Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37#ifdef CONFIG_UBIFS_FS_DEBUG
38
39DEFINE_SPINLOCK(dbg_lock);
40
41static char dbg_key_buf0[128];
42static char dbg_key_buf1[128];
43
44static const char *get_key_fmt(int fmt)
45{
46 switch (fmt) {
47 case UBIFS_SIMPLE_KEY_FMT:
48 return "simple";
49 default:
50 return "unknown/invalid format";
51 }
52}
53
54static const char *get_key_hash(int hash)
55{
56 switch (hash) {
57 case UBIFS_KEY_HASH_R5:
58 return "R5";
59 case UBIFS_KEY_HASH_TEST:
60 return "test";
61 default:
62 return "unknown/invalid name hash";
63 }
64}
65
66static const char *get_key_type(int type)
67{
68 switch (type) {
69 case UBIFS_INO_KEY:
70 return "inode";
71 case UBIFS_DENT_KEY:
72 return "direntry";
73 case UBIFS_XENT_KEY:
74 return "xentry";
75 case UBIFS_DATA_KEY:
76 return "data";
77 case UBIFS_TRUN_KEY:
78 return "truncate";
79 default:
80 return "unknown/invalid key";
81 }
82}
83
84static const char *get_dent_type(int type)
85{
86 switch (type) {
87 case UBIFS_ITYPE_REG:
88 return "file";
89 case UBIFS_ITYPE_DIR:
90 return "dir";
91 case UBIFS_ITYPE_LNK:
92 return "symlink";
93 case UBIFS_ITYPE_BLK:
94 return "blkdev";
95 case UBIFS_ITYPE_CHR:
96 return "char dev";
97 case UBIFS_ITYPE_FIFO:
98 return "fifo";
99 case UBIFS_ITYPE_SOCK:
100 return "socket";
101 default:
102 return "unknown/invalid type";
103 }
104}
105
106static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107 char *buffer)
108{
109 char *p = buffer;
110 int type = key_type(c, key);
111
112 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113 switch (type) {
114 case UBIFS_INO_KEY:
115 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116 get_key_type(type));
117 break;
118 case UBIFS_DENT_KEY:
119 case UBIFS_XENT_KEY:
120 sprintf(p, "(%lu, %s, %#08x)",
121 (unsigned long)key_inum(c, key),
122 get_key_type(type), key_hash(c, key));
123 break;
124 case UBIFS_DATA_KEY:
125 sprintf(p, "(%lu, %s, %u)",
126 (unsigned long)key_inum(c, key),
127 get_key_type(type), key_block(c, key));
128 break;
129 case UBIFS_TRUN_KEY:
130 sprintf(p, "(%lu, %s)",
131 (unsigned long)key_inum(c, key),
132 get_key_type(type));
133 break;
134 default:
135 sprintf(p, "(bad key type: %#08x, %#08x)",
136 key->u32[0], key->u32[1]);
137 }
138 } else
139 sprintf(p, "bad key format %d", c->key_fmt);
140}
141
142const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
143{
144 /* dbg_lock must be held */
145 sprintf_key(c, key, dbg_key_buf0);
146 return dbg_key_buf0;
147}
148
149const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
150{
151 /* dbg_lock must be held */
152 sprintf_key(c, key, dbg_key_buf1);
153 return dbg_key_buf1;
154}
155
156const char *dbg_ntype(int type)
157{
158 switch (type) {
159 case UBIFS_PAD_NODE:
160 return "padding node";
161 case UBIFS_SB_NODE:
162 return "superblock node";
163 case UBIFS_MST_NODE:
164 return "master node";
165 case UBIFS_REF_NODE:
166 return "reference node";
167 case UBIFS_INO_NODE:
168 return "inode node";
169 case UBIFS_DENT_NODE:
170 return "direntry node";
171 case UBIFS_XENT_NODE:
172 return "xentry node";
173 case UBIFS_DATA_NODE:
174 return "data node";
175 case UBIFS_TRUN_NODE:
176 return "truncate node";
177 case UBIFS_IDX_NODE:
178 return "indexing node";
179 case UBIFS_CS_NODE:
180 return "commit start node";
181 case UBIFS_ORPH_NODE:
182 return "orphan node";
183 default:
184 return "unknown node";
185 }
186}
187
188static const char *dbg_gtype(int type)
189{
190 switch (type) {
191 case UBIFS_NO_NODE_GROUP:
192 return "no node group";
193 case UBIFS_IN_NODE_GROUP:
194 return "in node group";
195 case UBIFS_LAST_OF_NODE_GROUP:
196 return "last of node group";
197 default:
198 return "unknown";
199 }
200}
201
202const char *dbg_cstate(int cmt_state)
203{
204 switch (cmt_state) {
205 case COMMIT_RESTING:
206 return "commit resting";
207 case COMMIT_BACKGROUND:
208 return "background commit requested";
209 case COMMIT_REQUIRED:
210 return "commit required";
211 case COMMIT_RUNNING_BACKGROUND:
212 return "BACKGROUND commit running";
213 case COMMIT_RUNNING_REQUIRED:
214 return "commit running and required";
215 case COMMIT_BROKEN:
216 return "broken commit";
217 default:
218 return "unknown commit state";
219 }
220}
221
222const char *dbg_jhead(int jhead)
223{
224 switch (jhead) {
225 case GCHD:
226 return "0 (GC)";
227 case BASEHD:
228 return "1 (base)";
229 case DATAHD:
230 return "2 (data)";
231 default:
232 return "unknown journal head";
233 }
234}
235
236static void dump_ch(const struct ubifs_ch *ch)
237{
238 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
239 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
240 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
241 dbg_ntype(ch->node_type));
242 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
243 dbg_gtype(ch->group_type));
244 printk(KERN_DEBUG "\tsqnum %llu\n",
245 (unsigned long long)le64_to_cpu(ch->sqnum));
246 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
247}
248
249void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
250{
251 const struct ubifs_inode *ui = ubifs_inode(inode);
252 struct qstr nm = { .name = NULL };
253 union ubifs_key key;
254 struct ubifs_dent_node *dent, *pdent = NULL;
255 int count = 2;
256
257 printk(KERN_DEBUG "Dump in-memory inode:");
258 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
259 printk(KERN_DEBUG "\tsize %llu\n",
260 (unsigned long long)i_size_read(inode));
261 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
262 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
263 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
264 printk(KERN_DEBUG "\tatime %u.%u\n",
265 (unsigned int)inode->i_atime.tv_sec,
266 (unsigned int)inode->i_atime.tv_nsec);
267 printk(KERN_DEBUG "\tmtime %u.%u\n",
268 (unsigned int)inode->i_mtime.tv_sec,
269 (unsigned int)inode->i_mtime.tv_nsec);
270 printk(KERN_DEBUG "\tctime %u.%u\n",
271 (unsigned int)inode->i_ctime.tv_sec,
272 (unsigned int)inode->i_ctime.tv_nsec);
273 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
274 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
275 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
276 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
277 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
278 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
279 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
280 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
281 (unsigned long long)ui->synced_i_size);
282 printk(KERN_DEBUG "\tui_size %llu\n",
283 (unsigned long long)ui->ui_size);
284 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
285 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
286 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
288 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
289
290 if (!S_ISDIR(inode->i_mode))
291 return;
292
293 printk(KERN_DEBUG "List of directory entries:\n");
294 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
295
296 lowest_dent_key(c, &key, inode->i_ino);
297 while (1) {
298 dent = ubifs_tnc_next_ent(c, &key, &nm);
299 if (IS_ERR(dent)) {
300 if (PTR_ERR(dent) != -ENOENT)
301 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302 break;
303 }
304
305 printk(KERN_DEBUG "\t%d: %s (%s)\n",
306 count++, dent->name, get_dent_type(dent->type));
307
308 nm.name = dent->name;
309 nm.len = le16_to_cpu(dent->nlen);
310 kfree(pdent);
311 pdent = dent;
312 key_read(c, &dent->key, &key);
313 }
314 kfree(pdent);
315}
316
317void dbg_dump_node(const struct ubifs_info *c, const void *node)
318{
319 int i, n;
320 union ubifs_key key;
321 const struct ubifs_ch *ch = node;
322
323 if (dbg_is_tst_rcvry(c))
324 return;
325
326 /* If the magic is incorrect, just hexdump the first bytes */
327 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330 (void *)node, UBIFS_CH_SZ, 1);
331 return;
332 }
333
334 spin_lock(&dbg_lock);
335 dump_ch(node);
336
337 switch (ch->node_type) {
338 case UBIFS_PAD_NODE:
339 {
340 const struct ubifs_pad_node *pad = node;
341
342 printk(KERN_DEBUG "\tpad_len %u\n",
343 le32_to_cpu(pad->pad_len));
344 break;
345 }
346 case UBIFS_SB_NODE:
347 {
348 const struct ubifs_sb_node *sup = node;
349 unsigned int sup_flags = le32_to_cpu(sup->flags);
350
351 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
352 (int)sup->key_hash, get_key_hash(sup->key_hash));
353 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
354 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
356 printk(KERN_DEBUG "\t big_lpt %u\n",
357 !!(sup_flags & UBIFS_FLG_BIGLPT));
358 printk(KERN_DEBUG "\t space_fixup %u\n",
359 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360 printk(KERN_DEBUG "\tmin_io_size %u\n",
361 le32_to_cpu(sup->min_io_size));
362 printk(KERN_DEBUG "\tleb_size %u\n",
363 le32_to_cpu(sup->leb_size));
364 printk(KERN_DEBUG "\tleb_cnt %u\n",
365 le32_to_cpu(sup->leb_cnt));
366 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
367 le32_to_cpu(sup->max_leb_cnt));
368 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 printk(KERN_DEBUG "\tlog_lebs %u\n",
371 le32_to_cpu(sup->log_lebs));
372 printk(KERN_DEBUG "\tlpt_lebs %u\n",
373 le32_to_cpu(sup->lpt_lebs));
374 printk(KERN_DEBUG "\torph_lebs %u\n",
375 le32_to_cpu(sup->orph_lebs));
376 printk(KERN_DEBUG "\tjhead_cnt %u\n",
377 le32_to_cpu(sup->jhead_cnt));
378 printk(KERN_DEBUG "\tfanout %u\n",
379 le32_to_cpu(sup->fanout));
380 printk(KERN_DEBUG "\tlsave_cnt %u\n",
381 le32_to_cpu(sup->lsave_cnt));
382 printk(KERN_DEBUG "\tdefault_compr %u\n",
383 (int)le16_to_cpu(sup->default_compr));
384 printk(KERN_DEBUG "\trp_size %llu\n",
385 (unsigned long long)le64_to_cpu(sup->rp_size));
386 printk(KERN_DEBUG "\trp_uid %u\n",
387 le32_to_cpu(sup->rp_uid));
388 printk(KERN_DEBUG "\trp_gid %u\n",
389 le32_to_cpu(sup->rp_gid));
390 printk(KERN_DEBUG "\tfmt_version %u\n",
391 le32_to_cpu(sup->fmt_version));
392 printk(KERN_DEBUG "\ttime_gran %u\n",
393 le32_to_cpu(sup->time_gran));
394 printk(KERN_DEBUG "\tUUID %pUB\n",
395 sup->uuid);
396 break;
397 }
398 case UBIFS_MST_NODE:
399 {
400 const struct ubifs_mst_node *mst = node;
401
402 printk(KERN_DEBUG "\thighest_inum %llu\n",
403 (unsigned long long)le64_to_cpu(mst->highest_inum));
404 printk(KERN_DEBUG "\tcommit number %llu\n",
405 (unsigned long long)le64_to_cpu(mst->cmt_no));
406 printk(KERN_DEBUG "\tflags %#x\n",
407 le32_to_cpu(mst->flags));
408 printk(KERN_DEBUG "\tlog_lnum %u\n",
409 le32_to_cpu(mst->log_lnum));
410 printk(KERN_DEBUG "\troot_lnum %u\n",
411 le32_to_cpu(mst->root_lnum));
412 printk(KERN_DEBUG "\troot_offs %u\n",
413 le32_to_cpu(mst->root_offs));
414 printk(KERN_DEBUG "\troot_len %u\n",
415 le32_to_cpu(mst->root_len));
416 printk(KERN_DEBUG "\tgc_lnum %u\n",
417 le32_to_cpu(mst->gc_lnum));
418 printk(KERN_DEBUG "\tihead_lnum %u\n",
419 le32_to_cpu(mst->ihead_lnum));
420 printk(KERN_DEBUG "\tihead_offs %u\n",
421 le32_to_cpu(mst->ihead_offs));
422 printk(KERN_DEBUG "\tindex_size %llu\n",
423 (unsigned long long)le64_to_cpu(mst->index_size));
424 printk(KERN_DEBUG "\tlpt_lnum %u\n",
425 le32_to_cpu(mst->lpt_lnum));
426 printk(KERN_DEBUG "\tlpt_offs %u\n",
427 le32_to_cpu(mst->lpt_offs));
428 printk(KERN_DEBUG "\tnhead_lnum %u\n",
429 le32_to_cpu(mst->nhead_lnum));
430 printk(KERN_DEBUG "\tnhead_offs %u\n",
431 le32_to_cpu(mst->nhead_offs));
432 printk(KERN_DEBUG "\tltab_lnum %u\n",
433 le32_to_cpu(mst->ltab_lnum));
434 printk(KERN_DEBUG "\tltab_offs %u\n",
435 le32_to_cpu(mst->ltab_offs));
436 printk(KERN_DEBUG "\tlsave_lnum %u\n",
437 le32_to_cpu(mst->lsave_lnum));
438 printk(KERN_DEBUG "\tlsave_offs %u\n",
439 le32_to_cpu(mst->lsave_offs));
440 printk(KERN_DEBUG "\tlscan_lnum %u\n",
441 le32_to_cpu(mst->lscan_lnum));
442 printk(KERN_DEBUG "\tleb_cnt %u\n",
443 le32_to_cpu(mst->leb_cnt));
444 printk(KERN_DEBUG "\tempty_lebs %u\n",
445 le32_to_cpu(mst->empty_lebs));
446 printk(KERN_DEBUG "\tidx_lebs %u\n",
447 le32_to_cpu(mst->idx_lebs));
448 printk(KERN_DEBUG "\ttotal_free %llu\n",
449 (unsigned long long)le64_to_cpu(mst->total_free));
450 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
451 (unsigned long long)le64_to_cpu(mst->total_dirty));
452 printk(KERN_DEBUG "\ttotal_used %llu\n",
453 (unsigned long long)le64_to_cpu(mst->total_used));
454 printk(KERN_DEBUG "\ttotal_dead %llu\n",
455 (unsigned long long)le64_to_cpu(mst->total_dead));
456 printk(KERN_DEBUG "\ttotal_dark %llu\n",
457 (unsigned long long)le64_to_cpu(mst->total_dark));
458 break;
459 }
460 case UBIFS_REF_NODE:
461 {
462 const struct ubifs_ref_node *ref = node;
463
464 printk(KERN_DEBUG "\tlnum %u\n",
465 le32_to_cpu(ref->lnum));
466 printk(KERN_DEBUG "\toffs %u\n",
467 le32_to_cpu(ref->offs));
468 printk(KERN_DEBUG "\tjhead %u\n",
469 le32_to_cpu(ref->jhead));
470 break;
471 }
472 case UBIFS_INO_NODE:
473 {
474 const struct ubifs_ino_node *ino = node;
475
476 key_read(c, &ino->key, &key);
477 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
478 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
479 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480 printk(KERN_DEBUG "\tsize %llu\n",
481 (unsigned long long)le64_to_cpu(ino->size));
482 printk(KERN_DEBUG "\tnlink %u\n",
483 le32_to_cpu(ino->nlink));
484 printk(KERN_DEBUG "\tatime %lld.%u\n",
485 (long long)le64_to_cpu(ino->atime_sec),
486 le32_to_cpu(ino->atime_nsec));
487 printk(KERN_DEBUG "\tmtime %lld.%u\n",
488 (long long)le64_to_cpu(ino->mtime_sec),
489 le32_to_cpu(ino->mtime_nsec));
490 printk(KERN_DEBUG "\tctime %lld.%u\n",
491 (long long)le64_to_cpu(ino->ctime_sec),
492 le32_to_cpu(ino->ctime_nsec));
493 printk(KERN_DEBUG "\tuid %u\n",
494 le32_to_cpu(ino->uid));
495 printk(KERN_DEBUG "\tgid %u\n",
496 le32_to_cpu(ino->gid));
497 printk(KERN_DEBUG "\tmode %u\n",
498 le32_to_cpu(ino->mode));
499 printk(KERN_DEBUG "\tflags %#x\n",
500 le32_to_cpu(ino->flags));
501 printk(KERN_DEBUG "\txattr_cnt %u\n",
502 le32_to_cpu(ino->xattr_cnt));
503 printk(KERN_DEBUG "\txattr_size %u\n",
504 le32_to_cpu(ino->xattr_size));
505 printk(KERN_DEBUG "\txattr_names %u\n",
506 le32_to_cpu(ino->xattr_names));
507 printk(KERN_DEBUG "\tcompr_type %#x\n",
508 (int)le16_to_cpu(ino->compr_type));
509 printk(KERN_DEBUG "\tdata len %u\n",
510 le32_to_cpu(ino->data_len));
511 break;
512 }
513 case UBIFS_DENT_NODE:
514 case UBIFS_XENT_NODE:
515 {
516 const struct ubifs_dent_node *dent = node;
517 int nlen = le16_to_cpu(dent->nlen);
518
519 key_read(c, &dent->key, &key);
520 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
521 printk(KERN_DEBUG "\tinum %llu\n",
522 (unsigned long long)le64_to_cpu(dent->inum));
523 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
524 printk(KERN_DEBUG "\tnlen %d\n", nlen);
525 printk(KERN_DEBUG "\tname ");
526
527 if (nlen > UBIFS_MAX_NLEN)
528 printk(KERN_DEBUG "(bad name length, not printing, "
529 "bad or corrupted node)");
530 else {
531 for (i = 0; i < nlen && dent->name[i]; i++)
532 printk(KERN_CONT "%c", dent->name[i]);
533 }
534 printk(KERN_CONT "\n");
535
536 break;
537 }
538 case UBIFS_DATA_NODE:
539 {
540 const struct ubifs_data_node *dn = node;
541 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
542
543 key_read(c, &dn->key, &key);
544 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
545 printk(KERN_DEBUG "\tsize %u\n",
546 le32_to_cpu(dn->size));
547 printk(KERN_DEBUG "\tcompr_typ %d\n",
548 (int)le16_to_cpu(dn->compr_type));
549 printk(KERN_DEBUG "\tdata size %d\n",
550 dlen);
551 printk(KERN_DEBUG "\tdata:\n");
552 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553 (void *)&dn->data, dlen, 0);
554 break;
555 }
556 case UBIFS_TRUN_NODE:
557 {
558 const struct ubifs_trun_node *trun = node;
559
560 printk(KERN_DEBUG "\tinum %u\n",
561 le32_to_cpu(trun->inum));
562 printk(KERN_DEBUG "\told_size %llu\n",
563 (unsigned long long)le64_to_cpu(trun->old_size));
564 printk(KERN_DEBUG "\tnew_size %llu\n",
565 (unsigned long long)le64_to_cpu(trun->new_size));
566 break;
567 }
568 case UBIFS_IDX_NODE:
569 {
570 const struct ubifs_idx_node *idx = node;
571
572 n = le16_to_cpu(idx->child_cnt);
573 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
574 printk(KERN_DEBUG "\tlevel %d\n",
575 (int)le16_to_cpu(idx->level));
576 printk(KERN_DEBUG "\tBranches:\n");
577
578 for (i = 0; i < n && i < c->fanout - 1; i++) {
579 const struct ubifs_branch *br;
580
581 br = ubifs_idx_branch(c, idx, i);
582 key_read(c, &br->key, &key);
583 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585 le32_to_cpu(br->len), DBGKEY(&key));
586 }
587 break;
588 }
589 case UBIFS_CS_NODE:
590 break;
591 case UBIFS_ORPH_NODE:
592 {
593 const struct ubifs_orph_node *orph = node;
594
595 printk(KERN_DEBUG "\tcommit number %llu\n",
596 (unsigned long long)
597 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598 printk(KERN_DEBUG "\tlast node flag %llu\n",
599 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602 for (i = 0; i < n; i++)
603 printk(KERN_DEBUG "\t ino %llu\n",
604 (unsigned long long)le64_to_cpu(orph->inos[i]));
605 break;
606 }
607 default:
608 printk(KERN_DEBUG "node type %d was not recognized\n",
609 (int)ch->node_type);
610 }
611 spin_unlock(&dbg_lock);
612}
613
614void dbg_dump_budget_req(const struct ubifs_budget_req *req)
615{
616 spin_lock(&dbg_lock);
617 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618 req->new_ino, req->dirtied_ino);
619 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
620 req->new_ino_d, req->dirtied_ino_d);
621 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
622 req->new_page, req->dirtied_page);
623 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
624 req->new_dent, req->mod_dent);
625 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
626 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
627 req->data_growth, req->dd_growth);
628 spin_unlock(&dbg_lock);
629}
630
631void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
632{
633 spin_lock(&dbg_lock);
634 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638 lst->total_dirty);
639 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640 "total_dead %lld\n", lst->total_used, lst->total_dark,
641 lst->total_dead);
642 spin_unlock(&dbg_lock);
643}
644
645void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646{
647 int i;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
650 struct ubifs_gced_idx_leb *idx_gc;
651 long long available, outstanding, free;
652
653 spin_lock(&c->space_lock);
654 spin_lock(&dbg_lock);
655 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656 "total budget sum %lld\n", current->pid,
657 bi->data_growth + bi->dd_growth,
658 bi->data_growth + bi->dd_growth + bi->idx_growth);
659 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661 bi->idx_growth);
662 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664 bi->uncommitted_idx);
665 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 bi->page_budget, bi->inode_budget, bi->dent_budget);
667 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668 bi->nospace, bi->nospace_rp);
669 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
671
672 if (bi != &c->bi)
673 /*
674 * If we are dumping saved budgeting data, do not print
675 * additional information which is about the current state, not
676 * the old one which corresponded to the saved budgeting data.
677 */
678 goto out_unlock;
679
680 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684 atomic_long_read(&c->dirty_zn_cnt),
685 atomic_long_read(&c->clean_zn_cnt));
686 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687 c->gc_lnum, c->ihead_lnum);
688
689 /* If we are in R/O mode, journal heads do not exist */
690 if (c->jheads)
691 for (i = 0; i < c->jhead_cnt; i++)
692 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693 dbg_jhead(c->jheads[i].wbuf.jhead),
694 c->jheads[i].wbuf.lnum);
695 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696 bud = rb_entry(rb, struct ubifs_bud, rb);
697 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
698 }
699 list_for_each_entry(bud, &c->old_buds, list)
700 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701 list_for_each_entry(idx_gc, &c->idx_gc, list)
702 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703 idx_gc->lnum, idx_gc->unmap);
704 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
705
706 /* Print budgeting predictions */
707 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708 outstanding = c->bi.data_growth + c->bi.dd_growth;
709 free = ubifs_get_free_space_nolock(c);
710 printk(KERN_DEBUG "Budgeting predictions:\n");
711 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712 available, outstanding, free);
713out_unlock:
714 spin_unlock(&dbg_lock);
715 spin_unlock(&c->space_lock);
716}
717
718void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
719{
720 int i, spc, dark = 0, dead = 0;
721 struct rb_node *rb;
722 struct ubifs_bud *bud;
723
724 spc = lp->free + lp->dirty;
725 if (spc < c->dead_wm)
726 dead = spc;
727 else
728 dark = ubifs_calc_dark(c, spc);
729
730 if (lp->flags & LPROPS_INDEX)
731 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733 lp->dirty, c->leb_size - spc, spc, lp->flags);
734 else
735 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738 c->leb_size - spc, spc, dark, dead,
739 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
740
741 if (lp->flags & LPROPS_TAKEN) {
742 if (lp->flags & LPROPS_INDEX)
743 printk(KERN_CONT "index, taken");
744 else
745 printk(KERN_CONT "taken");
746 } else {
747 const char *s;
748
749 if (lp->flags & LPROPS_INDEX) {
750 switch (lp->flags & LPROPS_CAT_MASK) {
751 case LPROPS_DIRTY_IDX:
752 s = "dirty index";
753 break;
754 case LPROPS_FRDI_IDX:
755 s = "freeable index";
756 break;
757 default:
758 s = "index";
759 }
760 } else {
761 switch (lp->flags & LPROPS_CAT_MASK) {
762 case LPROPS_UNCAT:
763 s = "not categorized";
764 break;
765 case LPROPS_DIRTY:
766 s = "dirty";
767 break;
768 case LPROPS_FREE:
769 s = "free";
770 break;
771 case LPROPS_EMPTY:
772 s = "empty";
773 break;
774 case LPROPS_FREEABLE:
775 s = "freeable";
776 break;
777 default:
778 s = NULL;
779 break;
780 }
781 }
782 printk(KERN_CONT "%s", s);
783 }
784
785 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786 bud = rb_entry(rb, struct ubifs_bud, rb);
787 if (bud->lnum == lp->lnum) {
788 int head = 0;
789 for (i = 0; i < c->jhead_cnt; i++) {
790 /*
791 * Note, if we are in R/O mode or in the middle
792 * of mounting/re-mounting, the write-buffers do
793 * not exist.
794 */
795 if (c->jheads &&
796 lp->lnum == c->jheads[i].wbuf.lnum) {
797 printk(KERN_CONT ", jhead %s",
798 dbg_jhead(i));
799 head = 1;
800 }
801 }
802 if (!head)
803 printk(KERN_CONT ", bud of jhead %s",
804 dbg_jhead(bud->jhead));
805 }
806 }
807 if (lp->lnum == c->gc_lnum)
808 printk(KERN_CONT ", GC LEB");
809 printk(KERN_CONT ")\n");
810}
811
812void dbg_dump_lprops(struct ubifs_info *c)
813{
814 int lnum, err;
815 struct ubifs_lprops lp;
816 struct ubifs_lp_stats lst;
817
818 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819 current->pid);
820 ubifs_get_lp_stats(c, &lst);
821 dbg_dump_lstats(&lst);
822
823 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824 err = ubifs_read_one_lp(c, lnum, &lp);
825 if (err)
826 ubifs_err("cannot read lprops for LEB %d", lnum);
827
828 dbg_dump_lprop(c, &lp);
829 }
830 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831 current->pid);
832}
833
834void dbg_dump_lpt_info(struct ubifs_info *c)
835{
836 int i;
837
838 spin_lock(&dbg_lock);
839 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
841 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
842 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
843 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
844 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
845 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
846 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
847 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
848 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
849 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
850 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
851 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
852 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
853 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
856 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
857 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
858 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860 c->nhead_lnum, c->nhead_offs);
861 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862 c->ltab_lnum, c->ltab_offs);
863 if (c->big_lpt)
864 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865 c->lsave_lnum, c->lsave_offs);
866 for (i = 0; i < c->lpt_lebs; i++)
867 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870 spin_unlock(&dbg_lock);
871}
872
873void dbg_dump_leb(const struct ubifs_info *c, int lnum)
874{
875 struct ubifs_scan_leb *sleb;
876 struct ubifs_scan_node *snod;
877 void *buf;
878
879 if (dbg_is_tst_rcvry(c))
880 return;
881
882 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
883 current->pid, lnum);
884
885 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
886 if (!buf) {
887 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
888 return;
889 }
890
891 sleb = ubifs_scan(c, lnum, 0, buf, 0);
892 if (IS_ERR(sleb)) {
893 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
894 goto out;
895 }
896
897 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
898 sleb->nodes_cnt, sleb->endpt);
899
900 list_for_each_entry(snod, &sleb->nodes, list) {
901 cond_resched();
902 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
903 snod->offs, snod->len);
904 dbg_dump_node(c, snod->node);
905 }
906
907 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
908 current->pid, lnum);
909 ubifs_scan_destroy(sleb);
910
911out:
912 vfree(buf);
913 return;
914}
915
916void dbg_dump_znode(const struct ubifs_info *c,
917 const struct ubifs_znode *znode)
918{
919 int n;
920 const struct ubifs_zbranch *zbr;
921
922 spin_lock(&dbg_lock);
923 if (znode->parent)
924 zbr = &znode->parent->zbranch[znode->iip];
925 else
926 zbr = &c->zroot;
927
928 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
930 zbr->len, znode->parent, znode->iip, znode->level,
931 znode->child_cnt, znode->flags);
932
933 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
934 spin_unlock(&dbg_lock);
935 return;
936 }
937
938 printk(KERN_DEBUG "zbranches:\n");
939 for (n = 0; n < znode->child_cnt; n++) {
940 zbr = &znode->zbranch[n];
941 if (znode->level > 0)
942 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
943 "%s\n", n, zbr->znode, zbr->lnum,
944 zbr->offs, zbr->len,
945 DBGKEY(&zbr->key));
946 else
947 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
948 "%s\n", n, zbr->znode, zbr->lnum,
949 zbr->offs, zbr->len,
950 DBGKEY(&zbr->key));
951 }
952 spin_unlock(&dbg_lock);
953}
954
955void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
956{
957 int i;
958
959 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
960 current->pid, cat, heap->cnt);
961 for (i = 0; i < heap->cnt; i++) {
962 struct ubifs_lprops *lprops = heap->arr[i];
963
964 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
965 "flags %d\n", i, lprops->lnum, lprops->hpos,
966 lprops->free, lprops->dirty, lprops->flags);
967 }
968 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
969}
970
971void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
972 struct ubifs_nnode *parent, int iip)
973{
974 int i;
975
976 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
977 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
978 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
979 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
980 pnode->flags, iip, pnode->level, pnode->num);
981 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
982 struct ubifs_lprops *lp = &pnode->lprops[i];
983
984 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
985 i, lp->free, lp->dirty, lp->flags, lp->lnum);
986 }
987}
988
989void dbg_dump_tnc(struct ubifs_info *c)
990{
991 struct ubifs_znode *znode;
992 int level;
993
994 printk(KERN_DEBUG "\n");
995 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
996 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
997 level = znode->level;
998 printk(KERN_DEBUG "== Level %d ==\n", level);
999 while (znode) {
1000 if (level != znode->level) {
1001 level = znode->level;
1002 printk(KERN_DEBUG "== Level %d ==\n", level);
1003 }
1004 dbg_dump_znode(c, znode);
1005 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006 }
1007 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008}
1009
1010static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011 void *priv)
1012{
1013 dbg_dump_znode(c, znode);
1014 return 0;
1015}
1016
1017/**
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1020 *
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1023 */
1024void dbg_dump_index(struct ubifs_info *c)
1025{
1026 dbg_walk_index(c, NULL, dump_znode, NULL);
1027}
1028
1029/**
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1032 *
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1035 */
1036void dbg_save_space_info(struct ubifs_info *c)
1037{
1038 struct ubifs_debug_info *d = c->dbg;
1039 int freeable_cnt;
1040
1041 spin_lock(&c->space_lock);
1042 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045
1046 /*
1047 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048 * affects the free space calculations, and UBIFS might not know about
1049 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050 * only when we read their lprops, and we do this only lazily, upon the
1051 * need. So at any given point of time @c->freeable_cnt might be not
1052 * exactly accurate.
1053 *
1054 * Just one example about the issue we hit when we did not zero
1055 * @c->freeable_cnt.
1056 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057 * amount of free space in @d->saved_free
1058 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059 * information from flash, where we cache LEBs from various
1060 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1063 * -> 'ubifs_add_to_cat()').
1064 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065 * becomes %1.
1066 * 4. We calculate the amount of free space when the re-mount is
1067 * finished in 'dbg_check_space_info()' and it does not match
1068 * @d->saved_free.
1069 */
1070 freeable_cnt = c->freeable_cnt;
1071 c->freeable_cnt = 0;
1072 d->saved_free = ubifs_get_free_space_nolock(c);
1073 c->freeable_cnt = freeable_cnt;
1074 spin_unlock(&c->space_lock);
1075}
1076
1077/**
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1080 *
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1084 * changed.
1085 */
1086int dbg_check_space_info(struct ubifs_info *c)
1087{
1088 struct ubifs_debug_info *d = c->dbg;
1089 struct ubifs_lp_stats lst;
1090 long long free;
1091 int freeable_cnt;
1092
1093 spin_lock(&c->space_lock);
1094 freeable_cnt = c->freeable_cnt;
1095 c->freeable_cnt = 0;
1096 free = ubifs_get_free_space_nolock(c);
1097 c->freeable_cnt = freeable_cnt;
1098 spin_unlock(&c->space_lock);
1099
1100 if (free != d->saved_free) {
1101 ubifs_err("free space changed from %lld to %lld",
1102 d->saved_free, free);
1103 goto out;
1104 }
1105
1106 return 0;
1107
1108out:
1109 ubifs_msg("saved lprops statistics dump");
1110 dbg_dump_lstats(&d->saved_lst);
1111 ubifs_msg("saved budgeting info dump");
1112 dbg_dump_budg(c, &d->saved_bi);
1113 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114 ubifs_msg("current lprops statistics dump");
1115 ubifs_get_lp_stats(c, &lst);
1116 dbg_dump_lstats(&lst);
1117 ubifs_msg("current budgeting info dump");
1118 dbg_dump_budg(c, &c->bi);
1119 dump_stack();
1120 return -EINVAL;
1121}
1122
1123/**
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1127 *
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1131 * %-EINVAL if not.
1132 */
1133int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134{
1135 int err = 0;
1136 struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138 if (!dbg_is_chk_gen(c))
1139 return 0;
1140 if (!S_ISREG(inode->i_mode))
1141 return 0;
1142
1143 mutex_lock(&ui->ui_mutex);
1144 spin_lock(&ui->ui_lock);
1145 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147 "is clean", ui->ui_size, ui->synced_i_size);
1148 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149 inode->i_mode, i_size_read(inode));
1150 dbg_dump_stack();
1151 err = -EINVAL;
1152 }
1153 spin_unlock(&ui->ui_lock);
1154 mutex_unlock(&ui->ui_mutex);
1155 return err;
1156}
1157
1158/*
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1163 *
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1166 * failure.
1167 *
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1170 */
1171int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172{
1173 unsigned int nlink = 2;
1174 union ubifs_key key;
1175 struct ubifs_dent_node *dent, *pdent = NULL;
1176 struct qstr nm = { .name = NULL };
1177 loff_t size = UBIFS_INO_NODE_SZ;
1178
1179 if (!dbg_is_chk_gen(c))
1180 return 0;
1181
1182 if (!S_ISDIR(dir->i_mode))
1183 return 0;
1184
1185 lowest_dent_key(c, &key, dir->i_ino);
1186 while (1) {
1187 int err;
1188
1189 dent = ubifs_tnc_next_ent(c, &key, &nm);
1190 if (IS_ERR(dent)) {
1191 err = PTR_ERR(dent);
1192 if (err == -ENOENT)
1193 break;
1194 return err;
1195 }
1196
1197 nm.name = dent->name;
1198 nm.len = le16_to_cpu(dent->nlen);
1199 size += CALC_DENT_SIZE(nm.len);
1200 if (dent->type == UBIFS_ITYPE_DIR)
1201 nlink += 1;
1202 kfree(pdent);
1203 pdent = dent;
1204 key_read(c, &dent->key, &key);
1205 }
1206 kfree(pdent);
1207
1208 if (i_size_read(dir) != size) {
1209 ubifs_err("directory inode %lu has size %llu, "
1210 "but calculated size is %llu", dir->i_ino,
1211 (unsigned long long)i_size_read(dir),
1212 (unsigned long long)size);
1213 dbg_dump_inode(c, dir);
1214 dump_stack();
1215 return -EINVAL;
1216 }
1217 if (dir->i_nlink != nlink) {
1218 ubifs_err("directory inode %lu has nlink %u, but calculated "
1219 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220 dbg_dump_inode(c, dir);
1221 dump_stack();
1222 return -EINVAL;
1223 }
1224
1225 return 0;
1226}
1227
1228/**
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1233 *
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1240 */
1241static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242 struct ubifs_zbranch *zbr2)
1243{
1244 int err, nlen1, nlen2, cmp;
1245 struct ubifs_dent_node *dent1, *dent2;
1246 union ubifs_key key;
1247
1248 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250 if (!dent1)
1251 return -ENOMEM;
1252 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253 if (!dent2) {
1254 err = -ENOMEM;
1255 goto out_free;
1256 }
1257
1258 err = ubifs_tnc_read_node(c, zbr1, dent1);
1259 if (err)
1260 goto out_free;
1261 err = ubifs_validate_entry(c, dent1);
1262 if (err)
1263 goto out_free;
1264
1265 err = ubifs_tnc_read_node(c, zbr2, dent2);
1266 if (err)
1267 goto out_free;
1268 err = ubifs_validate_entry(c, dent2);
1269 if (err)
1270 goto out_free;
1271
1272 /* Make sure node keys are the same as in zbranch */
1273 err = 1;
1274 key_read(c, &dent1->key, &key);
1275 if (keys_cmp(c, &zbr1->key, &key)) {
1276 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277 zbr1->offs, DBGKEY(&key));
1278 dbg_err("but it should have key %s according to tnc",
1279 DBGKEY(&zbr1->key));
1280 dbg_dump_node(c, dent1);
1281 goto out_free;
1282 }
1283
1284 key_read(c, &dent2->key, &key);
1285 if (keys_cmp(c, &zbr2->key, &key)) {
1286 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287 zbr1->offs, DBGKEY(&key));
1288 dbg_err("but it should have key %s according to tnc",
1289 DBGKEY(&zbr2->key));
1290 dbg_dump_node(c, dent2);
1291 goto out_free;
1292 }
1293
1294 nlen1 = le16_to_cpu(dent1->nlen);
1295 nlen2 = le16_to_cpu(dent2->nlen);
1296
1297 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299 err = 0;
1300 goto out_free;
1301 }
1302 if (cmp == 0 && nlen1 == nlen2)
1303 dbg_err("2 xent/dent nodes with the same name");
1304 else
1305 dbg_err("bad order of colliding key %s",
1306 DBGKEY(&key));
1307
1308 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309 dbg_dump_node(c, dent1);
1310 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311 dbg_dump_node(c, dent2);
1312
1313out_free:
1314 kfree(dent2);
1315 kfree(dent1);
1316 return err;
1317}
1318
1319/**
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1323 *
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1326 */
1327static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328{
1329 struct ubifs_znode *znode = zbr->znode;
1330 struct ubifs_znode *zp = znode->parent;
1331 int n, err, cmp;
1332
1333 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334 err = 1;
1335 goto out;
1336 }
1337 if (znode->level < 0) {
1338 err = 2;
1339 goto out;
1340 }
1341 if (znode->iip < 0 || znode->iip >= c->fanout) {
1342 err = 3;
1343 goto out;
1344 }
1345
1346 if (zbr->len == 0)
1347 /* Only dirty zbranch may have no on-flash nodes */
1348 if (!ubifs_zn_dirty(znode)) {
1349 err = 4;
1350 goto out;
1351 }
1352
1353 if (ubifs_zn_dirty(znode)) {
1354 /*
1355 * If znode is dirty, its parent has to be dirty as well. The
1356 * order of the operation is important, so we have to have
1357 * memory barriers.
1358 */
1359 smp_mb();
1360 if (zp && !ubifs_zn_dirty(zp)) {
1361 /*
1362 * The dirty flag is atomic and is cleared outside the
1363 * TNC mutex, so znode's dirty flag may now have
1364 * been cleared. The child is always cleared before the
1365 * parent, so we just need to check again.
1366 */
1367 smp_mb();
1368 if (ubifs_zn_dirty(znode)) {
1369 err = 5;
1370 goto out;
1371 }
1372 }
1373 }
1374
1375 if (zp) {
1376 const union ubifs_key *min, *max;
1377
1378 if (znode->level != zp->level - 1) {
1379 err = 6;
1380 goto out;
1381 }
1382
1383 /* Make sure the 'parent' pointer in our znode is correct */
1384 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385 if (!err) {
1386 /* This zbranch does not exist in the parent */
1387 err = 7;
1388 goto out;
1389 }
1390
1391 if (znode->iip >= zp->child_cnt) {
1392 err = 8;
1393 goto out;
1394 }
1395
1396 if (znode->iip != n) {
1397 /* This may happen only in case of collisions */
1398 if (keys_cmp(c, &zp->zbranch[n].key,
1399 &zp->zbranch[znode->iip].key)) {
1400 err = 9;
1401 goto out;
1402 }
1403 n = znode->iip;
1404 }
1405
1406 /*
1407 * Make sure that the first key in our znode is greater than or
1408 * equal to the key in the pointing zbranch.
1409 */
1410 min = &zbr->key;
1411 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412 if (cmp == 1) {
1413 err = 10;
1414 goto out;
1415 }
1416
1417 if (n + 1 < zp->child_cnt) {
1418 max = &zp->zbranch[n + 1].key;
1419
1420 /*
1421 * Make sure the last key in our znode is less or
1422 * equivalent than the key in the zbranch which goes
1423 * after our pointing zbranch.
1424 */
1425 cmp = keys_cmp(c, max,
1426 &znode->zbranch[znode->child_cnt - 1].key);
1427 if (cmp == -1) {
1428 err = 11;
1429 goto out;
1430 }
1431 }
1432 } else {
1433 /* This may only be root znode */
1434 if (zbr != &c->zroot) {
1435 err = 12;
1436 goto out;
1437 }
1438 }
1439
1440 /*
1441 * Make sure that next key is greater or equivalent then the previous
1442 * one.
1443 */
1444 for (n = 1; n < znode->child_cnt; n++) {
1445 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446 &znode->zbranch[n].key);
1447 if (cmp > 0) {
1448 err = 13;
1449 goto out;
1450 }
1451 if (cmp == 0) {
1452 /* This can only be keys with colliding hash */
1453 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454 err = 14;
1455 goto out;
1456 }
1457
1458 if (znode->level != 0 || c->replaying)
1459 continue;
1460
1461 /*
1462 * Colliding keys should follow binary order of
1463 * corresponding xentry/dentry names.
1464 */
1465 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466 &znode->zbranch[n]);
1467 if (err < 0)
1468 return err;
1469 if (err) {
1470 err = 15;
1471 goto out;
1472 }
1473 }
1474 }
1475
1476 for (n = 0; n < znode->child_cnt; n++) {
1477 if (!znode->zbranch[n].znode &&
1478 (znode->zbranch[n].lnum == 0 ||
1479 znode->zbranch[n].len == 0)) {
1480 err = 16;
1481 goto out;
1482 }
1483
1484 if (znode->zbranch[n].lnum != 0 &&
1485 znode->zbranch[n].len == 0) {
1486 err = 17;
1487 goto out;
1488 }
1489
1490 if (znode->zbranch[n].lnum == 0 &&
1491 znode->zbranch[n].len != 0) {
1492 err = 18;
1493 goto out;
1494 }
1495
1496 if (znode->zbranch[n].lnum == 0 &&
1497 znode->zbranch[n].offs != 0) {
1498 err = 19;
1499 goto out;
1500 }
1501
1502 if (znode->level != 0 && znode->zbranch[n].znode)
1503 if (znode->zbranch[n].znode->parent != znode) {
1504 err = 20;
1505 goto out;
1506 }
1507 }
1508
1509 return 0;
1510
1511out:
1512 ubifs_err("failed, error %d", err);
1513 ubifs_msg("dump of the znode");
1514 dbg_dump_znode(c, znode);
1515 if (zp) {
1516 ubifs_msg("dump of the parent znode");
1517 dbg_dump_znode(c, zp);
1518 }
1519 dump_stack();
1520 return -EINVAL;
1521}
1522
1523/**
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1527 *
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1530 */
1531int dbg_check_tnc(struct ubifs_info *c, int extra)
1532{
1533 struct ubifs_znode *znode;
1534 long clean_cnt = 0, dirty_cnt = 0;
1535 int err, last;
1536
1537 if (!dbg_is_chk_index(c))
1538 return 0;
1539
1540 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541 if (!c->zroot.znode)
1542 return 0;
1543
1544 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545 while (1) {
1546 struct ubifs_znode *prev;
1547 struct ubifs_zbranch *zbr;
1548
1549 if (!znode->parent)
1550 zbr = &c->zroot;
1551 else
1552 zbr = &znode->parent->zbranch[znode->iip];
1553
1554 err = dbg_check_znode(c, zbr);
1555 if (err)
1556 return err;
1557
1558 if (extra) {
1559 if (ubifs_zn_dirty(znode))
1560 dirty_cnt += 1;
1561 else
1562 clean_cnt += 1;
1563 }
1564
1565 prev = znode;
1566 znode = ubifs_tnc_postorder_next(znode);
1567 if (!znode)
1568 break;
1569
1570 /*
1571 * If the last key of this znode is equivalent to the first key
1572 * of the next znode (collision), then check order of the keys.
1573 */
1574 last = prev->child_cnt - 1;
1575 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576 !keys_cmp(c, &prev->zbranch[last].key,
1577 &znode->zbranch[0].key)) {
1578 err = dbg_check_key_order(c, &prev->zbranch[last],
1579 &znode->zbranch[0]);
1580 if (err < 0)
1581 return err;
1582 if (err) {
1583 ubifs_msg("first znode");
1584 dbg_dump_znode(c, prev);
1585 ubifs_msg("second znode");
1586 dbg_dump_znode(c, znode);
1587 return -EINVAL;
1588 }
1589 }
1590 }
1591
1592 if (extra) {
1593 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595 atomic_long_read(&c->clean_zn_cnt),
1596 clean_cnt);
1597 return -EINVAL;
1598 }
1599 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601 atomic_long_read(&c->dirty_zn_cnt),
1602 dirty_cnt);
1603 return -EINVAL;
1604 }
1605 }
1606
1607 return 0;
1608}
1609
1610/**
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1616 *
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1620 *
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1623 * behavior.
1624 */
1625int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626 dbg_znode_callback znode_cb, void *priv)
1627{
1628 int err;
1629 struct ubifs_zbranch *zbr;
1630 struct ubifs_znode *znode, *child;
1631
1632 mutex_lock(&c->tnc_mutex);
1633 /* If the root indexing node is not in TNC - pull it */
1634 if (!c->zroot.znode) {
1635 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636 if (IS_ERR(c->zroot.znode)) {
1637 err = PTR_ERR(c->zroot.znode);
1638 c->zroot.znode = NULL;
1639 goto out_unlock;
1640 }
1641 }
1642
1643 /*
1644 * We are going to traverse the indexing tree in the postorder manner.
1645 * Go down and find the leftmost indexing node where we are going to
1646 * start from.
1647 */
1648 znode = c->zroot.znode;
1649 while (znode->level > 0) {
1650 zbr = &znode->zbranch[0];
1651 child = zbr->znode;
1652 if (!child) {
1653 child = ubifs_load_znode(c, zbr, znode, 0);
1654 if (IS_ERR(child)) {
1655 err = PTR_ERR(child);
1656 goto out_unlock;
1657 }
1658 zbr->znode = child;
1659 }
1660
1661 znode = child;
1662 }
1663
1664 /* Iterate over all indexing nodes */
1665 while (1) {
1666 int idx;
1667
1668 cond_resched();
1669
1670 if (znode_cb) {
1671 err = znode_cb(c, znode, priv);
1672 if (err) {
1673 ubifs_err("znode checking function returned "
1674 "error %d", err);
1675 dbg_dump_znode(c, znode);
1676 goto out_dump;
1677 }
1678 }
1679 if (leaf_cb && znode->level == 0) {
1680 for (idx = 0; idx < znode->child_cnt; idx++) {
1681 zbr = &znode->zbranch[idx];
1682 err = leaf_cb(c, zbr, priv);
1683 if (err) {
1684 ubifs_err("leaf checking function "
1685 "returned error %d, for leaf "
1686 "at LEB %d:%d",
1687 err, zbr->lnum, zbr->offs);
1688 goto out_dump;
1689 }
1690 }
1691 }
1692
1693 if (!znode->parent)
1694 break;
1695
1696 idx = znode->iip + 1;
1697 znode = znode->parent;
1698 if (idx < znode->child_cnt) {
1699 /* Switch to the next index in the parent */
1700 zbr = &znode->zbranch[idx];
1701 child = zbr->znode;
1702 if (!child) {
1703 child = ubifs_load_znode(c, zbr, znode, idx);
1704 if (IS_ERR(child)) {
1705 err = PTR_ERR(child);
1706 goto out_unlock;
1707 }
1708 zbr->znode = child;
1709 }
1710 znode = child;
1711 } else
1712 /*
1713 * This is the last child, switch to the parent and
1714 * continue.
1715 */
1716 continue;
1717
1718 /* Go to the lowest leftmost znode in the new sub-tree */
1719 while (znode->level > 0) {
1720 zbr = &znode->zbranch[0];
1721 child = zbr->znode;
1722 if (!child) {
1723 child = ubifs_load_znode(c, zbr, znode, 0);
1724 if (IS_ERR(child)) {
1725 err = PTR_ERR(child);
1726 goto out_unlock;
1727 }
1728 zbr->znode = child;
1729 }
1730 znode = child;
1731 }
1732 }
1733
1734 mutex_unlock(&c->tnc_mutex);
1735 return 0;
1736
1737out_dump:
1738 if (znode->parent)
1739 zbr = &znode->parent->zbranch[znode->iip];
1740 else
1741 zbr = &c->zroot;
1742 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743 dbg_dump_znode(c, znode);
1744out_unlock:
1745 mutex_unlock(&c->tnc_mutex);
1746 return err;
1747}
1748
1749/**
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1754 *
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1757 * by @priv.
1758 */
1759static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760{
1761 long long *idx_size = priv;
1762 int add;
1763
1764 add = ubifs_idx_node_sz(c, znode->child_cnt);
1765 add = ALIGN(add, 8);
1766 *idx_size += add;
1767 return 0;
1768}
1769
1770/**
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1774 *
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1778 */
1779int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780{
1781 int err;
1782 long long calc = 0;
1783
1784 if (!dbg_is_chk_index(c))
1785 return 0;
1786
1787 err = dbg_walk_index(c, NULL, add_size, &calc);
1788 if (err) {
1789 ubifs_err("error %d while walking the index", err);
1790 return err;
1791 }
1792
1793 if (calc != idx_size) {
1794 ubifs_err("index size check failed: calculated size is %lld, "
1795 "should be %lld", calc, idx_size);
1796 dump_stack();
1797 return -EINVAL;
1798 }
1799
1800 return 0;
1801}
1802
1803/**
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 * while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1815 * inode)
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 * inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1822 */
1823struct fsck_inode {
1824 struct rb_node rb;
1825 ino_t inum;
1826 umode_t mode;
1827 unsigned int nlink;
1828 unsigned int xattr_cnt;
1829 int references;
1830 int calc_cnt;
1831 long long size;
1832 unsigned int xattr_sz;
1833 long long calc_sz;
1834 long long calc_xcnt;
1835 long long calc_xsz;
1836 unsigned int xattr_nms;
1837 long long calc_xnms;
1838};
1839
1840/**
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843 */
1844struct fsck_data {
1845 struct rb_root inodes;
1846};
1847
1848/**
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1853 *
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1857 */
1858static struct fsck_inode *add_inode(struct ubifs_info *c,
1859 struct fsck_data *fsckd,
1860 struct ubifs_ino_node *ino)
1861{
1862 struct rb_node **p, *parent = NULL;
1863 struct fsck_inode *fscki;
1864 ino_t inum = key_inum_flash(c, &ino->key);
1865 struct inode *inode;
1866 struct ubifs_inode *ui;
1867
1868 p = &fsckd->inodes.rb_node;
1869 while (*p) {
1870 parent = *p;
1871 fscki = rb_entry(parent, struct fsck_inode, rb);
1872 if (inum < fscki->inum)
1873 p = &(*p)->rb_left;
1874 else if (inum > fscki->inum)
1875 p = &(*p)->rb_right;
1876 else
1877 return fscki;
1878 }
1879
1880 if (inum > c->highest_inum) {
1881 ubifs_err("too high inode number, max. is %lu",
1882 (unsigned long)c->highest_inum);
1883 return ERR_PTR(-EINVAL);
1884 }
1885
1886 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887 if (!fscki)
1888 return ERR_PTR(-ENOMEM);
1889
1890 inode = ilookup(c->vfs_sb, inum);
1891
1892 fscki->inum = inum;
1893 /*
1894 * If the inode is present in the VFS inode cache, use it instead of
1895 * the on-flash inode which might be out-of-date. E.g., the size might
1896 * be out-of-date. If we do not do this, the following may happen, for
1897 * example:
1898 * 1. A power cut happens
1899 * 2. We mount the file-system R/O, the replay process fixes up the
1900 * inode size in the VFS cache, but on on-flash.
1901 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1902 * size.
1903 */
1904 if (!inode) {
1905 fscki->nlink = le32_to_cpu(ino->nlink);
1906 fscki->size = le64_to_cpu(ino->size);
1907 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910 fscki->mode = le32_to_cpu(ino->mode);
1911 } else {
1912 ui = ubifs_inode(inode);
1913 fscki->nlink = inode->i_nlink;
1914 fscki->size = inode->i_size;
1915 fscki->xattr_cnt = ui->xattr_cnt;
1916 fscki->xattr_sz = ui->xattr_size;
1917 fscki->xattr_nms = ui->xattr_names;
1918 fscki->mode = inode->i_mode;
1919 iput(inode);
1920 }
1921
1922 if (S_ISDIR(fscki->mode)) {
1923 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924 fscki->calc_cnt = 2;
1925 }
1926
1927 rb_link_node(&fscki->rb, parent, p);
1928 rb_insert_color(&fscki->rb, &fsckd->inodes);
1929
1930 return fscki;
1931}
1932
1933/**
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1937 *
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1941 */
1942static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943{
1944 struct rb_node *p;
1945 struct fsck_inode *fscki;
1946
1947 p = fsckd->inodes.rb_node;
1948 while (p) {
1949 fscki = rb_entry(p, struct fsck_inode, rb);
1950 if (inum < fscki->inum)
1951 p = p->rb_left;
1952 else if (inum > fscki->inum)
1953 p = p->rb_right;
1954 else
1955 return fscki;
1956 }
1957 return NULL;
1958}
1959
1960/**
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1965 *
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1969 * failure.
1970 */
1971static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972 struct fsck_data *fsckd, ino_t inum)
1973{
1974 int n, err;
1975 union ubifs_key key;
1976 struct ubifs_znode *znode;
1977 struct ubifs_zbranch *zbr;
1978 struct ubifs_ino_node *ino;
1979 struct fsck_inode *fscki;
1980
1981 fscki = search_inode(fsckd, inum);
1982 if (fscki)
1983 return fscki;
1984
1985 ino_key_init(c, &key, inum);
1986 err = ubifs_lookup_level0(c, &key, &znode, &n);
1987 if (!err) {
1988 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989 return ERR_PTR(-ENOENT);
1990 } else if (err < 0) {
1991 ubifs_err("error %d while looking up inode %lu",
1992 err, (unsigned long)inum);
1993 return ERR_PTR(err);
1994 }
1995
1996 zbr = &znode->zbranch[n];
1997 if (zbr->len < UBIFS_INO_NODE_SZ) {
1998 ubifs_err("bad node %lu node length %d",
1999 (unsigned long)inum, zbr->len);
2000 return ERR_PTR(-EINVAL);
2001 }
2002
2003 ino = kmalloc(zbr->len, GFP_NOFS);
2004 if (!ino)
2005 return ERR_PTR(-ENOMEM);
2006
2007 err = ubifs_tnc_read_node(c, zbr, ino);
2008 if (err) {
2009 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010 zbr->lnum, zbr->offs, err);
2011 kfree(ino);
2012 return ERR_PTR(err);
2013 }
2014
2015 fscki = add_inode(c, fsckd, ino);
2016 kfree(ino);
2017 if (IS_ERR(fscki)) {
2018 ubifs_err("error %ld while adding inode %lu node",
2019 PTR_ERR(fscki), (unsigned long)inum);
2020 return fscki;
2021 }
2022
2023 return fscki;
2024}
2025
2026/**
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2031 *
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2041 */
2042static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043 void *priv)
2044{
2045 ino_t inum;
2046 void *node;
2047 struct ubifs_ch *ch;
2048 int err, type = key_type(c, &zbr->key);
2049 struct fsck_inode *fscki;
2050
2051 if (zbr->len < UBIFS_CH_SZ) {
2052 ubifs_err("bad leaf length %d (LEB %d:%d)",
2053 zbr->len, zbr->lnum, zbr->offs);
2054 return -EINVAL;
2055 }
2056
2057 node = kmalloc(zbr->len, GFP_NOFS);
2058 if (!node)
2059 return -ENOMEM;
2060
2061 err = ubifs_tnc_read_node(c, zbr, node);
2062 if (err) {
2063 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064 zbr->lnum, zbr->offs, err);
2065 goto out_free;
2066 }
2067
2068 /* If this is an inode node, add it to RB-tree of inodes */
2069 if (type == UBIFS_INO_KEY) {
2070 fscki = add_inode(c, priv, node);
2071 if (IS_ERR(fscki)) {
2072 err = PTR_ERR(fscki);
2073 ubifs_err("error %d while adding inode node", err);
2074 goto out_dump;
2075 }
2076 goto out;
2077 }
2078
2079 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080 type != UBIFS_DATA_KEY) {
2081 ubifs_err("unexpected node type %d at LEB %d:%d",
2082 type, zbr->lnum, zbr->offs);
2083 err = -EINVAL;
2084 goto out_free;
2085 }
2086
2087 ch = node;
2088 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089 ubifs_err("too high sequence number, max. is %llu",
2090 c->max_sqnum);
2091 err = -EINVAL;
2092 goto out_dump;
2093 }
2094
2095 if (type == UBIFS_DATA_KEY) {
2096 long long blk_offs;
2097 struct ubifs_data_node *dn = node;
2098
2099 /*
2100 * Search the inode node this data node belongs to and insert
2101 * it to the RB-tree of inodes.
2102 */
2103 inum = key_inum_flash(c, &dn->key);
2104 fscki = read_add_inode(c, priv, inum);
2105 if (IS_ERR(fscki)) {
2106 err = PTR_ERR(fscki);
2107 ubifs_err("error %d while processing data node and "
2108 "trying to find inode node %lu",
2109 err, (unsigned long)inum);
2110 goto out_dump;
2111 }
2112
2113 /* Make sure the data node is within inode size */
2114 blk_offs = key_block_flash(c, &dn->key);
2115 blk_offs <<= UBIFS_BLOCK_SHIFT;
2116 blk_offs += le32_to_cpu(dn->size);
2117 if (blk_offs > fscki->size) {
2118 ubifs_err("data node at LEB %d:%d is not within inode "
2119 "size %lld", zbr->lnum, zbr->offs,
2120 fscki->size);
2121 err = -EINVAL;
2122 goto out_dump;
2123 }
2124 } else {
2125 int nlen;
2126 struct ubifs_dent_node *dent = node;
2127 struct fsck_inode *fscki1;
2128
2129 err = ubifs_validate_entry(c, dent);
2130 if (err)
2131 goto out_dump;
2132
2133 /*
2134 * Search the inode node this entry refers to and the parent
2135 * inode node and insert them to the RB-tree of inodes.
2136 */
2137 inum = le64_to_cpu(dent->inum);
2138 fscki = read_add_inode(c, priv, inum);
2139 if (IS_ERR(fscki)) {
2140 err = PTR_ERR(fscki);
2141 ubifs_err("error %d while processing entry node and "
2142 "trying to find inode node %lu",
2143 err, (unsigned long)inum);
2144 goto out_dump;
2145 }
2146
2147 /* Count how many direntries or xentries refers this inode */
2148 fscki->references += 1;
2149
2150 inum = key_inum_flash(c, &dent->key);
2151 fscki1 = read_add_inode(c, priv, inum);
2152 if (IS_ERR(fscki1)) {
2153 err = PTR_ERR(fscki1);
2154 ubifs_err("error %d while processing entry node and "
2155 "trying to find parent inode node %lu",
2156 err, (unsigned long)inum);
2157 goto out_dump;
2158 }
2159
2160 nlen = le16_to_cpu(dent->nlen);
2161 if (type == UBIFS_XENT_KEY) {
2162 fscki1->calc_xcnt += 1;
2163 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165 fscki1->calc_xnms += nlen;
2166 } else {
2167 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168 if (dent->type == UBIFS_ITYPE_DIR)
2169 fscki1->calc_cnt += 1;
2170 }
2171 }
2172
2173out:
2174 kfree(node);
2175 return 0;
2176
2177out_dump:
2178 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179 dbg_dump_node(c, node);
2180out_free:
2181 kfree(node);
2182 return err;
2183}
2184
2185/**
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2188 */
2189static void free_inodes(struct fsck_data *fsckd)
2190{
2191 struct rb_node *this = fsckd->inodes.rb_node;
2192 struct fsck_inode *fscki;
2193
2194 while (this) {
2195 if (this->rb_left)
2196 this = this->rb_left;
2197 else if (this->rb_right)
2198 this = this->rb_right;
2199 else {
2200 fscki = rb_entry(this, struct fsck_inode, rb);
2201 this = rb_parent(this);
2202 if (this) {
2203 if (this->rb_left == &fscki->rb)
2204 this->rb_left = NULL;
2205 else
2206 this->rb_right = NULL;
2207 }
2208 kfree(fscki);
2209 }
2210 }
2211}
2212
2213/**
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2217 *
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2222 */
2223static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224{
2225 int n, err;
2226 union ubifs_key key;
2227 struct ubifs_znode *znode;
2228 struct ubifs_zbranch *zbr;
2229 struct ubifs_ino_node *ino;
2230 struct fsck_inode *fscki;
2231 struct rb_node *this = rb_first(&fsckd->inodes);
2232
2233 while (this) {
2234 fscki = rb_entry(this, struct fsck_inode, rb);
2235 this = rb_next(this);
2236
2237 if (S_ISDIR(fscki->mode)) {
2238 /*
2239 * Directories have to have exactly one reference (they
2240 * cannot have hardlinks), although root inode is an
2241 * exception.
2242 */
2243 if (fscki->inum != UBIFS_ROOT_INO &&
2244 fscki->references != 1) {
2245 ubifs_err("directory inode %lu has %d "
2246 "direntries which refer it, but "
2247 "should be 1",
2248 (unsigned long)fscki->inum,
2249 fscki->references);
2250 goto out_dump;
2251 }
2252 if (fscki->inum == UBIFS_ROOT_INO &&
2253 fscki->references != 0) {
2254 ubifs_err("root inode %lu has non-zero (%d) "
2255 "direntries which refer it",
2256 (unsigned long)fscki->inum,
2257 fscki->references);
2258 goto out_dump;
2259 }
2260 if (fscki->calc_sz != fscki->size) {
2261 ubifs_err("directory inode %lu size is %lld, "
2262 "but calculated size is %lld",
2263 (unsigned long)fscki->inum,
2264 fscki->size, fscki->calc_sz);
2265 goto out_dump;
2266 }
2267 if (fscki->calc_cnt != fscki->nlink) {
2268 ubifs_err("directory inode %lu nlink is %d, "
2269 "but calculated nlink is %d",
2270 (unsigned long)fscki->inum,
2271 fscki->nlink, fscki->calc_cnt);
2272 goto out_dump;
2273 }
2274 } else {
2275 if (fscki->references != fscki->nlink) {
2276 ubifs_err("inode %lu nlink is %d, but "
2277 "calculated nlink is %d",
2278 (unsigned long)fscki->inum,
2279 fscki->nlink, fscki->references);
2280 goto out_dump;
2281 }
2282 }
2283 if (fscki->xattr_sz != fscki->calc_xsz) {
2284 ubifs_err("inode %lu has xattr size %u, but "
2285 "calculated size is %lld",
2286 (unsigned long)fscki->inum, fscki->xattr_sz,
2287 fscki->calc_xsz);
2288 goto out_dump;
2289 }
2290 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291 ubifs_err("inode %lu has %u xattrs, but "
2292 "calculated count is %lld",
2293 (unsigned long)fscki->inum,
2294 fscki->xattr_cnt, fscki->calc_xcnt);
2295 goto out_dump;
2296 }
2297 if (fscki->xattr_nms != fscki->calc_xnms) {
2298 ubifs_err("inode %lu has xattr names' size %u, but "
2299 "calculated names' size is %lld",
2300 (unsigned long)fscki->inum, fscki->xattr_nms,
2301 fscki->calc_xnms);
2302 goto out_dump;
2303 }
2304 }
2305
2306 return 0;
2307
2308out_dump:
2309 /* Read the bad inode and dump it */
2310 ino_key_init(c, &key, fscki->inum);
2311 err = ubifs_lookup_level0(c, &key, &znode, &n);
2312 if (!err) {
2313 ubifs_err("inode %lu not found in index",
2314 (unsigned long)fscki->inum);
2315 return -ENOENT;
2316 } else if (err < 0) {
2317 ubifs_err("error %d while looking up inode %lu",
2318 err, (unsigned long)fscki->inum);
2319 return err;
2320 }
2321
2322 zbr = &znode->zbranch[n];
2323 ino = kmalloc(zbr->len, GFP_NOFS);
2324 if (!ino)
2325 return -ENOMEM;
2326
2327 err = ubifs_tnc_read_node(c, zbr, ino);
2328 if (err) {
2329 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330 zbr->lnum, zbr->offs, err);
2331 kfree(ino);
2332 return err;
2333 }
2334
2335 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337 dbg_dump_node(c, ino);
2338 kfree(ino);
2339 return -EINVAL;
2340}
2341
2342/**
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2345 *
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2349 * inodes).
2350 *
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2354 */
2355int dbg_check_filesystem(struct ubifs_info *c)
2356{
2357 int err;
2358 struct fsck_data fsckd;
2359
2360 if (!dbg_is_chk_fs(c))
2361 return 0;
2362
2363 fsckd.inodes = RB_ROOT;
2364 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365 if (err)
2366 goto out_free;
2367
2368 err = check_inodes(c, &fsckd);
2369 if (err)
2370 goto out_free;
2371
2372 free_inodes(&fsckd);
2373 return 0;
2374
2375out_free:
2376 ubifs_err("file-system check failed with error %d", err);
2377 dump_stack();
2378 free_inodes(&fsckd);
2379 return err;
2380}
2381
2382/**
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386 *
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2389 */
2390int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391{
2392 struct list_head *cur;
2393 struct ubifs_scan_node *sa, *sb;
2394
2395 if (!dbg_is_chk_gen(c))
2396 return 0;
2397
2398 for (cur = head->next; cur->next != head; cur = cur->next) {
2399 ino_t inuma, inumb;
2400 uint32_t blka, blkb;
2401
2402 cond_resched();
2403 sa = container_of(cur, struct ubifs_scan_node, list);
2404 sb = container_of(cur->next, struct ubifs_scan_node, list);
2405
2406 if (sa->type != UBIFS_DATA_NODE) {
2407 ubifs_err("bad node type %d", sa->type);
2408 dbg_dump_node(c, sa->node);
2409 return -EINVAL;
2410 }
2411 if (sb->type != UBIFS_DATA_NODE) {
2412 ubifs_err("bad node type %d", sb->type);
2413 dbg_dump_node(c, sb->node);
2414 return -EINVAL;
2415 }
2416
2417 inuma = key_inum(c, &sa->key);
2418 inumb = key_inum(c, &sb->key);
2419
2420 if (inuma < inumb)
2421 continue;
2422 if (inuma > inumb) {
2423 ubifs_err("larger inum %lu goes before inum %lu",
2424 (unsigned long)inuma, (unsigned long)inumb);
2425 goto error_dump;
2426 }
2427
2428 blka = key_block(c, &sa->key);
2429 blkb = key_block(c, &sb->key);
2430
2431 if (blka > blkb) {
2432 ubifs_err("larger block %u goes before %u", blka, blkb);
2433 goto error_dump;
2434 }
2435 if (blka == blkb) {
2436 ubifs_err("two data nodes for the same block");
2437 goto error_dump;
2438 }
2439 }
2440
2441 return 0;
2442
2443error_dump:
2444 dbg_dump_node(c, sa->node);
2445 dbg_dump_node(c, sb->node);
2446 return -EINVAL;
2447}
2448
2449/**
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453 *
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2456 */
2457int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458{
2459 struct list_head *cur;
2460 struct ubifs_scan_node *sa, *sb;
2461
2462 if (!dbg_is_chk_gen(c))
2463 return 0;
2464
2465 for (cur = head->next; cur->next != head; cur = cur->next) {
2466 ino_t inuma, inumb;
2467 uint32_t hasha, hashb;
2468
2469 cond_resched();
2470 sa = container_of(cur, struct ubifs_scan_node, list);
2471 sb = container_of(cur->next, struct ubifs_scan_node, list);
2472
2473 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474 sa->type != UBIFS_XENT_NODE) {
2475 ubifs_err("bad node type %d", sa->type);
2476 dbg_dump_node(c, sa->node);
2477 return -EINVAL;
2478 }
2479 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480 sa->type != UBIFS_XENT_NODE) {
2481 ubifs_err("bad node type %d", sb->type);
2482 dbg_dump_node(c, sb->node);
2483 return -EINVAL;
2484 }
2485
2486 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487 ubifs_err("non-inode node goes before inode node");
2488 goto error_dump;
2489 }
2490
2491 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492 continue;
2493
2494 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495 /* Inode nodes are sorted in descending size order */
2496 if (sa->len < sb->len) {
2497 ubifs_err("smaller inode node goes first");
2498 goto error_dump;
2499 }
2500 continue;
2501 }
2502
2503 /*
2504 * This is either a dentry or xentry, which should be sorted in
2505 * ascending (parent ino, hash) order.
2506 */
2507 inuma = key_inum(c, &sa->key);
2508 inumb = key_inum(c, &sb->key);
2509
2510 if (inuma < inumb)
2511 continue;
2512 if (inuma > inumb) {
2513 ubifs_err("larger inum %lu goes before inum %lu",
2514 (unsigned long)inuma, (unsigned long)inumb);
2515 goto error_dump;
2516 }
2517
2518 hasha = key_block(c, &sa->key);
2519 hashb = key_block(c, &sb->key);
2520
2521 if (hasha > hashb) {
2522 ubifs_err("larger hash %u goes before %u",
2523 hasha, hashb);
2524 goto error_dump;
2525 }
2526 }
2527
2528 return 0;
2529
2530error_dump:
2531 ubifs_msg("dumping first node");
2532 dbg_dump_node(c, sa->node);
2533 ubifs_msg("dumping second node");
2534 dbg_dump_node(c, sb->node);
2535 return -EINVAL;
2536 return 0;
2537}
2538
2539static inline int chance(unsigned int n, unsigned int out_of)
2540{
2541 return !!((random32() % out_of) + 1 <= n);
2542
2543}
2544
2545static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546{
2547 struct ubifs_debug_info *d = c->dbg;
2548
2549 ubifs_assert(dbg_is_tst_rcvry(c));
2550
2551 if (!d->pc_cnt) {
2552 /* First call - decide delay to the power cut */
2553 if (chance(1, 2)) {
2554 unsigned long delay;
2555
2556 if (chance(1, 2)) {
2557 d->pc_delay = 1;
2558 /* Fail withing 1 minute */
2559 delay = random32() % 60000;
2560 d->pc_timeout = jiffies;
2561 d->pc_timeout += msecs_to_jiffies(delay);
2562 ubifs_warn("failing after %lums", delay);
2563 } else {
2564 d->pc_delay = 2;
2565 delay = random32() % 10000;
2566 /* Fail within 10000 operations */
2567 d->pc_cnt_max = delay;
2568 ubifs_warn("failing after %lu calls", delay);
2569 }
2570 }
2571
2572 d->pc_cnt += 1;
2573 }
2574
2575 /* Determine if failure delay has expired */
2576 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577 return 0;
2578 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579 return 0;
2580
2581 if (lnum == UBIFS_SB_LNUM) {
2582 if (write && chance(1, 2))
2583 return 0;
2584 if (chance(19, 20))
2585 return 0;
2586 ubifs_warn("failing in super block LEB %d", lnum);
2587 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588 if (chance(19, 20))
2589 return 0;
2590 ubifs_warn("failing in master LEB %d", lnum);
2591 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592 if (write && chance(99, 100))
2593 return 0;
2594 if (chance(399, 400))
2595 return 0;
2596 ubifs_warn("failing in log LEB %d", lnum);
2597 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598 if (write && chance(7, 8))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in LPT LEB %d", lnum);
2603 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604 if (write && chance(1, 2))
2605 return 0;
2606 if (chance(9, 10))
2607 return 0;
2608 ubifs_warn("failing in orphan LEB %d", lnum);
2609 } else if (lnum == c->ihead_lnum) {
2610 if (chance(99, 100))
2611 return 0;
2612 ubifs_warn("failing in index head LEB %d", lnum);
2613 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614 if (chance(9, 10))
2615 return 0;
2616 ubifs_warn("failing in GC head LEB %d", lnum);
2617 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618 !ubifs_search_bud(c, lnum)) {
2619 if (chance(19, 20))
2620 return 0;
2621 ubifs_warn("failing in non-bud LEB %d", lnum);
2622 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624 if (chance(999, 1000))
2625 return 0;
2626 ubifs_warn("failing in bud LEB %d commit running", lnum);
2627 } else {
2628 if (chance(9999, 10000))
2629 return 0;
2630 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631 }
2632
2633 d->pc_happened = 1;
2634 ubifs_warn("========== Power cut emulated ==========");
2635 dump_stack();
2636 return 1;
2637}
2638
2639static void cut_data(const void *buf, unsigned int len)
2640{
2641 unsigned int from, to, i, ffs = chance(1, 2);
2642 unsigned char *p = (void *)buf;
2643
2644 from = random32() % (len + 1);
2645 if (chance(1, 2))
2646 to = random32() % (len - from + 1);
2647 else
2648 to = len;
2649
2650 if (from < to)
2651 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652 ffs ? "0xFFs" : "random data");
2653
2654 if (ffs)
2655 for (i = from; i < to; i++)
2656 p[i] = 0xFF;
2657 else
2658 for (i = from; i < to; i++)
2659 p[i] = random32() % 0x100;
2660}
2661
2662int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663 int offs, int len, int dtype)
2664{
2665 int err, failing;
2666
2667 if (c->dbg->pc_happened)
2668 return -EROFS;
2669
2670 failing = power_cut_emulated(c, lnum, 1);
2671 if (failing)
2672 cut_data(buf, len);
2673 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674 if (err)
2675 return err;
2676 if (failing)
2677 return -EROFS;
2678 return 0;
2679}
2680
2681int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682 int len, int dtype)
2683{
2684 int err;
2685
2686 if (c->dbg->pc_happened)
2687 return -EROFS;
2688 if (power_cut_emulated(c, lnum, 1))
2689 return -EROFS;
2690 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691 if (err)
2692 return err;
2693 if (power_cut_emulated(c, lnum, 1))
2694 return -EROFS;
2695 return 0;
2696}
2697
2698int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699{
2700 int err;
2701
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 0))
2705 return -EROFS;
2706 err = ubi_leb_unmap(c->ubi, lnum);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 0))
2710 return -EROFS;
2711 return 0;
2712}
2713
2714int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715{
2716 int err;
2717
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_map(c->ubi, lnum, dtype);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2728}
2729
2730/*
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2733 */
2734static struct dentry *dfs_rootdir;
2735
2736static int dfs_file_open(struct inode *inode, struct file *file)
2737{
2738 file->private_data = inode->i_private;
2739 return nonseekable_open(inode, file);
2740}
2741
2742/**
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2748 *
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2752 * failure.
2753 */
2754static int provide_user_output(int val, char __user *u, size_t count,
2755 loff_t *ppos)
2756{
2757 char buf[3];
2758
2759 if (val)
2760 buf[0] = '1';
2761 else
2762 buf[0] = '0';
2763 buf[1] = '\n';
2764 buf[2] = 0x00;
2765
2766 return simple_read_from_buffer(u, count, ppos, buf, 2);
2767}
2768
2769static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770 loff_t *ppos)
2771{
2772 struct dentry *dent = file->f_path.dentry;
2773 struct ubifs_info *c = file->private_data;
2774 struct ubifs_debug_info *d = c->dbg;
2775 int val;
2776
2777 if (dent == d->dfs_chk_gen)
2778 val = d->chk_gen;
2779 else if (dent == d->dfs_chk_index)
2780 val = d->chk_index;
2781 else if (dent == d->dfs_chk_orph)
2782 val = d->chk_orph;
2783 else if (dent == d->dfs_chk_lprops)
2784 val = d->chk_lprops;
2785 else if (dent == d->dfs_chk_fs)
2786 val = d->chk_fs;
2787 else if (dent == d->dfs_tst_rcvry)
2788 val = d->tst_rcvry;
2789 else
2790 return -EINVAL;
2791
2792 return provide_user_output(val, u, count, ppos);
2793}
2794
2795/**
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2799 *
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2803 */
2804static int interpret_user_input(const char __user *u, size_t count)
2805{
2806 size_t buf_size;
2807 char buf[8];
2808
2809 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810 if (copy_from_user(buf, u, buf_size))
2811 return -EFAULT;
2812
2813 if (buf[0] == '1')
2814 return 1;
2815 else if (buf[0] == '0')
2816 return 0;
2817
2818 return -EINVAL;
2819}
2820
2821static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822 size_t count, loff_t *ppos)
2823{
2824 struct ubifs_info *c = file->private_data;
2825 struct ubifs_debug_info *d = c->dbg;
2826 struct dentry *dent = file->f_path.dentry;
2827 int val;
2828
2829 /*
2830 * TODO: this is racy - the file-system might have already been
2831 * unmounted and we'd oops in this case. The plan is to fix it with
2832 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835 * superblocks and fine the one with the same UUID, and take the
2836 * locking right.
2837 *
2838 * The other way to go suggested by Al Viro is to create a separate
2839 * 'ubifs-debug' file-system instead.
2840 */
2841 if (file->f_path.dentry == d->dfs_dump_lprops) {
2842 dbg_dump_lprops(c);
2843 return count;
2844 }
2845 if (file->f_path.dentry == d->dfs_dump_budg) {
2846 dbg_dump_budg(c, &c->bi);
2847 return count;
2848 }
2849 if (file->f_path.dentry == d->dfs_dump_tnc) {
2850 mutex_lock(&c->tnc_mutex);
2851 dbg_dump_tnc(c);
2852 mutex_unlock(&c->tnc_mutex);
2853 return count;
2854 }
2855
2856 val = interpret_user_input(u, count);
2857 if (val < 0)
2858 return val;
2859
2860 if (dent == d->dfs_chk_gen)
2861 d->chk_gen = val;
2862 else if (dent == d->dfs_chk_index)
2863 d->chk_index = val;
2864 else if (dent == d->dfs_chk_orph)
2865 d->chk_orph = val;
2866 else if (dent == d->dfs_chk_lprops)
2867 d->chk_lprops = val;
2868 else if (dent == d->dfs_chk_fs)
2869 d->chk_fs = val;
2870 else if (dent == d->dfs_tst_rcvry)
2871 d->tst_rcvry = val;
2872 else
2873 return -EINVAL;
2874
2875 return count;
2876}
2877
2878static const struct file_operations dfs_fops = {
2879 .open = dfs_file_open,
2880 .read = dfs_file_read,
2881 .write = dfs_file_write,
2882 .owner = THIS_MODULE,
2883 .llseek = no_llseek,
2884};
2885
2886/**
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2889 *
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2892 *
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2897 */
2898int dbg_debugfs_init_fs(struct ubifs_info *c)
2899{
2900 int err, n;
2901 const char *fname;
2902 struct dentry *dent;
2903 struct ubifs_debug_info *d = c->dbg;
2904
2905 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906 c->vi.ubi_num, c->vi.vol_id);
2907 if (n == UBIFS_DFS_DIR_LEN) {
2908 /* The array size is too small */
2909 fname = UBIFS_DFS_DIR_NAME;
2910 dent = ERR_PTR(-EINVAL);
2911 goto out;
2912 }
2913
2914 fname = d->dfs_dir_name;
2915 dent = debugfs_create_dir(fname, dfs_rootdir);
2916 if (IS_ERR_OR_NULL(dent))
2917 goto out;
2918 d->dfs_dir = dent;
2919
2920 fname = "dump_lprops";
2921 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922 if (IS_ERR_OR_NULL(dent))
2923 goto out_remove;
2924 d->dfs_dump_lprops = dent;
2925
2926 fname = "dump_budg";
2927 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928 if (IS_ERR_OR_NULL(dent))
2929 goto out_remove;
2930 d->dfs_dump_budg = dent;
2931
2932 fname = "dump_tnc";
2933 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934 if (IS_ERR_OR_NULL(dent))
2935 goto out_remove;
2936 d->dfs_dump_tnc = dent;
2937
2938 fname = "chk_general";
2939 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940 &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_chk_gen = dent;
2944
2945 fname = "chk_index";
2946 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947 &dfs_fops);
2948 if (IS_ERR_OR_NULL(dent))
2949 goto out_remove;
2950 d->dfs_chk_index = dent;
2951
2952 fname = "chk_orphans";
2953 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954 &dfs_fops);
2955 if (IS_ERR_OR_NULL(dent))
2956 goto out_remove;
2957 d->dfs_chk_orph = dent;
2958
2959 fname = "chk_lprops";
2960 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961 &dfs_fops);
2962 if (IS_ERR_OR_NULL(dent))
2963 goto out_remove;
2964 d->dfs_chk_lprops = dent;
2965
2966 fname = "chk_fs";
2967 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968 &dfs_fops);
2969 if (IS_ERR_OR_NULL(dent))
2970 goto out_remove;
2971 d->dfs_chk_fs = dent;
2972
2973 fname = "tst_recovery";
2974 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975 &dfs_fops);
2976 if (IS_ERR_OR_NULL(dent))
2977 goto out_remove;
2978 d->dfs_tst_rcvry = dent;
2979
2980 return 0;
2981
2982out_remove:
2983 debugfs_remove_recursive(d->dfs_dir);
2984out:
2985 err = dent ? PTR_ERR(dent) : -ENODEV;
2986 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987 fname, err);
2988 return err;
2989}
2990
2991/**
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2994 */
2995void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996{
2997 debugfs_remove_recursive(c->dbg->dfs_dir);
2998}
2999
3000struct ubifs_global_debug_info ubifs_dbg;
3001
3002static struct dentry *dfs_chk_gen;
3003static struct dentry *dfs_chk_index;
3004static struct dentry *dfs_chk_orph;
3005static struct dentry *dfs_chk_lprops;
3006static struct dentry *dfs_chk_fs;
3007static struct dentry *dfs_tst_rcvry;
3008
3009static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010 size_t count, loff_t *ppos)
3011{
3012 struct dentry *dent = file->f_path.dentry;
3013 int val;
3014
3015 if (dent == dfs_chk_gen)
3016 val = ubifs_dbg.chk_gen;
3017 else if (dent == dfs_chk_index)
3018 val = ubifs_dbg.chk_index;
3019 else if (dent == dfs_chk_orph)
3020 val = ubifs_dbg.chk_orph;
3021 else if (dent == dfs_chk_lprops)
3022 val = ubifs_dbg.chk_lprops;
3023 else if (dent == dfs_chk_fs)
3024 val = ubifs_dbg.chk_fs;
3025 else if (dent == dfs_tst_rcvry)
3026 val = ubifs_dbg.tst_rcvry;
3027 else
3028 return -EINVAL;
3029
3030 return provide_user_output(val, u, count, ppos);
3031}
3032
3033static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034 size_t count, loff_t *ppos)
3035{
3036 struct dentry *dent = file->f_path.dentry;
3037 int val;
3038
3039 val = interpret_user_input(u, count);
3040 if (val < 0)
3041 return val;
3042
3043 if (dent == dfs_chk_gen)
3044 ubifs_dbg.chk_gen = val;
3045 else if (dent == dfs_chk_index)
3046 ubifs_dbg.chk_index = val;
3047 else if (dent == dfs_chk_orph)
3048 ubifs_dbg.chk_orph = val;
3049 else if (dent == dfs_chk_lprops)
3050 ubifs_dbg.chk_lprops = val;
3051 else if (dent == dfs_chk_fs)
3052 ubifs_dbg.chk_fs = val;
3053 else if (dent == dfs_tst_rcvry)
3054 ubifs_dbg.tst_rcvry = val;
3055 else
3056 return -EINVAL;
3057
3058 return count;
3059}
3060
3061static const struct file_operations dfs_global_fops = {
3062 .read = dfs_global_file_read,
3063 .write = dfs_global_file_write,
3064 .owner = THIS_MODULE,
3065 .llseek = no_llseek,
3066};
3067
3068/**
3069 * dbg_debugfs_init - initialize debugfs file-system.
3070 *
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3074 * case of failure.
3075 */
3076int dbg_debugfs_init(void)
3077{
3078 int err;
3079 const char *fname;
3080 struct dentry *dent;
3081
3082 fname = "ubifs";
3083 dent = debugfs_create_dir(fname, NULL);
3084 if (IS_ERR_OR_NULL(dent))
3085 goto out;
3086 dfs_rootdir = dent;
3087
3088 fname = "chk_general";
3089 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090 &dfs_global_fops);
3091 if (IS_ERR_OR_NULL(dent))
3092 goto out_remove;
3093 dfs_chk_gen = dent;
3094
3095 fname = "chk_index";
3096 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097 &dfs_global_fops);
3098 if (IS_ERR_OR_NULL(dent))
3099 goto out_remove;
3100 dfs_chk_index = dent;
3101
3102 fname = "chk_orphans";
3103 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104 &dfs_global_fops);
3105 if (IS_ERR_OR_NULL(dent))
3106 goto out_remove;
3107 dfs_chk_orph = dent;
3108
3109 fname = "chk_lprops";
3110 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111 &dfs_global_fops);
3112 if (IS_ERR_OR_NULL(dent))
3113 goto out_remove;
3114 dfs_chk_lprops = dent;
3115
3116 fname = "chk_fs";
3117 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118 &dfs_global_fops);
3119 if (IS_ERR_OR_NULL(dent))
3120 goto out_remove;
3121 dfs_chk_fs = dent;
3122
3123 fname = "tst_recovery";
3124 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125 &dfs_global_fops);
3126 if (IS_ERR_OR_NULL(dent))
3127 goto out_remove;
3128 dfs_tst_rcvry = dent;
3129
3130 return 0;
3131
3132out_remove:
3133 debugfs_remove_recursive(dfs_rootdir);
3134out:
3135 err = dent ? PTR_ERR(dent) : -ENODEV;
3136 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137 fname, err);
3138 return err;
3139}
3140
3141/**
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143 */
3144void dbg_debugfs_exit(void)
3145{
3146 debugfs_remove_recursive(dfs_rootdir);
3147}
3148
3149/**
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3152 *
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3155 * failure.
3156 */
3157int ubifs_debugging_init(struct ubifs_info *c)
3158{
3159 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160 if (!c->dbg)
3161 return -ENOMEM;
3162
3163 return 0;
3164}
3165
3166/**
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3169 */
3170void ubifs_debugging_exit(struct ubifs_info *c)
3171{
3172 kfree(c->dbg);
3173}
3174
3175#endif /* CONFIG_UBIFS_FS_DEBUG */
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#include <linux/module.h>
31#include <linux/debugfs.h>
32#include <linux/math64.h>
33#include <linux/uaccess.h>
34#include <linux/random.h>
35#include "ubifs.h"
36
37static DEFINE_SPINLOCK(dbg_lock);
38
39static const char *get_key_fmt(int fmt)
40{
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
46 }
47}
48
49static const char *get_key_hash(int hash)
50{
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
58 }
59}
60
61static const char *get_key_type(int type)
62{
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
76 }
77}
78
79static const char *get_dent_type(int type)
80{
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
98 }
99}
100
101const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
103{
104 char *p = buffer;
105 int type = key_type(c, key);
106
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
133 }
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
138}
139
140const char *dbg_ntype(int type)
141{
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
169 }
170}
171
172static const char *dbg_gtype(int type)
173{
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
183 }
184}
185
186const char *dbg_cstate(int cmt_state)
187{
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
203 }
204}
205
206const char *dbg_jhead(int jhead)
207{
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
217 }
218}
219
220static void dump_ch(const struct ubifs_ch *ch)
221{
222 printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic));
223 printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc));
224 printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 printk(KERN_ERR "\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len));
231}
232
233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234{
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
240
241 printk(KERN_ERR "Dump in-memory inode:");
242 printk(KERN_ERR "\tinode %lu\n", inode->i_ino);
243 printk(KERN_ERR "\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 printk(KERN_ERR "\tnlink %u\n", inode->i_nlink);
246 printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid);
247 printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid);
248 printk(KERN_ERR "\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 printk(KERN_ERR "\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 printk(KERN_ERR "\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size);
259 printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt);
260 printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names);
261 printk(KERN_ERR "\tdirty %u\n", ui->dirty);
262 printk(KERN_ERR "\txattr %u\n", ui->xattr);
263 printk(KERN_ERR "\tbulk_read %u\n", ui->xattr);
264 printk(KERN_ERR "\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 printk(KERN_ERR "\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 printk(KERN_ERR "\tflags %d\n", ui->flags);
269 printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type);
270 printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
271 printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row);
272 printk(KERN_ERR "\tdata_len %d\n", ui->data_len);
273
274 if (!S_ISDIR(inode->i_mode))
275 return;
276
277 printk(KERN_ERR "List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
286 break;
287 }
288
289 printk(KERN_ERR "\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
291
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
297 }
298 kfree(pdent);
299}
300
301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302{
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
307
308 if (dbg_is_tst_rcvry(c))
309 return;
310
311 /* If the magic is incorrect, just hexdump the first bytes */
312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 (void *)node, UBIFS_CH_SZ, 1);
316 return;
317 }
318
319 spin_lock(&dbg_lock);
320 dump_ch(node);
321
322 switch (ch->node_type) {
323 case UBIFS_PAD_NODE:
324 {
325 const struct ubifs_pad_node *pad = node;
326
327 printk(KERN_ERR "\tpad_len %u\n",
328 le32_to_cpu(pad->pad_len));
329 break;
330 }
331 case UBIFS_SB_NODE:
332 {
333 const struct ubifs_sb_node *sup = node;
334 unsigned int sup_flags = le32_to_cpu(sup->flags);
335
336 printk(KERN_ERR "\tkey_hash %d (%s)\n",
337 (int)sup->key_hash, get_key_hash(sup->key_hash));
338 printk(KERN_ERR "\tkey_fmt %d (%s)\n",
339 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
340 printk(KERN_ERR "\tflags %#x\n", sup_flags);
341 printk(KERN_ERR "\t big_lpt %u\n",
342 !!(sup_flags & UBIFS_FLG_BIGLPT));
343 printk(KERN_ERR "\t space_fixup %u\n",
344 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
345 printk(KERN_ERR "\tmin_io_size %u\n",
346 le32_to_cpu(sup->min_io_size));
347 printk(KERN_ERR "\tleb_size %u\n",
348 le32_to_cpu(sup->leb_size));
349 printk(KERN_ERR "\tleb_cnt %u\n",
350 le32_to_cpu(sup->leb_cnt));
351 printk(KERN_ERR "\tmax_leb_cnt %u\n",
352 le32_to_cpu(sup->max_leb_cnt));
353 printk(KERN_ERR "\tmax_bud_bytes %llu\n",
354 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
355 printk(KERN_ERR "\tlog_lebs %u\n",
356 le32_to_cpu(sup->log_lebs));
357 printk(KERN_ERR "\tlpt_lebs %u\n",
358 le32_to_cpu(sup->lpt_lebs));
359 printk(KERN_ERR "\torph_lebs %u\n",
360 le32_to_cpu(sup->orph_lebs));
361 printk(KERN_ERR "\tjhead_cnt %u\n",
362 le32_to_cpu(sup->jhead_cnt));
363 printk(KERN_ERR "\tfanout %u\n",
364 le32_to_cpu(sup->fanout));
365 printk(KERN_ERR "\tlsave_cnt %u\n",
366 le32_to_cpu(sup->lsave_cnt));
367 printk(KERN_ERR "\tdefault_compr %u\n",
368 (int)le16_to_cpu(sup->default_compr));
369 printk(KERN_ERR "\trp_size %llu\n",
370 (unsigned long long)le64_to_cpu(sup->rp_size));
371 printk(KERN_ERR "\trp_uid %u\n",
372 le32_to_cpu(sup->rp_uid));
373 printk(KERN_ERR "\trp_gid %u\n",
374 le32_to_cpu(sup->rp_gid));
375 printk(KERN_ERR "\tfmt_version %u\n",
376 le32_to_cpu(sup->fmt_version));
377 printk(KERN_ERR "\ttime_gran %u\n",
378 le32_to_cpu(sup->time_gran));
379 printk(KERN_ERR "\tUUID %pUB\n",
380 sup->uuid);
381 break;
382 }
383 case UBIFS_MST_NODE:
384 {
385 const struct ubifs_mst_node *mst = node;
386
387 printk(KERN_ERR "\thighest_inum %llu\n",
388 (unsigned long long)le64_to_cpu(mst->highest_inum));
389 printk(KERN_ERR "\tcommit number %llu\n",
390 (unsigned long long)le64_to_cpu(mst->cmt_no));
391 printk(KERN_ERR "\tflags %#x\n",
392 le32_to_cpu(mst->flags));
393 printk(KERN_ERR "\tlog_lnum %u\n",
394 le32_to_cpu(mst->log_lnum));
395 printk(KERN_ERR "\troot_lnum %u\n",
396 le32_to_cpu(mst->root_lnum));
397 printk(KERN_ERR "\troot_offs %u\n",
398 le32_to_cpu(mst->root_offs));
399 printk(KERN_ERR "\troot_len %u\n",
400 le32_to_cpu(mst->root_len));
401 printk(KERN_ERR "\tgc_lnum %u\n",
402 le32_to_cpu(mst->gc_lnum));
403 printk(KERN_ERR "\tihead_lnum %u\n",
404 le32_to_cpu(mst->ihead_lnum));
405 printk(KERN_ERR "\tihead_offs %u\n",
406 le32_to_cpu(mst->ihead_offs));
407 printk(KERN_ERR "\tindex_size %llu\n",
408 (unsigned long long)le64_to_cpu(mst->index_size));
409 printk(KERN_ERR "\tlpt_lnum %u\n",
410 le32_to_cpu(mst->lpt_lnum));
411 printk(KERN_ERR "\tlpt_offs %u\n",
412 le32_to_cpu(mst->lpt_offs));
413 printk(KERN_ERR "\tnhead_lnum %u\n",
414 le32_to_cpu(mst->nhead_lnum));
415 printk(KERN_ERR "\tnhead_offs %u\n",
416 le32_to_cpu(mst->nhead_offs));
417 printk(KERN_ERR "\tltab_lnum %u\n",
418 le32_to_cpu(mst->ltab_lnum));
419 printk(KERN_ERR "\tltab_offs %u\n",
420 le32_to_cpu(mst->ltab_offs));
421 printk(KERN_ERR "\tlsave_lnum %u\n",
422 le32_to_cpu(mst->lsave_lnum));
423 printk(KERN_ERR "\tlsave_offs %u\n",
424 le32_to_cpu(mst->lsave_offs));
425 printk(KERN_ERR "\tlscan_lnum %u\n",
426 le32_to_cpu(mst->lscan_lnum));
427 printk(KERN_ERR "\tleb_cnt %u\n",
428 le32_to_cpu(mst->leb_cnt));
429 printk(KERN_ERR "\tempty_lebs %u\n",
430 le32_to_cpu(mst->empty_lebs));
431 printk(KERN_ERR "\tidx_lebs %u\n",
432 le32_to_cpu(mst->idx_lebs));
433 printk(KERN_ERR "\ttotal_free %llu\n",
434 (unsigned long long)le64_to_cpu(mst->total_free));
435 printk(KERN_ERR "\ttotal_dirty %llu\n",
436 (unsigned long long)le64_to_cpu(mst->total_dirty));
437 printk(KERN_ERR "\ttotal_used %llu\n",
438 (unsigned long long)le64_to_cpu(mst->total_used));
439 printk(KERN_ERR "\ttotal_dead %llu\n",
440 (unsigned long long)le64_to_cpu(mst->total_dead));
441 printk(KERN_ERR "\ttotal_dark %llu\n",
442 (unsigned long long)le64_to_cpu(mst->total_dark));
443 break;
444 }
445 case UBIFS_REF_NODE:
446 {
447 const struct ubifs_ref_node *ref = node;
448
449 printk(KERN_ERR "\tlnum %u\n",
450 le32_to_cpu(ref->lnum));
451 printk(KERN_ERR "\toffs %u\n",
452 le32_to_cpu(ref->offs));
453 printk(KERN_ERR "\tjhead %u\n",
454 le32_to_cpu(ref->jhead));
455 break;
456 }
457 case UBIFS_INO_NODE:
458 {
459 const struct ubifs_ino_node *ino = node;
460
461 key_read(c, &ino->key, &key);
462 printk(KERN_ERR "\tkey %s\n",
463 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
464 printk(KERN_ERR "\tcreat_sqnum %llu\n",
465 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
466 printk(KERN_ERR "\tsize %llu\n",
467 (unsigned long long)le64_to_cpu(ino->size));
468 printk(KERN_ERR "\tnlink %u\n",
469 le32_to_cpu(ino->nlink));
470 printk(KERN_ERR "\tatime %lld.%u\n",
471 (long long)le64_to_cpu(ino->atime_sec),
472 le32_to_cpu(ino->atime_nsec));
473 printk(KERN_ERR "\tmtime %lld.%u\n",
474 (long long)le64_to_cpu(ino->mtime_sec),
475 le32_to_cpu(ino->mtime_nsec));
476 printk(KERN_ERR "\tctime %lld.%u\n",
477 (long long)le64_to_cpu(ino->ctime_sec),
478 le32_to_cpu(ino->ctime_nsec));
479 printk(KERN_ERR "\tuid %u\n",
480 le32_to_cpu(ino->uid));
481 printk(KERN_ERR "\tgid %u\n",
482 le32_to_cpu(ino->gid));
483 printk(KERN_ERR "\tmode %u\n",
484 le32_to_cpu(ino->mode));
485 printk(KERN_ERR "\tflags %#x\n",
486 le32_to_cpu(ino->flags));
487 printk(KERN_ERR "\txattr_cnt %u\n",
488 le32_to_cpu(ino->xattr_cnt));
489 printk(KERN_ERR "\txattr_size %u\n",
490 le32_to_cpu(ino->xattr_size));
491 printk(KERN_ERR "\txattr_names %u\n",
492 le32_to_cpu(ino->xattr_names));
493 printk(KERN_ERR "\tcompr_type %#x\n",
494 (int)le16_to_cpu(ino->compr_type));
495 printk(KERN_ERR "\tdata len %u\n",
496 le32_to_cpu(ino->data_len));
497 break;
498 }
499 case UBIFS_DENT_NODE:
500 case UBIFS_XENT_NODE:
501 {
502 const struct ubifs_dent_node *dent = node;
503 int nlen = le16_to_cpu(dent->nlen);
504
505 key_read(c, &dent->key, &key);
506 printk(KERN_ERR "\tkey %s\n",
507 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
508 printk(KERN_ERR "\tinum %llu\n",
509 (unsigned long long)le64_to_cpu(dent->inum));
510 printk(KERN_ERR "\ttype %d\n", (int)dent->type);
511 printk(KERN_ERR "\tnlen %d\n", nlen);
512 printk(KERN_ERR "\tname ");
513
514 if (nlen > UBIFS_MAX_NLEN)
515 printk(KERN_ERR "(bad name length, not printing, "
516 "bad or corrupted node)");
517 else {
518 for (i = 0; i < nlen && dent->name[i]; i++)
519 printk(KERN_CONT "%c", dent->name[i]);
520 }
521 printk(KERN_CONT "\n");
522
523 break;
524 }
525 case UBIFS_DATA_NODE:
526 {
527 const struct ubifs_data_node *dn = node;
528 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
529
530 key_read(c, &dn->key, &key);
531 printk(KERN_ERR "\tkey %s\n",
532 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
533 printk(KERN_ERR "\tsize %u\n",
534 le32_to_cpu(dn->size));
535 printk(KERN_ERR "\tcompr_typ %d\n",
536 (int)le16_to_cpu(dn->compr_type));
537 printk(KERN_ERR "\tdata size %d\n",
538 dlen);
539 printk(KERN_ERR "\tdata:\n");
540 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
541 (void *)&dn->data, dlen, 0);
542 break;
543 }
544 case UBIFS_TRUN_NODE:
545 {
546 const struct ubifs_trun_node *trun = node;
547
548 printk(KERN_ERR "\tinum %u\n",
549 le32_to_cpu(trun->inum));
550 printk(KERN_ERR "\told_size %llu\n",
551 (unsigned long long)le64_to_cpu(trun->old_size));
552 printk(KERN_ERR "\tnew_size %llu\n",
553 (unsigned long long)le64_to_cpu(trun->new_size));
554 break;
555 }
556 case UBIFS_IDX_NODE:
557 {
558 const struct ubifs_idx_node *idx = node;
559
560 n = le16_to_cpu(idx->child_cnt);
561 printk(KERN_ERR "\tchild_cnt %d\n", n);
562 printk(KERN_ERR "\tlevel %d\n",
563 (int)le16_to_cpu(idx->level));
564 printk(KERN_ERR "\tBranches:\n");
565
566 for (i = 0; i < n && i < c->fanout - 1; i++) {
567 const struct ubifs_branch *br;
568
569 br = ubifs_idx_branch(c, idx, i);
570 key_read(c, &br->key, &key);
571 printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
572 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
573 le32_to_cpu(br->len),
574 dbg_snprintf_key(c, &key, key_buf,
575 DBG_KEY_BUF_LEN));
576 }
577 break;
578 }
579 case UBIFS_CS_NODE:
580 break;
581 case UBIFS_ORPH_NODE:
582 {
583 const struct ubifs_orph_node *orph = node;
584
585 printk(KERN_ERR "\tcommit number %llu\n",
586 (unsigned long long)
587 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
588 printk(KERN_ERR "\tlast node flag %llu\n",
589 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
590 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
591 printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
592 for (i = 0; i < n; i++)
593 printk(KERN_ERR "\t ino %llu\n",
594 (unsigned long long)le64_to_cpu(orph->inos[i]));
595 break;
596 }
597 default:
598 printk(KERN_ERR "node type %d was not recognized\n",
599 (int)ch->node_type);
600 }
601 spin_unlock(&dbg_lock);
602}
603
604void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
605{
606 spin_lock(&dbg_lock);
607 printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
608 req->new_ino, req->dirtied_ino);
609 printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n",
610 req->new_ino_d, req->dirtied_ino_d);
611 printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n",
612 req->new_page, req->dirtied_page);
613 printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n",
614 req->new_dent, req->mod_dent);
615 printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth);
616 printk(KERN_ERR "\tdata_growth %d dd_growth %d\n",
617 req->data_growth, req->dd_growth);
618 spin_unlock(&dbg_lock);
619}
620
621void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
622{
623 spin_lock(&dbg_lock);
624 printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
625 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
626 printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
627 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
628 lst->total_dirty);
629 printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
630 "total_dead %lld\n", lst->total_used, lst->total_dark,
631 lst->total_dead);
632 spin_unlock(&dbg_lock);
633}
634
635void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
636{
637 int i;
638 struct rb_node *rb;
639 struct ubifs_bud *bud;
640 struct ubifs_gced_idx_leb *idx_gc;
641 long long available, outstanding, free;
642
643 spin_lock(&c->space_lock);
644 spin_lock(&dbg_lock);
645 printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
646 "total budget sum %lld\n", current->pid,
647 bi->data_growth + bi->dd_growth,
648 bi->data_growth + bi->dd_growth + bi->idx_growth);
649 printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
650 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
651 bi->idx_growth);
652 printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
653 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
654 bi->uncommitted_idx);
655 printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
656 bi->page_budget, bi->inode_budget, bi->dent_budget);
657 printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
658 bi->nospace, bi->nospace_rp);
659 printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
660 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
661
662 if (bi != &c->bi)
663 /*
664 * If we are dumping saved budgeting data, do not print
665 * additional information which is about the current state, not
666 * the old one which corresponded to the saved budgeting data.
667 */
668 goto out_unlock;
669
670 printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
671 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
672 printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
673 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
674 atomic_long_read(&c->dirty_zn_cnt),
675 atomic_long_read(&c->clean_zn_cnt));
676 printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
677 c->gc_lnum, c->ihead_lnum);
678
679 /* If we are in R/O mode, journal heads do not exist */
680 if (c->jheads)
681 for (i = 0; i < c->jhead_cnt; i++)
682 printk(KERN_ERR "\tjhead %s\t LEB %d\n",
683 dbg_jhead(c->jheads[i].wbuf.jhead),
684 c->jheads[i].wbuf.lnum);
685 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
686 bud = rb_entry(rb, struct ubifs_bud, rb);
687 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
688 }
689 list_for_each_entry(bud, &c->old_buds, list)
690 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
691 list_for_each_entry(idx_gc, &c->idx_gc, list)
692 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
693 idx_gc->lnum, idx_gc->unmap);
694 printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
695
696 /* Print budgeting predictions */
697 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
698 outstanding = c->bi.data_growth + c->bi.dd_growth;
699 free = ubifs_get_free_space_nolock(c);
700 printk(KERN_ERR "Budgeting predictions:\n");
701 printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
702 available, outstanding, free);
703out_unlock:
704 spin_unlock(&dbg_lock);
705 spin_unlock(&c->space_lock);
706}
707
708void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
709{
710 int i, spc, dark = 0, dead = 0;
711 struct rb_node *rb;
712 struct ubifs_bud *bud;
713
714 spc = lp->free + lp->dirty;
715 if (spc < c->dead_wm)
716 dead = spc;
717 else
718 dark = ubifs_calc_dark(c, spc);
719
720 if (lp->flags & LPROPS_INDEX)
721 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
722 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
723 lp->dirty, c->leb_size - spc, spc, lp->flags);
724 else
725 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
726 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
727 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
728 c->leb_size - spc, spc, dark, dead,
729 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
730
731 if (lp->flags & LPROPS_TAKEN) {
732 if (lp->flags & LPROPS_INDEX)
733 printk(KERN_CONT "index, taken");
734 else
735 printk(KERN_CONT "taken");
736 } else {
737 const char *s;
738
739 if (lp->flags & LPROPS_INDEX) {
740 switch (lp->flags & LPROPS_CAT_MASK) {
741 case LPROPS_DIRTY_IDX:
742 s = "dirty index";
743 break;
744 case LPROPS_FRDI_IDX:
745 s = "freeable index";
746 break;
747 default:
748 s = "index";
749 }
750 } else {
751 switch (lp->flags & LPROPS_CAT_MASK) {
752 case LPROPS_UNCAT:
753 s = "not categorized";
754 break;
755 case LPROPS_DIRTY:
756 s = "dirty";
757 break;
758 case LPROPS_FREE:
759 s = "free";
760 break;
761 case LPROPS_EMPTY:
762 s = "empty";
763 break;
764 case LPROPS_FREEABLE:
765 s = "freeable";
766 break;
767 default:
768 s = NULL;
769 break;
770 }
771 }
772 printk(KERN_CONT "%s", s);
773 }
774
775 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
776 bud = rb_entry(rb, struct ubifs_bud, rb);
777 if (bud->lnum == lp->lnum) {
778 int head = 0;
779 for (i = 0; i < c->jhead_cnt; i++) {
780 /*
781 * Note, if we are in R/O mode or in the middle
782 * of mounting/re-mounting, the write-buffers do
783 * not exist.
784 */
785 if (c->jheads &&
786 lp->lnum == c->jheads[i].wbuf.lnum) {
787 printk(KERN_CONT ", jhead %s",
788 dbg_jhead(i));
789 head = 1;
790 }
791 }
792 if (!head)
793 printk(KERN_CONT ", bud of jhead %s",
794 dbg_jhead(bud->jhead));
795 }
796 }
797 if (lp->lnum == c->gc_lnum)
798 printk(KERN_CONT ", GC LEB");
799 printk(KERN_CONT ")\n");
800}
801
802void ubifs_dump_lprops(struct ubifs_info *c)
803{
804 int lnum, err;
805 struct ubifs_lprops lp;
806 struct ubifs_lp_stats lst;
807
808 printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
809 current->pid);
810 ubifs_get_lp_stats(c, &lst);
811 ubifs_dump_lstats(&lst);
812
813 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
814 err = ubifs_read_one_lp(c, lnum, &lp);
815 if (err)
816 ubifs_err("cannot read lprops for LEB %d", lnum);
817
818 ubifs_dump_lprop(c, &lp);
819 }
820 printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
821 current->pid);
822}
823
824void ubifs_dump_lpt_info(struct ubifs_info *c)
825{
826 int i;
827
828 spin_lock(&dbg_lock);
829 printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
830 printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz);
831 printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz);
832 printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz);
833 printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz);
834 printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz);
835 printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt);
836 printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght);
837 printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt);
838 printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt);
839 printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
840 printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
841 printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt);
842 printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits);
843 printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
844 printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
845 printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
846 printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits);
847 printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits);
848 printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
849 printk(KERN_ERR "\tLPT head is at %d:%d\n",
850 c->nhead_lnum, c->nhead_offs);
851 printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
852 c->ltab_lnum, c->ltab_offs);
853 if (c->big_lpt)
854 printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
855 c->lsave_lnum, c->lsave_offs);
856 for (i = 0; i < c->lpt_lebs; i++)
857 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
858 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
859 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
860 spin_unlock(&dbg_lock);
861}
862
863void ubifs_dump_sleb(const struct ubifs_info *c,
864 const struct ubifs_scan_leb *sleb, int offs)
865{
866 struct ubifs_scan_node *snod;
867
868 printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
869 current->pid, sleb->lnum, offs);
870
871 list_for_each_entry(snod, &sleb->nodes, list) {
872 cond_resched();
873 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
874 snod->offs, snod->len);
875 ubifs_dump_node(c, snod->node);
876 }
877}
878
879void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
880{
881 struct ubifs_scan_leb *sleb;
882 struct ubifs_scan_node *snod;
883 void *buf;
884
885 if (dbg_is_tst_rcvry(c))
886 return;
887
888 printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
889 current->pid, lnum);
890
891 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
892 if (!buf) {
893 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
894 return;
895 }
896
897 sleb = ubifs_scan(c, lnum, 0, buf, 0);
898 if (IS_ERR(sleb)) {
899 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
900 goto out;
901 }
902
903 printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
904 sleb->nodes_cnt, sleb->endpt);
905
906 list_for_each_entry(snod, &sleb->nodes, list) {
907 cond_resched();
908 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
909 snod->offs, snod->len);
910 ubifs_dump_node(c, snod->node);
911 }
912
913 printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
914 current->pid, lnum);
915 ubifs_scan_destroy(sleb);
916
917out:
918 vfree(buf);
919 return;
920}
921
922void ubifs_dump_znode(const struct ubifs_info *c,
923 const struct ubifs_znode *znode)
924{
925 int n;
926 const struct ubifs_zbranch *zbr;
927 char key_buf[DBG_KEY_BUF_LEN];
928
929 spin_lock(&dbg_lock);
930 if (znode->parent)
931 zbr = &znode->parent->zbranch[znode->iip];
932 else
933 zbr = &c->zroot;
934
935 printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
936 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
937 zbr->len, znode->parent, znode->iip, znode->level,
938 znode->child_cnt, znode->flags);
939
940 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
941 spin_unlock(&dbg_lock);
942 return;
943 }
944
945 printk(KERN_ERR "zbranches:\n");
946 for (n = 0; n < znode->child_cnt; n++) {
947 zbr = &znode->zbranch[n];
948 if (znode->level > 0)
949 printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
950 "%s\n", n, zbr->znode, zbr->lnum,
951 zbr->offs, zbr->len,
952 dbg_snprintf_key(c, &zbr->key,
953 key_buf,
954 DBG_KEY_BUF_LEN));
955 else
956 printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
957 "%s\n", n, zbr->znode, zbr->lnum,
958 zbr->offs, zbr->len,
959 dbg_snprintf_key(c, &zbr->key,
960 key_buf,
961 DBG_KEY_BUF_LEN));
962 }
963 spin_unlock(&dbg_lock);
964}
965
966void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
967{
968 int i;
969
970 printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
971 current->pid, cat, heap->cnt);
972 for (i = 0; i < heap->cnt; i++) {
973 struct ubifs_lprops *lprops = heap->arr[i];
974
975 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
976 "flags %d\n", i, lprops->lnum, lprops->hpos,
977 lprops->free, lprops->dirty, lprops->flags);
978 }
979 printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
980}
981
982void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
983 struct ubifs_nnode *parent, int iip)
984{
985 int i;
986
987 printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
988 printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
989 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
990 printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
991 pnode->flags, iip, pnode->level, pnode->num);
992 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
993 struct ubifs_lprops *lp = &pnode->lprops[i];
994
995 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
996 i, lp->free, lp->dirty, lp->flags, lp->lnum);
997 }
998}
999
1000void ubifs_dump_tnc(struct ubifs_info *c)
1001{
1002 struct ubifs_znode *znode;
1003 int level;
1004
1005 printk(KERN_ERR "\n");
1006 printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008 level = znode->level;
1009 printk(KERN_ERR "== Level %d ==\n", level);
1010 while (znode) {
1011 if (level != znode->level) {
1012 level = znode->level;
1013 printk(KERN_ERR "== Level %d ==\n", level);
1014 }
1015 ubifs_dump_znode(c, znode);
1016 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017 }
1018 printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019}
1020
1021static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022 void *priv)
1023{
1024 ubifs_dump_znode(c, znode);
1025 return 0;
1026}
1027
1028/**
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1031 *
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1034 */
1035void ubifs_dump_index(struct ubifs_info *c)
1036{
1037 dbg_walk_index(c, NULL, dump_znode, NULL);
1038}
1039
1040/**
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1043 *
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1046 */
1047void dbg_save_space_info(struct ubifs_info *c)
1048{
1049 struct ubifs_debug_info *d = c->dbg;
1050 int freeable_cnt;
1051
1052 spin_lock(&c->space_lock);
1053 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057 /*
1058 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059 * affects the free space calculations, and UBIFS might not know about
1060 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061 * only when we read their lprops, and we do this only lazily, upon the
1062 * need. So at any given point of time @c->freeable_cnt might be not
1063 * exactly accurate.
1064 *
1065 * Just one example about the issue we hit when we did not zero
1066 * @c->freeable_cnt.
1067 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068 * amount of free space in @d->saved_free
1069 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070 * information from flash, where we cache LEBs from various
1071 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1074 * -> 'ubifs_add_to_cat()').
1075 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076 * becomes %1.
1077 * 4. We calculate the amount of free space when the re-mount is
1078 * finished in 'dbg_check_space_info()' and it does not match
1079 * @d->saved_free.
1080 */
1081 freeable_cnt = c->freeable_cnt;
1082 c->freeable_cnt = 0;
1083 d->saved_free = ubifs_get_free_space_nolock(c);
1084 c->freeable_cnt = freeable_cnt;
1085 spin_unlock(&c->space_lock);
1086}
1087
1088/**
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1096 */
1097int dbg_check_space_info(struct ubifs_info *c)
1098{
1099 struct ubifs_debug_info *d = c->dbg;
1100 struct ubifs_lp_stats lst;
1101 long long free;
1102 int freeable_cnt;
1103
1104 spin_lock(&c->space_lock);
1105 freeable_cnt = c->freeable_cnt;
1106 c->freeable_cnt = 0;
1107 free = ubifs_get_free_space_nolock(c);
1108 c->freeable_cnt = freeable_cnt;
1109 spin_unlock(&c->space_lock);
1110
1111 if (free != d->saved_free) {
1112 ubifs_err("free space changed from %lld to %lld",
1113 d->saved_free, free);
1114 goto out;
1115 }
1116
1117 return 0;
1118
1119out:
1120 ubifs_msg("saved lprops statistics dump");
1121 ubifs_dump_lstats(&d->saved_lst);
1122 ubifs_msg("saved budgeting info dump");
1123 ubifs_dump_budg(c, &d->saved_bi);
1124 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125 ubifs_msg("current lprops statistics dump");
1126 ubifs_get_lp_stats(c, &lst);
1127 ubifs_dump_lstats(&lst);
1128 ubifs_msg("current budgeting info dump");
1129 ubifs_dump_budg(c, &c->bi);
1130 dump_stack();
1131 return -EINVAL;
1132}
1133
1134/**
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1138 *
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1143 */
1144int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145{
1146 int err = 0;
1147 struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149 if (!dbg_is_chk_gen(c))
1150 return 0;
1151 if (!S_ISREG(inode->i_mode))
1152 return 0;
1153
1154 mutex_lock(&ui->ui_mutex);
1155 spin_lock(&ui->ui_lock);
1156 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158 "is clean", ui->ui_size, ui->synced_i_size);
1159 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160 inode->i_mode, i_size_read(inode));
1161 dump_stack();
1162 err = -EINVAL;
1163 }
1164 spin_unlock(&ui->ui_lock);
1165 mutex_unlock(&ui->ui_mutex);
1166 return err;
1167}
1168
1169/*
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1174 *
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1178 *
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1181 */
1182int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183{
1184 unsigned int nlink = 2;
1185 union ubifs_key key;
1186 struct ubifs_dent_node *dent, *pdent = NULL;
1187 struct qstr nm = { .name = NULL };
1188 loff_t size = UBIFS_INO_NODE_SZ;
1189
1190 if (!dbg_is_chk_gen(c))
1191 return 0;
1192
1193 if (!S_ISDIR(dir->i_mode))
1194 return 0;
1195
1196 lowest_dent_key(c, &key, dir->i_ino);
1197 while (1) {
1198 int err;
1199
1200 dent = ubifs_tnc_next_ent(c, &key, &nm);
1201 if (IS_ERR(dent)) {
1202 err = PTR_ERR(dent);
1203 if (err == -ENOENT)
1204 break;
1205 return err;
1206 }
1207
1208 nm.name = dent->name;
1209 nm.len = le16_to_cpu(dent->nlen);
1210 size += CALC_DENT_SIZE(nm.len);
1211 if (dent->type == UBIFS_ITYPE_DIR)
1212 nlink += 1;
1213 kfree(pdent);
1214 pdent = dent;
1215 key_read(c, &dent->key, &key);
1216 }
1217 kfree(pdent);
1218
1219 if (i_size_read(dir) != size) {
1220 ubifs_err("directory inode %lu has size %llu, "
1221 "but calculated size is %llu", dir->i_ino,
1222 (unsigned long long)i_size_read(dir),
1223 (unsigned long long)size);
1224 ubifs_dump_inode(c, dir);
1225 dump_stack();
1226 return -EINVAL;
1227 }
1228 if (dir->i_nlink != nlink) {
1229 ubifs_err("directory inode %lu has nlink %u, but calculated "
1230 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231 ubifs_dump_inode(c, dir);
1232 dump_stack();
1233 return -EINVAL;
1234 }
1235
1236 return 0;
1237}
1238
1239/**
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1244 *
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1251 */
1252static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253 struct ubifs_zbranch *zbr2)
1254{
1255 int err, nlen1, nlen2, cmp;
1256 struct ubifs_dent_node *dent1, *dent2;
1257 union ubifs_key key;
1258 char key_buf[DBG_KEY_BUF_LEN];
1259
1260 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262 if (!dent1)
1263 return -ENOMEM;
1264 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265 if (!dent2) {
1266 err = -ENOMEM;
1267 goto out_free;
1268 }
1269
1270 err = ubifs_tnc_read_node(c, zbr1, dent1);
1271 if (err)
1272 goto out_free;
1273 err = ubifs_validate_entry(c, dent1);
1274 if (err)
1275 goto out_free;
1276
1277 err = ubifs_tnc_read_node(c, zbr2, dent2);
1278 if (err)
1279 goto out_free;
1280 err = ubifs_validate_entry(c, dent2);
1281 if (err)
1282 goto out_free;
1283
1284 /* Make sure node keys are the same as in zbranch */
1285 err = 1;
1286 key_read(c, &dent1->key, &key);
1287 if (keys_cmp(c, &zbr1->key, &key)) {
1288 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290 DBG_KEY_BUF_LEN));
1291 ubifs_err("but it should have key %s according to tnc",
1292 dbg_snprintf_key(c, &zbr1->key, key_buf,
1293 DBG_KEY_BUF_LEN));
1294 ubifs_dump_node(c, dent1);
1295 goto out_free;
1296 }
1297
1298 key_read(c, &dent2->key, &key);
1299 if (keys_cmp(c, &zbr2->key, &key)) {
1300 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302 DBG_KEY_BUF_LEN));
1303 ubifs_err("but it should have key %s according to tnc",
1304 dbg_snprintf_key(c, &zbr2->key, key_buf,
1305 DBG_KEY_BUF_LEN));
1306 ubifs_dump_node(c, dent2);
1307 goto out_free;
1308 }
1309
1310 nlen1 = le16_to_cpu(dent1->nlen);
1311 nlen2 = le16_to_cpu(dent2->nlen);
1312
1313 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315 err = 0;
1316 goto out_free;
1317 }
1318 if (cmp == 0 && nlen1 == nlen2)
1319 ubifs_err("2 xent/dent nodes with the same name");
1320 else
1321 ubifs_err("bad order of colliding key %s",
1322 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325 ubifs_dump_node(c, dent1);
1326 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327 ubifs_dump_node(c, dent2);
1328
1329out_free:
1330 kfree(dent2);
1331 kfree(dent1);
1332 return err;
1333}
1334
1335/**
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1339 *
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1342 */
1343static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344{
1345 struct ubifs_znode *znode = zbr->znode;
1346 struct ubifs_znode *zp = znode->parent;
1347 int n, err, cmp;
1348
1349 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350 err = 1;
1351 goto out;
1352 }
1353 if (znode->level < 0) {
1354 err = 2;
1355 goto out;
1356 }
1357 if (znode->iip < 0 || znode->iip >= c->fanout) {
1358 err = 3;
1359 goto out;
1360 }
1361
1362 if (zbr->len == 0)
1363 /* Only dirty zbranch may have no on-flash nodes */
1364 if (!ubifs_zn_dirty(znode)) {
1365 err = 4;
1366 goto out;
1367 }
1368
1369 if (ubifs_zn_dirty(znode)) {
1370 /*
1371 * If znode is dirty, its parent has to be dirty as well. The
1372 * order of the operation is important, so we have to have
1373 * memory barriers.
1374 */
1375 smp_mb();
1376 if (zp && !ubifs_zn_dirty(zp)) {
1377 /*
1378 * The dirty flag is atomic and is cleared outside the
1379 * TNC mutex, so znode's dirty flag may now have
1380 * been cleared. The child is always cleared before the
1381 * parent, so we just need to check again.
1382 */
1383 smp_mb();
1384 if (ubifs_zn_dirty(znode)) {
1385 err = 5;
1386 goto out;
1387 }
1388 }
1389 }
1390
1391 if (zp) {
1392 const union ubifs_key *min, *max;
1393
1394 if (znode->level != zp->level - 1) {
1395 err = 6;
1396 goto out;
1397 }
1398
1399 /* Make sure the 'parent' pointer in our znode is correct */
1400 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401 if (!err) {
1402 /* This zbranch does not exist in the parent */
1403 err = 7;
1404 goto out;
1405 }
1406
1407 if (znode->iip >= zp->child_cnt) {
1408 err = 8;
1409 goto out;
1410 }
1411
1412 if (znode->iip != n) {
1413 /* This may happen only in case of collisions */
1414 if (keys_cmp(c, &zp->zbranch[n].key,
1415 &zp->zbranch[znode->iip].key)) {
1416 err = 9;
1417 goto out;
1418 }
1419 n = znode->iip;
1420 }
1421
1422 /*
1423 * Make sure that the first key in our znode is greater than or
1424 * equal to the key in the pointing zbranch.
1425 */
1426 min = &zbr->key;
1427 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428 if (cmp == 1) {
1429 err = 10;
1430 goto out;
1431 }
1432
1433 if (n + 1 < zp->child_cnt) {
1434 max = &zp->zbranch[n + 1].key;
1435
1436 /*
1437 * Make sure the last key in our znode is less or
1438 * equivalent than the key in the zbranch which goes
1439 * after our pointing zbranch.
1440 */
1441 cmp = keys_cmp(c, max,
1442 &znode->zbranch[znode->child_cnt - 1].key);
1443 if (cmp == -1) {
1444 err = 11;
1445 goto out;
1446 }
1447 }
1448 } else {
1449 /* This may only be root znode */
1450 if (zbr != &c->zroot) {
1451 err = 12;
1452 goto out;
1453 }
1454 }
1455
1456 /*
1457 * Make sure that next key is greater or equivalent then the previous
1458 * one.
1459 */
1460 for (n = 1; n < znode->child_cnt; n++) {
1461 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462 &znode->zbranch[n].key);
1463 if (cmp > 0) {
1464 err = 13;
1465 goto out;
1466 }
1467 if (cmp == 0) {
1468 /* This can only be keys with colliding hash */
1469 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470 err = 14;
1471 goto out;
1472 }
1473
1474 if (znode->level != 0 || c->replaying)
1475 continue;
1476
1477 /*
1478 * Colliding keys should follow binary order of
1479 * corresponding xentry/dentry names.
1480 */
1481 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482 &znode->zbranch[n]);
1483 if (err < 0)
1484 return err;
1485 if (err) {
1486 err = 15;
1487 goto out;
1488 }
1489 }
1490 }
1491
1492 for (n = 0; n < znode->child_cnt; n++) {
1493 if (!znode->zbranch[n].znode &&
1494 (znode->zbranch[n].lnum == 0 ||
1495 znode->zbranch[n].len == 0)) {
1496 err = 16;
1497 goto out;
1498 }
1499
1500 if (znode->zbranch[n].lnum != 0 &&
1501 znode->zbranch[n].len == 0) {
1502 err = 17;
1503 goto out;
1504 }
1505
1506 if (znode->zbranch[n].lnum == 0 &&
1507 znode->zbranch[n].len != 0) {
1508 err = 18;
1509 goto out;
1510 }
1511
1512 if (znode->zbranch[n].lnum == 0 &&
1513 znode->zbranch[n].offs != 0) {
1514 err = 19;
1515 goto out;
1516 }
1517
1518 if (znode->level != 0 && znode->zbranch[n].znode)
1519 if (znode->zbranch[n].znode->parent != znode) {
1520 err = 20;
1521 goto out;
1522 }
1523 }
1524
1525 return 0;
1526
1527out:
1528 ubifs_err("failed, error %d", err);
1529 ubifs_msg("dump of the znode");
1530 ubifs_dump_znode(c, znode);
1531 if (zp) {
1532 ubifs_msg("dump of the parent znode");
1533 ubifs_dump_znode(c, zp);
1534 }
1535 dump_stack();
1536 return -EINVAL;
1537}
1538
1539/**
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1543 *
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1546 */
1547int dbg_check_tnc(struct ubifs_info *c, int extra)
1548{
1549 struct ubifs_znode *znode;
1550 long clean_cnt = 0, dirty_cnt = 0;
1551 int err, last;
1552
1553 if (!dbg_is_chk_index(c))
1554 return 0;
1555
1556 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557 if (!c->zroot.znode)
1558 return 0;
1559
1560 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561 while (1) {
1562 struct ubifs_znode *prev;
1563 struct ubifs_zbranch *zbr;
1564
1565 if (!znode->parent)
1566 zbr = &c->zroot;
1567 else
1568 zbr = &znode->parent->zbranch[znode->iip];
1569
1570 err = dbg_check_znode(c, zbr);
1571 if (err)
1572 return err;
1573
1574 if (extra) {
1575 if (ubifs_zn_dirty(znode))
1576 dirty_cnt += 1;
1577 else
1578 clean_cnt += 1;
1579 }
1580
1581 prev = znode;
1582 znode = ubifs_tnc_postorder_next(znode);
1583 if (!znode)
1584 break;
1585
1586 /*
1587 * If the last key of this znode is equivalent to the first key
1588 * of the next znode (collision), then check order of the keys.
1589 */
1590 last = prev->child_cnt - 1;
1591 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592 !keys_cmp(c, &prev->zbranch[last].key,
1593 &znode->zbranch[0].key)) {
1594 err = dbg_check_key_order(c, &prev->zbranch[last],
1595 &znode->zbranch[0]);
1596 if (err < 0)
1597 return err;
1598 if (err) {
1599 ubifs_msg("first znode");
1600 ubifs_dump_znode(c, prev);
1601 ubifs_msg("second znode");
1602 ubifs_dump_znode(c, znode);
1603 return -EINVAL;
1604 }
1605 }
1606 }
1607
1608 if (extra) {
1609 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611 atomic_long_read(&c->clean_zn_cnt),
1612 clean_cnt);
1613 return -EINVAL;
1614 }
1615 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617 atomic_long_read(&c->dirty_zn_cnt),
1618 dirty_cnt);
1619 return -EINVAL;
1620 }
1621 }
1622
1623 return 0;
1624}
1625
1626/**
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1632 *
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1636 *
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1640 */
1641int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642 dbg_znode_callback znode_cb, void *priv)
1643{
1644 int err;
1645 struct ubifs_zbranch *zbr;
1646 struct ubifs_znode *znode, *child;
1647
1648 mutex_lock(&c->tnc_mutex);
1649 /* If the root indexing node is not in TNC - pull it */
1650 if (!c->zroot.znode) {
1651 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652 if (IS_ERR(c->zroot.znode)) {
1653 err = PTR_ERR(c->zroot.znode);
1654 c->zroot.znode = NULL;
1655 goto out_unlock;
1656 }
1657 }
1658
1659 /*
1660 * We are going to traverse the indexing tree in the postorder manner.
1661 * Go down and find the leftmost indexing node where we are going to
1662 * start from.
1663 */
1664 znode = c->zroot.znode;
1665 while (znode->level > 0) {
1666 zbr = &znode->zbranch[0];
1667 child = zbr->znode;
1668 if (!child) {
1669 child = ubifs_load_znode(c, zbr, znode, 0);
1670 if (IS_ERR(child)) {
1671 err = PTR_ERR(child);
1672 goto out_unlock;
1673 }
1674 zbr->znode = child;
1675 }
1676
1677 znode = child;
1678 }
1679
1680 /* Iterate over all indexing nodes */
1681 while (1) {
1682 int idx;
1683
1684 cond_resched();
1685
1686 if (znode_cb) {
1687 err = znode_cb(c, znode, priv);
1688 if (err) {
1689 ubifs_err("znode checking function returned "
1690 "error %d", err);
1691 ubifs_dump_znode(c, znode);
1692 goto out_dump;
1693 }
1694 }
1695 if (leaf_cb && znode->level == 0) {
1696 for (idx = 0; idx < znode->child_cnt; idx++) {
1697 zbr = &znode->zbranch[idx];
1698 err = leaf_cb(c, zbr, priv);
1699 if (err) {
1700 ubifs_err("leaf checking function "
1701 "returned error %d, for leaf "
1702 "at LEB %d:%d",
1703 err, zbr->lnum, zbr->offs);
1704 goto out_dump;
1705 }
1706 }
1707 }
1708
1709 if (!znode->parent)
1710 break;
1711
1712 idx = znode->iip + 1;
1713 znode = znode->parent;
1714 if (idx < znode->child_cnt) {
1715 /* Switch to the next index in the parent */
1716 zbr = &znode->zbranch[idx];
1717 child = zbr->znode;
1718 if (!child) {
1719 child = ubifs_load_znode(c, zbr, znode, idx);
1720 if (IS_ERR(child)) {
1721 err = PTR_ERR(child);
1722 goto out_unlock;
1723 }
1724 zbr->znode = child;
1725 }
1726 znode = child;
1727 } else
1728 /*
1729 * This is the last child, switch to the parent and
1730 * continue.
1731 */
1732 continue;
1733
1734 /* Go to the lowest leftmost znode in the new sub-tree */
1735 while (znode->level > 0) {
1736 zbr = &znode->zbranch[0];
1737 child = zbr->znode;
1738 if (!child) {
1739 child = ubifs_load_znode(c, zbr, znode, 0);
1740 if (IS_ERR(child)) {
1741 err = PTR_ERR(child);
1742 goto out_unlock;
1743 }
1744 zbr->znode = child;
1745 }
1746 znode = child;
1747 }
1748 }
1749
1750 mutex_unlock(&c->tnc_mutex);
1751 return 0;
1752
1753out_dump:
1754 if (znode->parent)
1755 zbr = &znode->parent->zbranch[znode->iip];
1756 else
1757 zbr = &c->zroot;
1758 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759 ubifs_dump_znode(c, znode);
1760out_unlock:
1761 mutex_unlock(&c->tnc_mutex);
1762 return err;
1763}
1764
1765/**
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1770 *
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1774 */
1775static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776{
1777 long long *idx_size = priv;
1778 int add;
1779
1780 add = ubifs_idx_node_sz(c, znode->child_cnt);
1781 add = ALIGN(add, 8);
1782 *idx_size += add;
1783 return 0;
1784}
1785
1786/**
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1790 *
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1794 */
1795int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796{
1797 int err;
1798 long long calc = 0;
1799
1800 if (!dbg_is_chk_index(c))
1801 return 0;
1802
1803 err = dbg_walk_index(c, NULL, add_size, &calc);
1804 if (err) {
1805 ubifs_err("error %d while walking the index", err);
1806 return err;
1807 }
1808
1809 if (calc != idx_size) {
1810 ubifs_err("index size check failed: calculated size is %lld, "
1811 "should be %lld", calc, idx_size);
1812 dump_stack();
1813 return -EINVAL;
1814 }
1815
1816 return 0;
1817}
1818
1819/**
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 * while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 * inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 * inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1838 */
1839struct fsck_inode {
1840 struct rb_node rb;
1841 ino_t inum;
1842 umode_t mode;
1843 unsigned int nlink;
1844 unsigned int xattr_cnt;
1845 int references;
1846 int calc_cnt;
1847 long long size;
1848 unsigned int xattr_sz;
1849 long long calc_sz;
1850 long long calc_xcnt;
1851 long long calc_xsz;
1852 unsigned int xattr_nms;
1853 long long calc_xnms;
1854};
1855
1856/**
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859 */
1860struct fsck_data {
1861 struct rb_root inodes;
1862};
1863
1864/**
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1869 *
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1873 */
1874static struct fsck_inode *add_inode(struct ubifs_info *c,
1875 struct fsck_data *fsckd,
1876 struct ubifs_ino_node *ino)
1877{
1878 struct rb_node **p, *parent = NULL;
1879 struct fsck_inode *fscki;
1880 ino_t inum = key_inum_flash(c, &ino->key);
1881 struct inode *inode;
1882 struct ubifs_inode *ui;
1883
1884 p = &fsckd->inodes.rb_node;
1885 while (*p) {
1886 parent = *p;
1887 fscki = rb_entry(parent, struct fsck_inode, rb);
1888 if (inum < fscki->inum)
1889 p = &(*p)->rb_left;
1890 else if (inum > fscki->inum)
1891 p = &(*p)->rb_right;
1892 else
1893 return fscki;
1894 }
1895
1896 if (inum > c->highest_inum) {
1897 ubifs_err("too high inode number, max. is %lu",
1898 (unsigned long)c->highest_inum);
1899 return ERR_PTR(-EINVAL);
1900 }
1901
1902 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903 if (!fscki)
1904 return ERR_PTR(-ENOMEM);
1905
1906 inode = ilookup(c->vfs_sb, inum);
1907
1908 fscki->inum = inum;
1909 /*
1910 * If the inode is present in the VFS inode cache, use it instead of
1911 * the on-flash inode which might be out-of-date. E.g., the size might
1912 * be out-of-date. If we do not do this, the following may happen, for
1913 * example:
1914 * 1. A power cut happens
1915 * 2. We mount the file-system R/O, the replay process fixes up the
1916 * inode size in the VFS cache, but on on-flash.
1917 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1918 * size.
1919 */
1920 if (!inode) {
1921 fscki->nlink = le32_to_cpu(ino->nlink);
1922 fscki->size = le64_to_cpu(ino->size);
1923 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926 fscki->mode = le32_to_cpu(ino->mode);
1927 } else {
1928 ui = ubifs_inode(inode);
1929 fscki->nlink = inode->i_nlink;
1930 fscki->size = inode->i_size;
1931 fscki->xattr_cnt = ui->xattr_cnt;
1932 fscki->xattr_sz = ui->xattr_size;
1933 fscki->xattr_nms = ui->xattr_names;
1934 fscki->mode = inode->i_mode;
1935 iput(inode);
1936 }
1937
1938 if (S_ISDIR(fscki->mode)) {
1939 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940 fscki->calc_cnt = 2;
1941 }
1942
1943 rb_link_node(&fscki->rb, parent, p);
1944 rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946 return fscki;
1947}
1948
1949/**
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1953 *
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1957 */
1958static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959{
1960 struct rb_node *p;
1961 struct fsck_inode *fscki;
1962
1963 p = fsckd->inodes.rb_node;
1964 while (p) {
1965 fscki = rb_entry(p, struct fsck_inode, rb);
1966 if (inum < fscki->inum)
1967 p = p->rb_left;
1968 else if (inum > fscki->inum)
1969 p = p->rb_right;
1970 else
1971 return fscki;
1972 }
1973 return NULL;
1974}
1975
1976/**
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1981 *
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1986 */
1987static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988 struct fsck_data *fsckd, ino_t inum)
1989{
1990 int n, err;
1991 union ubifs_key key;
1992 struct ubifs_znode *znode;
1993 struct ubifs_zbranch *zbr;
1994 struct ubifs_ino_node *ino;
1995 struct fsck_inode *fscki;
1996
1997 fscki = search_inode(fsckd, inum);
1998 if (fscki)
1999 return fscki;
2000
2001 ino_key_init(c, &key, inum);
2002 err = ubifs_lookup_level0(c, &key, &znode, &n);
2003 if (!err) {
2004 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005 return ERR_PTR(-ENOENT);
2006 } else if (err < 0) {
2007 ubifs_err("error %d while looking up inode %lu",
2008 err, (unsigned long)inum);
2009 return ERR_PTR(err);
2010 }
2011
2012 zbr = &znode->zbranch[n];
2013 if (zbr->len < UBIFS_INO_NODE_SZ) {
2014 ubifs_err("bad node %lu node length %d",
2015 (unsigned long)inum, zbr->len);
2016 return ERR_PTR(-EINVAL);
2017 }
2018
2019 ino = kmalloc(zbr->len, GFP_NOFS);
2020 if (!ino)
2021 return ERR_PTR(-ENOMEM);
2022
2023 err = ubifs_tnc_read_node(c, zbr, ino);
2024 if (err) {
2025 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026 zbr->lnum, zbr->offs, err);
2027 kfree(ino);
2028 return ERR_PTR(err);
2029 }
2030
2031 fscki = add_inode(c, fsckd, ino);
2032 kfree(ino);
2033 if (IS_ERR(fscki)) {
2034 ubifs_err("error %ld while adding inode %lu node",
2035 PTR_ERR(fscki), (unsigned long)inum);
2036 return fscki;
2037 }
2038
2039 return fscki;
2040}
2041
2042/**
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2047 *
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2057 */
2058static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059 void *priv)
2060{
2061 ino_t inum;
2062 void *node;
2063 struct ubifs_ch *ch;
2064 int err, type = key_type(c, &zbr->key);
2065 struct fsck_inode *fscki;
2066
2067 if (zbr->len < UBIFS_CH_SZ) {
2068 ubifs_err("bad leaf length %d (LEB %d:%d)",
2069 zbr->len, zbr->lnum, zbr->offs);
2070 return -EINVAL;
2071 }
2072
2073 node = kmalloc(zbr->len, GFP_NOFS);
2074 if (!node)
2075 return -ENOMEM;
2076
2077 err = ubifs_tnc_read_node(c, zbr, node);
2078 if (err) {
2079 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080 zbr->lnum, zbr->offs, err);
2081 goto out_free;
2082 }
2083
2084 /* If this is an inode node, add it to RB-tree of inodes */
2085 if (type == UBIFS_INO_KEY) {
2086 fscki = add_inode(c, priv, node);
2087 if (IS_ERR(fscki)) {
2088 err = PTR_ERR(fscki);
2089 ubifs_err("error %d while adding inode node", err);
2090 goto out_dump;
2091 }
2092 goto out;
2093 }
2094
2095 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096 type != UBIFS_DATA_KEY) {
2097 ubifs_err("unexpected node type %d at LEB %d:%d",
2098 type, zbr->lnum, zbr->offs);
2099 err = -EINVAL;
2100 goto out_free;
2101 }
2102
2103 ch = node;
2104 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105 ubifs_err("too high sequence number, max. is %llu",
2106 c->max_sqnum);
2107 err = -EINVAL;
2108 goto out_dump;
2109 }
2110
2111 if (type == UBIFS_DATA_KEY) {
2112 long long blk_offs;
2113 struct ubifs_data_node *dn = node;
2114
2115 /*
2116 * Search the inode node this data node belongs to and insert
2117 * it to the RB-tree of inodes.
2118 */
2119 inum = key_inum_flash(c, &dn->key);
2120 fscki = read_add_inode(c, priv, inum);
2121 if (IS_ERR(fscki)) {
2122 err = PTR_ERR(fscki);
2123 ubifs_err("error %d while processing data node and "
2124 "trying to find inode node %lu",
2125 err, (unsigned long)inum);
2126 goto out_dump;
2127 }
2128
2129 /* Make sure the data node is within inode size */
2130 blk_offs = key_block_flash(c, &dn->key);
2131 blk_offs <<= UBIFS_BLOCK_SHIFT;
2132 blk_offs += le32_to_cpu(dn->size);
2133 if (blk_offs > fscki->size) {
2134 ubifs_err("data node at LEB %d:%d is not within inode "
2135 "size %lld", zbr->lnum, zbr->offs,
2136 fscki->size);
2137 err = -EINVAL;
2138 goto out_dump;
2139 }
2140 } else {
2141 int nlen;
2142 struct ubifs_dent_node *dent = node;
2143 struct fsck_inode *fscki1;
2144
2145 err = ubifs_validate_entry(c, dent);
2146 if (err)
2147 goto out_dump;
2148
2149 /*
2150 * Search the inode node this entry refers to and the parent
2151 * inode node and insert them to the RB-tree of inodes.
2152 */
2153 inum = le64_to_cpu(dent->inum);
2154 fscki = read_add_inode(c, priv, inum);
2155 if (IS_ERR(fscki)) {
2156 err = PTR_ERR(fscki);
2157 ubifs_err("error %d while processing entry node and "
2158 "trying to find inode node %lu",
2159 err, (unsigned long)inum);
2160 goto out_dump;
2161 }
2162
2163 /* Count how many direntries or xentries refers this inode */
2164 fscki->references += 1;
2165
2166 inum = key_inum_flash(c, &dent->key);
2167 fscki1 = read_add_inode(c, priv, inum);
2168 if (IS_ERR(fscki1)) {
2169 err = PTR_ERR(fscki1);
2170 ubifs_err("error %d while processing entry node and "
2171 "trying to find parent inode node %lu",
2172 err, (unsigned long)inum);
2173 goto out_dump;
2174 }
2175
2176 nlen = le16_to_cpu(dent->nlen);
2177 if (type == UBIFS_XENT_KEY) {
2178 fscki1->calc_xcnt += 1;
2179 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181 fscki1->calc_xnms += nlen;
2182 } else {
2183 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184 if (dent->type == UBIFS_ITYPE_DIR)
2185 fscki1->calc_cnt += 1;
2186 }
2187 }
2188
2189out:
2190 kfree(node);
2191 return 0;
2192
2193out_dump:
2194 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195 ubifs_dump_node(c, node);
2196out_free:
2197 kfree(node);
2198 return err;
2199}
2200
2201/**
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2204 */
2205static void free_inodes(struct fsck_data *fsckd)
2206{
2207 struct rb_node *this = fsckd->inodes.rb_node;
2208 struct fsck_inode *fscki;
2209
2210 while (this) {
2211 if (this->rb_left)
2212 this = this->rb_left;
2213 else if (this->rb_right)
2214 this = this->rb_right;
2215 else {
2216 fscki = rb_entry(this, struct fsck_inode, rb);
2217 this = rb_parent(this);
2218 if (this) {
2219 if (this->rb_left == &fscki->rb)
2220 this->rb_left = NULL;
2221 else
2222 this->rb_right = NULL;
2223 }
2224 kfree(fscki);
2225 }
2226 }
2227}
2228
2229/**
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2233 *
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2238 */
2239static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240{
2241 int n, err;
2242 union ubifs_key key;
2243 struct ubifs_znode *znode;
2244 struct ubifs_zbranch *zbr;
2245 struct ubifs_ino_node *ino;
2246 struct fsck_inode *fscki;
2247 struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249 while (this) {
2250 fscki = rb_entry(this, struct fsck_inode, rb);
2251 this = rb_next(this);
2252
2253 if (S_ISDIR(fscki->mode)) {
2254 /*
2255 * Directories have to have exactly one reference (they
2256 * cannot have hardlinks), although root inode is an
2257 * exception.
2258 */
2259 if (fscki->inum != UBIFS_ROOT_INO &&
2260 fscki->references != 1) {
2261 ubifs_err("directory inode %lu has %d "
2262 "direntries which refer it, but "
2263 "should be 1",
2264 (unsigned long)fscki->inum,
2265 fscki->references);
2266 goto out_dump;
2267 }
2268 if (fscki->inum == UBIFS_ROOT_INO &&
2269 fscki->references != 0) {
2270 ubifs_err("root inode %lu has non-zero (%d) "
2271 "direntries which refer it",
2272 (unsigned long)fscki->inum,
2273 fscki->references);
2274 goto out_dump;
2275 }
2276 if (fscki->calc_sz != fscki->size) {
2277 ubifs_err("directory inode %lu size is %lld, "
2278 "but calculated size is %lld",
2279 (unsigned long)fscki->inum,
2280 fscki->size, fscki->calc_sz);
2281 goto out_dump;
2282 }
2283 if (fscki->calc_cnt != fscki->nlink) {
2284 ubifs_err("directory inode %lu nlink is %d, "
2285 "but calculated nlink is %d",
2286 (unsigned long)fscki->inum,
2287 fscki->nlink, fscki->calc_cnt);
2288 goto out_dump;
2289 }
2290 } else {
2291 if (fscki->references != fscki->nlink) {
2292 ubifs_err("inode %lu nlink is %d, but "
2293 "calculated nlink is %d",
2294 (unsigned long)fscki->inum,
2295 fscki->nlink, fscki->references);
2296 goto out_dump;
2297 }
2298 }
2299 if (fscki->xattr_sz != fscki->calc_xsz) {
2300 ubifs_err("inode %lu has xattr size %u, but "
2301 "calculated size is %lld",
2302 (unsigned long)fscki->inum, fscki->xattr_sz,
2303 fscki->calc_xsz);
2304 goto out_dump;
2305 }
2306 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307 ubifs_err("inode %lu has %u xattrs, but "
2308 "calculated count is %lld",
2309 (unsigned long)fscki->inum,
2310 fscki->xattr_cnt, fscki->calc_xcnt);
2311 goto out_dump;
2312 }
2313 if (fscki->xattr_nms != fscki->calc_xnms) {
2314 ubifs_err("inode %lu has xattr names' size %u, but "
2315 "calculated names' size is %lld",
2316 (unsigned long)fscki->inum, fscki->xattr_nms,
2317 fscki->calc_xnms);
2318 goto out_dump;
2319 }
2320 }
2321
2322 return 0;
2323
2324out_dump:
2325 /* Read the bad inode and dump it */
2326 ino_key_init(c, &key, fscki->inum);
2327 err = ubifs_lookup_level0(c, &key, &znode, &n);
2328 if (!err) {
2329 ubifs_err("inode %lu not found in index",
2330 (unsigned long)fscki->inum);
2331 return -ENOENT;
2332 } else if (err < 0) {
2333 ubifs_err("error %d while looking up inode %lu",
2334 err, (unsigned long)fscki->inum);
2335 return err;
2336 }
2337
2338 zbr = &znode->zbranch[n];
2339 ino = kmalloc(zbr->len, GFP_NOFS);
2340 if (!ino)
2341 return -ENOMEM;
2342
2343 err = ubifs_tnc_read_node(c, zbr, ino);
2344 if (err) {
2345 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346 zbr->lnum, zbr->offs, err);
2347 kfree(ino);
2348 return err;
2349 }
2350
2351 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353 ubifs_dump_node(c, ino);
2354 kfree(ino);
2355 return -EINVAL;
2356}
2357
2358/**
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2361 *
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 * inodes).
2366 *
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2370 */
2371int dbg_check_filesystem(struct ubifs_info *c)
2372{
2373 int err;
2374 struct fsck_data fsckd;
2375
2376 if (!dbg_is_chk_fs(c))
2377 return 0;
2378
2379 fsckd.inodes = RB_ROOT;
2380 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381 if (err)
2382 goto out_free;
2383
2384 err = check_inodes(c, &fsckd);
2385 if (err)
2386 goto out_free;
2387
2388 free_inodes(&fsckd);
2389 return 0;
2390
2391out_free:
2392 ubifs_err("file-system check failed with error %d", err);
2393 dump_stack();
2394 free_inodes(&fsckd);
2395 return err;
2396}
2397
2398/**
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402 *
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2405 */
2406int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407{
2408 struct list_head *cur;
2409 struct ubifs_scan_node *sa, *sb;
2410
2411 if (!dbg_is_chk_gen(c))
2412 return 0;
2413
2414 for (cur = head->next; cur->next != head; cur = cur->next) {
2415 ino_t inuma, inumb;
2416 uint32_t blka, blkb;
2417
2418 cond_resched();
2419 sa = container_of(cur, struct ubifs_scan_node, list);
2420 sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422 if (sa->type != UBIFS_DATA_NODE) {
2423 ubifs_err("bad node type %d", sa->type);
2424 ubifs_dump_node(c, sa->node);
2425 return -EINVAL;
2426 }
2427 if (sb->type != UBIFS_DATA_NODE) {
2428 ubifs_err("bad node type %d", sb->type);
2429 ubifs_dump_node(c, sb->node);
2430 return -EINVAL;
2431 }
2432
2433 inuma = key_inum(c, &sa->key);
2434 inumb = key_inum(c, &sb->key);
2435
2436 if (inuma < inumb)
2437 continue;
2438 if (inuma > inumb) {
2439 ubifs_err("larger inum %lu goes before inum %lu",
2440 (unsigned long)inuma, (unsigned long)inumb);
2441 goto error_dump;
2442 }
2443
2444 blka = key_block(c, &sa->key);
2445 blkb = key_block(c, &sb->key);
2446
2447 if (blka > blkb) {
2448 ubifs_err("larger block %u goes before %u", blka, blkb);
2449 goto error_dump;
2450 }
2451 if (blka == blkb) {
2452 ubifs_err("two data nodes for the same block");
2453 goto error_dump;
2454 }
2455 }
2456
2457 return 0;
2458
2459error_dump:
2460 ubifs_dump_node(c, sa->node);
2461 ubifs_dump_node(c, sb->node);
2462 return -EINVAL;
2463}
2464
2465/**
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469 *
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2472 */
2473int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474{
2475 struct list_head *cur;
2476 struct ubifs_scan_node *sa, *sb;
2477
2478 if (!dbg_is_chk_gen(c))
2479 return 0;
2480
2481 for (cur = head->next; cur->next != head; cur = cur->next) {
2482 ino_t inuma, inumb;
2483 uint32_t hasha, hashb;
2484
2485 cond_resched();
2486 sa = container_of(cur, struct ubifs_scan_node, list);
2487 sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490 sa->type != UBIFS_XENT_NODE) {
2491 ubifs_err("bad node type %d", sa->type);
2492 ubifs_dump_node(c, sa->node);
2493 return -EINVAL;
2494 }
2495 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496 sa->type != UBIFS_XENT_NODE) {
2497 ubifs_err("bad node type %d", sb->type);
2498 ubifs_dump_node(c, sb->node);
2499 return -EINVAL;
2500 }
2501
2502 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503 ubifs_err("non-inode node goes before inode node");
2504 goto error_dump;
2505 }
2506
2507 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508 continue;
2509
2510 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511 /* Inode nodes are sorted in descending size order */
2512 if (sa->len < sb->len) {
2513 ubifs_err("smaller inode node goes first");
2514 goto error_dump;
2515 }
2516 continue;
2517 }
2518
2519 /*
2520 * This is either a dentry or xentry, which should be sorted in
2521 * ascending (parent ino, hash) order.
2522 */
2523 inuma = key_inum(c, &sa->key);
2524 inumb = key_inum(c, &sb->key);
2525
2526 if (inuma < inumb)
2527 continue;
2528 if (inuma > inumb) {
2529 ubifs_err("larger inum %lu goes before inum %lu",
2530 (unsigned long)inuma, (unsigned long)inumb);
2531 goto error_dump;
2532 }
2533
2534 hasha = key_block(c, &sa->key);
2535 hashb = key_block(c, &sb->key);
2536
2537 if (hasha > hashb) {
2538 ubifs_err("larger hash %u goes before %u",
2539 hasha, hashb);
2540 goto error_dump;
2541 }
2542 }
2543
2544 return 0;
2545
2546error_dump:
2547 ubifs_msg("dumping first node");
2548 ubifs_dump_node(c, sa->node);
2549 ubifs_msg("dumping second node");
2550 ubifs_dump_node(c, sb->node);
2551 return -EINVAL;
2552 return 0;
2553}
2554
2555static inline int chance(unsigned int n, unsigned int out_of)
2556{
2557 return !!((random32() % out_of) + 1 <= n);
2558
2559}
2560
2561static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562{
2563 struct ubifs_debug_info *d = c->dbg;
2564
2565 ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567 if (!d->pc_cnt) {
2568 /* First call - decide delay to the power cut */
2569 if (chance(1, 2)) {
2570 unsigned long delay;
2571
2572 if (chance(1, 2)) {
2573 d->pc_delay = 1;
2574 /* Fail withing 1 minute */
2575 delay = random32() % 60000;
2576 d->pc_timeout = jiffies;
2577 d->pc_timeout += msecs_to_jiffies(delay);
2578 ubifs_warn("failing after %lums", delay);
2579 } else {
2580 d->pc_delay = 2;
2581 delay = random32() % 10000;
2582 /* Fail within 10000 operations */
2583 d->pc_cnt_max = delay;
2584 ubifs_warn("failing after %lu calls", delay);
2585 }
2586 }
2587
2588 d->pc_cnt += 1;
2589 }
2590
2591 /* Determine if failure delay has expired */
2592 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593 return 0;
2594 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595 return 0;
2596
2597 if (lnum == UBIFS_SB_LNUM) {
2598 if (write && chance(1, 2))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in super block LEB %d", lnum);
2603 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604 if (chance(19, 20))
2605 return 0;
2606 ubifs_warn("failing in master LEB %d", lnum);
2607 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608 if (write && chance(99, 100))
2609 return 0;
2610 if (chance(399, 400))
2611 return 0;
2612 ubifs_warn("failing in log LEB %d", lnum);
2613 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614 if (write && chance(7, 8))
2615 return 0;
2616 if (chance(19, 20))
2617 return 0;
2618 ubifs_warn("failing in LPT LEB %d", lnum);
2619 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620 if (write && chance(1, 2))
2621 return 0;
2622 if (chance(9, 10))
2623 return 0;
2624 ubifs_warn("failing in orphan LEB %d", lnum);
2625 } else if (lnum == c->ihead_lnum) {
2626 if (chance(99, 100))
2627 return 0;
2628 ubifs_warn("failing in index head LEB %d", lnum);
2629 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630 if (chance(9, 10))
2631 return 0;
2632 ubifs_warn("failing in GC head LEB %d", lnum);
2633 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634 !ubifs_search_bud(c, lnum)) {
2635 if (chance(19, 20))
2636 return 0;
2637 ubifs_warn("failing in non-bud LEB %d", lnum);
2638 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640 if (chance(999, 1000))
2641 return 0;
2642 ubifs_warn("failing in bud LEB %d commit running", lnum);
2643 } else {
2644 if (chance(9999, 10000))
2645 return 0;
2646 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647 }
2648
2649 d->pc_happened = 1;
2650 ubifs_warn("========== Power cut emulated ==========");
2651 dump_stack();
2652 return 1;
2653}
2654
2655static void cut_data(const void *buf, unsigned int len)
2656{
2657 unsigned int from, to, i, ffs = chance(1, 2);
2658 unsigned char *p = (void *)buf;
2659
2660 from = random32() % (len + 1);
2661 if (chance(1, 2))
2662 to = random32() % (len - from + 1);
2663 else
2664 to = len;
2665
2666 if (from < to)
2667 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668 ffs ? "0xFFs" : "random data");
2669
2670 if (ffs)
2671 for (i = from; i < to; i++)
2672 p[i] = 0xFF;
2673 else
2674 for (i = from; i < to; i++)
2675 p[i] = random32() % 0x100;
2676}
2677
2678int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679 int offs, int len)
2680{
2681 int err, failing;
2682
2683 if (c->dbg->pc_happened)
2684 return -EROFS;
2685
2686 failing = power_cut_emulated(c, lnum, 1);
2687 if (failing)
2688 cut_data(buf, len);
2689 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690 if (err)
2691 return err;
2692 if (failing)
2693 return -EROFS;
2694 return 0;
2695}
2696
2697int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698 int len)
2699{
2700 int err;
2701
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 1))
2705 return -EROFS;
2706 err = ubi_leb_change(c->ubi, lnum, buf, len);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 1))
2710 return -EROFS;
2711 return 0;
2712}
2713
2714int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715{
2716 int err;
2717
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_unmap(c->ubi, lnum);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2728}
2729
2730int dbg_leb_map(struct ubifs_info *c, int lnum)
2731{
2732 int err;
2733
2734 if (c->dbg->pc_happened)
2735 return -EROFS;
2736 if (power_cut_emulated(c, lnum, 0))
2737 return -EROFS;
2738 err = ubi_leb_map(c->ubi, lnum);
2739 if (err)
2740 return err;
2741 if (power_cut_emulated(c, lnum, 0))
2742 return -EROFS;
2743 return 0;
2744}
2745
2746/*
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2749 */
2750static struct dentry *dfs_rootdir;
2751
2752static int dfs_file_open(struct inode *inode, struct file *file)
2753{
2754 file->private_data = inode->i_private;
2755 return nonseekable_open(inode, file);
2756}
2757
2758/**
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2764 *
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2769 */
2770static int provide_user_output(int val, char __user *u, size_t count,
2771 loff_t *ppos)
2772{
2773 char buf[3];
2774
2775 if (val)
2776 buf[0] = '1';
2777 else
2778 buf[0] = '0';
2779 buf[1] = '\n';
2780 buf[2] = 0x00;
2781
2782 return simple_read_from_buffer(u, count, ppos, buf, 2);
2783}
2784
2785static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786 loff_t *ppos)
2787{
2788 struct dentry *dent = file->f_path.dentry;
2789 struct ubifs_info *c = file->private_data;
2790 struct ubifs_debug_info *d = c->dbg;
2791 int val;
2792
2793 if (dent == d->dfs_chk_gen)
2794 val = d->chk_gen;
2795 else if (dent == d->dfs_chk_index)
2796 val = d->chk_index;
2797 else if (dent == d->dfs_chk_orph)
2798 val = d->chk_orph;
2799 else if (dent == d->dfs_chk_lprops)
2800 val = d->chk_lprops;
2801 else if (dent == d->dfs_chk_fs)
2802 val = d->chk_fs;
2803 else if (dent == d->dfs_tst_rcvry)
2804 val = d->tst_rcvry;
2805 else
2806 return -EINVAL;
2807
2808 return provide_user_output(val, u, count, ppos);
2809}
2810
2811/**
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2815 *
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2819 */
2820static int interpret_user_input(const char __user *u, size_t count)
2821{
2822 size_t buf_size;
2823 char buf[8];
2824
2825 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826 if (copy_from_user(buf, u, buf_size))
2827 return -EFAULT;
2828
2829 if (buf[0] == '1')
2830 return 1;
2831 else if (buf[0] == '0')
2832 return 0;
2833
2834 return -EINVAL;
2835}
2836
2837static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838 size_t count, loff_t *ppos)
2839{
2840 struct ubifs_info *c = file->private_data;
2841 struct ubifs_debug_info *d = c->dbg;
2842 struct dentry *dent = file->f_path.dentry;
2843 int val;
2844
2845 /*
2846 * TODO: this is racy - the file-system might have already been
2847 * unmounted and we'd oops in this case. The plan is to fix it with
2848 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851 * superblocks and fine the one with the same UUID, and take the
2852 * locking right.
2853 *
2854 * The other way to go suggested by Al Viro is to create a separate
2855 * 'ubifs-debug' file-system instead.
2856 */
2857 if (file->f_path.dentry == d->dfs_dump_lprops) {
2858 ubifs_dump_lprops(c);
2859 return count;
2860 }
2861 if (file->f_path.dentry == d->dfs_dump_budg) {
2862 ubifs_dump_budg(c, &c->bi);
2863 return count;
2864 }
2865 if (file->f_path.dentry == d->dfs_dump_tnc) {
2866 mutex_lock(&c->tnc_mutex);
2867 ubifs_dump_tnc(c);
2868 mutex_unlock(&c->tnc_mutex);
2869 return count;
2870 }
2871
2872 val = interpret_user_input(u, count);
2873 if (val < 0)
2874 return val;
2875
2876 if (dent == d->dfs_chk_gen)
2877 d->chk_gen = val;
2878 else if (dent == d->dfs_chk_index)
2879 d->chk_index = val;
2880 else if (dent == d->dfs_chk_orph)
2881 d->chk_orph = val;
2882 else if (dent == d->dfs_chk_lprops)
2883 d->chk_lprops = val;
2884 else if (dent == d->dfs_chk_fs)
2885 d->chk_fs = val;
2886 else if (dent == d->dfs_tst_rcvry)
2887 d->tst_rcvry = val;
2888 else
2889 return -EINVAL;
2890
2891 return count;
2892}
2893
2894static const struct file_operations dfs_fops = {
2895 .open = dfs_file_open,
2896 .read = dfs_file_read,
2897 .write = dfs_file_write,
2898 .owner = THIS_MODULE,
2899 .llseek = no_llseek,
2900};
2901
2902/**
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2905 *
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2908 *
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2913 */
2914int dbg_debugfs_init_fs(struct ubifs_info *c)
2915{
2916 int err, n;
2917 const char *fname;
2918 struct dentry *dent;
2919 struct ubifs_debug_info *d = c->dbg;
2920
2921 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2922 return 0;
2923
2924 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2925 c->vi.ubi_num, c->vi.vol_id);
2926 if (n == UBIFS_DFS_DIR_LEN) {
2927 /* The array size is too small */
2928 fname = UBIFS_DFS_DIR_NAME;
2929 dent = ERR_PTR(-EINVAL);
2930 goto out;
2931 }
2932
2933 fname = d->dfs_dir_name;
2934 dent = debugfs_create_dir(fname, dfs_rootdir);
2935 if (IS_ERR_OR_NULL(dent))
2936 goto out;
2937 d->dfs_dir = dent;
2938
2939 fname = "dump_lprops";
2940 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_dump_lprops = dent;
2944
2945 fname = "dump_budg";
2946 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2947 if (IS_ERR_OR_NULL(dent))
2948 goto out_remove;
2949 d->dfs_dump_budg = dent;
2950
2951 fname = "dump_tnc";
2952 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2953 if (IS_ERR_OR_NULL(dent))
2954 goto out_remove;
2955 d->dfs_dump_tnc = dent;
2956
2957 fname = "chk_general";
2958 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2959 &dfs_fops);
2960 if (IS_ERR_OR_NULL(dent))
2961 goto out_remove;
2962 d->dfs_chk_gen = dent;
2963
2964 fname = "chk_index";
2965 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2966 &dfs_fops);
2967 if (IS_ERR_OR_NULL(dent))
2968 goto out_remove;
2969 d->dfs_chk_index = dent;
2970
2971 fname = "chk_orphans";
2972 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2973 &dfs_fops);
2974 if (IS_ERR_OR_NULL(dent))
2975 goto out_remove;
2976 d->dfs_chk_orph = dent;
2977
2978 fname = "chk_lprops";
2979 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2980 &dfs_fops);
2981 if (IS_ERR_OR_NULL(dent))
2982 goto out_remove;
2983 d->dfs_chk_lprops = dent;
2984
2985 fname = "chk_fs";
2986 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2987 &dfs_fops);
2988 if (IS_ERR_OR_NULL(dent))
2989 goto out_remove;
2990 d->dfs_chk_fs = dent;
2991
2992 fname = "tst_recovery";
2993 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2994 &dfs_fops);
2995 if (IS_ERR_OR_NULL(dent))
2996 goto out_remove;
2997 d->dfs_tst_rcvry = dent;
2998
2999 return 0;
3000
3001out_remove:
3002 debugfs_remove_recursive(d->dfs_dir);
3003out:
3004 err = dent ? PTR_ERR(dent) : -ENODEV;
3005 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3006 fname, err);
3007 return err;
3008}
3009
3010/**
3011 * dbg_debugfs_exit_fs - remove all debugfs files.
3012 * @c: UBIFS file-system description object
3013 */
3014void dbg_debugfs_exit_fs(struct ubifs_info *c)
3015{
3016 if (IS_ENABLED(CONFIG_DEBUG_FS))
3017 debugfs_remove_recursive(c->dbg->dfs_dir);
3018}
3019
3020struct ubifs_global_debug_info ubifs_dbg;
3021
3022static struct dentry *dfs_chk_gen;
3023static struct dentry *dfs_chk_index;
3024static struct dentry *dfs_chk_orph;
3025static struct dentry *dfs_chk_lprops;
3026static struct dentry *dfs_chk_fs;
3027static struct dentry *dfs_tst_rcvry;
3028
3029static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3030 size_t count, loff_t *ppos)
3031{
3032 struct dentry *dent = file->f_path.dentry;
3033 int val;
3034
3035 if (dent == dfs_chk_gen)
3036 val = ubifs_dbg.chk_gen;
3037 else if (dent == dfs_chk_index)
3038 val = ubifs_dbg.chk_index;
3039 else if (dent == dfs_chk_orph)
3040 val = ubifs_dbg.chk_orph;
3041 else if (dent == dfs_chk_lprops)
3042 val = ubifs_dbg.chk_lprops;
3043 else if (dent == dfs_chk_fs)
3044 val = ubifs_dbg.chk_fs;
3045 else if (dent == dfs_tst_rcvry)
3046 val = ubifs_dbg.tst_rcvry;
3047 else
3048 return -EINVAL;
3049
3050 return provide_user_output(val, u, count, ppos);
3051}
3052
3053static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3054 size_t count, loff_t *ppos)
3055{
3056 struct dentry *dent = file->f_path.dentry;
3057 int val;
3058
3059 val = interpret_user_input(u, count);
3060 if (val < 0)
3061 return val;
3062
3063 if (dent == dfs_chk_gen)
3064 ubifs_dbg.chk_gen = val;
3065 else if (dent == dfs_chk_index)
3066 ubifs_dbg.chk_index = val;
3067 else if (dent == dfs_chk_orph)
3068 ubifs_dbg.chk_orph = val;
3069 else if (dent == dfs_chk_lprops)
3070 ubifs_dbg.chk_lprops = val;
3071 else if (dent == dfs_chk_fs)
3072 ubifs_dbg.chk_fs = val;
3073 else if (dent == dfs_tst_rcvry)
3074 ubifs_dbg.tst_rcvry = val;
3075 else
3076 return -EINVAL;
3077
3078 return count;
3079}
3080
3081static const struct file_operations dfs_global_fops = {
3082 .read = dfs_global_file_read,
3083 .write = dfs_global_file_write,
3084 .owner = THIS_MODULE,
3085 .llseek = no_llseek,
3086};
3087
3088/**
3089 * dbg_debugfs_init - initialize debugfs file-system.
3090 *
3091 * UBIFS uses debugfs file-system to expose various debugging knobs to
3092 * user-space. This function creates "ubifs" directory in the debugfs
3093 * file-system. Returns zero in case of success and a negative error code in
3094 * case of failure.
3095 */
3096int dbg_debugfs_init(void)
3097{
3098 int err;
3099 const char *fname;
3100 struct dentry *dent;
3101
3102 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3103 return 0;
3104
3105 fname = "ubifs";
3106 dent = debugfs_create_dir(fname, NULL);
3107 if (IS_ERR_OR_NULL(dent))
3108 goto out;
3109 dfs_rootdir = dent;
3110
3111 fname = "chk_general";
3112 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113 &dfs_global_fops);
3114 if (IS_ERR_OR_NULL(dent))
3115 goto out_remove;
3116 dfs_chk_gen = dent;
3117
3118 fname = "chk_index";
3119 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120 &dfs_global_fops);
3121 if (IS_ERR_OR_NULL(dent))
3122 goto out_remove;
3123 dfs_chk_index = dent;
3124
3125 fname = "chk_orphans";
3126 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127 &dfs_global_fops);
3128 if (IS_ERR_OR_NULL(dent))
3129 goto out_remove;
3130 dfs_chk_orph = dent;
3131
3132 fname = "chk_lprops";
3133 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134 &dfs_global_fops);
3135 if (IS_ERR_OR_NULL(dent))
3136 goto out_remove;
3137 dfs_chk_lprops = dent;
3138
3139 fname = "chk_fs";
3140 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141 &dfs_global_fops);
3142 if (IS_ERR_OR_NULL(dent))
3143 goto out_remove;
3144 dfs_chk_fs = dent;
3145
3146 fname = "tst_recovery";
3147 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3148 &dfs_global_fops);
3149 if (IS_ERR_OR_NULL(dent))
3150 goto out_remove;
3151 dfs_tst_rcvry = dent;
3152
3153 return 0;
3154
3155out_remove:
3156 debugfs_remove_recursive(dfs_rootdir);
3157out:
3158 err = dent ? PTR_ERR(dent) : -ENODEV;
3159 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3160 fname, err);
3161 return err;
3162}
3163
3164/**
3165 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3166 */
3167void dbg_debugfs_exit(void)
3168{
3169 if (IS_ENABLED(CONFIG_DEBUG_FS))
3170 debugfs_remove_recursive(dfs_rootdir);
3171}
3172
3173/**
3174 * ubifs_debugging_init - initialize UBIFS debugging.
3175 * @c: UBIFS file-system description object
3176 *
3177 * This function initializes debugging-related data for the file system.
3178 * Returns zero in case of success and a negative error code in case of
3179 * failure.
3180 */
3181int ubifs_debugging_init(struct ubifs_info *c)
3182{
3183 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3184 if (!c->dbg)
3185 return -ENOMEM;
3186
3187 return 0;
3188}
3189
3190/**
3191 * ubifs_debugging_exit - free debugging data.
3192 * @c: UBIFS file-system description object
3193 */
3194void ubifs_debugging_exit(struct ubifs_info *c)
3195{
3196 kfree(c->dbg);
3197}