309 bdata - bootmem_node_data, start, end, reserve, flags);
310
311 BUG_ON(start < bdata->node_min_pfn);
312 BUG_ON(end > bdata->node_low_pfn);
313
314 sidx = start - bdata->node_min_pfn;
315 eidx = end - bdata->node_min_pfn;
316
317 if (reserve)
318 return __reserve(bdata, sidx, eidx, flags);
319 else
320 __free(bdata, sidx, eidx);
321 return 0;
322}
323
324static int __init mark_bootmem(unsigned long start, unsigned long end,
325 int reserve, int flags)
326{
327 unsigned long pos;
328 bootmem_data_t *bdata;
329
330 pos = start;
331 list_for_each_entry(bdata, &bdata_list, list) {
332 int err;
333 unsigned long max;
334
335 if (pos < bdata->node_min_pfn ||
336 pos >= bdata->node_low_pfn) {
337 BUG_ON(pos != start);
338 continue;
339 }
340
341 max = min(bdata->node_low_pfn, end);
342
343 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
344 if (reserve && err) {
345 mark_bootmem(start, pos, 0, 0);
346 return err;
347 }
348
349 if (max == end)
350 return 0;
351 pos = bdata->node_low_pfn;
352 }
353 BUG();
354}
355
356/**
357 * free_bootmem_node - mark a page range as usable
358 * @pgdat: node the range resides on
359 * @physaddr: starting address of the range
360 * @size: size of the range in bytes
361 *
362 * Partial pages will be considered reserved and left as they are.
363 *
364 * The range must reside completely on the specified node.
365 */
366void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
367 unsigned long size)
368{
369 unsigned long start, end;
370
371 kmemleak_free_part(__va(physaddr), size);
372
373 start = PFN_UP(physaddr);
374 end = PFN_DOWN(physaddr + size);
375
376 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
377}
378
379/**
380 * free_bootmem - mark a page range as usable
381 * @addr: starting address of the range
382 * @size: size of the range in bytes
383 *
384 * Partial pages will be considered reserved and left as they are.
385 *
386 * The range must be contiguous but may span node boundaries.
387 */
388void __init free_bootmem(unsigned long addr, unsigned long size)
389{
390 unsigned long start, end;
391
392 kmemleak_free_part(__va(addr), size);
393
394 start = PFN_UP(addr);
395 end = PFN_DOWN(addr + size);
396
397 mark_bootmem(start, end, 0, 0);
398}
399
400/**
401 * reserve_bootmem_node - mark a page range as reserved
402 * @pgdat: node the range resides on
403 * @physaddr: starting address of the range
404 * @size: size of the range in bytes
405 * @flags: reservation flags (see linux/bootmem.h)
406 *
407 * Partial pages will be reserved.
408 *
409 * The range must reside completely on the specified node.
410 */
411int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
412 unsigned long size, int flags)
413{
414 unsigned long start, end;
415
416 start = PFN_DOWN(physaddr);
417 end = PFN_UP(physaddr + size);
418
419 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
420}
421
422/**
423 * reserve_bootmem - mark a page range as usable
424 * @addr: starting address of the range
425 * @size: size of the range in bytes
426 * @flags: reservation flags (see linux/bootmem.h)
427 *
428 * Partial pages will be reserved.
429 *
430 * The range must be contiguous but may span node boundaries.
431 */
432int __init reserve_bootmem(unsigned long addr, unsigned long size,
433 int flags)
434{
435 unsigned long start, end;
436
437 start = PFN_DOWN(addr);
438 end = PFN_UP(addr + size);
439
440 return mark_bootmem(start, end, 1, flags);
441}
442
443int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
444 int flags)
445{
446 return reserve_bootmem(phys, len, flags);
447}
448
449static unsigned long __init align_idx(struct bootmem_data *bdata,
450 unsigned long idx, unsigned long step)
451{
452 unsigned long base = bdata->node_min_pfn;
453
454 /*
455 * Align the index with respect to the node start so that the
456 * combination of both satisfies the requested alignment.
457 */
458
459 return ALIGN(base + idx, step) - base;
460}
461
462static unsigned long __init align_off(struct bootmem_data *bdata,
463 unsigned long off, unsigned long align)
464{
465 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
466
467 /* Same as align_idx for byte offsets */
468
469 return ALIGN(base + off, align) - base;
470}
471
472static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
473 unsigned long size, unsigned long align,
474 unsigned long goal, unsigned long limit)
475{
476 unsigned long fallback = 0;
477 unsigned long min, max, start, sidx, midx, step;
478
479 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
480 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
481 align, goal, limit);
482
483 BUG_ON(!size);
484 BUG_ON(align & (align - 1));
485 BUG_ON(limit && goal + size > limit);
486
487 if (!bdata->node_bootmem_map)
488 return NULL;
489
490 min = bdata->node_min_pfn;
491 max = bdata->node_low_pfn;
492
493 goal >>= PAGE_SHIFT;
494 limit >>= PAGE_SHIFT;
495
496 if (limit && max > limit)
497 max = limit;
498 if (max <= min)
499 return NULL;
500
501 step = max(align >> PAGE_SHIFT, 1UL);
502
503 if (goal && min < goal && goal < max)
504 start = ALIGN(goal, step);
505 else
506 start = ALIGN(min, step);
507
508 sidx = start - bdata->node_min_pfn;
509 midx = max - bdata->node_min_pfn;
510
511 if (bdata->hint_idx > sidx) {
512 /*
513 * Handle the valid case of sidx being zero and still
514 * catch the fallback below.
515 */
516 fallback = sidx + 1;
517 sidx = align_idx(bdata, bdata->hint_idx, step);
518 }
519
520 while (1) {
521 int merge;
522 void *region;
523 unsigned long eidx, i, start_off, end_off;
524find_block:
525 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
526 sidx = align_idx(bdata, sidx, step);
527 eidx = sidx + PFN_UP(size);
528
529 if (sidx >= midx || eidx > midx)
530 break;
531
532 for (i = sidx; i < eidx; i++)
533 if (test_bit(i, bdata->node_bootmem_map)) {
534 sidx = align_idx(bdata, i, step);
535 if (sidx == i)
536 sidx += step;
537 goto find_block;
538 }
539
540 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
541 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
542 start_off = align_off(bdata, bdata->last_end_off, align);
543 else
544 start_off = PFN_PHYS(sidx);
545
546 merge = PFN_DOWN(start_off) < sidx;
547 end_off = start_off + size;
548
549 bdata->last_end_off = end_off;
550 bdata->hint_idx = PFN_UP(end_off);
551
552 /*
553 * Reserve the area now:
554 */
555 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
556 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
557 BUG();
558
559 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
560 start_off);
561 memset(region, 0, size);
562 /*
563 * The min_count is set to 0 so that bootmem allocated blocks
564 * are never reported as leaks.
565 */
566 kmemleak_alloc(region, size, 0, 0);
567 return region;
568 }
569
570 if (fallback) {
571 sidx = align_idx(bdata, fallback - 1, step);
572 fallback = 0;
573 goto find_block;
574 }
575
576 return NULL;
577}
578
579static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
580 unsigned long size, unsigned long align,
581 unsigned long goal, unsigned long limit)
582{
583 if (WARN_ON_ONCE(slab_is_available()))
584 return kzalloc(size, GFP_NOWAIT);
585
586#ifdef CONFIG_HAVE_ARCH_BOOTMEM
587 {
588 bootmem_data_t *p_bdata;
589
590 p_bdata = bootmem_arch_preferred_node(bdata, size, align,
591 goal, limit);
592 if (p_bdata)
593 return alloc_bootmem_core(p_bdata, size, align,
594 goal, limit);
595 }
596#endif
597 return NULL;
598}
599
600static void * __init ___alloc_bootmem_nopanic(unsigned long size,
601 unsigned long align,
602 unsigned long goal,
603 unsigned long limit)
604{
605 bootmem_data_t *bdata;
606 void *region;
607
608restart:
609 region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
610 if (region)
611 return region;
612
613 list_for_each_entry(bdata, &bdata_list, list) {
614 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
615 continue;
616 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
617 break;
618
619 region = alloc_bootmem_core(bdata, size, align, goal, limit);
620 if (region)
621 return region;
622 }
623
624 if (goal) {
625 goal = 0;
626 goto restart;
627 }
628
629 return NULL;
630}
631
632/**
633 * __alloc_bootmem_nopanic - allocate boot memory without panicking
634 * @size: size of the request in bytes
635 * @align: alignment of the region
636 * @goal: preferred starting address of the region
637 *
638 * The goal is dropped if it can not be satisfied and the allocation will
639 * fall back to memory below @goal.
640 *
641 * Allocation may happen on any node in the system.
642 *
643 * Returns NULL on failure.
644 */
645void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
646 unsigned long goal)
647{
648 unsigned long limit = 0;
649
650 return ___alloc_bootmem_nopanic(size, align, goal, limit);
651}
652
653static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
654 unsigned long goal, unsigned long limit)
655{
656 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
657
658 if (mem)
659 return mem;
660 /*
661 * Whoops, we cannot satisfy the allocation request.
662 */
663 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
664 panic("Out of memory");
665 return NULL;
666}
667
668/**
669 * __alloc_bootmem - allocate boot memory
670 * @size: size of the request in bytes
671 * @align: alignment of the region
672 * @goal: preferred starting address of the region
673 *
674 * The goal is dropped if it can not be satisfied and the allocation will
675 * fall back to memory below @goal.
676 *
677 * Allocation may happen on any node in the system.
678 *
679 * The function panics if the request can not be satisfied.
680 */
681void * __init __alloc_bootmem(unsigned long size, unsigned long align,
682 unsigned long goal)
683{
684 unsigned long limit = 0;
685
686 return ___alloc_bootmem(size, align, goal, limit);
687}
688
689static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
690 unsigned long size, unsigned long align,
691 unsigned long goal, unsigned long limit)
692{
693 void *ptr;
694
695 ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
696 if (ptr)
697 return ptr;
698
699 ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
700 if (ptr)
701 return ptr;
702
703 return ___alloc_bootmem(size, align, goal, limit);
704}
705
706/**
707 * __alloc_bootmem_node - allocate boot memory from a specific node
708 * @pgdat: node to allocate from
709 * @size: size of the request in bytes
710 * @align: alignment of the region
711 * @goal: preferred starting address of the region
712 *
713 * The goal is dropped if it can not be satisfied and the allocation will
714 * fall back to memory below @goal.
715 *
716 * Allocation may fall back to any node in the system if the specified node
717 * can not hold the requested memory.
718 *
719 * The function panics if the request can not be satisfied.
720 */
721void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
722 unsigned long align, unsigned long goal)
723{
724 if (WARN_ON_ONCE(slab_is_available()))
725 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
726
727 return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
728}
729
730void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
731 unsigned long align, unsigned long goal)
732{
733#ifdef MAX_DMA32_PFN
734 unsigned long end_pfn;
735
736 if (WARN_ON_ONCE(slab_is_available()))
737 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
738
739 /* update goal according ...MAX_DMA32_PFN */
740 end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
741
742 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
743 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
744 void *ptr;
745 unsigned long new_goal;
746
747 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
748 ptr = alloc_bootmem_core(pgdat->bdata, size, align,
749 new_goal, 0);
750 if (ptr)
751 return ptr;
752 }
753#endif
754
755 return __alloc_bootmem_node(pgdat, size, align, goal);
756
757}
758
759#ifdef CONFIG_SPARSEMEM
760/**
761 * alloc_bootmem_section - allocate boot memory from a specific section
762 * @size: size of the request in bytes
763 * @section_nr: sparse map section to allocate from
764 *
765 * Return NULL on failure.
766 */
767void * __init alloc_bootmem_section(unsigned long size,
768 unsigned long section_nr)
769{
770 bootmem_data_t *bdata;
771 unsigned long pfn, goal, limit;
772
773 pfn = section_nr_to_pfn(section_nr);
774 goal = pfn << PAGE_SHIFT;
775 limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
776 bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
777
778 return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
779}
780#endif
781
782void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
783 unsigned long align, unsigned long goal)
784{
785 void *ptr;
786
787 if (WARN_ON_ONCE(slab_is_available()))
788 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
789
790 ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
791 if (ptr)
792 return ptr;
793
794 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
795 if (ptr)
796 return ptr;
797
798 return __alloc_bootmem_nopanic(size, align, goal);
799}
800
801#ifndef ARCH_LOW_ADDRESS_LIMIT
802#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
803#endif
804
805/**
806 * __alloc_bootmem_low - allocate low boot memory
807 * @size: size of the request in bytes
808 * @align: alignment of the region
809 * @goal: preferred starting address of the region
810 *
811 * The goal is dropped if it can not be satisfied and the allocation will
812 * fall back to memory below @goal.
813 *
814 * Allocation may happen on any node in the system.
815 *
816 * The function panics if the request can not be satisfied.
817 */
818void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
819 unsigned long goal)
820{
821 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
822}
823
824/**
825 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
826 * @pgdat: node to allocate from
827 * @size: size of the request in bytes
828 * @align: alignment of the region
829 * @goal: preferred starting address of the region
830 *
831 * The goal is dropped if it can not be satisfied and the allocation will
832 * fall back to memory below @goal.
833 *
834 * Allocation may fall back to any node in the system if the specified node
835 * can not hold the requested memory.
836 *
837 * The function panics if the request can not be satisfied.
838 */
839void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
840 unsigned long align, unsigned long goal)
841{
842 if (WARN_ON_ONCE(slab_is_available()))
843 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
844
845 return ___alloc_bootmem_node(pgdat->bdata, size, align,
846 goal, ARCH_LOW_ADDRESS_LIMIT);
847}
1/*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/kmemleak.h>
16#include <linux/range.h>
17#include <linux/bug.h>
18#include <linux/io.h>
19#include <linux/bootmem.h>
20
21#include "internal.h"
22
23#ifndef CONFIG_NEED_MULTIPLE_NODES
24struct pglist_data __refdata contig_page_data = {
25 .bdata = &bootmem_node_data[0]
26};
27EXPORT_SYMBOL(contig_page_data);
28#endif
29
30unsigned long max_low_pfn;
31unsigned long min_low_pfn;
32unsigned long max_pfn;
33unsigned long long max_possible_pfn;
34
35bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
36
37static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
38
39static int bootmem_debug;
40
41static int __init bootmem_debug_setup(char *buf)
42{
43 bootmem_debug = 1;
44 return 0;
45}
46early_param("bootmem_debug", bootmem_debug_setup);
47
48#define bdebug(fmt, args...) ({ \
49 if (unlikely(bootmem_debug)) \
50 pr_info("bootmem::%s " fmt, \
51 __func__, ## args); \
52})
53
54static unsigned long __init bootmap_bytes(unsigned long pages)
55{
56 unsigned long bytes = DIV_ROUND_UP(pages, 8);
57
58 return ALIGN(bytes, sizeof(long));
59}
60
61/**
62 * bootmem_bootmap_pages - calculate bitmap size in pages
63 * @pages: number of pages the bitmap has to represent
64 */
65unsigned long __init bootmem_bootmap_pages(unsigned long pages)
66{
67 unsigned long bytes = bootmap_bytes(pages);
68
69 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
70}
71
72/*
73 * link bdata in order
74 */
75static void __init link_bootmem(bootmem_data_t *bdata)
76{
77 bootmem_data_t *ent;
78
79 list_for_each_entry(ent, &bdata_list, list) {
80 if (bdata->node_min_pfn < ent->node_min_pfn) {
81 list_add_tail(&bdata->list, &ent->list);
82 return;
83 }
84 }
85
86 list_add_tail(&bdata->list, &bdata_list);
87}
88
89/*
90 * Called once to set up the allocator itself.
91 */
92static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
93 unsigned long mapstart, unsigned long start, unsigned long end)
94{
95 unsigned long mapsize;
96
97 mminit_validate_memmodel_limits(&start, &end);
98 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
99 bdata->node_min_pfn = start;
100 bdata->node_low_pfn = end;
101 link_bootmem(bdata);
102
103 /*
104 * Initially all pages are reserved - setup_arch() has to
105 * register free RAM areas explicitly.
106 */
107 mapsize = bootmap_bytes(end - start);
108 memset(bdata->node_bootmem_map, 0xff, mapsize);
109
110 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
111 bdata - bootmem_node_data, start, mapstart, end, mapsize);
112
113 return mapsize;
114}
115
116/**
117 * init_bootmem_node - register a node as boot memory
118 * @pgdat: node to register
119 * @freepfn: pfn where the bitmap for this node is to be placed
120 * @startpfn: first pfn on the node
121 * @endpfn: first pfn after the node
122 *
123 * Returns the number of bytes needed to hold the bitmap for this node.
124 */
125unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
126 unsigned long startpfn, unsigned long endpfn)
127{
128 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
129}
130
131/**
132 * init_bootmem - register boot memory
133 * @start: pfn where the bitmap is to be placed
134 * @pages: number of available physical pages
135 *
136 * Returns the number of bytes needed to hold the bitmap.
137 */
138unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
139{
140 max_low_pfn = pages;
141 min_low_pfn = start;
142 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
143}
144
145/*
146 * free_bootmem_late - free bootmem pages directly to page allocator
147 * @addr: starting physical address of the range
148 * @size: size of the range in bytes
149 *
150 * This is only useful when the bootmem allocator has already been torn
151 * down, but we are still initializing the system. Pages are given directly
152 * to the page allocator, no bootmem metadata is updated because it is gone.
153 */
154void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
155{
156 unsigned long cursor, end;
157
158 kmemleak_free_part_phys(physaddr, size);
159
160 cursor = PFN_UP(physaddr);
161 end = PFN_DOWN(physaddr + size);
162
163 for (; cursor < end; cursor++) {
164 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
165 totalram_pages++;
166 }
167}
168
169static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
170{
171 struct page *page;
172 unsigned long *map, start, end, pages, cur, count = 0;
173
174 if (!bdata->node_bootmem_map)
175 return 0;
176
177 map = bdata->node_bootmem_map;
178 start = bdata->node_min_pfn;
179 end = bdata->node_low_pfn;
180
181 bdebug("nid=%td start=%lx end=%lx\n",
182 bdata - bootmem_node_data, start, end);
183
184 while (start < end) {
185 unsigned long idx, vec;
186 unsigned shift;
187
188 idx = start - bdata->node_min_pfn;
189 shift = idx & (BITS_PER_LONG - 1);
190 /*
191 * vec holds at most BITS_PER_LONG map bits,
192 * bit 0 corresponds to start.
193 */
194 vec = ~map[idx / BITS_PER_LONG];
195
196 if (shift) {
197 vec >>= shift;
198 if (end - start >= BITS_PER_LONG)
199 vec |= ~map[idx / BITS_PER_LONG + 1] <<
200 (BITS_PER_LONG - shift);
201 }
202 /*
203 * If we have a properly aligned and fully unreserved
204 * BITS_PER_LONG block of pages in front of us, free
205 * it in one go.
206 */
207 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
208 int order = ilog2(BITS_PER_LONG);
209
210 __free_pages_bootmem(pfn_to_page(start), start, order);
211 count += BITS_PER_LONG;
212 start += BITS_PER_LONG;
213 } else {
214 cur = start;
215
216 start = ALIGN(start + 1, BITS_PER_LONG);
217 while (vec && cur != start) {
218 if (vec & 1) {
219 page = pfn_to_page(cur);
220 __free_pages_bootmem(page, cur, 0);
221 count++;
222 }
223 vec >>= 1;
224 ++cur;
225 }
226 }
227 }
228
229 cur = bdata->node_min_pfn;
230 page = virt_to_page(bdata->node_bootmem_map);
231 pages = bdata->node_low_pfn - bdata->node_min_pfn;
232 pages = bootmem_bootmap_pages(pages);
233 count += pages;
234 while (pages--)
235 __free_pages_bootmem(page++, cur++, 0);
236 bdata->node_bootmem_map = NULL;
237
238 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
239
240 return count;
241}
242
243static int reset_managed_pages_done __initdata;
244
245void reset_node_managed_pages(pg_data_t *pgdat)
246{
247 struct zone *z;
248
249 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
250 z->managed_pages = 0;
251}
252
253void __init reset_all_zones_managed_pages(void)
254{
255 struct pglist_data *pgdat;
256
257 if (reset_managed_pages_done)
258 return;
259
260 for_each_online_pgdat(pgdat)
261 reset_node_managed_pages(pgdat);
262
263 reset_managed_pages_done = 1;
264}
265
266/**
267 * free_all_bootmem - release free pages to the buddy allocator
268 *
269 * Returns the number of pages actually released.
270 */
271unsigned long __init free_all_bootmem(void)
272{
273 unsigned long total_pages = 0;
274 bootmem_data_t *bdata;
275
276 reset_all_zones_managed_pages();
277
278 list_for_each_entry(bdata, &bdata_list, list)
279 total_pages += free_all_bootmem_core(bdata);
280
281 totalram_pages += total_pages;
282
283 return total_pages;
284}
285
286static void __init __free(bootmem_data_t *bdata,
287 unsigned long sidx, unsigned long eidx)
288{
289 unsigned long idx;
290
291 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
292 sidx + bdata->node_min_pfn,
293 eidx + bdata->node_min_pfn);
294
295 if (WARN_ON(bdata->node_bootmem_map == NULL))
296 return;
297
298 if (bdata->hint_idx > sidx)
299 bdata->hint_idx = sidx;
300
301 for (idx = sidx; idx < eidx; idx++)
302 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
303 BUG();
304}
305
306static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
307 unsigned long eidx, int flags)
308{
309 unsigned long idx;
310 int exclusive = flags & BOOTMEM_EXCLUSIVE;
311
312 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
313 bdata - bootmem_node_data,
314 sidx + bdata->node_min_pfn,
315 eidx + bdata->node_min_pfn,
316 flags);
317
318 if (WARN_ON(bdata->node_bootmem_map == NULL))
319 return 0;
320
321 for (idx = sidx; idx < eidx; idx++)
322 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
323 if (exclusive) {
324 __free(bdata, sidx, idx);
325 return -EBUSY;
326 }
327 bdebug("silent double reserve of PFN %lx\n",
328 idx + bdata->node_min_pfn);
329 }
330 return 0;
331}
332
333static int __init mark_bootmem_node(bootmem_data_t *bdata,
334 unsigned long start, unsigned long end,
335 int reserve, int flags)
336{
337 unsigned long sidx, eidx;
338
339 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
340 bdata - bootmem_node_data, start, end, reserve, flags);
341
342 BUG_ON(start < bdata->node_min_pfn);
343 BUG_ON(end > bdata->node_low_pfn);
344
345 sidx = start - bdata->node_min_pfn;
346 eidx = end - bdata->node_min_pfn;
347
348 if (reserve)
349 return __reserve(bdata, sidx, eidx, flags);
350 else
351 __free(bdata, sidx, eidx);
352 return 0;
353}
354
355static int __init mark_bootmem(unsigned long start, unsigned long end,
356 int reserve, int flags)
357{
358 unsigned long pos;
359 bootmem_data_t *bdata;
360
361 pos = start;
362 list_for_each_entry(bdata, &bdata_list, list) {
363 int err;
364 unsigned long max;
365
366 if (pos < bdata->node_min_pfn ||
367 pos >= bdata->node_low_pfn) {
368 BUG_ON(pos != start);
369 continue;
370 }
371
372 max = min(bdata->node_low_pfn, end);
373
374 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
375 if (reserve && err) {
376 mark_bootmem(start, pos, 0, 0);
377 return err;
378 }
379
380 if (max == end)
381 return 0;
382 pos = bdata->node_low_pfn;
383 }
384 BUG();
385}
386
387/**
388 * free_bootmem_node - mark a page range as usable
389 * @pgdat: node the range resides on
390 * @physaddr: starting address of the range
391 * @size: size of the range in bytes
392 *
393 * Partial pages will be considered reserved and left as they are.
394 *
395 * The range must reside completely on the specified node.
396 */
397void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
398 unsigned long size)
399{
400 unsigned long start, end;
401
402 kmemleak_free_part_phys(physaddr, size);
403
404 start = PFN_UP(physaddr);
405 end = PFN_DOWN(physaddr + size);
406
407 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
408}
409
410/**
411 * free_bootmem - mark a page range as usable
412 * @addr: starting physical address of the range
413 * @size: size of the range in bytes
414 *
415 * Partial pages will be considered reserved and left as they are.
416 *
417 * The range must be contiguous but may span node boundaries.
418 */
419void __init free_bootmem(unsigned long physaddr, unsigned long size)
420{
421 unsigned long start, end;
422
423 kmemleak_free_part_phys(physaddr, size);
424
425 start = PFN_UP(physaddr);
426 end = PFN_DOWN(physaddr + size);
427
428 mark_bootmem(start, end, 0, 0);
429}
430
431/**
432 * reserve_bootmem_node - mark a page range as reserved
433 * @pgdat: node the range resides on
434 * @physaddr: starting address of the range
435 * @size: size of the range in bytes
436 * @flags: reservation flags (see linux/bootmem.h)
437 *
438 * Partial pages will be reserved.
439 *
440 * The range must reside completely on the specified node.
441 */
442int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
443 unsigned long size, int flags)
444{
445 unsigned long start, end;
446
447 start = PFN_DOWN(physaddr);
448 end = PFN_UP(physaddr + size);
449
450 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
451}
452
453/**
454 * reserve_bootmem - mark a page range as reserved
455 * @addr: starting address of the range
456 * @size: size of the range in bytes
457 * @flags: reservation flags (see linux/bootmem.h)
458 *
459 * Partial pages will be reserved.
460 *
461 * The range must be contiguous but may span node boundaries.
462 */
463int __init reserve_bootmem(unsigned long addr, unsigned long size,
464 int flags)
465{
466 unsigned long start, end;
467
468 start = PFN_DOWN(addr);
469 end = PFN_UP(addr + size);
470
471 return mark_bootmem(start, end, 1, flags);
472}
473
474static unsigned long __init align_idx(struct bootmem_data *bdata,
475 unsigned long idx, unsigned long step)
476{
477 unsigned long base = bdata->node_min_pfn;
478
479 /*
480 * Align the index with respect to the node start so that the
481 * combination of both satisfies the requested alignment.
482 */
483
484 return ALIGN(base + idx, step) - base;
485}
486
487static unsigned long __init align_off(struct bootmem_data *bdata,
488 unsigned long off, unsigned long align)
489{
490 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
491
492 /* Same as align_idx for byte offsets */
493
494 return ALIGN(base + off, align) - base;
495}
496
497static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
498 unsigned long size, unsigned long align,
499 unsigned long goal, unsigned long limit)
500{
501 unsigned long fallback = 0;
502 unsigned long min, max, start, sidx, midx, step;
503
504 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
505 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
506 align, goal, limit);
507
508 BUG_ON(!size);
509 BUG_ON(align & (align - 1));
510 BUG_ON(limit && goal + size > limit);
511
512 if (!bdata->node_bootmem_map)
513 return NULL;
514
515 min = bdata->node_min_pfn;
516 max = bdata->node_low_pfn;
517
518 goal >>= PAGE_SHIFT;
519 limit >>= PAGE_SHIFT;
520
521 if (limit && max > limit)
522 max = limit;
523 if (max <= min)
524 return NULL;
525
526 step = max(align >> PAGE_SHIFT, 1UL);
527
528 if (goal && min < goal && goal < max)
529 start = ALIGN(goal, step);
530 else
531 start = ALIGN(min, step);
532
533 sidx = start - bdata->node_min_pfn;
534 midx = max - bdata->node_min_pfn;
535
536 if (bdata->hint_idx > sidx) {
537 /*
538 * Handle the valid case of sidx being zero and still
539 * catch the fallback below.
540 */
541 fallback = sidx + 1;
542 sidx = align_idx(bdata, bdata->hint_idx, step);
543 }
544
545 while (1) {
546 int merge;
547 void *region;
548 unsigned long eidx, i, start_off, end_off;
549find_block:
550 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
551 sidx = align_idx(bdata, sidx, step);
552 eidx = sidx + PFN_UP(size);
553
554 if (sidx >= midx || eidx > midx)
555 break;
556
557 for (i = sidx; i < eidx; i++)
558 if (test_bit(i, bdata->node_bootmem_map)) {
559 sidx = align_idx(bdata, i, step);
560 if (sidx == i)
561 sidx += step;
562 goto find_block;
563 }
564
565 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
566 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
567 start_off = align_off(bdata, bdata->last_end_off, align);
568 else
569 start_off = PFN_PHYS(sidx);
570
571 merge = PFN_DOWN(start_off) < sidx;
572 end_off = start_off + size;
573
574 bdata->last_end_off = end_off;
575 bdata->hint_idx = PFN_UP(end_off);
576
577 /*
578 * Reserve the area now:
579 */
580 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
581 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
582 BUG();
583
584 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
585 start_off);
586 memset(region, 0, size);
587 /*
588 * The min_count is set to 0 so that bootmem allocated blocks
589 * are never reported as leaks.
590 */
591 kmemleak_alloc(region, size, 0, 0);
592 return region;
593 }
594
595 if (fallback) {
596 sidx = align_idx(bdata, fallback - 1, step);
597 fallback = 0;
598 goto find_block;
599 }
600
601 return NULL;
602}
603
604static void * __init alloc_bootmem_core(unsigned long size,
605 unsigned long align,
606 unsigned long goal,
607 unsigned long limit)
608{
609 bootmem_data_t *bdata;
610 void *region;
611
612 if (WARN_ON_ONCE(slab_is_available()))
613 return kzalloc(size, GFP_NOWAIT);
614
615 list_for_each_entry(bdata, &bdata_list, list) {
616 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
617 continue;
618 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
619 break;
620
621 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
622 if (region)
623 return region;
624 }
625
626 return NULL;
627}
628
629static void * __init ___alloc_bootmem_nopanic(unsigned long size,
630 unsigned long align,
631 unsigned long goal,
632 unsigned long limit)
633{
634 void *ptr;
635
636restart:
637 ptr = alloc_bootmem_core(size, align, goal, limit);
638 if (ptr)
639 return ptr;
640 if (goal) {
641 goal = 0;
642 goto restart;
643 }
644
645 return NULL;
646}
647
648/**
649 * __alloc_bootmem_nopanic - allocate boot memory without panicking
650 * @size: size of the request in bytes
651 * @align: alignment of the region
652 * @goal: preferred starting address of the region
653 *
654 * The goal is dropped if it can not be satisfied and the allocation will
655 * fall back to memory below @goal.
656 *
657 * Allocation may happen on any node in the system.
658 *
659 * Returns NULL on failure.
660 */
661void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
662 unsigned long goal)
663{
664 unsigned long limit = 0;
665
666 return ___alloc_bootmem_nopanic(size, align, goal, limit);
667}
668
669static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
670 unsigned long goal, unsigned long limit)
671{
672 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
673
674 if (mem)
675 return mem;
676 /*
677 * Whoops, we cannot satisfy the allocation request.
678 */
679 pr_alert("bootmem alloc of %lu bytes failed!\n", size);
680 panic("Out of memory");
681 return NULL;
682}
683
684/**
685 * __alloc_bootmem - allocate boot memory
686 * @size: size of the request in bytes
687 * @align: alignment of the region
688 * @goal: preferred starting address of the region
689 *
690 * The goal is dropped if it can not be satisfied and the allocation will
691 * fall back to memory below @goal.
692 *
693 * Allocation may happen on any node in the system.
694 *
695 * The function panics if the request can not be satisfied.
696 */
697void * __init __alloc_bootmem(unsigned long size, unsigned long align,
698 unsigned long goal)
699{
700 unsigned long limit = 0;
701
702 return ___alloc_bootmem(size, align, goal, limit);
703}
704
705void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
706 unsigned long size, unsigned long align,
707 unsigned long goal, unsigned long limit)
708{
709 void *ptr;
710
711 if (WARN_ON_ONCE(slab_is_available()))
712 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
713again:
714
715 /* do not panic in alloc_bootmem_bdata() */
716 if (limit && goal + size > limit)
717 limit = 0;
718
719 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
720 if (ptr)
721 return ptr;
722
723 ptr = alloc_bootmem_core(size, align, goal, limit);
724 if (ptr)
725 return ptr;
726
727 if (goal) {
728 goal = 0;
729 goto again;
730 }
731
732 return NULL;
733}
734
735void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
736 unsigned long align, unsigned long goal)
737{
738 return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
739}
740
741void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
742 unsigned long align, unsigned long goal,
743 unsigned long limit)
744{
745 void *ptr;
746
747 ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
748 if (ptr)
749 return ptr;
750
751 pr_alert("bootmem alloc of %lu bytes failed!\n", size);
752 panic("Out of memory");
753 return NULL;
754}
755
756/**
757 * __alloc_bootmem_node - allocate boot memory from a specific node
758 * @pgdat: node to allocate from
759 * @size: size of the request in bytes
760 * @align: alignment of the region
761 * @goal: preferred starting address of the region
762 *
763 * The goal is dropped if it can not be satisfied and the allocation will
764 * fall back to memory below @goal.
765 *
766 * Allocation may fall back to any node in the system if the specified node
767 * can not hold the requested memory.
768 *
769 * The function panics if the request can not be satisfied.
770 */
771void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
772 unsigned long align, unsigned long goal)
773{
774 if (WARN_ON_ONCE(slab_is_available()))
775 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
776
777 return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
778}
779
780void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
781 unsigned long align, unsigned long goal)
782{
783#ifdef MAX_DMA32_PFN
784 unsigned long end_pfn;
785
786 if (WARN_ON_ONCE(slab_is_available()))
787 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
788
789 /* update goal according ...MAX_DMA32_PFN */
790 end_pfn = pgdat_end_pfn(pgdat);
791
792 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
793 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
794 void *ptr;
795 unsigned long new_goal;
796
797 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
798 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
799 new_goal, 0);
800 if (ptr)
801 return ptr;
802 }
803#endif
804
805 return __alloc_bootmem_node(pgdat, size, align, goal);
806
807}
808
809/**
810 * __alloc_bootmem_low - allocate low boot memory
811 * @size: size of the request in bytes
812 * @align: alignment of the region
813 * @goal: preferred starting address of the region
814 *
815 * The goal is dropped if it can not be satisfied and the allocation will
816 * fall back to memory below @goal.
817 *
818 * Allocation may happen on any node in the system.
819 *
820 * The function panics if the request can not be satisfied.
821 */
822void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
823 unsigned long goal)
824{
825 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
826}
827
828void * __init __alloc_bootmem_low_nopanic(unsigned long size,
829 unsigned long align,
830 unsigned long goal)
831{
832 return ___alloc_bootmem_nopanic(size, align, goal,
833 ARCH_LOW_ADDRESS_LIMIT);
834}
835
836/**
837 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
838 * @pgdat: node to allocate from
839 * @size: size of the request in bytes
840 * @align: alignment of the region
841 * @goal: preferred starting address of the region
842 *
843 * The goal is dropped if it can not be satisfied and the allocation will
844 * fall back to memory below @goal.
845 *
846 * Allocation may fall back to any node in the system if the specified node
847 * can not hold the requested memory.
848 *
849 * The function panics if the request can not be satisfied.
850 */
851void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
852 unsigned long align, unsigned long goal)
853{
854 if (WARN_ON_ONCE(slab_is_available()))
855 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
856
857 return ___alloc_bootmem_node(pgdat, size, align,
858 goal, ARCH_LOW_ADDRESS_LIMIT);
859}