Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
 
  35#include "ubifs.h"
  36
  37#ifdef CONFIG_UBIFS_FS_DEBUG
  38
  39DEFINE_SPINLOCK(dbg_lock);
  40
  41static char dbg_key_buf0[128];
  42static char dbg_key_buf1[128];
  43
  44static const char *get_key_fmt(int fmt)
  45{
  46	switch (fmt) {
  47	case UBIFS_SIMPLE_KEY_FMT:
  48		return "simple";
  49	default:
  50		return "unknown/invalid format";
  51	}
  52}
  53
  54static const char *get_key_hash(int hash)
  55{
  56	switch (hash) {
  57	case UBIFS_KEY_HASH_R5:
  58		return "R5";
  59	case UBIFS_KEY_HASH_TEST:
  60		return "test";
  61	default:
  62		return "unknown/invalid name hash";
  63	}
  64}
  65
  66static const char *get_key_type(int type)
  67{
  68	switch (type) {
  69	case UBIFS_INO_KEY:
  70		return "inode";
  71	case UBIFS_DENT_KEY:
  72		return "direntry";
  73	case UBIFS_XENT_KEY:
  74		return "xentry";
  75	case UBIFS_DATA_KEY:
  76		return "data";
  77	case UBIFS_TRUN_KEY:
  78		return "truncate";
  79	default:
  80		return "unknown/invalid key";
  81	}
  82}
  83
  84static const char *get_dent_type(int type)
  85{
  86	switch (type) {
  87	case UBIFS_ITYPE_REG:
  88		return "file";
  89	case UBIFS_ITYPE_DIR:
  90		return "dir";
  91	case UBIFS_ITYPE_LNK:
  92		return "symlink";
  93	case UBIFS_ITYPE_BLK:
  94		return "blkdev";
  95	case UBIFS_ITYPE_CHR:
  96		return "char dev";
  97	case UBIFS_ITYPE_FIFO:
  98		return "fifo";
  99	case UBIFS_ITYPE_SOCK:
 100		return "socket";
 101	default:
 102		return "unknown/invalid type";
 103	}
 104}
 105
 106static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
 107			char *buffer)
 108{
 109	char *p = buffer;
 110	int type = key_type(c, key);
 111
 112	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 113		switch (type) {
 114		case UBIFS_INO_KEY:
 115			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
 116			       get_key_type(type));
 
 117			break;
 118		case UBIFS_DENT_KEY:
 119		case UBIFS_XENT_KEY:
 120			sprintf(p, "(%lu, %s, %#08x)",
 121				(unsigned long)key_inum(c, key),
 122				get_key_type(type), key_hash(c, key));
 123			break;
 124		case UBIFS_DATA_KEY:
 125			sprintf(p, "(%lu, %s, %u)",
 126				(unsigned long)key_inum(c, key),
 127				get_key_type(type), key_block(c, key));
 128			break;
 129		case UBIFS_TRUN_KEY:
 130			sprintf(p, "(%lu, %s)",
 131				(unsigned long)key_inum(c, key),
 132				get_key_type(type));
 133			break;
 134		default:
 135			sprintf(p, "(bad key type: %#08x, %#08x)",
 136				key->u32[0], key->u32[1]);
 137		}
 138	} else
 139		sprintf(p, "bad key format %d", c->key_fmt);
 140}
 141
 142const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
 143{
 144	/* dbg_lock must be held */
 145	sprintf_key(c, key, dbg_key_buf0);
 146	return dbg_key_buf0;
 147}
 148
 149const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
 150{
 151	/* dbg_lock must be held */
 152	sprintf_key(c, key, dbg_key_buf1);
 153	return dbg_key_buf1;
 154}
 155
 156const char *dbg_ntype(int type)
 157{
 158	switch (type) {
 159	case UBIFS_PAD_NODE:
 160		return "padding node";
 161	case UBIFS_SB_NODE:
 162		return "superblock node";
 163	case UBIFS_MST_NODE:
 164		return "master node";
 165	case UBIFS_REF_NODE:
 166		return "reference node";
 167	case UBIFS_INO_NODE:
 168		return "inode node";
 169	case UBIFS_DENT_NODE:
 170		return "direntry node";
 171	case UBIFS_XENT_NODE:
 172		return "xentry node";
 173	case UBIFS_DATA_NODE:
 174		return "data node";
 175	case UBIFS_TRUN_NODE:
 176		return "truncate node";
 177	case UBIFS_IDX_NODE:
 178		return "indexing node";
 179	case UBIFS_CS_NODE:
 180		return "commit start node";
 181	case UBIFS_ORPH_NODE:
 182		return "orphan node";
 
 
 183	default:
 184		return "unknown node";
 185	}
 186}
 187
 188static const char *dbg_gtype(int type)
 189{
 190	switch (type) {
 191	case UBIFS_NO_NODE_GROUP:
 192		return "no node group";
 193	case UBIFS_IN_NODE_GROUP:
 194		return "in node group";
 195	case UBIFS_LAST_OF_NODE_GROUP:
 196		return "last of node group";
 197	default:
 198		return "unknown";
 199	}
 200}
 201
 202const char *dbg_cstate(int cmt_state)
 203{
 204	switch (cmt_state) {
 205	case COMMIT_RESTING:
 206		return "commit resting";
 207	case COMMIT_BACKGROUND:
 208		return "background commit requested";
 209	case COMMIT_REQUIRED:
 210		return "commit required";
 211	case COMMIT_RUNNING_BACKGROUND:
 212		return "BACKGROUND commit running";
 213	case COMMIT_RUNNING_REQUIRED:
 214		return "commit running and required";
 215	case COMMIT_BROKEN:
 216		return "broken commit";
 217	default:
 218		return "unknown commit state";
 219	}
 220}
 221
 222const char *dbg_jhead(int jhead)
 223{
 224	switch (jhead) {
 225	case GCHD:
 226		return "0 (GC)";
 227	case BASEHD:
 228		return "1 (base)";
 229	case DATAHD:
 230		return "2 (data)";
 231	default:
 232		return "unknown journal head";
 233	}
 234}
 235
 236static void dump_ch(const struct ubifs_ch *ch)
 237{
 238	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 239	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 240	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
 241	       dbg_ntype(ch->node_type));
 242	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
 243	       dbg_gtype(ch->group_type));
 244	printk(KERN_DEBUG "\tsqnum          %llu\n",
 245	       (unsigned long long)le64_to_cpu(ch->sqnum));
 246	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
 247}
 248
 249void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
 250{
 251	const struct ubifs_inode *ui = ubifs_inode(inode);
 252	struct qstr nm = { .name = NULL };
 253	union ubifs_key key;
 254	struct ubifs_dent_node *dent, *pdent = NULL;
 255	int count = 2;
 256
 257	printk(KERN_DEBUG "Dump in-memory inode:");
 258	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
 259	printk(KERN_DEBUG "\tsize           %llu\n",
 260	       (unsigned long long)i_size_read(inode));
 261	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
 262	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
 263	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
 264	printk(KERN_DEBUG "\tatime          %u.%u\n",
 265	       (unsigned int)inode->i_atime.tv_sec,
 266	       (unsigned int)inode->i_atime.tv_nsec);
 267	printk(KERN_DEBUG "\tmtime          %u.%u\n",
 268	       (unsigned int)inode->i_mtime.tv_sec,
 269	       (unsigned int)inode->i_mtime.tv_nsec);
 270	printk(KERN_DEBUG "\tctime          %u.%u\n",
 271	       (unsigned int)inode->i_ctime.tv_sec,
 272	       (unsigned int)inode->i_ctime.tv_nsec);
 273	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 274	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
 275	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
 276	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
 277	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
 278	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
 279	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
 280	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
 281	       (unsigned long long)ui->synced_i_size);
 282	printk(KERN_DEBUG "\tui_size        %llu\n",
 283	       (unsigned long long)ui->ui_size);
 284	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
 285	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
 286	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
 287	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 288	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
 289
 290	if (!S_ISDIR(inode->i_mode))
 291		return;
 292
 293	printk(KERN_DEBUG "List of directory entries:\n");
 294	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 295
 296	lowest_dent_key(c, &key, inode->i_ino);
 297	while (1) {
 298		dent = ubifs_tnc_next_ent(c, &key, &nm);
 299		if (IS_ERR(dent)) {
 300			if (PTR_ERR(dent) != -ENOENT)
 301				printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
 302			break;
 303		}
 304
 305		printk(KERN_DEBUG "\t%d: %s (%s)\n",
 306		       count++, dent->name, get_dent_type(dent->type));
 
 
 307
 308		nm.name = dent->name;
 309		nm.len = le16_to_cpu(dent->nlen);
 310		kfree(pdent);
 311		pdent = dent;
 312		key_read(c, &dent->key, &key);
 313	}
 314	kfree(pdent);
 315}
 316
 317void dbg_dump_node(const struct ubifs_info *c, const void *node)
 318{
 319	int i, n;
 320	union ubifs_key key;
 321	const struct ubifs_ch *ch = node;
 322
 323	if (dbg_is_tst_rcvry(c))
 324		return;
 325
 326	/* If the magic is incorrect, just hexdump the first bytes */
 327	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 328		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 329		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 330			       (void *)node, UBIFS_CH_SZ, 1);
 331		return;
 332	}
 333
 
 
 
 
 
 
 
 334	spin_lock(&dbg_lock);
 335	dump_ch(node);
 336
 337	switch (ch->node_type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338	case UBIFS_PAD_NODE:
 339	{
 340		const struct ubifs_pad_node *pad = node;
 341
 342		printk(KERN_DEBUG "\tpad_len        %u\n",
 343		       le32_to_cpu(pad->pad_len));
 344		break;
 345	}
 346	case UBIFS_SB_NODE:
 347	{
 348		const struct ubifs_sb_node *sup = node;
 349		unsigned int sup_flags = le32_to_cpu(sup->flags);
 350
 351		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
 352		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 353		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
 354		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 355		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
 356		printk(KERN_DEBUG "\t  big_lpt      %u\n",
 357		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 358		printk(KERN_DEBUG "\t  space_fixup  %u\n",
 359		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 360		printk(KERN_DEBUG "\tmin_io_size    %u\n",
 361		       le32_to_cpu(sup->min_io_size));
 362		printk(KERN_DEBUG "\tleb_size       %u\n",
 363		       le32_to_cpu(sup->leb_size));
 364		printk(KERN_DEBUG "\tleb_cnt        %u\n",
 365		       le32_to_cpu(sup->leb_cnt));
 366		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
 367		       le32_to_cpu(sup->max_leb_cnt));
 368		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		printk(KERN_DEBUG "\tlog_lebs       %u\n",
 371		       le32_to_cpu(sup->log_lebs));
 372		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
 373		       le32_to_cpu(sup->lpt_lebs));
 374		printk(KERN_DEBUG "\torph_lebs      %u\n",
 375		       le32_to_cpu(sup->orph_lebs));
 376		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
 377		       le32_to_cpu(sup->jhead_cnt));
 378		printk(KERN_DEBUG "\tfanout         %u\n",
 379		       le32_to_cpu(sup->fanout));
 380		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
 381		       le32_to_cpu(sup->lsave_cnt));
 382		printk(KERN_DEBUG "\tdefault_compr  %u\n",
 383		       (int)le16_to_cpu(sup->default_compr));
 384		printk(KERN_DEBUG "\trp_size        %llu\n",
 385		       (unsigned long long)le64_to_cpu(sup->rp_size));
 386		printk(KERN_DEBUG "\trp_uid         %u\n",
 387		       le32_to_cpu(sup->rp_uid));
 388		printk(KERN_DEBUG "\trp_gid         %u\n",
 389		       le32_to_cpu(sup->rp_gid));
 390		printk(KERN_DEBUG "\tfmt_version    %u\n",
 391		       le32_to_cpu(sup->fmt_version));
 392		printk(KERN_DEBUG "\ttime_gran      %u\n",
 393		       le32_to_cpu(sup->time_gran));
 394		printk(KERN_DEBUG "\tUUID           %pUB\n",
 395		       sup->uuid);
 396		break;
 397	}
 398	case UBIFS_MST_NODE:
 399	{
 400		const struct ubifs_mst_node *mst = node;
 401
 402		printk(KERN_DEBUG "\thighest_inum   %llu\n",
 403		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 404		printk(KERN_DEBUG "\tcommit number  %llu\n",
 405		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 406		printk(KERN_DEBUG "\tflags          %#x\n",
 407		       le32_to_cpu(mst->flags));
 408		printk(KERN_DEBUG "\tlog_lnum       %u\n",
 409		       le32_to_cpu(mst->log_lnum));
 410		printk(KERN_DEBUG "\troot_lnum      %u\n",
 411		       le32_to_cpu(mst->root_lnum));
 412		printk(KERN_DEBUG "\troot_offs      %u\n",
 413		       le32_to_cpu(mst->root_offs));
 414		printk(KERN_DEBUG "\troot_len       %u\n",
 415		       le32_to_cpu(mst->root_len));
 416		printk(KERN_DEBUG "\tgc_lnum        %u\n",
 417		       le32_to_cpu(mst->gc_lnum));
 418		printk(KERN_DEBUG "\tihead_lnum     %u\n",
 419		       le32_to_cpu(mst->ihead_lnum));
 420		printk(KERN_DEBUG "\tihead_offs     %u\n",
 421		       le32_to_cpu(mst->ihead_offs));
 422		printk(KERN_DEBUG "\tindex_size     %llu\n",
 423		       (unsigned long long)le64_to_cpu(mst->index_size));
 424		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
 425		       le32_to_cpu(mst->lpt_lnum));
 426		printk(KERN_DEBUG "\tlpt_offs       %u\n",
 427		       le32_to_cpu(mst->lpt_offs));
 428		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
 429		       le32_to_cpu(mst->nhead_lnum));
 430		printk(KERN_DEBUG "\tnhead_offs     %u\n",
 431		       le32_to_cpu(mst->nhead_offs));
 432		printk(KERN_DEBUG "\tltab_lnum      %u\n",
 433		       le32_to_cpu(mst->ltab_lnum));
 434		printk(KERN_DEBUG "\tltab_offs      %u\n",
 435		       le32_to_cpu(mst->ltab_offs));
 436		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
 437		       le32_to_cpu(mst->lsave_lnum));
 438		printk(KERN_DEBUG "\tlsave_offs     %u\n",
 439		       le32_to_cpu(mst->lsave_offs));
 440		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
 441		       le32_to_cpu(mst->lscan_lnum));
 442		printk(KERN_DEBUG "\tleb_cnt        %u\n",
 443		       le32_to_cpu(mst->leb_cnt));
 444		printk(KERN_DEBUG "\tempty_lebs     %u\n",
 445		       le32_to_cpu(mst->empty_lebs));
 446		printk(KERN_DEBUG "\tidx_lebs       %u\n",
 447		       le32_to_cpu(mst->idx_lebs));
 448		printk(KERN_DEBUG "\ttotal_free     %llu\n",
 449		       (unsigned long long)le64_to_cpu(mst->total_free));
 450		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
 451		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 452		printk(KERN_DEBUG "\ttotal_used     %llu\n",
 453		       (unsigned long long)le64_to_cpu(mst->total_used));
 454		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
 455		       (unsigned long long)le64_to_cpu(mst->total_dead));
 456		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
 457		       (unsigned long long)le64_to_cpu(mst->total_dark));
 458		break;
 459	}
 460	case UBIFS_REF_NODE:
 461	{
 462		const struct ubifs_ref_node *ref = node;
 463
 464		printk(KERN_DEBUG "\tlnum           %u\n",
 465		       le32_to_cpu(ref->lnum));
 466		printk(KERN_DEBUG "\toffs           %u\n",
 467		       le32_to_cpu(ref->offs));
 468		printk(KERN_DEBUG "\tjhead          %u\n",
 469		       le32_to_cpu(ref->jhead));
 470		break;
 471	}
 472	case UBIFS_INO_NODE:
 473	{
 474		const struct ubifs_ino_node *ino = node;
 475
 476		key_read(c, &ino->key, &key);
 477		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 478		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
 
 479		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 480		printk(KERN_DEBUG "\tsize           %llu\n",
 481		       (unsigned long long)le64_to_cpu(ino->size));
 482		printk(KERN_DEBUG "\tnlink          %u\n",
 483		       le32_to_cpu(ino->nlink));
 484		printk(KERN_DEBUG "\tatime          %lld.%u\n",
 485		       (long long)le64_to_cpu(ino->atime_sec),
 486		       le32_to_cpu(ino->atime_nsec));
 487		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
 488		       (long long)le64_to_cpu(ino->mtime_sec),
 489		       le32_to_cpu(ino->mtime_nsec));
 490		printk(KERN_DEBUG "\tctime          %lld.%u\n",
 491		       (long long)le64_to_cpu(ino->ctime_sec),
 492		       le32_to_cpu(ino->ctime_nsec));
 493		printk(KERN_DEBUG "\tuid            %u\n",
 494		       le32_to_cpu(ino->uid));
 495		printk(KERN_DEBUG "\tgid            %u\n",
 496		       le32_to_cpu(ino->gid));
 497		printk(KERN_DEBUG "\tmode           %u\n",
 498		       le32_to_cpu(ino->mode));
 499		printk(KERN_DEBUG "\tflags          %#x\n",
 500		       le32_to_cpu(ino->flags));
 501		printk(KERN_DEBUG "\txattr_cnt      %u\n",
 502		       le32_to_cpu(ino->xattr_cnt));
 503		printk(KERN_DEBUG "\txattr_size     %u\n",
 504		       le32_to_cpu(ino->xattr_size));
 505		printk(KERN_DEBUG "\txattr_names    %u\n",
 506		       le32_to_cpu(ino->xattr_names));
 507		printk(KERN_DEBUG "\tcompr_type     %#x\n",
 508		       (int)le16_to_cpu(ino->compr_type));
 509		printk(KERN_DEBUG "\tdata len       %u\n",
 510		       le32_to_cpu(ino->data_len));
 511		break;
 512	}
 513	case UBIFS_DENT_NODE:
 514	case UBIFS_XENT_NODE:
 515	{
 516		const struct ubifs_dent_node *dent = node;
 517		int nlen = le16_to_cpu(dent->nlen);
 518
 519		key_read(c, &dent->key, &key);
 520		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 521		printk(KERN_DEBUG "\tinum           %llu\n",
 
 522		       (unsigned long long)le64_to_cpu(dent->inum));
 523		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
 524		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
 525		printk(KERN_DEBUG "\tname           ");
 526
 527		if (nlen > UBIFS_MAX_NLEN)
 528			printk(KERN_DEBUG "(bad name length, not printing, "
 529					  "bad or corrupted node)");
 530		else {
 531			for (i = 0; i < nlen && dent->name[i]; i++)
 532				printk(KERN_CONT "%c", dent->name[i]);
 
 533		}
 534		printk(KERN_CONT "\n");
 535
 536		break;
 537	}
 538	case UBIFS_DATA_NODE:
 539	{
 540		const struct ubifs_data_node *dn = node;
 541		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 542
 543		key_read(c, &dn->key, &key);
 544		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
 545		printk(KERN_DEBUG "\tsize           %u\n",
 546		       le32_to_cpu(dn->size));
 547		printk(KERN_DEBUG "\tcompr_typ      %d\n",
 548		       (int)le16_to_cpu(dn->compr_type));
 549		printk(KERN_DEBUG "\tdata size      %d\n",
 550		       dlen);
 551		printk(KERN_DEBUG "\tdata:\n");
 552		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 553			       (void *)&dn->data, dlen, 0);
 
 
 554		break;
 555	}
 556	case UBIFS_TRUN_NODE:
 557	{
 558		const struct ubifs_trun_node *trun = node;
 559
 560		printk(KERN_DEBUG "\tinum           %u\n",
 561		       le32_to_cpu(trun->inum));
 562		printk(KERN_DEBUG "\told_size       %llu\n",
 563		       (unsigned long long)le64_to_cpu(trun->old_size));
 564		printk(KERN_DEBUG "\tnew_size       %llu\n",
 565		       (unsigned long long)le64_to_cpu(trun->new_size));
 566		break;
 567	}
 568	case UBIFS_IDX_NODE:
 569	{
 570		const struct ubifs_idx_node *idx = node;
 
 
 
 
 
 
 
 
 571
 572		n = le16_to_cpu(idx->child_cnt);
 573		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
 574		printk(KERN_DEBUG "\tlevel          %d\n",
 575		       (int)le16_to_cpu(idx->level));
 576		printk(KERN_DEBUG "\tBranches:\n");
 577
 578		for (i = 0; i < n && i < c->fanout - 1; i++) {
 579			const struct ubifs_branch *br;
 580
 581			br = ubifs_idx_branch(c, idx, i);
 582			key_read(c, &br->key, &key);
 583			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
 584			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 585			       le32_to_cpu(br->len), DBGKEY(&key));
 
 
 586		}
 587		break;
 588	}
 589	case UBIFS_CS_NODE:
 590		break;
 591	case UBIFS_ORPH_NODE:
 592	{
 593		const struct ubifs_orph_node *orph = node;
 594
 595		printk(KERN_DEBUG "\tcommit number  %llu\n",
 596		       (unsigned long long)
 597				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 598		printk(KERN_DEBUG "\tlast node flag %llu\n",
 599		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 600		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 601		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
 602		for (i = 0; i < n; i++)
 603			printk(KERN_DEBUG "\t  ino %llu\n",
 604			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 605		break;
 606	}
 
 
 
 
 607	default:
 608		printk(KERN_DEBUG "node type %d was not recognized\n",
 609		       (int)ch->node_type);
 610	}
 
 
 611	spin_unlock(&dbg_lock);
 612}
 613
 614void dbg_dump_budget_req(const struct ubifs_budget_req *req)
 615{
 616	spin_lock(&dbg_lock);
 617	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
 618	       req->new_ino, req->dirtied_ino);
 619	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 620	       req->new_ino_d, req->dirtied_ino_d);
 621	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
 622	       req->new_page, req->dirtied_page);
 623	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
 624	       req->new_dent, req->mod_dent);
 625	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
 626	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
 627	       req->data_growth, req->dd_growth);
 628	spin_unlock(&dbg_lock);
 629}
 630
 631void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
 632{
 633	spin_lock(&dbg_lock);
 634	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
 635	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 636	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
 637	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 638	       lst->total_dirty);
 639	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
 640	       "total_dead %lld\n", lst->total_used, lst->total_dark,
 641	       lst->total_dead);
 642	spin_unlock(&dbg_lock);
 643}
 644
 645void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 646{
 647	int i;
 648	struct rb_node *rb;
 649	struct ubifs_bud *bud;
 650	struct ubifs_gced_idx_leb *idx_gc;
 651	long long available, outstanding, free;
 652
 653	spin_lock(&c->space_lock);
 654	spin_lock(&dbg_lock);
 655	printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
 656	       "total budget sum %lld\n", current->pid,
 657	       bi->data_growth + bi->dd_growth,
 658	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 659	printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
 660	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
 661	       bi->idx_growth);
 662	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
 663	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
 664	       bi->uncommitted_idx);
 665	printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 666	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 667	printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
 668	       bi->nospace, bi->nospace_rp);
 669	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 670	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 671
 672	if (bi != &c->bi)
 673		/*
 674		 * If we are dumping saved budgeting data, do not print
 675		 * additional information which is about the current state, not
 676		 * the old one which corresponded to the saved budgeting data.
 677		 */
 678		goto out_unlock;
 679
 680	printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 681	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 682	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 683	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 684	       atomic_long_read(&c->dirty_zn_cnt),
 685	       atomic_long_read(&c->clean_zn_cnt));
 686	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
 687	       c->gc_lnum, c->ihead_lnum);
 688
 689	/* If we are in R/O mode, journal heads do not exist */
 690	if (c->jheads)
 691		for (i = 0; i < c->jhead_cnt; i++)
 692			printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
 693			       dbg_jhead(c->jheads[i].wbuf.jhead),
 694			       c->jheads[i].wbuf.lnum);
 695	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 696		bud = rb_entry(rb, struct ubifs_bud, rb);
 697		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
 698	}
 699	list_for_each_entry(bud, &c->old_buds, list)
 700		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
 701	list_for_each_entry(idx_gc, &c->idx_gc, list)
 702		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
 703		       idx_gc->lnum, idx_gc->unmap);
 704	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
 705
 706	/* Print budgeting predictions */
 707	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 708	outstanding = c->bi.data_growth + c->bi.dd_growth;
 709	free = ubifs_get_free_space_nolock(c);
 710	printk(KERN_DEBUG "Budgeting predictions:\n");
 711	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
 712	       available, outstanding, free);
 713out_unlock:
 714	spin_unlock(&dbg_lock);
 715	spin_unlock(&c->space_lock);
 716}
 717
 718void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 719{
 720	int i, spc, dark = 0, dead = 0;
 721	struct rb_node *rb;
 722	struct ubifs_bud *bud;
 723
 724	spc = lp->free + lp->dirty;
 725	if (spc < c->dead_wm)
 726		dead = spc;
 727	else
 728		dark = ubifs_calc_dark(c, spc);
 729
 730	if (lp->flags & LPROPS_INDEX)
 731		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
 732		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 733		       lp->dirty, c->leb_size - spc, spc, lp->flags);
 734	else
 735		printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
 736		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 737		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 738		       c->leb_size - spc, spc, dark, dead,
 739		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 740
 741	if (lp->flags & LPROPS_TAKEN) {
 742		if (lp->flags & LPROPS_INDEX)
 743			printk(KERN_CONT "index, taken");
 744		else
 745			printk(KERN_CONT "taken");
 746	} else {
 747		const char *s;
 748
 749		if (lp->flags & LPROPS_INDEX) {
 750			switch (lp->flags & LPROPS_CAT_MASK) {
 751			case LPROPS_DIRTY_IDX:
 752				s = "dirty index";
 753				break;
 754			case LPROPS_FRDI_IDX:
 755				s = "freeable index";
 756				break;
 757			default:
 758				s = "index";
 759			}
 760		} else {
 761			switch (lp->flags & LPROPS_CAT_MASK) {
 762			case LPROPS_UNCAT:
 763				s = "not categorized";
 764				break;
 765			case LPROPS_DIRTY:
 766				s = "dirty";
 767				break;
 768			case LPROPS_FREE:
 769				s = "free";
 770				break;
 771			case LPROPS_EMPTY:
 772				s = "empty";
 773				break;
 774			case LPROPS_FREEABLE:
 775				s = "freeable";
 776				break;
 777			default:
 778				s = NULL;
 779				break;
 780			}
 781		}
 782		printk(KERN_CONT "%s", s);
 783	}
 784
 785	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 786		bud = rb_entry(rb, struct ubifs_bud, rb);
 787		if (bud->lnum == lp->lnum) {
 788			int head = 0;
 789			for (i = 0; i < c->jhead_cnt; i++) {
 790				/*
 791				 * Note, if we are in R/O mode or in the middle
 792				 * of mounting/re-mounting, the write-buffers do
 793				 * not exist.
 794				 */
 795				if (c->jheads &&
 796				    lp->lnum == c->jheads[i].wbuf.lnum) {
 797					printk(KERN_CONT ", jhead %s",
 798					       dbg_jhead(i));
 799					head = 1;
 800				}
 801			}
 802			if (!head)
 803				printk(KERN_CONT ", bud of jhead %s",
 804				       dbg_jhead(bud->jhead));
 805		}
 806	}
 807	if (lp->lnum == c->gc_lnum)
 808		printk(KERN_CONT ", GC LEB");
 809	printk(KERN_CONT ")\n");
 810}
 811
 812void dbg_dump_lprops(struct ubifs_info *c)
 813{
 814	int lnum, err;
 815	struct ubifs_lprops lp;
 816	struct ubifs_lp_stats lst;
 817
 818	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
 819	       current->pid);
 820	ubifs_get_lp_stats(c, &lst);
 821	dbg_dump_lstats(&lst);
 822
 823	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 824		err = ubifs_read_one_lp(c, lnum, &lp);
 825		if (err)
 826			ubifs_err("cannot read lprops for LEB %d", lnum);
 
 
 827
 828		dbg_dump_lprop(c, &lp);
 829	}
 830	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
 831	       current->pid);
 832}
 833
 834void dbg_dump_lpt_info(struct ubifs_info *c)
 835{
 836	int i;
 837
 838	spin_lock(&dbg_lock);
 839	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
 840	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
 841	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
 842	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
 843	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
 844	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
 845	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
 846	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
 847	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
 848	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
 849	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 850	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 851	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
 852	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
 853	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 854	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 855	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 856	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
 857	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
 858	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 859	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
 860	       c->nhead_lnum, c->nhead_offs);
 861	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
 862	       c->ltab_lnum, c->ltab_offs);
 863	if (c->big_lpt)
 864		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
 865		       c->lsave_lnum, c->lsave_offs);
 866	for (i = 0; i < c->lpt_lebs; i++)
 867		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
 868		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 869		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 870	spin_unlock(&dbg_lock);
 871}
 872
 873void dbg_dump_leb(const struct ubifs_info *c, int lnum)
 874{
 875	struct ubifs_scan_leb *sleb;
 876	struct ubifs_scan_node *snod;
 877	void *buf;
 878
 879	if (dbg_is_tst_rcvry(c))
 880		return;
 881
 882	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
 883	       current->pid, lnum);
 884
 885	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 886	if (!buf) {
 887		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 888		return;
 889	}
 890
 891	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 892	if (IS_ERR(sleb)) {
 893		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 894		goto out;
 895	}
 896
 897	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
 898	       sleb->nodes_cnt, sleb->endpt);
 899
 900	list_for_each_entry(snod, &sleb->nodes, list) {
 901		cond_resched();
 902		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
 903		       snod->offs, snod->len);
 904		dbg_dump_node(c, snod->node);
 905	}
 906
 907	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
 908	       current->pid, lnum);
 909	ubifs_scan_destroy(sleb);
 910
 911out:
 912	vfree(buf);
 913	return;
 914}
 915
 916void dbg_dump_znode(const struct ubifs_info *c,
 917		    const struct ubifs_znode *znode)
 918{
 919	int n;
 920	const struct ubifs_zbranch *zbr;
 
 921
 922	spin_lock(&dbg_lock);
 923	if (znode->parent)
 924		zbr = &znode->parent->zbranch[znode->iip];
 925	else
 926		zbr = &c->zroot;
 927
 928	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 929	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 930	       zbr->len, znode->parent, znode->iip, znode->level,
 931	       znode->child_cnt, znode->flags);
 932
 933	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 934		spin_unlock(&dbg_lock);
 935		return;
 936	}
 937
 938	printk(KERN_DEBUG "zbranches:\n");
 939	for (n = 0; n < znode->child_cnt; n++) {
 940		zbr = &znode->zbranch[n];
 941		if (znode->level > 0)
 942			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
 943					  "%s\n", n, zbr->znode, zbr->lnum,
 944					  zbr->offs, zbr->len,
 945					  DBGKEY(&zbr->key));
 946		else
 947			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
 948					  "%s\n", n, zbr->znode, zbr->lnum,
 949					  zbr->offs, zbr->len,
 950					  DBGKEY(&zbr->key));
 951	}
 952	spin_unlock(&dbg_lock);
 953}
 954
 955void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 956{
 957	int i;
 958
 959	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
 960	       current->pid, cat, heap->cnt);
 961	for (i = 0; i < heap->cnt; i++) {
 962		struct ubifs_lprops *lprops = heap->arr[i];
 963
 964		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
 965		       "flags %d\n", i, lprops->lnum, lprops->hpos,
 966		       lprops->free, lprops->dirty, lprops->flags);
 967	}
 968	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
 969}
 970
 971void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 972		    struct ubifs_nnode *parent, int iip)
 973{
 974	int i;
 975
 976	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
 977	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
 978	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 979	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
 980	       pnode->flags, iip, pnode->level, pnode->num);
 981	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 982		struct ubifs_lprops *lp = &pnode->lprops[i];
 983
 984		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
 985		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 986	}
 987}
 988
 989void dbg_dump_tnc(struct ubifs_info *c)
 990{
 991	struct ubifs_znode *znode;
 992	int level;
 993
 994	printk(KERN_DEBUG "\n");
 995	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
 996	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 997	level = znode->level;
 998	printk(KERN_DEBUG "== Level %d ==\n", level);
 999	while (znode) {
1000		if (level != znode->level) {
1001			level = znode->level;
1002			printk(KERN_DEBUG "== Level %d ==\n", level);
1003		}
1004		dbg_dump_znode(c, znode);
1005		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1006	}
1007	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1008}
1009
1010static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011		      void *priv)
1012{
1013	dbg_dump_znode(c, znode);
1014	return 0;
1015}
1016
1017/**
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1020 *
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1023 */
1024void dbg_dump_index(struct ubifs_info *c)
1025{
1026	dbg_walk_index(c, NULL, dump_znode, NULL);
1027}
1028
1029/**
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1032 *
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1035 */
1036void dbg_save_space_info(struct ubifs_info *c)
1037{
1038	struct ubifs_debug_info *d = c->dbg;
1039	int freeable_cnt;
1040
1041	spin_lock(&c->space_lock);
1042	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1045
1046	/*
1047	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048	 * affects the free space calculations, and UBIFS might not know about
1049	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050	 * only when we read their lprops, and we do this only lazily, upon the
1051	 * need. So at any given point of time @c->freeable_cnt might be not
1052	 * exactly accurate.
1053	 *
1054	 * Just one example about the issue we hit when we did not zero
1055	 * @c->freeable_cnt.
1056	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057	 *    amount of free space in @d->saved_free
1058	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059	 *    information from flash, where we cache LEBs from various
1060	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1063	 *    -> 'ubifs_add_to_cat()').
1064	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065	 *    becomes %1.
1066	 * 4. We calculate the amount of free space when the re-mount is
1067	 *    finished in 'dbg_check_space_info()' and it does not match
1068	 *    @d->saved_free.
1069	 */
1070	freeable_cnt = c->freeable_cnt;
1071	c->freeable_cnt = 0;
1072	d->saved_free = ubifs_get_free_space_nolock(c);
1073	c->freeable_cnt = freeable_cnt;
1074	spin_unlock(&c->space_lock);
1075}
1076
1077/**
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1080 *
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1084 * changed.
1085 */
1086int dbg_check_space_info(struct ubifs_info *c)
1087{
1088	struct ubifs_debug_info *d = c->dbg;
1089	struct ubifs_lp_stats lst;
1090	long long free;
1091	int freeable_cnt;
1092
1093	spin_lock(&c->space_lock);
1094	freeable_cnt = c->freeable_cnt;
1095	c->freeable_cnt = 0;
1096	free = ubifs_get_free_space_nolock(c);
1097	c->freeable_cnt = freeable_cnt;
1098	spin_unlock(&c->space_lock);
1099
1100	if (free != d->saved_free) {
1101		ubifs_err("free space changed from %lld to %lld",
1102			  d->saved_free, free);
1103		goto out;
1104	}
1105
1106	return 0;
1107
1108out:
1109	ubifs_msg("saved lprops statistics dump");
1110	dbg_dump_lstats(&d->saved_lst);
1111	ubifs_msg("saved budgeting info dump");
1112	dbg_dump_budg(c, &d->saved_bi);
1113	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114	ubifs_msg("current lprops statistics dump");
1115	ubifs_get_lp_stats(c, &lst);
1116	dbg_dump_lstats(&lst);
1117	ubifs_msg("current budgeting info dump");
1118	dbg_dump_budg(c, &c->bi);
1119	dump_stack();
1120	return -EINVAL;
1121}
1122
1123/**
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1127 *
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1131 * %-EINVAL if not.
1132 */
1133int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1134{
1135	int err = 0;
1136	struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138	if (!dbg_is_chk_gen(c))
1139		return 0;
1140	if (!S_ISREG(inode->i_mode))
1141		return 0;
1142
1143	mutex_lock(&ui->ui_mutex);
1144	spin_lock(&ui->ui_lock);
1145	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147			  "is clean", ui->ui_size, ui->synced_i_size);
1148		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149			  inode->i_mode, i_size_read(inode));
1150		dbg_dump_stack();
1151		err = -EINVAL;
1152	}
1153	spin_unlock(&ui->ui_lock);
1154	mutex_unlock(&ui->ui_mutex);
1155	return err;
1156}
1157
1158/*
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1163 *
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1166 * failure.
1167 *
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1170 */
1171int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1172{
1173	unsigned int nlink = 2;
1174	union ubifs_key key;
1175	struct ubifs_dent_node *dent, *pdent = NULL;
1176	struct qstr nm = { .name = NULL };
1177	loff_t size = UBIFS_INO_NODE_SZ;
1178
1179	if (!dbg_is_chk_gen(c))
1180		return 0;
1181
1182	if (!S_ISDIR(dir->i_mode))
1183		return 0;
1184
1185	lowest_dent_key(c, &key, dir->i_ino);
1186	while (1) {
1187		int err;
1188
1189		dent = ubifs_tnc_next_ent(c, &key, &nm);
1190		if (IS_ERR(dent)) {
1191			err = PTR_ERR(dent);
1192			if (err == -ENOENT)
1193				break;
 
1194			return err;
1195		}
1196
1197		nm.name = dent->name;
1198		nm.len = le16_to_cpu(dent->nlen);
1199		size += CALC_DENT_SIZE(nm.len);
1200		if (dent->type == UBIFS_ITYPE_DIR)
1201			nlink += 1;
1202		kfree(pdent);
1203		pdent = dent;
1204		key_read(c, &dent->key, &key);
1205	}
1206	kfree(pdent);
1207
1208	if (i_size_read(dir) != size) {
1209		ubifs_err("directory inode %lu has size %llu, "
1210			  "but calculated size is %llu", dir->i_ino,
1211			  (unsigned long long)i_size_read(dir),
1212			  (unsigned long long)size);
1213		dbg_dump_inode(c, dir);
1214		dump_stack();
1215		return -EINVAL;
1216	}
1217	if (dir->i_nlink != nlink) {
1218		ubifs_err("directory inode %lu has nlink %u, but calculated "
1219			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220		dbg_dump_inode(c, dir);
1221		dump_stack();
1222		return -EINVAL;
1223	}
1224
1225	return 0;
1226}
1227
1228/**
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1233 *
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1240 */
1241static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242			       struct ubifs_zbranch *zbr2)
1243{
1244	int err, nlen1, nlen2, cmp;
1245	struct ubifs_dent_node *dent1, *dent2;
1246	union ubifs_key key;
 
1247
1248	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250	if (!dent1)
1251		return -ENOMEM;
1252	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253	if (!dent2) {
1254		err = -ENOMEM;
1255		goto out_free;
1256	}
1257
1258	err = ubifs_tnc_read_node(c, zbr1, dent1);
1259	if (err)
1260		goto out_free;
1261	err = ubifs_validate_entry(c, dent1);
1262	if (err)
1263		goto out_free;
1264
1265	err = ubifs_tnc_read_node(c, zbr2, dent2);
1266	if (err)
1267		goto out_free;
1268	err = ubifs_validate_entry(c, dent2);
1269	if (err)
1270		goto out_free;
1271
1272	/* Make sure node keys are the same as in zbranch */
1273	err = 1;
1274	key_read(c, &dent1->key, &key);
1275	if (keys_cmp(c, &zbr1->key, &key)) {
1276		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277			zbr1->offs, DBGKEY(&key));
1278		dbg_err("but it should have key %s according to tnc",
1279			DBGKEY(&zbr1->key));
1280		dbg_dump_node(c, dent1);
 
 
1281		goto out_free;
1282	}
1283
1284	key_read(c, &dent2->key, &key);
1285	if (keys_cmp(c, &zbr2->key, &key)) {
1286		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287			zbr1->offs, DBGKEY(&key));
1288		dbg_err("but it should have key %s according to tnc",
1289			DBGKEY(&zbr2->key));
1290		dbg_dump_node(c, dent2);
 
 
1291		goto out_free;
1292	}
1293
1294	nlen1 = le16_to_cpu(dent1->nlen);
1295	nlen2 = le16_to_cpu(dent2->nlen);
1296
1297	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299		err = 0;
1300		goto out_free;
1301	}
1302	if (cmp == 0 && nlen1 == nlen2)
1303		dbg_err("2 xent/dent nodes with the same name");
1304	else
1305		dbg_err("bad order of colliding key %s",
1306			DBGKEY(&key));
1307
1308	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309	dbg_dump_node(c, dent1);
1310	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311	dbg_dump_node(c, dent2);
1312
1313out_free:
1314	kfree(dent2);
1315	kfree(dent1);
1316	return err;
1317}
1318
1319/**
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1323 *
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1326 */
1327static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1328{
1329	struct ubifs_znode *znode = zbr->znode;
1330	struct ubifs_znode *zp = znode->parent;
1331	int n, err, cmp;
1332
1333	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334		err = 1;
1335		goto out;
1336	}
1337	if (znode->level < 0) {
1338		err = 2;
1339		goto out;
1340	}
1341	if (znode->iip < 0 || znode->iip >= c->fanout) {
1342		err = 3;
1343		goto out;
1344	}
1345
1346	if (zbr->len == 0)
1347		/* Only dirty zbranch may have no on-flash nodes */
1348		if (!ubifs_zn_dirty(znode)) {
1349			err = 4;
1350			goto out;
1351		}
1352
1353	if (ubifs_zn_dirty(znode)) {
1354		/*
1355		 * If znode is dirty, its parent has to be dirty as well. The
1356		 * order of the operation is important, so we have to have
1357		 * memory barriers.
1358		 */
1359		smp_mb();
1360		if (zp && !ubifs_zn_dirty(zp)) {
1361			/*
1362			 * The dirty flag is atomic and is cleared outside the
1363			 * TNC mutex, so znode's dirty flag may now have
1364			 * been cleared. The child is always cleared before the
1365			 * parent, so we just need to check again.
1366			 */
1367			smp_mb();
1368			if (ubifs_zn_dirty(znode)) {
1369				err = 5;
1370				goto out;
1371			}
1372		}
1373	}
1374
1375	if (zp) {
1376		const union ubifs_key *min, *max;
1377
1378		if (znode->level != zp->level - 1) {
1379			err = 6;
1380			goto out;
1381		}
1382
1383		/* Make sure the 'parent' pointer in our znode is correct */
1384		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385		if (!err) {
1386			/* This zbranch does not exist in the parent */
1387			err = 7;
1388			goto out;
1389		}
1390
1391		if (znode->iip >= zp->child_cnt) {
1392			err = 8;
1393			goto out;
1394		}
1395
1396		if (znode->iip != n) {
1397			/* This may happen only in case of collisions */
1398			if (keys_cmp(c, &zp->zbranch[n].key,
1399				     &zp->zbranch[znode->iip].key)) {
1400				err = 9;
1401				goto out;
1402			}
1403			n = znode->iip;
1404		}
1405
1406		/*
1407		 * Make sure that the first key in our znode is greater than or
1408		 * equal to the key in the pointing zbranch.
1409		 */
1410		min = &zbr->key;
1411		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412		if (cmp == 1) {
1413			err = 10;
1414			goto out;
1415		}
1416
1417		if (n + 1 < zp->child_cnt) {
1418			max = &zp->zbranch[n + 1].key;
1419
1420			/*
1421			 * Make sure the last key in our znode is less or
1422			 * equivalent than the key in the zbranch which goes
1423			 * after our pointing zbranch.
1424			 */
1425			cmp = keys_cmp(c, max,
1426				&znode->zbranch[znode->child_cnt - 1].key);
1427			if (cmp == -1) {
1428				err = 11;
1429				goto out;
1430			}
1431		}
1432	} else {
1433		/* This may only be root znode */
1434		if (zbr != &c->zroot) {
1435			err = 12;
1436			goto out;
1437		}
1438	}
1439
1440	/*
1441	 * Make sure that next key is greater or equivalent then the previous
1442	 * one.
1443	 */
1444	for (n = 1; n < znode->child_cnt; n++) {
1445		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446			       &znode->zbranch[n].key);
1447		if (cmp > 0) {
1448			err = 13;
1449			goto out;
1450		}
1451		if (cmp == 0) {
1452			/* This can only be keys with colliding hash */
1453			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454				err = 14;
1455				goto out;
1456			}
1457
1458			if (znode->level != 0 || c->replaying)
1459				continue;
1460
1461			/*
1462			 * Colliding keys should follow binary order of
1463			 * corresponding xentry/dentry names.
1464			 */
1465			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466						  &znode->zbranch[n]);
1467			if (err < 0)
1468				return err;
1469			if (err) {
1470				err = 15;
1471				goto out;
1472			}
1473		}
1474	}
1475
1476	for (n = 0; n < znode->child_cnt; n++) {
1477		if (!znode->zbranch[n].znode &&
1478		    (znode->zbranch[n].lnum == 0 ||
1479		     znode->zbranch[n].len == 0)) {
1480			err = 16;
1481			goto out;
1482		}
1483
1484		if (znode->zbranch[n].lnum != 0 &&
1485		    znode->zbranch[n].len == 0) {
1486			err = 17;
1487			goto out;
1488		}
1489
1490		if (znode->zbranch[n].lnum == 0 &&
1491		    znode->zbranch[n].len != 0) {
1492			err = 18;
1493			goto out;
1494		}
1495
1496		if (znode->zbranch[n].lnum == 0 &&
1497		    znode->zbranch[n].offs != 0) {
1498			err = 19;
1499			goto out;
1500		}
1501
1502		if (znode->level != 0 && znode->zbranch[n].znode)
1503			if (znode->zbranch[n].znode->parent != znode) {
1504				err = 20;
1505				goto out;
1506			}
1507	}
1508
1509	return 0;
1510
1511out:
1512	ubifs_err("failed, error %d", err);
1513	ubifs_msg("dump of the znode");
1514	dbg_dump_znode(c, znode);
1515	if (zp) {
1516		ubifs_msg("dump of the parent znode");
1517		dbg_dump_znode(c, zp);
1518	}
1519	dump_stack();
1520	return -EINVAL;
1521}
1522
1523/**
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1527 *
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1530 */
1531int dbg_check_tnc(struct ubifs_info *c, int extra)
1532{
1533	struct ubifs_znode *znode;
1534	long clean_cnt = 0, dirty_cnt = 0;
1535	int err, last;
1536
1537	if (!dbg_is_chk_index(c))
1538		return 0;
1539
1540	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541	if (!c->zroot.znode)
1542		return 0;
1543
1544	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545	while (1) {
1546		struct ubifs_znode *prev;
1547		struct ubifs_zbranch *zbr;
1548
1549		if (!znode->parent)
1550			zbr = &c->zroot;
1551		else
1552			zbr = &znode->parent->zbranch[znode->iip];
1553
1554		err = dbg_check_znode(c, zbr);
1555		if (err)
1556			return err;
1557
1558		if (extra) {
1559			if (ubifs_zn_dirty(znode))
1560				dirty_cnt += 1;
1561			else
1562				clean_cnt += 1;
1563		}
1564
1565		prev = znode;
1566		znode = ubifs_tnc_postorder_next(znode);
1567		if (!znode)
1568			break;
1569
1570		/*
1571		 * If the last key of this znode is equivalent to the first key
1572		 * of the next znode (collision), then check order of the keys.
1573		 */
1574		last = prev->child_cnt - 1;
1575		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576		    !keys_cmp(c, &prev->zbranch[last].key,
1577			      &znode->zbranch[0].key)) {
1578			err = dbg_check_key_order(c, &prev->zbranch[last],
1579						  &znode->zbranch[0]);
1580			if (err < 0)
1581				return err;
1582			if (err) {
1583				ubifs_msg("first znode");
1584				dbg_dump_znode(c, prev);
1585				ubifs_msg("second znode");
1586				dbg_dump_znode(c, znode);
1587				return -EINVAL;
1588			}
1589		}
1590	}
1591
1592	if (extra) {
1593		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595				  atomic_long_read(&c->clean_zn_cnt),
1596				  clean_cnt);
1597			return -EINVAL;
1598		}
1599		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601				  atomic_long_read(&c->dirty_zn_cnt),
1602				  dirty_cnt);
1603			return -EINVAL;
1604		}
1605	}
1606
1607	return 0;
1608}
1609
1610/**
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1616 *
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1620 *
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1623 * behavior.
1624 */
1625int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626		   dbg_znode_callback znode_cb, void *priv)
1627{
1628	int err;
1629	struct ubifs_zbranch *zbr;
1630	struct ubifs_znode *znode, *child;
1631
1632	mutex_lock(&c->tnc_mutex);
1633	/* If the root indexing node is not in TNC - pull it */
1634	if (!c->zroot.znode) {
1635		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636		if (IS_ERR(c->zroot.znode)) {
1637			err = PTR_ERR(c->zroot.znode);
1638			c->zroot.znode = NULL;
1639			goto out_unlock;
1640		}
1641	}
1642
1643	/*
1644	 * We are going to traverse the indexing tree in the postorder manner.
1645	 * Go down and find the leftmost indexing node where we are going to
1646	 * start from.
1647	 */
1648	znode = c->zroot.znode;
1649	while (znode->level > 0) {
1650		zbr = &znode->zbranch[0];
1651		child = zbr->znode;
1652		if (!child) {
1653			child = ubifs_load_znode(c, zbr, znode, 0);
1654			if (IS_ERR(child)) {
1655				err = PTR_ERR(child);
1656				goto out_unlock;
1657			}
1658			zbr->znode = child;
1659		}
1660
1661		znode = child;
1662	}
1663
1664	/* Iterate over all indexing nodes */
1665	while (1) {
1666		int idx;
1667
1668		cond_resched();
1669
1670		if (znode_cb) {
1671			err = znode_cb(c, znode, priv);
1672			if (err) {
1673				ubifs_err("znode checking function returned "
1674					  "error %d", err);
1675				dbg_dump_znode(c, znode);
1676				goto out_dump;
1677			}
1678		}
1679		if (leaf_cb && znode->level == 0) {
1680			for (idx = 0; idx < znode->child_cnt; idx++) {
1681				zbr = &znode->zbranch[idx];
1682				err = leaf_cb(c, zbr, priv);
1683				if (err) {
1684					ubifs_err("leaf checking function "
1685						  "returned error %d, for leaf "
1686						  "at LEB %d:%d",
1687						  err, zbr->lnum, zbr->offs);
1688					goto out_dump;
1689				}
1690			}
1691		}
1692
1693		if (!znode->parent)
1694			break;
1695
1696		idx = znode->iip + 1;
1697		znode = znode->parent;
1698		if (idx < znode->child_cnt) {
1699			/* Switch to the next index in the parent */
1700			zbr = &znode->zbranch[idx];
1701			child = zbr->znode;
1702			if (!child) {
1703				child = ubifs_load_znode(c, zbr, znode, idx);
1704				if (IS_ERR(child)) {
1705					err = PTR_ERR(child);
1706					goto out_unlock;
1707				}
1708				zbr->znode = child;
1709			}
1710			znode = child;
1711		} else
1712			/*
1713			 * This is the last child, switch to the parent and
1714			 * continue.
1715			 */
1716			continue;
1717
1718		/* Go to the lowest leftmost znode in the new sub-tree */
1719		while (znode->level > 0) {
1720			zbr = &znode->zbranch[0];
1721			child = zbr->znode;
1722			if (!child) {
1723				child = ubifs_load_znode(c, zbr, znode, 0);
1724				if (IS_ERR(child)) {
1725					err = PTR_ERR(child);
1726					goto out_unlock;
1727				}
1728				zbr->znode = child;
1729			}
1730			znode = child;
1731		}
1732	}
1733
1734	mutex_unlock(&c->tnc_mutex);
1735	return 0;
1736
1737out_dump:
1738	if (znode->parent)
1739		zbr = &znode->parent->zbranch[znode->iip];
1740	else
1741		zbr = &c->zroot;
1742	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743	dbg_dump_znode(c, znode);
1744out_unlock:
1745	mutex_unlock(&c->tnc_mutex);
1746	return err;
1747}
1748
1749/**
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1754 *
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1757 * by @priv.
1758 */
1759static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1760{
1761	long long *idx_size = priv;
1762	int add;
1763
1764	add = ubifs_idx_node_sz(c, znode->child_cnt);
1765	add = ALIGN(add, 8);
1766	*idx_size += add;
1767	return 0;
1768}
1769
1770/**
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1774 *
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1778 */
1779int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1780{
1781	int err;
1782	long long calc = 0;
1783
1784	if (!dbg_is_chk_index(c))
1785		return 0;
1786
1787	err = dbg_walk_index(c, NULL, add_size, &calc);
1788	if (err) {
1789		ubifs_err("error %d while walking the index", err);
1790		return err;
1791	}
1792
1793	if (calc != idx_size) {
1794		ubifs_err("index size check failed: calculated size is %lld, "
1795			  "should be %lld", calc, idx_size);
1796		dump_stack();
1797		return -EINVAL;
 
1798	}
1799
1800	return 0;
 
 
 
 
1801}
1802
1803/**
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 *              while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1815 *            inode)
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 *             inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1822 */
1823struct fsck_inode {
1824	struct rb_node rb;
1825	ino_t inum;
1826	umode_t mode;
1827	unsigned int nlink;
1828	unsigned int xattr_cnt;
1829	int references;
1830	int calc_cnt;
1831	long long size;
1832	unsigned int xattr_sz;
1833	long long calc_sz;
1834	long long calc_xcnt;
1835	long long calc_xsz;
1836	unsigned int xattr_nms;
1837	long long calc_xnms;
1838};
1839
1840/**
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1843 */
1844struct fsck_data {
1845	struct rb_root inodes;
1846};
1847
1848/**
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1853 *
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1857 */
1858static struct fsck_inode *add_inode(struct ubifs_info *c,
1859				    struct fsck_data *fsckd,
1860				    struct ubifs_ino_node *ino)
1861{
1862	struct rb_node **p, *parent = NULL;
1863	struct fsck_inode *fscki;
1864	ino_t inum = key_inum_flash(c, &ino->key);
1865	struct inode *inode;
1866	struct ubifs_inode *ui;
1867
1868	p = &fsckd->inodes.rb_node;
1869	while (*p) {
1870		parent = *p;
1871		fscki = rb_entry(parent, struct fsck_inode, rb);
1872		if (inum < fscki->inum)
1873			p = &(*p)->rb_left;
1874		else if (inum > fscki->inum)
1875			p = &(*p)->rb_right;
1876		else
1877			return fscki;
1878	}
1879
1880	if (inum > c->highest_inum) {
1881		ubifs_err("too high inode number, max. is %lu",
1882			  (unsigned long)c->highest_inum);
1883		return ERR_PTR(-EINVAL);
1884	}
1885
1886	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887	if (!fscki)
1888		return ERR_PTR(-ENOMEM);
1889
1890	inode = ilookup(c->vfs_sb, inum);
1891
1892	fscki->inum = inum;
1893	/*
1894	 * If the inode is present in the VFS inode cache, use it instead of
1895	 * the on-flash inode which might be out-of-date. E.g., the size might
1896	 * be out-of-date. If we do not do this, the following may happen, for
1897	 * example:
1898	 *   1. A power cut happens
1899	 *   2. We mount the file-system R/O, the replay process fixes up the
1900	 *      inode size in the VFS cache, but on on-flash.
1901	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1902	 *      size.
1903	 */
1904	if (!inode) {
1905		fscki->nlink = le32_to_cpu(ino->nlink);
1906		fscki->size = le64_to_cpu(ino->size);
1907		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910		fscki->mode = le32_to_cpu(ino->mode);
1911	} else {
1912		ui = ubifs_inode(inode);
1913		fscki->nlink = inode->i_nlink;
1914		fscki->size = inode->i_size;
1915		fscki->xattr_cnt = ui->xattr_cnt;
1916		fscki->xattr_sz = ui->xattr_size;
1917		fscki->xattr_nms = ui->xattr_names;
1918		fscki->mode = inode->i_mode;
1919		iput(inode);
1920	}
1921
1922	if (S_ISDIR(fscki->mode)) {
1923		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924		fscki->calc_cnt = 2;
1925	}
1926
1927	rb_link_node(&fscki->rb, parent, p);
1928	rb_insert_color(&fscki->rb, &fsckd->inodes);
1929
1930	return fscki;
1931}
1932
1933/**
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1937 *
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1941 */
1942static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1943{
1944	struct rb_node *p;
1945	struct fsck_inode *fscki;
1946
1947	p = fsckd->inodes.rb_node;
1948	while (p) {
1949		fscki = rb_entry(p, struct fsck_inode, rb);
1950		if (inum < fscki->inum)
1951			p = p->rb_left;
1952		else if (inum > fscki->inum)
1953			p = p->rb_right;
1954		else
1955			return fscki;
1956	}
1957	return NULL;
1958}
1959
1960/**
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1965 *
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1969 * failure.
1970 */
1971static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972					 struct fsck_data *fsckd, ino_t inum)
1973{
1974	int n, err;
1975	union ubifs_key key;
1976	struct ubifs_znode *znode;
1977	struct ubifs_zbranch *zbr;
1978	struct ubifs_ino_node *ino;
1979	struct fsck_inode *fscki;
1980
1981	fscki = search_inode(fsckd, inum);
1982	if (fscki)
1983		return fscki;
1984
1985	ino_key_init(c, &key, inum);
1986	err = ubifs_lookup_level0(c, &key, &znode, &n);
1987	if (!err) {
1988		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989		return ERR_PTR(-ENOENT);
1990	} else if (err < 0) {
1991		ubifs_err("error %d while looking up inode %lu",
1992			  err, (unsigned long)inum);
1993		return ERR_PTR(err);
1994	}
1995
1996	zbr = &znode->zbranch[n];
1997	if (zbr->len < UBIFS_INO_NODE_SZ) {
1998		ubifs_err("bad node %lu node length %d",
1999			  (unsigned long)inum, zbr->len);
2000		return ERR_PTR(-EINVAL);
2001	}
2002
2003	ino = kmalloc(zbr->len, GFP_NOFS);
2004	if (!ino)
2005		return ERR_PTR(-ENOMEM);
2006
2007	err = ubifs_tnc_read_node(c, zbr, ino);
2008	if (err) {
2009		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010			  zbr->lnum, zbr->offs, err);
2011		kfree(ino);
2012		return ERR_PTR(err);
2013	}
2014
2015	fscki = add_inode(c, fsckd, ino);
2016	kfree(ino);
2017	if (IS_ERR(fscki)) {
2018		ubifs_err("error %ld while adding inode %lu node",
2019			  PTR_ERR(fscki), (unsigned long)inum);
2020		return fscki;
2021	}
2022
2023	return fscki;
2024}
2025
2026/**
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2031 *
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2041 */
2042static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043		      void *priv)
2044{
2045	ino_t inum;
2046	void *node;
2047	struct ubifs_ch *ch;
2048	int err, type = key_type(c, &zbr->key);
2049	struct fsck_inode *fscki;
2050
2051	if (zbr->len < UBIFS_CH_SZ) {
2052		ubifs_err("bad leaf length %d (LEB %d:%d)",
2053			  zbr->len, zbr->lnum, zbr->offs);
2054		return -EINVAL;
2055	}
2056
2057	node = kmalloc(zbr->len, GFP_NOFS);
2058	if (!node)
2059		return -ENOMEM;
2060
2061	err = ubifs_tnc_read_node(c, zbr, node);
2062	if (err) {
2063		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064			  zbr->lnum, zbr->offs, err);
2065		goto out_free;
2066	}
2067
2068	/* If this is an inode node, add it to RB-tree of inodes */
2069	if (type == UBIFS_INO_KEY) {
2070		fscki = add_inode(c, priv, node);
2071		if (IS_ERR(fscki)) {
2072			err = PTR_ERR(fscki);
2073			ubifs_err("error %d while adding inode node", err);
2074			goto out_dump;
2075		}
2076		goto out;
2077	}
2078
2079	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080	    type != UBIFS_DATA_KEY) {
2081		ubifs_err("unexpected node type %d at LEB %d:%d",
2082			  type, zbr->lnum, zbr->offs);
2083		err = -EINVAL;
2084		goto out_free;
2085	}
2086
2087	ch = node;
2088	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089		ubifs_err("too high sequence number, max. is %llu",
2090			  c->max_sqnum);
2091		err = -EINVAL;
2092		goto out_dump;
2093	}
2094
2095	if (type == UBIFS_DATA_KEY) {
2096		long long blk_offs;
2097		struct ubifs_data_node *dn = node;
2098
 
 
2099		/*
2100		 * Search the inode node this data node belongs to and insert
2101		 * it to the RB-tree of inodes.
2102		 */
2103		inum = key_inum_flash(c, &dn->key);
2104		fscki = read_add_inode(c, priv, inum);
2105		if (IS_ERR(fscki)) {
2106			err = PTR_ERR(fscki);
2107			ubifs_err("error %d while processing data node and "
2108				  "trying to find inode node %lu",
2109				  err, (unsigned long)inum);
2110			goto out_dump;
2111		}
2112
2113		/* Make sure the data node is within inode size */
2114		blk_offs = key_block_flash(c, &dn->key);
2115		blk_offs <<= UBIFS_BLOCK_SHIFT;
2116		blk_offs += le32_to_cpu(dn->size);
2117		if (blk_offs > fscki->size) {
2118			ubifs_err("data node at LEB %d:%d is not within inode "
2119				  "size %lld", zbr->lnum, zbr->offs,
2120				  fscki->size);
2121			err = -EINVAL;
2122			goto out_dump;
2123		}
2124	} else {
2125		int nlen;
2126		struct ubifs_dent_node *dent = node;
2127		struct fsck_inode *fscki1;
2128
 
 
2129		err = ubifs_validate_entry(c, dent);
2130		if (err)
2131			goto out_dump;
2132
2133		/*
2134		 * Search the inode node this entry refers to and the parent
2135		 * inode node and insert them to the RB-tree of inodes.
2136		 */
2137		inum = le64_to_cpu(dent->inum);
2138		fscki = read_add_inode(c, priv, inum);
2139		if (IS_ERR(fscki)) {
2140			err = PTR_ERR(fscki);
2141			ubifs_err("error %d while processing entry node and "
2142				  "trying to find inode node %lu",
2143				  err, (unsigned long)inum);
2144			goto out_dump;
2145		}
2146
2147		/* Count how many direntries or xentries refers this inode */
2148		fscki->references += 1;
2149
2150		inum = key_inum_flash(c, &dent->key);
2151		fscki1 = read_add_inode(c, priv, inum);
2152		if (IS_ERR(fscki1)) {
2153			err = PTR_ERR(fscki1);
2154			ubifs_err("error %d while processing entry node and "
2155				  "trying to find parent inode node %lu",
2156				  err, (unsigned long)inum);
2157			goto out_dump;
2158		}
2159
2160		nlen = le16_to_cpu(dent->nlen);
2161		if (type == UBIFS_XENT_KEY) {
2162			fscki1->calc_xcnt += 1;
2163			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165			fscki1->calc_xnms += nlen;
2166		} else {
2167			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168			if (dent->type == UBIFS_ITYPE_DIR)
2169				fscki1->calc_cnt += 1;
2170		}
2171	}
2172
2173out:
2174	kfree(node);
2175	return 0;
2176
2177out_dump:
2178	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179	dbg_dump_node(c, node);
2180out_free:
2181	kfree(node);
2182	return err;
2183}
2184
2185/**
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2188 */
2189static void free_inodes(struct fsck_data *fsckd)
2190{
2191	struct rb_node *this = fsckd->inodes.rb_node;
2192	struct fsck_inode *fscki;
2193
2194	while (this) {
2195		if (this->rb_left)
2196			this = this->rb_left;
2197		else if (this->rb_right)
2198			this = this->rb_right;
2199		else {
2200			fscki = rb_entry(this, struct fsck_inode, rb);
2201			this = rb_parent(this);
2202			if (this) {
2203				if (this->rb_left == &fscki->rb)
2204					this->rb_left = NULL;
2205				else
2206					this->rb_right = NULL;
2207			}
2208			kfree(fscki);
2209		}
2210	}
2211}
2212
2213/**
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2217 *
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2222 */
2223static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2224{
2225	int n, err;
2226	union ubifs_key key;
2227	struct ubifs_znode *znode;
2228	struct ubifs_zbranch *zbr;
2229	struct ubifs_ino_node *ino;
2230	struct fsck_inode *fscki;
2231	struct rb_node *this = rb_first(&fsckd->inodes);
2232
2233	while (this) {
2234		fscki = rb_entry(this, struct fsck_inode, rb);
2235		this = rb_next(this);
2236
2237		if (S_ISDIR(fscki->mode)) {
2238			/*
2239			 * Directories have to have exactly one reference (they
2240			 * cannot have hardlinks), although root inode is an
2241			 * exception.
2242			 */
2243			if (fscki->inum != UBIFS_ROOT_INO &&
2244			    fscki->references != 1) {
2245				ubifs_err("directory inode %lu has %d "
2246					  "direntries which refer it, but "
2247					  "should be 1",
2248					  (unsigned long)fscki->inum,
2249					  fscki->references);
2250				goto out_dump;
2251			}
2252			if (fscki->inum == UBIFS_ROOT_INO &&
2253			    fscki->references != 0) {
2254				ubifs_err("root inode %lu has non-zero (%d) "
2255					  "direntries which refer it",
2256					  (unsigned long)fscki->inum,
2257					  fscki->references);
2258				goto out_dump;
2259			}
2260			if (fscki->calc_sz != fscki->size) {
2261				ubifs_err("directory inode %lu size is %lld, "
2262					  "but calculated size is %lld",
2263					  (unsigned long)fscki->inum,
2264					  fscki->size, fscki->calc_sz);
2265				goto out_dump;
2266			}
2267			if (fscki->calc_cnt != fscki->nlink) {
2268				ubifs_err("directory inode %lu nlink is %d, "
2269					  "but calculated nlink is %d",
2270					  (unsigned long)fscki->inum,
2271					  fscki->nlink, fscki->calc_cnt);
2272				goto out_dump;
2273			}
2274		} else {
2275			if (fscki->references != fscki->nlink) {
2276				ubifs_err("inode %lu nlink is %d, but "
2277					  "calculated nlink is %d",
2278					  (unsigned long)fscki->inum,
2279					  fscki->nlink, fscki->references);
2280				goto out_dump;
2281			}
2282		}
2283		if (fscki->xattr_sz != fscki->calc_xsz) {
2284			ubifs_err("inode %lu has xattr size %u, but "
2285				  "calculated size is %lld",
2286				  (unsigned long)fscki->inum, fscki->xattr_sz,
2287				  fscki->calc_xsz);
2288			goto out_dump;
2289		}
2290		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291			ubifs_err("inode %lu has %u xattrs, but "
2292				  "calculated count is %lld",
2293				  (unsigned long)fscki->inum,
2294				  fscki->xattr_cnt, fscki->calc_xcnt);
2295			goto out_dump;
2296		}
2297		if (fscki->xattr_nms != fscki->calc_xnms) {
2298			ubifs_err("inode %lu has xattr names' size %u, but "
2299				  "calculated names' size is %lld",
2300				  (unsigned long)fscki->inum, fscki->xattr_nms,
2301				  fscki->calc_xnms);
2302			goto out_dump;
2303		}
2304	}
2305
2306	return 0;
2307
2308out_dump:
2309	/* Read the bad inode and dump it */
2310	ino_key_init(c, &key, fscki->inum);
2311	err = ubifs_lookup_level0(c, &key, &znode, &n);
2312	if (!err) {
2313		ubifs_err("inode %lu not found in index",
2314			  (unsigned long)fscki->inum);
2315		return -ENOENT;
2316	} else if (err < 0) {
2317		ubifs_err("error %d while looking up inode %lu",
2318			  err, (unsigned long)fscki->inum);
2319		return err;
2320	}
2321
2322	zbr = &znode->zbranch[n];
2323	ino = kmalloc(zbr->len, GFP_NOFS);
2324	if (!ino)
2325		return -ENOMEM;
2326
2327	err = ubifs_tnc_read_node(c, zbr, ino);
2328	if (err) {
2329		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330			  zbr->lnum, zbr->offs, err);
2331		kfree(ino);
2332		return err;
2333	}
2334
2335	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337	dbg_dump_node(c, ino);
2338	kfree(ino);
2339	return -EINVAL;
2340}
2341
2342/**
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2345 *
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2349 *   inodes).
2350 *
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2354 */
2355int dbg_check_filesystem(struct ubifs_info *c)
2356{
2357	int err;
2358	struct fsck_data fsckd;
2359
2360	if (!dbg_is_chk_fs(c))
2361		return 0;
2362
2363	fsckd.inodes = RB_ROOT;
2364	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365	if (err)
2366		goto out_free;
2367
2368	err = check_inodes(c, &fsckd);
2369	if (err)
2370		goto out_free;
2371
2372	free_inodes(&fsckd);
2373	return 0;
2374
2375out_free:
2376	ubifs_err("file-system check failed with error %d", err);
2377	dump_stack();
2378	free_inodes(&fsckd);
2379	return err;
2380}
2381
2382/**
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2386 *
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2389 */
2390int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2391{
2392	struct list_head *cur;
2393	struct ubifs_scan_node *sa, *sb;
2394
2395	if (!dbg_is_chk_gen(c))
2396		return 0;
2397
2398	for (cur = head->next; cur->next != head; cur = cur->next) {
2399		ino_t inuma, inumb;
2400		uint32_t blka, blkb;
2401
2402		cond_resched();
2403		sa = container_of(cur, struct ubifs_scan_node, list);
2404		sb = container_of(cur->next, struct ubifs_scan_node, list);
2405
2406		if (sa->type != UBIFS_DATA_NODE) {
2407			ubifs_err("bad node type %d", sa->type);
2408			dbg_dump_node(c, sa->node);
2409			return -EINVAL;
2410		}
2411		if (sb->type != UBIFS_DATA_NODE) {
2412			ubifs_err("bad node type %d", sb->type);
2413			dbg_dump_node(c, sb->node);
2414			return -EINVAL;
2415		}
2416
2417		inuma = key_inum(c, &sa->key);
2418		inumb = key_inum(c, &sb->key);
2419
2420		if (inuma < inumb)
2421			continue;
2422		if (inuma > inumb) {
2423			ubifs_err("larger inum %lu goes before inum %lu",
2424				  (unsigned long)inuma, (unsigned long)inumb);
2425			goto error_dump;
2426		}
2427
2428		blka = key_block(c, &sa->key);
2429		blkb = key_block(c, &sb->key);
2430
2431		if (blka > blkb) {
2432			ubifs_err("larger block %u goes before %u", blka, blkb);
2433			goto error_dump;
2434		}
2435		if (blka == blkb) {
2436			ubifs_err("two data nodes for the same block");
2437			goto error_dump;
2438		}
2439	}
2440
2441	return 0;
2442
2443error_dump:
2444	dbg_dump_node(c, sa->node);
2445	dbg_dump_node(c, sb->node);
2446	return -EINVAL;
2447}
2448
2449/**
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2453 *
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2456 */
2457int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2458{
2459	struct list_head *cur;
2460	struct ubifs_scan_node *sa, *sb;
2461
2462	if (!dbg_is_chk_gen(c))
2463		return 0;
2464
2465	for (cur = head->next; cur->next != head; cur = cur->next) {
2466		ino_t inuma, inumb;
2467		uint32_t hasha, hashb;
2468
2469		cond_resched();
2470		sa = container_of(cur, struct ubifs_scan_node, list);
2471		sb = container_of(cur->next, struct ubifs_scan_node, list);
2472
2473		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474		    sa->type != UBIFS_XENT_NODE) {
2475			ubifs_err("bad node type %d", sa->type);
2476			dbg_dump_node(c, sa->node);
2477			return -EINVAL;
2478		}
2479		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480		    sa->type != UBIFS_XENT_NODE) {
2481			ubifs_err("bad node type %d", sb->type);
2482			dbg_dump_node(c, sb->node);
2483			return -EINVAL;
2484		}
2485
2486		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487			ubifs_err("non-inode node goes before inode node");
2488			goto error_dump;
2489		}
2490
2491		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492			continue;
2493
2494		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495			/* Inode nodes are sorted in descending size order */
2496			if (sa->len < sb->len) {
2497				ubifs_err("smaller inode node goes first");
2498				goto error_dump;
2499			}
2500			continue;
2501		}
2502
2503		/*
2504		 * This is either a dentry or xentry, which should be sorted in
2505		 * ascending (parent ino, hash) order.
2506		 */
2507		inuma = key_inum(c, &sa->key);
2508		inumb = key_inum(c, &sb->key);
2509
2510		if (inuma < inumb)
2511			continue;
2512		if (inuma > inumb) {
2513			ubifs_err("larger inum %lu goes before inum %lu",
2514				  (unsigned long)inuma, (unsigned long)inumb);
2515			goto error_dump;
2516		}
2517
2518		hasha = key_block(c, &sa->key);
2519		hashb = key_block(c, &sb->key);
2520
2521		if (hasha > hashb) {
2522			ubifs_err("larger hash %u goes before %u",
2523				  hasha, hashb);
2524			goto error_dump;
2525		}
2526	}
2527
2528	return 0;
2529
2530error_dump:
2531	ubifs_msg("dumping first node");
2532	dbg_dump_node(c, sa->node);
2533	ubifs_msg("dumping second node");
2534	dbg_dump_node(c, sb->node);
2535	return -EINVAL;
2536	return 0;
2537}
2538
2539static inline int chance(unsigned int n, unsigned int out_of)
2540{
2541	return !!((random32() % out_of) + 1 <= n);
2542
2543}
2544
2545static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2546{
2547	struct ubifs_debug_info *d = c->dbg;
2548
2549	ubifs_assert(dbg_is_tst_rcvry(c));
2550
2551	if (!d->pc_cnt) {
2552		/* First call - decide delay to the power cut */
2553		if (chance(1, 2)) {
2554			unsigned long delay;
2555
2556			if (chance(1, 2)) {
2557				d->pc_delay = 1;
2558				/* Fail withing 1 minute */
2559				delay = random32() % 60000;
2560				d->pc_timeout = jiffies;
2561				d->pc_timeout += msecs_to_jiffies(delay);
2562				ubifs_warn("failing after %lums", delay);
2563			} else {
2564				d->pc_delay = 2;
2565				delay = random32() % 10000;
2566				/* Fail within 10000 operations */
2567				d->pc_cnt_max = delay;
2568				ubifs_warn("failing after %lu calls", delay);
2569			}
2570		}
2571
2572		d->pc_cnt += 1;
2573	}
2574
2575	/* Determine if failure delay has expired */
2576	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577			return 0;
2578	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579			return 0;
2580
2581	if (lnum == UBIFS_SB_LNUM) {
2582		if (write && chance(1, 2))
2583			return 0;
2584		if (chance(19, 20))
2585			return 0;
2586		ubifs_warn("failing in super block LEB %d", lnum);
2587	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588		if (chance(19, 20))
2589			return 0;
2590		ubifs_warn("failing in master LEB %d", lnum);
2591	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592		if (write && chance(99, 100))
2593			return 0;
2594		if (chance(399, 400))
2595			return 0;
2596		ubifs_warn("failing in log LEB %d", lnum);
2597	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598		if (write && chance(7, 8))
2599			return 0;
2600		if (chance(19, 20))
2601			return 0;
2602		ubifs_warn("failing in LPT LEB %d", lnum);
2603	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604		if (write && chance(1, 2))
2605			return 0;
2606		if (chance(9, 10))
2607			return 0;
2608		ubifs_warn("failing in orphan LEB %d", lnum);
2609	} else if (lnum == c->ihead_lnum) {
2610		if (chance(99, 100))
2611			return 0;
2612		ubifs_warn("failing in index head LEB %d", lnum);
2613	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614		if (chance(9, 10))
2615			return 0;
2616		ubifs_warn("failing in GC head LEB %d", lnum);
2617	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618		   !ubifs_search_bud(c, lnum)) {
2619		if (chance(19, 20))
2620			return 0;
2621		ubifs_warn("failing in non-bud LEB %d", lnum);
2622	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624		if (chance(999, 1000))
2625			return 0;
2626		ubifs_warn("failing in bud LEB %d commit running", lnum);
2627	} else {
2628		if (chance(9999, 10000))
2629			return 0;
2630		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2631	}
2632
2633	d->pc_happened = 1;
2634	ubifs_warn("========== Power cut emulated ==========");
2635	dump_stack();
2636	return 1;
2637}
2638
2639static void cut_data(const void *buf, unsigned int len)
 
2640{
2641	unsigned int from, to, i, ffs = chance(1, 2);
2642	unsigned char *p = (void *)buf;
2643
2644	from = random32() % (len + 1);
2645	if (chance(1, 2))
2646		to = random32() % (len - from + 1);
2647	else
2648		to = len;
2649
2650	if (from < to)
2651		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652			   ffs ? "0xFFs" : "random data");
2653
2654	if (ffs)
2655		for (i = from; i < to; i++)
2656			p[i] = 0xFF;
2657	else
2658		for (i = from; i < to; i++)
2659			p[i] = random32() % 0x100;
 
2660}
2661
2662int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663		  int offs, int len, int dtype)
2664{
2665	int err, failing;
2666
2667	if (c->dbg->pc_happened)
2668		return -EROFS;
2669
2670	failing = power_cut_emulated(c, lnum, 1);
2671	if (failing)
2672		cut_data(buf, len);
2673	err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
 
 
 
2674	if (err)
2675		return err;
2676	if (failing)
2677		return -EROFS;
2678	return 0;
2679}
2680
2681int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682		   int len, int dtype)
2683{
2684	int err;
2685
2686	if (c->dbg->pc_happened)
2687		return -EROFS;
2688	if (power_cut_emulated(c, lnum, 1))
2689		return -EROFS;
2690	err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691	if (err)
2692		return err;
2693	if (power_cut_emulated(c, lnum, 1))
2694		return -EROFS;
2695	return 0;
2696}
2697
2698int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2699{
2700	int err;
2701
2702	if (c->dbg->pc_happened)
2703		return -EROFS;
2704	if (power_cut_emulated(c, lnum, 0))
2705		return -EROFS;
2706	err = ubi_leb_unmap(c->ubi, lnum);
2707	if (err)
2708		return err;
2709	if (power_cut_emulated(c, lnum, 0))
2710		return -EROFS;
2711	return 0;
2712}
2713
2714int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2715{
2716	int err;
2717
2718	if (c->dbg->pc_happened)
2719		return -EROFS;
2720	if (power_cut_emulated(c, lnum, 0))
2721		return -EROFS;
2722	err = ubi_leb_map(c->ubi, lnum, dtype);
2723	if (err)
2724		return err;
2725	if (power_cut_emulated(c, lnum, 0))
2726		return -EROFS;
2727	return 0;
2728}
2729
2730/*
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2733 */
2734static struct dentry *dfs_rootdir;
2735
2736static int dfs_file_open(struct inode *inode, struct file *file)
2737{
2738	file->private_data = inode->i_private;
2739	return nonseekable_open(inode, file);
2740}
2741
2742/**
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2748 *
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2752 * failure.
2753 */
2754static int provide_user_output(int val, char __user *u, size_t count,
2755			       loff_t *ppos)
2756{
2757	char buf[3];
2758
2759	if (val)
2760		buf[0] = '1';
2761	else
2762		buf[0] = '0';
2763	buf[1] = '\n';
2764	buf[2] = 0x00;
2765
2766	return simple_read_from_buffer(u, count, ppos, buf, 2);
2767}
2768
2769static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770			     loff_t *ppos)
2771{
2772	struct dentry *dent = file->f_path.dentry;
2773	struct ubifs_info *c = file->private_data;
2774	struct ubifs_debug_info *d = c->dbg;
2775	int val;
2776
2777	if (dent == d->dfs_chk_gen)
2778		val = d->chk_gen;
2779	else if (dent == d->dfs_chk_index)
2780		val = d->chk_index;
2781	else if (dent == d->dfs_chk_orph)
2782		val = d->chk_orph;
2783	else if (dent == d->dfs_chk_lprops)
2784		val = d->chk_lprops;
2785	else if (dent == d->dfs_chk_fs)
2786		val = d->chk_fs;
2787	else if (dent == d->dfs_tst_rcvry)
2788		val = d->tst_rcvry;
 
 
2789	else
2790		return -EINVAL;
2791
2792	return provide_user_output(val, u, count, ppos);
2793}
2794
2795/**
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2799 *
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2803 */
2804static int interpret_user_input(const char __user *u, size_t count)
2805{
2806	size_t buf_size;
2807	char buf[8];
2808
2809	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810	if (copy_from_user(buf, u, buf_size))
2811		return -EFAULT;
2812
2813	if (buf[0] == '1')
2814		return 1;
2815	else if (buf[0] == '0')
2816		return 0;
2817
2818	return -EINVAL;
2819}
2820
2821static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822			      size_t count, loff_t *ppos)
2823{
2824	struct ubifs_info *c = file->private_data;
2825	struct ubifs_debug_info *d = c->dbg;
2826	struct dentry *dent = file->f_path.dentry;
2827	int val;
2828
2829	/*
2830	 * TODO: this is racy - the file-system might have already been
2831	 * unmounted and we'd oops in this case. The plan is to fix it with
2832	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835	 * superblocks and fine the one with the same UUID, and take the
2836	 * locking right.
2837	 *
2838	 * The other way to go suggested by Al Viro is to create a separate
2839	 * 'ubifs-debug' file-system instead.
2840	 */
2841	if (file->f_path.dentry == d->dfs_dump_lprops) {
2842		dbg_dump_lprops(c);
2843		return count;
2844	}
2845	if (file->f_path.dentry == d->dfs_dump_budg) {
2846		dbg_dump_budg(c, &c->bi);
2847		return count;
2848	}
2849	if (file->f_path.dentry == d->dfs_dump_tnc) {
2850		mutex_lock(&c->tnc_mutex);
2851		dbg_dump_tnc(c);
2852		mutex_unlock(&c->tnc_mutex);
2853		return count;
2854	}
2855
2856	val = interpret_user_input(u, count);
2857	if (val < 0)
2858		return val;
2859
2860	if (dent == d->dfs_chk_gen)
2861		d->chk_gen = val;
2862	else if (dent == d->dfs_chk_index)
2863		d->chk_index = val;
2864	else if (dent == d->dfs_chk_orph)
2865		d->chk_orph = val;
2866	else if (dent == d->dfs_chk_lprops)
2867		d->chk_lprops = val;
2868	else if (dent == d->dfs_chk_fs)
2869		d->chk_fs = val;
2870	else if (dent == d->dfs_tst_rcvry)
2871		d->tst_rcvry = val;
 
 
2872	else
2873		return -EINVAL;
2874
2875	return count;
2876}
2877
2878static const struct file_operations dfs_fops = {
2879	.open = dfs_file_open,
2880	.read = dfs_file_read,
2881	.write = dfs_file_write,
2882	.owner = THIS_MODULE,
2883	.llseek = no_llseek,
2884};
2885
2886/**
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2889 *
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2892 *
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2897 */
2898int dbg_debugfs_init_fs(struct ubifs_info *c)
2899{
2900	int err, n;
2901	const char *fname;
2902	struct dentry *dent;
2903	struct ubifs_debug_info *d = c->dbg;
2904
2905	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906		     c->vi.ubi_num, c->vi.vol_id);
2907	if (n == UBIFS_DFS_DIR_LEN) {
2908		/* The array size is too small */
2909		fname = UBIFS_DFS_DIR_NAME;
2910		dent = ERR_PTR(-EINVAL);
2911		goto out;
2912	}
2913
2914	fname = d->dfs_dir_name;
2915	dent = debugfs_create_dir(fname, dfs_rootdir);
2916	if (IS_ERR_OR_NULL(dent))
2917		goto out;
2918	d->dfs_dir = dent;
2919
2920	fname = "dump_lprops";
2921	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922	if (IS_ERR_OR_NULL(dent))
2923		goto out_remove;
2924	d->dfs_dump_lprops = dent;
2925
2926	fname = "dump_budg";
2927	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928	if (IS_ERR_OR_NULL(dent))
2929		goto out_remove;
2930	d->dfs_dump_budg = dent;
2931
2932	fname = "dump_tnc";
2933	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934	if (IS_ERR_OR_NULL(dent))
2935		goto out_remove;
2936	d->dfs_dump_tnc = dent;
2937
2938	fname = "chk_general";
2939	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940				   &dfs_fops);
2941	if (IS_ERR_OR_NULL(dent))
2942		goto out_remove;
2943	d->dfs_chk_gen = dent;
2944
2945	fname = "chk_index";
2946	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947				   &dfs_fops);
2948	if (IS_ERR_OR_NULL(dent))
2949		goto out_remove;
2950	d->dfs_chk_index = dent;
2951
2952	fname = "chk_orphans";
2953	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954				   &dfs_fops);
2955	if (IS_ERR_OR_NULL(dent))
2956		goto out_remove;
2957	d->dfs_chk_orph = dent;
2958
2959	fname = "chk_lprops";
2960	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961				   &dfs_fops);
2962	if (IS_ERR_OR_NULL(dent))
2963		goto out_remove;
2964	d->dfs_chk_lprops = dent;
2965
2966	fname = "chk_fs";
2967	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968				   &dfs_fops);
2969	if (IS_ERR_OR_NULL(dent))
2970		goto out_remove;
2971	d->dfs_chk_fs = dent;
2972
2973	fname = "tst_recovery";
2974	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975				   &dfs_fops);
2976	if (IS_ERR_OR_NULL(dent))
2977		goto out_remove;
2978	d->dfs_tst_rcvry = dent;
2979
2980	return 0;
2981
2982out_remove:
2983	debugfs_remove_recursive(d->dfs_dir);
2984out:
2985	err = dent ? PTR_ERR(dent) : -ENODEV;
2986	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987		  fname, err);
2988	return err;
2989}
2990
2991/**
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2994 */
2995void dbg_debugfs_exit_fs(struct ubifs_info *c)
2996{
2997	debugfs_remove_recursive(c->dbg->dfs_dir);
2998}
2999
3000struct ubifs_global_debug_info ubifs_dbg;
3001
3002static struct dentry *dfs_chk_gen;
3003static struct dentry *dfs_chk_index;
3004static struct dentry *dfs_chk_orph;
3005static struct dentry *dfs_chk_lprops;
3006static struct dentry *dfs_chk_fs;
3007static struct dentry *dfs_tst_rcvry;
3008
3009static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010				    size_t count, loff_t *ppos)
3011{
3012	struct dentry *dent = file->f_path.dentry;
3013	int val;
3014
3015	if (dent == dfs_chk_gen)
3016		val = ubifs_dbg.chk_gen;
3017	else if (dent == dfs_chk_index)
3018		val = ubifs_dbg.chk_index;
3019	else if (dent == dfs_chk_orph)
3020		val = ubifs_dbg.chk_orph;
3021	else if (dent == dfs_chk_lprops)
3022		val = ubifs_dbg.chk_lprops;
3023	else if (dent == dfs_chk_fs)
3024		val = ubifs_dbg.chk_fs;
3025	else if (dent == dfs_tst_rcvry)
3026		val = ubifs_dbg.tst_rcvry;
3027	else
3028		return -EINVAL;
3029
3030	return provide_user_output(val, u, count, ppos);
3031}
3032
3033static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034				     size_t count, loff_t *ppos)
3035{
3036	struct dentry *dent = file->f_path.dentry;
3037	int val;
3038
3039	val = interpret_user_input(u, count);
3040	if (val < 0)
3041		return val;
3042
3043	if (dent == dfs_chk_gen)
3044		ubifs_dbg.chk_gen = val;
3045	else if (dent == dfs_chk_index)
3046		ubifs_dbg.chk_index = val;
3047	else if (dent == dfs_chk_orph)
3048		ubifs_dbg.chk_orph = val;
3049	else if (dent == dfs_chk_lprops)
3050		ubifs_dbg.chk_lprops = val;
3051	else if (dent == dfs_chk_fs)
3052		ubifs_dbg.chk_fs = val;
3053	else if (dent == dfs_tst_rcvry)
3054		ubifs_dbg.tst_rcvry = val;
3055	else
3056		return -EINVAL;
3057
3058	return count;
3059}
3060
3061static const struct file_operations dfs_global_fops = {
3062	.read = dfs_global_file_read,
3063	.write = dfs_global_file_write,
3064	.owner = THIS_MODULE,
3065	.llseek = no_llseek,
3066};
3067
3068/**
3069 * dbg_debugfs_init - initialize debugfs file-system.
3070 *
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3074 * case of failure.
3075 */
3076int dbg_debugfs_init(void)
3077{
3078	int err;
3079	const char *fname;
3080	struct dentry *dent;
3081
3082	fname = "ubifs";
3083	dent = debugfs_create_dir(fname, NULL);
3084	if (IS_ERR_OR_NULL(dent))
3085		goto out;
3086	dfs_rootdir = dent;
3087
3088	fname = "chk_general";
3089	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090				   &dfs_global_fops);
3091	if (IS_ERR_OR_NULL(dent))
3092		goto out_remove;
3093	dfs_chk_gen = dent;
3094
3095	fname = "chk_index";
3096	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097				   &dfs_global_fops);
3098	if (IS_ERR_OR_NULL(dent))
3099		goto out_remove;
3100	dfs_chk_index = dent;
3101
3102	fname = "chk_orphans";
3103	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104				   &dfs_global_fops);
3105	if (IS_ERR_OR_NULL(dent))
3106		goto out_remove;
3107	dfs_chk_orph = dent;
3108
3109	fname = "chk_lprops";
3110	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111				   &dfs_global_fops);
3112	if (IS_ERR_OR_NULL(dent))
3113		goto out_remove;
3114	dfs_chk_lprops = dent;
3115
3116	fname = "chk_fs";
3117	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118				   &dfs_global_fops);
3119	if (IS_ERR_OR_NULL(dent))
3120		goto out_remove;
3121	dfs_chk_fs = dent;
3122
3123	fname = "tst_recovery";
3124	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125				   &dfs_global_fops);
3126	if (IS_ERR_OR_NULL(dent))
3127		goto out_remove;
3128	dfs_tst_rcvry = dent;
3129
3130	return 0;
3131
3132out_remove:
3133	debugfs_remove_recursive(dfs_rootdir);
3134out:
3135	err = dent ? PTR_ERR(dent) : -ENODEV;
3136	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137		  fname, err);
3138	return err;
3139}
3140
3141/**
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3143 */
3144void dbg_debugfs_exit(void)
3145{
3146	debugfs_remove_recursive(dfs_rootdir);
3147}
3148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3149/**
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3152 *
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3155 * failure.
3156 */
3157int ubifs_debugging_init(struct ubifs_info *c)
3158{
3159	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160	if (!c->dbg)
3161		return -ENOMEM;
3162
3163	return 0;
3164}
3165
3166/**
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3169 */
3170void ubifs_debugging_exit(struct ubifs_info *c)
3171{
3172	kfree(c->dbg);
3173}
3174
3175#endif /* CONFIG_UBIFS_FS_DEBUG */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
 
 
 
 
 
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 
 
 
 
 
 
 
 
 
 
 
 
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int) inode_get_atime_sec(inode),
 241	       (unsigned int) inode_get_atime_nsec(inode));
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int) inode_get_mtime_sec(inode),
 244	       (unsigned int) inode_get_mtime_nsec(inode));
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int) inode_get_ctime_sec(inode),
 247	       (unsigned int) inode_get_ctime_nsec(inode));
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
 295{
 296	int i, n, type, safe_len, max_node_len, min_node_len;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 
 
 300
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	/* Skip dumping unknown type node */
 310	type = ch->node_type;
 311	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 312		pr_err("node type %d was not recognized\n", type);
 313		return;
 314	}
 315
 316	spin_lock(&dbg_lock);
 317	dump_ch(node);
 318
 319	if (c->ranges[type].max_len == 0) {
 320		max_node_len = min_node_len = c->ranges[type].len;
 321	} else {
 322		max_node_len = c->ranges[type].max_len;
 323		min_node_len = c->ranges[type].min_len;
 324	}
 325	safe_len = le32_to_cpu(ch->len);
 326	safe_len = safe_len > 0 ? safe_len : 0;
 327	safe_len = min3(safe_len, max_node_len, node_len);
 328	if (safe_len < min_node_len) {
 329		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
 330		       safe_len, dbg_ntype(type),
 331		       safe_len > UBIFS_CH_SZ ?
 332		       safe_len - (int)UBIFS_CH_SZ : 0);
 333		if (safe_len > UBIFS_CH_SZ)
 334			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 335				       (void *)node + UBIFS_CH_SZ,
 336				       safe_len - UBIFS_CH_SZ, 0);
 337		goto out_unlock;
 338	}
 339	if (safe_len != le32_to_cpu(ch->len))
 340		pr_err("\ttruncated node length      %d\n", safe_len);
 341
 342	switch (type) {
 343	case UBIFS_PAD_NODE:
 344	{
 345		const struct ubifs_pad_node *pad = node;
 346
 347		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 
 348		break;
 349	}
 350	case UBIFS_SB_NODE:
 351	{
 352		const struct ubifs_sb_node *sup = node;
 353		unsigned int sup_flags = le32_to_cpu(sup->flags);
 354
 355		pr_err("\tkey_hash       %d (%s)\n",
 356		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 357		pr_err("\tkey_fmt        %d (%s)\n",
 358		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 359		pr_err("\tflags          %#x\n", sup_flags);
 360		pr_err("\tbig_lpt        %u\n",
 361		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 362		pr_err("\tspace_fixup    %u\n",
 363		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 364		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 365		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 366		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 367		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 368		pr_err("\tmax_bud_bytes  %llu\n",
 
 
 
 
 369		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 370		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 371		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 372		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 373		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 374		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 375		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 376		pr_err("\tdefault_compr  %u\n",
 
 
 
 
 
 
 377		       (int)le16_to_cpu(sup->default_compr));
 378		pr_err("\trp_size        %llu\n",
 379		       (unsigned long long)le64_to_cpu(sup->rp_size));
 380		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 381		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 382		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 383		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 384		pr_err("\tUUID           %pUB\n", sup->uuid);
 
 
 
 
 
 385		break;
 386	}
 387	case UBIFS_MST_NODE:
 388	{
 389		const struct ubifs_mst_node *mst = node;
 390
 391		pr_err("\thighest_inum   %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 393		pr_err("\tcommit number  %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 395		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 396		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 397		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 398		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 399		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 400		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 401		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 402		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 403		pr_err("\tindex_size     %llu\n",
 
 
 
 
 
 
 
 
 404		       (unsigned long long)le64_to_cpu(mst->index_size));
 405		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 406		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 407		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 408		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 409		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 410		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 411		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 412		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 413		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 414		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 415		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 416		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 417		pr_err("\ttotal_free     %llu\n",
 
 
 
 
 
 
 
 
 
 
 
 
 418		       (unsigned long long)le64_to_cpu(mst->total_free));
 419		pr_err("\ttotal_dirty    %llu\n",
 420		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 421		pr_err("\ttotal_used     %llu\n",
 422		       (unsigned long long)le64_to_cpu(mst->total_used));
 423		pr_err("\ttotal_dead     %llu\n",
 424		       (unsigned long long)le64_to_cpu(mst->total_dead));
 425		pr_err("\ttotal_dark     %llu\n",
 426		       (unsigned long long)le64_to_cpu(mst->total_dark));
 427		break;
 428	}
 429	case UBIFS_REF_NODE:
 430	{
 431		const struct ubifs_ref_node *ref = node;
 432
 433		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 434		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 435		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 
 
 
 436		break;
 437	}
 438	case UBIFS_INO_NODE:
 439	{
 440		const struct ubifs_ino_node *ino = node;
 441
 442		key_read(c, &ino->key, &key);
 443		pr_err("\tkey            %s\n",
 444		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 445		pr_err("\tcreat_sqnum    %llu\n",
 446		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 447		pr_err("\tsize           %llu\n",
 448		       (unsigned long long)le64_to_cpu(ino->size));
 449		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 450		pr_err("\tatime          %lld.%u\n",
 
 451		       (long long)le64_to_cpu(ino->atime_sec),
 452		       le32_to_cpu(ino->atime_nsec));
 453		pr_err("\tmtime          %lld.%u\n",
 454		       (long long)le64_to_cpu(ino->mtime_sec),
 455		       le32_to_cpu(ino->mtime_nsec));
 456		pr_err("\tctime          %lld.%u\n",
 457		       (long long)le64_to_cpu(ino->ctime_sec),
 458		       le32_to_cpu(ino->ctime_nsec));
 459		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 460		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 461		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 462		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 463		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 464		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 465		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 466		pr_err("\tcompr_type     %#x\n",
 
 
 
 
 
 
 
 467		       (int)le16_to_cpu(ino->compr_type));
 468		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 
 469		break;
 470	}
 471	case UBIFS_DENT_NODE:
 472	case UBIFS_XENT_NODE:
 473	{
 474		const struct ubifs_dent_node *dent = node;
 475		int nlen = le16_to_cpu(dent->nlen);
 476
 477		key_read(c, &dent->key, &key);
 478		pr_err("\tkey            %s\n",
 479		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 480		pr_err("\tinum           %llu\n",
 481		       (unsigned long long)le64_to_cpu(dent->inum));
 482		pr_err("\ttype           %d\n", (int)dent->type);
 483		pr_err("\tnlen           %d\n", nlen);
 484		pr_err("\tname           ");
 485
 486		if (nlen > UBIFS_MAX_NLEN ||
 487		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
 488			pr_err("(bad name length, not printing, bad or corrupted node)");
 489		else {
 490			for (i = 0; i < nlen && dent->name[i]; i++)
 491				pr_cont("%c", isprint(dent->name[i]) ?
 492					dent->name[i] : '?');
 493		}
 494		pr_cont("\n");
 495
 496		break;
 497	}
 498	case UBIFS_DATA_NODE:
 499	{
 500		const struct ubifs_data_node *dn = node;
 
 501
 502		key_read(c, &dn->key, &key);
 503		pr_err("\tkey            %s\n",
 504		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 505		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 506		pr_err("\tcompr_typ      %d\n",
 507		       (int)le16_to_cpu(dn->compr_type));
 508		pr_err("\tdata size      %u\n",
 509		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
 510		pr_err("\tdata (length = %d):\n",
 511		       safe_len - (int)UBIFS_DATA_NODE_SZ);
 512		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 513			       (void *)&dn->data,
 514			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
 515		break;
 516	}
 517	case UBIFS_TRUN_NODE:
 518	{
 519		const struct ubifs_trun_node *trun = node;
 520
 521		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 522		pr_err("\told_size       %llu\n",
 
 523		       (unsigned long long)le64_to_cpu(trun->old_size));
 524		pr_err("\tnew_size       %llu\n",
 525		       (unsigned long long)le64_to_cpu(trun->new_size));
 526		break;
 527	}
 528	case UBIFS_IDX_NODE:
 529	{
 530		const struct ubifs_idx_node *idx = node;
 531		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
 532				    (ubifs_idx_node_sz(c, 1) -
 533				    UBIFS_IDX_NODE_SZ);
 534
 535		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
 536		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
 537		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 538		pr_err("\tBranches:\n");
 539
 540		for (i = 0; i < n && i < c->fanout; i++) {
 
 
 
 
 
 
 541			const struct ubifs_branch *br;
 542
 543			br = ubifs_idx_branch(c, idx, i);
 544			key_read(c, &br->key, &key);
 545			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 546			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 547			       le32_to_cpu(br->len),
 548			       dbg_snprintf_key(c, &key, key_buf,
 549						DBG_KEY_BUF_LEN));
 550		}
 551		break;
 552	}
 553	case UBIFS_CS_NODE:
 554		break;
 555	case UBIFS_ORPH_NODE:
 556	{
 557		const struct ubifs_orph_node *orph = node;
 558
 559		pr_err("\tcommit number  %llu\n",
 560		       (unsigned long long)
 561				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 562		pr_err("\tlast node flag %llu\n",
 563		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 564		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
 565		pr_err("\t%d orphan inode numbers:\n", n);
 566		for (i = 0; i < n; i++)
 567			pr_err("\t  ino %llu\n",
 568			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 569		break;
 570	}
 571	case UBIFS_AUTH_NODE:
 572	{
 573		break;
 574	}
 575	default:
 576		pr_err("node type %d was not recognized\n", type);
 
 577	}
 578
 579out_unlock:
 580	spin_unlock(&dbg_lock);
 581}
 582
 583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 584{
 585	spin_lock(&dbg_lock);
 586	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 587	       req->new_ino, req->dirtied_ino);
 588	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 589	       req->new_ino_d, req->dirtied_ino_d);
 590	pr_err("\tnew_page    %d, dirtied_page %d\n",
 591	       req->new_page, req->dirtied_page);
 592	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 593	       req->new_dent, req->mod_dent);
 594	pr_err("\tidx_growth  %d\n", req->idx_growth);
 595	pr_err("\tdata_growth %d dd_growth     %d\n",
 596	       req->data_growth, req->dd_growth);
 597	spin_unlock(&dbg_lock);
 598}
 599
 600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 601{
 602	spin_lock(&dbg_lock);
 603	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 604	       current->pid, lst->empty_lebs, lst->idx_lebs);
 605	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 606	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 607	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 608	       lst->total_used, lst->total_dark, lst->total_dead);
 
 
 609	spin_unlock(&dbg_lock);
 610}
 611
 612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 613{
 614	int i;
 615	struct rb_node *rb;
 616	struct ubifs_bud *bud;
 617	struct ubifs_gced_idx_leb *idx_gc;
 618	long long available, outstanding, free;
 619
 620	spin_lock(&c->space_lock);
 621	spin_lock(&dbg_lock);
 622	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 623	       current->pid, bi->data_growth + bi->dd_growth,
 
 624	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 625	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 626	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 627	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 628	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 629	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 
 
 630	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 631	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 632	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 
 633	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 634
 635	if (bi != &c->bi)
 636		/*
 637		 * If we are dumping saved budgeting data, do not print
 638		 * additional information which is about the current state, not
 639		 * the old one which corresponded to the saved budgeting data.
 640		 */
 641		goto out_unlock;
 642
 643	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 644	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 645	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 646	       atomic_long_read(&c->dirty_pg_cnt),
 647	       atomic_long_read(&c->dirty_zn_cnt),
 648	       atomic_long_read(&c->clean_zn_cnt));
 649	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 
 650
 651	/* If we are in R/O mode, journal heads do not exist */
 652	if (c->jheads)
 653		for (i = 0; i < c->jhead_cnt; i++)
 654			pr_err("\tjhead %s\t LEB %d\n",
 655			       dbg_jhead(c->jheads[i].wbuf.jhead),
 656			       c->jheads[i].wbuf.lnum);
 657	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 658		bud = rb_entry(rb, struct ubifs_bud, rb);
 659		pr_err("\tbud LEB %d\n", bud->lnum);
 660	}
 661	list_for_each_entry(bud, &c->old_buds, list)
 662		pr_err("\told bud LEB %d\n", bud->lnum);
 663	list_for_each_entry(idx_gc, &c->idx_gc, list)
 664		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 665		       idx_gc->lnum, idx_gc->unmap);
 666	pr_err("\tcommit state %d\n", c->cmt_state);
 667
 668	/* Print budgeting predictions */
 669	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 670	outstanding = c->bi.data_growth + c->bi.dd_growth;
 671	free = ubifs_get_free_space_nolock(c);
 672	pr_err("Budgeting predictions:\n");
 673	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 674	       available, outstanding, free);
 675out_unlock:
 676	spin_unlock(&dbg_lock);
 677	spin_unlock(&c->space_lock);
 678}
 679
 680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 681{
 682	int i, spc, dark = 0, dead = 0;
 683	struct rb_node *rb;
 684	struct ubifs_bud *bud;
 685
 686	spc = lp->free + lp->dirty;
 687	if (spc < c->dead_wm)
 688		dead = spc;
 689	else
 690		dark = ubifs_calc_dark(c, spc);
 691
 692	if (lp->flags & LPROPS_INDEX)
 693		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 694		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 695		       lp->flags);
 696	else
 697		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 698		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 699		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 
 
 700
 701	if (lp->flags & LPROPS_TAKEN) {
 702		if (lp->flags & LPROPS_INDEX)
 703			pr_cont("index, taken");
 704		else
 705			pr_cont("taken");
 706	} else {
 707		const char *s;
 708
 709		if (lp->flags & LPROPS_INDEX) {
 710			switch (lp->flags & LPROPS_CAT_MASK) {
 711			case LPROPS_DIRTY_IDX:
 712				s = "dirty index";
 713				break;
 714			case LPROPS_FRDI_IDX:
 715				s = "freeable index";
 716				break;
 717			default:
 718				s = "index";
 719			}
 720		} else {
 721			switch (lp->flags & LPROPS_CAT_MASK) {
 722			case LPROPS_UNCAT:
 723				s = "not categorized";
 724				break;
 725			case LPROPS_DIRTY:
 726				s = "dirty";
 727				break;
 728			case LPROPS_FREE:
 729				s = "free";
 730				break;
 731			case LPROPS_EMPTY:
 732				s = "empty";
 733				break;
 734			case LPROPS_FREEABLE:
 735				s = "freeable";
 736				break;
 737			default:
 738				s = NULL;
 739				break;
 740			}
 741		}
 742		pr_cont("%s", s);
 743	}
 744
 745	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 746		bud = rb_entry(rb, struct ubifs_bud, rb);
 747		if (bud->lnum == lp->lnum) {
 748			int head = 0;
 749			for (i = 0; i < c->jhead_cnt; i++) {
 750				/*
 751				 * Note, if we are in R/O mode or in the middle
 752				 * of mounting/re-mounting, the write-buffers do
 753				 * not exist.
 754				 */
 755				if (c->jheads &&
 756				    lp->lnum == c->jheads[i].wbuf.lnum) {
 757					pr_cont(", jhead %s", dbg_jhead(i));
 
 758					head = 1;
 759				}
 760			}
 761			if (!head)
 762				pr_cont(", bud of jhead %s",
 763				       dbg_jhead(bud->jhead));
 764		}
 765	}
 766	if (lp->lnum == c->gc_lnum)
 767		pr_cont(", GC LEB");
 768	pr_cont(")\n");
 769}
 770
 771void ubifs_dump_lprops(struct ubifs_info *c)
 772{
 773	int lnum, err;
 774	struct ubifs_lprops lp;
 775	struct ubifs_lp_stats lst;
 776
 777	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 
 778	ubifs_get_lp_stats(c, &lst);
 779	ubifs_dump_lstats(&lst);
 780
 781	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 782		err = ubifs_read_one_lp(c, lnum, &lp);
 783		if (err) {
 784			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 785			continue;
 786		}
 787
 788		ubifs_dump_lprop(c, &lp);
 789	}
 790	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 
 791}
 792
 793void ubifs_dump_lpt_info(struct ubifs_info *c)
 794{
 795	int i;
 796
 797	spin_lock(&dbg_lock);
 798	pr_err("(pid %d) dumping LPT information\n", current->pid);
 799	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 800	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 801	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 802	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 803	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 804	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
 805	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 806	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 807	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 808	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 809	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 810	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 811	pr_err("\tspace_bits:    %d\n", c->space_bits);
 812	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 813	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 814	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 815	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 816	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 817	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 818	pr_err("\tLPT head is at %d:%d\n",
 819	       c->nhead_lnum, c->nhead_offs);
 820	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 
 821	if (c->big_lpt)
 822		pr_err("\tLPT lsave is at %d:%d\n",
 823		       c->lsave_lnum, c->lsave_offs);
 824	for (i = 0; i < c->lpt_lebs; i++)
 825		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 826		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 827		       c->ltab[i].tgc, c->ltab[i].cmt);
 828	spin_unlock(&dbg_lock);
 829}
 830
 831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 832{
 833	struct ubifs_scan_leb *sleb;
 834	struct ubifs_scan_node *snod;
 835	void *buf;
 836
 837	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 
 
 
 
 838
 839	buf = __vmalloc(c->leb_size, GFP_NOFS);
 840	if (!buf) {
 841		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 842		return;
 843	}
 844
 845	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 846	if (IS_ERR(sleb)) {
 847		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 848		goto out;
 849	}
 850
 851	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 852	       sleb->nodes_cnt, sleb->endpt);
 853
 854	list_for_each_entry(snod, &sleb->nodes, list) {
 855		cond_resched();
 856		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 857		       snod->offs, snod->len);
 858		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 859	}
 860
 861	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 
 862	ubifs_scan_destroy(sleb);
 863
 864out:
 865	vfree(buf);
 866	return;
 867}
 868
 869void ubifs_dump_znode(const struct ubifs_info *c,
 870		      const struct ubifs_znode *znode)
 871{
 872	int n;
 873	const struct ubifs_zbranch *zbr;
 874	char key_buf[DBG_KEY_BUF_LEN];
 875
 876	spin_lock(&dbg_lock);
 877	if (znode->parent)
 878		zbr = &znode->parent->zbranch[znode->iip];
 879	else
 880		zbr = &c->zroot;
 881
 882	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 883	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 884	       znode->level, znode->child_cnt, znode->flags);
 
 885
 886	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 887		spin_unlock(&dbg_lock);
 888		return;
 889	}
 890
 891	pr_err("zbranches:\n");
 892	for (n = 0; n < znode->child_cnt; n++) {
 893		zbr = &znode->zbranch[n];
 894		if (znode->level > 0)
 895			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 896			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 897			       dbg_snprintf_key(c, &zbr->key, key_buf,
 898						DBG_KEY_BUF_LEN));
 899		else
 900			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 901			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 902			       dbg_snprintf_key(c, &zbr->key, key_buf,
 903						DBG_KEY_BUF_LEN));
 904	}
 905	spin_unlock(&dbg_lock);
 906}
 907
 908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 909{
 910	int i;
 911
 912	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 913	       current->pid, cat, heap->cnt);
 914	for (i = 0; i < heap->cnt; i++) {
 915		struct ubifs_lprops *lprops = heap->arr[i];
 916
 917		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 918		       i, lprops->lnum, lprops->hpos, lprops->free,
 919		       lprops->dirty, lprops->flags);
 920	}
 921	pr_err("(pid %d) finish dumping heap\n", current->pid);
 922}
 923
 924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 925		      struct ubifs_nnode *parent, int iip)
 926{
 927	int i;
 928
 929	pr_err("(pid %d) dumping pnode:\n", current->pid);
 930	pr_err("\taddress %zx parent %zx cnext %zx\n",
 931	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 932	pr_err("\tflags %lu iip %d level %d num %d\n",
 933	       pnode->flags, iip, pnode->level, pnode->num);
 934	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 935		struct ubifs_lprops *lp = &pnode->lprops[i];
 936
 937		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 938		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 939	}
 940}
 941
 942void ubifs_dump_tnc(struct ubifs_info *c)
 943{
 944	struct ubifs_znode *znode;
 945	int level;
 946
 947	pr_err("\n");
 948	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 949	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 950	level = znode->level;
 951	pr_err("== Level %d ==\n", level);
 952	while (znode) {
 953		if (level != znode->level) {
 954			level = znode->level;
 955			pr_err("== Level %d ==\n", level);
 956		}
 957		ubifs_dump_znode(c, znode);
 958		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 959	}
 960	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 961}
 962
 963static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 964		      void *priv)
 965{
 966	ubifs_dump_znode(c, znode);
 967	return 0;
 968}
 969
 970/**
 971 * ubifs_dump_index - dump the on-flash index.
 972 * @c: UBIFS file-system description object
 973 *
 974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 975 * which dumps only in-memory znodes and does not read znodes which from flash.
 976 */
 977void ubifs_dump_index(struct ubifs_info *c)
 978{
 979	dbg_walk_index(c, NULL, dump_znode, NULL);
 980}
 981
 982/**
 983 * dbg_save_space_info - save information about flash space.
 984 * @c: UBIFS file-system description object
 985 *
 986 * This function saves information about UBIFS free space, dirty space, etc, in
 987 * order to check it later.
 988 */
 989void dbg_save_space_info(struct ubifs_info *c)
 990{
 991	struct ubifs_debug_info *d = c->dbg;
 992	int freeable_cnt;
 993
 994	spin_lock(&c->space_lock);
 995	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 996	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 997	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 998
 999	/*
1000	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001	 * affects the free space calculations, and UBIFS might not know about
1002	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003	 * only when we read their lprops, and we do this only lazily, upon the
1004	 * need. So at any given point of time @c->freeable_cnt might be not
1005	 * exactly accurate.
1006	 *
1007	 * Just one example about the issue we hit when we did not zero
1008	 * @c->freeable_cnt.
1009	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010	 *    amount of free space in @d->saved_free
1011	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012	 *    information from flash, where we cache LEBs from various
1013	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016	 *    -> 'ubifs_add_to_cat()').
1017	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018	 *    becomes %1.
1019	 * 4. We calculate the amount of free space when the re-mount is
1020	 *    finished in 'dbg_check_space_info()' and it does not match
1021	 *    @d->saved_free.
1022	 */
1023	freeable_cnt = c->freeable_cnt;
1024	c->freeable_cnt = 0;
1025	d->saved_free = ubifs_get_free_space_nolock(c);
1026	c->freeable_cnt = freeable_cnt;
1027	spin_unlock(&c->space_lock);
1028}
1029
1030/**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1037 * changed.
1038 */
1039int dbg_check_space_info(struct ubifs_info *c)
1040{
1041	struct ubifs_debug_info *d = c->dbg;
1042	struct ubifs_lp_stats lst;
1043	long long free;
1044	int freeable_cnt;
1045
1046	spin_lock(&c->space_lock);
1047	freeable_cnt = c->freeable_cnt;
1048	c->freeable_cnt = 0;
1049	free = ubifs_get_free_space_nolock(c);
1050	c->freeable_cnt = freeable_cnt;
1051	spin_unlock(&c->space_lock);
1052
1053	if (free != d->saved_free) {
1054		ubifs_err(c, "free space changed from %lld to %lld",
1055			  d->saved_free, free);
1056		goto out;
1057	}
1058
1059	return 0;
1060
1061out:
1062	ubifs_msg(c, "saved lprops statistics dump");
1063	ubifs_dump_lstats(&d->saved_lst);
1064	ubifs_msg(c, "saved budgeting info dump");
1065	ubifs_dump_budg(c, &d->saved_bi);
1066	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067	ubifs_msg(c, "current lprops statistics dump");
1068	ubifs_get_lp_stats(c, &lst);
1069	ubifs_dump_lstats(&lst);
1070	ubifs_msg(c, "current budgeting info dump");
1071	ubifs_dump_budg(c, &c->bi);
1072	dump_stack();
1073	return -EINVAL;
1074}
1075
1076/**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1080 *
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1084 * %-EINVAL if not.
1085 */
1086int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087{
1088	int err = 0;
1089	struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091	if (!dbg_is_chk_gen(c))
1092		return 0;
1093	if (!S_ISREG(inode->i_mode))
1094		return 0;
1095
1096	mutex_lock(&ui->ui_mutex);
1097	spin_lock(&ui->ui_lock);
1098	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100			  ui->ui_size, ui->synced_i_size);
1101		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102			  inode->i_mode, i_size_read(inode));
1103		dump_stack();
1104		err = -EINVAL;
1105	}
1106	spin_unlock(&ui->ui_lock);
1107	mutex_unlock(&ui->ui_mutex);
1108	return err;
1109}
1110
1111/*
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1116 *
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1119 * failure.
1120 *
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1123 */
1124int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125{
1126	unsigned int nlink = 2;
1127	union ubifs_key key;
1128	struct ubifs_dent_node *dent, *pdent = NULL;
1129	struct fscrypt_name nm = {0};
1130	loff_t size = UBIFS_INO_NODE_SZ;
1131
1132	if (!dbg_is_chk_gen(c))
1133		return 0;
1134
1135	if (!S_ISDIR(dir->i_mode))
1136		return 0;
1137
1138	lowest_dent_key(c, &key, dir->i_ino);
1139	while (1) {
1140		int err;
1141
1142		dent = ubifs_tnc_next_ent(c, &key, &nm);
1143		if (IS_ERR(dent)) {
1144			err = PTR_ERR(dent);
1145			if (err == -ENOENT)
1146				break;
1147			kfree(pdent);
1148			return err;
1149		}
1150
1151		fname_name(&nm) = dent->name;
1152		fname_len(&nm) = le16_to_cpu(dent->nlen);
1153		size += CALC_DENT_SIZE(fname_len(&nm));
1154		if (dent->type == UBIFS_ITYPE_DIR)
1155			nlink += 1;
1156		kfree(pdent);
1157		pdent = dent;
1158		key_read(c, &dent->key, &key);
1159	}
1160	kfree(pdent);
1161
1162	if (i_size_read(dir) != size) {
1163		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164			  dir->i_ino, (unsigned long long)i_size_read(dir),
 
1165			  (unsigned long long)size);
1166		ubifs_dump_inode(c, dir);
1167		dump_stack();
1168		return -EINVAL;
1169	}
1170	if (dir->i_nlink != nlink) {
1171		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172			  dir->i_ino, dir->i_nlink, nlink);
1173		ubifs_dump_inode(c, dir);
1174		dump_stack();
1175		return -EINVAL;
1176	}
1177
1178	return 0;
1179}
1180
1181/**
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1186 *
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1193 */
1194static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195			       struct ubifs_zbranch *zbr2)
1196{
1197	int err, nlen1, nlen2, cmp;
1198	struct ubifs_dent_node *dent1, *dent2;
1199	union ubifs_key key;
1200	char key_buf[DBG_KEY_BUF_LEN];
1201
1202	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204	if (!dent1)
1205		return -ENOMEM;
1206	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207	if (!dent2) {
1208		err = -ENOMEM;
1209		goto out_free;
1210	}
1211
1212	err = ubifs_tnc_read_node(c, zbr1, dent1);
1213	if (err)
1214		goto out_free;
1215	err = ubifs_validate_entry(c, dent1);
1216	if (err)
1217		goto out_free;
1218
1219	err = ubifs_tnc_read_node(c, zbr2, dent2);
1220	if (err)
1221		goto out_free;
1222	err = ubifs_validate_entry(c, dent2);
1223	if (err)
1224		goto out_free;
1225
1226	/* Make sure node keys are the same as in zbranch */
1227	err = 1;
1228	key_read(c, &dent1->key, &key);
1229	if (keys_cmp(c, &zbr1->key, &key)) {
1230		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232						       DBG_KEY_BUF_LEN));
1233		ubifs_err(c, "but it should have key %s according to tnc",
1234			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1235					   DBG_KEY_BUF_LEN));
1236		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237		goto out_free;
1238	}
1239
1240	key_read(c, &dent2->key, &key);
1241	if (keys_cmp(c, &zbr2->key, &key)) {
1242		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244						       DBG_KEY_BUF_LEN));
1245		ubifs_err(c, "but it should have key %s according to tnc",
1246			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1247					   DBG_KEY_BUF_LEN));
1248		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249		goto out_free;
1250	}
1251
1252	nlen1 = le16_to_cpu(dent1->nlen);
1253	nlen2 = le16_to_cpu(dent2->nlen);
1254
1255	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257		err = 0;
1258		goto out_free;
1259	}
1260	if (cmp == 0 && nlen1 == nlen2)
1261		ubifs_err(c, "2 xent/dent nodes with the same name");
1262	else
1263		ubifs_err(c, "bad order of colliding key %s",
1264			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271out_free:
1272	kfree(dent2);
1273	kfree(dent1);
1274	return err;
1275}
1276
1277/**
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1281 *
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1284 */
1285static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286{
1287	struct ubifs_znode *znode = zbr->znode;
1288	struct ubifs_znode *zp = znode->parent;
1289	int n, err, cmp;
1290
1291	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292		err = 1;
1293		goto out;
1294	}
1295	if (znode->level < 0) {
1296		err = 2;
1297		goto out;
1298	}
1299	if (znode->iip < 0 || znode->iip >= c->fanout) {
1300		err = 3;
1301		goto out;
1302	}
1303
1304	if (zbr->len == 0)
1305		/* Only dirty zbranch may have no on-flash nodes */
1306		if (!ubifs_zn_dirty(znode)) {
1307			err = 4;
1308			goto out;
1309		}
1310
1311	if (ubifs_zn_dirty(znode)) {
1312		/*
1313		 * If znode is dirty, its parent has to be dirty as well. The
1314		 * order of the operation is important, so we have to have
1315		 * memory barriers.
1316		 */
1317		smp_mb();
1318		if (zp && !ubifs_zn_dirty(zp)) {
1319			/*
1320			 * The dirty flag is atomic and is cleared outside the
1321			 * TNC mutex, so znode's dirty flag may now have
1322			 * been cleared. The child is always cleared before the
1323			 * parent, so we just need to check again.
1324			 */
1325			smp_mb();
1326			if (ubifs_zn_dirty(znode)) {
1327				err = 5;
1328				goto out;
1329			}
1330		}
1331	}
1332
1333	if (zp) {
1334		const union ubifs_key *min, *max;
1335
1336		if (znode->level != zp->level - 1) {
1337			err = 6;
1338			goto out;
1339		}
1340
1341		/* Make sure the 'parent' pointer in our znode is correct */
1342		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343		if (!err) {
1344			/* This zbranch does not exist in the parent */
1345			err = 7;
1346			goto out;
1347		}
1348
1349		if (znode->iip >= zp->child_cnt) {
1350			err = 8;
1351			goto out;
1352		}
1353
1354		if (znode->iip != n) {
1355			/* This may happen only in case of collisions */
1356			if (keys_cmp(c, &zp->zbranch[n].key,
1357				     &zp->zbranch[znode->iip].key)) {
1358				err = 9;
1359				goto out;
1360			}
1361			n = znode->iip;
1362		}
1363
1364		/*
1365		 * Make sure that the first key in our znode is greater than or
1366		 * equal to the key in the pointing zbranch.
1367		 */
1368		min = &zbr->key;
1369		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370		if (cmp == 1) {
1371			err = 10;
1372			goto out;
1373		}
1374
1375		if (n + 1 < zp->child_cnt) {
1376			max = &zp->zbranch[n + 1].key;
1377
1378			/*
1379			 * Make sure the last key in our znode is less or
1380			 * equivalent than the key in the zbranch which goes
1381			 * after our pointing zbranch.
1382			 */
1383			cmp = keys_cmp(c, max,
1384				&znode->zbranch[znode->child_cnt - 1].key);
1385			if (cmp == -1) {
1386				err = 11;
1387				goto out;
1388			}
1389		}
1390	} else {
1391		/* This may only be root znode */
1392		if (zbr != &c->zroot) {
1393			err = 12;
1394			goto out;
1395		}
1396	}
1397
1398	/*
1399	 * Make sure that next key is greater or equivalent then the previous
1400	 * one.
1401	 */
1402	for (n = 1; n < znode->child_cnt; n++) {
1403		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404			       &znode->zbranch[n].key);
1405		if (cmp > 0) {
1406			err = 13;
1407			goto out;
1408		}
1409		if (cmp == 0) {
1410			/* This can only be keys with colliding hash */
1411			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412				err = 14;
1413				goto out;
1414			}
1415
1416			if (znode->level != 0 || c->replaying)
1417				continue;
1418
1419			/*
1420			 * Colliding keys should follow binary order of
1421			 * corresponding xentry/dentry names.
1422			 */
1423			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424						  &znode->zbranch[n]);
1425			if (err < 0)
1426				return err;
1427			if (err) {
1428				err = 15;
1429				goto out;
1430			}
1431		}
1432	}
1433
1434	for (n = 0; n < znode->child_cnt; n++) {
1435		if (!znode->zbranch[n].znode &&
1436		    (znode->zbranch[n].lnum == 0 ||
1437		     znode->zbranch[n].len == 0)) {
1438			err = 16;
1439			goto out;
1440		}
1441
1442		if (znode->zbranch[n].lnum != 0 &&
1443		    znode->zbranch[n].len == 0) {
1444			err = 17;
1445			goto out;
1446		}
1447
1448		if (znode->zbranch[n].lnum == 0 &&
1449		    znode->zbranch[n].len != 0) {
1450			err = 18;
1451			goto out;
1452		}
1453
1454		if (znode->zbranch[n].lnum == 0 &&
1455		    znode->zbranch[n].offs != 0) {
1456			err = 19;
1457			goto out;
1458		}
1459
1460		if (znode->level != 0 && znode->zbranch[n].znode)
1461			if (znode->zbranch[n].znode->parent != znode) {
1462				err = 20;
1463				goto out;
1464			}
1465	}
1466
1467	return 0;
1468
1469out:
1470	ubifs_err(c, "failed, error %d", err);
1471	ubifs_msg(c, "dump of the znode");
1472	ubifs_dump_znode(c, znode);
1473	if (zp) {
1474		ubifs_msg(c, "dump of the parent znode");
1475		ubifs_dump_znode(c, zp);
1476	}
1477	dump_stack();
1478	return -EINVAL;
1479}
1480
1481/**
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1485 *
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1488 */
1489int dbg_check_tnc(struct ubifs_info *c, int extra)
1490{
1491	struct ubifs_znode *znode;
1492	long clean_cnt = 0, dirty_cnt = 0;
1493	int err, last;
1494
1495	if (!dbg_is_chk_index(c))
1496		return 0;
1497
1498	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499	if (!c->zroot.znode)
1500		return 0;
1501
1502	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503	while (1) {
1504		struct ubifs_znode *prev;
1505		struct ubifs_zbranch *zbr;
1506
1507		if (!znode->parent)
1508			zbr = &c->zroot;
1509		else
1510			zbr = &znode->parent->zbranch[znode->iip];
1511
1512		err = dbg_check_znode(c, zbr);
1513		if (err)
1514			return err;
1515
1516		if (extra) {
1517			if (ubifs_zn_dirty(znode))
1518				dirty_cnt += 1;
1519			else
1520				clean_cnt += 1;
1521		}
1522
1523		prev = znode;
1524		znode = ubifs_tnc_postorder_next(c, znode);
1525		if (!znode)
1526			break;
1527
1528		/*
1529		 * If the last key of this znode is equivalent to the first key
1530		 * of the next znode (collision), then check order of the keys.
1531		 */
1532		last = prev->child_cnt - 1;
1533		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534		    !keys_cmp(c, &prev->zbranch[last].key,
1535			      &znode->zbranch[0].key)) {
1536			err = dbg_check_key_order(c, &prev->zbranch[last],
1537						  &znode->zbranch[0]);
1538			if (err < 0)
1539				return err;
1540			if (err) {
1541				ubifs_msg(c, "first znode");
1542				ubifs_dump_znode(c, prev);
1543				ubifs_msg(c, "second znode");
1544				ubifs_dump_znode(c, znode);
1545				return -EINVAL;
1546			}
1547		}
1548	}
1549
1550	if (extra) {
1551		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553				  atomic_long_read(&c->clean_zn_cnt),
1554				  clean_cnt);
1555			return -EINVAL;
1556		}
1557		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559				  atomic_long_read(&c->dirty_zn_cnt),
1560				  dirty_cnt);
1561			return -EINVAL;
1562		}
1563	}
1564
1565	return 0;
1566}
1567
1568/**
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1574 *
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1578 *
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1581 * behavior.
1582 */
1583int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584		   dbg_znode_callback znode_cb, void *priv)
1585{
1586	int err;
1587	struct ubifs_zbranch *zbr;
1588	struct ubifs_znode *znode, *child;
1589
1590	mutex_lock(&c->tnc_mutex);
1591	/* If the root indexing node is not in TNC - pull it */
1592	if (!c->zroot.znode) {
1593		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594		if (IS_ERR(c->zroot.znode)) {
1595			err = PTR_ERR(c->zroot.znode);
1596			c->zroot.znode = NULL;
1597			goto out_unlock;
1598		}
1599	}
1600
1601	/*
1602	 * We are going to traverse the indexing tree in the postorder manner.
1603	 * Go down and find the leftmost indexing node where we are going to
1604	 * start from.
1605	 */
1606	znode = c->zroot.znode;
1607	while (znode->level > 0) {
1608		zbr = &znode->zbranch[0];
1609		child = zbr->znode;
1610		if (!child) {
1611			child = ubifs_load_znode(c, zbr, znode, 0);
1612			if (IS_ERR(child)) {
1613				err = PTR_ERR(child);
1614				goto out_unlock;
1615			}
 
1616		}
1617
1618		znode = child;
1619	}
1620
1621	/* Iterate over all indexing nodes */
1622	while (1) {
1623		int idx;
1624
1625		cond_resched();
1626
1627		if (znode_cb) {
1628			err = znode_cb(c, znode, priv);
1629			if (err) {
1630				ubifs_err(c, "znode checking function returned error %d",
1631					  err);
1632				ubifs_dump_znode(c, znode);
1633				goto out_dump;
1634			}
1635		}
1636		if (leaf_cb && znode->level == 0) {
1637			for (idx = 0; idx < znode->child_cnt; idx++) {
1638				zbr = &znode->zbranch[idx];
1639				err = leaf_cb(c, zbr, priv);
1640				if (err) {
1641					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
 
 
1642						  err, zbr->lnum, zbr->offs);
1643					goto out_dump;
1644				}
1645			}
1646		}
1647
1648		if (!znode->parent)
1649			break;
1650
1651		idx = znode->iip + 1;
1652		znode = znode->parent;
1653		if (idx < znode->child_cnt) {
1654			/* Switch to the next index in the parent */
1655			zbr = &znode->zbranch[idx];
1656			child = zbr->znode;
1657			if (!child) {
1658				child = ubifs_load_znode(c, zbr, znode, idx);
1659				if (IS_ERR(child)) {
1660					err = PTR_ERR(child);
1661					goto out_unlock;
1662				}
1663				zbr->znode = child;
1664			}
1665			znode = child;
1666		} else
1667			/*
1668			 * This is the last child, switch to the parent and
1669			 * continue.
1670			 */
1671			continue;
1672
1673		/* Go to the lowest leftmost znode in the new sub-tree */
1674		while (znode->level > 0) {
1675			zbr = &znode->zbranch[0];
1676			child = zbr->znode;
1677			if (!child) {
1678				child = ubifs_load_znode(c, zbr, znode, 0);
1679				if (IS_ERR(child)) {
1680					err = PTR_ERR(child);
1681					goto out_unlock;
1682				}
1683				zbr->znode = child;
1684			}
1685			znode = child;
1686		}
1687	}
1688
1689	mutex_unlock(&c->tnc_mutex);
1690	return 0;
1691
1692out_dump:
1693	if (znode->parent)
1694		zbr = &znode->parent->zbranch[znode->iip];
1695	else
1696		zbr = &c->zroot;
1697	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698	ubifs_dump_znode(c, znode);
1699out_unlock:
1700	mutex_unlock(&c->tnc_mutex);
1701	return err;
1702}
1703
1704/**
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1709 *
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1712 * by @priv.
1713 */
1714static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715{
1716	long long *idx_size = priv;
1717	int add;
1718
1719	add = ubifs_idx_node_sz(c, znode->child_cnt);
1720	add = ALIGN(add, 8);
1721	*idx_size += add;
1722	return 0;
1723}
1724
1725/**
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1729 *
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1733 */
1734int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735{
1736	int err;
1737	long long calc = 0;
1738
1739	if (!dbg_is_chk_index(c))
1740		return 0;
1741
1742	err = dbg_walk_index(c, NULL, add_size, &calc);
1743	if (err) {
1744		ubifs_err(c, "error %d while walking the index", err);
1745		goto out_err;
1746	}
1747
1748	if (calc != idx_size) {
1749		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750			  calc, idx_size);
1751		dump_stack();
1752		err = -EINVAL;
1753		goto out_err;
1754	}
1755
1756	return 0;
1757
1758out_err:
1759	ubifs_destroy_tnc_tree(c);
1760	return err;
1761}
1762
1763/**
1764 * struct fsck_inode - information about an inode used when checking the file-system.
1765 * @rb: link in the RB-tree of inodes
1766 * @inum: inode number
1767 * @mode: inode type, permissions, etc
1768 * @nlink: inode link count
1769 * @xattr_cnt: count of extended attributes
1770 * @references: how many directory/xattr entries refer this inode (calculated
1771 *              while walking the index)
1772 * @calc_cnt: for directory inode count of child directories
1773 * @size: inode size (read from on-flash inode)
1774 * @xattr_sz: summary size of all extended attributes (read from on-flash
1775 *            inode)
1776 * @calc_sz: for directories calculated directory size
1777 * @calc_xcnt: count of extended attributes
1778 * @calc_xsz: calculated summary size of all extended attributes
1779 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1780 *             inode (read from on-flash inode)
1781 * @calc_xnms: calculated sum of lengths of all extended attribute names
1782 */
1783struct fsck_inode {
1784	struct rb_node rb;
1785	ino_t inum;
1786	umode_t mode;
1787	unsigned int nlink;
1788	unsigned int xattr_cnt;
1789	int references;
1790	int calc_cnt;
1791	long long size;
1792	unsigned int xattr_sz;
1793	long long calc_sz;
1794	long long calc_xcnt;
1795	long long calc_xsz;
1796	unsigned int xattr_nms;
1797	long long calc_xnms;
1798};
1799
1800/**
1801 * struct fsck_data - private FS checking information.
1802 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1803 */
1804struct fsck_data {
1805	struct rb_root inodes;
1806};
1807
1808/**
1809 * add_inode - add inode information to RB-tree of inodes.
1810 * @c: UBIFS file-system description object
1811 * @fsckd: FS checking information
1812 * @ino: raw UBIFS inode to add
1813 *
1814 * This is a helper function for 'check_leaf()' which adds information about
1815 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1816 * case of success and a negative error code in case of failure.
1817 */
1818static struct fsck_inode *add_inode(struct ubifs_info *c,
1819				    struct fsck_data *fsckd,
1820				    struct ubifs_ino_node *ino)
1821{
1822	struct rb_node **p, *parent = NULL;
1823	struct fsck_inode *fscki;
1824	ino_t inum = key_inum_flash(c, &ino->key);
1825	struct inode *inode;
1826	struct ubifs_inode *ui;
1827
1828	p = &fsckd->inodes.rb_node;
1829	while (*p) {
1830		parent = *p;
1831		fscki = rb_entry(parent, struct fsck_inode, rb);
1832		if (inum < fscki->inum)
1833			p = &(*p)->rb_left;
1834		else if (inum > fscki->inum)
1835			p = &(*p)->rb_right;
1836		else
1837			return fscki;
1838	}
1839
1840	if (inum > c->highest_inum) {
1841		ubifs_err(c, "too high inode number, max. is %lu",
1842			  (unsigned long)c->highest_inum);
1843		return ERR_PTR(-EINVAL);
1844	}
1845
1846	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1847	if (!fscki)
1848		return ERR_PTR(-ENOMEM);
1849
1850	inode = ilookup(c->vfs_sb, inum);
1851
1852	fscki->inum = inum;
1853	/*
1854	 * If the inode is present in the VFS inode cache, use it instead of
1855	 * the on-flash inode which might be out-of-date. E.g., the size might
1856	 * be out-of-date. If we do not do this, the following may happen, for
1857	 * example:
1858	 *   1. A power cut happens
1859	 *   2. We mount the file-system R/O, the replay process fixes up the
1860	 *      inode size in the VFS cache, but on on-flash.
1861	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1862	 *      size.
1863	 */
1864	if (!inode) {
1865		fscki->nlink = le32_to_cpu(ino->nlink);
1866		fscki->size = le64_to_cpu(ino->size);
1867		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1868		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1869		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1870		fscki->mode = le32_to_cpu(ino->mode);
1871	} else {
1872		ui = ubifs_inode(inode);
1873		fscki->nlink = inode->i_nlink;
1874		fscki->size = inode->i_size;
1875		fscki->xattr_cnt = ui->xattr_cnt;
1876		fscki->xattr_sz = ui->xattr_size;
1877		fscki->xattr_nms = ui->xattr_names;
1878		fscki->mode = inode->i_mode;
1879		iput(inode);
1880	}
1881
1882	if (S_ISDIR(fscki->mode)) {
1883		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1884		fscki->calc_cnt = 2;
1885	}
1886
1887	rb_link_node(&fscki->rb, parent, p);
1888	rb_insert_color(&fscki->rb, &fsckd->inodes);
1889
1890	return fscki;
1891}
1892
1893/**
1894 * search_inode - search inode in the RB-tree of inodes.
1895 * @fsckd: FS checking information
1896 * @inum: inode number to search
1897 *
1898 * This is a helper function for 'check_leaf()' which searches inode @inum in
1899 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1900 * the inode was not found.
1901 */
1902static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1903{
1904	struct rb_node *p;
1905	struct fsck_inode *fscki;
1906
1907	p = fsckd->inodes.rb_node;
1908	while (p) {
1909		fscki = rb_entry(p, struct fsck_inode, rb);
1910		if (inum < fscki->inum)
1911			p = p->rb_left;
1912		else if (inum > fscki->inum)
1913			p = p->rb_right;
1914		else
1915			return fscki;
1916	}
1917	return NULL;
1918}
1919
1920/**
1921 * read_add_inode - read inode node and add it to RB-tree of inodes.
1922 * @c: UBIFS file-system description object
1923 * @fsckd: FS checking information
1924 * @inum: inode number to read
1925 *
1926 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1927 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1928 * information pointer in case of success and a negative error code in case of
1929 * failure.
1930 */
1931static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1932					 struct fsck_data *fsckd, ino_t inum)
1933{
1934	int n, err;
1935	union ubifs_key key;
1936	struct ubifs_znode *znode;
1937	struct ubifs_zbranch *zbr;
1938	struct ubifs_ino_node *ino;
1939	struct fsck_inode *fscki;
1940
1941	fscki = search_inode(fsckd, inum);
1942	if (fscki)
1943		return fscki;
1944
1945	ino_key_init(c, &key, inum);
1946	err = ubifs_lookup_level0(c, &key, &znode, &n);
1947	if (!err) {
1948		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1949		return ERR_PTR(-ENOENT);
1950	} else if (err < 0) {
1951		ubifs_err(c, "error %d while looking up inode %lu",
1952			  err, (unsigned long)inum);
1953		return ERR_PTR(err);
1954	}
1955
1956	zbr = &znode->zbranch[n];
1957	if (zbr->len < UBIFS_INO_NODE_SZ) {
1958		ubifs_err(c, "bad node %lu node length %d",
1959			  (unsigned long)inum, zbr->len);
1960		return ERR_PTR(-EINVAL);
1961	}
1962
1963	ino = kmalloc(zbr->len, GFP_NOFS);
1964	if (!ino)
1965		return ERR_PTR(-ENOMEM);
1966
1967	err = ubifs_tnc_read_node(c, zbr, ino);
1968	if (err) {
1969		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1970			  zbr->lnum, zbr->offs, err);
1971		kfree(ino);
1972		return ERR_PTR(err);
1973	}
1974
1975	fscki = add_inode(c, fsckd, ino);
1976	kfree(ino);
1977	if (IS_ERR(fscki)) {
1978		ubifs_err(c, "error %ld while adding inode %lu node",
1979			  PTR_ERR(fscki), (unsigned long)inum);
1980		return fscki;
1981	}
1982
1983	return fscki;
1984}
1985
1986/**
1987 * check_leaf - check leaf node.
1988 * @c: UBIFS file-system description object
1989 * @zbr: zbranch of the leaf node to check
1990 * @priv: FS checking information
1991 *
1992 * This is a helper function for 'dbg_check_filesystem()' which is called for
1993 * every single leaf node while walking the indexing tree. It checks that the
1994 * leaf node referred from the indexing tree exists, has correct CRC, and does
1995 * some other basic validation. This function is also responsible for building
1996 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1997 * calculates reference count, size, etc for each inode in order to later
1998 * compare them to the information stored inside the inodes and detect possible
1999 * inconsistencies. Returns zero in case of success and a negative error code
2000 * in case of failure.
2001 */
2002static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2003		      void *priv)
2004{
2005	ino_t inum;
2006	void *node;
2007	struct ubifs_ch *ch;
2008	int err, type = key_type(c, &zbr->key);
2009	struct fsck_inode *fscki;
2010
2011	if (zbr->len < UBIFS_CH_SZ) {
2012		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2013			  zbr->len, zbr->lnum, zbr->offs);
2014		return -EINVAL;
2015	}
2016
2017	node = kmalloc(zbr->len, GFP_NOFS);
2018	if (!node)
2019		return -ENOMEM;
2020
2021	err = ubifs_tnc_read_node(c, zbr, node);
2022	if (err) {
2023		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2024			  zbr->lnum, zbr->offs, err);
2025		goto out_free;
2026	}
2027
2028	/* If this is an inode node, add it to RB-tree of inodes */
2029	if (type == UBIFS_INO_KEY) {
2030		fscki = add_inode(c, priv, node);
2031		if (IS_ERR(fscki)) {
2032			err = PTR_ERR(fscki);
2033			ubifs_err(c, "error %d while adding inode node", err);
2034			goto out_dump;
2035		}
2036		goto out;
2037	}
2038
2039	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2040	    type != UBIFS_DATA_KEY) {
2041		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2042			  type, zbr->lnum, zbr->offs);
2043		err = -EINVAL;
2044		goto out_free;
2045	}
2046
2047	ch = node;
2048	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2049		ubifs_err(c, "too high sequence number, max. is %llu",
2050			  c->max_sqnum);
2051		err = -EINVAL;
2052		goto out_dump;
2053	}
2054
2055	if (type == UBIFS_DATA_KEY) {
2056		long long blk_offs;
2057		struct ubifs_data_node *dn = node;
2058
2059		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2060
2061		/*
2062		 * Search the inode node this data node belongs to and insert
2063		 * it to the RB-tree of inodes.
2064		 */
2065		inum = key_inum_flash(c, &dn->key);
2066		fscki = read_add_inode(c, priv, inum);
2067		if (IS_ERR(fscki)) {
2068			err = PTR_ERR(fscki);
2069			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
 
2070				  err, (unsigned long)inum);
2071			goto out_dump;
2072		}
2073
2074		/* Make sure the data node is within inode size */
2075		blk_offs = key_block_flash(c, &dn->key);
2076		blk_offs <<= UBIFS_BLOCK_SHIFT;
2077		blk_offs += le32_to_cpu(dn->size);
2078		if (blk_offs > fscki->size) {
2079			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2080				  zbr->lnum, zbr->offs, fscki->size);
 
2081			err = -EINVAL;
2082			goto out_dump;
2083		}
2084	} else {
2085		int nlen;
2086		struct ubifs_dent_node *dent = node;
2087		struct fsck_inode *fscki1;
2088
2089		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2090
2091		err = ubifs_validate_entry(c, dent);
2092		if (err)
2093			goto out_dump;
2094
2095		/*
2096		 * Search the inode node this entry refers to and the parent
2097		 * inode node and insert them to the RB-tree of inodes.
2098		 */
2099		inum = le64_to_cpu(dent->inum);
2100		fscki = read_add_inode(c, priv, inum);
2101		if (IS_ERR(fscki)) {
2102			err = PTR_ERR(fscki);
2103			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
 
2104				  err, (unsigned long)inum);
2105			goto out_dump;
2106		}
2107
2108		/* Count how many direntries or xentries refers this inode */
2109		fscki->references += 1;
2110
2111		inum = key_inum_flash(c, &dent->key);
2112		fscki1 = read_add_inode(c, priv, inum);
2113		if (IS_ERR(fscki1)) {
2114			err = PTR_ERR(fscki1);
2115			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
 
2116				  err, (unsigned long)inum);
2117			goto out_dump;
2118		}
2119
2120		nlen = le16_to_cpu(dent->nlen);
2121		if (type == UBIFS_XENT_KEY) {
2122			fscki1->calc_xcnt += 1;
2123			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2124			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2125			fscki1->calc_xnms += nlen;
2126		} else {
2127			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2128			if (dent->type == UBIFS_ITYPE_DIR)
2129				fscki1->calc_cnt += 1;
2130		}
2131	}
2132
2133out:
2134	kfree(node);
2135	return 0;
2136
2137out_dump:
2138	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2139	ubifs_dump_node(c, node, zbr->len);
2140out_free:
2141	kfree(node);
2142	return err;
2143}
2144
2145/**
2146 * free_inodes - free RB-tree of inodes.
2147 * @fsckd: FS checking information
2148 */
2149static void free_inodes(struct fsck_data *fsckd)
2150{
2151	struct fsck_inode *fscki, *n;
 
2152
2153	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2154		kfree(fscki);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/**
2158 * check_inodes - checks all inodes.
2159 * @c: UBIFS file-system description object
2160 * @fsckd: FS checking information
2161 *
2162 * This is a helper function for 'dbg_check_filesystem()' which walks the
2163 * RB-tree of inodes after the index scan has been finished, and checks that
2164 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2165 * %-EINVAL if not, and a negative error code in case of failure.
2166 */
2167static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2168{
2169	int n, err;
2170	union ubifs_key key;
2171	struct ubifs_znode *znode;
2172	struct ubifs_zbranch *zbr;
2173	struct ubifs_ino_node *ino;
2174	struct fsck_inode *fscki;
2175	struct rb_node *this = rb_first(&fsckd->inodes);
2176
2177	while (this) {
2178		fscki = rb_entry(this, struct fsck_inode, rb);
2179		this = rb_next(this);
2180
2181		if (S_ISDIR(fscki->mode)) {
2182			/*
2183			 * Directories have to have exactly one reference (they
2184			 * cannot have hardlinks), although root inode is an
2185			 * exception.
2186			 */
2187			if (fscki->inum != UBIFS_ROOT_INO &&
2188			    fscki->references != 1) {
2189				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
 
 
2190					  (unsigned long)fscki->inum,
2191					  fscki->references);
2192				goto out_dump;
2193			}
2194			if (fscki->inum == UBIFS_ROOT_INO &&
2195			    fscki->references != 0) {
2196				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
 
2197					  (unsigned long)fscki->inum,
2198					  fscki->references);
2199				goto out_dump;
2200			}
2201			if (fscki->calc_sz != fscki->size) {
2202				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
 
2203					  (unsigned long)fscki->inum,
2204					  fscki->size, fscki->calc_sz);
2205				goto out_dump;
2206			}
2207			if (fscki->calc_cnt != fscki->nlink) {
2208				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
 
2209					  (unsigned long)fscki->inum,
2210					  fscki->nlink, fscki->calc_cnt);
2211				goto out_dump;
2212			}
2213		} else {
2214			if (fscki->references != fscki->nlink) {
2215				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
 
2216					  (unsigned long)fscki->inum,
2217					  fscki->nlink, fscki->references);
2218				goto out_dump;
2219			}
2220		}
2221		if (fscki->xattr_sz != fscki->calc_xsz) {
2222			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
 
2223				  (unsigned long)fscki->inum, fscki->xattr_sz,
2224				  fscki->calc_xsz);
2225			goto out_dump;
2226		}
2227		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2228			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
 
2229				  (unsigned long)fscki->inum,
2230				  fscki->xattr_cnt, fscki->calc_xcnt);
2231			goto out_dump;
2232		}
2233		if (fscki->xattr_nms != fscki->calc_xnms) {
2234			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
 
2235				  (unsigned long)fscki->inum, fscki->xattr_nms,
2236				  fscki->calc_xnms);
2237			goto out_dump;
2238		}
2239	}
2240
2241	return 0;
2242
2243out_dump:
2244	/* Read the bad inode and dump it */
2245	ino_key_init(c, &key, fscki->inum);
2246	err = ubifs_lookup_level0(c, &key, &znode, &n);
2247	if (!err) {
2248		ubifs_err(c, "inode %lu not found in index",
2249			  (unsigned long)fscki->inum);
2250		return -ENOENT;
2251	} else if (err < 0) {
2252		ubifs_err(c, "error %d while looking up inode %lu",
2253			  err, (unsigned long)fscki->inum);
2254		return err;
2255	}
2256
2257	zbr = &znode->zbranch[n];
2258	ino = kmalloc(zbr->len, GFP_NOFS);
2259	if (!ino)
2260		return -ENOMEM;
2261
2262	err = ubifs_tnc_read_node(c, zbr, ino);
2263	if (err) {
2264		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2265			  zbr->lnum, zbr->offs, err);
2266		kfree(ino);
2267		return err;
2268	}
2269
2270	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2271		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2272	ubifs_dump_node(c, ino, zbr->len);
2273	kfree(ino);
2274	return -EINVAL;
2275}
2276
2277/**
2278 * dbg_check_filesystem - check the file-system.
2279 * @c: UBIFS file-system description object
2280 *
2281 * This function checks the file system, namely:
2282 * o makes sure that all leaf nodes exist and their CRCs are correct;
2283 * o makes sure inode nlink, size, xattr size/count are correct (for all
2284 *   inodes).
2285 *
2286 * The function reads whole indexing tree and all nodes, so it is pretty
2287 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2288 * not, and a negative error code in case of failure.
2289 */
2290int dbg_check_filesystem(struct ubifs_info *c)
2291{
2292	int err;
2293	struct fsck_data fsckd;
2294
2295	if (!dbg_is_chk_fs(c))
2296		return 0;
2297
2298	fsckd.inodes = RB_ROOT;
2299	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2300	if (err)
2301		goto out_free;
2302
2303	err = check_inodes(c, &fsckd);
2304	if (err)
2305		goto out_free;
2306
2307	free_inodes(&fsckd);
2308	return 0;
2309
2310out_free:
2311	ubifs_err(c, "file-system check failed with error %d", err);
2312	dump_stack();
2313	free_inodes(&fsckd);
2314	return err;
2315}
2316
2317/**
2318 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2319 * @c: UBIFS file-system description object
2320 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2321 *
2322 * This function returns zero if the list of data nodes is sorted correctly,
2323 * and %-EINVAL if not.
2324 */
2325int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2326{
2327	struct list_head *cur;
2328	struct ubifs_scan_node *sa, *sb;
2329
2330	if (!dbg_is_chk_gen(c))
2331		return 0;
2332
2333	for (cur = head->next; cur->next != head; cur = cur->next) {
2334		ino_t inuma, inumb;
2335		uint32_t blka, blkb;
2336
2337		cond_resched();
2338		sa = container_of(cur, struct ubifs_scan_node, list);
2339		sb = container_of(cur->next, struct ubifs_scan_node, list);
2340
2341		if (sa->type != UBIFS_DATA_NODE) {
2342			ubifs_err(c, "bad node type %d", sa->type);
2343			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2344			return -EINVAL;
2345		}
2346		if (sb->type != UBIFS_DATA_NODE) {
2347			ubifs_err(c, "bad node type %d", sb->type);
2348			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2349			return -EINVAL;
2350		}
2351
2352		inuma = key_inum(c, &sa->key);
2353		inumb = key_inum(c, &sb->key);
2354
2355		if (inuma < inumb)
2356			continue;
2357		if (inuma > inumb) {
2358			ubifs_err(c, "larger inum %lu goes before inum %lu",
2359				  (unsigned long)inuma, (unsigned long)inumb);
2360			goto error_dump;
2361		}
2362
2363		blka = key_block(c, &sa->key);
2364		blkb = key_block(c, &sb->key);
2365
2366		if (blka > blkb) {
2367			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2368			goto error_dump;
2369		}
2370		if (blka == blkb) {
2371			ubifs_err(c, "two data nodes for the same block");
2372			goto error_dump;
2373		}
2374	}
2375
2376	return 0;
2377
2378error_dump:
2379	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2380	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2381	return -EINVAL;
2382}
2383
2384/**
2385 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2386 * @c: UBIFS file-system description object
2387 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2388 *
2389 * This function returns zero if the list of non-data nodes is sorted correctly,
2390 * and %-EINVAL if not.
2391 */
2392int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2393{
2394	struct list_head *cur;
2395	struct ubifs_scan_node *sa, *sb;
2396
2397	if (!dbg_is_chk_gen(c))
2398		return 0;
2399
2400	for (cur = head->next; cur->next != head; cur = cur->next) {
2401		ino_t inuma, inumb;
2402		uint32_t hasha, hashb;
2403
2404		cond_resched();
2405		sa = container_of(cur, struct ubifs_scan_node, list);
2406		sb = container_of(cur->next, struct ubifs_scan_node, list);
2407
2408		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2409		    sa->type != UBIFS_XENT_NODE) {
2410			ubifs_err(c, "bad node type %d", sa->type);
2411			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2412			return -EINVAL;
2413		}
2414		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2415		    sb->type != UBIFS_XENT_NODE) {
2416			ubifs_err(c, "bad node type %d", sb->type);
2417			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2418			return -EINVAL;
2419		}
2420
2421		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2422			ubifs_err(c, "non-inode node goes before inode node");
2423			goto error_dump;
2424		}
2425
2426		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2427			continue;
2428
2429		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2430			/* Inode nodes are sorted in descending size order */
2431			if (sa->len < sb->len) {
2432				ubifs_err(c, "smaller inode node goes first");
2433				goto error_dump;
2434			}
2435			continue;
2436		}
2437
2438		/*
2439		 * This is either a dentry or xentry, which should be sorted in
2440		 * ascending (parent ino, hash) order.
2441		 */
2442		inuma = key_inum(c, &sa->key);
2443		inumb = key_inum(c, &sb->key);
2444
2445		if (inuma < inumb)
2446			continue;
2447		if (inuma > inumb) {
2448			ubifs_err(c, "larger inum %lu goes before inum %lu",
2449				  (unsigned long)inuma, (unsigned long)inumb);
2450			goto error_dump;
2451		}
2452
2453		hasha = key_block(c, &sa->key);
2454		hashb = key_block(c, &sb->key);
2455
2456		if (hasha > hashb) {
2457			ubifs_err(c, "larger hash %u goes before %u",
2458				  hasha, hashb);
2459			goto error_dump;
2460		}
2461	}
2462
2463	return 0;
2464
2465error_dump:
2466	ubifs_msg(c, "dumping first node");
2467	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2468	ubifs_msg(c, "dumping second node");
2469	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2470	return -EINVAL;
 
2471}
2472
2473static inline int chance(unsigned int n, unsigned int out_of)
2474{
2475	return !!(get_random_u32_below(out_of) + 1 <= n);
2476
2477}
2478
2479static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2480{
2481	struct ubifs_debug_info *d = c->dbg;
2482
2483	ubifs_assert(c, dbg_is_tst_rcvry(c));
2484
2485	if (!d->pc_cnt) {
2486		/* First call - decide delay to the power cut */
2487		if (chance(1, 2)) {
2488			unsigned long delay;
2489
2490			if (chance(1, 2)) {
2491				d->pc_delay = 1;
2492				/* Fail within 1 minute */
2493				delay = get_random_u32_below(60000);
2494				d->pc_timeout = jiffies;
2495				d->pc_timeout += msecs_to_jiffies(delay);
2496				ubifs_warn(c, "failing after %lums", delay);
2497			} else {
2498				d->pc_delay = 2;
2499				delay = get_random_u32_below(10000);
2500				/* Fail within 10000 operations */
2501				d->pc_cnt_max = delay;
2502				ubifs_warn(c, "failing after %lu calls", delay);
2503			}
2504		}
2505
2506		d->pc_cnt += 1;
2507	}
2508
2509	/* Determine if failure delay has expired */
2510	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2511			return 0;
2512	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2513			return 0;
2514
2515	if (lnum == UBIFS_SB_LNUM) {
2516		if (write && chance(1, 2))
2517			return 0;
2518		if (chance(19, 20))
2519			return 0;
2520		ubifs_warn(c, "failing in super block LEB %d", lnum);
2521	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2522		if (chance(19, 20))
2523			return 0;
2524		ubifs_warn(c, "failing in master LEB %d", lnum);
2525	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2526		if (write && chance(99, 100))
2527			return 0;
2528		if (chance(399, 400))
2529			return 0;
2530		ubifs_warn(c, "failing in log LEB %d", lnum);
2531	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2532		if (write && chance(7, 8))
2533			return 0;
2534		if (chance(19, 20))
2535			return 0;
2536		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2537	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2538		if (write && chance(1, 2))
2539			return 0;
2540		if (chance(9, 10))
2541			return 0;
2542		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2543	} else if (lnum == c->ihead_lnum) {
2544		if (chance(99, 100))
2545			return 0;
2546		ubifs_warn(c, "failing in index head LEB %d", lnum);
2547	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2548		if (chance(9, 10))
2549			return 0;
2550		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2551	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2552		   !ubifs_search_bud(c, lnum)) {
2553		if (chance(19, 20))
2554			return 0;
2555		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2556	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2557		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2558		if (chance(999, 1000))
2559			return 0;
2560		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2561	} else {
2562		if (chance(9999, 10000))
2563			return 0;
2564		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2565	}
2566
2567	d->pc_happened = 1;
2568	ubifs_warn(c, "========== Power cut emulated ==========");
2569	dump_stack();
2570	return 1;
2571}
2572
2573static int corrupt_data(const struct ubifs_info *c, const void *buf,
2574			unsigned int len)
2575{
2576	unsigned int from, to, ffs = chance(1, 2);
2577	unsigned char *p = (void *)buf;
2578
2579	from = get_random_u32_below(len);
2580	/* Corruption span max to end of write unit */
2581	to = min(len, ALIGN(from + 1, c->max_write_size));
 
 
2582
2583	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2584		   ffs ? "0xFFs" : "random data");
 
2585
2586	if (ffs)
2587		memset(p + from, 0xFF, to - from);
 
2588	else
2589		get_random_bytes(p + from, to - from);
2590
2591	return to;
2592}
2593
2594int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2595		  int offs, int len)
2596{
2597	int err, failing;
2598
2599	if (dbg_is_power_cut(c))
2600		return -EROFS;
2601
2602	failing = power_cut_emulated(c, lnum, 1);
2603	if (failing) {
2604		len = corrupt_data(c, buf, len);
2605		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2606			   len, lnum, offs);
2607	}
2608	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2609	if (err)
2610		return err;
2611	if (failing)
2612		return -EROFS;
2613	return 0;
2614}
2615
2616int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2617		   int len)
2618{
2619	int err;
2620
2621	if (dbg_is_power_cut(c))
2622		return -EROFS;
2623	if (power_cut_emulated(c, lnum, 1))
2624		return -EROFS;
2625	err = ubi_leb_change(c->ubi, lnum, buf, len);
2626	if (err)
2627		return err;
2628	if (power_cut_emulated(c, lnum, 1))
2629		return -EROFS;
2630	return 0;
2631}
2632
2633int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2634{
2635	int err;
2636
2637	if (dbg_is_power_cut(c))
2638		return -EROFS;
2639	if (power_cut_emulated(c, lnum, 0))
2640		return -EROFS;
2641	err = ubi_leb_unmap(c->ubi, lnum);
2642	if (err)
2643		return err;
2644	if (power_cut_emulated(c, lnum, 0))
2645		return -EROFS;
2646	return 0;
2647}
2648
2649int dbg_leb_map(struct ubifs_info *c, int lnum)
2650{
2651	int err;
2652
2653	if (dbg_is_power_cut(c))
2654		return -EROFS;
2655	if (power_cut_emulated(c, lnum, 0))
2656		return -EROFS;
2657	err = ubi_leb_map(c->ubi, lnum);
2658	if (err)
2659		return err;
2660	if (power_cut_emulated(c, lnum, 0))
2661		return -EROFS;
2662	return 0;
2663}
2664
2665/*
2666 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2667 * contain the stuff specific to particular file-system mounts.
2668 */
2669static struct dentry *dfs_rootdir;
2670
2671static int dfs_file_open(struct inode *inode, struct file *file)
2672{
2673	file->private_data = inode->i_private;
2674	return nonseekable_open(inode, file);
2675}
2676
2677/**
2678 * provide_user_output - provide output to the user reading a debugfs file.
2679 * @val: boolean value for the answer
2680 * @u: the buffer to store the answer at
2681 * @count: size of the buffer
2682 * @ppos: position in the @u output buffer
2683 *
2684 * This is a simple helper function which stores @val boolean value in the user
2685 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2686 * bytes written to @u in case of success and a negative error code in case of
2687 * failure.
2688 */
2689static int provide_user_output(int val, char __user *u, size_t count,
2690			       loff_t *ppos)
2691{
2692	char buf[3];
2693
2694	if (val)
2695		buf[0] = '1';
2696	else
2697		buf[0] = '0';
2698	buf[1] = '\n';
2699	buf[2] = 0x00;
2700
2701	return simple_read_from_buffer(u, count, ppos, buf, 2);
2702}
2703
2704static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2705			     loff_t *ppos)
2706{
2707	struct dentry *dent = file->f_path.dentry;
2708	struct ubifs_info *c = file->private_data;
2709	struct ubifs_debug_info *d = c->dbg;
2710	int val;
2711
2712	if (dent == d->dfs_chk_gen)
2713		val = d->chk_gen;
2714	else if (dent == d->dfs_chk_index)
2715		val = d->chk_index;
2716	else if (dent == d->dfs_chk_orph)
2717		val = d->chk_orph;
2718	else if (dent == d->dfs_chk_lprops)
2719		val = d->chk_lprops;
2720	else if (dent == d->dfs_chk_fs)
2721		val = d->chk_fs;
2722	else if (dent == d->dfs_tst_rcvry)
2723		val = d->tst_rcvry;
2724	else if (dent == d->dfs_ro_error)
2725		val = c->ro_error;
2726	else
2727		return -EINVAL;
2728
2729	return provide_user_output(val, u, count, ppos);
2730}
2731
2732/**
2733 * interpret_user_input - interpret user debugfs file input.
2734 * @u: user-provided buffer with the input
2735 * @count: buffer size
2736 *
2737 * This is a helper function which interpret user input to a boolean UBIFS
2738 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2739 * in case of failure.
2740 */
2741static int interpret_user_input(const char __user *u, size_t count)
2742{
2743	size_t buf_size;
2744	char buf[8];
2745
2746	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2747	if (copy_from_user(buf, u, buf_size))
2748		return -EFAULT;
2749
2750	if (buf[0] == '1')
2751		return 1;
2752	else if (buf[0] == '0')
2753		return 0;
2754
2755	return -EINVAL;
2756}
2757
2758static ssize_t dfs_file_write(struct file *file, const char __user *u,
2759			      size_t count, loff_t *ppos)
2760{
2761	struct ubifs_info *c = file->private_data;
2762	struct ubifs_debug_info *d = c->dbg;
2763	struct dentry *dent = file->f_path.dentry;
2764	int val;
2765
 
 
 
 
 
 
 
 
 
 
 
 
2766	if (file->f_path.dentry == d->dfs_dump_lprops) {
2767		ubifs_dump_lprops(c);
2768		return count;
2769	}
2770	if (file->f_path.dentry == d->dfs_dump_budg) {
2771		ubifs_dump_budg(c, &c->bi);
2772		return count;
2773	}
2774	if (file->f_path.dentry == d->dfs_dump_tnc) {
2775		mutex_lock(&c->tnc_mutex);
2776		ubifs_dump_tnc(c);
2777		mutex_unlock(&c->tnc_mutex);
2778		return count;
2779	}
2780
2781	val = interpret_user_input(u, count);
2782	if (val < 0)
2783		return val;
2784
2785	if (dent == d->dfs_chk_gen)
2786		d->chk_gen = val;
2787	else if (dent == d->dfs_chk_index)
2788		d->chk_index = val;
2789	else if (dent == d->dfs_chk_orph)
2790		d->chk_orph = val;
2791	else if (dent == d->dfs_chk_lprops)
2792		d->chk_lprops = val;
2793	else if (dent == d->dfs_chk_fs)
2794		d->chk_fs = val;
2795	else if (dent == d->dfs_tst_rcvry)
2796		d->tst_rcvry = val;
2797	else if (dent == d->dfs_ro_error)
2798		c->ro_error = !!val;
2799	else
2800		return -EINVAL;
2801
2802	return count;
2803}
2804
2805static const struct file_operations dfs_fops = {
2806	.open = dfs_file_open,
2807	.read = dfs_file_read,
2808	.write = dfs_file_write,
2809	.owner = THIS_MODULE,
2810	.llseek = no_llseek,
2811};
2812
2813/**
2814 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2815 * @c: UBIFS file-system description object
2816 *
2817 * This function creates all debugfs files for this instance of UBIFS.
 
2818 *
2819 * Note, the only reason we have not merged this function with the
2820 * 'ubifs_debugging_init()' function is because it is better to initialize
2821 * debugfs interfaces at the very end of the mount process, and remove them at
2822 * the very beginning of the mount process.
2823 */
2824void dbg_debugfs_init_fs(struct ubifs_info *c)
2825{
2826	int n;
2827	const char *fname;
 
2828	struct ubifs_debug_info *d = c->dbg;
2829
2830	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2831		     c->vi.ubi_num, c->vi.vol_id);
2832	if (n > UBIFS_DFS_DIR_LEN) {
2833		/* The array size is too small */
2834		return;
 
 
2835	}
2836
2837	fname = d->dfs_dir_name;
2838	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
 
 
 
2839
2840	fname = "dump_lprops";
2841	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2842						 &dfs_fops);
 
 
2843
2844	fname = "dump_budg";
2845	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2846					       &dfs_fops);
 
 
2847
2848	fname = "dump_tnc";
2849	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2850					      &dfs_fops);
 
 
2851
2852	fname = "chk_general";
2853	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2854					     d->dfs_dir, c, &dfs_fops);
 
 
 
2855
2856	fname = "chk_index";
2857	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2858					       d->dfs_dir, c, &dfs_fops);
 
 
 
2859
2860	fname = "chk_orphans";
2861	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2862					      d->dfs_dir, c, &dfs_fops);
 
 
 
2863
2864	fname = "chk_lprops";
2865	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2866						d->dfs_dir, c, &dfs_fops);
 
 
 
2867
2868	fname = "chk_fs";
2869	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2870					    d->dfs_dir, c, &dfs_fops);
 
 
 
2871
2872	fname = "tst_recovery";
2873	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2874					       d->dfs_dir, c, &dfs_fops);
 
 
 
2875
2876	fname = "ro_error";
2877	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2878					      d->dfs_dir, c, &dfs_fops);
 
 
 
 
 
 
2879}
2880
2881/**
2882 * dbg_debugfs_exit_fs - remove all debugfs files.
2883 * @c: UBIFS file-system description object
2884 */
2885void dbg_debugfs_exit_fs(struct ubifs_info *c)
2886{
2887	debugfs_remove_recursive(c->dbg->dfs_dir);
2888}
2889
2890struct ubifs_global_debug_info ubifs_dbg;
2891
2892static struct dentry *dfs_chk_gen;
2893static struct dentry *dfs_chk_index;
2894static struct dentry *dfs_chk_orph;
2895static struct dentry *dfs_chk_lprops;
2896static struct dentry *dfs_chk_fs;
2897static struct dentry *dfs_tst_rcvry;
2898
2899static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2900				    size_t count, loff_t *ppos)
2901{
2902	struct dentry *dent = file->f_path.dentry;
2903	int val;
2904
2905	if (dent == dfs_chk_gen)
2906		val = ubifs_dbg.chk_gen;
2907	else if (dent == dfs_chk_index)
2908		val = ubifs_dbg.chk_index;
2909	else if (dent == dfs_chk_orph)
2910		val = ubifs_dbg.chk_orph;
2911	else if (dent == dfs_chk_lprops)
2912		val = ubifs_dbg.chk_lprops;
2913	else if (dent == dfs_chk_fs)
2914		val = ubifs_dbg.chk_fs;
2915	else if (dent == dfs_tst_rcvry)
2916		val = ubifs_dbg.tst_rcvry;
2917	else
2918		return -EINVAL;
2919
2920	return provide_user_output(val, u, count, ppos);
2921}
2922
2923static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2924				     size_t count, loff_t *ppos)
2925{
2926	struct dentry *dent = file->f_path.dentry;
2927	int val;
2928
2929	val = interpret_user_input(u, count);
2930	if (val < 0)
2931		return val;
2932
2933	if (dent == dfs_chk_gen)
2934		ubifs_dbg.chk_gen = val;
2935	else if (dent == dfs_chk_index)
2936		ubifs_dbg.chk_index = val;
2937	else if (dent == dfs_chk_orph)
2938		ubifs_dbg.chk_orph = val;
2939	else if (dent == dfs_chk_lprops)
2940		ubifs_dbg.chk_lprops = val;
2941	else if (dent == dfs_chk_fs)
2942		ubifs_dbg.chk_fs = val;
2943	else if (dent == dfs_tst_rcvry)
2944		ubifs_dbg.tst_rcvry = val;
2945	else
2946		return -EINVAL;
2947
2948	return count;
2949}
2950
2951static const struct file_operations dfs_global_fops = {
2952	.read = dfs_global_file_read,
2953	.write = dfs_global_file_write,
2954	.owner = THIS_MODULE,
2955	.llseek = no_llseek,
2956};
2957
2958/**
2959 * dbg_debugfs_init - initialize debugfs file-system.
2960 *
2961 * UBIFS uses debugfs file-system to expose various debugging knobs to
2962 * user-space. This function creates "ubifs" directory in the debugfs
2963 * file-system.
 
2964 */
2965void dbg_debugfs_init(void)
2966{
 
2967	const char *fname;
 
2968
2969	fname = "ubifs";
2970	dfs_rootdir = debugfs_create_dir(fname, NULL);
 
 
 
2971
2972	fname = "chk_general";
2973	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2974					  NULL, &dfs_global_fops);
 
 
 
2975
2976	fname = "chk_index";
2977	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2978					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2979
2980	fname = "chk_orphans";
2981	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2982					   dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2983
2984	fname = "chk_lprops";
2985	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2986					     dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2987
2988	fname = "chk_fs";
2989	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2990					 NULL, &dfs_global_fops);
 
 
 
2991
2992	fname = "tst_recovery";
2993	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2994					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2995}
2996
2997/**
2998 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2999 */
3000void dbg_debugfs_exit(void)
3001{
3002	debugfs_remove_recursive(dfs_rootdir);
3003}
3004
3005void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3006			 const char *file, int line)
3007{
3008	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3009
3010	switch (c->assert_action) {
3011		case ASSACT_PANIC:
3012		BUG();
3013		break;
3014
3015		case ASSACT_RO:
3016		ubifs_ro_mode(c, -EINVAL);
3017		break;
3018
3019		case ASSACT_REPORT:
3020		default:
3021		dump_stack();
3022		break;
3023
3024	}
3025}
3026
3027/**
3028 * ubifs_debugging_init - initialize UBIFS debugging.
3029 * @c: UBIFS file-system description object
3030 *
3031 * This function initializes debugging-related data for the file system.
3032 * Returns zero in case of success and a negative error code in case of
3033 * failure.
3034 */
3035int ubifs_debugging_init(struct ubifs_info *c)
3036{
3037	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3038	if (!c->dbg)
3039		return -ENOMEM;
3040
3041	return 0;
3042}
3043
3044/**
3045 * ubifs_debugging_exit - free debugging data.
3046 * @c: UBIFS file-system description object
3047 */
3048void ubifs_debugging_exit(struct ubifs_info *c)
3049{
3050	kfree(c->dbg);
3051}