Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37#ifdef CONFIG_UBIFS_FS_DEBUG
38
39DEFINE_SPINLOCK(dbg_lock);
40
41static char dbg_key_buf0[128];
42static char dbg_key_buf1[128];
43
44static const char *get_key_fmt(int fmt)
45{
46 switch (fmt) {
47 case UBIFS_SIMPLE_KEY_FMT:
48 return "simple";
49 default:
50 return "unknown/invalid format";
51 }
52}
53
54static const char *get_key_hash(int hash)
55{
56 switch (hash) {
57 case UBIFS_KEY_HASH_R5:
58 return "R5";
59 case UBIFS_KEY_HASH_TEST:
60 return "test";
61 default:
62 return "unknown/invalid name hash";
63 }
64}
65
66static const char *get_key_type(int type)
67{
68 switch (type) {
69 case UBIFS_INO_KEY:
70 return "inode";
71 case UBIFS_DENT_KEY:
72 return "direntry";
73 case UBIFS_XENT_KEY:
74 return "xentry";
75 case UBIFS_DATA_KEY:
76 return "data";
77 case UBIFS_TRUN_KEY:
78 return "truncate";
79 default:
80 return "unknown/invalid key";
81 }
82}
83
84static const char *get_dent_type(int type)
85{
86 switch (type) {
87 case UBIFS_ITYPE_REG:
88 return "file";
89 case UBIFS_ITYPE_DIR:
90 return "dir";
91 case UBIFS_ITYPE_LNK:
92 return "symlink";
93 case UBIFS_ITYPE_BLK:
94 return "blkdev";
95 case UBIFS_ITYPE_CHR:
96 return "char dev";
97 case UBIFS_ITYPE_FIFO:
98 return "fifo";
99 case UBIFS_ITYPE_SOCK:
100 return "socket";
101 default:
102 return "unknown/invalid type";
103 }
104}
105
106static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107 char *buffer)
108{
109 char *p = buffer;
110 int type = key_type(c, key);
111
112 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113 switch (type) {
114 case UBIFS_INO_KEY:
115 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116 get_key_type(type));
117 break;
118 case UBIFS_DENT_KEY:
119 case UBIFS_XENT_KEY:
120 sprintf(p, "(%lu, %s, %#08x)",
121 (unsigned long)key_inum(c, key),
122 get_key_type(type), key_hash(c, key));
123 break;
124 case UBIFS_DATA_KEY:
125 sprintf(p, "(%lu, %s, %u)",
126 (unsigned long)key_inum(c, key),
127 get_key_type(type), key_block(c, key));
128 break;
129 case UBIFS_TRUN_KEY:
130 sprintf(p, "(%lu, %s)",
131 (unsigned long)key_inum(c, key),
132 get_key_type(type));
133 break;
134 default:
135 sprintf(p, "(bad key type: %#08x, %#08x)",
136 key->u32[0], key->u32[1]);
137 }
138 } else
139 sprintf(p, "bad key format %d", c->key_fmt);
140}
141
142const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
143{
144 /* dbg_lock must be held */
145 sprintf_key(c, key, dbg_key_buf0);
146 return dbg_key_buf0;
147}
148
149const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
150{
151 /* dbg_lock must be held */
152 sprintf_key(c, key, dbg_key_buf1);
153 return dbg_key_buf1;
154}
155
156const char *dbg_ntype(int type)
157{
158 switch (type) {
159 case UBIFS_PAD_NODE:
160 return "padding node";
161 case UBIFS_SB_NODE:
162 return "superblock node";
163 case UBIFS_MST_NODE:
164 return "master node";
165 case UBIFS_REF_NODE:
166 return "reference node";
167 case UBIFS_INO_NODE:
168 return "inode node";
169 case UBIFS_DENT_NODE:
170 return "direntry node";
171 case UBIFS_XENT_NODE:
172 return "xentry node";
173 case UBIFS_DATA_NODE:
174 return "data node";
175 case UBIFS_TRUN_NODE:
176 return "truncate node";
177 case UBIFS_IDX_NODE:
178 return "indexing node";
179 case UBIFS_CS_NODE:
180 return "commit start node";
181 case UBIFS_ORPH_NODE:
182 return "orphan node";
183 default:
184 return "unknown node";
185 }
186}
187
188static const char *dbg_gtype(int type)
189{
190 switch (type) {
191 case UBIFS_NO_NODE_GROUP:
192 return "no node group";
193 case UBIFS_IN_NODE_GROUP:
194 return "in node group";
195 case UBIFS_LAST_OF_NODE_GROUP:
196 return "last of node group";
197 default:
198 return "unknown";
199 }
200}
201
202const char *dbg_cstate(int cmt_state)
203{
204 switch (cmt_state) {
205 case COMMIT_RESTING:
206 return "commit resting";
207 case COMMIT_BACKGROUND:
208 return "background commit requested";
209 case COMMIT_REQUIRED:
210 return "commit required";
211 case COMMIT_RUNNING_BACKGROUND:
212 return "BACKGROUND commit running";
213 case COMMIT_RUNNING_REQUIRED:
214 return "commit running and required";
215 case COMMIT_BROKEN:
216 return "broken commit";
217 default:
218 return "unknown commit state";
219 }
220}
221
222const char *dbg_jhead(int jhead)
223{
224 switch (jhead) {
225 case GCHD:
226 return "0 (GC)";
227 case BASEHD:
228 return "1 (base)";
229 case DATAHD:
230 return "2 (data)";
231 default:
232 return "unknown journal head";
233 }
234}
235
236static void dump_ch(const struct ubifs_ch *ch)
237{
238 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
239 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
240 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
241 dbg_ntype(ch->node_type));
242 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
243 dbg_gtype(ch->group_type));
244 printk(KERN_DEBUG "\tsqnum %llu\n",
245 (unsigned long long)le64_to_cpu(ch->sqnum));
246 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
247}
248
249void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
250{
251 const struct ubifs_inode *ui = ubifs_inode(inode);
252 struct qstr nm = { .name = NULL };
253 union ubifs_key key;
254 struct ubifs_dent_node *dent, *pdent = NULL;
255 int count = 2;
256
257 printk(KERN_DEBUG "Dump in-memory inode:");
258 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
259 printk(KERN_DEBUG "\tsize %llu\n",
260 (unsigned long long)i_size_read(inode));
261 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
262 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
263 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
264 printk(KERN_DEBUG "\tatime %u.%u\n",
265 (unsigned int)inode->i_atime.tv_sec,
266 (unsigned int)inode->i_atime.tv_nsec);
267 printk(KERN_DEBUG "\tmtime %u.%u\n",
268 (unsigned int)inode->i_mtime.tv_sec,
269 (unsigned int)inode->i_mtime.tv_nsec);
270 printk(KERN_DEBUG "\tctime %u.%u\n",
271 (unsigned int)inode->i_ctime.tv_sec,
272 (unsigned int)inode->i_ctime.tv_nsec);
273 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
274 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
275 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
276 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
277 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
278 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
279 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
280 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
281 (unsigned long long)ui->synced_i_size);
282 printk(KERN_DEBUG "\tui_size %llu\n",
283 (unsigned long long)ui->ui_size);
284 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
285 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
286 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
288 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
289
290 if (!S_ISDIR(inode->i_mode))
291 return;
292
293 printk(KERN_DEBUG "List of directory entries:\n");
294 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
295
296 lowest_dent_key(c, &key, inode->i_ino);
297 while (1) {
298 dent = ubifs_tnc_next_ent(c, &key, &nm);
299 if (IS_ERR(dent)) {
300 if (PTR_ERR(dent) != -ENOENT)
301 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302 break;
303 }
304
305 printk(KERN_DEBUG "\t%d: %s (%s)\n",
306 count++, dent->name, get_dent_type(dent->type));
307
308 nm.name = dent->name;
309 nm.len = le16_to_cpu(dent->nlen);
310 kfree(pdent);
311 pdent = dent;
312 key_read(c, &dent->key, &key);
313 }
314 kfree(pdent);
315}
316
317void dbg_dump_node(const struct ubifs_info *c, const void *node)
318{
319 int i, n;
320 union ubifs_key key;
321 const struct ubifs_ch *ch = node;
322
323 if (dbg_is_tst_rcvry(c))
324 return;
325
326 /* If the magic is incorrect, just hexdump the first bytes */
327 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330 (void *)node, UBIFS_CH_SZ, 1);
331 return;
332 }
333
334 spin_lock(&dbg_lock);
335 dump_ch(node);
336
337 switch (ch->node_type) {
338 case UBIFS_PAD_NODE:
339 {
340 const struct ubifs_pad_node *pad = node;
341
342 printk(KERN_DEBUG "\tpad_len %u\n",
343 le32_to_cpu(pad->pad_len));
344 break;
345 }
346 case UBIFS_SB_NODE:
347 {
348 const struct ubifs_sb_node *sup = node;
349 unsigned int sup_flags = le32_to_cpu(sup->flags);
350
351 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
352 (int)sup->key_hash, get_key_hash(sup->key_hash));
353 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
354 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
356 printk(KERN_DEBUG "\t big_lpt %u\n",
357 !!(sup_flags & UBIFS_FLG_BIGLPT));
358 printk(KERN_DEBUG "\t space_fixup %u\n",
359 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360 printk(KERN_DEBUG "\tmin_io_size %u\n",
361 le32_to_cpu(sup->min_io_size));
362 printk(KERN_DEBUG "\tleb_size %u\n",
363 le32_to_cpu(sup->leb_size));
364 printk(KERN_DEBUG "\tleb_cnt %u\n",
365 le32_to_cpu(sup->leb_cnt));
366 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
367 le32_to_cpu(sup->max_leb_cnt));
368 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 printk(KERN_DEBUG "\tlog_lebs %u\n",
371 le32_to_cpu(sup->log_lebs));
372 printk(KERN_DEBUG "\tlpt_lebs %u\n",
373 le32_to_cpu(sup->lpt_lebs));
374 printk(KERN_DEBUG "\torph_lebs %u\n",
375 le32_to_cpu(sup->orph_lebs));
376 printk(KERN_DEBUG "\tjhead_cnt %u\n",
377 le32_to_cpu(sup->jhead_cnt));
378 printk(KERN_DEBUG "\tfanout %u\n",
379 le32_to_cpu(sup->fanout));
380 printk(KERN_DEBUG "\tlsave_cnt %u\n",
381 le32_to_cpu(sup->lsave_cnt));
382 printk(KERN_DEBUG "\tdefault_compr %u\n",
383 (int)le16_to_cpu(sup->default_compr));
384 printk(KERN_DEBUG "\trp_size %llu\n",
385 (unsigned long long)le64_to_cpu(sup->rp_size));
386 printk(KERN_DEBUG "\trp_uid %u\n",
387 le32_to_cpu(sup->rp_uid));
388 printk(KERN_DEBUG "\trp_gid %u\n",
389 le32_to_cpu(sup->rp_gid));
390 printk(KERN_DEBUG "\tfmt_version %u\n",
391 le32_to_cpu(sup->fmt_version));
392 printk(KERN_DEBUG "\ttime_gran %u\n",
393 le32_to_cpu(sup->time_gran));
394 printk(KERN_DEBUG "\tUUID %pUB\n",
395 sup->uuid);
396 break;
397 }
398 case UBIFS_MST_NODE:
399 {
400 const struct ubifs_mst_node *mst = node;
401
402 printk(KERN_DEBUG "\thighest_inum %llu\n",
403 (unsigned long long)le64_to_cpu(mst->highest_inum));
404 printk(KERN_DEBUG "\tcommit number %llu\n",
405 (unsigned long long)le64_to_cpu(mst->cmt_no));
406 printk(KERN_DEBUG "\tflags %#x\n",
407 le32_to_cpu(mst->flags));
408 printk(KERN_DEBUG "\tlog_lnum %u\n",
409 le32_to_cpu(mst->log_lnum));
410 printk(KERN_DEBUG "\troot_lnum %u\n",
411 le32_to_cpu(mst->root_lnum));
412 printk(KERN_DEBUG "\troot_offs %u\n",
413 le32_to_cpu(mst->root_offs));
414 printk(KERN_DEBUG "\troot_len %u\n",
415 le32_to_cpu(mst->root_len));
416 printk(KERN_DEBUG "\tgc_lnum %u\n",
417 le32_to_cpu(mst->gc_lnum));
418 printk(KERN_DEBUG "\tihead_lnum %u\n",
419 le32_to_cpu(mst->ihead_lnum));
420 printk(KERN_DEBUG "\tihead_offs %u\n",
421 le32_to_cpu(mst->ihead_offs));
422 printk(KERN_DEBUG "\tindex_size %llu\n",
423 (unsigned long long)le64_to_cpu(mst->index_size));
424 printk(KERN_DEBUG "\tlpt_lnum %u\n",
425 le32_to_cpu(mst->lpt_lnum));
426 printk(KERN_DEBUG "\tlpt_offs %u\n",
427 le32_to_cpu(mst->lpt_offs));
428 printk(KERN_DEBUG "\tnhead_lnum %u\n",
429 le32_to_cpu(mst->nhead_lnum));
430 printk(KERN_DEBUG "\tnhead_offs %u\n",
431 le32_to_cpu(mst->nhead_offs));
432 printk(KERN_DEBUG "\tltab_lnum %u\n",
433 le32_to_cpu(mst->ltab_lnum));
434 printk(KERN_DEBUG "\tltab_offs %u\n",
435 le32_to_cpu(mst->ltab_offs));
436 printk(KERN_DEBUG "\tlsave_lnum %u\n",
437 le32_to_cpu(mst->lsave_lnum));
438 printk(KERN_DEBUG "\tlsave_offs %u\n",
439 le32_to_cpu(mst->lsave_offs));
440 printk(KERN_DEBUG "\tlscan_lnum %u\n",
441 le32_to_cpu(mst->lscan_lnum));
442 printk(KERN_DEBUG "\tleb_cnt %u\n",
443 le32_to_cpu(mst->leb_cnt));
444 printk(KERN_DEBUG "\tempty_lebs %u\n",
445 le32_to_cpu(mst->empty_lebs));
446 printk(KERN_DEBUG "\tidx_lebs %u\n",
447 le32_to_cpu(mst->idx_lebs));
448 printk(KERN_DEBUG "\ttotal_free %llu\n",
449 (unsigned long long)le64_to_cpu(mst->total_free));
450 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
451 (unsigned long long)le64_to_cpu(mst->total_dirty));
452 printk(KERN_DEBUG "\ttotal_used %llu\n",
453 (unsigned long long)le64_to_cpu(mst->total_used));
454 printk(KERN_DEBUG "\ttotal_dead %llu\n",
455 (unsigned long long)le64_to_cpu(mst->total_dead));
456 printk(KERN_DEBUG "\ttotal_dark %llu\n",
457 (unsigned long long)le64_to_cpu(mst->total_dark));
458 break;
459 }
460 case UBIFS_REF_NODE:
461 {
462 const struct ubifs_ref_node *ref = node;
463
464 printk(KERN_DEBUG "\tlnum %u\n",
465 le32_to_cpu(ref->lnum));
466 printk(KERN_DEBUG "\toffs %u\n",
467 le32_to_cpu(ref->offs));
468 printk(KERN_DEBUG "\tjhead %u\n",
469 le32_to_cpu(ref->jhead));
470 break;
471 }
472 case UBIFS_INO_NODE:
473 {
474 const struct ubifs_ino_node *ino = node;
475
476 key_read(c, &ino->key, &key);
477 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
478 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
479 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480 printk(KERN_DEBUG "\tsize %llu\n",
481 (unsigned long long)le64_to_cpu(ino->size));
482 printk(KERN_DEBUG "\tnlink %u\n",
483 le32_to_cpu(ino->nlink));
484 printk(KERN_DEBUG "\tatime %lld.%u\n",
485 (long long)le64_to_cpu(ino->atime_sec),
486 le32_to_cpu(ino->atime_nsec));
487 printk(KERN_DEBUG "\tmtime %lld.%u\n",
488 (long long)le64_to_cpu(ino->mtime_sec),
489 le32_to_cpu(ino->mtime_nsec));
490 printk(KERN_DEBUG "\tctime %lld.%u\n",
491 (long long)le64_to_cpu(ino->ctime_sec),
492 le32_to_cpu(ino->ctime_nsec));
493 printk(KERN_DEBUG "\tuid %u\n",
494 le32_to_cpu(ino->uid));
495 printk(KERN_DEBUG "\tgid %u\n",
496 le32_to_cpu(ino->gid));
497 printk(KERN_DEBUG "\tmode %u\n",
498 le32_to_cpu(ino->mode));
499 printk(KERN_DEBUG "\tflags %#x\n",
500 le32_to_cpu(ino->flags));
501 printk(KERN_DEBUG "\txattr_cnt %u\n",
502 le32_to_cpu(ino->xattr_cnt));
503 printk(KERN_DEBUG "\txattr_size %u\n",
504 le32_to_cpu(ino->xattr_size));
505 printk(KERN_DEBUG "\txattr_names %u\n",
506 le32_to_cpu(ino->xattr_names));
507 printk(KERN_DEBUG "\tcompr_type %#x\n",
508 (int)le16_to_cpu(ino->compr_type));
509 printk(KERN_DEBUG "\tdata len %u\n",
510 le32_to_cpu(ino->data_len));
511 break;
512 }
513 case UBIFS_DENT_NODE:
514 case UBIFS_XENT_NODE:
515 {
516 const struct ubifs_dent_node *dent = node;
517 int nlen = le16_to_cpu(dent->nlen);
518
519 key_read(c, &dent->key, &key);
520 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
521 printk(KERN_DEBUG "\tinum %llu\n",
522 (unsigned long long)le64_to_cpu(dent->inum));
523 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
524 printk(KERN_DEBUG "\tnlen %d\n", nlen);
525 printk(KERN_DEBUG "\tname ");
526
527 if (nlen > UBIFS_MAX_NLEN)
528 printk(KERN_DEBUG "(bad name length, not printing, "
529 "bad or corrupted node)");
530 else {
531 for (i = 0; i < nlen && dent->name[i]; i++)
532 printk(KERN_CONT "%c", dent->name[i]);
533 }
534 printk(KERN_CONT "\n");
535
536 break;
537 }
538 case UBIFS_DATA_NODE:
539 {
540 const struct ubifs_data_node *dn = node;
541 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
542
543 key_read(c, &dn->key, &key);
544 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
545 printk(KERN_DEBUG "\tsize %u\n",
546 le32_to_cpu(dn->size));
547 printk(KERN_DEBUG "\tcompr_typ %d\n",
548 (int)le16_to_cpu(dn->compr_type));
549 printk(KERN_DEBUG "\tdata size %d\n",
550 dlen);
551 printk(KERN_DEBUG "\tdata:\n");
552 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553 (void *)&dn->data, dlen, 0);
554 break;
555 }
556 case UBIFS_TRUN_NODE:
557 {
558 const struct ubifs_trun_node *trun = node;
559
560 printk(KERN_DEBUG "\tinum %u\n",
561 le32_to_cpu(trun->inum));
562 printk(KERN_DEBUG "\told_size %llu\n",
563 (unsigned long long)le64_to_cpu(trun->old_size));
564 printk(KERN_DEBUG "\tnew_size %llu\n",
565 (unsigned long long)le64_to_cpu(trun->new_size));
566 break;
567 }
568 case UBIFS_IDX_NODE:
569 {
570 const struct ubifs_idx_node *idx = node;
571
572 n = le16_to_cpu(idx->child_cnt);
573 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
574 printk(KERN_DEBUG "\tlevel %d\n",
575 (int)le16_to_cpu(idx->level));
576 printk(KERN_DEBUG "\tBranches:\n");
577
578 for (i = 0; i < n && i < c->fanout - 1; i++) {
579 const struct ubifs_branch *br;
580
581 br = ubifs_idx_branch(c, idx, i);
582 key_read(c, &br->key, &key);
583 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585 le32_to_cpu(br->len), DBGKEY(&key));
586 }
587 break;
588 }
589 case UBIFS_CS_NODE:
590 break;
591 case UBIFS_ORPH_NODE:
592 {
593 const struct ubifs_orph_node *orph = node;
594
595 printk(KERN_DEBUG "\tcommit number %llu\n",
596 (unsigned long long)
597 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598 printk(KERN_DEBUG "\tlast node flag %llu\n",
599 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602 for (i = 0; i < n; i++)
603 printk(KERN_DEBUG "\t ino %llu\n",
604 (unsigned long long)le64_to_cpu(orph->inos[i]));
605 break;
606 }
607 default:
608 printk(KERN_DEBUG "node type %d was not recognized\n",
609 (int)ch->node_type);
610 }
611 spin_unlock(&dbg_lock);
612}
613
614void dbg_dump_budget_req(const struct ubifs_budget_req *req)
615{
616 spin_lock(&dbg_lock);
617 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618 req->new_ino, req->dirtied_ino);
619 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
620 req->new_ino_d, req->dirtied_ino_d);
621 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
622 req->new_page, req->dirtied_page);
623 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
624 req->new_dent, req->mod_dent);
625 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
626 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
627 req->data_growth, req->dd_growth);
628 spin_unlock(&dbg_lock);
629}
630
631void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
632{
633 spin_lock(&dbg_lock);
634 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638 lst->total_dirty);
639 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640 "total_dead %lld\n", lst->total_used, lst->total_dark,
641 lst->total_dead);
642 spin_unlock(&dbg_lock);
643}
644
645void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646{
647 int i;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
650 struct ubifs_gced_idx_leb *idx_gc;
651 long long available, outstanding, free;
652
653 spin_lock(&c->space_lock);
654 spin_lock(&dbg_lock);
655 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656 "total budget sum %lld\n", current->pid,
657 bi->data_growth + bi->dd_growth,
658 bi->data_growth + bi->dd_growth + bi->idx_growth);
659 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661 bi->idx_growth);
662 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664 bi->uncommitted_idx);
665 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 bi->page_budget, bi->inode_budget, bi->dent_budget);
667 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668 bi->nospace, bi->nospace_rp);
669 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
671
672 if (bi != &c->bi)
673 /*
674 * If we are dumping saved budgeting data, do not print
675 * additional information which is about the current state, not
676 * the old one which corresponded to the saved budgeting data.
677 */
678 goto out_unlock;
679
680 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684 atomic_long_read(&c->dirty_zn_cnt),
685 atomic_long_read(&c->clean_zn_cnt));
686 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687 c->gc_lnum, c->ihead_lnum);
688
689 /* If we are in R/O mode, journal heads do not exist */
690 if (c->jheads)
691 for (i = 0; i < c->jhead_cnt; i++)
692 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693 dbg_jhead(c->jheads[i].wbuf.jhead),
694 c->jheads[i].wbuf.lnum);
695 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696 bud = rb_entry(rb, struct ubifs_bud, rb);
697 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
698 }
699 list_for_each_entry(bud, &c->old_buds, list)
700 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701 list_for_each_entry(idx_gc, &c->idx_gc, list)
702 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703 idx_gc->lnum, idx_gc->unmap);
704 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
705
706 /* Print budgeting predictions */
707 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708 outstanding = c->bi.data_growth + c->bi.dd_growth;
709 free = ubifs_get_free_space_nolock(c);
710 printk(KERN_DEBUG "Budgeting predictions:\n");
711 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712 available, outstanding, free);
713out_unlock:
714 spin_unlock(&dbg_lock);
715 spin_unlock(&c->space_lock);
716}
717
718void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
719{
720 int i, spc, dark = 0, dead = 0;
721 struct rb_node *rb;
722 struct ubifs_bud *bud;
723
724 spc = lp->free + lp->dirty;
725 if (spc < c->dead_wm)
726 dead = spc;
727 else
728 dark = ubifs_calc_dark(c, spc);
729
730 if (lp->flags & LPROPS_INDEX)
731 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733 lp->dirty, c->leb_size - spc, spc, lp->flags);
734 else
735 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738 c->leb_size - spc, spc, dark, dead,
739 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
740
741 if (lp->flags & LPROPS_TAKEN) {
742 if (lp->flags & LPROPS_INDEX)
743 printk(KERN_CONT "index, taken");
744 else
745 printk(KERN_CONT "taken");
746 } else {
747 const char *s;
748
749 if (lp->flags & LPROPS_INDEX) {
750 switch (lp->flags & LPROPS_CAT_MASK) {
751 case LPROPS_DIRTY_IDX:
752 s = "dirty index";
753 break;
754 case LPROPS_FRDI_IDX:
755 s = "freeable index";
756 break;
757 default:
758 s = "index";
759 }
760 } else {
761 switch (lp->flags & LPROPS_CAT_MASK) {
762 case LPROPS_UNCAT:
763 s = "not categorized";
764 break;
765 case LPROPS_DIRTY:
766 s = "dirty";
767 break;
768 case LPROPS_FREE:
769 s = "free";
770 break;
771 case LPROPS_EMPTY:
772 s = "empty";
773 break;
774 case LPROPS_FREEABLE:
775 s = "freeable";
776 break;
777 default:
778 s = NULL;
779 break;
780 }
781 }
782 printk(KERN_CONT "%s", s);
783 }
784
785 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786 bud = rb_entry(rb, struct ubifs_bud, rb);
787 if (bud->lnum == lp->lnum) {
788 int head = 0;
789 for (i = 0; i < c->jhead_cnt; i++) {
790 /*
791 * Note, if we are in R/O mode or in the middle
792 * of mounting/re-mounting, the write-buffers do
793 * not exist.
794 */
795 if (c->jheads &&
796 lp->lnum == c->jheads[i].wbuf.lnum) {
797 printk(KERN_CONT ", jhead %s",
798 dbg_jhead(i));
799 head = 1;
800 }
801 }
802 if (!head)
803 printk(KERN_CONT ", bud of jhead %s",
804 dbg_jhead(bud->jhead));
805 }
806 }
807 if (lp->lnum == c->gc_lnum)
808 printk(KERN_CONT ", GC LEB");
809 printk(KERN_CONT ")\n");
810}
811
812void dbg_dump_lprops(struct ubifs_info *c)
813{
814 int lnum, err;
815 struct ubifs_lprops lp;
816 struct ubifs_lp_stats lst;
817
818 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819 current->pid);
820 ubifs_get_lp_stats(c, &lst);
821 dbg_dump_lstats(&lst);
822
823 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824 err = ubifs_read_one_lp(c, lnum, &lp);
825 if (err)
826 ubifs_err("cannot read lprops for LEB %d", lnum);
827
828 dbg_dump_lprop(c, &lp);
829 }
830 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831 current->pid);
832}
833
834void dbg_dump_lpt_info(struct ubifs_info *c)
835{
836 int i;
837
838 spin_lock(&dbg_lock);
839 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
841 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
842 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
843 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
844 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
845 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
846 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
847 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
848 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
849 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
850 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
851 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
852 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
853 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
856 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
857 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
858 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860 c->nhead_lnum, c->nhead_offs);
861 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862 c->ltab_lnum, c->ltab_offs);
863 if (c->big_lpt)
864 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865 c->lsave_lnum, c->lsave_offs);
866 for (i = 0; i < c->lpt_lebs; i++)
867 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870 spin_unlock(&dbg_lock);
871}
872
873void dbg_dump_leb(const struct ubifs_info *c, int lnum)
874{
875 struct ubifs_scan_leb *sleb;
876 struct ubifs_scan_node *snod;
877 void *buf;
878
879 if (dbg_is_tst_rcvry(c))
880 return;
881
882 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
883 current->pid, lnum);
884
885 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
886 if (!buf) {
887 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
888 return;
889 }
890
891 sleb = ubifs_scan(c, lnum, 0, buf, 0);
892 if (IS_ERR(sleb)) {
893 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
894 goto out;
895 }
896
897 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
898 sleb->nodes_cnt, sleb->endpt);
899
900 list_for_each_entry(snod, &sleb->nodes, list) {
901 cond_resched();
902 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
903 snod->offs, snod->len);
904 dbg_dump_node(c, snod->node);
905 }
906
907 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
908 current->pid, lnum);
909 ubifs_scan_destroy(sleb);
910
911out:
912 vfree(buf);
913 return;
914}
915
916void dbg_dump_znode(const struct ubifs_info *c,
917 const struct ubifs_znode *znode)
918{
919 int n;
920 const struct ubifs_zbranch *zbr;
921
922 spin_lock(&dbg_lock);
923 if (znode->parent)
924 zbr = &znode->parent->zbranch[znode->iip];
925 else
926 zbr = &c->zroot;
927
928 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
930 zbr->len, znode->parent, znode->iip, znode->level,
931 znode->child_cnt, znode->flags);
932
933 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
934 spin_unlock(&dbg_lock);
935 return;
936 }
937
938 printk(KERN_DEBUG "zbranches:\n");
939 for (n = 0; n < znode->child_cnt; n++) {
940 zbr = &znode->zbranch[n];
941 if (znode->level > 0)
942 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
943 "%s\n", n, zbr->znode, zbr->lnum,
944 zbr->offs, zbr->len,
945 DBGKEY(&zbr->key));
946 else
947 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
948 "%s\n", n, zbr->znode, zbr->lnum,
949 zbr->offs, zbr->len,
950 DBGKEY(&zbr->key));
951 }
952 spin_unlock(&dbg_lock);
953}
954
955void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
956{
957 int i;
958
959 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
960 current->pid, cat, heap->cnt);
961 for (i = 0; i < heap->cnt; i++) {
962 struct ubifs_lprops *lprops = heap->arr[i];
963
964 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
965 "flags %d\n", i, lprops->lnum, lprops->hpos,
966 lprops->free, lprops->dirty, lprops->flags);
967 }
968 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
969}
970
971void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
972 struct ubifs_nnode *parent, int iip)
973{
974 int i;
975
976 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
977 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
978 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
979 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
980 pnode->flags, iip, pnode->level, pnode->num);
981 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
982 struct ubifs_lprops *lp = &pnode->lprops[i];
983
984 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
985 i, lp->free, lp->dirty, lp->flags, lp->lnum);
986 }
987}
988
989void dbg_dump_tnc(struct ubifs_info *c)
990{
991 struct ubifs_znode *znode;
992 int level;
993
994 printk(KERN_DEBUG "\n");
995 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
996 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
997 level = znode->level;
998 printk(KERN_DEBUG "== Level %d ==\n", level);
999 while (znode) {
1000 if (level != znode->level) {
1001 level = znode->level;
1002 printk(KERN_DEBUG "== Level %d ==\n", level);
1003 }
1004 dbg_dump_znode(c, znode);
1005 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006 }
1007 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008}
1009
1010static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011 void *priv)
1012{
1013 dbg_dump_znode(c, znode);
1014 return 0;
1015}
1016
1017/**
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1020 *
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1023 */
1024void dbg_dump_index(struct ubifs_info *c)
1025{
1026 dbg_walk_index(c, NULL, dump_znode, NULL);
1027}
1028
1029/**
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1032 *
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1035 */
1036void dbg_save_space_info(struct ubifs_info *c)
1037{
1038 struct ubifs_debug_info *d = c->dbg;
1039 int freeable_cnt;
1040
1041 spin_lock(&c->space_lock);
1042 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045
1046 /*
1047 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048 * affects the free space calculations, and UBIFS might not know about
1049 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050 * only when we read their lprops, and we do this only lazily, upon the
1051 * need. So at any given point of time @c->freeable_cnt might be not
1052 * exactly accurate.
1053 *
1054 * Just one example about the issue we hit when we did not zero
1055 * @c->freeable_cnt.
1056 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057 * amount of free space in @d->saved_free
1058 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059 * information from flash, where we cache LEBs from various
1060 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1063 * -> 'ubifs_add_to_cat()').
1064 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065 * becomes %1.
1066 * 4. We calculate the amount of free space when the re-mount is
1067 * finished in 'dbg_check_space_info()' and it does not match
1068 * @d->saved_free.
1069 */
1070 freeable_cnt = c->freeable_cnt;
1071 c->freeable_cnt = 0;
1072 d->saved_free = ubifs_get_free_space_nolock(c);
1073 c->freeable_cnt = freeable_cnt;
1074 spin_unlock(&c->space_lock);
1075}
1076
1077/**
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1080 *
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1084 * changed.
1085 */
1086int dbg_check_space_info(struct ubifs_info *c)
1087{
1088 struct ubifs_debug_info *d = c->dbg;
1089 struct ubifs_lp_stats lst;
1090 long long free;
1091 int freeable_cnt;
1092
1093 spin_lock(&c->space_lock);
1094 freeable_cnt = c->freeable_cnt;
1095 c->freeable_cnt = 0;
1096 free = ubifs_get_free_space_nolock(c);
1097 c->freeable_cnt = freeable_cnt;
1098 spin_unlock(&c->space_lock);
1099
1100 if (free != d->saved_free) {
1101 ubifs_err("free space changed from %lld to %lld",
1102 d->saved_free, free);
1103 goto out;
1104 }
1105
1106 return 0;
1107
1108out:
1109 ubifs_msg("saved lprops statistics dump");
1110 dbg_dump_lstats(&d->saved_lst);
1111 ubifs_msg("saved budgeting info dump");
1112 dbg_dump_budg(c, &d->saved_bi);
1113 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114 ubifs_msg("current lprops statistics dump");
1115 ubifs_get_lp_stats(c, &lst);
1116 dbg_dump_lstats(&lst);
1117 ubifs_msg("current budgeting info dump");
1118 dbg_dump_budg(c, &c->bi);
1119 dump_stack();
1120 return -EINVAL;
1121}
1122
1123/**
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1127 *
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1131 * %-EINVAL if not.
1132 */
1133int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134{
1135 int err = 0;
1136 struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138 if (!dbg_is_chk_gen(c))
1139 return 0;
1140 if (!S_ISREG(inode->i_mode))
1141 return 0;
1142
1143 mutex_lock(&ui->ui_mutex);
1144 spin_lock(&ui->ui_lock);
1145 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147 "is clean", ui->ui_size, ui->synced_i_size);
1148 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149 inode->i_mode, i_size_read(inode));
1150 dbg_dump_stack();
1151 err = -EINVAL;
1152 }
1153 spin_unlock(&ui->ui_lock);
1154 mutex_unlock(&ui->ui_mutex);
1155 return err;
1156}
1157
1158/*
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1163 *
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1166 * failure.
1167 *
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1170 */
1171int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172{
1173 unsigned int nlink = 2;
1174 union ubifs_key key;
1175 struct ubifs_dent_node *dent, *pdent = NULL;
1176 struct qstr nm = { .name = NULL };
1177 loff_t size = UBIFS_INO_NODE_SZ;
1178
1179 if (!dbg_is_chk_gen(c))
1180 return 0;
1181
1182 if (!S_ISDIR(dir->i_mode))
1183 return 0;
1184
1185 lowest_dent_key(c, &key, dir->i_ino);
1186 while (1) {
1187 int err;
1188
1189 dent = ubifs_tnc_next_ent(c, &key, &nm);
1190 if (IS_ERR(dent)) {
1191 err = PTR_ERR(dent);
1192 if (err == -ENOENT)
1193 break;
1194 return err;
1195 }
1196
1197 nm.name = dent->name;
1198 nm.len = le16_to_cpu(dent->nlen);
1199 size += CALC_DENT_SIZE(nm.len);
1200 if (dent->type == UBIFS_ITYPE_DIR)
1201 nlink += 1;
1202 kfree(pdent);
1203 pdent = dent;
1204 key_read(c, &dent->key, &key);
1205 }
1206 kfree(pdent);
1207
1208 if (i_size_read(dir) != size) {
1209 ubifs_err("directory inode %lu has size %llu, "
1210 "but calculated size is %llu", dir->i_ino,
1211 (unsigned long long)i_size_read(dir),
1212 (unsigned long long)size);
1213 dbg_dump_inode(c, dir);
1214 dump_stack();
1215 return -EINVAL;
1216 }
1217 if (dir->i_nlink != nlink) {
1218 ubifs_err("directory inode %lu has nlink %u, but calculated "
1219 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220 dbg_dump_inode(c, dir);
1221 dump_stack();
1222 return -EINVAL;
1223 }
1224
1225 return 0;
1226}
1227
1228/**
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1233 *
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1240 */
1241static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242 struct ubifs_zbranch *zbr2)
1243{
1244 int err, nlen1, nlen2, cmp;
1245 struct ubifs_dent_node *dent1, *dent2;
1246 union ubifs_key key;
1247
1248 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250 if (!dent1)
1251 return -ENOMEM;
1252 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253 if (!dent2) {
1254 err = -ENOMEM;
1255 goto out_free;
1256 }
1257
1258 err = ubifs_tnc_read_node(c, zbr1, dent1);
1259 if (err)
1260 goto out_free;
1261 err = ubifs_validate_entry(c, dent1);
1262 if (err)
1263 goto out_free;
1264
1265 err = ubifs_tnc_read_node(c, zbr2, dent2);
1266 if (err)
1267 goto out_free;
1268 err = ubifs_validate_entry(c, dent2);
1269 if (err)
1270 goto out_free;
1271
1272 /* Make sure node keys are the same as in zbranch */
1273 err = 1;
1274 key_read(c, &dent1->key, &key);
1275 if (keys_cmp(c, &zbr1->key, &key)) {
1276 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277 zbr1->offs, DBGKEY(&key));
1278 dbg_err("but it should have key %s according to tnc",
1279 DBGKEY(&zbr1->key));
1280 dbg_dump_node(c, dent1);
1281 goto out_free;
1282 }
1283
1284 key_read(c, &dent2->key, &key);
1285 if (keys_cmp(c, &zbr2->key, &key)) {
1286 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287 zbr1->offs, DBGKEY(&key));
1288 dbg_err("but it should have key %s according to tnc",
1289 DBGKEY(&zbr2->key));
1290 dbg_dump_node(c, dent2);
1291 goto out_free;
1292 }
1293
1294 nlen1 = le16_to_cpu(dent1->nlen);
1295 nlen2 = le16_to_cpu(dent2->nlen);
1296
1297 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299 err = 0;
1300 goto out_free;
1301 }
1302 if (cmp == 0 && nlen1 == nlen2)
1303 dbg_err("2 xent/dent nodes with the same name");
1304 else
1305 dbg_err("bad order of colliding key %s",
1306 DBGKEY(&key));
1307
1308 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309 dbg_dump_node(c, dent1);
1310 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311 dbg_dump_node(c, dent2);
1312
1313out_free:
1314 kfree(dent2);
1315 kfree(dent1);
1316 return err;
1317}
1318
1319/**
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1323 *
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1326 */
1327static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328{
1329 struct ubifs_znode *znode = zbr->znode;
1330 struct ubifs_znode *zp = znode->parent;
1331 int n, err, cmp;
1332
1333 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334 err = 1;
1335 goto out;
1336 }
1337 if (znode->level < 0) {
1338 err = 2;
1339 goto out;
1340 }
1341 if (znode->iip < 0 || znode->iip >= c->fanout) {
1342 err = 3;
1343 goto out;
1344 }
1345
1346 if (zbr->len == 0)
1347 /* Only dirty zbranch may have no on-flash nodes */
1348 if (!ubifs_zn_dirty(znode)) {
1349 err = 4;
1350 goto out;
1351 }
1352
1353 if (ubifs_zn_dirty(znode)) {
1354 /*
1355 * If znode is dirty, its parent has to be dirty as well. The
1356 * order of the operation is important, so we have to have
1357 * memory barriers.
1358 */
1359 smp_mb();
1360 if (zp && !ubifs_zn_dirty(zp)) {
1361 /*
1362 * The dirty flag is atomic and is cleared outside the
1363 * TNC mutex, so znode's dirty flag may now have
1364 * been cleared. The child is always cleared before the
1365 * parent, so we just need to check again.
1366 */
1367 smp_mb();
1368 if (ubifs_zn_dirty(znode)) {
1369 err = 5;
1370 goto out;
1371 }
1372 }
1373 }
1374
1375 if (zp) {
1376 const union ubifs_key *min, *max;
1377
1378 if (znode->level != zp->level - 1) {
1379 err = 6;
1380 goto out;
1381 }
1382
1383 /* Make sure the 'parent' pointer in our znode is correct */
1384 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385 if (!err) {
1386 /* This zbranch does not exist in the parent */
1387 err = 7;
1388 goto out;
1389 }
1390
1391 if (znode->iip >= zp->child_cnt) {
1392 err = 8;
1393 goto out;
1394 }
1395
1396 if (znode->iip != n) {
1397 /* This may happen only in case of collisions */
1398 if (keys_cmp(c, &zp->zbranch[n].key,
1399 &zp->zbranch[znode->iip].key)) {
1400 err = 9;
1401 goto out;
1402 }
1403 n = znode->iip;
1404 }
1405
1406 /*
1407 * Make sure that the first key in our znode is greater than or
1408 * equal to the key in the pointing zbranch.
1409 */
1410 min = &zbr->key;
1411 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412 if (cmp == 1) {
1413 err = 10;
1414 goto out;
1415 }
1416
1417 if (n + 1 < zp->child_cnt) {
1418 max = &zp->zbranch[n + 1].key;
1419
1420 /*
1421 * Make sure the last key in our znode is less or
1422 * equivalent than the key in the zbranch which goes
1423 * after our pointing zbranch.
1424 */
1425 cmp = keys_cmp(c, max,
1426 &znode->zbranch[znode->child_cnt - 1].key);
1427 if (cmp == -1) {
1428 err = 11;
1429 goto out;
1430 }
1431 }
1432 } else {
1433 /* This may only be root znode */
1434 if (zbr != &c->zroot) {
1435 err = 12;
1436 goto out;
1437 }
1438 }
1439
1440 /*
1441 * Make sure that next key is greater or equivalent then the previous
1442 * one.
1443 */
1444 for (n = 1; n < znode->child_cnt; n++) {
1445 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446 &znode->zbranch[n].key);
1447 if (cmp > 0) {
1448 err = 13;
1449 goto out;
1450 }
1451 if (cmp == 0) {
1452 /* This can only be keys with colliding hash */
1453 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454 err = 14;
1455 goto out;
1456 }
1457
1458 if (znode->level != 0 || c->replaying)
1459 continue;
1460
1461 /*
1462 * Colliding keys should follow binary order of
1463 * corresponding xentry/dentry names.
1464 */
1465 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466 &znode->zbranch[n]);
1467 if (err < 0)
1468 return err;
1469 if (err) {
1470 err = 15;
1471 goto out;
1472 }
1473 }
1474 }
1475
1476 for (n = 0; n < znode->child_cnt; n++) {
1477 if (!znode->zbranch[n].znode &&
1478 (znode->zbranch[n].lnum == 0 ||
1479 znode->zbranch[n].len == 0)) {
1480 err = 16;
1481 goto out;
1482 }
1483
1484 if (znode->zbranch[n].lnum != 0 &&
1485 znode->zbranch[n].len == 0) {
1486 err = 17;
1487 goto out;
1488 }
1489
1490 if (znode->zbranch[n].lnum == 0 &&
1491 znode->zbranch[n].len != 0) {
1492 err = 18;
1493 goto out;
1494 }
1495
1496 if (znode->zbranch[n].lnum == 0 &&
1497 znode->zbranch[n].offs != 0) {
1498 err = 19;
1499 goto out;
1500 }
1501
1502 if (znode->level != 0 && znode->zbranch[n].znode)
1503 if (znode->zbranch[n].znode->parent != znode) {
1504 err = 20;
1505 goto out;
1506 }
1507 }
1508
1509 return 0;
1510
1511out:
1512 ubifs_err("failed, error %d", err);
1513 ubifs_msg("dump of the znode");
1514 dbg_dump_znode(c, znode);
1515 if (zp) {
1516 ubifs_msg("dump of the parent znode");
1517 dbg_dump_znode(c, zp);
1518 }
1519 dump_stack();
1520 return -EINVAL;
1521}
1522
1523/**
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1527 *
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1530 */
1531int dbg_check_tnc(struct ubifs_info *c, int extra)
1532{
1533 struct ubifs_znode *znode;
1534 long clean_cnt = 0, dirty_cnt = 0;
1535 int err, last;
1536
1537 if (!dbg_is_chk_index(c))
1538 return 0;
1539
1540 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541 if (!c->zroot.znode)
1542 return 0;
1543
1544 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545 while (1) {
1546 struct ubifs_znode *prev;
1547 struct ubifs_zbranch *zbr;
1548
1549 if (!znode->parent)
1550 zbr = &c->zroot;
1551 else
1552 zbr = &znode->parent->zbranch[znode->iip];
1553
1554 err = dbg_check_znode(c, zbr);
1555 if (err)
1556 return err;
1557
1558 if (extra) {
1559 if (ubifs_zn_dirty(znode))
1560 dirty_cnt += 1;
1561 else
1562 clean_cnt += 1;
1563 }
1564
1565 prev = znode;
1566 znode = ubifs_tnc_postorder_next(znode);
1567 if (!znode)
1568 break;
1569
1570 /*
1571 * If the last key of this znode is equivalent to the first key
1572 * of the next znode (collision), then check order of the keys.
1573 */
1574 last = prev->child_cnt - 1;
1575 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576 !keys_cmp(c, &prev->zbranch[last].key,
1577 &znode->zbranch[0].key)) {
1578 err = dbg_check_key_order(c, &prev->zbranch[last],
1579 &znode->zbranch[0]);
1580 if (err < 0)
1581 return err;
1582 if (err) {
1583 ubifs_msg("first znode");
1584 dbg_dump_znode(c, prev);
1585 ubifs_msg("second znode");
1586 dbg_dump_znode(c, znode);
1587 return -EINVAL;
1588 }
1589 }
1590 }
1591
1592 if (extra) {
1593 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595 atomic_long_read(&c->clean_zn_cnt),
1596 clean_cnt);
1597 return -EINVAL;
1598 }
1599 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601 atomic_long_read(&c->dirty_zn_cnt),
1602 dirty_cnt);
1603 return -EINVAL;
1604 }
1605 }
1606
1607 return 0;
1608}
1609
1610/**
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1616 *
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1620 *
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1623 * behavior.
1624 */
1625int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626 dbg_znode_callback znode_cb, void *priv)
1627{
1628 int err;
1629 struct ubifs_zbranch *zbr;
1630 struct ubifs_znode *znode, *child;
1631
1632 mutex_lock(&c->tnc_mutex);
1633 /* If the root indexing node is not in TNC - pull it */
1634 if (!c->zroot.znode) {
1635 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636 if (IS_ERR(c->zroot.znode)) {
1637 err = PTR_ERR(c->zroot.znode);
1638 c->zroot.znode = NULL;
1639 goto out_unlock;
1640 }
1641 }
1642
1643 /*
1644 * We are going to traverse the indexing tree in the postorder manner.
1645 * Go down and find the leftmost indexing node where we are going to
1646 * start from.
1647 */
1648 znode = c->zroot.znode;
1649 while (znode->level > 0) {
1650 zbr = &znode->zbranch[0];
1651 child = zbr->znode;
1652 if (!child) {
1653 child = ubifs_load_znode(c, zbr, znode, 0);
1654 if (IS_ERR(child)) {
1655 err = PTR_ERR(child);
1656 goto out_unlock;
1657 }
1658 zbr->znode = child;
1659 }
1660
1661 znode = child;
1662 }
1663
1664 /* Iterate over all indexing nodes */
1665 while (1) {
1666 int idx;
1667
1668 cond_resched();
1669
1670 if (znode_cb) {
1671 err = znode_cb(c, znode, priv);
1672 if (err) {
1673 ubifs_err("znode checking function returned "
1674 "error %d", err);
1675 dbg_dump_znode(c, znode);
1676 goto out_dump;
1677 }
1678 }
1679 if (leaf_cb && znode->level == 0) {
1680 for (idx = 0; idx < znode->child_cnt; idx++) {
1681 zbr = &znode->zbranch[idx];
1682 err = leaf_cb(c, zbr, priv);
1683 if (err) {
1684 ubifs_err("leaf checking function "
1685 "returned error %d, for leaf "
1686 "at LEB %d:%d",
1687 err, zbr->lnum, zbr->offs);
1688 goto out_dump;
1689 }
1690 }
1691 }
1692
1693 if (!znode->parent)
1694 break;
1695
1696 idx = znode->iip + 1;
1697 znode = znode->parent;
1698 if (idx < znode->child_cnt) {
1699 /* Switch to the next index in the parent */
1700 zbr = &znode->zbranch[idx];
1701 child = zbr->znode;
1702 if (!child) {
1703 child = ubifs_load_znode(c, zbr, znode, idx);
1704 if (IS_ERR(child)) {
1705 err = PTR_ERR(child);
1706 goto out_unlock;
1707 }
1708 zbr->znode = child;
1709 }
1710 znode = child;
1711 } else
1712 /*
1713 * This is the last child, switch to the parent and
1714 * continue.
1715 */
1716 continue;
1717
1718 /* Go to the lowest leftmost znode in the new sub-tree */
1719 while (znode->level > 0) {
1720 zbr = &znode->zbranch[0];
1721 child = zbr->znode;
1722 if (!child) {
1723 child = ubifs_load_znode(c, zbr, znode, 0);
1724 if (IS_ERR(child)) {
1725 err = PTR_ERR(child);
1726 goto out_unlock;
1727 }
1728 zbr->znode = child;
1729 }
1730 znode = child;
1731 }
1732 }
1733
1734 mutex_unlock(&c->tnc_mutex);
1735 return 0;
1736
1737out_dump:
1738 if (znode->parent)
1739 zbr = &znode->parent->zbranch[znode->iip];
1740 else
1741 zbr = &c->zroot;
1742 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743 dbg_dump_znode(c, znode);
1744out_unlock:
1745 mutex_unlock(&c->tnc_mutex);
1746 return err;
1747}
1748
1749/**
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1754 *
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1757 * by @priv.
1758 */
1759static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760{
1761 long long *idx_size = priv;
1762 int add;
1763
1764 add = ubifs_idx_node_sz(c, znode->child_cnt);
1765 add = ALIGN(add, 8);
1766 *idx_size += add;
1767 return 0;
1768}
1769
1770/**
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1774 *
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1778 */
1779int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780{
1781 int err;
1782 long long calc = 0;
1783
1784 if (!dbg_is_chk_index(c))
1785 return 0;
1786
1787 err = dbg_walk_index(c, NULL, add_size, &calc);
1788 if (err) {
1789 ubifs_err("error %d while walking the index", err);
1790 return err;
1791 }
1792
1793 if (calc != idx_size) {
1794 ubifs_err("index size check failed: calculated size is %lld, "
1795 "should be %lld", calc, idx_size);
1796 dump_stack();
1797 return -EINVAL;
1798 }
1799
1800 return 0;
1801}
1802
1803/**
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 * while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1815 * inode)
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 * inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1822 */
1823struct fsck_inode {
1824 struct rb_node rb;
1825 ino_t inum;
1826 umode_t mode;
1827 unsigned int nlink;
1828 unsigned int xattr_cnt;
1829 int references;
1830 int calc_cnt;
1831 long long size;
1832 unsigned int xattr_sz;
1833 long long calc_sz;
1834 long long calc_xcnt;
1835 long long calc_xsz;
1836 unsigned int xattr_nms;
1837 long long calc_xnms;
1838};
1839
1840/**
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843 */
1844struct fsck_data {
1845 struct rb_root inodes;
1846};
1847
1848/**
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1853 *
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1857 */
1858static struct fsck_inode *add_inode(struct ubifs_info *c,
1859 struct fsck_data *fsckd,
1860 struct ubifs_ino_node *ino)
1861{
1862 struct rb_node **p, *parent = NULL;
1863 struct fsck_inode *fscki;
1864 ino_t inum = key_inum_flash(c, &ino->key);
1865 struct inode *inode;
1866 struct ubifs_inode *ui;
1867
1868 p = &fsckd->inodes.rb_node;
1869 while (*p) {
1870 parent = *p;
1871 fscki = rb_entry(parent, struct fsck_inode, rb);
1872 if (inum < fscki->inum)
1873 p = &(*p)->rb_left;
1874 else if (inum > fscki->inum)
1875 p = &(*p)->rb_right;
1876 else
1877 return fscki;
1878 }
1879
1880 if (inum > c->highest_inum) {
1881 ubifs_err("too high inode number, max. is %lu",
1882 (unsigned long)c->highest_inum);
1883 return ERR_PTR(-EINVAL);
1884 }
1885
1886 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887 if (!fscki)
1888 return ERR_PTR(-ENOMEM);
1889
1890 inode = ilookup(c->vfs_sb, inum);
1891
1892 fscki->inum = inum;
1893 /*
1894 * If the inode is present in the VFS inode cache, use it instead of
1895 * the on-flash inode which might be out-of-date. E.g., the size might
1896 * be out-of-date. If we do not do this, the following may happen, for
1897 * example:
1898 * 1. A power cut happens
1899 * 2. We mount the file-system R/O, the replay process fixes up the
1900 * inode size in the VFS cache, but on on-flash.
1901 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1902 * size.
1903 */
1904 if (!inode) {
1905 fscki->nlink = le32_to_cpu(ino->nlink);
1906 fscki->size = le64_to_cpu(ino->size);
1907 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910 fscki->mode = le32_to_cpu(ino->mode);
1911 } else {
1912 ui = ubifs_inode(inode);
1913 fscki->nlink = inode->i_nlink;
1914 fscki->size = inode->i_size;
1915 fscki->xattr_cnt = ui->xattr_cnt;
1916 fscki->xattr_sz = ui->xattr_size;
1917 fscki->xattr_nms = ui->xattr_names;
1918 fscki->mode = inode->i_mode;
1919 iput(inode);
1920 }
1921
1922 if (S_ISDIR(fscki->mode)) {
1923 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924 fscki->calc_cnt = 2;
1925 }
1926
1927 rb_link_node(&fscki->rb, parent, p);
1928 rb_insert_color(&fscki->rb, &fsckd->inodes);
1929
1930 return fscki;
1931}
1932
1933/**
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1937 *
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1941 */
1942static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943{
1944 struct rb_node *p;
1945 struct fsck_inode *fscki;
1946
1947 p = fsckd->inodes.rb_node;
1948 while (p) {
1949 fscki = rb_entry(p, struct fsck_inode, rb);
1950 if (inum < fscki->inum)
1951 p = p->rb_left;
1952 else if (inum > fscki->inum)
1953 p = p->rb_right;
1954 else
1955 return fscki;
1956 }
1957 return NULL;
1958}
1959
1960/**
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1965 *
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1969 * failure.
1970 */
1971static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972 struct fsck_data *fsckd, ino_t inum)
1973{
1974 int n, err;
1975 union ubifs_key key;
1976 struct ubifs_znode *znode;
1977 struct ubifs_zbranch *zbr;
1978 struct ubifs_ino_node *ino;
1979 struct fsck_inode *fscki;
1980
1981 fscki = search_inode(fsckd, inum);
1982 if (fscki)
1983 return fscki;
1984
1985 ino_key_init(c, &key, inum);
1986 err = ubifs_lookup_level0(c, &key, &znode, &n);
1987 if (!err) {
1988 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989 return ERR_PTR(-ENOENT);
1990 } else if (err < 0) {
1991 ubifs_err("error %d while looking up inode %lu",
1992 err, (unsigned long)inum);
1993 return ERR_PTR(err);
1994 }
1995
1996 zbr = &znode->zbranch[n];
1997 if (zbr->len < UBIFS_INO_NODE_SZ) {
1998 ubifs_err("bad node %lu node length %d",
1999 (unsigned long)inum, zbr->len);
2000 return ERR_PTR(-EINVAL);
2001 }
2002
2003 ino = kmalloc(zbr->len, GFP_NOFS);
2004 if (!ino)
2005 return ERR_PTR(-ENOMEM);
2006
2007 err = ubifs_tnc_read_node(c, zbr, ino);
2008 if (err) {
2009 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010 zbr->lnum, zbr->offs, err);
2011 kfree(ino);
2012 return ERR_PTR(err);
2013 }
2014
2015 fscki = add_inode(c, fsckd, ino);
2016 kfree(ino);
2017 if (IS_ERR(fscki)) {
2018 ubifs_err("error %ld while adding inode %lu node",
2019 PTR_ERR(fscki), (unsigned long)inum);
2020 return fscki;
2021 }
2022
2023 return fscki;
2024}
2025
2026/**
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2031 *
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2041 */
2042static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043 void *priv)
2044{
2045 ino_t inum;
2046 void *node;
2047 struct ubifs_ch *ch;
2048 int err, type = key_type(c, &zbr->key);
2049 struct fsck_inode *fscki;
2050
2051 if (zbr->len < UBIFS_CH_SZ) {
2052 ubifs_err("bad leaf length %d (LEB %d:%d)",
2053 zbr->len, zbr->lnum, zbr->offs);
2054 return -EINVAL;
2055 }
2056
2057 node = kmalloc(zbr->len, GFP_NOFS);
2058 if (!node)
2059 return -ENOMEM;
2060
2061 err = ubifs_tnc_read_node(c, zbr, node);
2062 if (err) {
2063 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064 zbr->lnum, zbr->offs, err);
2065 goto out_free;
2066 }
2067
2068 /* If this is an inode node, add it to RB-tree of inodes */
2069 if (type == UBIFS_INO_KEY) {
2070 fscki = add_inode(c, priv, node);
2071 if (IS_ERR(fscki)) {
2072 err = PTR_ERR(fscki);
2073 ubifs_err("error %d while adding inode node", err);
2074 goto out_dump;
2075 }
2076 goto out;
2077 }
2078
2079 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080 type != UBIFS_DATA_KEY) {
2081 ubifs_err("unexpected node type %d at LEB %d:%d",
2082 type, zbr->lnum, zbr->offs);
2083 err = -EINVAL;
2084 goto out_free;
2085 }
2086
2087 ch = node;
2088 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089 ubifs_err("too high sequence number, max. is %llu",
2090 c->max_sqnum);
2091 err = -EINVAL;
2092 goto out_dump;
2093 }
2094
2095 if (type == UBIFS_DATA_KEY) {
2096 long long blk_offs;
2097 struct ubifs_data_node *dn = node;
2098
2099 /*
2100 * Search the inode node this data node belongs to and insert
2101 * it to the RB-tree of inodes.
2102 */
2103 inum = key_inum_flash(c, &dn->key);
2104 fscki = read_add_inode(c, priv, inum);
2105 if (IS_ERR(fscki)) {
2106 err = PTR_ERR(fscki);
2107 ubifs_err("error %d while processing data node and "
2108 "trying to find inode node %lu",
2109 err, (unsigned long)inum);
2110 goto out_dump;
2111 }
2112
2113 /* Make sure the data node is within inode size */
2114 blk_offs = key_block_flash(c, &dn->key);
2115 blk_offs <<= UBIFS_BLOCK_SHIFT;
2116 blk_offs += le32_to_cpu(dn->size);
2117 if (blk_offs > fscki->size) {
2118 ubifs_err("data node at LEB %d:%d is not within inode "
2119 "size %lld", zbr->lnum, zbr->offs,
2120 fscki->size);
2121 err = -EINVAL;
2122 goto out_dump;
2123 }
2124 } else {
2125 int nlen;
2126 struct ubifs_dent_node *dent = node;
2127 struct fsck_inode *fscki1;
2128
2129 err = ubifs_validate_entry(c, dent);
2130 if (err)
2131 goto out_dump;
2132
2133 /*
2134 * Search the inode node this entry refers to and the parent
2135 * inode node and insert them to the RB-tree of inodes.
2136 */
2137 inum = le64_to_cpu(dent->inum);
2138 fscki = read_add_inode(c, priv, inum);
2139 if (IS_ERR(fscki)) {
2140 err = PTR_ERR(fscki);
2141 ubifs_err("error %d while processing entry node and "
2142 "trying to find inode node %lu",
2143 err, (unsigned long)inum);
2144 goto out_dump;
2145 }
2146
2147 /* Count how many direntries or xentries refers this inode */
2148 fscki->references += 1;
2149
2150 inum = key_inum_flash(c, &dent->key);
2151 fscki1 = read_add_inode(c, priv, inum);
2152 if (IS_ERR(fscki1)) {
2153 err = PTR_ERR(fscki1);
2154 ubifs_err("error %d while processing entry node and "
2155 "trying to find parent inode node %lu",
2156 err, (unsigned long)inum);
2157 goto out_dump;
2158 }
2159
2160 nlen = le16_to_cpu(dent->nlen);
2161 if (type == UBIFS_XENT_KEY) {
2162 fscki1->calc_xcnt += 1;
2163 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165 fscki1->calc_xnms += nlen;
2166 } else {
2167 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168 if (dent->type == UBIFS_ITYPE_DIR)
2169 fscki1->calc_cnt += 1;
2170 }
2171 }
2172
2173out:
2174 kfree(node);
2175 return 0;
2176
2177out_dump:
2178 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179 dbg_dump_node(c, node);
2180out_free:
2181 kfree(node);
2182 return err;
2183}
2184
2185/**
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2188 */
2189static void free_inodes(struct fsck_data *fsckd)
2190{
2191 struct rb_node *this = fsckd->inodes.rb_node;
2192 struct fsck_inode *fscki;
2193
2194 while (this) {
2195 if (this->rb_left)
2196 this = this->rb_left;
2197 else if (this->rb_right)
2198 this = this->rb_right;
2199 else {
2200 fscki = rb_entry(this, struct fsck_inode, rb);
2201 this = rb_parent(this);
2202 if (this) {
2203 if (this->rb_left == &fscki->rb)
2204 this->rb_left = NULL;
2205 else
2206 this->rb_right = NULL;
2207 }
2208 kfree(fscki);
2209 }
2210 }
2211}
2212
2213/**
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2217 *
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2222 */
2223static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224{
2225 int n, err;
2226 union ubifs_key key;
2227 struct ubifs_znode *znode;
2228 struct ubifs_zbranch *zbr;
2229 struct ubifs_ino_node *ino;
2230 struct fsck_inode *fscki;
2231 struct rb_node *this = rb_first(&fsckd->inodes);
2232
2233 while (this) {
2234 fscki = rb_entry(this, struct fsck_inode, rb);
2235 this = rb_next(this);
2236
2237 if (S_ISDIR(fscki->mode)) {
2238 /*
2239 * Directories have to have exactly one reference (they
2240 * cannot have hardlinks), although root inode is an
2241 * exception.
2242 */
2243 if (fscki->inum != UBIFS_ROOT_INO &&
2244 fscki->references != 1) {
2245 ubifs_err("directory inode %lu has %d "
2246 "direntries which refer it, but "
2247 "should be 1",
2248 (unsigned long)fscki->inum,
2249 fscki->references);
2250 goto out_dump;
2251 }
2252 if (fscki->inum == UBIFS_ROOT_INO &&
2253 fscki->references != 0) {
2254 ubifs_err("root inode %lu has non-zero (%d) "
2255 "direntries which refer it",
2256 (unsigned long)fscki->inum,
2257 fscki->references);
2258 goto out_dump;
2259 }
2260 if (fscki->calc_sz != fscki->size) {
2261 ubifs_err("directory inode %lu size is %lld, "
2262 "but calculated size is %lld",
2263 (unsigned long)fscki->inum,
2264 fscki->size, fscki->calc_sz);
2265 goto out_dump;
2266 }
2267 if (fscki->calc_cnt != fscki->nlink) {
2268 ubifs_err("directory inode %lu nlink is %d, "
2269 "but calculated nlink is %d",
2270 (unsigned long)fscki->inum,
2271 fscki->nlink, fscki->calc_cnt);
2272 goto out_dump;
2273 }
2274 } else {
2275 if (fscki->references != fscki->nlink) {
2276 ubifs_err("inode %lu nlink is %d, but "
2277 "calculated nlink is %d",
2278 (unsigned long)fscki->inum,
2279 fscki->nlink, fscki->references);
2280 goto out_dump;
2281 }
2282 }
2283 if (fscki->xattr_sz != fscki->calc_xsz) {
2284 ubifs_err("inode %lu has xattr size %u, but "
2285 "calculated size is %lld",
2286 (unsigned long)fscki->inum, fscki->xattr_sz,
2287 fscki->calc_xsz);
2288 goto out_dump;
2289 }
2290 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291 ubifs_err("inode %lu has %u xattrs, but "
2292 "calculated count is %lld",
2293 (unsigned long)fscki->inum,
2294 fscki->xattr_cnt, fscki->calc_xcnt);
2295 goto out_dump;
2296 }
2297 if (fscki->xattr_nms != fscki->calc_xnms) {
2298 ubifs_err("inode %lu has xattr names' size %u, but "
2299 "calculated names' size is %lld",
2300 (unsigned long)fscki->inum, fscki->xattr_nms,
2301 fscki->calc_xnms);
2302 goto out_dump;
2303 }
2304 }
2305
2306 return 0;
2307
2308out_dump:
2309 /* Read the bad inode and dump it */
2310 ino_key_init(c, &key, fscki->inum);
2311 err = ubifs_lookup_level0(c, &key, &znode, &n);
2312 if (!err) {
2313 ubifs_err("inode %lu not found in index",
2314 (unsigned long)fscki->inum);
2315 return -ENOENT;
2316 } else if (err < 0) {
2317 ubifs_err("error %d while looking up inode %lu",
2318 err, (unsigned long)fscki->inum);
2319 return err;
2320 }
2321
2322 zbr = &znode->zbranch[n];
2323 ino = kmalloc(zbr->len, GFP_NOFS);
2324 if (!ino)
2325 return -ENOMEM;
2326
2327 err = ubifs_tnc_read_node(c, zbr, ino);
2328 if (err) {
2329 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330 zbr->lnum, zbr->offs, err);
2331 kfree(ino);
2332 return err;
2333 }
2334
2335 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337 dbg_dump_node(c, ino);
2338 kfree(ino);
2339 return -EINVAL;
2340}
2341
2342/**
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2345 *
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2349 * inodes).
2350 *
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2354 */
2355int dbg_check_filesystem(struct ubifs_info *c)
2356{
2357 int err;
2358 struct fsck_data fsckd;
2359
2360 if (!dbg_is_chk_fs(c))
2361 return 0;
2362
2363 fsckd.inodes = RB_ROOT;
2364 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365 if (err)
2366 goto out_free;
2367
2368 err = check_inodes(c, &fsckd);
2369 if (err)
2370 goto out_free;
2371
2372 free_inodes(&fsckd);
2373 return 0;
2374
2375out_free:
2376 ubifs_err("file-system check failed with error %d", err);
2377 dump_stack();
2378 free_inodes(&fsckd);
2379 return err;
2380}
2381
2382/**
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386 *
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2389 */
2390int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391{
2392 struct list_head *cur;
2393 struct ubifs_scan_node *sa, *sb;
2394
2395 if (!dbg_is_chk_gen(c))
2396 return 0;
2397
2398 for (cur = head->next; cur->next != head; cur = cur->next) {
2399 ino_t inuma, inumb;
2400 uint32_t blka, blkb;
2401
2402 cond_resched();
2403 sa = container_of(cur, struct ubifs_scan_node, list);
2404 sb = container_of(cur->next, struct ubifs_scan_node, list);
2405
2406 if (sa->type != UBIFS_DATA_NODE) {
2407 ubifs_err("bad node type %d", sa->type);
2408 dbg_dump_node(c, sa->node);
2409 return -EINVAL;
2410 }
2411 if (sb->type != UBIFS_DATA_NODE) {
2412 ubifs_err("bad node type %d", sb->type);
2413 dbg_dump_node(c, sb->node);
2414 return -EINVAL;
2415 }
2416
2417 inuma = key_inum(c, &sa->key);
2418 inumb = key_inum(c, &sb->key);
2419
2420 if (inuma < inumb)
2421 continue;
2422 if (inuma > inumb) {
2423 ubifs_err("larger inum %lu goes before inum %lu",
2424 (unsigned long)inuma, (unsigned long)inumb);
2425 goto error_dump;
2426 }
2427
2428 blka = key_block(c, &sa->key);
2429 blkb = key_block(c, &sb->key);
2430
2431 if (blka > blkb) {
2432 ubifs_err("larger block %u goes before %u", blka, blkb);
2433 goto error_dump;
2434 }
2435 if (blka == blkb) {
2436 ubifs_err("two data nodes for the same block");
2437 goto error_dump;
2438 }
2439 }
2440
2441 return 0;
2442
2443error_dump:
2444 dbg_dump_node(c, sa->node);
2445 dbg_dump_node(c, sb->node);
2446 return -EINVAL;
2447}
2448
2449/**
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453 *
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2456 */
2457int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458{
2459 struct list_head *cur;
2460 struct ubifs_scan_node *sa, *sb;
2461
2462 if (!dbg_is_chk_gen(c))
2463 return 0;
2464
2465 for (cur = head->next; cur->next != head; cur = cur->next) {
2466 ino_t inuma, inumb;
2467 uint32_t hasha, hashb;
2468
2469 cond_resched();
2470 sa = container_of(cur, struct ubifs_scan_node, list);
2471 sb = container_of(cur->next, struct ubifs_scan_node, list);
2472
2473 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474 sa->type != UBIFS_XENT_NODE) {
2475 ubifs_err("bad node type %d", sa->type);
2476 dbg_dump_node(c, sa->node);
2477 return -EINVAL;
2478 }
2479 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480 sa->type != UBIFS_XENT_NODE) {
2481 ubifs_err("bad node type %d", sb->type);
2482 dbg_dump_node(c, sb->node);
2483 return -EINVAL;
2484 }
2485
2486 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487 ubifs_err("non-inode node goes before inode node");
2488 goto error_dump;
2489 }
2490
2491 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492 continue;
2493
2494 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495 /* Inode nodes are sorted in descending size order */
2496 if (sa->len < sb->len) {
2497 ubifs_err("smaller inode node goes first");
2498 goto error_dump;
2499 }
2500 continue;
2501 }
2502
2503 /*
2504 * This is either a dentry or xentry, which should be sorted in
2505 * ascending (parent ino, hash) order.
2506 */
2507 inuma = key_inum(c, &sa->key);
2508 inumb = key_inum(c, &sb->key);
2509
2510 if (inuma < inumb)
2511 continue;
2512 if (inuma > inumb) {
2513 ubifs_err("larger inum %lu goes before inum %lu",
2514 (unsigned long)inuma, (unsigned long)inumb);
2515 goto error_dump;
2516 }
2517
2518 hasha = key_block(c, &sa->key);
2519 hashb = key_block(c, &sb->key);
2520
2521 if (hasha > hashb) {
2522 ubifs_err("larger hash %u goes before %u",
2523 hasha, hashb);
2524 goto error_dump;
2525 }
2526 }
2527
2528 return 0;
2529
2530error_dump:
2531 ubifs_msg("dumping first node");
2532 dbg_dump_node(c, sa->node);
2533 ubifs_msg("dumping second node");
2534 dbg_dump_node(c, sb->node);
2535 return -EINVAL;
2536 return 0;
2537}
2538
2539static inline int chance(unsigned int n, unsigned int out_of)
2540{
2541 return !!((random32() % out_of) + 1 <= n);
2542
2543}
2544
2545static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546{
2547 struct ubifs_debug_info *d = c->dbg;
2548
2549 ubifs_assert(dbg_is_tst_rcvry(c));
2550
2551 if (!d->pc_cnt) {
2552 /* First call - decide delay to the power cut */
2553 if (chance(1, 2)) {
2554 unsigned long delay;
2555
2556 if (chance(1, 2)) {
2557 d->pc_delay = 1;
2558 /* Fail withing 1 minute */
2559 delay = random32() % 60000;
2560 d->pc_timeout = jiffies;
2561 d->pc_timeout += msecs_to_jiffies(delay);
2562 ubifs_warn("failing after %lums", delay);
2563 } else {
2564 d->pc_delay = 2;
2565 delay = random32() % 10000;
2566 /* Fail within 10000 operations */
2567 d->pc_cnt_max = delay;
2568 ubifs_warn("failing after %lu calls", delay);
2569 }
2570 }
2571
2572 d->pc_cnt += 1;
2573 }
2574
2575 /* Determine if failure delay has expired */
2576 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577 return 0;
2578 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579 return 0;
2580
2581 if (lnum == UBIFS_SB_LNUM) {
2582 if (write && chance(1, 2))
2583 return 0;
2584 if (chance(19, 20))
2585 return 0;
2586 ubifs_warn("failing in super block LEB %d", lnum);
2587 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588 if (chance(19, 20))
2589 return 0;
2590 ubifs_warn("failing in master LEB %d", lnum);
2591 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592 if (write && chance(99, 100))
2593 return 0;
2594 if (chance(399, 400))
2595 return 0;
2596 ubifs_warn("failing in log LEB %d", lnum);
2597 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598 if (write && chance(7, 8))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in LPT LEB %d", lnum);
2603 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604 if (write && chance(1, 2))
2605 return 0;
2606 if (chance(9, 10))
2607 return 0;
2608 ubifs_warn("failing in orphan LEB %d", lnum);
2609 } else if (lnum == c->ihead_lnum) {
2610 if (chance(99, 100))
2611 return 0;
2612 ubifs_warn("failing in index head LEB %d", lnum);
2613 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614 if (chance(9, 10))
2615 return 0;
2616 ubifs_warn("failing in GC head LEB %d", lnum);
2617 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618 !ubifs_search_bud(c, lnum)) {
2619 if (chance(19, 20))
2620 return 0;
2621 ubifs_warn("failing in non-bud LEB %d", lnum);
2622 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624 if (chance(999, 1000))
2625 return 0;
2626 ubifs_warn("failing in bud LEB %d commit running", lnum);
2627 } else {
2628 if (chance(9999, 10000))
2629 return 0;
2630 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631 }
2632
2633 d->pc_happened = 1;
2634 ubifs_warn("========== Power cut emulated ==========");
2635 dump_stack();
2636 return 1;
2637}
2638
2639static void cut_data(const void *buf, unsigned int len)
2640{
2641 unsigned int from, to, i, ffs = chance(1, 2);
2642 unsigned char *p = (void *)buf;
2643
2644 from = random32() % (len + 1);
2645 if (chance(1, 2))
2646 to = random32() % (len - from + 1);
2647 else
2648 to = len;
2649
2650 if (from < to)
2651 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652 ffs ? "0xFFs" : "random data");
2653
2654 if (ffs)
2655 for (i = from; i < to; i++)
2656 p[i] = 0xFF;
2657 else
2658 for (i = from; i < to; i++)
2659 p[i] = random32() % 0x100;
2660}
2661
2662int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663 int offs, int len, int dtype)
2664{
2665 int err, failing;
2666
2667 if (c->dbg->pc_happened)
2668 return -EROFS;
2669
2670 failing = power_cut_emulated(c, lnum, 1);
2671 if (failing)
2672 cut_data(buf, len);
2673 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674 if (err)
2675 return err;
2676 if (failing)
2677 return -EROFS;
2678 return 0;
2679}
2680
2681int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682 int len, int dtype)
2683{
2684 int err;
2685
2686 if (c->dbg->pc_happened)
2687 return -EROFS;
2688 if (power_cut_emulated(c, lnum, 1))
2689 return -EROFS;
2690 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691 if (err)
2692 return err;
2693 if (power_cut_emulated(c, lnum, 1))
2694 return -EROFS;
2695 return 0;
2696}
2697
2698int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699{
2700 int err;
2701
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 0))
2705 return -EROFS;
2706 err = ubi_leb_unmap(c->ubi, lnum);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 0))
2710 return -EROFS;
2711 return 0;
2712}
2713
2714int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715{
2716 int err;
2717
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_map(c->ubi, lnum, dtype);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2728}
2729
2730/*
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2733 */
2734static struct dentry *dfs_rootdir;
2735
2736static int dfs_file_open(struct inode *inode, struct file *file)
2737{
2738 file->private_data = inode->i_private;
2739 return nonseekable_open(inode, file);
2740}
2741
2742/**
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2748 *
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2752 * failure.
2753 */
2754static int provide_user_output(int val, char __user *u, size_t count,
2755 loff_t *ppos)
2756{
2757 char buf[3];
2758
2759 if (val)
2760 buf[0] = '1';
2761 else
2762 buf[0] = '0';
2763 buf[1] = '\n';
2764 buf[2] = 0x00;
2765
2766 return simple_read_from_buffer(u, count, ppos, buf, 2);
2767}
2768
2769static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770 loff_t *ppos)
2771{
2772 struct dentry *dent = file->f_path.dentry;
2773 struct ubifs_info *c = file->private_data;
2774 struct ubifs_debug_info *d = c->dbg;
2775 int val;
2776
2777 if (dent == d->dfs_chk_gen)
2778 val = d->chk_gen;
2779 else if (dent == d->dfs_chk_index)
2780 val = d->chk_index;
2781 else if (dent == d->dfs_chk_orph)
2782 val = d->chk_orph;
2783 else if (dent == d->dfs_chk_lprops)
2784 val = d->chk_lprops;
2785 else if (dent == d->dfs_chk_fs)
2786 val = d->chk_fs;
2787 else if (dent == d->dfs_tst_rcvry)
2788 val = d->tst_rcvry;
2789 else
2790 return -EINVAL;
2791
2792 return provide_user_output(val, u, count, ppos);
2793}
2794
2795/**
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2799 *
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2803 */
2804static int interpret_user_input(const char __user *u, size_t count)
2805{
2806 size_t buf_size;
2807 char buf[8];
2808
2809 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810 if (copy_from_user(buf, u, buf_size))
2811 return -EFAULT;
2812
2813 if (buf[0] == '1')
2814 return 1;
2815 else if (buf[0] == '0')
2816 return 0;
2817
2818 return -EINVAL;
2819}
2820
2821static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822 size_t count, loff_t *ppos)
2823{
2824 struct ubifs_info *c = file->private_data;
2825 struct ubifs_debug_info *d = c->dbg;
2826 struct dentry *dent = file->f_path.dentry;
2827 int val;
2828
2829 /*
2830 * TODO: this is racy - the file-system might have already been
2831 * unmounted and we'd oops in this case. The plan is to fix it with
2832 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835 * superblocks and fine the one with the same UUID, and take the
2836 * locking right.
2837 *
2838 * The other way to go suggested by Al Viro is to create a separate
2839 * 'ubifs-debug' file-system instead.
2840 */
2841 if (file->f_path.dentry == d->dfs_dump_lprops) {
2842 dbg_dump_lprops(c);
2843 return count;
2844 }
2845 if (file->f_path.dentry == d->dfs_dump_budg) {
2846 dbg_dump_budg(c, &c->bi);
2847 return count;
2848 }
2849 if (file->f_path.dentry == d->dfs_dump_tnc) {
2850 mutex_lock(&c->tnc_mutex);
2851 dbg_dump_tnc(c);
2852 mutex_unlock(&c->tnc_mutex);
2853 return count;
2854 }
2855
2856 val = interpret_user_input(u, count);
2857 if (val < 0)
2858 return val;
2859
2860 if (dent == d->dfs_chk_gen)
2861 d->chk_gen = val;
2862 else if (dent == d->dfs_chk_index)
2863 d->chk_index = val;
2864 else if (dent == d->dfs_chk_orph)
2865 d->chk_orph = val;
2866 else if (dent == d->dfs_chk_lprops)
2867 d->chk_lprops = val;
2868 else if (dent == d->dfs_chk_fs)
2869 d->chk_fs = val;
2870 else if (dent == d->dfs_tst_rcvry)
2871 d->tst_rcvry = val;
2872 else
2873 return -EINVAL;
2874
2875 return count;
2876}
2877
2878static const struct file_operations dfs_fops = {
2879 .open = dfs_file_open,
2880 .read = dfs_file_read,
2881 .write = dfs_file_write,
2882 .owner = THIS_MODULE,
2883 .llseek = no_llseek,
2884};
2885
2886/**
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2889 *
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2892 *
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2897 */
2898int dbg_debugfs_init_fs(struct ubifs_info *c)
2899{
2900 int err, n;
2901 const char *fname;
2902 struct dentry *dent;
2903 struct ubifs_debug_info *d = c->dbg;
2904
2905 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906 c->vi.ubi_num, c->vi.vol_id);
2907 if (n == UBIFS_DFS_DIR_LEN) {
2908 /* The array size is too small */
2909 fname = UBIFS_DFS_DIR_NAME;
2910 dent = ERR_PTR(-EINVAL);
2911 goto out;
2912 }
2913
2914 fname = d->dfs_dir_name;
2915 dent = debugfs_create_dir(fname, dfs_rootdir);
2916 if (IS_ERR_OR_NULL(dent))
2917 goto out;
2918 d->dfs_dir = dent;
2919
2920 fname = "dump_lprops";
2921 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922 if (IS_ERR_OR_NULL(dent))
2923 goto out_remove;
2924 d->dfs_dump_lprops = dent;
2925
2926 fname = "dump_budg";
2927 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928 if (IS_ERR_OR_NULL(dent))
2929 goto out_remove;
2930 d->dfs_dump_budg = dent;
2931
2932 fname = "dump_tnc";
2933 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934 if (IS_ERR_OR_NULL(dent))
2935 goto out_remove;
2936 d->dfs_dump_tnc = dent;
2937
2938 fname = "chk_general";
2939 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940 &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_chk_gen = dent;
2944
2945 fname = "chk_index";
2946 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947 &dfs_fops);
2948 if (IS_ERR_OR_NULL(dent))
2949 goto out_remove;
2950 d->dfs_chk_index = dent;
2951
2952 fname = "chk_orphans";
2953 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954 &dfs_fops);
2955 if (IS_ERR_OR_NULL(dent))
2956 goto out_remove;
2957 d->dfs_chk_orph = dent;
2958
2959 fname = "chk_lprops";
2960 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961 &dfs_fops);
2962 if (IS_ERR_OR_NULL(dent))
2963 goto out_remove;
2964 d->dfs_chk_lprops = dent;
2965
2966 fname = "chk_fs";
2967 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968 &dfs_fops);
2969 if (IS_ERR_OR_NULL(dent))
2970 goto out_remove;
2971 d->dfs_chk_fs = dent;
2972
2973 fname = "tst_recovery";
2974 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975 &dfs_fops);
2976 if (IS_ERR_OR_NULL(dent))
2977 goto out_remove;
2978 d->dfs_tst_rcvry = dent;
2979
2980 return 0;
2981
2982out_remove:
2983 debugfs_remove_recursive(d->dfs_dir);
2984out:
2985 err = dent ? PTR_ERR(dent) : -ENODEV;
2986 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987 fname, err);
2988 return err;
2989}
2990
2991/**
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2994 */
2995void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996{
2997 debugfs_remove_recursive(c->dbg->dfs_dir);
2998}
2999
3000struct ubifs_global_debug_info ubifs_dbg;
3001
3002static struct dentry *dfs_chk_gen;
3003static struct dentry *dfs_chk_index;
3004static struct dentry *dfs_chk_orph;
3005static struct dentry *dfs_chk_lprops;
3006static struct dentry *dfs_chk_fs;
3007static struct dentry *dfs_tst_rcvry;
3008
3009static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010 size_t count, loff_t *ppos)
3011{
3012 struct dentry *dent = file->f_path.dentry;
3013 int val;
3014
3015 if (dent == dfs_chk_gen)
3016 val = ubifs_dbg.chk_gen;
3017 else if (dent == dfs_chk_index)
3018 val = ubifs_dbg.chk_index;
3019 else if (dent == dfs_chk_orph)
3020 val = ubifs_dbg.chk_orph;
3021 else if (dent == dfs_chk_lprops)
3022 val = ubifs_dbg.chk_lprops;
3023 else if (dent == dfs_chk_fs)
3024 val = ubifs_dbg.chk_fs;
3025 else if (dent == dfs_tst_rcvry)
3026 val = ubifs_dbg.tst_rcvry;
3027 else
3028 return -EINVAL;
3029
3030 return provide_user_output(val, u, count, ppos);
3031}
3032
3033static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034 size_t count, loff_t *ppos)
3035{
3036 struct dentry *dent = file->f_path.dentry;
3037 int val;
3038
3039 val = interpret_user_input(u, count);
3040 if (val < 0)
3041 return val;
3042
3043 if (dent == dfs_chk_gen)
3044 ubifs_dbg.chk_gen = val;
3045 else if (dent == dfs_chk_index)
3046 ubifs_dbg.chk_index = val;
3047 else if (dent == dfs_chk_orph)
3048 ubifs_dbg.chk_orph = val;
3049 else if (dent == dfs_chk_lprops)
3050 ubifs_dbg.chk_lprops = val;
3051 else if (dent == dfs_chk_fs)
3052 ubifs_dbg.chk_fs = val;
3053 else if (dent == dfs_tst_rcvry)
3054 ubifs_dbg.tst_rcvry = val;
3055 else
3056 return -EINVAL;
3057
3058 return count;
3059}
3060
3061static const struct file_operations dfs_global_fops = {
3062 .read = dfs_global_file_read,
3063 .write = dfs_global_file_write,
3064 .owner = THIS_MODULE,
3065 .llseek = no_llseek,
3066};
3067
3068/**
3069 * dbg_debugfs_init - initialize debugfs file-system.
3070 *
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3074 * case of failure.
3075 */
3076int dbg_debugfs_init(void)
3077{
3078 int err;
3079 const char *fname;
3080 struct dentry *dent;
3081
3082 fname = "ubifs";
3083 dent = debugfs_create_dir(fname, NULL);
3084 if (IS_ERR_OR_NULL(dent))
3085 goto out;
3086 dfs_rootdir = dent;
3087
3088 fname = "chk_general";
3089 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090 &dfs_global_fops);
3091 if (IS_ERR_OR_NULL(dent))
3092 goto out_remove;
3093 dfs_chk_gen = dent;
3094
3095 fname = "chk_index";
3096 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097 &dfs_global_fops);
3098 if (IS_ERR_OR_NULL(dent))
3099 goto out_remove;
3100 dfs_chk_index = dent;
3101
3102 fname = "chk_orphans";
3103 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104 &dfs_global_fops);
3105 if (IS_ERR_OR_NULL(dent))
3106 goto out_remove;
3107 dfs_chk_orph = dent;
3108
3109 fname = "chk_lprops";
3110 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111 &dfs_global_fops);
3112 if (IS_ERR_OR_NULL(dent))
3113 goto out_remove;
3114 dfs_chk_lprops = dent;
3115
3116 fname = "chk_fs";
3117 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118 &dfs_global_fops);
3119 if (IS_ERR_OR_NULL(dent))
3120 goto out_remove;
3121 dfs_chk_fs = dent;
3122
3123 fname = "tst_recovery";
3124 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125 &dfs_global_fops);
3126 if (IS_ERR_OR_NULL(dent))
3127 goto out_remove;
3128 dfs_tst_rcvry = dent;
3129
3130 return 0;
3131
3132out_remove:
3133 debugfs_remove_recursive(dfs_rootdir);
3134out:
3135 err = dent ? PTR_ERR(dent) : -ENODEV;
3136 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137 fname, err);
3138 return err;
3139}
3140
3141/**
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143 */
3144void dbg_debugfs_exit(void)
3145{
3146 debugfs_remove_recursive(dfs_rootdir);
3147}
3148
3149/**
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3152 *
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3155 * failure.
3156 */
3157int ubifs_debugging_init(struct ubifs_info *c)
3158{
3159 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160 if (!c->dbg)
3161 return -ENOMEM;
3162
3163 return 0;
3164}
3165
3166/**
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3169 */
3170void ubifs_debugging_exit(struct ubifs_info *c)
3171{
3172 kfree(c->dbg);
3173}
3174
3175#endif /* CONFIG_UBIFS_FS_DEBUG */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18#include <linux/module.h>
19#include <linux/debugfs.h>
20#include <linux/math64.h>
21#include <linux/uaccess.h>
22#include <linux/random.h>
23#include <linux/ctype.h>
24#include "ubifs.h"
25
26static DEFINE_SPINLOCK(dbg_lock);
27
28static const char *get_key_fmt(int fmt)
29{
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36}
37
38static const char *get_key_hash(int hash)
39{
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48}
49
50static const char *get_key_type(int type)
51{
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66}
67
68static const char *get_dent_type(int type)
69{
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88}
89
90const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92{
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127}
128
129const char *dbg_ntype(int type)
130{
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161}
162
163static const char *dbg_gtype(int type)
164{
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175}
176
177const char *dbg_cstate(int cmt_state)
178{
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195}
196
197const char *dbg_jhead(int jhead)
198{
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209}
210
211static void dump_ch(const struct ubifs_ch *ch)
212{
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222}
223
224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225{
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int) inode_get_atime_sec(inode),
241 (unsigned int) inode_get_atime_nsec(inode));
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int) inode_get_mtime_sec(inode),
244 (unsigned int) inode_get_mtime_nsec(inode));
245 pr_err("\tctime %u.%u\n",
246 (unsigned int) inode_get_ctime_sec(inode),
247 (unsigned int) inode_get_ctime_nsec(inode));
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292}
293
294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295{
296 int i, n, type, safe_len, max_node_len, min_node_len;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 /* Skip dumping unknown type node */
310 type = ch->node_type;
311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 pr_err("node type %d was not recognized\n", type);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 if (c->ranges[type].max_len == 0) {
320 max_node_len = min_node_len = c->ranges[type].len;
321 } else {
322 max_node_len = c->ranges[type].max_len;
323 min_node_len = c->ranges[type].min_len;
324 }
325 safe_len = le32_to_cpu(ch->len);
326 safe_len = safe_len > 0 ? safe_len : 0;
327 safe_len = min3(safe_len, max_node_len, node_len);
328 if (safe_len < min_node_len) {
329 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 safe_len, dbg_ntype(type),
331 safe_len > UBIFS_CH_SZ ?
332 safe_len - (int)UBIFS_CH_SZ : 0);
333 if (safe_len > UBIFS_CH_SZ)
334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 (void *)node + UBIFS_CH_SZ,
336 safe_len - UBIFS_CH_SZ, 0);
337 goto out_unlock;
338 }
339 if (safe_len != le32_to_cpu(ch->len))
340 pr_err("\ttruncated node length %d\n", safe_len);
341
342 switch (type) {
343 case UBIFS_PAD_NODE:
344 {
345 const struct ubifs_pad_node *pad = node;
346
347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
348 break;
349 }
350 case UBIFS_SB_NODE:
351 {
352 const struct ubifs_sb_node *sup = node;
353 unsigned int sup_flags = le32_to_cpu(sup->flags);
354
355 pr_err("\tkey_hash %d (%s)\n",
356 (int)sup->key_hash, get_key_hash(sup->key_hash));
357 pr_err("\tkey_fmt %d (%s)\n",
358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 pr_err("\tflags %#x\n", sup_flags);
360 pr_err("\tbig_lpt %u\n",
361 !!(sup_flags & UBIFS_FLG_BIGLPT));
362 pr_err("\tspace_fixup %u\n",
363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
368 pr_err("\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
376 pr_err("\tdefault_compr %u\n",
377 (int)le16_to_cpu(sup->default_compr));
378 pr_err("\trp_size %llu\n",
379 (unsigned long long)le64_to_cpu(sup->rp_size));
380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
384 pr_err("\tUUID %pUB\n", sup->uuid);
385 break;
386 }
387 case UBIFS_MST_NODE:
388 {
389 const struct ubifs_mst_node *mst = node;
390
391 pr_err("\thighest_inum %llu\n",
392 (unsigned long long)le64_to_cpu(mst->highest_inum));
393 pr_err("\tcommit number %llu\n",
394 (unsigned long long)le64_to_cpu(mst->cmt_no));
395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
403 pr_err("\tindex_size %llu\n",
404 (unsigned long long)le64_to_cpu(mst->index_size));
405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
417 pr_err("\ttotal_free %llu\n",
418 (unsigned long long)le64_to_cpu(mst->total_free));
419 pr_err("\ttotal_dirty %llu\n",
420 (unsigned long long)le64_to_cpu(mst->total_dirty));
421 pr_err("\ttotal_used %llu\n",
422 (unsigned long long)le64_to_cpu(mst->total_used));
423 pr_err("\ttotal_dead %llu\n",
424 (unsigned long long)le64_to_cpu(mst->total_dead));
425 pr_err("\ttotal_dark %llu\n",
426 (unsigned long long)le64_to_cpu(mst->total_dark));
427 break;
428 }
429 case UBIFS_REF_NODE:
430 {
431 const struct ubifs_ref_node *ref = node;
432
433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
436 break;
437 }
438 case UBIFS_INO_NODE:
439 {
440 const struct ubifs_ino_node *ino = node;
441
442 key_read(c, &ino->key, &key);
443 pr_err("\tkey %s\n",
444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 pr_err("\tcreat_sqnum %llu\n",
446 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 pr_err("\tsize %llu\n",
448 (unsigned long long)le64_to_cpu(ino->size));
449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
450 pr_err("\tatime %lld.%u\n",
451 (long long)le64_to_cpu(ino->atime_sec),
452 le32_to_cpu(ino->atime_nsec));
453 pr_err("\tmtime %lld.%u\n",
454 (long long)le64_to_cpu(ino->mtime_sec),
455 le32_to_cpu(ino->mtime_nsec));
456 pr_err("\tctime %lld.%u\n",
457 (long long)le64_to_cpu(ino->ctime_sec),
458 le32_to_cpu(ino->ctime_nsec));
459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
466 pr_err("\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
469 break;
470 }
471 case UBIFS_DENT_NODE:
472 case UBIFS_XENT_NODE:
473 {
474 const struct ubifs_dent_node *dent = node;
475 int nlen = le16_to_cpu(dent->nlen);
476
477 key_read(c, &dent->key, &key);
478 pr_err("\tkey %s\n",
479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 pr_err("\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 pr_err("\ttype %d\n", (int)dent->type);
483 pr_err("\tnlen %d\n", nlen);
484 pr_err("\tname ");
485
486 if (nlen > UBIFS_MAX_NLEN ||
487 nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 pr_err("(bad name length, not printing, bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 pr_cont("%c", isprint(dent->name[i]) ?
492 dent->name[i] : '?');
493 }
494 pr_cont("\n");
495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501
502 key_read(c, &dn->key, &key);
503 pr_err("\tkey %s\n",
504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
506 pr_err("\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 pr_err("\tdata size %u\n",
509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 pr_err("\tdata (length = %d):\n",
511 safe_len - (int)UBIFS_DATA_NODE_SZ);
512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data,
514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 break;
516 }
517 case UBIFS_TRUN_NODE:
518 {
519 const struct ubifs_trun_node *trun = node;
520
521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
522 pr_err("\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 pr_err("\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 (ubifs_idx_node_sz(c, 1) -
533 UBIFS_IDX_NODE_SZ);
534
535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt));
537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
538 pr_err("\tBranches:\n");
539
540 for (i = 0; i < n && i < c->fanout; i++) {
541 const struct ubifs_branch *br;
542
543 br = ubifs_idx_branch(c, idx, i);
544 key_read(c, &br->key, &key);
545 pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 le32_to_cpu(br->len),
548 dbg_snprintf_key(c, &key, key_buf,
549 DBG_KEY_BUF_LEN));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 pr_err("\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 pr_err("\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 pr_err("\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 pr_err("\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph->inos[i]));
569 break;
570 }
571 case UBIFS_AUTH_NODE:
572 {
573 break;
574 }
575 default:
576 pr_err("node type %d was not recognized\n", type);
577 }
578
579out_unlock:
580 spin_unlock(&dbg_lock);
581}
582
583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584{
585 spin_lock(&dbg_lock);
586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 req->new_ino, req->dirtied_ino);
588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
589 req->new_ino_d, req->dirtied_ino_d);
590 pr_err("\tnew_page %d, dirtied_page %d\n",
591 req->new_page, req->dirtied_page);
592 pr_err("\tnew_dent %d, mod_dent %d\n",
593 req->new_dent, req->mod_dent);
594 pr_err("\tidx_growth %d\n", req->idx_growth);
595 pr_err("\tdata_growth %d dd_growth %d\n",
596 req->data_growth, req->dd_growth);
597 spin_unlock(&dbg_lock);
598}
599
600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601{
602 spin_lock(&dbg_lock);
603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
604 current->pid, lst->empty_lebs, lst->idx_lebs);
605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 lst->total_used, lst->total_dark, lst->total_dead);
609 spin_unlock(&dbg_lock);
610}
611
612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613{
614 int i;
615 struct rb_node *rb;
616 struct ubifs_bud *bud;
617 struct ubifs_gced_idx_leb *idx_gc;
618 long long available, outstanding, free;
619
620 spin_lock(&c->space_lock);
621 spin_lock(&dbg_lock);
622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 current->pid, bi->data_growth + bi->dd_growth,
624 bi->data_growth + bi->dd_growth + bi->idx_growth);
625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 bi->data_growth, bi->dd_growth, bi->idx_growth);
627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 bi->page_budget, bi->inode_budget, bi->dent_budget);
631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634
635 if (bi != &c->bi)
636 /*
637 * If we are dumping saved budgeting data, do not print
638 * additional information which is about the current state, not
639 * the old one which corresponded to the saved budgeting data.
640 */
641 goto out_unlock;
642
643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 atomic_long_read(&c->dirty_pg_cnt),
647 atomic_long_read(&c->dirty_zn_cnt),
648 atomic_long_read(&c->clean_zn_cnt));
649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650
651 /* If we are in R/O mode, journal heads do not exist */
652 if (c->jheads)
653 for (i = 0; i < c->jhead_cnt; i++)
654 pr_err("\tjhead %s\t LEB %d\n",
655 dbg_jhead(c->jheads[i].wbuf.jhead),
656 c->jheads[i].wbuf.lnum);
657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 bud = rb_entry(rb, struct ubifs_bud, rb);
659 pr_err("\tbud LEB %d\n", bud->lnum);
660 }
661 list_for_each_entry(bud, &c->old_buds, list)
662 pr_err("\told bud LEB %d\n", bud->lnum);
663 list_for_each_entry(idx_gc, &c->idx_gc, list)
664 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 idx_gc->lnum, idx_gc->unmap);
666 pr_err("\tcommit state %d\n", c->cmt_state);
667
668 /* Print budgeting predictions */
669 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 outstanding = c->bi.data_growth + c->bi.dd_growth;
671 free = ubifs_get_free_space_nolock(c);
672 pr_err("Budgeting predictions:\n");
673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 available, outstanding, free);
675out_unlock:
676 spin_unlock(&dbg_lock);
677 spin_unlock(&c->space_lock);
678}
679
680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681{
682 int i, spc, dark = 0, dead = 0;
683 struct rb_node *rb;
684 struct ubifs_bud *bud;
685
686 spc = lp->free + lp->dirty;
687 if (spc < c->dead_wm)
688 dead = spc;
689 else
690 dark = ubifs_calc_dark(c, spc);
691
692 if (lp->flags & LPROPS_INDEX)
693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 lp->flags);
696 else
697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700
701 if (lp->flags & LPROPS_TAKEN) {
702 if (lp->flags & LPROPS_INDEX)
703 pr_cont("index, taken");
704 else
705 pr_cont("taken");
706 } else {
707 const char *s;
708
709 if (lp->flags & LPROPS_INDEX) {
710 switch (lp->flags & LPROPS_CAT_MASK) {
711 case LPROPS_DIRTY_IDX:
712 s = "dirty index";
713 break;
714 case LPROPS_FRDI_IDX:
715 s = "freeable index";
716 break;
717 default:
718 s = "index";
719 }
720 } else {
721 switch (lp->flags & LPROPS_CAT_MASK) {
722 case LPROPS_UNCAT:
723 s = "not categorized";
724 break;
725 case LPROPS_DIRTY:
726 s = "dirty";
727 break;
728 case LPROPS_FREE:
729 s = "free";
730 break;
731 case LPROPS_EMPTY:
732 s = "empty";
733 break;
734 case LPROPS_FREEABLE:
735 s = "freeable";
736 break;
737 default:
738 s = NULL;
739 break;
740 }
741 }
742 pr_cont("%s", s);
743 }
744
745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 bud = rb_entry(rb, struct ubifs_bud, rb);
747 if (bud->lnum == lp->lnum) {
748 int head = 0;
749 for (i = 0; i < c->jhead_cnt; i++) {
750 /*
751 * Note, if we are in R/O mode or in the middle
752 * of mounting/re-mounting, the write-buffers do
753 * not exist.
754 */
755 if (c->jheads &&
756 lp->lnum == c->jheads[i].wbuf.lnum) {
757 pr_cont(", jhead %s", dbg_jhead(i));
758 head = 1;
759 }
760 }
761 if (!head)
762 pr_cont(", bud of jhead %s",
763 dbg_jhead(bud->jhead));
764 }
765 }
766 if (lp->lnum == c->gc_lnum)
767 pr_cont(", GC LEB");
768 pr_cont(")\n");
769}
770
771void ubifs_dump_lprops(struct ubifs_info *c)
772{
773 int lnum, err;
774 struct ubifs_lprops lp;
775 struct ubifs_lp_stats lst;
776
777 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 ubifs_get_lp_stats(c, &lst);
779 ubifs_dump_lstats(&lst);
780
781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 err = ubifs_read_one_lp(c, lnum, &lp);
783 if (err) {
784 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 continue;
786 }
787
788 ubifs_dump_lprop(c, &lp);
789 }
790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791}
792
793void ubifs_dump_lpt_info(struct ubifs_info *c)
794{
795 int i;
796
797 spin_lock(&dbg_lock);
798 pr_err("(pid %d) dumping LPT information\n", current->pid);
799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
800 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
801 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
802 pr_err("\tltab_sz: %d\n", c->ltab_sz);
803 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
804 pr_err("\tbig_lpt: %u\n", c->big_lpt);
805 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
811 pr_err("\tspace_bits: %d\n", c->space_bits);
812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
816 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 pr_err("\tLPT head is at %d:%d\n",
819 c->nhead_lnum, c->nhead_offs);
820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 if (c->big_lpt)
822 pr_err("\tLPT lsave is at %d:%d\n",
823 c->lsave_lnum, c->lsave_offs);
824 for (i = 0; i < c->lpt_lebs; i++)
825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 c->ltab[i].tgc, c->ltab[i].cmt);
828 spin_unlock(&dbg_lock);
829}
830
831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832{
833 struct ubifs_scan_leb *sleb;
834 struct ubifs_scan_node *snod;
835 void *buf;
836
837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838
839 buf = __vmalloc(c->leb_size, GFP_NOFS);
840 if (!buf) {
841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 return;
843 }
844
845 sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 if (IS_ERR(sleb)) {
847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 goto out;
849 }
850
851 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 sleb->nodes_cnt, sleb->endpt);
853
854 list_for_each_entry(snod, &sleb->nodes, list) {
855 cond_resched();
856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 snod->offs, snod->len);
858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 }
860
861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 ubifs_scan_destroy(sleb);
863
864out:
865 vfree(buf);
866 return;
867}
868
869void ubifs_dump_znode(const struct ubifs_info *c,
870 const struct ubifs_znode *znode)
871{
872 int n;
873 const struct ubifs_zbranch *zbr;
874 char key_buf[DBG_KEY_BUF_LEN];
875
876 spin_lock(&dbg_lock);
877 if (znode->parent)
878 zbr = &znode->parent->zbranch[znode->iip];
879 else
880 zbr = &c->zroot;
881
882 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884 znode->level, znode->child_cnt, znode->flags);
885
886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 spin_unlock(&dbg_lock);
888 return;
889 }
890
891 pr_err("zbranches:\n");
892 for (n = 0; n < znode->child_cnt; n++) {
893 zbr = &znode->zbranch[n];
894 if (znode->level > 0)
895 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897 dbg_snprintf_key(c, &zbr->key, key_buf,
898 DBG_KEY_BUF_LEN));
899 else
900 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902 dbg_snprintf_key(c, &zbr->key, key_buf,
903 DBG_KEY_BUF_LEN));
904 }
905 spin_unlock(&dbg_lock);
906}
907
908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909{
910 int i;
911
912 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 current->pid, cat, heap->cnt);
914 for (i = 0; i < heap->cnt; i++) {
915 struct ubifs_lprops *lprops = heap->arr[i];
916
917 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 i, lprops->lnum, lprops->hpos, lprops->free,
919 lprops->dirty, lprops->flags);
920 }
921 pr_err("(pid %d) finish dumping heap\n", current->pid);
922}
923
924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 struct ubifs_nnode *parent, int iip)
926{
927 int i;
928
929 pr_err("(pid %d) dumping pnode:\n", current->pid);
930 pr_err("\taddress %zx parent %zx cnext %zx\n",
931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 pr_err("\tflags %lu iip %d level %d num %d\n",
933 pnode->flags, iip, pnode->level, pnode->num);
934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 struct ubifs_lprops *lp = &pnode->lprops[i];
936
937 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 }
940}
941
942void ubifs_dump_tnc(struct ubifs_info *c)
943{
944 struct ubifs_znode *znode;
945 int level;
946
947 pr_err("\n");
948 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949 if (c->zroot.znode) {
950 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
951 level = znode->level;
952 pr_err("== Level %d ==\n", level);
953 while (znode) {
954 if (level != znode->level) {
955 level = znode->level;
956 pr_err("== Level %d ==\n", level);
957 }
958 ubifs_dump_znode(c, znode);
959 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
960 }
961 } else {
962 pr_err("empty TNC tree in memory\n");
963 }
964 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
965}
966
967static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
968 void *priv)
969{
970 ubifs_dump_znode(c, znode);
971 return 0;
972}
973
974/**
975 * ubifs_dump_index - dump the on-flash index.
976 * @c: UBIFS file-system description object
977 *
978 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
979 * which dumps only in-memory znodes and does not read znodes which from flash.
980 */
981void ubifs_dump_index(struct ubifs_info *c)
982{
983 dbg_walk_index(c, NULL, dump_znode, NULL);
984}
985
986/**
987 * dbg_save_space_info - save information about flash space.
988 * @c: UBIFS file-system description object
989 *
990 * This function saves information about UBIFS free space, dirty space, etc, in
991 * order to check it later.
992 */
993void dbg_save_space_info(struct ubifs_info *c)
994{
995 struct ubifs_debug_info *d = c->dbg;
996 int freeable_cnt;
997
998 spin_lock(&c->space_lock);
999 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1000 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1001 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1002
1003 /*
1004 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1005 * affects the free space calculations, and UBIFS might not know about
1006 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1007 * only when we read their lprops, and we do this only lazily, upon the
1008 * need. So at any given point of time @c->freeable_cnt might be not
1009 * exactly accurate.
1010 *
1011 * Just one example about the issue we hit when we did not zero
1012 * @c->freeable_cnt.
1013 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1014 * amount of free space in @d->saved_free
1015 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1016 * information from flash, where we cache LEBs from various
1017 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1018 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1019 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1020 * -> 'ubifs_add_to_cat()').
1021 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1022 * becomes %1.
1023 * 4. We calculate the amount of free space when the re-mount is
1024 * finished in 'dbg_check_space_info()' and it does not match
1025 * @d->saved_free.
1026 */
1027 freeable_cnt = c->freeable_cnt;
1028 c->freeable_cnt = 0;
1029 d->saved_free = ubifs_get_free_space_nolock(c);
1030 c->freeable_cnt = freeable_cnt;
1031 spin_unlock(&c->space_lock);
1032}
1033
1034/**
1035 * dbg_check_space_info - check flash space information.
1036 * @c: UBIFS file-system description object
1037 *
1038 * This function compares current flash space information with the information
1039 * which was saved when the 'dbg_save_space_info()' function was called.
1040 * Returns zero if the information has not changed, and %-EINVAL if it has
1041 * changed.
1042 */
1043int dbg_check_space_info(struct ubifs_info *c)
1044{
1045 struct ubifs_debug_info *d = c->dbg;
1046 struct ubifs_lp_stats lst;
1047 long long free;
1048 int freeable_cnt;
1049
1050 spin_lock(&c->space_lock);
1051 freeable_cnt = c->freeable_cnt;
1052 c->freeable_cnt = 0;
1053 free = ubifs_get_free_space_nolock(c);
1054 c->freeable_cnt = freeable_cnt;
1055 spin_unlock(&c->space_lock);
1056
1057 if (free != d->saved_free) {
1058 ubifs_err(c, "free space changed from %lld to %lld",
1059 d->saved_free, free);
1060 goto out;
1061 }
1062
1063 return 0;
1064
1065out:
1066 ubifs_msg(c, "saved lprops statistics dump");
1067 ubifs_dump_lstats(&d->saved_lst);
1068 ubifs_msg(c, "saved budgeting info dump");
1069 ubifs_dump_budg(c, &d->saved_bi);
1070 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1071 ubifs_msg(c, "current lprops statistics dump");
1072 ubifs_get_lp_stats(c, &lst);
1073 ubifs_dump_lstats(&lst);
1074 ubifs_msg(c, "current budgeting info dump");
1075 ubifs_dump_budg(c, &c->bi);
1076 dump_stack();
1077 return -EINVAL;
1078}
1079
1080/**
1081 * dbg_check_synced_i_size - check synchronized inode size.
1082 * @c: UBIFS file-system description object
1083 * @inode: inode to check
1084 *
1085 * If inode is clean, synchronized inode size has to be equivalent to current
1086 * inode size. This function has to be called only for locked inodes (@i_mutex
1087 * has to be locked). Returns %0 if synchronized inode size if correct, and
1088 * %-EINVAL if not.
1089 */
1090int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1091{
1092 int err = 0;
1093 struct ubifs_inode *ui = ubifs_inode(inode);
1094
1095 if (!dbg_is_chk_gen(c))
1096 return 0;
1097 if (!S_ISREG(inode->i_mode))
1098 return 0;
1099
1100 mutex_lock(&ui->ui_mutex);
1101 spin_lock(&ui->ui_lock);
1102 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1103 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1104 ui->ui_size, ui->synced_i_size);
1105 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1106 inode->i_mode, i_size_read(inode));
1107 dump_stack();
1108 err = -EINVAL;
1109 }
1110 spin_unlock(&ui->ui_lock);
1111 mutex_unlock(&ui->ui_mutex);
1112 return err;
1113}
1114
1115/*
1116 * dbg_check_dir - check directory inode size and link count.
1117 * @c: UBIFS file-system description object
1118 * @dir: the directory to calculate size for
1119 * @size: the result is returned here
1120 *
1121 * This function makes sure that directory size and link count are correct.
1122 * Returns zero in case of success and a negative error code in case of
1123 * failure.
1124 *
1125 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126 * calling this function.
1127 */
1128int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1129{
1130 unsigned int nlink = 2;
1131 union ubifs_key key;
1132 struct ubifs_dent_node *dent, *pdent = NULL;
1133 struct fscrypt_name nm = {0};
1134 loff_t size = UBIFS_INO_NODE_SZ;
1135
1136 if (!dbg_is_chk_gen(c))
1137 return 0;
1138
1139 if (!S_ISDIR(dir->i_mode))
1140 return 0;
1141
1142 lowest_dent_key(c, &key, dir->i_ino);
1143 while (1) {
1144 int err;
1145
1146 dent = ubifs_tnc_next_ent(c, &key, &nm);
1147 if (IS_ERR(dent)) {
1148 err = PTR_ERR(dent);
1149 if (err == -ENOENT)
1150 break;
1151 kfree(pdent);
1152 return err;
1153 }
1154
1155 fname_name(&nm) = dent->name;
1156 fname_len(&nm) = le16_to_cpu(dent->nlen);
1157 size += CALC_DENT_SIZE(fname_len(&nm));
1158 if (dent->type == UBIFS_ITYPE_DIR)
1159 nlink += 1;
1160 kfree(pdent);
1161 pdent = dent;
1162 key_read(c, &dent->key, &key);
1163 }
1164 kfree(pdent);
1165
1166 if (i_size_read(dir) != size) {
1167 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1168 dir->i_ino, (unsigned long long)i_size_read(dir),
1169 (unsigned long long)size);
1170 ubifs_dump_inode(c, dir);
1171 dump_stack();
1172 return -EINVAL;
1173 }
1174 if (dir->i_nlink != nlink) {
1175 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1176 dir->i_ino, dir->i_nlink, nlink);
1177 ubifs_dump_inode(c, dir);
1178 dump_stack();
1179 return -EINVAL;
1180 }
1181
1182 return 0;
1183}
1184
1185/**
1186 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1187 * @c: UBIFS file-system description object
1188 * @zbr1: first zbranch
1189 * @zbr2: following zbranch
1190 *
1191 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1192 * names of the direntries/xentries which are referred by the keys. This
1193 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1194 * sure the name of direntry/xentry referred by @zbr1 is less than
1195 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1196 * and a negative error code in case of failure.
1197 */
1198static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1199 struct ubifs_zbranch *zbr2)
1200{
1201 int err, nlen1, nlen2, cmp;
1202 struct ubifs_dent_node *dent1, *dent2;
1203 union ubifs_key key;
1204 char key_buf[DBG_KEY_BUF_LEN];
1205
1206 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1207 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1208 if (!dent1)
1209 return -ENOMEM;
1210 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1211 if (!dent2) {
1212 err = -ENOMEM;
1213 goto out_free;
1214 }
1215
1216 err = ubifs_tnc_read_node(c, zbr1, dent1);
1217 if (err)
1218 goto out_free;
1219 err = ubifs_validate_entry(c, dent1);
1220 if (err)
1221 goto out_free;
1222
1223 err = ubifs_tnc_read_node(c, zbr2, dent2);
1224 if (err)
1225 goto out_free;
1226 err = ubifs_validate_entry(c, dent2);
1227 if (err)
1228 goto out_free;
1229
1230 /* Make sure node keys are the same as in zbranch */
1231 err = 1;
1232 key_read(c, &dent1->key, &key);
1233 if (keys_cmp(c, &zbr1->key, &key)) {
1234 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1235 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1236 DBG_KEY_BUF_LEN));
1237 ubifs_err(c, "but it should have key %s according to tnc",
1238 dbg_snprintf_key(c, &zbr1->key, key_buf,
1239 DBG_KEY_BUF_LEN));
1240 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1241 goto out_free;
1242 }
1243
1244 key_read(c, &dent2->key, &key);
1245 if (keys_cmp(c, &zbr2->key, &key)) {
1246 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1247 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1248 DBG_KEY_BUF_LEN));
1249 ubifs_err(c, "but it should have key %s according to tnc",
1250 dbg_snprintf_key(c, &zbr2->key, key_buf,
1251 DBG_KEY_BUF_LEN));
1252 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1253 goto out_free;
1254 }
1255
1256 nlen1 = le16_to_cpu(dent1->nlen);
1257 nlen2 = le16_to_cpu(dent2->nlen);
1258
1259 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1260 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1261 err = 0;
1262 goto out_free;
1263 }
1264 if (cmp == 0 && nlen1 == nlen2)
1265 ubifs_err(c, "2 xent/dent nodes with the same name");
1266 else
1267 ubifs_err(c, "bad order of colliding key %s",
1268 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1269
1270 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1271 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1272 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1273 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1274
1275out_free:
1276 kfree(dent2);
1277 kfree(dent1);
1278 return err;
1279}
1280
1281/**
1282 * dbg_check_znode - check if znode is all right.
1283 * @c: UBIFS file-system description object
1284 * @zbr: zbranch which points to this znode
1285 *
1286 * This function makes sure that znode referred to by @zbr is all right.
1287 * Returns zero if it is, and %-EINVAL if it is not.
1288 */
1289static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1290{
1291 struct ubifs_znode *znode = zbr->znode;
1292 struct ubifs_znode *zp = znode->parent;
1293 int n, err, cmp;
1294
1295 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1296 err = 1;
1297 goto out;
1298 }
1299 if (znode->level < 0) {
1300 err = 2;
1301 goto out;
1302 }
1303 if (znode->iip < 0 || znode->iip >= c->fanout) {
1304 err = 3;
1305 goto out;
1306 }
1307
1308 if (zbr->len == 0)
1309 /* Only dirty zbranch may have no on-flash nodes */
1310 if (!ubifs_zn_dirty(znode)) {
1311 err = 4;
1312 goto out;
1313 }
1314
1315 if (ubifs_zn_dirty(znode)) {
1316 /*
1317 * If znode is dirty, its parent has to be dirty as well. The
1318 * order of the operation is important, so we have to have
1319 * memory barriers.
1320 */
1321 smp_mb();
1322 if (zp && !ubifs_zn_dirty(zp)) {
1323 /*
1324 * The dirty flag is atomic and is cleared outside the
1325 * TNC mutex, so znode's dirty flag may now have
1326 * been cleared. The child is always cleared before the
1327 * parent, so we just need to check again.
1328 */
1329 smp_mb();
1330 if (ubifs_zn_dirty(znode)) {
1331 err = 5;
1332 goto out;
1333 }
1334 }
1335 }
1336
1337 if (zp) {
1338 const union ubifs_key *min, *max;
1339
1340 if (znode->level != zp->level - 1) {
1341 err = 6;
1342 goto out;
1343 }
1344
1345 /* Make sure the 'parent' pointer in our znode is correct */
1346 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1347 if (!err) {
1348 /* This zbranch does not exist in the parent */
1349 err = 7;
1350 goto out;
1351 }
1352
1353 if (znode->iip >= zp->child_cnt) {
1354 err = 8;
1355 goto out;
1356 }
1357
1358 if (znode->iip != n) {
1359 /* This may happen only in case of collisions */
1360 if (keys_cmp(c, &zp->zbranch[n].key,
1361 &zp->zbranch[znode->iip].key)) {
1362 err = 9;
1363 goto out;
1364 }
1365 n = znode->iip;
1366 }
1367
1368 /*
1369 * Make sure that the first key in our znode is greater than or
1370 * equal to the key in the pointing zbranch.
1371 */
1372 min = &zbr->key;
1373 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1374 if (cmp == 1) {
1375 err = 10;
1376 goto out;
1377 }
1378
1379 if (n + 1 < zp->child_cnt) {
1380 max = &zp->zbranch[n + 1].key;
1381
1382 /*
1383 * Make sure the last key in our znode is less or
1384 * equivalent than the key in the zbranch which goes
1385 * after our pointing zbranch.
1386 */
1387 cmp = keys_cmp(c, max,
1388 &znode->zbranch[znode->child_cnt - 1].key);
1389 if (cmp == -1) {
1390 err = 11;
1391 goto out;
1392 }
1393 }
1394 } else {
1395 /* This may only be root znode */
1396 if (zbr != &c->zroot) {
1397 err = 12;
1398 goto out;
1399 }
1400 }
1401
1402 /*
1403 * Make sure that next key is greater or equivalent then the previous
1404 * one.
1405 */
1406 for (n = 1; n < znode->child_cnt; n++) {
1407 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1408 &znode->zbranch[n].key);
1409 if (cmp > 0) {
1410 err = 13;
1411 goto out;
1412 }
1413 if (cmp == 0) {
1414 /* This can only be keys with colliding hash */
1415 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1416 err = 14;
1417 goto out;
1418 }
1419
1420 if (znode->level != 0 || c->replaying)
1421 continue;
1422
1423 /*
1424 * Colliding keys should follow binary order of
1425 * corresponding xentry/dentry names.
1426 */
1427 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1428 &znode->zbranch[n]);
1429 if (err < 0)
1430 return err;
1431 if (err) {
1432 err = 15;
1433 goto out;
1434 }
1435 }
1436 }
1437
1438 for (n = 0; n < znode->child_cnt; n++) {
1439 if (!znode->zbranch[n].znode &&
1440 (znode->zbranch[n].lnum == 0 ||
1441 znode->zbranch[n].len == 0)) {
1442 err = 16;
1443 goto out;
1444 }
1445
1446 if (znode->zbranch[n].lnum != 0 &&
1447 znode->zbranch[n].len == 0) {
1448 err = 17;
1449 goto out;
1450 }
1451
1452 if (znode->zbranch[n].lnum == 0 &&
1453 znode->zbranch[n].len != 0) {
1454 err = 18;
1455 goto out;
1456 }
1457
1458 if (znode->zbranch[n].lnum == 0 &&
1459 znode->zbranch[n].offs != 0) {
1460 err = 19;
1461 goto out;
1462 }
1463
1464 if (znode->level != 0 && znode->zbranch[n].znode)
1465 if (znode->zbranch[n].znode->parent != znode) {
1466 err = 20;
1467 goto out;
1468 }
1469 }
1470
1471 return 0;
1472
1473out:
1474 ubifs_err(c, "failed, error %d", err);
1475 ubifs_msg(c, "dump of the znode");
1476 ubifs_dump_znode(c, znode);
1477 if (zp) {
1478 ubifs_msg(c, "dump of the parent znode");
1479 ubifs_dump_znode(c, zp);
1480 }
1481 dump_stack();
1482 return -EINVAL;
1483}
1484
1485/**
1486 * dbg_check_tnc - check TNC tree.
1487 * @c: UBIFS file-system description object
1488 * @extra: do extra checks that are possible at start commit
1489 *
1490 * This function traverses whole TNC tree and checks every znode. Returns zero
1491 * if everything is all right and %-EINVAL if something is wrong with TNC.
1492 */
1493int dbg_check_tnc(struct ubifs_info *c, int extra)
1494{
1495 struct ubifs_znode *znode;
1496 long clean_cnt = 0, dirty_cnt = 0;
1497 int err, last;
1498
1499 if (!dbg_is_chk_index(c))
1500 return 0;
1501
1502 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1503 if (!c->zroot.znode)
1504 return 0;
1505
1506 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1507 while (1) {
1508 struct ubifs_znode *prev;
1509 struct ubifs_zbranch *zbr;
1510
1511 if (!znode->parent)
1512 zbr = &c->zroot;
1513 else
1514 zbr = &znode->parent->zbranch[znode->iip];
1515
1516 err = dbg_check_znode(c, zbr);
1517 if (err)
1518 return err;
1519
1520 if (extra) {
1521 if (ubifs_zn_dirty(znode))
1522 dirty_cnt += 1;
1523 else
1524 clean_cnt += 1;
1525 }
1526
1527 prev = znode;
1528 znode = ubifs_tnc_postorder_next(c, znode);
1529 if (!znode)
1530 break;
1531
1532 /*
1533 * If the last key of this znode is equivalent to the first key
1534 * of the next znode (collision), then check order of the keys.
1535 */
1536 last = prev->child_cnt - 1;
1537 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1538 !keys_cmp(c, &prev->zbranch[last].key,
1539 &znode->zbranch[0].key)) {
1540 err = dbg_check_key_order(c, &prev->zbranch[last],
1541 &znode->zbranch[0]);
1542 if (err < 0)
1543 return err;
1544 if (err) {
1545 ubifs_msg(c, "first znode");
1546 ubifs_dump_znode(c, prev);
1547 ubifs_msg(c, "second znode");
1548 ubifs_dump_znode(c, znode);
1549 return -EINVAL;
1550 }
1551 }
1552 }
1553
1554 if (extra) {
1555 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1556 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1557 atomic_long_read(&c->clean_zn_cnt),
1558 clean_cnt);
1559 return -EINVAL;
1560 }
1561 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1562 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1563 atomic_long_read(&c->dirty_zn_cnt),
1564 dirty_cnt);
1565 return -EINVAL;
1566 }
1567 }
1568
1569 return 0;
1570}
1571
1572/**
1573 * dbg_walk_index - walk the on-flash index.
1574 * @c: UBIFS file-system description object
1575 * @leaf_cb: called for each leaf node
1576 * @znode_cb: called for each indexing node
1577 * @priv: private data which is passed to callbacks
1578 *
1579 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1580 * node and @znode_cb for each indexing node. Returns zero in case of success
1581 * and a negative error code in case of failure.
1582 *
1583 * It would be better if this function removed every znode it pulled to into
1584 * the TNC, so that the behavior more closely matched the non-debugging
1585 * behavior.
1586 */
1587int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1588 dbg_znode_callback znode_cb, void *priv)
1589{
1590 int err;
1591 struct ubifs_zbranch *zbr;
1592 struct ubifs_znode *znode, *child;
1593
1594 mutex_lock(&c->tnc_mutex);
1595 /* If the root indexing node is not in TNC - pull it */
1596 if (!c->zroot.znode) {
1597 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1598 if (IS_ERR(c->zroot.znode)) {
1599 err = PTR_ERR(c->zroot.znode);
1600 c->zroot.znode = NULL;
1601 goto out_unlock;
1602 }
1603 }
1604
1605 /*
1606 * We are going to traverse the indexing tree in the postorder manner.
1607 * Go down and find the leftmost indexing node where we are going to
1608 * start from.
1609 */
1610 znode = c->zroot.znode;
1611 while (znode->level > 0) {
1612 zbr = &znode->zbranch[0];
1613 child = zbr->znode;
1614 if (!child) {
1615 child = ubifs_load_znode(c, zbr, znode, 0);
1616 if (IS_ERR(child)) {
1617 err = PTR_ERR(child);
1618 goto out_unlock;
1619 }
1620 }
1621
1622 znode = child;
1623 }
1624
1625 /* Iterate over all indexing nodes */
1626 while (1) {
1627 int idx;
1628
1629 cond_resched();
1630
1631 if (znode_cb) {
1632 err = znode_cb(c, znode, priv);
1633 if (err) {
1634 ubifs_err(c, "znode checking function returned error %d",
1635 err);
1636 ubifs_dump_znode(c, znode);
1637 goto out_dump;
1638 }
1639 }
1640 if (leaf_cb && znode->level == 0) {
1641 for (idx = 0; idx < znode->child_cnt; idx++) {
1642 zbr = &znode->zbranch[idx];
1643 err = leaf_cb(c, zbr, priv);
1644 if (err) {
1645 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1646 err, zbr->lnum, zbr->offs);
1647 goto out_dump;
1648 }
1649 }
1650 }
1651
1652 if (!znode->parent)
1653 break;
1654
1655 idx = znode->iip + 1;
1656 znode = znode->parent;
1657 if (idx < znode->child_cnt) {
1658 /* Switch to the next index in the parent */
1659 zbr = &znode->zbranch[idx];
1660 child = zbr->znode;
1661 if (!child) {
1662 child = ubifs_load_znode(c, zbr, znode, idx);
1663 if (IS_ERR(child)) {
1664 err = PTR_ERR(child);
1665 goto out_unlock;
1666 }
1667 zbr->znode = child;
1668 }
1669 znode = child;
1670 } else
1671 /*
1672 * This is the last child, switch to the parent and
1673 * continue.
1674 */
1675 continue;
1676
1677 /* Go to the lowest leftmost znode in the new sub-tree */
1678 while (znode->level > 0) {
1679 zbr = &znode->zbranch[0];
1680 child = zbr->znode;
1681 if (!child) {
1682 child = ubifs_load_znode(c, zbr, znode, 0);
1683 if (IS_ERR(child)) {
1684 err = PTR_ERR(child);
1685 goto out_unlock;
1686 }
1687 zbr->znode = child;
1688 }
1689 znode = child;
1690 }
1691 }
1692
1693 mutex_unlock(&c->tnc_mutex);
1694 return 0;
1695
1696out_dump:
1697 if (znode->parent)
1698 zbr = &znode->parent->zbranch[znode->iip];
1699 else
1700 zbr = &c->zroot;
1701 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1702 ubifs_dump_znode(c, znode);
1703out_unlock:
1704 mutex_unlock(&c->tnc_mutex);
1705 return err;
1706}
1707
1708/**
1709 * add_size - add znode size to partially calculated index size.
1710 * @c: UBIFS file-system description object
1711 * @znode: znode to add size for
1712 * @priv: partially calculated index size
1713 *
1714 * This is a helper function for 'dbg_check_idx_size()' which is called for
1715 * every indexing node and adds its size to the 'long long' variable pointed to
1716 * by @priv.
1717 */
1718static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1719{
1720 long long *idx_size = priv;
1721 int add;
1722
1723 add = ubifs_idx_node_sz(c, znode->child_cnt);
1724 add = ALIGN(add, 8);
1725 *idx_size += add;
1726 return 0;
1727}
1728
1729/**
1730 * dbg_check_idx_size - check index size.
1731 * @c: UBIFS file-system description object
1732 * @idx_size: size to check
1733 *
1734 * This function walks the UBIFS index, calculates its size and checks that the
1735 * size is equivalent to @idx_size. Returns zero in case of success and a
1736 * negative error code in case of failure.
1737 */
1738int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1739{
1740 int err;
1741 long long calc = 0;
1742
1743 if (!dbg_is_chk_index(c))
1744 return 0;
1745
1746 err = dbg_walk_index(c, NULL, add_size, &calc);
1747 if (err) {
1748 ubifs_err(c, "error %d while walking the index", err);
1749 goto out_err;
1750 }
1751
1752 if (calc != idx_size) {
1753 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1754 calc, idx_size);
1755 dump_stack();
1756 err = -EINVAL;
1757 goto out_err;
1758 }
1759
1760 return 0;
1761
1762out_err:
1763 ubifs_destroy_tnc_tree(c);
1764 return err;
1765}
1766
1767/**
1768 * struct fsck_inode - information about an inode used when checking the file-system.
1769 * @rb: link in the RB-tree of inodes
1770 * @inum: inode number
1771 * @mode: inode type, permissions, etc
1772 * @nlink: inode link count
1773 * @xattr_cnt: count of extended attributes
1774 * @references: how many directory/xattr entries refer this inode (calculated
1775 * while walking the index)
1776 * @calc_cnt: for directory inode count of child directories
1777 * @size: inode size (read from on-flash inode)
1778 * @xattr_sz: summary size of all extended attributes (read from on-flash
1779 * inode)
1780 * @calc_sz: for directories calculated directory size
1781 * @calc_xcnt: count of extended attributes
1782 * @calc_xsz: calculated summary size of all extended attributes
1783 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1784 * inode (read from on-flash inode)
1785 * @calc_xnms: calculated sum of lengths of all extended attribute names
1786 */
1787struct fsck_inode {
1788 struct rb_node rb;
1789 ino_t inum;
1790 umode_t mode;
1791 unsigned int nlink;
1792 unsigned int xattr_cnt;
1793 int references;
1794 int calc_cnt;
1795 long long size;
1796 unsigned int xattr_sz;
1797 long long calc_sz;
1798 long long calc_xcnt;
1799 long long calc_xsz;
1800 unsigned int xattr_nms;
1801 long long calc_xnms;
1802};
1803
1804/**
1805 * struct fsck_data - private FS checking information.
1806 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1807 */
1808struct fsck_data {
1809 struct rb_root inodes;
1810};
1811
1812/**
1813 * add_inode - add inode information to RB-tree of inodes.
1814 * @c: UBIFS file-system description object
1815 * @fsckd: FS checking information
1816 * @ino: raw UBIFS inode to add
1817 *
1818 * This is a helper function for 'check_leaf()' which adds information about
1819 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1820 * case of success and a negative error code in case of failure.
1821 */
1822static struct fsck_inode *add_inode(struct ubifs_info *c,
1823 struct fsck_data *fsckd,
1824 struct ubifs_ino_node *ino)
1825{
1826 struct rb_node **p, *parent = NULL;
1827 struct fsck_inode *fscki;
1828 ino_t inum = key_inum_flash(c, &ino->key);
1829 struct inode *inode;
1830 struct ubifs_inode *ui;
1831
1832 p = &fsckd->inodes.rb_node;
1833 while (*p) {
1834 parent = *p;
1835 fscki = rb_entry(parent, struct fsck_inode, rb);
1836 if (inum < fscki->inum)
1837 p = &(*p)->rb_left;
1838 else if (inum > fscki->inum)
1839 p = &(*p)->rb_right;
1840 else
1841 return fscki;
1842 }
1843
1844 if (inum > c->highest_inum) {
1845 ubifs_err(c, "too high inode number, max. is %lu",
1846 (unsigned long)c->highest_inum);
1847 return ERR_PTR(-EINVAL);
1848 }
1849
1850 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1851 if (!fscki)
1852 return ERR_PTR(-ENOMEM);
1853
1854 inode = ilookup(c->vfs_sb, inum);
1855
1856 fscki->inum = inum;
1857 /*
1858 * If the inode is present in the VFS inode cache, use it instead of
1859 * the on-flash inode which might be out-of-date. E.g., the size might
1860 * be out-of-date. If we do not do this, the following may happen, for
1861 * example:
1862 * 1. A power cut happens
1863 * 2. We mount the file-system R/O, the replay process fixes up the
1864 * inode size in the VFS cache, but on on-flash.
1865 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1866 * size.
1867 */
1868 if (!inode) {
1869 fscki->nlink = le32_to_cpu(ino->nlink);
1870 fscki->size = le64_to_cpu(ino->size);
1871 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1872 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1873 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1874 fscki->mode = le32_to_cpu(ino->mode);
1875 } else {
1876 ui = ubifs_inode(inode);
1877 fscki->nlink = inode->i_nlink;
1878 fscki->size = inode->i_size;
1879 fscki->xattr_cnt = ui->xattr_cnt;
1880 fscki->xattr_sz = ui->xattr_size;
1881 fscki->xattr_nms = ui->xattr_names;
1882 fscki->mode = inode->i_mode;
1883 iput(inode);
1884 }
1885
1886 if (S_ISDIR(fscki->mode)) {
1887 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1888 fscki->calc_cnt = 2;
1889 }
1890
1891 rb_link_node(&fscki->rb, parent, p);
1892 rb_insert_color(&fscki->rb, &fsckd->inodes);
1893
1894 return fscki;
1895}
1896
1897/**
1898 * search_inode - search inode in the RB-tree of inodes.
1899 * @fsckd: FS checking information
1900 * @inum: inode number to search
1901 *
1902 * This is a helper function for 'check_leaf()' which searches inode @inum in
1903 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1904 * the inode was not found.
1905 */
1906static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1907{
1908 struct rb_node *p;
1909 struct fsck_inode *fscki;
1910
1911 p = fsckd->inodes.rb_node;
1912 while (p) {
1913 fscki = rb_entry(p, struct fsck_inode, rb);
1914 if (inum < fscki->inum)
1915 p = p->rb_left;
1916 else if (inum > fscki->inum)
1917 p = p->rb_right;
1918 else
1919 return fscki;
1920 }
1921 return NULL;
1922}
1923
1924/**
1925 * read_add_inode - read inode node and add it to RB-tree of inodes.
1926 * @c: UBIFS file-system description object
1927 * @fsckd: FS checking information
1928 * @inum: inode number to read
1929 *
1930 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1931 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1932 * information pointer in case of success and a negative error code in case of
1933 * failure.
1934 */
1935static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1936 struct fsck_data *fsckd, ino_t inum)
1937{
1938 int n, err;
1939 union ubifs_key key;
1940 struct ubifs_znode *znode;
1941 struct ubifs_zbranch *zbr;
1942 struct ubifs_ino_node *ino;
1943 struct fsck_inode *fscki;
1944
1945 fscki = search_inode(fsckd, inum);
1946 if (fscki)
1947 return fscki;
1948
1949 ino_key_init(c, &key, inum);
1950 err = ubifs_lookup_level0(c, &key, &znode, &n);
1951 if (!err) {
1952 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1953 return ERR_PTR(-ENOENT);
1954 } else if (err < 0) {
1955 ubifs_err(c, "error %d while looking up inode %lu",
1956 err, (unsigned long)inum);
1957 return ERR_PTR(err);
1958 }
1959
1960 zbr = &znode->zbranch[n];
1961 if (zbr->len < UBIFS_INO_NODE_SZ) {
1962 ubifs_err(c, "bad node %lu node length %d",
1963 (unsigned long)inum, zbr->len);
1964 return ERR_PTR(-EINVAL);
1965 }
1966
1967 ino = kmalloc(zbr->len, GFP_NOFS);
1968 if (!ino)
1969 return ERR_PTR(-ENOMEM);
1970
1971 err = ubifs_tnc_read_node(c, zbr, ino);
1972 if (err) {
1973 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1974 zbr->lnum, zbr->offs, err);
1975 kfree(ino);
1976 return ERR_PTR(err);
1977 }
1978
1979 fscki = add_inode(c, fsckd, ino);
1980 kfree(ino);
1981 if (IS_ERR(fscki)) {
1982 ubifs_err(c, "error %ld while adding inode %lu node",
1983 PTR_ERR(fscki), (unsigned long)inum);
1984 return fscki;
1985 }
1986
1987 return fscki;
1988}
1989
1990/**
1991 * check_leaf - check leaf node.
1992 * @c: UBIFS file-system description object
1993 * @zbr: zbranch of the leaf node to check
1994 * @priv: FS checking information
1995 *
1996 * This is a helper function for 'dbg_check_filesystem()' which is called for
1997 * every single leaf node while walking the indexing tree. It checks that the
1998 * leaf node referred from the indexing tree exists, has correct CRC, and does
1999 * some other basic validation. This function is also responsible for building
2000 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2001 * calculates reference count, size, etc for each inode in order to later
2002 * compare them to the information stored inside the inodes and detect possible
2003 * inconsistencies. Returns zero in case of success and a negative error code
2004 * in case of failure.
2005 */
2006static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2007 void *priv)
2008{
2009 ino_t inum;
2010 void *node;
2011 struct ubifs_ch *ch;
2012 int err, type = key_type(c, &zbr->key);
2013 struct fsck_inode *fscki;
2014
2015 if (zbr->len < UBIFS_CH_SZ) {
2016 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2017 zbr->len, zbr->lnum, zbr->offs);
2018 return -EINVAL;
2019 }
2020
2021 node = kmalloc(zbr->len, GFP_NOFS);
2022 if (!node)
2023 return -ENOMEM;
2024
2025 err = ubifs_tnc_read_node(c, zbr, node);
2026 if (err) {
2027 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2028 zbr->lnum, zbr->offs, err);
2029 goto out_free;
2030 }
2031
2032 /* If this is an inode node, add it to RB-tree of inodes */
2033 if (type == UBIFS_INO_KEY) {
2034 fscki = add_inode(c, priv, node);
2035 if (IS_ERR(fscki)) {
2036 err = PTR_ERR(fscki);
2037 ubifs_err(c, "error %d while adding inode node", err);
2038 goto out_dump;
2039 }
2040 goto out;
2041 }
2042
2043 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2044 type != UBIFS_DATA_KEY) {
2045 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2046 type, zbr->lnum, zbr->offs);
2047 err = -EINVAL;
2048 goto out_free;
2049 }
2050
2051 ch = node;
2052 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2053 ubifs_err(c, "too high sequence number, max. is %llu",
2054 c->max_sqnum);
2055 err = -EINVAL;
2056 goto out_dump;
2057 }
2058
2059 if (type == UBIFS_DATA_KEY) {
2060 long long blk_offs;
2061 struct ubifs_data_node *dn = node;
2062
2063 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2064
2065 /*
2066 * Search the inode node this data node belongs to and insert
2067 * it to the RB-tree of inodes.
2068 */
2069 inum = key_inum_flash(c, &dn->key);
2070 fscki = read_add_inode(c, priv, inum);
2071 if (IS_ERR(fscki)) {
2072 err = PTR_ERR(fscki);
2073 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2074 err, (unsigned long)inum);
2075 goto out_dump;
2076 }
2077
2078 /* Make sure the data node is within inode size */
2079 blk_offs = key_block_flash(c, &dn->key);
2080 blk_offs <<= UBIFS_BLOCK_SHIFT;
2081 blk_offs += le32_to_cpu(dn->size);
2082 if (blk_offs > fscki->size) {
2083 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2084 zbr->lnum, zbr->offs, fscki->size);
2085 err = -EINVAL;
2086 goto out_dump;
2087 }
2088 } else {
2089 int nlen;
2090 struct ubifs_dent_node *dent = node;
2091 struct fsck_inode *fscki1;
2092
2093 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2094
2095 err = ubifs_validate_entry(c, dent);
2096 if (err)
2097 goto out_dump;
2098
2099 /*
2100 * Search the inode node this entry refers to and the parent
2101 * inode node and insert them to the RB-tree of inodes.
2102 */
2103 inum = le64_to_cpu(dent->inum);
2104 fscki = read_add_inode(c, priv, inum);
2105 if (IS_ERR(fscki)) {
2106 err = PTR_ERR(fscki);
2107 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2108 err, (unsigned long)inum);
2109 goto out_dump;
2110 }
2111
2112 /* Count how many direntries or xentries refers this inode */
2113 fscki->references += 1;
2114
2115 inum = key_inum_flash(c, &dent->key);
2116 fscki1 = read_add_inode(c, priv, inum);
2117 if (IS_ERR(fscki1)) {
2118 err = PTR_ERR(fscki1);
2119 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2120 err, (unsigned long)inum);
2121 goto out_dump;
2122 }
2123
2124 nlen = le16_to_cpu(dent->nlen);
2125 if (type == UBIFS_XENT_KEY) {
2126 fscki1->calc_xcnt += 1;
2127 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2128 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2129 fscki1->calc_xnms += nlen;
2130 } else {
2131 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2132 if (dent->type == UBIFS_ITYPE_DIR)
2133 fscki1->calc_cnt += 1;
2134 }
2135 }
2136
2137out:
2138 kfree(node);
2139 return 0;
2140
2141out_dump:
2142 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2143 ubifs_dump_node(c, node, zbr->len);
2144out_free:
2145 kfree(node);
2146 return err;
2147}
2148
2149/**
2150 * free_inodes - free RB-tree of inodes.
2151 * @fsckd: FS checking information
2152 */
2153static void free_inodes(struct fsck_data *fsckd)
2154{
2155 struct fsck_inode *fscki, *n;
2156
2157 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2158 kfree(fscki);
2159}
2160
2161/**
2162 * check_inodes - checks all inodes.
2163 * @c: UBIFS file-system description object
2164 * @fsckd: FS checking information
2165 *
2166 * This is a helper function for 'dbg_check_filesystem()' which walks the
2167 * RB-tree of inodes after the index scan has been finished, and checks that
2168 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2169 * %-EINVAL if not, and a negative error code in case of failure.
2170 */
2171static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2172{
2173 int n, err;
2174 union ubifs_key key;
2175 struct ubifs_znode *znode;
2176 struct ubifs_zbranch *zbr;
2177 struct ubifs_ino_node *ino;
2178 struct fsck_inode *fscki;
2179 struct rb_node *this = rb_first(&fsckd->inodes);
2180
2181 while (this) {
2182 fscki = rb_entry(this, struct fsck_inode, rb);
2183 this = rb_next(this);
2184
2185 if (S_ISDIR(fscki->mode)) {
2186 /*
2187 * Directories have to have exactly one reference (they
2188 * cannot have hardlinks), although root inode is an
2189 * exception.
2190 */
2191 if (fscki->inum != UBIFS_ROOT_INO &&
2192 fscki->references != 1) {
2193 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2194 (unsigned long)fscki->inum,
2195 fscki->references);
2196 goto out_dump;
2197 }
2198 if (fscki->inum == UBIFS_ROOT_INO &&
2199 fscki->references != 0) {
2200 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2201 (unsigned long)fscki->inum,
2202 fscki->references);
2203 goto out_dump;
2204 }
2205 if (fscki->calc_sz != fscki->size) {
2206 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2207 (unsigned long)fscki->inum,
2208 fscki->size, fscki->calc_sz);
2209 goto out_dump;
2210 }
2211 if (fscki->calc_cnt != fscki->nlink) {
2212 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2213 (unsigned long)fscki->inum,
2214 fscki->nlink, fscki->calc_cnt);
2215 goto out_dump;
2216 }
2217 } else {
2218 if (fscki->references != fscki->nlink) {
2219 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2220 (unsigned long)fscki->inum,
2221 fscki->nlink, fscki->references);
2222 goto out_dump;
2223 }
2224 }
2225 if (fscki->xattr_sz != fscki->calc_xsz) {
2226 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2227 (unsigned long)fscki->inum, fscki->xattr_sz,
2228 fscki->calc_xsz);
2229 goto out_dump;
2230 }
2231 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2232 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2233 (unsigned long)fscki->inum,
2234 fscki->xattr_cnt, fscki->calc_xcnt);
2235 goto out_dump;
2236 }
2237 if (fscki->xattr_nms != fscki->calc_xnms) {
2238 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2239 (unsigned long)fscki->inum, fscki->xattr_nms,
2240 fscki->calc_xnms);
2241 goto out_dump;
2242 }
2243 }
2244
2245 return 0;
2246
2247out_dump:
2248 /* Read the bad inode and dump it */
2249 ino_key_init(c, &key, fscki->inum);
2250 err = ubifs_lookup_level0(c, &key, &znode, &n);
2251 if (!err) {
2252 ubifs_err(c, "inode %lu not found in index",
2253 (unsigned long)fscki->inum);
2254 return -ENOENT;
2255 } else if (err < 0) {
2256 ubifs_err(c, "error %d while looking up inode %lu",
2257 err, (unsigned long)fscki->inum);
2258 return err;
2259 }
2260
2261 zbr = &znode->zbranch[n];
2262 ino = kmalloc(zbr->len, GFP_NOFS);
2263 if (!ino)
2264 return -ENOMEM;
2265
2266 err = ubifs_tnc_read_node(c, zbr, ino);
2267 if (err) {
2268 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2269 zbr->lnum, zbr->offs, err);
2270 kfree(ino);
2271 return err;
2272 }
2273
2274 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2275 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2276 ubifs_dump_node(c, ino, zbr->len);
2277 kfree(ino);
2278 return -EINVAL;
2279}
2280
2281/**
2282 * dbg_check_filesystem - check the file-system.
2283 * @c: UBIFS file-system description object
2284 *
2285 * This function checks the file system, namely:
2286 * o makes sure that all leaf nodes exist and their CRCs are correct;
2287 * o makes sure inode nlink, size, xattr size/count are correct (for all
2288 * inodes).
2289 *
2290 * The function reads whole indexing tree and all nodes, so it is pretty
2291 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2292 * not, and a negative error code in case of failure.
2293 */
2294int dbg_check_filesystem(struct ubifs_info *c)
2295{
2296 int err;
2297 struct fsck_data fsckd;
2298
2299 if (!dbg_is_chk_fs(c))
2300 return 0;
2301
2302 fsckd.inodes = RB_ROOT;
2303 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2304 if (err)
2305 goto out_free;
2306
2307 err = check_inodes(c, &fsckd);
2308 if (err)
2309 goto out_free;
2310
2311 free_inodes(&fsckd);
2312 return 0;
2313
2314out_free:
2315 ubifs_err(c, "file-system check failed with error %d", err);
2316 dump_stack();
2317 free_inodes(&fsckd);
2318 return err;
2319}
2320
2321/**
2322 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2323 * @c: UBIFS file-system description object
2324 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2325 *
2326 * This function returns zero if the list of data nodes is sorted correctly,
2327 * and %-EINVAL if not.
2328 */
2329int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2330{
2331 struct list_head *cur;
2332 struct ubifs_scan_node *sa, *sb;
2333
2334 if (!dbg_is_chk_gen(c))
2335 return 0;
2336
2337 for (cur = head->next; cur->next != head; cur = cur->next) {
2338 ino_t inuma, inumb;
2339 uint32_t blka, blkb;
2340
2341 cond_resched();
2342 sa = container_of(cur, struct ubifs_scan_node, list);
2343 sb = container_of(cur->next, struct ubifs_scan_node, list);
2344
2345 if (sa->type != UBIFS_DATA_NODE) {
2346 ubifs_err(c, "bad node type %d", sa->type);
2347 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2348 return -EINVAL;
2349 }
2350 if (sb->type != UBIFS_DATA_NODE) {
2351 ubifs_err(c, "bad node type %d", sb->type);
2352 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2353 return -EINVAL;
2354 }
2355
2356 inuma = key_inum(c, &sa->key);
2357 inumb = key_inum(c, &sb->key);
2358
2359 if (inuma < inumb)
2360 continue;
2361 if (inuma > inumb) {
2362 ubifs_err(c, "larger inum %lu goes before inum %lu",
2363 (unsigned long)inuma, (unsigned long)inumb);
2364 goto error_dump;
2365 }
2366
2367 blka = key_block(c, &sa->key);
2368 blkb = key_block(c, &sb->key);
2369
2370 if (blka > blkb) {
2371 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2372 goto error_dump;
2373 }
2374 if (blka == blkb) {
2375 ubifs_err(c, "two data nodes for the same block");
2376 goto error_dump;
2377 }
2378 }
2379
2380 return 0;
2381
2382error_dump:
2383 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2384 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2385 return -EINVAL;
2386}
2387
2388/**
2389 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2390 * @c: UBIFS file-system description object
2391 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2392 *
2393 * This function returns zero if the list of non-data nodes is sorted correctly,
2394 * and %-EINVAL if not.
2395 */
2396int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2397{
2398 struct list_head *cur;
2399 struct ubifs_scan_node *sa, *sb;
2400
2401 if (!dbg_is_chk_gen(c))
2402 return 0;
2403
2404 for (cur = head->next; cur->next != head; cur = cur->next) {
2405 ino_t inuma, inumb;
2406 uint32_t hasha, hashb;
2407
2408 cond_resched();
2409 sa = container_of(cur, struct ubifs_scan_node, list);
2410 sb = container_of(cur->next, struct ubifs_scan_node, list);
2411
2412 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2413 sa->type != UBIFS_XENT_NODE) {
2414 ubifs_err(c, "bad node type %d", sa->type);
2415 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2416 return -EINVAL;
2417 }
2418 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2419 sb->type != UBIFS_XENT_NODE) {
2420 ubifs_err(c, "bad node type %d", sb->type);
2421 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2422 return -EINVAL;
2423 }
2424
2425 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2426 ubifs_err(c, "non-inode node goes before inode node");
2427 goto error_dump;
2428 }
2429
2430 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2431 continue;
2432
2433 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2434 /* Inode nodes are sorted in descending size order */
2435 if (sa->len < sb->len) {
2436 ubifs_err(c, "smaller inode node goes first");
2437 goto error_dump;
2438 }
2439 continue;
2440 }
2441
2442 /*
2443 * This is either a dentry or xentry, which should be sorted in
2444 * ascending (parent ino, hash) order.
2445 */
2446 inuma = key_inum(c, &sa->key);
2447 inumb = key_inum(c, &sb->key);
2448
2449 if (inuma < inumb)
2450 continue;
2451 if (inuma > inumb) {
2452 ubifs_err(c, "larger inum %lu goes before inum %lu",
2453 (unsigned long)inuma, (unsigned long)inumb);
2454 goto error_dump;
2455 }
2456
2457 hasha = key_block(c, &sa->key);
2458 hashb = key_block(c, &sb->key);
2459
2460 if (hasha > hashb) {
2461 ubifs_err(c, "larger hash %u goes before %u",
2462 hasha, hashb);
2463 goto error_dump;
2464 }
2465 }
2466
2467 return 0;
2468
2469error_dump:
2470 ubifs_msg(c, "dumping first node");
2471 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2472 ubifs_msg(c, "dumping second node");
2473 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2474 return -EINVAL;
2475}
2476
2477static inline int chance(unsigned int n, unsigned int out_of)
2478{
2479 return !!(get_random_u32_below(out_of) + 1 <= n);
2480
2481}
2482
2483static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2484{
2485 struct ubifs_debug_info *d = c->dbg;
2486
2487 ubifs_assert(c, dbg_is_tst_rcvry(c));
2488
2489 if (!d->pc_cnt) {
2490 /* First call - decide delay to the power cut */
2491 if (chance(1, 2)) {
2492 unsigned long delay;
2493
2494 if (chance(1, 2)) {
2495 d->pc_delay = 1;
2496 /* Fail within 1 minute */
2497 delay = get_random_u32_below(60000);
2498 d->pc_timeout = jiffies;
2499 d->pc_timeout += msecs_to_jiffies(delay);
2500 ubifs_warn(c, "failing after %lums", delay);
2501 } else {
2502 d->pc_delay = 2;
2503 delay = get_random_u32_below(10000);
2504 /* Fail within 10000 operations */
2505 d->pc_cnt_max = delay;
2506 ubifs_warn(c, "failing after %lu calls", delay);
2507 }
2508 }
2509
2510 d->pc_cnt += 1;
2511 }
2512
2513 /* Determine if failure delay has expired */
2514 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2515 return 0;
2516 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2517 return 0;
2518
2519 if (lnum == UBIFS_SB_LNUM) {
2520 if (write && chance(1, 2))
2521 return 0;
2522 if (chance(19, 20))
2523 return 0;
2524 ubifs_warn(c, "failing in super block LEB %d", lnum);
2525 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2526 if (chance(19, 20))
2527 return 0;
2528 ubifs_warn(c, "failing in master LEB %d", lnum);
2529 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2530 if (write && chance(99, 100))
2531 return 0;
2532 if (chance(399, 400))
2533 return 0;
2534 ubifs_warn(c, "failing in log LEB %d", lnum);
2535 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2536 if (write && chance(7, 8))
2537 return 0;
2538 if (chance(19, 20))
2539 return 0;
2540 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2541 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2542 if (write && chance(1, 2))
2543 return 0;
2544 if (chance(9, 10))
2545 return 0;
2546 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2547 } else if (lnum == c->ihead_lnum) {
2548 if (chance(99, 100))
2549 return 0;
2550 ubifs_warn(c, "failing in index head LEB %d", lnum);
2551 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2552 if (chance(9, 10))
2553 return 0;
2554 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2555 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2556 !ubifs_search_bud(c, lnum)) {
2557 if (chance(19, 20))
2558 return 0;
2559 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2560 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2561 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2562 if (chance(999, 1000))
2563 return 0;
2564 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2565 } else {
2566 if (chance(9999, 10000))
2567 return 0;
2568 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2569 }
2570
2571 d->pc_happened = 1;
2572 ubifs_warn(c, "========== Power cut emulated ==========");
2573 dump_stack();
2574 return 1;
2575}
2576
2577static int corrupt_data(const struct ubifs_info *c, const void *buf,
2578 unsigned int len)
2579{
2580 unsigned int from, to, ffs = chance(1, 2);
2581 unsigned char *p = (void *)buf;
2582
2583 from = get_random_u32_below(len);
2584 /* Corruption span max to end of write unit */
2585 to = min(len, ALIGN(from + 1, c->max_write_size));
2586
2587 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2588 ffs ? "0xFFs" : "random data");
2589
2590 if (ffs)
2591 memset(p + from, 0xFF, to - from);
2592 else
2593 get_random_bytes(p + from, to - from);
2594
2595 return to;
2596}
2597
2598int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2599 int offs, int len)
2600{
2601 int err, failing;
2602
2603 if (dbg_is_power_cut(c))
2604 return -EROFS;
2605
2606 failing = power_cut_emulated(c, lnum, 1);
2607 if (failing) {
2608 len = corrupt_data(c, buf, len);
2609 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2610 len, lnum, offs);
2611 }
2612 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2613 if (err)
2614 return err;
2615 if (failing)
2616 return -EROFS;
2617 return 0;
2618}
2619
2620int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2621 int len)
2622{
2623 int err;
2624
2625 if (dbg_is_power_cut(c))
2626 return -EROFS;
2627 if (power_cut_emulated(c, lnum, 1))
2628 return -EROFS;
2629 err = ubi_leb_change(c->ubi, lnum, buf, len);
2630 if (err)
2631 return err;
2632 if (power_cut_emulated(c, lnum, 1))
2633 return -EROFS;
2634 return 0;
2635}
2636
2637int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2638{
2639 int err;
2640
2641 if (dbg_is_power_cut(c))
2642 return -EROFS;
2643 if (power_cut_emulated(c, lnum, 0))
2644 return -EROFS;
2645 err = ubi_leb_unmap(c->ubi, lnum);
2646 if (err)
2647 return err;
2648 if (power_cut_emulated(c, lnum, 0))
2649 return -EROFS;
2650 return 0;
2651}
2652
2653int dbg_leb_map(struct ubifs_info *c, int lnum)
2654{
2655 int err;
2656
2657 if (dbg_is_power_cut(c))
2658 return -EROFS;
2659 if (power_cut_emulated(c, lnum, 0))
2660 return -EROFS;
2661 err = ubi_leb_map(c->ubi, lnum);
2662 if (err)
2663 return err;
2664 if (power_cut_emulated(c, lnum, 0))
2665 return -EROFS;
2666 return 0;
2667}
2668
2669/*
2670 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2671 * contain the stuff specific to particular file-system mounts.
2672 */
2673static struct dentry *dfs_rootdir;
2674
2675static int dfs_file_open(struct inode *inode, struct file *file)
2676{
2677 file->private_data = inode->i_private;
2678 return nonseekable_open(inode, file);
2679}
2680
2681/**
2682 * provide_user_output - provide output to the user reading a debugfs file.
2683 * @val: boolean value for the answer
2684 * @u: the buffer to store the answer at
2685 * @count: size of the buffer
2686 * @ppos: position in the @u output buffer
2687 *
2688 * This is a simple helper function which stores @val boolean value in the user
2689 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2690 * bytes written to @u in case of success and a negative error code in case of
2691 * failure.
2692 */
2693static int provide_user_output(int val, char __user *u, size_t count,
2694 loff_t *ppos)
2695{
2696 char buf[3];
2697
2698 if (val)
2699 buf[0] = '1';
2700 else
2701 buf[0] = '0';
2702 buf[1] = '\n';
2703 buf[2] = 0x00;
2704
2705 return simple_read_from_buffer(u, count, ppos, buf, 2);
2706}
2707
2708static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2709 loff_t *ppos)
2710{
2711 struct dentry *dent = file->f_path.dentry;
2712 struct ubifs_info *c = file->private_data;
2713 struct ubifs_debug_info *d = c->dbg;
2714 int val;
2715
2716 if (dent == d->dfs_chk_gen)
2717 val = d->chk_gen;
2718 else if (dent == d->dfs_chk_index)
2719 val = d->chk_index;
2720 else if (dent == d->dfs_chk_orph)
2721 val = d->chk_orph;
2722 else if (dent == d->dfs_chk_lprops)
2723 val = d->chk_lprops;
2724 else if (dent == d->dfs_chk_fs)
2725 val = d->chk_fs;
2726 else if (dent == d->dfs_tst_rcvry)
2727 val = d->tst_rcvry;
2728 else if (dent == d->dfs_ro_error)
2729 val = c->ro_error;
2730 else
2731 return -EINVAL;
2732
2733 return provide_user_output(val, u, count, ppos);
2734}
2735
2736/**
2737 * interpret_user_input - interpret user debugfs file input.
2738 * @u: user-provided buffer with the input
2739 * @count: buffer size
2740 *
2741 * This is a helper function which interpret user input to a boolean UBIFS
2742 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2743 * in case of failure.
2744 */
2745static int interpret_user_input(const char __user *u, size_t count)
2746{
2747 size_t buf_size;
2748 char buf[8];
2749
2750 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2751 if (copy_from_user(buf, u, buf_size))
2752 return -EFAULT;
2753
2754 if (buf[0] == '1')
2755 return 1;
2756 else if (buf[0] == '0')
2757 return 0;
2758
2759 return -EINVAL;
2760}
2761
2762static ssize_t dfs_file_write(struct file *file, const char __user *u,
2763 size_t count, loff_t *ppos)
2764{
2765 struct ubifs_info *c = file->private_data;
2766 struct ubifs_debug_info *d = c->dbg;
2767 struct dentry *dent = file->f_path.dentry;
2768 int val;
2769
2770 if (file->f_path.dentry == d->dfs_dump_lprops) {
2771 ubifs_dump_lprops(c);
2772 return count;
2773 }
2774 if (file->f_path.dentry == d->dfs_dump_budg) {
2775 ubifs_dump_budg(c, &c->bi);
2776 return count;
2777 }
2778 if (file->f_path.dentry == d->dfs_dump_tnc) {
2779 mutex_lock(&c->tnc_mutex);
2780 ubifs_dump_tnc(c);
2781 mutex_unlock(&c->tnc_mutex);
2782 return count;
2783 }
2784
2785 val = interpret_user_input(u, count);
2786 if (val < 0)
2787 return val;
2788
2789 if (dent == d->dfs_chk_gen)
2790 d->chk_gen = val;
2791 else if (dent == d->dfs_chk_index)
2792 d->chk_index = val;
2793 else if (dent == d->dfs_chk_orph)
2794 d->chk_orph = val;
2795 else if (dent == d->dfs_chk_lprops)
2796 d->chk_lprops = val;
2797 else if (dent == d->dfs_chk_fs)
2798 d->chk_fs = val;
2799 else if (dent == d->dfs_tst_rcvry)
2800 d->tst_rcvry = val;
2801 else if (dent == d->dfs_ro_error)
2802 c->ro_error = !!val;
2803 else
2804 return -EINVAL;
2805
2806 return count;
2807}
2808
2809static const struct file_operations dfs_fops = {
2810 .open = dfs_file_open,
2811 .read = dfs_file_read,
2812 .write = dfs_file_write,
2813 .owner = THIS_MODULE,
2814};
2815
2816/**
2817 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2818 * @c: UBIFS file-system description object
2819 *
2820 * This function creates all debugfs files for this instance of UBIFS.
2821 *
2822 * Note, the only reason we have not merged this function with the
2823 * 'ubifs_debugging_init()' function is because it is better to initialize
2824 * debugfs interfaces at the very end of the mount process, and remove them at
2825 * the very beginning of the mount process.
2826 */
2827void dbg_debugfs_init_fs(struct ubifs_info *c)
2828{
2829 int n;
2830 const char *fname;
2831 struct ubifs_debug_info *d = c->dbg;
2832
2833 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
2834 c->vi.ubi_num, c->vi.vol_id);
2835 if (n >= UBIFS_DFS_DIR_LEN) {
2836 /* The array size is too small */
2837 return;
2838 }
2839
2840 fname = d->dfs_dir_name;
2841 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2842
2843 fname = "dump_lprops";
2844 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845 &dfs_fops);
2846
2847 fname = "dump_budg";
2848 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2849 &dfs_fops);
2850
2851 fname = "dump_tnc";
2852 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2853 &dfs_fops);
2854
2855 fname = "chk_general";
2856 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857 d->dfs_dir, c, &dfs_fops);
2858
2859 fname = "chk_index";
2860 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861 d->dfs_dir, c, &dfs_fops);
2862
2863 fname = "chk_orphans";
2864 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 d->dfs_dir, c, &dfs_fops);
2866
2867 fname = "chk_lprops";
2868 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 d->dfs_dir, c, &dfs_fops);
2870
2871 fname = "chk_fs";
2872 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 d->dfs_dir, c, &dfs_fops);
2874
2875 fname = "tst_recovery";
2876 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877 d->dfs_dir, c, &dfs_fops);
2878
2879 fname = "ro_error";
2880 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2881 d->dfs_dir, c, &dfs_fops);
2882}
2883
2884/**
2885 * dbg_debugfs_exit_fs - remove all debugfs files.
2886 * @c: UBIFS file-system description object
2887 */
2888void dbg_debugfs_exit_fs(struct ubifs_info *c)
2889{
2890 debugfs_remove_recursive(c->dbg->dfs_dir);
2891}
2892
2893struct ubifs_global_debug_info ubifs_dbg;
2894
2895static struct dentry *dfs_chk_gen;
2896static struct dentry *dfs_chk_index;
2897static struct dentry *dfs_chk_orph;
2898static struct dentry *dfs_chk_lprops;
2899static struct dentry *dfs_chk_fs;
2900static struct dentry *dfs_tst_rcvry;
2901
2902static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2903 size_t count, loff_t *ppos)
2904{
2905 struct dentry *dent = file->f_path.dentry;
2906 int val;
2907
2908 if (dent == dfs_chk_gen)
2909 val = ubifs_dbg.chk_gen;
2910 else if (dent == dfs_chk_index)
2911 val = ubifs_dbg.chk_index;
2912 else if (dent == dfs_chk_orph)
2913 val = ubifs_dbg.chk_orph;
2914 else if (dent == dfs_chk_lprops)
2915 val = ubifs_dbg.chk_lprops;
2916 else if (dent == dfs_chk_fs)
2917 val = ubifs_dbg.chk_fs;
2918 else if (dent == dfs_tst_rcvry)
2919 val = ubifs_dbg.tst_rcvry;
2920 else
2921 return -EINVAL;
2922
2923 return provide_user_output(val, u, count, ppos);
2924}
2925
2926static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2927 size_t count, loff_t *ppos)
2928{
2929 struct dentry *dent = file->f_path.dentry;
2930 int val;
2931
2932 val = interpret_user_input(u, count);
2933 if (val < 0)
2934 return val;
2935
2936 if (dent == dfs_chk_gen)
2937 ubifs_dbg.chk_gen = val;
2938 else if (dent == dfs_chk_index)
2939 ubifs_dbg.chk_index = val;
2940 else if (dent == dfs_chk_orph)
2941 ubifs_dbg.chk_orph = val;
2942 else if (dent == dfs_chk_lprops)
2943 ubifs_dbg.chk_lprops = val;
2944 else if (dent == dfs_chk_fs)
2945 ubifs_dbg.chk_fs = val;
2946 else if (dent == dfs_tst_rcvry)
2947 ubifs_dbg.tst_rcvry = val;
2948 else
2949 return -EINVAL;
2950
2951 return count;
2952}
2953
2954static const struct file_operations dfs_global_fops = {
2955 .read = dfs_global_file_read,
2956 .write = dfs_global_file_write,
2957 .owner = THIS_MODULE,
2958};
2959
2960/**
2961 * dbg_debugfs_init - initialize debugfs file-system.
2962 *
2963 * UBIFS uses debugfs file-system to expose various debugging knobs to
2964 * user-space. This function creates "ubifs" directory in the debugfs
2965 * file-system.
2966 */
2967void dbg_debugfs_init(void)
2968{
2969 const char *fname;
2970
2971 fname = "ubifs";
2972 dfs_rootdir = debugfs_create_dir(fname, NULL);
2973
2974 fname = "chk_general";
2975 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976 NULL, &dfs_global_fops);
2977
2978 fname = "chk_index";
2979 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980 dfs_rootdir, NULL, &dfs_global_fops);
2981
2982 fname = "chk_orphans";
2983 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2984 dfs_rootdir, NULL, &dfs_global_fops);
2985
2986 fname = "chk_lprops";
2987 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2988 dfs_rootdir, NULL, &dfs_global_fops);
2989
2990 fname = "chk_fs";
2991 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2992 NULL, &dfs_global_fops);
2993
2994 fname = "tst_recovery";
2995 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2996 dfs_rootdir, NULL, &dfs_global_fops);
2997}
2998
2999/**
3000 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3001 */
3002void dbg_debugfs_exit(void)
3003{
3004 debugfs_remove_recursive(dfs_rootdir);
3005}
3006
3007void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3008 const char *file, int line)
3009{
3010 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3011
3012 switch (c->assert_action) {
3013 case ASSACT_PANIC:
3014 BUG();
3015 break;
3016
3017 case ASSACT_RO:
3018 ubifs_ro_mode(c, -EINVAL);
3019 break;
3020
3021 case ASSACT_REPORT:
3022 default:
3023 dump_stack();
3024 break;
3025
3026 }
3027}
3028
3029/**
3030 * ubifs_debugging_init - initialize UBIFS debugging.
3031 * @c: UBIFS file-system description object
3032 *
3033 * This function initializes debugging-related data for the file system.
3034 * Returns zero in case of success and a negative error code in case of
3035 * failure.
3036 */
3037int ubifs_debugging_init(struct ubifs_info *c)
3038{
3039 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3040 if (!c->dbg)
3041 return -ENOMEM;
3042
3043 return 0;
3044}
3045
3046/**
3047 * ubifs_debugging_exit - free debugging data.
3048 * @c: UBIFS file-system description object
3049 */
3050void ubifs_debugging_exit(struct ubifs_info *c)
3051{
3052 kfree(c->dbg);
3053}