Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include "ubifs.h"
  36
  37#ifdef CONFIG_UBIFS_FS_DEBUG
  38
  39DEFINE_SPINLOCK(dbg_lock);
  40
  41static char dbg_key_buf0[128];
  42static char dbg_key_buf1[128];
  43
  44static const char *get_key_fmt(int fmt)
  45{
  46	switch (fmt) {
  47	case UBIFS_SIMPLE_KEY_FMT:
  48		return "simple";
  49	default:
  50		return "unknown/invalid format";
  51	}
  52}
  53
  54static const char *get_key_hash(int hash)
  55{
  56	switch (hash) {
  57	case UBIFS_KEY_HASH_R5:
  58		return "R5";
  59	case UBIFS_KEY_HASH_TEST:
  60		return "test";
  61	default:
  62		return "unknown/invalid name hash";
  63	}
  64}
  65
  66static const char *get_key_type(int type)
  67{
  68	switch (type) {
  69	case UBIFS_INO_KEY:
  70		return "inode";
  71	case UBIFS_DENT_KEY:
  72		return "direntry";
  73	case UBIFS_XENT_KEY:
  74		return "xentry";
  75	case UBIFS_DATA_KEY:
  76		return "data";
  77	case UBIFS_TRUN_KEY:
  78		return "truncate";
  79	default:
  80		return "unknown/invalid key";
  81	}
  82}
  83
  84static const char *get_dent_type(int type)
  85{
  86	switch (type) {
  87	case UBIFS_ITYPE_REG:
  88		return "file";
  89	case UBIFS_ITYPE_DIR:
  90		return "dir";
  91	case UBIFS_ITYPE_LNK:
  92		return "symlink";
  93	case UBIFS_ITYPE_BLK:
  94		return "blkdev";
  95	case UBIFS_ITYPE_CHR:
  96		return "char dev";
  97	case UBIFS_ITYPE_FIFO:
  98		return "fifo";
  99	case UBIFS_ITYPE_SOCK:
 100		return "socket";
 101	default:
 102		return "unknown/invalid type";
 103	}
 104}
 105
 106static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
 107			char *buffer)
 108{
 109	char *p = buffer;
 110	int type = key_type(c, key);
 111
 112	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 113		switch (type) {
 114		case UBIFS_INO_KEY:
 115			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
 116			       get_key_type(type));
 
 117			break;
 118		case UBIFS_DENT_KEY:
 119		case UBIFS_XENT_KEY:
 120			sprintf(p, "(%lu, %s, %#08x)",
 121				(unsigned long)key_inum(c, key),
 122				get_key_type(type), key_hash(c, key));
 123			break;
 124		case UBIFS_DATA_KEY:
 125			sprintf(p, "(%lu, %s, %u)",
 126				(unsigned long)key_inum(c, key),
 127				get_key_type(type), key_block(c, key));
 128			break;
 129		case UBIFS_TRUN_KEY:
 130			sprintf(p, "(%lu, %s)",
 131				(unsigned long)key_inum(c, key),
 132				get_key_type(type));
 133			break;
 134		default:
 135			sprintf(p, "(bad key type: %#08x, %#08x)",
 136				key->u32[0], key->u32[1]);
 137		}
 138	} else
 139		sprintf(p, "bad key format %d", c->key_fmt);
 140}
 141
 142const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
 143{
 144	/* dbg_lock must be held */
 145	sprintf_key(c, key, dbg_key_buf0);
 146	return dbg_key_buf0;
 147}
 148
 149const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
 150{
 151	/* dbg_lock must be held */
 152	sprintf_key(c, key, dbg_key_buf1);
 153	return dbg_key_buf1;
 154}
 155
 156const char *dbg_ntype(int type)
 157{
 158	switch (type) {
 159	case UBIFS_PAD_NODE:
 160		return "padding node";
 161	case UBIFS_SB_NODE:
 162		return "superblock node";
 163	case UBIFS_MST_NODE:
 164		return "master node";
 165	case UBIFS_REF_NODE:
 166		return "reference node";
 167	case UBIFS_INO_NODE:
 168		return "inode node";
 169	case UBIFS_DENT_NODE:
 170		return "direntry node";
 171	case UBIFS_XENT_NODE:
 172		return "xentry node";
 173	case UBIFS_DATA_NODE:
 174		return "data node";
 175	case UBIFS_TRUN_NODE:
 176		return "truncate node";
 177	case UBIFS_IDX_NODE:
 178		return "indexing node";
 179	case UBIFS_CS_NODE:
 180		return "commit start node";
 181	case UBIFS_ORPH_NODE:
 182		return "orphan node";
 183	default:
 184		return "unknown node";
 185	}
 186}
 187
 188static const char *dbg_gtype(int type)
 189{
 190	switch (type) {
 191	case UBIFS_NO_NODE_GROUP:
 192		return "no node group";
 193	case UBIFS_IN_NODE_GROUP:
 194		return "in node group";
 195	case UBIFS_LAST_OF_NODE_GROUP:
 196		return "last of node group";
 197	default:
 198		return "unknown";
 199	}
 200}
 201
 202const char *dbg_cstate(int cmt_state)
 203{
 204	switch (cmt_state) {
 205	case COMMIT_RESTING:
 206		return "commit resting";
 207	case COMMIT_BACKGROUND:
 208		return "background commit requested";
 209	case COMMIT_REQUIRED:
 210		return "commit required";
 211	case COMMIT_RUNNING_BACKGROUND:
 212		return "BACKGROUND commit running";
 213	case COMMIT_RUNNING_REQUIRED:
 214		return "commit running and required";
 215	case COMMIT_BROKEN:
 216		return "broken commit";
 217	default:
 218		return "unknown commit state";
 219	}
 220}
 221
 222const char *dbg_jhead(int jhead)
 223{
 224	switch (jhead) {
 225	case GCHD:
 226		return "0 (GC)";
 227	case BASEHD:
 228		return "1 (base)";
 229	case DATAHD:
 230		return "2 (data)";
 231	default:
 232		return "unknown journal head";
 233	}
 234}
 235
 236static void dump_ch(const struct ubifs_ch *ch)
 237{
 238	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 239	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 240	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
 241	       dbg_ntype(ch->node_type));
 242	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
 243	       dbg_gtype(ch->group_type));
 244	printk(KERN_DEBUG "\tsqnum          %llu\n",
 245	       (unsigned long long)le64_to_cpu(ch->sqnum));
 246	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
 247}
 248
 249void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
 250{
 251	const struct ubifs_inode *ui = ubifs_inode(inode);
 252	struct qstr nm = { .name = NULL };
 253	union ubifs_key key;
 254	struct ubifs_dent_node *dent, *pdent = NULL;
 255	int count = 2;
 256
 257	printk(KERN_DEBUG "Dump in-memory inode:");
 258	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
 259	printk(KERN_DEBUG "\tsize           %llu\n",
 260	       (unsigned long long)i_size_read(inode));
 261	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
 262	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
 263	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
 264	printk(KERN_DEBUG "\tatime          %u.%u\n",
 265	       (unsigned int)inode->i_atime.tv_sec,
 266	       (unsigned int)inode->i_atime.tv_nsec);
 267	printk(KERN_DEBUG "\tmtime          %u.%u\n",
 268	       (unsigned int)inode->i_mtime.tv_sec,
 269	       (unsigned int)inode->i_mtime.tv_nsec);
 270	printk(KERN_DEBUG "\tctime          %u.%u\n",
 271	       (unsigned int)inode->i_ctime.tv_sec,
 272	       (unsigned int)inode->i_ctime.tv_nsec);
 273	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 274	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
 275	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
 276	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
 277	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
 278	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
 279	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
 280	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
 281	       (unsigned long long)ui->synced_i_size);
 282	printk(KERN_DEBUG "\tui_size        %llu\n",
 283	       (unsigned long long)ui->ui_size);
 284	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
 285	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
 286	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
 287	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 288	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
 289
 290	if (!S_ISDIR(inode->i_mode))
 291		return;
 292
 293	printk(KERN_DEBUG "List of directory entries:\n");
 294	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 295
 296	lowest_dent_key(c, &key, inode->i_ino);
 297	while (1) {
 298		dent = ubifs_tnc_next_ent(c, &key, &nm);
 299		if (IS_ERR(dent)) {
 300			if (PTR_ERR(dent) != -ENOENT)
 301				printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
 302			break;
 303		}
 304
 305		printk(KERN_DEBUG "\t%d: %s (%s)\n",
 306		       count++, dent->name, get_dent_type(dent->type));
 307
 308		nm.name = dent->name;
 309		nm.len = le16_to_cpu(dent->nlen);
 310		kfree(pdent);
 311		pdent = dent;
 312		key_read(c, &dent->key, &key);
 313	}
 314	kfree(pdent);
 315}
 316
 317void dbg_dump_node(const struct ubifs_info *c, const void *node)
 318{
 319	int i, n;
 320	union ubifs_key key;
 321	const struct ubifs_ch *ch = node;
 
 322
 323	if (dbg_is_tst_rcvry(c))
 324		return;
 325
 326	/* If the magic is incorrect, just hexdump the first bytes */
 327	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 328		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 329		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 330			       (void *)node, UBIFS_CH_SZ, 1);
 331		return;
 332	}
 333
 334	spin_lock(&dbg_lock);
 335	dump_ch(node);
 336
 337	switch (ch->node_type) {
 338	case UBIFS_PAD_NODE:
 339	{
 340		const struct ubifs_pad_node *pad = node;
 341
 342		printk(KERN_DEBUG "\tpad_len        %u\n",
 343		       le32_to_cpu(pad->pad_len));
 344		break;
 345	}
 346	case UBIFS_SB_NODE:
 347	{
 348		const struct ubifs_sb_node *sup = node;
 349		unsigned int sup_flags = le32_to_cpu(sup->flags);
 350
 351		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
 352		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 353		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
 354		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 355		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
 356		printk(KERN_DEBUG "\t  big_lpt      %u\n",
 357		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 358		printk(KERN_DEBUG "\t  space_fixup  %u\n",
 359		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 360		printk(KERN_DEBUG "\tmin_io_size    %u\n",
 361		       le32_to_cpu(sup->min_io_size));
 362		printk(KERN_DEBUG "\tleb_size       %u\n",
 363		       le32_to_cpu(sup->leb_size));
 364		printk(KERN_DEBUG "\tleb_cnt        %u\n",
 365		       le32_to_cpu(sup->leb_cnt));
 366		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
 367		       le32_to_cpu(sup->max_leb_cnt));
 368		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		printk(KERN_DEBUG "\tlog_lebs       %u\n",
 371		       le32_to_cpu(sup->log_lebs));
 372		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
 373		       le32_to_cpu(sup->lpt_lebs));
 374		printk(KERN_DEBUG "\torph_lebs      %u\n",
 375		       le32_to_cpu(sup->orph_lebs));
 376		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
 377		       le32_to_cpu(sup->jhead_cnt));
 378		printk(KERN_DEBUG "\tfanout         %u\n",
 379		       le32_to_cpu(sup->fanout));
 380		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
 381		       le32_to_cpu(sup->lsave_cnt));
 382		printk(KERN_DEBUG "\tdefault_compr  %u\n",
 383		       (int)le16_to_cpu(sup->default_compr));
 384		printk(KERN_DEBUG "\trp_size        %llu\n",
 385		       (unsigned long long)le64_to_cpu(sup->rp_size));
 386		printk(KERN_DEBUG "\trp_uid         %u\n",
 387		       le32_to_cpu(sup->rp_uid));
 388		printk(KERN_DEBUG "\trp_gid         %u\n",
 389		       le32_to_cpu(sup->rp_gid));
 390		printk(KERN_DEBUG "\tfmt_version    %u\n",
 391		       le32_to_cpu(sup->fmt_version));
 392		printk(KERN_DEBUG "\ttime_gran      %u\n",
 393		       le32_to_cpu(sup->time_gran));
 394		printk(KERN_DEBUG "\tUUID           %pUB\n",
 395		       sup->uuid);
 396		break;
 397	}
 398	case UBIFS_MST_NODE:
 399	{
 400		const struct ubifs_mst_node *mst = node;
 401
 402		printk(KERN_DEBUG "\thighest_inum   %llu\n",
 403		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 404		printk(KERN_DEBUG "\tcommit number  %llu\n",
 405		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 406		printk(KERN_DEBUG "\tflags          %#x\n",
 407		       le32_to_cpu(mst->flags));
 408		printk(KERN_DEBUG "\tlog_lnum       %u\n",
 409		       le32_to_cpu(mst->log_lnum));
 410		printk(KERN_DEBUG "\troot_lnum      %u\n",
 411		       le32_to_cpu(mst->root_lnum));
 412		printk(KERN_DEBUG "\troot_offs      %u\n",
 413		       le32_to_cpu(mst->root_offs));
 414		printk(KERN_DEBUG "\troot_len       %u\n",
 415		       le32_to_cpu(mst->root_len));
 416		printk(KERN_DEBUG "\tgc_lnum        %u\n",
 417		       le32_to_cpu(mst->gc_lnum));
 418		printk(KERN_DEBUG "\tihead_lnum     %u\n",
 419		       le32_to_cpu(mst->ihead_lnum));
 420		printk(KERN_DEBUG "\tihead_offs     %u\n",
 421		       le32_to_cpu(mst->ihead_offs));
 422		printk(KERN_DEBUG "\tindex_size     %llu\n",
 423		       (unsigned long long)le64_to_cpu(mst->index_size));
 424		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
 425		       le32_to_cpu(mst->lpt_lnum));
 426		printk(KERN_DEBUG "\tlpt_offs       %u\n",
 427		       le32_to_cpu(mst->lpt_offs));
 428		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
 429		       le32_to_cpu(mst->nhead_lnum));
 430		printk(KERN_DEBUG "\tnhead_offs     %u\n",
 431		       le32_to_cpu(mst->nhead_offs));
 432		printk(KERN_DEBUG "\tltab_lnum      %u\n",
 433		       le32_to_cpu(mst->ltab_lnum));
 434		printk(KERN_DEBUG "\tltab_offs      %u\n",
 435		       le32_to_cpu(mst->ltab_offs));
 436		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
 437		       le32_to_cpu(mst->lsave_lnum));
 438		printk(KERN_DEBUG "\tlsave_offs     %u\n",
 439		       le32_to_cpu(mst->lsave_offs));
 440		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
 441		       le32_to_cpu(mst->lscan_lnum));
 442		printk(KERN_DEBUG "\tleb_cnt        %u\n",
 443		       le32_to_cpu(mst->leb_cnt));
 444		printk(KERN_DEBUG "\tempty_lebs     %u\n",
 445		       le32_to_cpu(mst->empty_lebs));
 446		printk(KERN_DEBUG "\tidx_lebs       %u\n",
 447		       le32_to_cpu(mst->idx_lebs));
 448		printk(KERN_DEBUG "\ttotal_free     %llu\n",
 449		       (unsigned long long)le64_to_cpu(mst->total_free));
 450		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
 451		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 452		printk(KERN_DEBUG "\ttotal_used     %llu\n",
 453		       (unsigned long long)le64_to_cpu(mst->total_used));
 454		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
 455		       (unsigned long long)le64_to_cpu(mst->total_dead));
 456		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
 457		       (unsigned long long)le64_to_cpu(mst->total_dark));
 458		break;
 459	}
 460	case UBIFS_REF_NODE:
 461	{
 462		const struct ubifs_ref_node *ref = node;
 463
 464		printk(KERN_DEBUG "\tlnum           %u\n",
 465		       le32_to_cpu(ref->lnum));
 466		printk(KERN_DEBUG "\toffs           %u\n",
 467		       le32_to_cpu(ref->offs));
 468		printk(KERN_DEBUG "\tjhead          %u\n",
 469		       le32_to_cpu(ref->jhead));
 470		break;
 471	}
 472	case UBIFS_INO_NODE:
 473	{
 474		const struct ubifs_ino_node *ino = node;
 475
 476		key_read(c, &ino->key, &key);
 477		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 478		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
 
 479		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 480		printk(KERN_DEBUG "\tsize           %llu\n",
 481		       (unsigned long long)le64_to_cpu(ino->size));
 482		printk(KERN_DEBUG "\tnlink          %u\n",
 483		       le32_to_cpu(ino->nlink));
 484		printk(KERN_DEBUG "\tatime          %lld.%u\n",
 485		       (long long)le64_to_cpu(ino->atime_sec),
 486		       le32_to_cpu(ino->atime_nsec));
 487		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
 488		       (long long)le64_to_cpu(ino->mtime_sec),
 489		       le32_to_cpu(ino->mtime_nsec));
 490		printk(KERN_DEBUG "\tctime          %lld.%u\n",
 491		       (long long)le64_to_cpu(ino->ctime_sec),
 492		       le32_to_cpu(ino->ctime_nsec));
 493		printk(KERN_DEBUG "\tuid            %u\n",
 494		       le32_to_cpu(ino->uid));
 495		printk(KERN_DEBUG "\tgid            %u\n",
 496		       le32_to_cpu(ino->gid));
 497		printk(KERN_DEBUG "\tmode           %u\n",
 498		       le32_to_cpu(ino->mode));
 499		printk(KERN_DEBUG "\tflags          %#x\n",
 500		       le32_to_cpu(ino->flags));
 501		printk(KERN_DEBUG "\txattr_cnt      %u\n",
 502		       le32_to_cpu(ino->xattr_cnt));
 503		printk(KERN_DEBUG "\txattr_size     %u\n",
 504		       le32_to_cpu(ino->xattr_size));
 505		printk(KERN_DEBUG "\txattr_names    %u\n",
 506		       le32_to_cpu(ino->xattr_names));
 507		printk(KERN_DEBUG "\tcompr_type     %#x\n",
 508		       (int)le16_to_cpu(ino->compr_type));
 509		printk(KERN_DEBUG "\tdata len       %u\n",
 510		       le32_to_cpu(ino->data_len));
 511		break;
 512	}
 513	case UBIFS_DENT_NODE:
 514	case UBIFS_XENT_NODE:
 515	{
 516		const struct ubifs_dent_node *dent = node;
 517		int nlen = le16_to_cpu(dent->nlen);
 518
 519		key_read(c, &dent->key, &key);
 520		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 521		printk(KERN_DEBUG "\tinum           %llu\n",
 
 522		       (unsigned long long)le64_to_cpu(dent->inum));
 523		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
 524		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
 525		printk(KERN_DEBUG "\tname           ");
 526
 527		if (nlen > UBIFS_MAX_NLEN)
 528			printk(KERN_DEBUG "(bad name length, not printing, "
 529					  "bad or corrupted node)");
 530		else {
 531			for (i = 0; i < nlen && dent->name[i]; i++)
 532				printk(KERN_CONT "%c", dent->name[i]);
 533		}
 534		printk(KERN_CONT "\n");
 535
 536		break;
 537	}
 538	case UBIFS_DATA_NODE:
 539	{
 540		const struct ubifs_data_node *dn = node;
 541		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 542
 543		key_read(c, &dn->key, &key);
 544		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 545		printk(KERN_DEBUG "\tsize           %u\n",
 
 546		       le32_to_cpu(dn->size));
 547		printk(KERN_DEBUG "\tcompr_typ      %d\n",
 548		       (int)le16_to_cpu(dn->compr_type));
 549		printk(KERN_DEBUG "\tdata size      %d\n",
 550		       dlen);
 551		printk(KERN_DEBUG "\tdata:\n");
 552		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 553			       (void *)&dn->data, dlen, 0);
 554		break;
 555	}
 556	case UBIFS_TRUN_NODE:
 557	{
 558		const struct ubifs_trun_node *trun = node;
 559
 560		printk(KERN_DEBUG "\tinum           %u\n",
 561		       le32_to_cpu(trun->inum));
 562		printk(KERN_DEBUG "\told_size       %llu\n",
 563		       (unsigned long long)le64_to_cpu(trun->old_size));
 564		printk(KERN_DEBUG "\tnew_size       %llu\n",
 565		       (unsigned long long)le64_to_cpu(trun->new_size));
 566		break;
 567	}
 568	case UBIFS_IDX_NODE:
 569	{
 570		const struct ubifs_idx_node *idx = node;
 571
 572		n = le16_to_cpu(idx->child_cnt);
 573		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
 574		printk(KERN_DEBUG "\tlevel          %d\n",
 575		       (int)le16_to_cpu(idx->level));
 576		printk(KERN_DEBUG "\tBranches:\n");
 577
 578		for (i = 0; i < n && i < c->fanout - 1; i++) {
 579			const struct ubifs_branch *br;
 580
 581			br = ubifs_idx_branch(c, idx, i);
 582			key_read(c, &br->key, &key);
 583			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
 584			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 585			       le32_to_cpu(br->len), DBGKEY(&key));
 
 
 586		}
 587		break;
 588	}
 589	case UBIFS_CS_NODE:
 590		break;
 591	case UBIFS_ORPH_NODE:
 592	{
 593		const struct ubifs_orph_node *orph = node;
 594
 595		printk(KERN_DEBUG "\tcommit number  %llu\n",
 596		       (unsigned long long)
 597				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 598		printk(KERN_DEBUG "\tlast node flag %llu\n",
 599		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 600		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 601		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
 602		for (i = 0; i < n; i++)
 603			printk(KERN_DEBUG "\t  ino %llu\n",
 604			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 605		break;
 606	}
 607	default:
 608		printk(KERN_DEBUG "node type %d was not recognized\n",
 609		       (int)ch->node_type);
 610	}
 611	spin_unlock(&dbg_lock);
 612}
 613
 614void dbg_dump_budget_req(const struct ubifs_budget_req *req)
 615{
 616	spin_lock(&dbg_lock);
 617	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
 618	       req->new_ino, req->dirtied_ino);
 619	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 620	       req->new_ino_d, req->dirtied_ino_d);
 621	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
 622	       req->new_page, req->dirtied_page);
 623	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
 624	       req->new_dent, req->mod_dent);
 625	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
 626	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
 627	       req->data_growth, req->dd_growth);
 628	spin_unlock(&dbg_lock);
 629}
 630
 631void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
 632{
 633	spin_lock(&dbg_lock);
 634	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
 635	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 636	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
 637	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 638	       lst->total_dirty);
 639	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
 640	       "total_dead %lld\n", lst->total_used, lst->total_dark,
 641	       lst->total_dead);
 642	spin_unlock(&dbg_lock);
 643}
 644
 645void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 646{
 647	int i;
 648	struct rb_node *rb;
 649	struct ubifs_bud *bud;
 650	struct ubifs_gced_idx_leb *idx_gc;
 651	long long available, outstanding, free;
 652
 653	spin_lock(&c->space_lock);
 654	spin_lock(&dbg_lock);
 655	printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
 656	       "total budget sum %lld\n", current->pid,
 657	       bi->data_growth + bi->dd_growth,
 658	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 659	printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
 660	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
 661	       bi->idx_growth);
 662	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
 663	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
 664	       bi->uncommitted_idx);
 665	printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 666	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 667	printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
 668	       bi->nospace, bi->nospace_rp);
 669	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 670	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 671
 672	if (bi != &c->bi)
 673		/*
 674		 * If we are dumping saved budgeting data, do not print
 675		 * additional information which is about the current state, not
 676		 * the old one which corresponded to the saved budgeting data.
 677		 */
 678		goto out_unlock;
 679
 680	printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 681	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 682	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 683	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 684	       atomic_long_read(&c->dirty_zn_cnt),
 685	       atomic_long_read(&c->clean_zn_cnt));
 686	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
 687	       c->gc_lnum, c->ihead_lnum);
 688
 689	/* If we are in R/O mode, journal heads do not exist */
 690	if (c->jheads)
 691		for (i = 0; i < c->jhead_cnt; i++)
 692			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
 693			       dbg_jhead(c->jheads[i].wbuf.jhead),
 694			       c->jheads[i].wbuf.lnum);
 695	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 696		bud = rb_entry(rb, struct ubifs_bud, rb);
 697		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
 698	}
 699	list_for_each_entry(bud, &c->old_buds, list)
 700		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
 701	list_for_each_entry(idx_gc, &c->idx_gc, list)
 702		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
 703		       idx_gc->lnum, idx_gc->unmap);
 704	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
 705
 706	/* Print budgeting predictions */
 707	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 708	outstanding = c->bi.data_growth + c->bi.dd_growth;
 709	free = ubifs_get_free_space_nolock(c);
 710	printk(KERN_DEBUG "Budgeting predictions:\n");
 711	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
 712	       available, outstanding, free);
 713out_unlock:
 714	spin_unlock(&dbg_lock);
 715	spin_unlock(&c->space_lock);
 716}
 717
 718void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 719{
 720	int i, spc, dark = 0, dead = 0;
 721	struct rb_node *rb;
 722	struct ubifs_bud *bud;
 723
 724	spc = lp->free + lp->dirty;
 725	if (spc < c->dead_wm)
 726		dead = spc;
 727	else
 728		dark = ubifs_calc_dark(c, spc);
 729
 730	if (lp->flags & LPROPS_INDEX)
 731		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
 732		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 733		       lp->dirty, c->leb_size - spc, spc, lp->flags);
 734	else
 735		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
 736		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 737		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 738		       c->leb_size - spc, spc, dark, dead,
 739		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 740
 741	if (lp->flags & LPROPS_TAKEN) {
 742		if (lp->flags & LPROPS_INDEX)
 743			printk(KERN_CONT "index, taken");
 744		else
 745			printk(KERN_CONT "taken");
 746	} else {
 747		const char *s;
 748
 749		if (lp->flags & LPROPS_INDEX) {
 750			switch (lp->flags & LPROPS_CAT_MASK) {
 751			case LPROPS_DIRTY_IDX:
 752				s = "dirty index";
 753				break;
 754			case LPROPS_FRDI_IDX:
 755				s = "freeable index";
 756				break;
 757			default:
 758				s = "index";
 759			}
 760		} else {
 761			switch (lp->flags & LPROPS_CAT_MASK) {
 762			case LPROPS_UNCAT:
 763				s = "not categorized";
 764				break;
 765			case LPROPS_DIRTY:
 766				s = "dirty";
 767				break;
 768			case LPROPS_FREE:
 769				s = "free";
 770				break;
 771			case LPROPS_EMPTY:
 772				s = "empty";
 773				break;
 774			case LPROPS_FREEABLE:
 775				s = "freeable";
 776				break;
 777			default:
 778				s = NULL;
 779				break;
 780			}
 781		}
 782		printk(KERN_CONT "%s", s);
 783	}
 784
 785	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 786		bud = rb_entry(rb, struct ubifs_bud, rb);
 787		if (bud->lnum == lp->lnum) {
 788			int head = 0;
 789			for (i = 0; i < c->jhead_cnt; i++) {
 790				/*
 791				 * Note, if we are in R/O mode or in the middle
 792				 * of mounting/re-mounting, the write-buffers do
 793				 * not exist.
 794				 */
 795				if (c->jheads &&
 796				    lp->lnum == c->jheads[i].wbuf.lnum) {
 797					printk(KERN_CONT ", jhead %s",
 798					       dbg_jhead(i));
 799					head = 1;
 800				}
 801			}
 802			if (!head)
 803				printk(KERN_CONT ", bud of jhead %s",
 804				       dbg_jhead(bud->jhead));
 805		}
 806	}
 807	if (lp->lnum == c->gc_lnum)
 808		printk(KERN_CONT ", GC LEB");
 809	printk(KERN_CONT ")\n");
 810}
 811
 812void dbg_dump_lprops(struct ubifs_info *c)
 813{
 814	int lnum, err;
 815	struct ubifs_lprops lp;
 816	struct ubifs_lp_stats lst;
 817
 818	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
 819	       current->pid);
 820	ubifs_get_lp_stats(c, &lst);
 821	dbg_dump_lstats(&lst);
 822
 823	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 824		err = ubifs_read_one_lp(c, lnum, &lp);
 825		if (err)
 826			ubifs_err("cannot read lprops for LEB %d", lnum);
 827
 828		dbg_dump_lprop(c, &lp);
 829	}
 830	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
 831	       current->pid);
 832}
 833
 834void dbg_dump_lpt_info(struct ubifs_info *c)
 835{
 836	int i;
 837
 838	spin_lock(&dbg_lock);
 839	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
 840	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
 841	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
 842	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
 843	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
 844	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
 845	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
 846	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
 847	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
 848	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
 849	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 850	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 851	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
 852	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
 853	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 854	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 855	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 856	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
 857	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
 858	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 859	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
 860	       c->nhead_lnum, c->nhead_offs);
 861	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
 862	       c->ltab_lnum, c->ltab_offs);
 863	if (c->big_lpt)
 864		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
 865		       c->lsave_lnum, c->lsave_offs);
 866	for (i = 0; i < c->lpt_lebs; i++)
 867		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
 868		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 869		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 870	spin_unlock(&dbg_lock);
 871}
 872
 873void dbg_dump_leb(const struct ubifs_info *c, int lnum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874{
 875	struct ubifs_scan_leb *sleb;
 876	struct ubifs_scan_node *snod;
 877	void *buf;
 878
 879	if (dbg_is_tst_rcvry(c))
 880		return;
 881
 882	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
 883	       current->pid, lnum);
 884
 885	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 886	if (!buf) {
 887		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 888		return;
 889	}
 890
 891	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 892	if (IS_ERR(sleb)) {
 893		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 894		goto out;
 895	}
 896
 897	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
 898	       sleb->nodes_cnt, sleb->endpt);
 899
 900	list_for_each_entry(snod, &sleb->nodes, list) {
 901		cond_resched();
 902		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
 903		       snod->offs, snod->len);
 904		dbg_dump_node(c, snod->node);
 905	}
 906
 907	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
 908	       current->pid, lnum);
 909	ubifs_scan_destroy(sleb);
 910
 911out:
 912	vfree(buf);
 913	return;
 914}
 915
 916void dbg_dump_znode(const struct ubifs_info *c,
 917		    const struct ubifs_znode *znode)
 918{
 919	int n;
 920	const struct ubifs_zbranch *zbr;
 
 921
 922	spin_lock(&dbg_lock);
 923	if (znode->parent)
 924		zbr = &znode->parent->zbranch[znode->iip];
 925	else
 926		zbr = &c->zroot;
 927
 928	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 929	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 930	       zbr->len, znode->parent, znode->iip, znode->level,
 931	       znode->child_cnt, znode->flags);
 932
 933	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 934		spin_unlock(&dbg_lock);
 935		return;
 936	}
 937
 938	printk(KERN_DEBUG "zbranches:\n");
 939	for (n = 0; n < znode->child_cnt; n++) {
 940		zbr = &znode->zbranch[n];
 941		if (znode->level > 0)
 942			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
 943					  "%s\n", n, zbr->znode, zbr->lnum,
 944					  zbr->offs, zbr->len,
 945					  DBGKEY(&zbr->key));
 
 
 946		else
 947			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
 948					  "%s\n", n, zbr->znode, zbr->lnum,
 949					  zbr->offs, zbr->len,
 950					  DBGKEY(&zbr->key));
 
 
 951	}
 952	spin_unlock(&dbg_lock);
 953}
 954
 955void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 956{
 957	int i;
 958
 959	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
 960	       current->pid, cat, heap->cnt);
 961	for (i = 0; i < heap->cnt; i++) {
 962		struct ubifs_lprops *lprops = heap->arr[i];
 963
 964		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
 965		       "flags %d\n", i, lprops->lnum, lprops->hpos,
 966		       lprops->free, lprops->dirty, lprops->flags);
 967	}
 968	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
 969}
 970
 971void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 972		    struct ubifs_nnode *parent, int iip)
 973{
 974	int i;
 975
 976	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
 977	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
 978	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 979	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
 980	       pnode->flags, iip, pnode->level, pnode->num);
 981	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 982		struct ubifs_lprops *lp = &pnode->lprops[i];
 983
 984		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
 985		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 986	}
 987}
 988
 989void dbg_dump_tnc(struct ubifs_info *c)
 990{
 991	struct ubifs_znode *znode;
 992	int level;
 993
 994	printk(KERN_DEBUG "\n");
 995	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
 996	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 997	level = znode->level;
 998	printk(KERN_DEBUG "== Level %d ==\n", level);
 999	while (znode) {
1000		if (level != znode->level) {
1001			level = znode->level;
1002			printk(KERN_DEBUG "== Level %d ==\n", level);
1003		}
1004		dbg_dump_znode(c, znode);
1005		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006	}
1007	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008}
1009
1010static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011		      void *priv)
1012{
1013	dbg_dump_znode(c, znode);
1014	return 0;
1015}
1016
1017/**
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1020 *
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1023 */
1024void dbg_dump_index(struct ubifs_info *c)
1025{
1026	dbg_walk_index(c, NULL, dump_znode, NULL);
1027}
1028
1029/**
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1032 *
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1035 */
1036void dbg_save_space_info(struct ubifs_info *c)
1037{
1038	struct ubifs_debug_info *d = c->dbg;
1039	int freeable_cnt;
1040
1041	spin_lock(&c->space_lock);
1042	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045
1046	/*
1047	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048	 * affects the free space calculations, and UBIFS might not know about
1049	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050	 * only when we read their lprops, and we do this only lazily, upon the
1051	 * need. So at any given point of time @c->freeable_cnt might be not
1052	 * exactly accurate.
1053	 *
1054	 * Just one example about the issue we hit when we did not zero
1055	 * @c->freeable_cnt.
1056	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057	 *    amount of free space in @d->saved_free
1058	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059	 *    information from flash, where we cache LEBs from various
1060	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1063	 *    -> 'ubifs_add_to_cat()').
1064	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065	 *    becomes %1.
1066	 * 4. We calculate the amount of free space when the re-mount is
1067	 *    finished in 'dbg_check_space_info()' and it does not match
1068	 *    @d->saved_free.
1069	 */
1070	freeable_cnt = c->freeable_cnt;
1071	c->freeable_cnt = 0;
1072	d->saved_free = ubifs_get_free_space_nolock(c);
1073	c->freeable_cnt = freeable_cnt;
1074	spin_unlock(&c->space_lock);
1075}
1076
1077/**
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1080 *
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1084 * changed.
1085 */
1086int dbg_check_space_info(struct ubifs_info *c)
1087{
1088	struct ubifs_debug_info *d = c->dbg;
1089	struct ubifs_lp_stats lst;
1090	long long free;
1091	int freeable_cnt;
1092
1093	spin_lock(&c->space_lock);
1094	freeable_cnt = c->freeable_cnt;
1095	c->freeable_cnt = 0;
1096	free = ubifs_get_free_space_nolock(c);
1097	c->freeable_cnt = freeable_cnt;
1098	spin_unlock(&c->space_lock);
1099
1100	if (free != d->saved_free) {
1101		ubifs_err("free space changed from %lld to %lld",
1102			  d->saved_free, free);
1103		goto out;
1104	}
1105
1106	return 0;
1107
1108out:
1109	ubifs_msg("saved lprops statistics dump");
1110	dbg_dump_lstats(&d->saved_lst);
1111	ubifs_msg("saved budgeting info dump");
1112	dbg_dump_budg(c, &d->saved_bi);
1113	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114	ubifs_msg("current lprops statistics dump");
1115	ubifs_get_lp_stats(c, &lst);
1116	dbg_dump_lstats(&lst);
1117	ubifs_msg("current budgeting info dump");
1118	dbg_dump_budg(c, &c->bi);
1119	dump_stack();
1120	return -EINVAL;
1121}
1122
1123/**
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1127 *
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1131 * %-EINVAL if not.
1132 */
1133int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134{
1135	int err = 0;
1136	struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138	if (!dbg_is_chk_gen(c))
1139		return 0;
1140	if (!S_ISREG(inode->i_mode))
1141		return 0;
1142
1143	mutex_lock(&ui->ui_mutex);
1144	spin_lock(&ui->ui_lock);
1145	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147			  "is clean", ui->ui_size, ui->synced_i_size);
1148		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149			  inode->i_mode, i_size_read(inode));
1150		dbg_dump_stack();
1151		err = -EINVAL;
1152	}
1153	spin_unlock(&ui->ui_lock);
1154	mutex_unlock(&ui->ui_mutex);
1155	return err;
1156}
1157
1158/*
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1163 *
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1166 * failure.
1167 *
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1170 */
1171int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172{
1173	unsigned int nlink = 2;
1174	union ubifs_key key;
1175	struct ubifs_dent_node *dent, *pdent = NULL;
1176	struct qstr nm = { .name = NULL };
1177	loff_t size = UBIFS_INO_NODE_SZ;
1178
1179	if (!dbg_is_chk_gen(c))
1180		return 0;
1181
1182	if (!S_ISDIR(dir->i_mode))
1183		return 0;
1184
1185	lowest_dent_key(c, &key, dir->i_ino);
1186	while (1) {
1187		int err;
1188
1189		dent = ubifs_tnc_next_ent(c, &key, &nm);
1190		if (IS_ERR(dent)) {
1191			err = PTR_ERR(dent);
1192			if (err == -ENOENT)
1193				break;
1194			return err;
1195		}
1196
1197		nm.name = dent->name;
1198		nm.len = le16_to_cpu(dent->nlen);
1199		size += CALC_DENT_SIZE(nm.len);
1200		if (dent->type == UBIFS_ITYPE_DIR)
1201			nlink += 1;
1202		kfree(pdent);
1203		pdent = dent;
1204		key_read(c, &dent->key, &key);
1205	}
1206	kfree(pdent);
1207
1208	if (i_size_read(dir) != size) {
1209		ubifs_err("directory inode %lu has size %llu, "
1210			  "but calculated size is %llu", dir->i_ino,
1211			  (unsigned long long)i_size_read(dir),
1212			  (unsigned long long)size);
1213		dbg_dump_inode(c, dir);
1214		dump_stack();
1215		return -EINVAL;
1216	}
1217	if (dir->i_nlink != nlink) {
1218		ubifs_err("directory inode %lu has nlink %u, but calculated "
1219			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220		dbg_dump_inode(c, dir);
1221		dump_stack();
1222		return -EINVAL;
1223	}
1224
1225	return 0;
1226}
1227
1228/**
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1233 *
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1240 */
1241static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242			       struct ubifs_zbranch *zbr2)
1243{
1244	int err, nlen1, nlen2, cmp;
1245	struct ubifs_dent_node *dent1, *dent2;
1246	union ubifs_key key;
 
1247
1248	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250	if (!dent1)
1251		return -ENOMEM;
1252	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253	if (!dent2) {
1254		err = -ENOMEM;
1255		goto out_free;
1256	}
1257
1258	err = ubifs_tnc_read_node(c, zbr1, dent1);
1259	if (err)
1260		goto out_free;
1261	err = ubifs_validate_entry(c, dent1);
1262	if (err)
1263		goto out_free;
1264
1265	err = ubifs_tnc_read_node(c, zbr2, dent2);
1266	if (err)
1267		goto out_free;
1268	err = ubifs_validate_entry(c, dent2);
1269	if (err)
1270		goto out_free;
1271
1272	/* Make sure node keys are the same as in zbranch */
1273	err = 1;
1274	key_read(c, &dent1->key, &key);
1275	if (keys_cmp(c, &zbr1->key, &key)) {
1276		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277			zbr1->offs, DBGKEY(&key));
1278		dbg_err("but it should have key %s according to tnc",
1279			DBGKEY(&zbr1->key));
1280		dbg_dump_node(c, dent1);
 
 
1281		goto out_free;
1282	}
1283
1284	key_read(c, &dent2->key, &key);
1285	if (keys_cmp(c, &zbr2->key, &key)) {
1286		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287			zbr1->offs, DBGKEY(&key));
1288		dbg_err("but it should have key %s according to tnc",
1289			DBGKEY(&zbr2->key));
1290		dbg_dump_node(c, dent2);
 
 
1291		goto out_free;
1292	}
1293
1294	nlen1 = le16_to_cpu(dent1->nlen);
1295	nlen2 = le16_to_cpu(dent2->nlen);
1296
1297	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299		err = 0;
1300		goto out_free;
1301	}
1302	if (cmp == 0 && nlen1 == nlen2)
1303		dbg_err("2 xent/dent nodes with the same name");
1304	else
1305		dbg_err("bad order of colliding key %s",
1306			DBGKEY(&key));
1307
1308	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309	dbg_dump_node(c, dent1);
1310	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311	dbg_dump_node(c, dent2);
1312
1313out_free:
1314	kfree(dent2);
1315	kfree(dent1);
1316	return err;
1317}
1318
1319/**
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1323 *
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1326 */
1327static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328{
1329	struct ubifs_znode *znode = zbr->znode;
1330	struct ubifs_znode *zp = znode->parent;
1331	int n, err, cmp;
1332
1333	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334		err = 1;
1335		goto out;
1336	}
1337	if (znode->level < 0) {
1338		err = 2;
1339		goto out;
1340	}
1341	if (znode->iip < 0 || znode->iip >= c->fanout) {
1342		err = 3;
1343		goto out;
1344	}
1345
1346	if (zbr->len == 0)
1347		/* Only dirty zbranch may have no on-flash nodes */
1348		if (!ubifs_zn_dirty(znode)) {
1349			err = 4;
1350			goto out;
1351		}
1352
1353	if (ubifs_zn_dirty(znode)) {
1354		/*
1355		 * If znode is dirty, its parent has to be dirty as well. The
1356		 * order of the operation is important, so we have to have
1357		 * memory barriers.
1358		 */
1359		smp_mb();
1360		if (zp && !ubifs_zn_dirty(zp)) {
1361			/*
1362			 * The dirty flag is atomic and is cleared outside the
1363			 * TNC mutex, so znode's dirty flag may now have
1364			 * been cleared. The child is always cleared before the
1365			 * parent, so we just need to check again.
1366			 */
1367			smp_mb();
1368			if (ubifs_zn_dirty(znode)) {
1369				err = 5;
1370				goto out;
1371			}
1372		}
1373	}
1374
1375	if (zp) {
1376		const union ubifs_key *min, *max;
1377
1378		if (znode->level != zp->level - 1) {
1379			err = 6;
1380			goto out;
1381		}
1382
1383		/* Make sure the 'parent' pointer in our znode is correct */
1384		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385		if (!err) {
1386			/* This zbranch does not exist in the parent */
1387			err = 7;
1388			goto out;
1389		}
1390
1391		if (znode->iip >= zp->child_cnt) {
1392			err = 8;
1393			goto out;
1394		}
1395
1396		if (znode->iip != n) {
1397			/* This may happen only in case of collisions */
1398			if (keys_cmp(c, &zp->zbranch[n].key,
1399				     &zp->zbranch[znode->iip].key)) {
1400				err = 9;
1401				goto out;
1402			}
1403			n = znode->iip;
1404		}
1405
1406		/*
1407		 * Make sure that the first key in our znode is greater than or
1408		 * equal to the key in the pointing zbranch.
1409		 */
1410		min = &zbr->key;
1411		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412		if (cmp == 1) {
1413			err = 10;
1414			goto out;
1415		}
1416
1417		if (n + 1 < zp->child_cnt) {
1418			max = &zp->zbranch[n + 1].key;
1419
1420			/*
1421			 * Make sure the last key in our znode is less or
1422			 * equivalent than the key in the zbranch which goes
1423			 * after our pointing zbranch.
1424			 */
1425			cmp = keys_cmp(c, max,
1426				&znode->zbranch[znode->child_cnt - 1].key);
1427			if (cmp == -1) {
1428				err = 11;
1429				goto out;
1430			}
1431		}
1432	} else {
1433		/* This may only be root znode */
1434		if (zbr != &c->zroot) {
1435			err = 12;
1436			goto out;
1437		}
1438	}
1439
1440	/*
1441	 * Make sure that next key is greater or equivalent then the previous
1442	 * one.
1443	 */
1444	for (n = 1; n < znode->child_cnt; n++) {
1445		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446			       &znode->zbranch[n].key);
1447		if (cmp > 0) {
1448			err = 13;
1449			goto out;
1450		}
1451		if (cmp == 0) {
1452			/* This can only be keys with colliding hash */
1453			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454				err = 14;
1455				goto out;
1456			}
1457
1458			if (znode->level != 0 || c->replaying)
1459				continue;
1460
1461			/*
1462			 * Colliding keys should follow binary order of
1463			 * corresponding xentry/dentry names.
1464			 */
1465			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466						  &znode->zbranch[n]);
1467			if (err < 0)
1468				return err;
1469			if (err) {
1470				err = 15;
1471				goto out;
1472			}
1473		}
1474	}
1475
1476	for (n = 0; n < znode->child_cnt; n++) {
1477		if (!znode->zbranch[n].znode &&
1478		    (znode->zbranch[n].lnum == 0 ||
1479		     znode->zbranch[n].len == 0)) {
1480			err = 16;
1481			goto out;
1482		}
1483
1484		if (znode->zbranch[n].lnum != 0 &&
1485		    znode->zbranch[n].len == 0) {
1486			err = 17;
1487			goto out;
1488		}
1489
1490		if (znode->zbranch[n].lnum == 0 &&
1491		    znode->zbranch[n].len != 0) {
1492			err = 18;
1493			goto out;
1494		}
1495
1496		if (znode->zbranch[n].lnum == 0 &&
1497		    znode->zbranch[n].offs != 0) {
1498			err = 19;
1499			goto out;
1500		}
1501
1502		if (znode->level != 0 && znode->zbranch[n].znode)
1503			if (znode->zbranch[n].znode->parent != znode) {
1504				err = 20;
1505				goto out;
1506			}
1507	}
1508
1509	return 0;
1510
1511out:
1512	ubifs_err("failed, error %d", err);
1513	ubifs_msg("dump of the znode");
1514	dbg_dump_znode(c, znode);
1515	if (zp) {
1516		ubifs_msg("dump of the parent znode");
1517		dbg_dump_znode(c, zp);
1518	}
1519	dump_stack();
1520	return -EINVAL;
1521}
1522
1523/**
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1527 *
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1530 */
1531int dbg_check_tnc(struct ubifs_info *c, int extra)
1532{
1533	struct ubifs_znode *znode;
1534	long clean_cnt = 0, dirty_cnt = 0;
1535	int err, last;
1536
1537	if (!dbg_is_chk_index(c))
1538		return 0;
1539
1540	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541	if (!c->zroot.znode)
1542		return 0;
1543
1544	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545	while (1) {
1546		struct ubifs_znode *prev;
1547		struct ubifs_zbranch *zbr;
1548
1549		if (!znode->parent)
1550			zbr = &c->zroot;
1551		else
1552			zbr = &znode->parent->zbranch[znode->iip];
1553
1554		err = dbg_check_znode(c, zbr);
1555		if (err)
1556			return err;
1557
1558		if (extra) {
1559			if (ubifs_zn_dirty(znode))
1560				dirty_cnt += 1;
1561			else
1562				clean_cnt += 1;
1563		}
1564
1565		prev = znode;
1566		znode = ubifs_tnc_postorder_next(znode);
1567		if (!znode)
1568			break;
1569
1570		/*
1571		 * If the last key of this znode is equivalent to the first key
1572		 * of the next znode (collision), then check order of the keys.
1573		 */
1574		last = prev->child_cnt - 1;
1575		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576		    !keys_cmp(c, &prev->zbranch[last].key,
1577			      &znode->zbranch[0].key)) {
1578			err = dbg_check_key_order(c, &prev->zbranch[last],
1579						  &znode->zbranch[0]);
1580			if (err < 0)
1581				return err;
1582			if (err) {
1583				ubifs_msg("first znode");
1584				dbg_dump_znode(c, prev);
1585				ubifs_msg("second znode");
1586				dbg_dump_znode(c, znode);
1587				return -EINVAL;
1588			}
1589		}
1590	}
1591
1592	if (extra) {
1593		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595				  atomic_long_read(&c->clean_zn_cnt),
1596				  clean_cnt);
1597			return -EINVAL;
1598		}
1599		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601				  atomic_long_read(&c->dirty_zn_cnt),
1602				  dirty_cnt);
1603			return -EINVAL;
1604		}
1605	}
1606
1607	return 0;
1608}
1609
1610/**
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1616 *
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1620 *
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1623 * behavior.
1624 */
1625int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626		   dbg_znode_callback znode_cb, void *priv)
1627{
1628	int err;
1629	struct ubifs_zbranch *zbr;
1630	struct ubifs_znode *znode, *child;
1631
1632	mutex_lock(&c->tnc_mutex);
1633	/* If the root indexing node is not in TNC - pull it */
1634	if (!c->zroot.znode) {
1635		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636		if (IS_ERR(c->zroot.znode)) {
1637			err = PTR_ERR(c->zroot.znode);
1638			c->zroot.znode = NULL;
1639			goto out_unlock;
1640		}
1641	}
1642
1643	/*
1644	 * We are going to traverse the indexing tree in the postorder manner.
1645	 * Go down and find the leftmost indexing node where we are going to
1646	 * start from.
1647	 */
1648	znode = c->zroot.znode;
1649	while (znode->level > 0) {
1650		zbr = &znode->zbranch[0];
1651		child = zbr->znode;
1652		if (!child) {
1653			child = ubifs_load_znode(c, zbr, znode, 0);
1654			if (IS_ERR(child)) {
1655				err = PTR_ERR(child);
1656				goto out_unlock;
1657			}
1658			zbr->znode = child;
1659		}
1660
1661		znode = child;
1662	}
1663
1664	/* Iterate over all indexing nodes */
1665	while (1) {
1666		int idx;
1667
1668		cond_resched();
1669
1670		if (znode_cb) {
1671			err = znode_cb(c, znode, priv);
1672			if (err) {
1673				ubifs_err("znode checking function returned "
1674					  "error %d", err);
1675				dbg_dump_znode(c, znode);
1676				goto out_dump;
1677			}
1678		}
1679		if (leaf_cb && znode->level == 0) {
1680			for (idx = 0; idx < znode->child_cnt; idx++) {
1681				zbr = &znode->zbranch[idx];
1682				err = leaf_cb(c, zbr, priv);
1683				if (err) {
1684					ubifs_err("leaf checking function "
1685						  "returned error %d, for leaf "
1686						  "at LEB %d:%d",
1687						  err, zbr->lnum, zbr->offs);
1688					goto out_dump;
1689				}
1690			}
1691		}
1692
1693		if (!znode->parent)
1694			break;
1695
1696		idx = znode->iip + 1;
1697		znode = znode->parent;
1698		if (idx < znode->child_cnt) {
1699			/* Switch to the next index in the parent */
1700			zbr = &znode->zbranch[idx];
1701			child = zbr->znode;
1702			if (!child) {
1703				child = ubifs_load_znode(c, zbr, znode, idx);
1704				if (IS_ERR(child)) {
1705					err = PTR_ERR(child);
1706					goto out_unlock;
1707				}
1708				zbr->znode = child;
1709			}
1710			znode = child;
1711		} else
1712			/*
1713			 * This is the last child, switch to the parent and
1714			 * continue.
1715			 */
1716			continue;
1717
1718		/* Go to the lowest leftmost znode in the new sub-tree */
1719		while (znode->level > 0) {
1720			zbr = &znode->zbranch[0];
1721			child = zbr->znode;
1722			if (!child) {
1723				child = ubifs_load_znode(c, zbr, znode, 0);
1724				if (IS_ERR(child)) {
1725					err = PTR_ERR(child);
1726					goto out_unlock;
1727				}
1728				zbr->znode = child;
1729			}
1730			znode = child;
1731		}
1732	}
1733
1734	mutex_unlock(&c->tnc_mutex);
1735	return 0;
1736
1737out_dump:
1738	if (znode->parent)
1739		zbr = &znode->parent->zbranch[znode->iip];
1740	else
1741		zbr = &c->zroot;
1742	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743	dbg_dump_znode(c, znode);
1744out_unlock:
1745	mutex_unlock(&c->tnc_mutex);
1746	return err;
1747}
1748
1749/**
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1754 *
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1757 * by @priv.
1758 */
1759static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760{
1761	long long *idx_size = priv;
1762	int add;
1763
1764	add = ubifs_idx_node_sz(c, znode->child_cnt);
1765	add = ALIGN(add, 8);
1766	*idx_size += add;
1767	return 0;
1768}
1769
1770/**
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1774 *
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1778 */
1779int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780{
1781	int err;
1782	long long calc = 0;
1783
1784	if (!dbg_is_chk_index(c))
1785		return 0;
1786
1787	err = dbg_walk_index(c, NULL, add_size, &calc);
1788	if (err) {
1789		ubifs_err("error %d while walking the index", err);
1790		return err;
1791	}
1792
1793	if (calc != idx_size) {
1794		ubifs_err("index size check failed: calculated size is %lld, "
1795			  "should be %lld", calc, idx_size);
1796		dump_stack();
1797		return -EINVAL;
1798	}
1799
1800	return 0;
1801}
1802
1803/**
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 *              while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1815 *            inode)
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 *             inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1822 */
1823struct fsck_inode {
1824	struct rb_node rb;
1825	ino_t inum;
1826	umode_t mode;
1827	unsigned int nlink;
1828	unsigned int xattr_cnt;
1829	int references;
1830	int calc_cnt;
1831	long long size;
1832	unsigned int xattr_sz;
1833	long long calc_sz;
1834	long long calc_xcnt;
1835	long long calc_xsz;
1836	unsigned int xattr_nms;
1837	long long calc_xnms;
1838};
1839
1840/**
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843 */
1844struct fsck_data {
1845	struct rb_root inodes;
1846};
1847
1848/**
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1853 *
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1857 */
1858static struct fsck_inode *add_inode(struct ubifs_info *c,
1859				    struct fsck_data *fsckd,
1860				    struct ubifs_ino_node *ino)
1861{
1862	struct rb_node **p, *parent = NULL;
1863	struct fsck_inode *fscki;
1864	ino_t inum = key_inum_flash(c, &ino->key);
1865	struct inode *inode;
1866	struct ubifs_inode *ui;
1867
1868	p = &fsckd->inodes.rb_node;
1869	while (*p) {
1870		parent = *p;
1871		fscki = rb_entry(parent, struct fsck_inode, rb);
1872		if (inum < fscki->inum)
1873			p = &(*p)->rb_left;
1874		else if (inum > fscki->inum)
1875			p = &(*p)->rb_right;
1876		else
1877			return fscki;
1878	}
1879
1880	if (inum > c->highest_inum) {
1881		ubifs_err("too high inode number, max. is %lu",
1882			  (unsigned long)c->highest_inum);
1883		return ERR_PTR(-EINVAL);
1884	}
1885
1886	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887	if (!fscki)
1888		return ERR_PTR(-ENOMEM);
1889
1890	inode = ilookup(c->vfs_sb, inum);
1891
1892	fscki->inum = inum;
1893	/*
1894	 * If the inode is present in the VFS inode cache, use it instead of
1895	 * the on-flash inode which might be out-of-date. E.g., the size might
1896	 * be out-of-date. If we do not do this, the following may happen, for
1897	 * example:
1898	 *   1. A power cut happens
1899	 *   2. We mount the file-system R/O, the replay process fixes up the
1900	 *      inode size in the VFS cache, but on on-flash.
1901	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1902	 *      size.
1903	 */
1904	if (!inode) {
1905		fscki->nlink = le32_to_cpu(ino->nlink);
1906		fscki->size = le64_to_cpu(ino->size);
1907		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910		fscki->mode = le32_to_cpu(ino->mode);
1911	} else {
1912		ui = ubifs_inode(inode);
1913		fscki->nlink = inode->i_nlink;
1914		fscki->size = inode->i_size;
1915		fscki->xattr_cnt = ui->xattr_cnt;
1916		fscki->xattr_sz = ui->xattr_size;
1917		fscki->xattr_nms = ui->xattr_names;
1918		fscki->mode = inode->i_mode;
1919		iput(inode);
1920	}
1921
1922	if (S_ISDIR(fscki->mode)) {
1923		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924		fscki->calc_cnt = 2;
1925	}
1926
1927	rb_link_node(&fscki->rb, parent, p);
1928	rb_insert_color(&fscki->rb, &fsckd->inodes);
1929
1930	return fscki;
1931}
1932
1933/**
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1937 *
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1941 */
1942static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943{
1944	struct rb_node *p;
1945	struct fsck_inode *fscki;
1946
1947	p = fsckd->inodes.rb_node;
1948	while (p) {
1949		fscki = rb_entry(p, struct fsck_inode, rb);
1950		if (inum < fscki->inum)
1951			p = p->rb_left;
1952		else if (inum > fscki->inum)
1953			p = p->rb_right;
1954		else
1955			return fscki;
1956	}
1957	return NULL;
1958}
1959
1960/**
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1965 *
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1969 * failure.
1970 */
1971static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972					 struct fsck_data *fsckd, ino_t inum)
1973{
1974	int n, err;
1975	union ubifs_key key;
1976	struct ubifs_znode *znode;
1977	struct ubifs_zbranch *zbr;
1978	struct ubifs_ino_node *ino;
1979	struct fsck_inode *fscki;
1980
1981	fscki = search_inode(fsckd, inum);
1982	if (fscki)
1983		return fscki;
1984
1985	ino_key_init(c, &key, inum);
1986	err = ubifs_lookup_level0(c, &key, &znode, &n);
1987	if (!err) {
1988		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989		return ERR_PTR(-ENOENT);
1990	} else if (err < 0) {
1991		ubifs_err("error %d while looking up inode %lu",
1992			  err, (unsigned long)inum);
1993		return ERR_PTR(err);
1994	}
1995
1996	zbr = &znode->zbranch[n];
1997	if (zbr->len < UBIFS_INO_NODE_SZ) {
1998		ubifs_err("bad node %lu node length %d",
1999			  (unsigned long)inum, zbr->len);
2000		return ERR_PTR(-EINVAL);
2001	}
2002
2003	ino = kmalloc(zbr->len, GFP_NOFS);
2004	if (!ino)
2005		return ERR_PTR(-ENOMEM);
2006
2007	err = ubifs_tnc_read_node(c, zbr, ino);
2008	if (err) {
2009		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010			  zbr->lnum, zbr->offs, err);
2011		kfree(ino);
2012		return ERR_PTR(err);
2013	}
2014
2015	fscki = add_inode(c, fsckd, ino);
2016	kfree(ino);
2017	if (IS_ERR(fscki)) {
2018		ubifs_err("error %ld while adding inode %lu node",
2019			  PTR_ERR(fscki), (unsigned long)inum);
2020		return fscki;
2021	}
2022
2023	return fscki;
2024}
2025
2026/**
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2031 *
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2041 */
2042static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043		      void *priv)
2044{
2045	ino_t inum;
2046	void *node;
2047	struct ubifs_ch *ch;
2048	int err, type = key_type(c, &zbr->key);
2049	struct fsck_inode *fscki;
2050
2051	if (zbr->len < UBIFS_CH_SZ) {
2052		ubifs_err("bad leaf length %d (LEB %d:%d)",
2053			  zbr->len, zbr->lnum, zbr->offs);
2054		return -EINVAL;
2055	}
2056
2057	node = kmalloc(zbr->len, GFP_NOFS);
2058	if (!node)
2059		return -ENOMEM;
2060
2061	err = ubifs_tnc_read_node(c, zbr, node);
2062	if (err) {
2063		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064			  zbr->lnum, zbr->offs, err);
2065		goto out_free;
2066	}
2067
2068	/* If this is an inode node, add it to RB-tree of inodes */
2069	if (type == UBIFS_INO_KEY) {
2070		fscki = add_inode(c, priv, node);
2071		if (IS_ERR(fscki)) {
2072			err = PTR_ERR(fscki);
2073			ubifs_err("error %d while adding inode node", err);
2074			goto out_dump;
2075		}
2076		goto out;
2077	}
2078
2079	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080	    type != UBIFS_DATA_KEY) {
2081		ubifs_err("unexpected node type %d at LEB %d:%d",
2082			  type, zbr->lnum, zbr->offs);
2083		err = -EINVAL;
2084		goto out_free;
2085	}
2086
2087	ch = node;
2088	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089		ubifs_err("too high sequence number, max. is %llu",
2090			  c->max_sqnum);
2091		err = -EINVAL;
2092		goto out_dump;
2093	}
2094
2095	if (type == UBIFS_DATA_KEY) {
2096		long long blk_offs;
2097		struct ubifs_data_node *dn = node;
2098
2099		/*
2100		 * Search the inode node this data node belongs to and insert
2101		 * it to the RB-tree of inodes.
2102		 */
2103		inum = key_inum_flash(c, &dn->key);
2104		fscki = read_add_inode(c, priv, inum);
2105		if (IS_ERR(fscki)) {
2106			err = PTR_ERR(fscki);
2107			ubifs_err("error %d while processing data node and "
2108				  "trying to find inode node %lu",
2109				  err, (unsigned long)inum);
2110			goto out_dump;
2111		}
2112
2113		/* Make sure the data node is within inode size */
2114		blk_offs = key_block_flash(c, &dn->key);
2115		blk_offs <<= UBIFS_BLOCK_SHIFT;
2116		blk_offs += le32_to_cpu(dn->size);
2117		if (blk_offs > fscki->size) {
2118			ubifs_err("data node at LEB %d:%d is not within inode "
2119				  "size %lld", zbr->lnum, zbr->offs,
2120				  fscki->size);
2121			err = -EINVAL;
2122			goto out_dump;
2123		}
2124	} else {
2125		int nlen;
2126		struct ubifs_dent_node *dent = node;
2127		struct fsck_inode *fscki1;
2128
2129		err = ubifs_validate_entry(c, dent);
2130		if (err)
2131			goto out_dump;
2132
2133		/*
2134		 * Search the inode node this entry refers to and the parent
2135		 * inode node and insert them to the RB-tree of inodes.
2136		 */
2137		inum = le64_to_cpu(dent->inum);
2138		fscki = read_add_inode(c, priv, inum);
2139		if (IS_ERR(fscki)) {
2140			err = PTR_ERR(fscki);
2141			ubifs_err("error %d while processing entry node and "
2142				  "trying to find inode node %lu",
2143				  err, (unsigned long)inum);
2144			goto out_dump;
2145		}
2146
2147		/* Count how many direntries or xentries refers this inode */
2148		fscki->references += 1;
2149
2150		inum = key_inum_flash(c, &dent->key);
2151		fscki1 = read_add_inode(c, priv, inum);
2152		if (IS_ERR(fscki1)) {
2153			err = PTR_ERR(fscki1);
2154			ubifs_err("error %d while processing entry node and "
2155				  "trying to find parent inode node %lu",
2156				  err, (unsigned long)inum);
2157			goto out_dump;
2158		}
2159
2160		nlen = le16_to_cpu(dent->nlen);
2161		if (type == UBIFS_XENT_KEY) {
2162			fscki1->calc_xcnt += 1;
2163			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165			fscki1->calc_xnms += nlen;
2166		} else {
2167			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168			if (dent->type == UBIFS_ITYPE_DIR)
2169				fscki1->calc_cnt += 1;
2170		}
2171	}
2172
2173out:
2174	kfree(node);
2175	return 0;
2176
2177out_dump:
2178	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179	dbg_dump_node(c, node);
2180out_free:
2181	kfree(node);
2182	return err;
2183}
2184
2185/**
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2188 */
2189static void free_inodes(struct fsck_data *fsckd)
2190{
2191	struct rb_node *this = fsckd->inodes.rb_node;
2192	struct fsck_inode *fscki;
2193
2194	while (this) {
2195		if (this->rb_left)
2196			this = this->rb_left;
2197		else if (this->rb_right)
2198			this = this->rb_right;
2199		else {
2200			fscki = rb_entry(this, struct fsck_inode, rb);
2201			this = rb_parent(this);
2202			if (this) {
2203				if (this->rb_left == &fscki->rb)
2204					this->rb_left = NULL;
2205				else
2206					this->rb_right = NULL;
2207			}
2208			kfree(fscki);
2209		}
2210	}
2211}
2212
2213/**
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2217 *
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2222 */
2223static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224{
2225	int n, err;
2226	union ubifs_key key;
2227	struct ubifs_znode *znode;
2228	struct ubifs_zbranch *zbr;
2229	struct ubifs_ino_node *ino;
2230	struct fsck_inode *fscki;
2231	struct rb_node *this = rb_first(&fsckd->inodes);
2232
2233	while (this) {
2234		fscki = rb_entry(this, struct fsck_inode, rb);
2235		this = rb_next(this);
2236
2237		if (S_ISDIR(fscki->mode)) {
2238			/*
2239			 * Directories have to have exactly one reference (they
2240			 * cannot have hardlinks), although root inode is an
2241			 * exception.
2242			 */
2243			if (fscki->inum != UBIFS_ROOT_INO &&
2244			    fscki->references != 1) {
2245				ubifs_err("directory inode %lu has %d "
2246					  "direntries which refer it, but "
2247					  "should be 1",
2248					  (unsigned long)fscki->inum,
2249					  fscki->references);
2250				goto out_dump;
2251			}
2252			if (fscki->inum == UBIFS_ROOT_INO &&
2253			    fscki->references != 0) {
2254				ubifs_err("root inode %lu has non-zero (%d) "
2255					  "direntries which refer it",
2256					  (unsigned long)fscki->inum,
2257					  fscki->references);
2258				goto out_dump;
2259			}
2260			if (fscki->calc_sz != fscki->size) {
2261				ubifs_err("directory inode %lu size is %lld, "
2262					  "but calculated size is %lld",
2263					  (unsigned long)fscki->inum,
2264					  fscki->size, fscki->calc_sz);
2265				goto out_dump;
2266			}
2267			if (fscki->calc_cnt != fscki->nlink) {
2268				ubifs_err("directory inode %lu nlink is %d, "
2269					  "but calculated nlink is %d",
2270					  (unsigned long)fscki->inum,
2271					  fscki->nlink, fscki->calc_cnt);
2272				goto out_dump;
2273			}
2274		} else {
2275			if (fscki->references != fscki->nlink) {
2276				ubifs_err("inode %lu nlink is %d, but "
2277					  "calculated nlink is %d",
2278					  (unsigned long)fscki->inum,
2279					  fscki->nlink, fscki->references);
2280				goto out_dump;
2281			}
2282		}
2283		if (fscki->xattr_sz != fscki->calc_xsz) {
2284			ubifs_err("inode %lu has xattr size %u, but "
2285				  "calculated size is %lld",
2286				  (unsigned long)fscki->inum, fscki->xattr_sz,
2287				  fscki->calc_xsz);
2288			goto out_dump;
2289		}
2290		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291			ubifs_err("inode %lu has %u xattrs, but "
2292				  "calculated count is %lld",
2293				  (unsigned long)fscki->inum,
2294				  fscki->xattr_cnt, fscki->calc_xcnt);
2295			goto out_dump;
2296		}
2297		if (fscki->xattr_nms != fscki->calc_xnms) {
2298			ubifs_err("inode %lu has xattr names' size %u, but "
2299				  "calculated names' size is %lld",
2300				  (unsigned long)fscki->inum, fscki->xattr_nms,
2301				  fscki->calc_xnms);
2302			goto out_dump;
2303		}
2304	}
2305
2306	return 0;
2307
2308out_dump:
2309	/* Read the bad inode and dump it */
2310	ino_key_init(c, &key, fscki->inum);
2311	err = ubifs_lookup_level0(c, &key, &znode, &n);
2312	if (!err) {
2313		ubifs_err("inode %lu not found in index",
2314			  (unsigned long)fscki->inum);
2315		return -ENOENT;
2316	} else if (err < 0) {
2317		ubifs_err("error %d while looking up inode %lu",
2318			  err, (unsigned long)fscki->inum);
2319		return err;
2320	}
2321
2322	zbr = &znode->zbranch[n];
2323	ino = kmalloc(zbr->len, GFP_NOFS);
2324	if (!ino)
2325		return -ENOMEM;
2326
2327	err = ubifs_tnc_read_node(c, zbr, ino);
2328	if (err) {
2329		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330			  zbr->lnum, zbr->offs, err);
2331		kfree(ino);
2332		return err;
2333	}
2334
2335	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337	dbg_dump_node(c, ino);
2338	kfree(ino);
2339	return -EINVAL;
2340}
2341
2342/**
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2345 *
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2349 *   inodes).
2350 *
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2354 */
2355int dbg_check_filesystem(struct ubifs_info *c)
2356{
2357	int err;
2358	struct fsck_data fsckd;
2359
2360	if (!dbg_is_chk_fs(c))
2361		return 0;
2362
2363	fsckd.inodes = RB_ROOT;
2364	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365	if (err)
2366		goto out_free;
2367
2368	err = check_inodes(c, &fsckd);
2369	if (err)
2370		goto out_free;
2371
2372	free_inodes(&fsckd);
2373	return 0;
2374
2375out_free:
2376	ubifs_err("file-system check failed with error %d", err);
2377	dump_stack();
2378	free_inodes(&fsckd);
2379	return err;
2380}
2381
2382/**
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386 *
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2389 */
2390int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391{
2392	struct list_head *cur;
2393	struct ubifs_scan_node *sa, *sb;
2394
2395	if (!dbg_is_chk_gen(c))
2396		return 0;
2397
2398	for (cur = head->next; cur->next != head; cur = cur->next) {
2399		ino_t inuma, inumb;
2400		uint32_t blka, blkb;
2401
2402		cond_resched();
2403		sa = container_of(cur, struct ubifs_scan_node, list);
2404		sb = container_of(cur->next, struct ubifs_scan_node, list);
2405
2406		if (sa->type != UBIFS_DATA_NODE) {
2407			ubifs_err("bad node type %d", sa->type);
2408			dbg_dump_node(c, sa->node);
2409			return -EINVAL;
2410		}
2411		if (sb->type != UBIFS_DATA_NODE) {
2412			ubifs_err("bad node type %d", sb->type);
2413			dbg_dump_node(c, sb->node);
2414			return -EINVAL;
2415		}
2416
2417		inuma = key_inum(c, &sa->key);
2418		inumb = key_inum(c, &sb->key);
2419
2420		if (inuma < inumb)
2421			continue;
2422		if (inuma > inumb) {
2423			ubifs_err("larger inum %lu goes before inum %lu",
2424				  (unsigned long)inuma, (unsigned long)inumb);
2425			goto error_dump;
2426		}
2427
2428		blka = key_block(c, &sa->key);
2429		blkb = key_block(c, &sb->key);
2430
2431		if (blka > blkb) {
2432			ubifs_err("larger block %u goes before %u", blka, blkb);
2433			goto error_dump;
2434		}
2435		if (blka == blkb) {
2436			ubifs_err("two data nodes for the same block");
2437			goto error_dump;
2438		}
2439	}
2440
2441	return 0;
2442
2443error_dump:
2444	dbg_dump_node(c, sa->node);
2445	dbg_dump_node(c, sb->node);
2446	return -EINVAL;
2447}
2448
2449/**
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453 *
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2456 */
2457int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458{
2459	struct list_head *cur;
2460	struct ubifs_scan_node *sa, *sb;
2461
2462	if (!dbg_is_chk_gen(c))
2463		return 0;
2464
2465	for (cur = head->next; cur->next != head; cur = cur->next) {
2466		ino_t inuma, inumb;
2467		uint32_t hasha, hashb;
2468
2469		cond_resched();
2470		sa = container_of(cur, struct ubifs_scan_node, list);
2471		sb = container_of(cur->next, struct ubifs_scan_node, list);
2472
2473		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474		    sa->type != UBIFS_XENT_NODE) {
2475			ubifs_err("bad node type %d", sa->type);
2476			dbg_dump_node(c, sa->node);
2477			return -EINVAL;
2478		}
2479		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480		    sa->type != UBIFS_XENT_NODE) {
2481			ubifs_err("bad node type %d", sb->type);
2482			dbg_dump_node(c, sb->node);
2483			return -EINVAL;
2484		}
2485
2486		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487			ubifs_err("non-inode node goes before inode node");
2488			goto error_dump;
2489		}
2490
2491		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492			continue;
2493
2494		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495			/* Inode nodes are sorted in descending size order */
2496			if (sa->len < sb->len) {
2497				ubifs_err("smaller inode node goes first");
2498				goto error_dump;
2499			}
2500			continue;
2501		}
2502
2503		/*
2504		 * This is either a dentry or xentry, which should be sorted in
2505		 * ascending (parent ino, hash) order.
2506		 */
2507		inuma = key_inum(c, &sa->key);
2508		inumb = key_inum(c, &sb->key);
2509
2510		if (inuma < inumb)
2511			continue;
2512		if (inuma > inumb) {
2513			ubifs_err("larger inum %lu goes before inum %lu",
2514				  (unsigned long)inuma, (unsigned long)inumb);
2515			goto error_dump;
2516		}
2517
2518		hasha = key_block(c, &sa->key);
2519		hashb = key_block(c, &sb->key);
2520
2521		if (hasha > hashb) {
2522			ubifs_err("larger hash %u goes before %u",
2523				  hasha, hashb);
2524			goto error_dump;
2525		}
2526	}
2527
2528	return 0;
2529
2530error_dump:
2531	ubifs_msg("dumping first node");
2532	dbg_dump_node(c, sa->node);
2533	ubifs_msg("dumping second node");
2534	dbg_dump_node(c, sb->node);
2535	return -EINVAL;
2536	return 0;
2537}
2538
2539static inline int chance(unsigned int n, unsigned int out_of)
2540{
2541	return !!((random32() % out_of) + 1 <= n);
2542
2543}
2544
2545static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546{
2547	struct ubifs_debug_info *d = c->dbg;
2548
2549	ubifs_assert(dbg_is_tst_rcvry(c));
2550
2551	if (!d->pc_cnt) {
2552		/* First call - decide delay to the power cut */
2553		if (chance(1, 2)) {
2554			unsigned long delay;
2555
2556			if (chance(1, 2)) {
2557				d->pc_delay = 1;
2558				/* Fail withing 1 minute */
2559				delay = random32() % 60000;
2560				d->pc_timeout = jiffies;
2561				d->pc_timeout += msecs_to_jiffies(delay);
2562				ubifs_warn("failing after %lums", delay);
2563			} else {
2564				d->pc_delay = 2;
2565				delay = random32() % 10000;
2566				/* Fail within 10000 operations */
2567				d->pc_cnt_max = delay;
2568				ubifs_warn("failing after %lu calls", delay);
2569			}
2570		}
2571
2572		d->pc_cnt += 1;
2573	}
2574
2575	/* Determine if failure delay has expired */
2576	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577			return 0;
2578	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579			return 0;
2580
2581	if (lnum == UBIFS_SB_LNUM) {
2582		if (write && chance(1, 2))
2583			return 0;
2584		if (chance(19, 20))
2585			return 0;
2586		ubifs_warn("failing in super block LEB %d", lnum);
2587	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588		if (chance(19, 20))
2589			return 0;
2590		ubifs_warn("failing in master LEB %d", lnum);
2591	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592		if (write && chance(99, 100))
2593			return 0;
2594		if (chance(399, 400))
2595			return 0;
2596		ubifs_warn("failing in log LEB %d", lnum);
2597	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598		if (write && chance(7, 8))
2599			return 0;
2600		if (chance(19, 20))
2601			return 0;
2602		ubifs_warn("failing in LPT LEB %d", lnum);
2603	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604		if (write && chance(1, 2))
2605			return 0;
2606		if (chance(9, 10))
2607			return 0;
2608		ubifs_warn("failing in orphan LEB %d", lnum);
2609	} else if (lnum == c->ihead_lnum) {
2610		if (chance(99, 100))
2611			return 0;
2612		ubifs_warn("failing in index head LEB %d", lnum);
2613	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614		if (chance(9, 10))
2615			return 0;
2616		ubifs_warn("failing in GC head LEB %d", lnum);
2617	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618		   !ubifs_search_bud(c, lnum)) {
2619		if (chance(19, 20))
2620			return 0;
2621		ubifs_warn("failing in non-bud LEB %d", lnum);
2622	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624		if (chance(999, 1000))
2625			return 0;
2626		ubifs_warn("failing in bud LEB %d commit running", lnum);
2627	} else {
2628		if (chance(9999, 10000))
2629			return 0;
2630		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631	}
2632
2633	d->pc_happened = 1;
2634	ubifs_warn("========== Power cut emulated ==========");
2635	dump_stack();
2636	return 1;
2637}
2638
2639static void cut_data(const void *buf, unsigned int len)
2640{
2641	unsigned int from, to, i, ffs = chance(1, 2);
2642	unsigned char *p = (void *)buf;
2643
2644	from = random32() % (len + 1);
2645	if (chance(1, 2))
2646		to = random32() % (len - from + 1);
2647	else
2648		to = len;
2649
2650	if (from < to)
2651		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652			   ffs ? "0xFFs" : "random data");
2653
2654	if (ffs)
2655		for (i = from; i < to; i++)
2656			p[i] = 0xFF;
2657	else
2658		for (i = from; i < to; i++)
2659			p[i] = random32() % 0x100;
2660}
2661
2662int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663		  int offs, int len, int dtype)
2664{
2665	int err, failing;
2666
2667	if (c->dbg->pc_happened)
2668		return -EROFS;
2669
2670	failing = power_cut_emulated(c, lnum, 1);
2671	if (failing)
2672		cut_data(buf, len);
2673	err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674	if (err)
2675		return err;
2676	if (failing)
2677		return -EROFS;
2678	return 0;
2679}
2680
2681int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682		   int len, int dtype)
2683{
2684	int err;
2685
2686	if (c->dbg->pc_happened)
2687		return -EROFS;
2688	if (power_cut_emulated(c, lnum, 1))
2689		return -EROFS;
2690	err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691	if (err)
2692		return err;
2693	if (power_cut_emulated(c, lnum, 1))
2694		return -EROFS;
2695	return 0;
2696}
2697
2698int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699{
2700	int err;
2701
2702	if (c->dbg->pc_happened)
2703		return -EROFS;
2704	if (power_cut_emulated(c, lnum, 0))
2705		return -EROFS;
2706	err = ubi_leb_unmap(c->ubi, lnum);
2707	if (err)
2708		return err;
2709	if (power_cut_emulated(c, lnum, 0))
2710		return -EROFS;
2711	return 0;
2712}
2713
2714int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715{
2716	int err;
2717
2718	if (c->dbg->pc_happened)
2719		return -EROFS;
2720	if (power_cut_emulated(c, lnum, 0))
2721		return -EROFS;
2722	err = ubi_leb_map(c->ubi, lnum, dtype);
2723	if (err)
2724		return err;
2725	if (power_cut_emulated(c, lnum, 0))
2726		return -EROFS;
2727	return 0;
2728}
2729
2730/*
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2733 */
2734static struct dentry *dfs_rootdir;
2735
2736static int dfs_file_open(struct inode *inode, struct file *file)
2737{
2738	file->private_data = inode->i_private;
2739	return nonseekable_open(inode, file);
2740}
2741
2742/**
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2748 *
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2752 * failure.
2753 */
2754static int provide_user_output(int val, char __user *u, size_t count,
2755			       loff_t *ppos)
2756{
2757	char buf[3];
2758
2759	if (val)
2760		buf[0] = '1';
2761	else
2762		buf[0] = '0';
2763	buf[1] = '\n';
2764	buf[2] = 0x00;
2765
2766	return simple_read_from_buffer(u, count, ppos, buf, 2);
2767}
2768
2769static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770			     loff_t *ppos)
2771{
2772	struct dentry *dent = file->f_path.dentry;
2773	struct ubifs_info *c = file->private_data;
2774	struct ubifs_debug_info *d = c->dbg;
2775	int val;
2776
2777	if (dent == d->dfs_chk_gen)
2778		val = d->chk_gen;
2779	else if (dent == d->dfs_chk_index)
2780		val = d->chk_index;
2781	else if (dent == d->dfs_chk_orph)
2782		val = d->chk_orph;
2783	else if (dent == d->dfs_chk_lprops)
2784		val = d->chk_lprops;
2785	else if (dent == d->dfs_chk_fs)
2786		val = d->chk_fs;
2787	else if (dent == d->dfs_tst_rcvry)
2788		val = d->tst_rcvry;
2789	else
2790		return -EINVAL;
2791
2792	return provide_user_output(val, u, count, ppos);
2793}
2794
2795/**
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2799 *
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2803 */
2804static int interpret_user_input(const char __user *u, size_t count)
2805{
2806	size_t buf_size;
2807	char buf[8];
2808
2809	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810	if (copy_from_user(buf, u, buf_size))
2811		return -EFAULT;
2812
2813	if (buf[0] == '1')
2814		return 1;
2815	else if (buf[0] == '0')
2816		return 0;
2817
2818	return -EINVAL;
2819}
2820
2821static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822			      size_t count, loff_t *ppos)
2823{
2824	struct ubifs_info *c = file->private_data;
2825	struct ubifs_debug_info *d = c->dbg;
2826	struct dentry *dent = file->f_path.dentry;
2827	int val;
2828
2829	/*
2830	 * TODO: this is racy - the file-system might have already been
2831	 * unmounted and we'd oops in this case. The plan is to fix it with
2832	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835	 * superblocks and fine the one with the same UUID, and take the
2836	 * locking right.
2837	 *
2838	 * The other way to go suggested by Al Viro is to create a separate
2839	 * 'ubifs-debug' file-system instead.
2840	 */
2841	if (file->f_path.dentry == d->dfs_dump_lprops) {
2842		dbg_dump_lprops(c);
2843		return count;
2844	}
2845	if (file->f_path.dentry == d->dfs_dump_budg) {
2846		dbg_dump_budg(c, &c->bi);
2847		return count;
2848	}
2849	if (file->f_path.dentry == d->dfs_dump_tnc) {
2850		mutex_lock(&c->tnc_mutex);
2851		dbg_dump_tnc(c);
2852		mutex_unlock(&c->tnc_mutex);
2853		return count;
2854	}
2855
2856	val = interpret_user_input(u, count);
2857	if (val < 0)
2858		return val;
2859
2860	if (dent == d->dfs_chk_gen)
2861		d->chk_gen = val;
2862	else if (dent == d->dfs_chk_index)
2863		d->chk_index = val;
2864	else if (dent == d->dfs_chk_orph)
2865		d->chk_orph = val;
2866	else if (dent == d->dfs_chk_lprops)
2867		d->chk_lprops = val;
2868	else if (dent == d->dfs_chk_fs)
2869		d->chk_fs = val;
2870	else if (dent == d->dfs_tst_rcvry)
2871		d->tst_rcvry = val;
2872	else
2873		return -EINVAL;
2874
2875	return count;
2876}
2877
2878static const struct file_operations dfs_fops = {
2879	.open = dfs_file_open,
2880	.read = dfs_file_read,
2881	.write = dfs_file_write,
2882	.owner = THIS_MODULE,
2883	.llseek = no_llseek,
2884};
2885
2886/**
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2889 *
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2892 *
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2897 */
2898int dbg_debugfs_init_fs(struct ubifs_info *c)
2899{
2900	int err, n;
2901	const char *fname;
2902	struct dentry *dent;
2903	struct ubifs_debug_info *d = c->dbg;
2904
 
 
 
2905	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906		     c->vi.ubi_num, c->vi.vol_id);
2907	if (n == UBIFS_DFS_DIR_LEN) {
2908		/* The array size is too small */
2909		fname = UBIFS_DFS_DIR_NAME;
2910		dent = ERR_PTR(-EINVAL);
2911		goto out;
2912	}
2913
2914	fname = d->dfs_dir_name;
2915	dent = debugfs_create_dir(fname, dfs_rootdir);
2916	if (IS_ERR_OR_NULL(dent))
2917		goto out;
2918	d->dfs_dir = dent;
2919
2920	fname = "dump_lprops";
2921	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922	if (IS_ERR_OR_NULL(dent))
2923		goto out_remove;
2924	d->dfs_dump_lprops = dent;
2925
2926	fname = "dump_budg";
2927	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928	if (IS_ERR_OR_NULL(dent))
2929		goto out_remove;
2930	d->dfs_dump_budg = dent;
2931
2932	fname = "dump_tnc";
2933	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934	if (IS_ERR_OR_NULL(dent))
2935		goto out_remove;
2936	d->dfs_dump_tnc = dent;
2937
2938	fname = "chk_general";
2939	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940				   &dfs_fops);
2941	if (IS_ERR_OR_NULL(dent))
2942		goto out_remove;
2943	d->dfs_chk_gen = dent;
2944
2945	fname = "chk_index";
2946	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947				   &dfs_fops);
2948	if (IS_ERR_OR_NULL(dent))
2949		goto out_remove;
2950	d->dfs_chk_index = dent;
2951
2952	fname = "chk_orphans";
2953	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954				   &dfs_fops);
2955	if (IS_ERR_OR_NULL(dent))
2956		goto out_remove;
2957	d->dfs_chk_orph = dent;
2958
2959	fname = "chk_lprops";
2960	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961				   &dfs_fops);
2962	if (IS_ERR_OR_NULL(dent))
2963		goto out_remove;
2964	d->dfs_chk_lprops = dent;
2965
2966	fname = "chk_fs";
2967	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968				   &dfs_fops);
2969	if (IS_ERR_OR_NULL(dent))
2970		goto out_remove;
2971	d->dfs_chk_fs = dent;
2972
2973	fname = "tst_recovery";
2974	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975				   &dfs_fops);
2976	if (IS_ERR_OR_NULL(dent))
2977		goto out_remove;
2978	d->dfs_tst_rcvry = dent;
2979
2980	return 0;
2981
2982out_remove:
2983	debugfs_remove_recursive(d->dfs_dir);
2984out:
2985	err = dent ? PTR_ERR(dent) : -ENODEV;
2986	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987		  fname, err);
2988	return err;
2989}
2990
2991/**
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2994 */
2995void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996{
2997	debugfs_remove_recursive(c->dbg->dfs_dir);
 
2998}
2999
3000struct ubifs_global_debug_info ubifs_dbg;
3001
3002static struct dentry *dfs_chk_gen;
3003static struct dentry *dfs_chk_index;
3004static struct dentry *dfs_chk_orph;
3005static struct dentry *dfs_chk_lprops;
3006static struct dentry *dfs_chk_fs;
3007static struct dentry *dfs_tst_rcvry;
3008
3009static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010				    size_t count, loff_t *ppos)
3011{
3012	struct dentry *dent = file->f_path.dentry;
3013	int val;
3014
3015	if (dent == dfs_chk_gen)
3016		val = ubifs_dbg.chk_gen;
3017	else if (dent == dfs_chk_index)
3018		val = ubifs_dbg.chk_index;
3019	else if (dent == dfs_chk_orph)
3020		val = ubifs_dbg.chk_orph;
3021	else if (dent == dfs_chk_lprops)
3022		val = ubifs_dbg.chk_lprops;
3023	else if (dent == dfs_chk_fs)
3024		val = ubifs_dbg.chk_fs;
3025	else if (dent == dfs_tst_rcvry)
3026		val = ubifs_dbg.tst_rcvry;
3027	else
3028		return -EINVAL;
3029
3030	return provide_user_output(val, u, count, ppos);
3031}
3032
3033static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034				     size_t count, loff_t *ppos)
3035{
3036	struct dentry *dent = file->f_path.dentry;
3037	int val;
3038
3039	val = interpret_user_input(u, count);
3040	if (val < 0)
3041		return val;
3042
3043	if (dent == dfs_chk_gen)
3044		ubifs_dbg.chk_gen = val;
3045	else if (dent == dfs_chk_index)
3046		ubifs_dbg.chk_index = val;
3047	else if (dent == dfs_chk_orph)
3048		ubifs_dbg.chk_orph = val;
3049	else if (dent == dfs_chk_lprops)
3050		ubifs_dbg.chk_lprops = val;
3051	else if (dent == dfs_chk_fs)
3052		ubifs_dbg.chk_fs = val;
3053	else if (dent == dfs_tst_rcvry)
3054		ubifs_dbg.tst_rcvry = val;
3055	else
3056		return -EINVAL;
3057
3058	return count;
3059}
3060
3061static const struct file_operations dfs_global_fops = {
3062	.read = dfs_global_file_read,
3063	.write = dfs_global_file_write,
3064	.owner = THIS_MODULE,
3065	.llseek = no_llseek,
3066};
3067
3068/**
3069 * dbg_debugfs_init - initialize debugfs file-system.
3070 *
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3074 * case of failure.
3075 */
3076int dbg_debugfs_init(void)
3077{
3078	int err;
3079	const char *fname;
3080	struct dentry *dent;
3081
 
 
 
3082	fname = "ubifs";
3083	dent = debugfs_create_dir(fname, NULL);
3084	if (IS_ERR_OR_NULL(dent))
3085		goto out;
3086	dfs_rootdir = dent;
3087
3088	fname = "chk_general";
3089	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090				   &dfs_global_fops);
3091	if (IS_ERR_OR_NULL(dent))
3092		goto out_remove;
3093	dfs_chk_gen = dent;
3094
3095	fname = "chk_index";
3096	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097				   &dfs_global_fops);
3098	if (IS_ERR_OR_NULL(dent))
3099		goto out_remove;
3100	dfs_chk_index = dent;
3101
3102	fname = "chk_orphans";
3103	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104				   &dfs_global_fops);
3105	if (IS_ERR_OR_NULL(dent))
3106		goto out_remove;
3107	dfs_chk_orph = dent;
3108
3109	fname = "chk_lprops";
3110	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111				   &dfs_global_fops);
3112	if (IS_ERR_OR_NULL(dent))
3113		goto out_remove;
3114	dfs_chk_lprops = dent;
3115
3116	fname = "chk_fs";
3117	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118				   &dfs_global_fops);
3119	if (IS_ERR_OR_NULL(dent))
3120		goto out_remove;
3121	dfs_chk_fs = dent;
3122
3123	fname = "tst_recovery";
3124	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125				   &dfs_global_fops);
3126	if (IS_ERR_OR_NULL(dent))
3127		goto out_remove;
3128	dfs_tst_rcvry = dent;
3129
3130	return 0;
3131
3132out_remove:
3133	debugfs_remove_recursive(dfs_rootdir);
3134out:
3135	err = dent ? PTR_ERR(dent) : -ENODEV;
3136	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137		  fname, err);
3138	return err;
3139}
3140
3141/**
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143 */
3144void dbg_debugfs_exit(void)
3145{
3146	debugfs_remove_recursive(dfs_rootdir);
 
3147}
3148
3149/**
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3152 *
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3155 * failure.
3156 */
3157int ubifs_debugging_init(struct ubifs_info *c)
3158{
3159	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160	if (!c->dbg)
3161		return -ENOMEM;
3162
3163	return 0;
3164}
3165
3166/**
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3169 */
3170void ubifs_debugging_exit(struct ubifs_info *c)
3171{
3172	kfree(c->dbg);
3173}
3174
3175#endif /* CONFIG_UBIFS_FS_DEBUG */
v3.5.6
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
 
 
 
 
 
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41	switch (fmt) {
  42	case UBIFS_SIMPLE_KEY_FMT:
  43		return "simple";
  44	default:
  45		return "unknown/invalid format";
  46	}
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51	switch (hash) {
  52	case UBIFS_KEY_HASH_R5:
  53		return "R5";
  54	case UBIFS_KEY_HASH_TEST:
  55		return "test";
  56	default:
  57		return "unknown/invalid name hash";
  58	}
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63	switch (type) {
  64	case UBIFS_INO_KEY:
  65		return "inode";
  66	case UBIFS_DENT_KEY:
  67		return "direntry";
  68	case UBIFS_XENT_KEY:
  69		return "xentry";
  70	case UBIFS_DATA_KEY:
  71		return "data";
  72	case UBIFS_TRUN_KEY:
  73		return "truncate";
  74	default:
  75		return "unknown/invalid key";
  76	}
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81	switch (type) {
  82	case UBIFS_ITYPE_REG:
  83		return "file";
  84	case UBIFS_ITYPE_DIR:
  85		return "dir";
  86	case UBIFS_ITYPE_LNK:
  87		return "symlink";
  88	case UBIFS_ITYPE_BLK:
  89		return "blkdev";
  90	case UBIFS_ITYPE_CHR:
  91		return "char dev";
  92	case UBIFS_ITYPE_FIFO:
  93		return "fifo";
  94	case UBIFS_ITYPE_SOCK:
  95		return "socket";
  96	default:
  97		return "unknown/invalid type";
  98	}
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102			     const union ubifs_key *key, char *buffer, int len)
 103{
 104	char *p = buffer;
 105	int type = key_type(c, key);
 106
 107	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108		switch (type) {
 109		case UBIFS_INO_KEY:
 110			len -= snprintf(p, len, "(%lu, %s)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type));
 113			break;
 114		case UBIFS_DENT_KEY:
 115		case UBIFS_XENT_KEY:
 116			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117					(unsigned long)key_inum(c, key),
 118					get_key_type(type), key_hash(c, key));
 119			break;
 120		case UBIFS_DATA_KEY:
 121			len -= snprintf(p, len, "(%lu, %s, %u)",
 122					(unsigned long)key_inum(c, key),
 123					get_key_type(type), key_block(c, key));
 124			break;
 125		case UBIFS_TRUN_KEY:
 126			len -= snprintf(p, len, "(%lu, %s)",
 127					(unsigned long)key_inum(c, key),
 128					get_key_type(type));
 129			break;
 130		default:
 131			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132					key->u32[0], key->u32[1]);
 133		}
 134	} else
 135		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136	ubifs_assert(len > 0);
 137	return p;
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142	switch (type) {
 143	case UBIFS_PAD_NODE:
 144		return "padding node";
 145	case UBIFS_SB_NODE:
 146		return "superblock node";
 147	case UBIFS_MST_NODE:
 148		return "master node";
 149	case UBIFS_REF_NODE:
 150		return "reference node";
 151	case UBIFS_INO_NODE:
 152		return "inode node";
 153	case UBIFS_DENT_NODE:
 154		return "direntry node";
 155	case UBIFS_XENT_NODE:
 156		return "xentry node";
 157	case UBIFS_DATA_NODE:
 158		return "data node";
 159	case UBIFS_TRUN_NODE:
 160		return "truncate node";
 161	case UBIFS_IDX_NODE:
 162		return "indexing node";
 163	case UBIFS_CS_NODE:
 164		return "commit start node";
 165	case UBIFS_ORPH_NODE:
 166		return "orphan node";
 167	default:
 168		return "unknown node";
 169	}
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174	switch (type) {
 175	case UBIFS_NO_NODE_GROUP:
 176		return "no node group";
 177	case UBIFS_IN_NODE_GROUP:
 178		return "in node group";
 179	case UBIFS_LAST_OF_NODE_GROUP:
 180		return "last of node group";
 181	default:
 182		return "unknown";
 183	}
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188	switch (cmt_state) {
 189	case COMMIT_RESTING:
 190		return "commit resting";
 191	case COMMIT_BACKGROUND:
 192		return "background commit requested";
 193	case COMMIT_REQUIRED:
 194		return "commit required";
 195	case COMMIT_RUNNING_BACKGROUND:
 196		return "BACKGROUND commit running";
 197	case COMMIT_RUNNING_REQUIRED:
 198		return "commit running and required";
 199	case COMMIT_BROKEN:
 200		return "broken commit";
 201	default:
 202		return "unknown commit state";
 203	}
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208	switch (jhead) {
 209	case GCHD:
 210		return "0 (GC)";
 211	case BASEHD:
 212		return "1 (base)";
 213	case DATAHD:
 214		return "2 (data)";
 215	default:
 216		return "unknown journal head";
 217	}
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222	printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223	printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224	printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
 225	       dbg_ntype(ch->node_type));
 226	printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
 227	       dbg_gtype(ch->group_type));
 228	printk(KERN_ERR "\tsqnum          %llu\n",
 229	       (unsigned long long)le64_to_cpu(ch->sqnum));
 230	printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235	const struct ubifs_inode *ui = ubifs_inode(inode);
 236	struct qstr nm = { .name = NULL };
 237	union ubifs_key key;
 238	struct ubifs_dent_node *dent, *pdent = NULL;
 239	int count = 2;
 240
 241	printk(KERN_ERR "Dump in-memory inode:");
 242	printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
 243	printk(KERN_ERR "\tsize           %llu\n",
 244	       (unsigned long long)i_size_read(inode));
 245	printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
 246	printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
 247	printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
 248	printk(KERN_ERR "\tatime          %u.%u\n",
 249	       (unsigned int)inode->i_atime.tv_sec,
 250	       (unsigned int)inode->i_atime.tv_nsec);
 251	printk(KERN_ERR "\tmtime          %u.%u\n",
 252	       (unsigned int)inode->i_mtime.tv_sec,
 253	       (unsigned int)inode->i_mtime.tv_nsec);
 254	printk(KERN_ERR "\tctime          %u.%u\n",
 255	       (unsigned int)inode->i_ctime.tv_sec,
 256	       (unsigned int)inode->i_ctime.tv_nsec);
 257	printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258	printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
 259	printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
 260	printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
 261	printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
 262	printk(KERN_ERR "\txattr          %u\n", ui->xattr);
 263	printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
 264	printk(KERN_ERR "\tsynced_i_size  %llu\n",
 265	       (unsigned long long)ui->synced_i_size);
 266	printk(KERN_ERR "\tui_size        %llu\n",
 267	       (unsigned long long)ui->ui_size);
 268	printk(KERN_ERR "\tflags          %d\n", ui->flags);
 269	printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
 270	printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
 271	printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272	printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
 273
 274	if (!S_ISDIR(inode->i_mode))
 275		return;
 276
 277	printk(KERN_ERR "List of directory entries:\n");
 278	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280	lowest_dent_key(c, &key, inode->i_ino);
 281	while (1) {
 282		dent = ubifs_tnc_next_ent(c, &key, &nm);
 283		if (IS_ERR(dent)) {
 284			if (PTR_ERR(dent) != -ENOENT)
 285				printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
 286			break;
 287		}
 288
 289		printk(KERN_ERR "\t%d: %s (%s)\n",
 290		       count++, dent->name, get_dent_type(dent->type));
 291
 292		nm.name = dent->name;
 293		nm.len = le16_to_cpu(dent->nlen);
 294		kfree(pdent);
 295		pdent = dent;
 296		key_read(c, &dent->key, &key);
 297	}
 298	kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303	int i, n;
 304	union ubifs_key key;
 305	const struct ubifs_ch *ch = node;
 306	char key_buf[DBG_KEY_BUF_LEN];
 307
 308	if (dbg_is_tst_rcvry(c))
 309		return;
 310
 311	/* If the magic is incorrect, just hexdump the first bytes */
 312	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 313		printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 314		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 315			       (void *)node, UBIFS_CH_SZ, 1);
 316		return;
 317	}
 318
 319	spin_lock(&dbg_lock);
 320	dump_ch(node);
 321
 322	switch (ch->node_type) {
 323	case UBIFS_PAD_NODE:
 324	{
 325		const struct ubifs_pad_node *pad = node;
 326
 327		printk(KERN_ERR "\tpad_len        %u\n",
 328		       le32_to_cpu(pad->pad_len));
 329		break;
 330	}
 331	case UBIFS_SB_NODE:
 332	{
 333		const struct ubifs_sb_node *sup = node;
 334		unsigned int sup_flags = le32_to_cpu(sup->flags);
 335
 336		printk(KERN_ERR "\tkey_hash       %d (%s)\n",
 337		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 338		printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
 339		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 340		printk(KERN_ERR "\tflags          %#x\n", sup_flags);
 341		printk(KERN_ERR "\t  big_lpt      %u\n",
 342		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 343		printk(KERN_ERR "\t  space_fixup  %u\n",
 344		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 345		printk(KERN_ERR "\tmin_io_size    %u\n",
 346		       le32_to_cpu(sup->min_io_size));
 347		printk(KERN_ERR "\tleb_size       %u\n",
 348		       le32_to_cpu(sup->leb_size));
 349		printk(KERN_ERR "\tleb_cnt        %u\n",
 350		       le32_to_cpu(sup->leb_cnt));
 351		printk(KERN_ERR "\tmax_leb_cnt    %u\n",
 352		       le32_to_cpu(sup->max_leb_cnt));
 353		printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
 354		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 355		printk(KERN_ERR "\tlog_lebs       %u\n",
 356		       le32_to_cpu(sup->log_lebs));
 357		printk(KERN_ERR "\tlpt_lebs       %u\n",
 358		       le32_to_cpu(sup->lpt_lebs));
 359		printk(KERN_ERR "\torph_lebs      %u\n",
 360		       le32_to_cpu(sup->orph_lebs));
 361		printk(KERN_ERR "\tjhead_cnt      %u\n",
 362		       le32_to_cpu(sup->jhead_cnt));
 363		printk(KERN_ERR "\tfanout         %u\n",
 364		       le32_to_cpu(sup->fanout));
 365		printk(KERN_ERR "\tlsave_cnt      %u\n",
 366		       le32_to_cpu(sup->lsave_cnt));
 367		printk(KERN_ERR "\tdefault_compr  %u\n",
 368		       (int)le16_to_cpu(sup->default_compr));
 369		printk(KERN_ERR "\trp_size        %llu\n",
 370		       (unsigned long long)le64_to_cpu(sup->rp_size));
 371		printk(KERN_ERR "\trp_uid         %u\n",
 372		       le32_to_cpu(sup->rp_uid));
 373		printk(KERN_ERR "\trp_gid         %u\n",
 374		       le32_to_cpu(sup->rp_gid));
 375		printk(KERN_ERR "\tfmt_version    %u\n",
 376		       le32_to_cpu(sup->fmt_version));
 377		printk(KERN_ERR "\ttime_gran      %u\n",
 378		       le32_to_cpu(sup->time_gran));
 379		printk(KERN_ERR "\tUUID           %pUB\n",
 380		       sup->uuid);
 381		break;
 382	}
 383	case UBIFS_MST_NODE:
 384	{
 385		const struct ubifs_mst_node *mst = node;
 386
 387		printk(KERN_ERR "\thighest_inum   %llu\n",
 388		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 389		printk(KERN_ERR "\tcommit number  %llu\n",
 390		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 391		printk(KERN_ERR "\tflags          %#x\n",
 392		       le32_to_cpu(mst->flags));
 393		printk(KERN_ERR "\tlog_lnum       %u\n",
 394		       le32_to_cpu(mst->log_lnum));
 395		printk(KERN_ERR "\troot_lnum      %u\n",
 396		       le32_to_cpu(mst->root_lnum));
 397		printk(KERN_ERR "\troot_offs      %u\n",
 398		       le32_to_cpu(mst->root_offs));
 399		printk(KERN_ERR "\troot_len       %u\n",
 400		       le32_to_cpu(mst->root_len));
 401		printk(KERN_ERR "\tgc_lnum        %u\n",
 402		       le32_to_cpu(mst->gc_lnum));
 403		printk(KERN_ERR "\tihead_lnum     %u\n",
 404		       le32_to_cpu(mst->ihead_lnum));
 405		printk(KERN_ERR "\tihead_offs     %u\n",
 406		       le32_to_cpu(mst->ihead_offs));
 407		printk(KERN_ERR "\tindex_size     %llu\n",
 408		       (unsigned long long)le64_to_cpu(mst->index_size));
 409		printk(KERN_ERR "\tlpt_lnum       %u\n",
 410		       le32_to_cpu(mst->lpt_lnum));
 411		printk(KERN_ERR "\tlpt_offs       %u\n",
 412		       le32_to_cpu(mst->lpt_offs));
 413		printk(KERN_ERR "\tnhead_lnum     %u\n",
 414		       le32_to_cpu(mst->nhead_lnum));
 415		printk(KERN_ERR "\tnhead_offs     %u\n",
 416		       le32_to_cpu(mst->nhead_offs));
 417		printk(KERN_ERR "\tltab_lnum      %u\n",
 418		       le32_to_cpu(mst->ltab_lnum));
 419		printk(KERN_ERR "\tltab_offs      %u\n",
 420		       le32_to_cpu(mst->ltab_offs));
 421		printk(KERN_ERR "\tlsave_lnum     %u\n",
 422		       le32_to_cpu(mst->lsave_lnum));
 423		printk(KERN_ERR "\tlsave_offs     %u\n",
 424		       le32_to_cpu(mst->lsave_offs));
 425		printk(KERN_ERR "\tlscan_lnum     %u\n",
 426		       le32_to_cpu(mst->lscan_lnum));
 427		printk(KERN_ERR "\tleb_cnt        %u\n",
 428		       le32_to_cpu(mst->leb_cnt));
 429		printk(KERN_ERR "\tempty_lebs     %u\n",
 430		       le32_to_cpu(mst->empty_lebs));
 431		printk(KERN_ERR "\tidx_lebs       %u\n",
 432		       le32_to_cpu(mst->idx_lebs));
 433		printk(KERN_ERR "\ttotal_free     %llu\n",
 434		       (unsigned long long)le64_to_cpu(mst->total_free));
 435		printk(KERN_ERR "\ttotal_dirty    %llu\n",
 436		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 437		printk(KERN_ERR "\ttotal_used     %llu\n",
 438		       (unsigned long long)le64_to_cpu(mst->total_used));
 439		printk(KERN_ERR "\ttotal_dead     %llu\n",
 440		       (unsigned long long)le64_to_cpu(mst->total_dead));
 441		printk(KERN_ERR "\ttotal_dark     %llu\n",
 442		       (unsigned long long)le64_to_cpu(mst->total_dark));
 443		break;
 444	}
 445	case UBIFS_REF_NODE:
 446	{
 447		const struct ubifs_ref_node *ref = node;
 448
 449		printk(KERN_ERR "\tlnum           %u\n",
 450		       le32_to_cpu(ref->lnum));
 451		printk(KERN_ERR "\toffs           %u\n",
 452		       le32_to_cpu(ref->offs));
 453		printk(KERN_ERR "\tjhead          %u\n",
 454		       le32_to_cpu(ref->jhead));
 455		break;
 456	}
 457	case UBIFS_INO_NODE:
 458	{
 459		const struct ubifs_ino_node *ino = node;
 460
 461		key_read(c, &ino->key, &key);
 462		printk(KERN_ERR "\tkey            %s\n",
 463		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 464		printk(KERN_ERR "\tcreat_sqnum    %llu\n",
 465		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 466		printk(KERN_ERR "\tsize           %llu\n",
 467		       (unsigned long long)le64_to_cpu(ino->size));
 468		printk(KERN_ERR "\tnlink          %u\n",
 469		       le32_to_cpu(ino->nlink));
 470		printk(KERN_ERR "\tatime          %lld.%u\n",
 471		       (long long)le64_to_cpu(ino->atime_sec),
 472		       le32_to_cpu(ino->atime_nsec));
 473		printk(KERN_ERR "\tmtime          %lld.%u\n",
 474		       (long long)le64_to_cpu(ino->mtime_sec),
 475		       le32_to_cpu(ino->mtime_nsec));
 476		printk(KERN_ERR "\tctime          %lld.%u\n",
 477		       (long long)le64_to_cpu(ino->ctime_sec),
 478		       le32_to_cpu(ino->ctime_nsec));
 479		printk(KERN_ERR "\tuid            %u\n",
 480		       le32_to_cpu(ino->uid));
 481		printk(KERN_ERR "\tgid            %u\n",
 482		       le32_to_cpu(ino->gid));
 483		printk(KERN_ERR "\tmode           %u\n",
 484		       le32_to_cpu(ino->mode));
 485		printk(KERN_ERR "\tflags          %#x\n",
 486		       le32_to_cpu(ino->flags));
 487		printk(KERN_ERR "\txattr_cnt      %u\n",
 488		       le32_to_cpu(ino->xattr_cnt));
 489		printk(KERN_ERR "\txattr_size     %u\n",
 490		       le32_to_cpu(ino->xattr_size));
 491		printk(KERN_ERR "\txattr_names    %u\n",
 492		       le32_to_cpu(ino->xattr_names));
 493		printk(KERN_ERR "\tcompr_type     %#x\n",
 494		       (int)le16_to_cpu(ino->compr_type));
 495		printk(KERN_ERR "\tdata len       %u\n",
 496		       le32_to_cpu(ino->data_len));
 497		break;
 498	}
 499	case UBIFS_DENT_NODE:
 500	case UBIFS_XENT_NODE:
 501	{
 502		const struct ubifs_dent_node *dent = node;
 503		int nlen = le16_to_cpu(dent->nlen);
 504
 505		key_read(c, &dent->key, &key);
 506		printk(KERN_ERR "\tkey            %s\n",
 507		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 508		printk(KERN_ERR "\tinum           %llu\n",
 509		       (unsigned long long)le64_to_cpu(dent->inum));
 510		printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
 511		printk(KERN_ERR "\tnlen           %d\n", nlen);
 512		printk(KERN_ERR "\tname           ");
 513
 514		if (nlen > UBIFS_MAX_NLEN)
 515			printk(KERN_ERR "(bad name length, not printing, "
 516					  "bad or corrupted node)");
 517		else {
 518			for (i = 0; i < nlen && dent->name[i]; i++)
 519				printk(KERN_CONT "%c", dent->name[i]);
 520		}
 521		printk(KERN_CONT "\n");
 522
 523		break;
 524	}
 525	case UBIFS_DATA_NODE:
 526	{
 527		const struct ubifs_data_node *dn = node;
 528		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 529
 530		key_read(c, &dn->key, &key);
 531		printk(KERN_ERR "\tkey            %s\n",
 532		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 533		printk(KERN_ERR "\tsize           %u\n",
 534		       le32_to_cpu(dn->size));
 535		printk(KERN_ERR "\tcompr_typ      %d\n",
 536		       (int)le16_to_cpu(dn->compr_type));
 537		printk(KERN_ERR "\tdata size      %d\n",
 538		       dlen);
 539		printk(KERN_ERR "\tdata:\n");
 540		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 541			       (void *)&dn->data, dlen, 0);
 542		break;
 543	}
 544	case UBIFS_TRUN_NODE:
 545	{
 546		const struct ubifs_trun_node *trun = node;
 547
 548		printk(KERN_ERR "\tinum           %u\n",
 549		       le32_to_cpu(trun->inum));
 550		printk(KERN_ERR "\told_size       %llu\n",
 551		       (unsigned long long)le64_to_cpu(trun->old_size));
 552		printk(KERN_ERR "\tnew_size       %llu\n",
 553		       (unsigned long long)le64_to_cpu(trun->new_size));
 554		break;
 555	}
 556	case UBIFS_IDX_NODE:
 557	{
 558		const struct ubifs_idx_node *idx = node;
 559
 560		n = le16_to_cpu(idx->child_cnt);
 561		printk(KERN_ERR "\tchild_cnt      %d\n", n);
 562		printk(KERN_ERR "\tlevel          %d\n",
 563		       (int)le16_to_cpu(idx->level));
 564		printk(KERN_ERR "\tBranches:\n");
 565
 566		for (i = 0; i < n && i < c->fanout - 1; i++) {
 567			const struct ubifs_branch *br;
 568
 569			br = ubifs_idx_branch(c, idx, i);
 570			key_read(c, &br->key, &key);
 571			printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
 572			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 573			       le32_to_cpu(br->len),
 574			       dbg_snprintf_key(c, &key, key_buf,
 575						DBG_KEY_BUF_LEN));
 576		}
 577		break;
 578	}
 579	case UBIFS_CS_NODE:
 580		break;
 581	case UBIFS_ORPH_NODE:
 582	{
 583		const struct ubifs_orph_node *orph = node;
 584
 585		printk(KERN_ERR "\tcommit number  %llu\n",
 586		       (unsigned long long)
 587				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 588		printk(KERN_ERR "\tlast node flag %llu\n",
 589		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 590		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 591		printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
 592		for (i = 0; i < n; i++)
 593			printk(KERN_ERR "\t  ino %llu\n",
 594			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 595		break;
 596	}
 597	default:
 598		printk(KERN_ERR "node type %d was not recognized\n",
 599		       (int)ch->node_type);
 600	}
 601	spin_unlock(&dbg_lock);
 602}
 603
 604void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 605{
 606	spin_lock(&dbg_lock);
 607	printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
 608	       req->new_ino, req->dirtied_ino);
 609	printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 610	       req->new_ino_d, req->dirtied_ino_d);
 611	printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
 612	       req->new_page, req->dirtied_page);
 613	printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
 614	       req->new_dent, req->mod_dent);
 615	printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
 616	printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
 617	       req->data_growth, req->dd_growth);
 618	spin_unlock(&dbg_lock);
 619}
 620
 621void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 622{
 623	spin_lock(&dbg_lock);
 624	printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
 625	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 626	printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
 627	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 628	       lst->total_dirty);
 629	printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
 630	       "total_dead %lld\n", lst->total_used, lst->total_dark,
 631	       lst->total_dead);
 632	spin_unlock(&dbg_lock);
 633}
 634
 635void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 636{
 637	int i;
 638	struct rb_node *rb;
 639	struct ubifs_bud *bud;
 640	struct ubifs_gced_idx_leb *idx_gc;
 641	long long available, outstanding, free;
 642
 643	spin_lock(&c->space_lock);
 644	spin_lock(&dbg_lock);
 645	printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
 646	       "total budget sum %lld\n", current->pid,
 647	       bi->data_growth + bi->dd_growth,
 648	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 649	printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
 650	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
 651	       bi->idx_growth);
 652	printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
 653	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
 654	       bi->uncommitted_idx);
 655	printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 656	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 657	printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
 658	       bi->nospace, bi->nospace_rp);
 659	printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 660	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 661
 662	if (bi != &c->bi)
 663		/*
 664		 * If we are dumping saved budgeting data, do not print
 665		 * additional information which is about the current state, not
 666		 * the old one which corresponded to the saved budgeting data.
 667		 */
 668		goto out_unlock;
 669
 670	printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 671	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 672	printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 673	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 674	       atomic_long_read(&c->dirty_zn_cnt),
 675	       atomic_long_read(&c->clean_zn_cnt));
 676	printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
 677	       c->gc_lnum, c->ihead_lnum);
 678
 679	/* If we are in R/O mode, journal heads do not exist */
 680	if (c->jheads)
 681		for (i = 0; i < c->jhead_cnt; i++)
 682			printk(KERN_ERR "\tjhead %s\t LEB %d\n",
 683			       dbg_jhead(c->jheads[i].wbuf.jhead),
 684			       c->jheads[i].wbuf.lnum);
 685	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 686		bud = rb_entry(rb, struct ubifs_bud, rb);
 687		printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
 688	}
 689	list_for_each_entry(bud, &c->old_buds, list)
 690		printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
 691	list_for_each_entry(idx_gc, &c->idx_gc, list)
 692		printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
 693		       idx_gc->lnum, idx_gc->unmap);
 694	printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
 695
 696	/* Print budgeting predictions */
 697	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 698	outstanding = c->bi.data_growth + c->bi.dd_growth;
 699	free = ubifs_get_free_space_nolock(c);
 700	printk(KERN_ERR "Budgeting predictions:\n");
 701	printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
 702	       available, outstanding, free);
 703out_unlock:
 704	spin_unlock(&dbg_lock);
 705	spin_unlock(&c->space_lock);
 706}
 707
 708void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 709{
 710	int i, spc, dark = 0, dead = 0;
 711	struct rb_node *rb;
 712	struct ubifs_bud *bud;
 713
 714	spc = lp->free + lp->dirty;
 715	if (spc < c->dead_wm)
 716		dead = spc;
 717	else
 718		dark = ubifs_calc_dark(c, spc);
 719
 720	if (lp->flags & LPROPS_INDEX)
 721		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 722		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 723		       lp->dirty, c->leb_size - spc, spc, lp->flags);
 724	else
 725		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 726		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 727		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 728		       c->leb_size - spc, spc, dark, dead,
 729		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 730
 731	if (lp->flags & LPROPS_TAKEN) {
 732		if (lp->flags & LPROPS_INDEX)
 733			printk(KERN_CONT "index, taken");
 734		else
 735			printk(KERN_CONT "taken");
 736	} else {
 737		const char *s;
 738
 739		if (lp->flags & LPROPS_INDEX) {
 740			switch (lp->flags & LPROPS_CAT_MASK) {
 741			case LPROPS_DIRTY_IDX:
 742				s = "dirty index";
 743				break;
 744			case LPROPS_FRDI_IDX:
 745				s = "freeable index";
 746				break;
 747			default:
 748				s = "index";
 749			}
 750		} else {
 751			switch (lp->flags & LPROPS_CAT_MASK) {
 752			case LPROPS_UNCAT:
 753				s = "not categorized";
 754				break;
 755			case LPROPS_DIRTY:
 756				s = "dirty";
 757				break;
 758			case LPROPS_FREE:
 759				s = "free";
 760				break;
 761			case LPROPS_EMPTY:
 762				s = "empty";
 763				break;
 764			case LPROPS_FREEABLE:
 765				s = "freeable";
 766				break;
 767			default:
 768				s = NULL;
 769				break;
 770			}
 771		}
 772		printk(KERN_CONT "%s", s);
 773	}
 774
 775	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 776		bud = rb_entry(rb, struct ubifs_bud, rb);
 777		if (bud->lnum == lp->lnum) {
 778			int head = 0;
 779			for (i = 0; i < c->jhead_cnt; i++) {
 780				/*
 781				 * Note, if we are in R/O mode or in the middle
 782				 * of mounting/re-mounting, the write-buffers do
 783				 * not exist.
 784				 */
 785				if (c->jheads &&
 786				    lp->lnum == c->jheads[i].wbuf.lnum) {
 787					printk(KERN_CONT ", jhead %s",
 788					       dbg_jhead(i));
 789					head = 1;
 790				}
 791			}
 792			if (!head)
 793				printk(KERN_CONT ", bud of jhead %s",
 794				       dbg_jhead(bud->jhead));
 795		}
 796	}
 797	if (lp->lnum == c->gc_lnum)
 798		printk(KERN_CONT ", GC LEB");
 799	printk(KERN_CONT ")\n");
 800}
 801
 802void ubifs_dump_lprops(struct ubifs_info *c)
 803{
 804	int lnum, err;
 805	struct ubifs_lprops lp;
 806	struct ubifs_lp_stats lst;
 807
 808	printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
 809	       current->pid);
 810	ubifs_get_lp_stats(c, &lst);
 811	ubifs_dump_lstats(&lst);
 812
 813	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 814		err = ubifs_read_one_lp(c, lnum, &lp);
 815		if (err)
 816			ubifs_err("cannot read lprops for LEB %d", lnum);
 817
 818		ubifs_dump_lprop(c, &lp);
 819	}
 820	printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
 821	       current->pid);
 822}
 823
 824void ubifs_dump_lpt_info(struct ubifs_info *c)
 825{
 826	int i;
 827
 828	spin_lock(&dbg_lock);
 829	printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
 830	printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
 831	printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
 832	printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
 833	printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
 834	printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
 835	printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
 836	printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
 837	printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
 838	printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
 839	printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 840	printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 841	printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
 842	printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
 843	printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 844	printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 845	printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 846	printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
 847	printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
 848	printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 849	printk(KERN_ERR "\tLPT head is at %d:%d\n",
 850	       c->nhead_lnum, c->nhead_offs);
 851	printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
 852	       c->ltab_lnum, c->ltab_offs);
 853	if (c->big_lpt)
 854		printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
 855		       c->lsave_lnum, c->lsave_offs);
 856	for (i = 0; i < c->lpt_lebs; i++)
 857		printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
 858		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 859		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 860	spin_unlock(&dbg_lock);
 861}
 862
 863void ubifs_dump_sleb(const struct ubifs_info *c,
 864		     const struct ubifs_scan_leb *sleb, int offs)
 865{
 866	struct ubifs_scan_node *snod;
 867
 868	printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
 869	       current->pid, sleb->lnum, offs);
 870
 871	list_for_each_entry(snod, &sleb->nodes, list) {
 872		cond_resched();
 873		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
 874		       snod->offs, snod->len);
 875		ubifs_dump_node(c, snod->node);
 876	}
 877}
 878
 879void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 880{
 881	struct ubifs_scan_leb *sleb;
 882	struct ubifs_scan_node *snod;
 883	void *buf;
 884
 885	if (dbg_is_tst_rcvry(c))
 886		return;
 887
 888	printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
 889	       current->pid, lnum);
 890
 891	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 892	if (!buf) {
 893		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 894		return;
 895	}
 896
 897	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 898	if (IS_ERR(sleb)) {
 899		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 900		goto out;
 901	}
 902
 903	printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
 904	       sleb->nodes_cnt, sleb->endpt);
 905
 906	list_for_each_entry(snod, &sleb->nodes, list) {
 907		cond_resched();
 908		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
 909		       snod->offs, snod->len);
 910		ubifs_dump_node(c, snod->node);
 911	}
 912
 913	printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
 914	       current->pid, lnum);
 915	ubifs_scan_destroy(sleb);
 916
 917out:
 918	vfree(buf);
 919	return;
 920}
 921
 922void ubifs_dump_znode(const struct ubifs_info *c,
 923		      const struct ubifs_znode *znode)
 924{
 925	int n;
 926	const struct ubifs_zbranch *zbr;
 927	char key_buf[DBG_KEY_BUF_LEN];
 928
 929	spin_lock(&dbg_lock);
 930	if (znode->parent)
 931		zbr = &znode->parent->zbranch[znode->iip];
 932	else
 933		zbr = &c->zroot;
 934
 935	printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 936	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 937	       zbr->len, znode->parent, znode->iip, znode->level,
 938	       znode->child_cnt, znode->flags);
 939
 940	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 941		spin_unlock(&dbg_lock);
 942		return;
 943	}
 944
 945	printk(KERN_ERR "zbranches:\n");
 946	for (n = 0; n < znode->child_cnt; n++) {
 947		zbr = &znode->zbranch[n];
 948		if (znode->level > 0)
 949			printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
 950					  "%s\n", n, zbr->znode, zbr->lnum,
 951					  zbr->offs, zbr->len,
 952					  dbg_snprintf_key(c, &zbr->key,
 953							   key_buf,
 954							   DBG_KEY_BUF_LEN));
 955		else
 956			printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
 957					  "%s\n", n, zbr->znode, zbr->lnum,
 958					  zbr->offs, zbr->len,
 959					  dbg_snprintf_key(c, &zbr->key,
 960							   key_buf,
 961							   DBG_KEY_BUF_LEN));
 962	}
 963	spin_unlock(&dbg_lock);
 964}
 965
 966void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 967{
 968	int i;
 969
 970	printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
 971	       current->pid, cat, heap->cnt);
 972	for (i = 0; i < heap->cnt; i++) {
 973		struct ubifs_lprops *lprops = heap->arr[i];
 974
 975		printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
 976		       "flags %d\n", i, lprops->lnum, lprops->hpos,
 977		       lprops->free, lprops->dirty, lprops->flags);
 978	}
 979	printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
 980}
 981
 982void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 983		      struct ubifs_nnode *parent, int iip)
 984{
 985	int i;
 986
 987	printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
 988	printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
 989	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 990	printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
 991	       pnode->flags, iip, pnode->level, pnode->num);
 992	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 993		struct ubifs_lprops *lp = &pnode->lprops[i];
 994
 995		printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
 996		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 997	}
 998}
 999
1000void ubifs_dump_tnc(struct ubifs_info *c)
1001{
1002	struct ubifs_znode *znode;
1003	int level;
1004
1005	printk(KERN_ERR "\n");
1006	printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008	level = znode->level;
1009	printk(KERN_ERR "== Level %d ==\n", level);
1010	while (znode) {
1011		if (level != znode->level) {
1012			level = znode->level;
1013			printk(KERN_ERR "== Level %d ==\n", level);
1014		}
1015		ubifs_dump_znode(c, znode);
1016		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017	}
1018	printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019}
1020
1021static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022		      void *priv)
1023{
1024	ubifs_dump_znode(c, znode);
1025	return 0;
1026}
1027
1028/**
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1031 *
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1034 */
1035void ubifs_dump_index(struct ubifs_info *c)
1036{
1037	dbg_walk_index(c, NULL, dump_znode, NULL);
1038}
1039
1040/**
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1043 *
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1046 */
1047void dbg_save_space_info(struct ubifs_info *c)
1048{
1049	struct ubifs_debug_info *d = c->dbg;
1050	int freeable_cnt;
1051
1052	spin_lock(&c->space_lock);
1053	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057	/*
1058	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059	 * affects the free space calculations, and UBIFS might not know about
1060	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061	 * only when we read their lprops, and we do this only lazily, upon the
1062	 * need. So at any given point of time @c->freeable_cnt might be not
1063	 * exactly accurate.
1064	 *
1065	 * Just one example about the issue we hit when we did not zero
1066	 * @c->freeable_cnt.
1067	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068	 *    amount of free space in @d->saved_free
1069	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070	 *    information from flash, where we cache LEBs from various
1071	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1074	 *    -> 'ubifs_add_to_cat()').
1075	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076	 *    becomes %1.
1077	 * 4. We calculate the amount of free space when the re-mount is
1078	 *    finished in 'dbg_check_space_info()' and it does not match
1079	 *    @d->saved_free.
1080	 */
1081	freeable_cnt = c->freeable_cnt;
1082	c->freeable_cnt = 0;
1083	d->saved_free = ubifs_get_free_space_nolock(c);
1084	c->freeable_cnt = freeable_cnt;
1085	spin_unlock(&c->space_lock);
1086}
1087
1088/**
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1096 */
1097int dbg_check_space_info(struct ubifs_info *c)
1098{
1099	struct ubifs_debug_info *d = c->dbg;
1100	struct ubifs_lp_stats lst;
1101	long long free;
1102	int freeable_cnt;
1103
1104	spin_lock(&c->space_lock);
1105	freeable_cnt = c->freeable_cnt;
1106	c->freeable_cnt = 0;
1107	free = ubifs_get_free_space_nolock(c);
1108	c->freeable_cnt = freeable_cnt;
1109	spin_unlock(&c->space_lock);
1110
1111	if (free != d->saved_free) {
1112		ubifs_err("free space changed from %lld to %lld",
1113			  d->saved_free, free);
1114		goto out;
1115	}
1116
1117	return 0;
1118
1119out:
1120	ubifs_msg("saved lprops statistics dump");
1121	ubifs_dump_lstats(&d->saved_lst);
1122	ubifs_msg("saved budgeting info dump");
1123	ubifs_dump_budg(c, &d->saved_bi);
1124	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125	ubifs_msg("current lprops statistics dump");
1126	ubifs_get_lp_stats(c, &lst);
1127	ubifs_dump_lstats(&lst);
1128	ubifs_msg("current budgeting info dump");
1129	ubifs_dump_budg(c, &c->bi);
1130	dump_stack();
1131	return -EINVAL;
1132}
1133
1134/**
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1138 *
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1143 */
1144int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145{
1146	int err = 0;
1147	struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149	if (!dbg_is_chk_gen(c))
1150		return 0;
1151	if (!S_ISREG(inode->i_mode))
1152		return 0;
1153
1154	mutex_lock(&ui->ui_mutex);
1155	spin_lock(&ui->ui_lock);
1156	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158			  "is clean", ui->ui_size, ui->synced_i_size);
1159		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160			  inode->i_mode, i_size_read(inode));
1161		dump_stack();
1162		err = -EINVAL;
1163	}
1164	spin_unlock(&ui->ui_lock);
1165	mutex_unlock(&ui->ui_mutex);
1166	return err;
1167}
1168
1169/*
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1174 *
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1178 *
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1181 */
1182int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183{
1184	unsigned int nlink = 2;
1185	union ubifs_key key;
1186	struct ubifs_dent_node *dent, *pdent = NULL;
1187	struct qstr nm = { .name = NULL };
1188	loff_t size = UBIFS_INO_NODE_SZ;
1189
1190	if (!dbg_is_chk_gen(c))
1191		return 0;
1192
1193	if (!S_ISDIR(dir->i_mode))
1194		return 0;
1195
1196	lowest_dent_key(c, &key, dir->i_ino);
1197	while (1) {
1198		int err;
1199
1200		dent = ubifs_tnc_next_ent(c, &key, &nm);
1201		if (IS_ERR(dent)) {
1202			err = PTR_ERR(dent);
1203			if (err == -ENOENT)
1204				break;
1205			return err;
1206		}
1207
1208		nm.name = dent->name;
1209		nm.len = le16_to_cpu(dent->nlen);
1210		size += CALC_DENT_SIZE(nm.len);
1211		if (dent->type == UBIFS_ITYPE_DIR)
1212			nlink += 1;
1213		kfree(pdent);
1214		pdent = dent;
1215		key_read(c, &dent->key, &key);
1216	}
1217	kfree(pdent);
1218
1219	if (i_size_read(dir) != size) {
1220		ubifs_err("directory inode %lu has size %llu, "
1221			  "but calculated size is %llu", dir->i_ino,
1222			  (unsigned long long)i_size_read(dir),
1223			  (unsigned long long)size);
1224		ubifs_dump_inode(c, dir);
1225		dump_stack();
1226		return -EINVAL;
1227	}
1228	if (dir->i_nlink != nlink) {
1229		ubifs_err("directory inode %lu has nlink %u, but calculated "
1230			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231		ubifs_dump_inode(c, dir);
1232		dump_stack();
1233		return -EINVAL;
1234	}
1235
1236	return 0;
1237}
1238
1239/**
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1244 *
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1251 */
1252static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253			       struct ubifs_zbranch *zbr2)
1254{
1255	int err, nlen1, nlen2, cmp;
1256	struct ubifs_dent_node *dent1, *dent2;
1257	union ubifs_key key;
1258	char key_buf[DBG_KEY_BUF_LEN];
1259
1260	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262	if (!dent1)
1263		return -ENOMEM;
1264	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265	if (!dent2) {
1266		err = -ENOMEM;
1267		goto out_free;
1268	}
1269
1270	err = ubifs_tnc_read_node(c, zbr1, dent1);
1271	if (err)
1272		goto out_free;
1273	err = ubifs_validate_entry(c, dent1);
1274	if (err)
1275		goto out_free;
1276
1277	err = ubifs_tnc_read_node(c, zbr2, dent2);
1278	if (err)
1279		goto out_free;
1280	err = ubifs_validate_entry(c, dent2);
1281	if (err)
1282		goto out_free;
1283
1284	/* Make sure node keys are the same as in zbranch */
1285	err = 1;
1286	key_read(c, &dent1->key, &key);
1287	if (keys_cmp(c, &zbr1->key, &key)) {
1288		ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290						       DBG_KEY_BUF_LEN));
1291		ubifs_err("but it should have key %s according to tnc",
1292			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1293					   DBG_KEY_BUF_LEN));
1294		ubifs_dump_node(c, dent1);
1295		goto out_free;
1296	}
1297
1298	key_read(c, &dent2->key, &key);
1299	if (keys_cmp(c, &zbr2->key, &key)) {
1300		ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302						       DBG_KEY_BUF_LEN));
1303		ubifs_err("but it should have key %s according to tnc",
1304			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1305					   DBG_KEY_BUF_LEN));
1306		ubifs_dump_node(c, dent2);
1307		goto out_free;
1308	}
1309
1310	nlen1 = le16_to_cpu(dent1->nlen);
1311	nlen2 = le16_to_cpu(dent2->nlen);
1312
1313	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315		err = 0;
1316		goto out_free;
1317	}
1318	if (cmp == 0 && nlen1 == nlen2)
1319		ubifs_err("2 xent/dent nodes with the same name");
1320	else
1321		ubifs_err("bad order of colliding key %s",
1322			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325	ubifs_dump_node(c, dent1);
1326	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327	ubifs_dump_node(c, dent2);
1328
1329out_free:
1330	kfree(dent2);
1331	kfree(dent1);
1332	return err;
1333}
1334
1335/**
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1339 *
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1342 */
1343static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344{
1345	struct ubifs_znode *znode = zbr->znode;
1346	struct ubifs_znode *zp = znode->parent;
1347	int n, err, cmp;
1348
1349	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350		err = 1;
1351		goto out;
1352	}
1353	if (znode->level < 0) {
1354		err = 2;
1355		goto out;
1356	}
1357	if (znode->iip < 0 || znode->iip >= c->fanout) {
1358		err = 3;
1359		goto out;
1360	}
1361
1362	if (zbr->len == 0)
1363		/* Only dirty zbranch may have no on-flash nodes */
1364		if (!ubifs_zn_dirty(znode)) {
1365			err = 4;
1366			goto out;
1367		}
1368
1369	if (ubifs_zn_dirty(znode)) {
1370		/*
1371		 * If znode is dirty, its parent has to be dirty as well. The
1372		 * order of the operation is important, so we have to have
1373		 * memory barriers.
1374		 */
1375		smp_mb();
1376		if (zp && !ubifs_zn_dirty(zp)) {
1377			/*
1378			 * The dirty flag is atomic and is cleared outside the
1379			 * TNC mutex, so znode's dirty flag may now have
1380			 * been cleared. The child is always cleared before the
1381			 * parent, so we just need to check again.
1382			 */
1383			smp_mb();
1384			if (ubifs_zn_dirty(znode)) {
1385				err = 5;
1386				goto out;
1387			}
1388		}
1389	}
1390
1391	if (zp) {
1392		const union ubifs_key *min, *max;
1393
1394		if (znode->level != zp->level - 1) {
1395			err = 6;
1396			goto out;
1397		}
1398
1399		/* Make sure the 'parent' pointer in our znode is correct */
1400		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401		if (!err) {
1402			/* This zbranch does not exist in the parent */
1403			err = 7;
1404			goto out;
1405		}
1406
1407		if (znode->iip >= zp->child_cnt) {
1408			err = 8;
1409			goto out;
1410		}
1411
1412		if (znode->iip != n) {
1413			/* This may happen only in case of collisions */
1414			if (keys_cmp(c, &zp->zbranch[n].key,
1415				     &zp->zbranch[znode->iip].key)) {
1416				err = 9;
1417				goto out;
1418			}
1419			n = znode->iip;
1420		}
1421
1422		/*
1423		 * Make sure that the first key in our znode is greater than or
1424		 * equal to the key in the pointing zbranch.
1425		 */
1426		min = &zbr->key;
1427		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428		if (cmp == 1) {
1429			err = 10;
1430			goto out;
1431		}
1432
1433		if (n + 1 < zp->child_cnt) {
1434			max = &zp->zbranch[n + 1].key;
1435
1436			/*
1437			 * Make sure the last key in our znode is less or
1438			 * equivalent than the key in the zbranch which goes
1439			 * after our pointing zbranch.
1440			 */
1441			cmp = keys_cmp(c, max,
1442				&znode->zbranch[znode->child_cnt - 1].key);
1443			if (cmp == -1) {
1444				err = 11;
1445				goto out;
1446			}
1447		}
1448	} else {
1449		/* This may only be root znode */
1450		if (zbr != &c->zroot) {
1451			err = 12;
1452			goto out;
1453		}
1454	}
1455
1456	/*
1457	 * Make sure that next key is greater or equivalent then the previous
1458	 * one.
1459	 */
1460	for (n = 1; n < znode->child_cnt; n++) {
1461		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462			       &znode->zbranch[n].key);
1463		if (cmp > 0) {
1464			err = 13;
1465			goto out;
1466		}
1467		if (cmp == 0) {
1468			/* This can only be keys with colliding hash */
1469			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470				err = 14;
1471				goto out;
1472			}
1473
1474			if (znode->level != 0 || c->replaying)
1475				continue;
1476
1477			/*
1478			 * Colliding keys should follow binary order of
1479			 * corresponding xentry/dentry names.
1480			 */
1481			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482						  &znode->zbranch[n]);
1483			if (err < 0)
1484				return err;
1485			if (err) {
1486				err = 15;
1487				goto out;
1488			}
1489		}
1490	}
1491
1492	for (n = 0; n < znode->child_cnt; n++) {
1493		if (!znode->zbranch[n].znode &&
1494		    (znode->zbranch[n].lnum == 0 ||
1495		     znode->zbranch[n].len == 0)) {
1496			err = 16;
1497			goto out;
1498		}
1499
1500		if (znode->zbranch[n].lnum != 0 &&
1501		    znode->zbranch[n].len == 0) {
1502			err = 17;
1503			goto out;
1504		}
1505
1506		if (znode->zbranch[n].lnum == 0 &&
1507		    znode->zbranch[n].len != 0) {
1508			err = 18;
1509			goto out;
1510		}
1511
1512		if (znode->zbranch[n].lnum == 0 &&
1513		    znode->zbranch[n].offs != 0) {
1514			err = 19;
1515			goto out;
1516		}
1517
1518		if (znode->level != 0 && znode->zbranch[n].znode)
1519			if (znode->zbranch[n].znode->parent != znode) {
1520				err = 20;
1521				goto out;
1522			}
1523	}
1524
1525	return 0;
1526
1527out:
1528	ubifs_err("failed, error %d", err);
1529	ubifs_msg("dump of the znode");
1530	ubifs_dump_znode(c, znode);
1531	if (zp) {
1532		ubifs_msg("dump of the parent znode");
1533		ubifs_dump_znode(c, zp);
1534	}
1535	dump_stack();
1536	return -EINVAL;
1537}
1538
1539/**
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1543 *
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1546 */
1547int dbg_check_tnc(struct ubifs_info *c, int extra)
1548{
1549	struct ubifs_znode *znode;
1550	long clean_cnt = 0, dirty_cnt = 0;
1551	int err, last;
1552
1553	if (!dbg_is_chk_index(c))
1554		return 0;
1555
1556	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557	if (!c->zroot.znode)
1558		return 0;
1559
1560	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561	while (1) {
1562		struct ubifs_znode *prev;
1563		struct ubifs_zbranch *zbr;
1564
1565		if (!znode->parent)
1566			zbr = &c->zroot;
1567		else
1568			zbr = &znode->parent->zbranch[znode->iip];
1569
1570		err = dbg_check_znode(c, zbr);
1571		if (err)
1572			return err;
1573
1574		if (extra) {
1575			if (ubifs_zn_dirty(znode))
1576				dirty_cnt += 1;
1577			else
1578				clean_cnt += 1;
1579		}
1580
1581		prev = znode;
1582		znode = ubifs_tnc_postorder_next(znode);
1583		if (!znode)
1584			break;
1585
1586		/*
1587		 * If the last key of this znode is equivalent to the first key
1588		 * of the next znode (collision), then check order of the keys.
1589		 */
1590		last = prev->child_cnt - 1;
1591		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592		    !keys_cmp(c, &prev->zbranch[last].key,
1593			      &znode->zbranch[0].key)) {
1594			err = dbg_check_key_order(c, &prev->zbranch[last],
1595						  &znode->zbranch[0]);
1596			if (err < 0)
1597				return err;
1598			if (err) {
1599				ubifs_msg("first znode");
1600				ubifs_dump_znode(c, prev);
1601				ubifs_msg("second znode");
1602				ubifs_dump_znode(c, znode);
1603				return -EINVAL;
1604			}
1605		}
1606	}
1607
1608	if (extra) {
1609		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611				  atomic_long_read(&c->clean_zn_cnt),
1612				  clean_cnt);
1613			return -EINVAL;
1614		}
1615		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617				  atomic_long_read(&c->dirty_zn_cnt),
1618				  dirty_cnt);
1619			return -EINVAL;
1620		}
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1632 *
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1636 *
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1640 */
1641int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642		   dbg_znode_callback znode_cb, void *priv)
1643{
1644	int err;
1645	struct ubifs_zbranch *zbr;
1646	struct ubifs_znode *znode, *child;
1647
1648	mutex_lock(&c->tnc_mutex);
1649	/* If the root indexing node is not in TNC - pull it */
1650	if (!c->zroot.znode) {
1651		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652		if (IS_ERR(c->zroot.znode)) {
1653			err = PTR_ERR(c->zroot.znode);
1654			c->zroot.znode = NULL;
1655			goto out_unlock;
1656		}
1657	}
1658
1659	/*
1660	 * We are going to traverse the indexing tree in the postorder manner.
1661	 * Go down and find the leftmost indexing node where we are going to
1662	 * start from.
1663	 */
1664	znode = c->zroot.znode;
1665	while (znode->level > 0) {
1666		zbr = &znode->zbranch[0];
1667		child = zbr->znode;
1668		if (!child) {
1669			child = ubifs_load_znode(c, zbr, znode, 0);
1670			if (IS_ERR(child)) {
1671				err = PTR_ERR(child);
1672				goto out_unlock;
1673			}
1674			zbr->znode = child;
1675		}
1676
1677		znode = child;
1678	}
1679
1680	/* Iterate over all indexing nodes */
1681	while (1) {
1682		int idx;
1683
1684		cond_resched();
1685
1686		if (znode_cb) {
1687			err = znode_cb(c, znode, priv);
1688			if (err) {
1689				ubifs_err("znode checking function returned "
1690					  "error %d", err);
1691				ubifs_dump_znode(c, znode);
1692				goto out_dump;
1693			}
1694		}
1695		if (leaf_cb && znode->level == 0) {
1696			for (idx = 0; idx < znode->child_cnt; idx++) {
1697				zbr = &znode->zbranch[idx];
1698				err = leaf_cb(c, zbr, priv);
1699				if (err) {
1700					ubifs_err("leaf checking function "
1701						  "returned error %d, for leaf "
1702						  "at LEB %d:%d",
1703						  err, zbr->lnum, zbr->offs);
1704					goto out_dump;
1705				}
1706			}
1707		}
1708
1709		if (!znode->parent)
1710			break;
1711
1712		idx = znode->iip + 1;
1713		znode = znode->parent;
1714		if (idx < znode->child_cnt) {
1715			/* Switch to the next index in the parent */
1716			zbr = &znode->zbranch[idx];
1717			child = zbr->znode;
1718			if (!child) {
1719				child = ubifs_load_znode(c, zbr, znode, idx);
1720				if (IS_ERR(child)) {
1721					err = PTR_ERR(child);
1722					goto out_unlock;
1723				}
1724				zbr->znode = child;
1725			}
1726			znode = child;
1727		} else
1728			/*
1729			 * This is the last child, switch to the parent and
1730			 * continue.
1731			 */
1732			continue;
1733
1734		/* Go to the lowest leftmost znode in the new sub-tree */
1735		while (znode->level > 0) {
1736			zbr = &znode->zbranch[0];
1737			child = zbr->znode;
1738			if (!child) {
1739				child = ubifs_load_znode(c, zbr, znode, 0);
1740				if (IS_ERR(child)) {
1741					err = PTR_ERR(child);
1742					goto out_unlock;
1743				}
1744				zbr->znode = child;
1745			}
1746			znode = child;
1747		}
1748	}
1749
1750	mutex_unlock(&c->tnc_mutex);
1751	return 0;
1752
1753out_dump:
1754	if (znode->parent)
1755		zbr = &znode->parent->zbranch[znode->iip];
1756	else
1757		zbr = &c->zroot;
1758	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759	ubifs_dump_znode(c, znode);
1760out_unlock:
1761	mutex_unlock(&c->tnc_mutex);
1762	return err;
1763}
1764
1765/**
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1770 *
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1774 */
1775static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776{
1777	long long *idx_size = priv;
1778	int add;
1779
1780	add = ubifs_idx_node_sz(c, znode->child_cnt);
1781	add = ALIGN(add, 8);
1782	*idx_size += add;
1783	return 0;
1784}
1785
1786/**
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1790 *
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1794 */
1795int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796{
1797	int err;
1798	long long calc = 0;
1799
1800	if (!dbg_is_chk_index(c))
1801		return 0;
1802
1803	err = dbg_walk_index(c, NULL, add_size, &calc);
1804	if (err) {
1805		ubifs_err("error %d while walking the index", err);
1806		return err;
1807	}
1808
1809	if (calc != idx_size) {
1810		ubifs_err("index size check failed: calculated size is %lld, "
1811			  "should be %lld", calc, idx_size);
1812		dump_stack();
1813		return -EINVAL;
1814	}
1815
1816	return 0;
1817}
1818
1819/**
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 *              while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 *            inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 *             inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1838 */
1839struct fsck_inode {
1840	struct rb_node rb;
1841	ino_t inum;
1842	umode_t mode;
1843	unsigned int nlink;
1844	unsigned int xattr_cnt;
1845	int references;
1846	int calc_cnt;
1847	long long size;
1848	unsigned int xattr_sz;
1849	long long calc_sz;
1850	long long calc_xcnt;
1851	long long calc_xsz;
1852	unsigned int xattr_nms;
1853	long long calc_xnms;
1854};
1855
1856/**
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859 */
1860struct fsck_data {
1861	struct rb_root inodes;
1862};
1863
1864/**
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1869 *
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1873 */
1874static struct fsck_inode *add_inode(struct ubifs_info *c,
1875				    struct fsck_data *fsckd,
1876				    struct ubifs_ino_node *ino)
1877{
1878	struct rb_node **p, *parent = NULL;
1879	struct fsck_inode *fscki;
1880	ino_t inum = key_inum_flash(c, &ino->key);
1881	struct inode *inode;
1882	struct ubifs_inode *ui;
1883
1884	p = &fsckd->inodes.rb_node;
1885	while (*p) {
1886		parent = *p;
1887		fscki = rb_entry(parent, struct fsck_inode, rb);
1888		if (inum < fscki->inum)
1889			p = &(*p)->rb_left;
1890		else if (inum > fscki->inum)
1891			p = &(*p)->rb_right;
1892		else
1893			return fscki;
1894	}
1895
1896	if (inum > c->highest_inum) {
1897		ubifs_err("too high inode number, max. is %lu",
1898			  (unsigned long)c->highest_inum);
1899		return ERR_PTR(-EINVAL);
1900	}
1901
1902	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903	if (!fscki)
1904		return ERR_PTR(-ENOMEM);
1905
1906	inode = ilookup(c->vfs_sb, inum);
1907
1908	fscki->inum = inum;
1909	/*
1910	 * If the inode is present in the VFS inode cache, use it instead of
1911	 * the on-flash inode which might be out-of-date. E.g., the size might
1912	 * be out-of-date. If we do not do this, the following may happen, for
1913	 * example:
1914	 *   1. A power cut happens
1915	 *   2. We mount the file-system R/O, the replay process fixes up the
1916	 *      inode size in the VFS cache, but on on-flash.
1917	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918	 *      size.
1919	 */
1920	if (!inode) {
1921		fscki->nlink = le32_to_cpu(ino->nlink);
1922		fscki->size = le64_to_cpu(ino->size);
1923		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926		fscki->mode = le32_to_cpu(ino->mode);
1927	} else {
1928		ui = ubifs_inode(inode);
1929		fscki->nlink = inode->i_nlink;
1930		fscki->size = inode->i_size;
1931		fscki->xattr_cnt = ui->xattr_cnt;
1932		fscki->xattr_sz = ui->xattr_size;
1933		fscki->xattr_nms = ui->xattr_names;
1934		fscki->mode = inode->i_mode;
1935		iput(inode);
1936	}
1937
1938	if (S_ISDIR(fscki->mode)) {
1939		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940		fscki->calc_cnt = 2;
1941	}
1942
1943	rb_link_node(&fscki->rb, parent, p);
1944	rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946	return fscki;
1947}
1948
1949/**
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1953 *
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1957 */
1958static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959{
1960	struct rb_node *p;
1961	struct fsck_inode *fscki;
1962
1963	p = fsckd->inodes.rb_node;
1964	while (p) {
1965		fscki = rb_entry(p, struct fsck_inode, rb);
1966		if (inum < fscki->inum)
1967			p = p->rb_left;
1968		else if (inum > fscki->inum)
1969			p = p->rb_right;
1970		else
1971			return fscki;
1972	}
1973	return NULL;
1974}
1975
1976/**
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1981 *
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1986 */
1987static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988					 struct fsck_data *fsckd, ino_t inum)
1989{
1990	int n, err;
1991	union ubifs_key key;
1992	struct ubifs_znode *znode;
1993	struct ubifs_zbranch *zbr;
1994	struct ubifs_ino_node *ino;
1995	struct fsck_inode *fscki;
1996
1997	fscki = search_inode(fsckd, inum);
1998	if (fscki)
1999		return fscki;
2000
2001	ino_key_init(c, &key, inum);
2002	err = ubifs_lookup_level0(c, &key, &znode, &n);
2003	if (!err) {
2004		ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005		return ERR_PTR(-ENOENT);
2006	} else if (err < 0) {
2007		ubifs_err("error %d while looking up inode %lu",
2008			  err, (unsigned long)inum);
2009		return ERR_PTR(err);
2010	}
2011
2012	zbr = &znode->zbranch[n];
2013	if (zbr->len < UBIFS_INO_NODE_SZ) {
2014		ubifs_err("bad node %lu node length %d",
2015			  (unsigned long)inum, zbr->len);
2016		return ERR_PTR(-EINVAL);
2017	}
2018
2019	ino = kmalloc(zbr->len, GFP_NOFS);
2020	if (!ino)
2021		return ERR_PTR(-ENOMEM);
2022
2023	err = ubifs_tnc_read_node(c, zbr, ino);
2024	if (err) {
2025		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026			  zbr->lnum, zbr->offs, err);
2027		kfree(ino);
2028		return ERR_PTR(err);
2029	}
2030
2031	fscki = add_inode(c, fsckd, ino);
2032	kfree(ino);
2033	if (IS_ERR(fscki)) {
2034		ubifs_err("error %ld while adding inode %lu node",
2035			  PTR_ERR(fscki), (unsigned long)inum);
2036		return fscki;
2037	}
2038
2039	return fscki;
2040}
2041
2042/**
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2047 *
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2057 */
2058static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059		      void *priv)
2060{
2061	ino_t inum;
2062	void *node;
2063	struct ubifs_ch *ch;
2064	int err, type = key_type(c, &zbr->key);
2065	struct fsck_inode *fscki;
2066
2067	if (zbr->len < UBIFS_CH_SZ) {
2068		ubifs_err("bad leaf length %d (LEB %d:%d)",
2069			  zbr->len, zbr->lnum, zbr->offs);
2070		return -EINVAL;
2071	}
2072
2073	node = kmalloc(zbr->len, GFP_NOFS);
2074	if (!node)
2075		return -ENOMEM;
2076
2077	err = ubifs_tnc_read_node(c, zbr, node);
2078	if (err) {
2079		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080			  zbr->lnum, zbr->offs, err);
2081		goto out_free;
2082	}
2083
2084	/* If this is an inode node, add it to RB-tree of inodes */
2085	if (type == UBIFS_INO_KEY) {
2086		fscki = add_inode(c, priv, node);
2087		if (IS_ERR(fscki)) {
2088			err = PTR_ERR(fscki);
2089			ubifs_err("error %d while adding inode node", err);
2090			goto out_dump;
2091		}
2092		goto out;
2093	}
2094
2095	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096	    type != UBIFS_DATA_KEY) {
2097		ubifs_err("unexpected node type %d at LEB %d:%d",
2098			  type, zbr->lnum, zbr->offs);
2099		err = -EINVAL;
2100		goto out_free;
2101	}
2102
2103	ch = node;
2104	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105		ubifs_err("too high sequence number, max. is %llu",
2106			  c->max_sqnum);
2107		err = -EINVAL;
2108		goto out_dump;
2109	}
2110
2111	if (type == UBIFS_DATA_KEY) {
2112		long long blk_offs;
2113		struct ubifs_data_node *dn = node;
2114
2115		/*
2116		 * Search the inode node this data node belongs to and insert
2117		 * it to the RB-tree of inodes.
2118		 */
2119		inum = key_inum_flash(c, &dn->key);
2120		fscki = read_add_inode(c, priv, inum);
2121		if (IS_ERR(fscki)) {
2122			err = PTR_ERR(fscki);
2123			ubifs_err("error %d while processing data node and "
2124				  "trying to find inode node %lu",
2125				  err, (unsigned long)inum);
2126			goto out_dump;
2127		}
2128
2129		/* Make sure the data node is within inode size */
2130		blk_offs = key_block_flash(c, &dn->key);
2131		blk_offs <<= UBIFS_BLOCK_SHIFT;
2132		blk_offs += le32_to_cpu(dn->size);
2133		if (blk_offs > fscki->size) {
2134			ubifs_err("data node at LEB %d:%d is not within inode "
2135				  "size %lld", zbr->lnum, zbr->offs,
2136				  fscki->size);
2137			err = -EINVAL;
2138			goto out_dump;
2139		}
2140	} else {
2141		int nlen;
2142		struct ubifs_dent_node *dent = node;
2143		struct fsck_inode *fscki1;
2144
2145		err = ubifs_validate_entry(c, dent);
2146		if (err)
2147			goto out_dump;
2148
2149		/*
2150		 * Search the inode node this entry refers to and the parent
2151		 * inode node and insert them to the RB-tree of inodes.
2152		 */
2153		inum = le64_to_cpu(dent->inum);
2154		fscki = read_add_inode(c, priv, inum);
2155		if (IS_ERR(fscki)) {
2156			err = PTR_ERR(fscki);
2157			ubifs_err("error %d while processing entry node and "
2158				  "trying to find inode node %lu",
2159				  err, (unsigned long)inum);
2160			goto out_dump;
2161		}
2162
2163		/* Count how many direntries or xentries refers this inode */
2164		fscki->references += 1;
2165
2166		inum = key_inum_flash(c, &dent->key);
2167		fscki1 = read_add_inode(c, priv, inum);
2168		if (IS_ERR(fscki1)) {
2169			err = PTR_ERR(fscki1);
2170			ubifs_err("error %d while processing entry node and "
2171				  "trying to find parent inode node %lu",
2172				  err, (unsigned long)inum);
2173			goto out_dump;
2174		}
2175
2176		nlen = le16_to_cpu(dent->nlen);
2177		if (type == UBIFS_XENT_KEY) {
2178			fscki1->calc_xcnt += 1;
2179			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181			fscki1->calc_xnms += nlen;
2182		} else {
2183			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184			if (dent->type == UBIFS_ITYPE_DIR)
2185				fscki1->calc_cnt += 1;
2186		}
2187	}
2188
2189out:
2190	kfree(node);
2191	return 0;
2192
2193out_dump:
2194	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195	ubifs_dump_node(c, node);
2196out_free:
2197	kfree(node);
2198	return err;
2199}
2200
2201/**
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2204 */
2205static void free_inodes(struct fsck_data *fsckd)
2206{
2207	struct rb_node *this = fsckd->inodes.rb_node;
2208	struct fsck_inode *fscki;
2209
2210	while (this) {
2211		if (this->rb_left)
2212			this = this->rb_left;
2213		else if (this->rb_right)
2214			this = this->rb_right;
2215		else {
2216			fscki = rb_entry(this, struct fsck_inode, rb);
2217			this = rb_parent(this);
2218			if (this) {
2219				if (this->rb_left == &fscki->rb)
2220					this->rb_left = NULL;
2221				else
2222					this->rb_right = NULL;
2223			}
2224			kfree(fscki);
2225		}
2226	}
2227}
2228
2229/**
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2233 *
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2238 */
2239static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240{
2241	int n, err;
2242	union ubifs_key key;
2243	struct ubifs_znode *znode;
2244	struct ubifs_zbranch *zbr;
2245	struct ubifs_ino_node *ino;
2246	struct fsck_inode *fscki;
2247	struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249	while (this) {
2250		fscki = rb_entry(this, struct fsck_inode, rb);
2251		this = rb_next(this);
2252
2253		if (S_ISDIR(fscki->mode)) {
2254			/*
2255			 * Directories have to have exactly one reference (they
2256			 * cannot have hardlinks), although root inode is an
2257			 * exception.
2258			 */
2259			if (fscki->inum != UBIFS_ROOT_INO &&
2260			    fscki->references != 1) {
2261				ubifs_err("directory inode %lu has %d "
2262					  "direntries which refer it, but "
2263					  "should be 1",
2264					  (unsigned long)fscki->inum,
2265					  fscki->references);
2266				goto out_dump;
2267			}
2268			if (fscki->inum == UBIFS_ROOT_INO &&
2269			    fscki->references != 0) {
2270				ubifs_err("root inode %lu has non-zero (%d) "
2271					  "direntries which refer it",
2272					  (unsigned long)fscki->inum,
2273					  fscki->references);
2274				goto out_dump;
2275			}
2276			if (fscki->calc_sz != fscki->size) {
2277				ubifs_err("directory inode %lu size is %lld, "
2278					  "but calculated size is %lld",
2279					  (unsigned long)fscki->inum,
2280					  fscki->size, fscki->calc_sz);
2281				goto out_dump;
2282			}
2283			if (fscki->calc_cnt != fscki->nlink) {
2284				ubifs_err("directory inode %lu nlink is %d, "
2285					  "but calculated nlink is %d",
2286					  (unsigned long)fscki->inum,
2287					  fscki->nlink, fscki->calc_cnt);
2288				goto out_dump;
2289			}
2290		} else {
2291			if (fscki->references != fscki->nlink) {
2292				ubifs_err("inode %lu nlink is %d, but "
2293					  "calculated nlink is %d",
2294					  (unsigned long)fscki->inum,
2295					  fscki->nlink, fscki->references);
2296				goto out_dump;
2297			}
2298		}
2299		if (fscki->xattr_sz != fscki->calc_xsz) {
2300			ubifs_err("inode %lu has xattr size %u, but "
2301				  "calculated size is %lld",
2302				  (unsigned long)fscki->inum, fscki->xattr_sz,
2303				  fscki->calc_xsz);
2304			goto out_dump;
2305		}
2306		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307			ubifs_err("inode %lu has %u xattrs, but "
2308				  "calculated count is %lld",
2309				  (unsigned long)fscki->inum,
2310				  fscki->xattr_cnt, fscki->calc_xcnt);
2311			goto out_dump;
2312		}
2313		if (fscki->xattr_nms != fscki->calc_xnms) {
2314			ubifs_err("inode %lu has xattr names' size %u, but "
2315				  "calculated names' size is %lld",
2316				  (unsigned long)fscki->inum, fscki->xattr_nms,
2317				  fscki->calc_xnms);
2318			goto out_dump;
2319		}
2320	}
2321
2322	return 0;
2323
2324out_dump:
2325	/* Read the bad inode and dump it */
2326	ino_key_init(c, &key, fscki->inum);
2327	err = ubifs_lookup_level0(c, &key, &znode, &n);
2328	if (!err) {
2329		ubifs_err("inode %lu not found in index",
2330			  (unsigned long)fscki->inum);
2331		return -ENOENT;
2332	} else if (err < 0) {
2333		ubifs_err("error %d while looking up inode %lu",
2334			  err, (unsigned long)fscki->inum);
2335		return err;
2336	}
2337
2338	zbr = &znode->zbranch[n];
2339	ino = kmalloc(zbr->len, GFP_NOFS);
2340	if (!ino)
2341		return -ENOMEM;
2342
2343	err = ubifs_tnc_read_node(c, zbr, ino);
2344	if (err) {
2345		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346			  zbr->lnum, zbr->offs, err);
2347		kfree(ino);
2348		return err;
2349	}
2350
2351	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353	ubifs_dump_node(c, ino);
2354	kfree(ino);
2355	return -EINVAL;
2356}
2357
2358/**
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2361 *
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 *   inodes).
2366 *
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2370 */
2371int dbg_check_filesystem(struct ubifs_info *c)
2372{
2373	int err;
2374	struct fsck_data fsckd;
2375
2376	if (!dbg_is_chk_fs(c))
2377		return 0;
2378
2379	fsckd.inodes = RB_ROOT;
2380	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381	if (err)
2382		goto out_free;
2383
2384	err = check_inodes(c, &fsckd);
2385	if (err)
2386		goto out_free;
2387
2388	free_inodes(&fsckd);
2389	return 0;
2390
2391out_free:
2392	ubifs_err("file-system check failed with error %d", err);
2393	dump_stack();
2394	free_inodes(&fsckd);
2395	return err;
2396}
2397
2398/**
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402 *
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2405 */
2406int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407{
2408	struct list_head *cur;
2409	struct ubifs_scan_node *sa, *sb;
2410
2411	if (!dbg_is_chk_gen(c))
2412		return 0;
2413
2414	for (cur = head->next; cur->next != head; cur = cur->next) {
2415		ino_t inuma, inumb;
2416		uint32_t blka, blkb;
2417
2418		cond_resched();
2419		sa = container_of(cur, struct ubifs_scan_node, list);
2420		sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422		if (sa->type != UBIFS_DATA_NODE) {
2423			ubifs_err("bad node type %d", sa->type);
2424			ubifs_dump_node(c, sa->node);
2425			return -EINVAL;
2426		}
2427		if (sb->type != UBIFS_DATA_NODE) {
2428			ubifs_err("bad node type %d", sb->type);
2429			ubifs_dump_node(c, sb->node);
2430			return -EINVAL;
2431		}
2432
2433		inuma = key_inum(c, &sa->key);
2434		inumb = key_inum(c, &sb->key);
2435
2436		if (inuma < inumb)
2437			continue;
2438		if (inuma > inumb) {
2439			ubifs_err("larger inum %lu goes before inum %lu",
2440				  (unsigned long)inuma, (unsigned long)inumb);
2441			goto error_dump;
2442		}
2443
2444		blka = key_block(c, &sa->key);
2445		blkb = key_block(c, &sb->key);
2446
2447		if (blka > blkb) {
2448			ubifs_err("larger block %u goes before %u", blka, blkb);
2449			goto error_dump;
2450		}
2451		if (blka == blkb) {
2452			ubifs_err("two data nodes for the same block");
2453			goto error_dump;
2454		}
2455	}
2456
2457	return 0;
2458
2459error_dump:
2460	ubifs_dump_node(c, sa->node);
2461	ubifs_dump_node(c, sb->node);
2462	return -EINVAL;
2463}
2464
2465/**
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469 *
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2472 */
2473int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474{
2475	struct list_head *cur;
2476	struct ubifs_scan_node *sa, *sb;
2477
2478	if (!dbg_is_chk_gen(c))
2479		return 0;
2480
2481	for (cur = head->next; cur->next != head; cur = cur->next) {
2482		ino_t inuma, inumb;
2483		uint32_t hasha, hashb;
2484
2485		cond_resched();
2486		sa = container_of(cur, struct ubifs_scan_node, list);
2487		sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490		    sa->type != UBIFS_XENT_NODE) {
2491			ubifs_err("bad node type %d", sa->type);
2492			ubifs_dump_node(c, sa->node);
2493			return -EINVAL;
2494		}
2495		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496		    sa->type != UBIFS_XENT_NODE) {
2497			ubifs_err("bad node type %d", sb->type);
2498			ubifs_dump_node(c, sb->node);
2499			return -EINVAL;
2500		}
2501
2502		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503			ubifs_err("non-inode node goes before inode node");
2504			goto error_dump;
2505		}
2506
2507		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508			continue;
2509
2510		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511			/* Inode nodes are sorted in descending size order */
2512			if (sa->len < sb->len) {
2513				ubifs_err("smaller inode node goes first");
2514				goto error_dump;
2515			}
2516			continue;
2517		}
2518
2519		/*
2520		 * This is either a dentry or xentry, which should be sorted in
2521		 * ascending (parent ino, hash) order.
2522		 */
2523		inuma = key_inum(c, &sa->key);
2524		inumb = key_inum(c, &sb->key);
2525
2526		if (inuma < inumb)
2527			continue;
2528		if (inuma > inumb) {
2529			ubifs_err("larger inum %lu goes before inum %lu",
2530				  (unsigned long)inuma, (unsigned long)inumb);
2531			goto error_dump;
2532		}
2533
2534		hasha = key_block(c, &sa->key);
2535		hashb = key_block(c, &sb->key);
2536
2537		if (hasha > hashb) {
2538			ubifs_err("larger hash %u goes before %u",
2539				  hasha, hashb);
2540			goto error_dump;
2541		}
2542	}
2543
2544	return 0;
2545
2546error_dump:
2547	ubifs_msg("dumping first node");
2548	ubifs_dump_node(c, sa->node);
2549	ubifs_msg("dumping second node");
2550	ubifs_dump_node(c, sb->node);
2551	return -EINVAL;
2552	return 0;
2553}
2554
2555static inline int chance(unsigned int n, unsigned int out_of)
2556{
2557	return !!((random32() % out_of) + 1 <= n);
2558
2559}
2560
2561static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562{
2563	struct ubifs_debug_info *d = c->dbg;
2564
2565	ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567	if (!d->pc_cnt) {
2568		/* First call - decide delay to the power cut */
2569		if (chance(1, 2)) {
2570			unsigned long delay;
2571
2572			if (chance(1, 2)) {
2573				d->pc_delay = 1;
2574				/* Fail withing 1 minute */
2575				delay = random32() % 60000;
2576				d->pc_timeout = jiffies;
2577				d->pc_timeout += msecs_to_jiffies(delay);
2578				ubifs_warn("failing after %lums", delay);
2579			} else {
2580				d->pc_delay = 2;
2581				delay = random32() % 10000;
2582				/* Fail within 10000 operations */
2583				d->pc_cnt_max = delay;
2584				ubifs_warn("failing after %lu calls", delay);
2585			}
2586		}
2587
2588		d->pc_cnt += 1;
2589	}
2590
2591	/* Determine if failure delay has expired */
2592	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593			return 0;
2594	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595			return 0;
2596
2597	if (lnum == UBIFS_SB_LNUM) {
2598		if (write && chance(1, 2))
2599			return 0;
2600		if (chance(19, 20))
2601			return 0;
2602		ubifs_warn("failing in super block LEB %d", lnum);
2603	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604		if (chance(19, 20))
2605			return 0;
2606		ubifs_warn("failing in master LEB %d", lnum);
2607	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608		if (write && chance(99, 100))
2609			return 0;
2610		if (chance(399, 400))
2611			return 0;
2612		ubifs_warn("failing in log LEB %d", lnum);
2613	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614		if (write && chance(7, 8))
2615			return 0;
2616		if (chance(19, 20))
2617			return 0;
2618		ubifs_warn("failing in LPT LEB %d", lnum);
2619	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620		if (write && chance(1, 2))
2621			return 0;
2622		if (chance(9, 10))
2623			return 0;
2624		ubifs_warn("failing in orphan LEB %d", lnum);
2625	} else if (lnum == c->ihead_lnum) {
2626		if (chance(99, 100))
2627			return 0;
2628		ubifs_warn("failing in index head LEB %d", lnum);
2629	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630		if (chance(9, 10))
2631			return 0;
2632		ubifs_warn("failing in GC head LEB %d", lnum);
2633	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634		   !ubifs_search_bud(c, lnum)) {
2635		if (chance(19, 20))
2636			return 0;
2637		ubifs_warn("failing in non-bud LEB %d", lnum);
2638	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640		if (chance(999, 1000))
2641			return 0;
2642		ubifs_warn("failing in bud LEB %d commit running", lnum);
2643	} else {
2644		if (chance(9999, 10000))
2645			return 0;
2646		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647	}
2648
2649	d->pc_happened = 1;
2650	ubifs_warn("========== Power cut emulated ==========");
2651	dump_stack();
2652	return 1;
2653}
2654
2655static void cut_data(const void *buf, unsigned int len)
2656{
2657	unsigned int from, to, i, ffs = chance(1, 2);
2658	unsigned char *p = (void *)buf;
2659
2660	from = random32() % (len + 1);
2661	if (chance(1, 2))
2662		to = random32() % (len - from + 1);
2663	else
2664		to = len;
2665
2666	if (from < to)
2667		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668			   ffs ? "0xFFs" : "random data");
2669
2670	if (ffs)
2671		for (i = from; i < to; i++)
2672			p[i] = 0xFF;
2673	else
2674		for (i = from; i < to; i++)
2675			p[i] = random32() % 0x100;
2676}
2677
2678int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679		  int offs, int len)
2680{
2681	int err, failing;
2682
2683	if (c->dbg->pc_happened)
2684		return -EROFS;
2685
2686	failing = power_cut_emulated(c, lnum, 1);
2687	if (failing)
2688		cut_data(buf, len);
2689	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690	if (err)
2691		return err;
2692	if (failing)
2693		return -EROFS;
2694	return 0;
2695}
2696
2697int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698		   int len)
2699{
2700	int err;
2701
2702	if (c->dbg->pc_happened)
2703		return -EROFS;
2704	if (power_cut_emulated(c, lnum, 1))
2705		return -EROFS;
2706	err = ubi_leb_change(c->ubi, lnum, buf, len);
2707	if (err)
2708		return err;
2709	if (power_cut_emulated(c, lnum, 1))
2710		return -EROFS;
2711	return 0;
2712}
2713
2714int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715{
2716	int err;
2717
2718	if (c->dbg->pc_happened)
2719		return -EROFS;
2720	if (power_cut_emulated(c, lnum, 0))
2721		return -EROFS;
2722	err = ubi_leb_unmap(c->ubi, lnum);
2723	if (err)
2724		return err;
2725	if (power_cut_emulated(c, lnum, 0))
2726		return -EROFS;
2727	return 0;
2728}
2729
2730int dbg_leb_map(struct ubifs_info *c, int lnum)
2731{
2732	int err;
2733
2734	if (c->dbg->pc_happened)
2735		return -EROFS;
2736	if (power_cut_emulated(c, lnum, 0))
2737		return -EROFS;
2738	err = ubi_leb_map(c->ubi, lnum);
2739	if (err)
2740		return err;
2741	if (power_cut_emulated(c, lnum, 0))
2742		return -EROFS;
2743	return 0;
2744}
2745
2746/*
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2749 */
2750static struct dentry *dfs_rootdir;
2751
2752static int dfs_file_open(struct inode *inode, struct file *file)
2753{
2754	file->private_data = inode->i_private;
2755	return nonseekable_open(inode, file);
2756}
2757
2758/**
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2764 *
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2769 */
2770static int provide_user_output(int val, char __user *u, size_t count,
2771			       loff_t *ppos)
2772{
2773	char buf[3];
2774
2775	if (val)
2776		buf[0] = '1';
2777	else
2778		buf[0] = '0';
2779	buf[1] = '\n';
2780	buf[2] = 0x00;
2781
2782	return simple_read_from_buffer(u, count, ppos, buf, 2);
2783}
2784
2785static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786			     loff_t *ppos)
2787{
2788	struct dentry *dent = file->f_path.dentry;
2789	struct ubifs_info *c = file->private_data;
2790	struct ubifs_debug_info *d = c->dbg;
2791	int val;
2792
2793	if (dent == d->dfs_chk_gen)
2794		val = d->chk_gen;
2795	else if (dent == d->dfs_chk_index)
2796		val = d->chk_index;
2797	else if (dent == d->dfs_chk_orph)
2798		val = d->chk_orph;
2799	else if (dent == d->dfs_chk_lprops)
2800		val = d->chk_lprops;
2801	else if (dent == d->dfs_chk_fs)
2802		val = d->chk_fs;
2803	else if (dent == d->dfs_tst_rcvry)
2804		val = d->tst_rcvry;
2805	else
2806		return -EINVAL;
2807
2808	return provide_user_output(val, u, count, ppos);
2809}
2810
2811/**
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2815 *
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2819 */
2820static int interpret_user_input(const char __user *u, size_t count)
2821{
2822	size_t buf_size;
2823	char buf[8];
2824
2825	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826	if (copy_from_user(buf, u, buf_size))
2827		return -EFAULT;
2828
2829	if (buf[0] == '1')
2830		return 1;
2831	else if (buf[0] == '0')
2832		return 0;
2833
2834	return -EINVAL;
2835}
2836
2837static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838			      size_t count, loff_t *ppos)
2839{
2840	struct ubifs_info *c = file->private_data;
2841	struct ubifs_debug_info *d = c->dbg;
2842	struct dentry *dent = file->f_path.dentry;
2843	int val;
2844
2845	/*
2846	 * TODO: this is racy - the file-system might have already been
2847	 * unmounted and we'd oops in this case. The plan is to fix it with
2848	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851	 * superblocks and fine the one with the same UUID, and take the
2852	 * locking right.
2853	 *
2854	 * The other way to go suggested by Al Viro is to create a separate
2855	 * 'ubifs-debug' file-system instead.
2856	 */
2857	if (file->f_path.dentry == d->dfs_dump_lprops) {
2858		ubifs_dump_lprops(c);
2859		return count;
2860	}
2861	if (file->f_path.dentry == d->dfs_dump_budg) {
2862		ubifs_dump_budg(c, &c->bi);
2863		return count;
2864	}
2865	if (file->f_path.dentry == d->dfs_dump_tnc) {
2866		mutex_lock(&c->tnc_mutex);
2867		ubifs_dump_tnc(c);
2868		mutex_unlock(&c->tnc_mutex);
2869		return count;
2870	}
2871
2872	val = interpret_user_input(u, count);
2873	if (val < 0)
2874		return val;
2875
2876	if (dent == d->dfs_chk_gen)
2877		d->chk_gen = val;
2878	else if (dent == d->dfs_chk_index)
2879		d->chk_index = val;
2880	else if (dent == d->dfs_chk_orph)
2881		d->chk_orph = val;
2882	else if (dent == d->dfs_chk_lprops)
2883		d->chk_lprops = val;
2884	else if (dent == d->dfs_chk_fs)
2885		d->chk_fs = val;
2886	else if (dent == d->dfs_tst_rcvry)
2887		d->tst_rcvry = val;
2888	else
2889		return -EINVAL;
2890
2891	return count;
2892}
2893
2894static const struct file_operations dfs_fops = {
2895	.open = dfs_file_open,
2896	.read = dfs_file_read,
2897	.write = dfs_file_write,
2898	.owner = THIS_MODULE,
2899	.llseek = no_llseek,
2900};
2901
2902/**
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2905 *
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2908 *
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2913 */
2914int dbg_debugfs_init_fs(struct ubifs_info *c)
2915{
2916	int err, n;
2917	const char *fname;
2918	struct dentry *dent;
2919	struct ubifs_debug_info *d = c->dbg;
2920
2921	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2922		return 0;
2923
2924	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2925		     c->vi.ubi_num, c->vi.vol_id);
2926	if (n == UBIFS_DFS_DIR_LEN) {
2927		/* The array size is too small */
2928		fname = UBIFS_DFS_DIR_NAME;
2929		dent = ERR_PTR(-EINVAL);
2930		goto out;
2931	}
2932
2933	fname = d->dfs_dir_name;
2934	dent = debugfs_create_dir(fname, dfs_rootdir);
2935	if (IS_ERR_OR_NULL(dent))
2936		goto out;
2937	d->dfs_dir = dent;
2938
2939	fname = "dump_lprops";
2940	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2941	if (IS_ERR_OR_NULL(dent))
2942		goto out_remove;
2943	d->dfs_dump_lprops = dent;
2944
2945	fname = "dump_budg";
2946	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2947	if (IS_ERR_OR_NULL(dent))
2948		goto out_remove;
2949	d->dfs_dump_budg = dent;
2950
2951	fname = "dump_tnc";
2952	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2953	if (IS_ERR_OR_NULL(dent))
2954		goto out_remove;
2955	d->dfs_dump_tnc = dent;
2956
2957	fname = "chk_general";
2958	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2959				   &dfs_fops);
2960	if (IS_ERR_OR_NULL(dent))
2961		goto out_remove;
2962	d->dfs_chk_gen = dent;
2963
2964	fname = "chk_index";
2965	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2966				   &dfs_fops);
2967	if (IS_ERR_OR_NULL(dent))
2968		goto out_remove;
2969	d->dfs_chk_index = dent;
2970
2971	fname = "chk_orphans";
2972	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2973				   &dfs_fops);
2974	if (IS_ERR_OR_NULL(dent))
2975		goto out_remove;
2976	d->dfs_chk_orph = dent;
2977
2978	fname = "chk_lprops";
2979	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2980				   &dfs_fops);
2981	if (IS_ERR_OR_NULL(dent))
2982		goto out_remove;
2983	d->dfs_chk_lprops = dent;
2984
2985	fname = "chk_fs";
2986	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2987				   &dfs_fops);
2988	if (IS_ERR_OR_NULL(dent))
2989		goto out_remove;
2990	d->dfs_chk_fs = dent;
2991
2992	fname = "tst_recovery";
2993	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2994				   &dfs_fops);
2995	if (IS_ERR_OR_NULL(dent))
2996		goto out_remove;
2997	d->dfs_tst_rcvry = dent;
2998
2999	return 0;
3000
3001out_remove:
3002	debugfs_remove_recursive(d->dfs_dir);
3003out:
3004	err = dent ? PTR_ERR(dent) : -ENODEV;
3005	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3006		  fname, err);
3007	return err;
3008}
3009
3010/**
3011 * dbg_debugfs_exit_fs - remove all debugfs files.
3012 * @c: UBIFS file-system description object
3013 */
3014void dbg_debugfs_exit_fs(struct ubifs_info *c)
3015{
3016	if (IS_ENABLED(CONFIG_DEBUG_FS))
3017		debugfs_remove_recursive(c->dbg->dfs_dir);
3018}
3019
3020struct ubifs_global_debug_info ubifs_dbg;
3021
3022static struct dentry *dfs_chk_gen;
3023static struct dentry *dfs_chk_index;
3024static struct dentry *dfs_chk_orph;
3025static struct dentry *dfs_chk_lprops;
3026static struct dentry *dfs_chk_fs;
3027static struct dentry *dfs_tst_rcvry;
3028
3029static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3030				    size_t count, loff_t *ppos)
3031{
3032	struct dentry *dent = file->f_path.dentry;
3033	int val;
3034
3035	if (dent == dfs_chk_gen)
3036		val = ubifs_dbg.chk_gen;
3037	else if (dent == dfs_chk_index)
3038		val = ubifs_dbg.chk_index;
3039	else if (dent == dfs_chk_orph)
3040		val = ubifs_dbg.chk_orph;
3041	else if (dent == dfs_chk_lprops)
3042		val = ubifs_dbg.chk_lprops;
3043	else if (dent == dfs_chk_fs)
3044		val = ubifs_dbg.chk_fs;
3045	else if (dent == dfs_tst_rcvry)
3046		val = ubifs_dbg.tst_rcvry;
3047	else
3048		return -EINVAL;
3049
3050	return provide_user_output(val, u, count, ppos);
3051}
3052
3053static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3054				     size_t count, loff_t *ppos)
3055{
3056	struct dentry *dent = file->f_path.dentry;
3057	int val;
3058
3059	val = interpret_user_input(u, count);
3060	if (val < 0)
3061		return val;
3062
3063	if (dent == dfs_chk_gen)
3064		ubifs_dbg.chk_gen = val;
3065	else if (dent == dfs_chk_index)
3066		ubifs_dbg.chk_index = val;
3067	else if (dent == dfs_chk_orph)
3068		ubifs_dbg.chk_orph = val;
3069	else if (dent == dfs_chk_lprops)
3070		ubifs_dbg.chk_lprops = val;
3071	else if (dent == dfs_chk_fs)
3072		ubifs_dbg.chk_fs = val;
3073	else if (dent == dfs_tst_rcvry)
3074		ubifs_dbg.tst_rcvry = val;
3075	else
3076		return -EINVAL;
3077
3078	return count;
3079}
3080
3081static const struct file_operations dfs_global_fops = {
3082	.read = dfs_global_file_read,
3083	.write = dfs_global_file_write,
3084	.owner = THIS_MODULE,
3085	.llseek = no_llseek,
3086};
3087
3088/**
3089 * dbg_debugfs_init - initialize debugfs file-system.
3090 *
3091 * UBIFS uses debugfs file-system to expose various debugging knobs to
3092 * user-space. This function creates "ubifs" directory in the debugfs
3093 * file-system. Returns zero in case of success and a negative error code in
3094 * case of failure.
3095 */
3096int dbg_debugfs_init(void)
3097{
3098	int err;
3099	const char *fname;
3100	struct dentry *dent;
3101
3102	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3103		return 0;
3104
3105	fname = "ubifs";
3106	dent = debugfs_create_dir(fname, NULL);
3107	if (IS_ERR_OR_NULL(dent))
3108		goto out;
3109	dfs_rootdir = dent;
3110
3111	fname = "chk_general";
3112	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113				   &dfs_global_fops);
3114	if (IS_ERR_OR_NULL(dent))
3115		goto out_remove;
3116	dfs_chk_gen = dent;
3117
3118	fname = "chk_index";
3119	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120				   &dfs_global_fops);
3121	if (IS_ERR_OR_NULL(dent))
3122		goto out_remove;
3123	dfs_chk_index = dent;
3124
3125	fname = "chk_orphans";
3126	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127				   &dfs_global_fops);
3128	if (IS_ERR_OR_NULL(dent))
3129		goto out_remove;
3130	dfs_chk_orph = dent;
3131
3132	fname = "chk_lprops";
3133	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134				   &dfs_global_fops);
3135	if (IS_ERR_OR_NULL(dent))
3136		goto out_remove;
3137	dfs_chk_lprops = dent;
3138
3139	fname = "chk_fs";
3140	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141				   &dfs_global_fops);
3142	if (IS_ERR_OR_NULL(dent))
3143		goto out_remove;
3144	dfs_chk_fs = dent;
3145
3146	fname = "tst_recovery";
3147	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3148				   &dfs_global_fops);
3149	if (IS_ERR_OR_NULL(dent))
3150		goto out_remove;
3151	dfs_tst_rcvry = dent;
3152
3153	return 0;
3154
3155out_remove:
3156	debugfs_remove_recursive(dfs_rootdir);
3157out:
3158	err = dent ? PTR_ERR(dent) : -ENODEV;
3159	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3160		  fname, err);
3161	return err;
3162}
3163
3164/**
3165 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3166 */
3167void dbg_debugfs_exit(void)
3168{
3169	if (IS_ENABLED(CONFIG_DEBUG_FS))
3170		debugfs_remove_recursive(dfs_rootdir);
3171}
3172
3173/**
3174 * ubifs_debugging_init - initialize UBIFS debugging.
3175 * @c: UBIFS file-system description object
3176 *
3177 * This function initializes debugging-related data for the file system.
3178 * Returns zero in case of success and a negative error code in case of
3179 * failure.
3180 */
3181int ubifs_debugging_init(struct ubifs_info *c)
3182{
3183	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3184	if (!c->dbg)
3185		return -ENOMEM;
3186
3187	return 0;
3188}
3189
3190/**
3191 * ubifs_debugging_exit - free debugging data.
3192 * @c: UBIFS file-system description object
3193 */
3194void ubifs_debugging_exit(struct ubifs_info *c)
3195{
3196	kfree(c->dbg);
3197}