Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) Qu Wenruo 2017.  All rights reserved.
   4 */
   5
   6/*
   7 * The module is used to catch unexpected/corrupted tree block data.
   8 * Such behavior can be caused either by a fuzzed image or bugs.
   9 *
  10 * The objective is to do leaf/node validation checks when tree block is read
  11 * from disk, and check *every* possible member, so other code won't
  12 * need to checking them again.
  13 *
  14 * Due to the potential and unwanted damage, every checker needs to be
  15 * carefully reviewed otherwise so it does not prevent mount of valid images.
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/stddef.h>
  20#include <linux/error-injection.h>
  21#include "messages.h"
  22#include "ctree.h"
  23#include "tree-checker.h"
  24#include "compression.h"
  25#include "volumes.h"
  26#include "misc.h"
  27#include "fs.h"
  28#include "accessors.h"
  29#include "file-item.h"
  30#include "inode-item.h"
  31#include "dir-item.h"
  32#include "extent-tree.h"
  33
  34/*
  35 * Error message should follow the following format:
  36 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
  37 *
  38 * @type:	leaf or node
  39 * @identifier:	the necessary info to locate the leaf/node.
  40 * 		It's recommended to decode key.objecitd/offset if it's
  41 * 		meaningful.
  42 * @reason:	describe the error
  43 * @bad_value:	optional, it's recommended to output bad value and its
  44 *		expected value (range).
  45 *
  46 * Since comma is used to separate the components, only space is allowed
  47 * inside each component.
  48 */
  49
  50/*
  51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
  52 * Allows callers to customize the output.
  53 */
  54__printf(3, 4)
  55__cold
  56static void generic_err(const struct extent_buffer *eb, int slot,
  57			const char *fmt, ...)
  58{
  59	const struct btrfs_fs_info *fs_info = eb->fs_info;
  60	struct va_format vaf;
  61	va_list args;
  62
  63	va_start(args, fmt);
  64
  65	vaf.fmt = fmt;
  66	vaf.va = &args;
  67
  68	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
  69	btrfs_crit(fs_info,
  70		"corrupt %s: root=%llu block=%llu slot=%d, %pV",
  71		btrfs_header_level(eb) == 0 ? "leaf" : "node",
  72		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
  73	va_end(args);
  74}
  75
  76/*
  77 * Customized reporter for extent data item, since its key objectid and
  78 * offset has its own meaning.
  79 */
  80__printf(3, 4)
  81__cold
  82static void file_extent_err(const struct extent_buffer *eb, int slot,
  83			    const char *fmt, ...)
  84{
  85	const struct btrfs_fs_info *fs_info = eb->fs_info;
  86	struct btrfs_key key;
  87	struct va_format vaf;
  88	va_list args;
  89
  90	btrfs_item_key_to_cpu(eb, &key, slot);
  91	va_start(args, fmt);
  92
  93	vaf.fmt = fmt;
  94	vaf.va = &args;
  95
  96	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
  97	btrfs_crit(fs_info,
  98	"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
  99		btrfs_header_level(eb) == 0 ? "leaf" : "node",
 100		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
 101		key.objectid, key.offset, &vaf);
 102	va_end(args);
 103}
 104
 105/*
 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
 107 * Else return 1
 108 */
 109#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)		      \
 110({									      \
 111	if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
 112				 (alignment))))				      \
 113		file_extent_err((leaf), (slot),				      \
 114	"invalid %s for file extent, have %llu, should be aligned to %u",     \
 115			(#name), btrfs_file_extent_##name((leaf), (fi)),      \
 116			(alignment));					      \
 117	(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
 118})
 119
 120static u64 file_extent_end(struct extent_buffer *leaf,
 121			   struct btrfs_key *key,
 122			   struct btrfs_file_extent_item *extent)
 123{
 124	u64 end;
 125	u64 len;
 126
 127	if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
 128		len = btrfs_file_extent_ram_bytes(leaf, extent);
 129		end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
 130	} else {
 131		len = btrfs_file_extent_num_bytes(leaf, extent);
 132		end = key->offset + len;
 133	}
 134	return end;
 135}
 136
 137/*
 138 * Customized report for dir_item, the only new important information is
 139 * key->objectid, which represents inode number
 140 */
 141__printf(3, 4)
 142__cold
 143static void dir_item_err(const struct extent_buffer *eb, int slot,
 144			 const char *fmt, ...)
 145{
 146	const struct btrfs_fs_info *fs_info = eb->fs_info;
 147	struct btrfs_key key;
 148	struct va_format vaf;
 149	va_list args;
 150
 151	btrfs_item_key_to_cpu(eb, &key, slot);
 152	va_start(args, fmt);
 153
 154	vaf.fmt = fmt;
 155	vaf.va = &args;
 156
 157	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
 158	btrfs_crit(fs_info,
 159		"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
 160		btrfs_header_level(eb) == 0 ? "leaf" : "node",
 161		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
 162		key.objectid, &vaf);
 163	va_end(args);
 164}
 165
 166/*
 167 * This functions checks prev_key->objectid, to ensure current key and prev_key
 168 * share the same objectid as inode number.
 169 *
 170 * This is to detect missing INODE_ITEM in subvolume trees.
 171 *
 172 * Return true if everything is OK or we don't need to check.
 173 * Return false if anything is wrong.
 174 */
 175static bool check_prev_ino(struct extent_buffer *leaf,
 176			   struct btrfs_key *key, int slot,
 177			   struct btrfs_key *prev_key)
 178{
 179	/* No prev key, skip check */
 180	if (slot == 0)
 181		return true;
 182
 183	/* Only these key->types needs to be checked */
 184	ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
 185	       key->type == BTRFS_INODE_REF_KEY ||
 186	       key->type == BTRFS_DIR_INDEX_KEY ||
 187	       key->type == BTRFS_DIR_ITEM_KEY ||
 188	       key->type == BTRFS_EXTENT_DATA_KEY);
 189
 190	/*
 191	 * Only subvolume trees along with their reloc trees need this check.
 192	 * Things like log tree doesn't follow this ino requirement.
 193	 */
 194	if (!is_fstree(btrfs_header_owner(leaf)))
 195		return true;
 196
 197	if (key->objectid == prev_key->objectid)
 198		return true;
 199
 200	/* Error found */
 201	dir_item_err(leaf, slot,
 202		"invalid previous key objectid, have %llu expect %llu",
 203		prev_key->objectid, key->objectid);
 204	return false;
 205}
 206static int check_extent_data_item(struct extent_buffer *leaf,
 207				  struct btrfs_key *key, int slot,
 208				  struct btrfs_key *prev_key)
 209{
 210	struct btrfs_fs_info *fs_info = leaf->fs_info;
 211	struct btrfs_file_extent_item *fi;
 212	u32 sectorsize = fs_info->sectorsize;
 213	u32 item_size = btrfs_item_size(leaf, slot);
 214	u64 extent_end;
 215
 216	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
 217		file_extent_err(leaf, slot,
 218"unaligned file_offset for file extent, have %llu should be aligned to %u",
 219			key->offset, sectorsize);
 220		return -EUCLEAN;
 221	}
 222
 223	/*
 224	 * Previous key must have the same key->objectid (ino).
 225	 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
 226	 * But if objectids mismatch, it means we have a missing
 227	 * INODE_ITEM.
 228	 */
 229	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
 230		return -EUCLEAN;
 231
 232	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 233
 234	/*
 235	 * Make sure the item contains at least inline header, so the file
 236	 * extent type is not some garbage.
 237	 */
 238	if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
 239		file_extent_err(leaf, slot,
 240				"invalid item size, have %u expect [%zu, %u)",
 241				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
 242				SZ_4K);
 243		return -EUCLEAN;
 244	}
 245	if (unlikely(btrfs_file_extent_type(leaf, fi) >=
 246		     BTRFS_NR_FILE_EXTENT_TYPES)) {
 247		file_extent_err(leaf, slot,
 248		"invalid type for file extent, have %u expect range [0, %u]",
 249			btrfs_file_extent_type(leaf, fi),
 250			BTRFS_NR_FILE_EXTENT_TYPES - 1);
 251		return -EUCLEAN;
 252	}
 253
 254	/*
 255	 * Support for new compression/encryption must introduce incompat flag,
 256	 * and must be caught in open_ctree().
 257	 */
 258	if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
 259		     BTRFS_NR_COMPRESS_TYPES)) {
 260		file_extent_err(leaf, slot,
 261	"invalid compression for file extent, have %u expect range [0, %u]",
 262			btrfs_file_extent_compression(leaf, fi),
 263			BTRFS_NR_COMPRESS_TYPES - 1);
 264		return -EUCLEAN;
 265	}
 266	if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
 267		file_extent_err(leaf, slot,
 268			"invalid encryption for file extent, have %u expect 0",
 269			btrfs_file_extent_encryption(leaf, fi));
 270		return -EUCLEAN;
 271	}
 272	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
 273		/* Inline extent must have 0 as key offset */
 274		if (unlikely(key->offset)) {
 275			file_extent_err(leaf, slot,
 276		"invalid file_offset for inline file extent, have %llu expect 0",
 277				key->offset);
 278			return -EUCLEAN;
 279		}
 280
 281		/* Compressed inline extent has no on-disk size, skip it */
 282		if (btrfs_file_extent_compression(leaf, fi) !=
 283		    BTRFS_COMPRESS_NONE)
 284			return 0;
 285
 286		/* Uncompressed inline extent size must match item size */
 287		if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
 288					  btrfs_file_extent_ram_bytes(leaf, fi))) {
 289			file_extent_err(leaf, slot,
 290	"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
 291				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
 292				btrfs_file_extent_ram_bytes(leaf, fi));
 293			return -EUCLEAN;
 294		}
 295		return 0;
 296	}
 297
 298	/* Regular or preallocated extent has fixed item size */
 299	if (unlikely(item_size != sizeof(*fi))) {
 300		file_extent_err(leaf, slot,
 301	"invalid item size for reg/prealloc file extent, have %u expect %zu",
 302			item_size, sizeof(*fi));
 303		return -EUCLEAN;
 304	}
 305	if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
 306		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
 307		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
 308		     CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
 309		     CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
 310		return -EUCLEAN;
 311
 312	/* Catch extent end overflow */
 313	if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
 314					key->offset, &extent_end))) {
 315		file_extent_err(leaf, slot,
 316	"extent end overflow, have file offset %llu extent num bytes %llu",
 317				key->offset,
 318				btrfs_file_extent_num_bytes(leaf, fi));
 319		return -EUCLEAN;
 320	}
 321
 322	/*
 323	 * Check that no two consecutive file extent items, in the same leaf,
 324	 * present ranges that overlap each other.
 325	 */
 326	if (slot > 0 &&
 327	    prev_key->objectid == key->objectid &&
 328	    prev_key->type == BTRFS_EXTENT_DATA_KEY) {
 329		struct btrfs_file_extent_item *prev_fi;
 330		u64 prev_end;
 331
 332		prev_fi = btrfs_item_ptr(leaf, slot - 1,
 333					 struct btrfs_file_extent_item);
 334		prev_end = file_extent_end(leaf, prev_key, prev_fi);
 335		if (unlikely(prev_end > key->offset)) {
 336			file_extent_err(leaf, slot - 1,
 337"file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
 338					prev_end, key->offset);
 339			return -EUCLEAN;
 340		}
 341	}
 342
 343	/*
 344	 * For non-compressed data extents, ram_bytes should match its
 345	 * disk_num_bytes.
 346	 * However we do not really utilize ram_bytes in this case, so this check
 347	 * is only optional for DEBUG builds for developers to catch the
 348	 * unexpected behaviors.
 349	 */
 350	if (IS_ENABLED(CONFIG_BTRFS_DEBUG) &&
 351	    btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE &&
 352	    btrfs_file_extent_disk_bytenr(leaf, fi)) {
 353		if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) !=
 354			    btrfs_file_extent_disk_num_bytes(leaf, fi)))
 355			file_extent_err(leaf, slot,
 356"mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent",
 357					btrfs_file_extent_ram_bytes(leaf, fi),
 358					btrfs_file_extent_disk_num_bytes(leaf, fi));
 359	}
 360
 361	return 0;
 362}
 363
 364static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
 365			   int slot, struct btrfs_key *prev_key)
 366{
 367	struct btrfs_fs_info *fs_info = leaf->fs_info;
 368	u32 sectorsize = fs_info->sectorsize;
 369	const u32 csumsize = fs_info->csum_size;
 370
 371	if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
 372		generic_err(leaf, slot,
 373		"invalid key objectid for csum item, have %llu expect %llu",
 374			key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
 375		return -EUCLEAN;
 376	}
 377	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
 378		generic_err(leaf, slot,
 379	"unaligned key offset for csum item, have %llu should be aligned to %u",
 380			key->offset, sectorsize);
 381		return -EUCLEAN;
 382	}
 383	if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
 384		generic_err(leaf, slot,
 385	"unaligned item size for csum item, have %u should be aligned to %u",
 386			btrfs_item_size(leaf, slot), csumsize);
 387		return -EUCLEAN;
 388	}
 389	if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
 390		u64 prev_csum_end;
 391		u32 prev_item_size;
 392
 393		prev_item_size = btrfs_item_size(leaf, slot - 1);
 394		prev_csum_end = (prev_item_size / csumsize) * sectorsize;
 395		prev_csum_end += prev_key->offset;
 396		if (unlikely(prev_csum_end > key->offset)) {
 397			generic_err(leaf, slot - 1,
 398"csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
 399				    prev_csum_end, key->offset);
 400			return -EUCLEAN;
 401		}
 402	}
 403	return 0;
 404}
 405
 406/* Inode item error output has the same format as dir_item_err() */
 407#define inode_item_err(eb, slot, fmt, ...)			\
 408	dir_item_err(eb, slot, fmt, __VA_ARGS__)
 409
 410static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
 411			   int slot)
 412{
 413	struct btrfs_key item_key;
 414	bool is_inode_item;
 415
 416	btrfs_item_key_to_cpu(leaf, &item_key, slot);
 417	is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
 418
 419	/* For XATTR_ITEM, location key should be all 0 */
 420	if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
 421		if (unlikely(key->objectid != 0 || key->type != 0 ||
 422			     key->offset != 0))
 423			return -EUCLEAN;
 424		return 0;
 425	}
 426
 427	if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
 428		      key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
 429		     key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
 430		     key->objectid != BTRFS_FREE_INO_OBJECTID)) {
 431		if (is_inode_item) {
 432			generic_err(leaf, slot,
 433	"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
 434				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
 435				BTRFS_FIRST_FREE_OBJECTID,
 436				BTRFS_LAST_FREE_OBJECTID,
 437				BTRFS_FREE_INO_OBJECTID);
 438		} else {
 439			dir_item_err(leaf, slot,
 440"invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
 441				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
 442				BTRFS_FIRST_FREE_OBJECTID,
 443				BTRFS_LAST_FREE_OBJECTID,
 444				BTRFS_FREE_INO_OBJECTID);
 445		}
 446		return -EUCLEAN;
 447	}
 448	if (unlikely(key->offset != 0)) {
 449		if (is_inode_item)
 450			inode_item_err(leaf, slot,
 451				       "invalid key offset: has %llu expect 0",
 452				       key->offset);
 453		else
 454			dir_item_err(leaf, slot,
 455				"invalid location key offset:has %llu expect 0",
 456				key->offset);
 457		return -EUCLEAN;
 458	}
 459	return 0;
 460}
 461
 462static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
 463			  int slot)
 464{
 465	struct btrfs_key item_key;
 466	bool is_root_item;
 467
 468	btrfs_item_key_to_cpu(leaf, &item_key, slot);
 469	is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
 470
 471	/*
 472	 * Bad rootid for reloc trees.
 473	 *
 474	 * Reloc trees are only for subvolume trees, other trees only need
 475	 * to be COWed to be relocated.
 476	 */
 477	if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
 478		     !is_fstree(key->offset))) {
 479		generic_err(leaf, slot,
 480		"invalid reloc tree for root %lld, root id is not a subvolume tree",
 481			    key->offset);
 482		return -EUCLEAN;
 483	}
 484
 485	/* No such tree id */
 486	if (unlikely(key->objectid == 0)) {
 487		if (is_root_item)
 488			generic_err(leaf, slot, "invalid root id 0");
 489		else
 490			dir_item_err(leaf, slot,
 491				     "invalid location key root id 0");
 492		return -EUCLEAN;
 493	}
 494
 495	/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
 496	if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
 497		dir_item_err(leaf, slot,
 498		"invalid location key objectid, have %llu expect [%llu, %llu]",
 499				key->objectid, BTRFS_FIRST_FREE_OBJECTID,
 500				BTRFS_LAST_FREE_OBJECTID);
 501		return -EUCLEAN;
 502	}
 503
 504	/*
 505	 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
 506	 * @offset transid.
 507	 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
 508	 *
 509	 * So here we only check offset for reloc tree whose key->offset must
 510	 * be a valid tree.
 511	 */
 512	if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
 513		     key->offset == 0)) {
 514		generic_err(leaf, slot, "invalid root id 0 for reloc tree");
 515		return -EUCLEAN;
 516	}
 517	return 0;
 518}
 519
 520static int check_dir_item(struct extent_buffer *leaf,
 521			  struct btrfs_key *key, struct btrfs_key *prev_key,
 522			  int slot)
 523{
 524	struct btrfs_fs_info *fs_info = leaf->fs_info;
 525	struct btrfs_dir_item *di;
 526	u32 item_size = btrfs_item_size(leaf, slot);
 527	u32 cur = 0;
 528
 529	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
 530		return -EUCLEAN;
 531
 532	di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
 533	while (cur < item_size) {
 534		struct btrfs_key location_key;
 535		u32 name_len;
 536		u32 data_len;
 537		u32 max_name_len;
 538		u32 total_size;
 539		u32 name_hash;
 540		u8 dir_type;
 541		int ret;
 542
 543		/* header itself should not cross item boundary */
 544		if (unlikely(cur + sizeof(*di) > item_size)) {
 545			dir_item_err(leaf, slot,
 546		"dir item header crosses item boundary, have %zu boundary %u",
 547				cur + sizeof(*di), item_size);
 548			return -EUCLEAN;
 549		}
 550
 551		/* Location key check */
 552		btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
 553		if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
 554			ret = check_root_key(leaf, &location_key, slot);
 555			if (unlikely(ret < 0))
 556				return ret;
 557		} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
 558			   location_key.type == 0) {
 559			ret = check_inode_key(leaf, &location_key, slot);
 560			if (unlikely(ret < 0))
 561				return ret;
 562		} else {
 563			dir_item_err(leaf, slot,
 564			"invalid location key type, have %u, expect %u or %u",
 565				     location_key.type, BTRFS_ROOT_ITEM_KEY,
 566				     BTRFS_INODE_ITEM_KEY);
 567			return -EUCLEAN;
 568		}
 569
 570		/* dir type check */
 571		dir_type = btrfs_dir_ftype(leaf, di);
 572		if (unlikely(dir_type <= BTRFS_FT_UNKNOWN ||
 573			     dir_type >= BTRFS_FT_MAX)) {
 574			dir_item_err(leaf, slot,
 575			"invalid dir item type, have %u expect (0, %u)",
 576				dir_type, BTRFS_FT_MAX);
 577			return -EUCLEAN;
 578		}
 579
 580		if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
 581			     dir_type != BTRFS_FT_XATTR)) {
 582			dir_item_err(leaf, slot,
 583		"invalid dir item type for XATTR key, have %u expect %u",
 584				dir_type, BTRFS_FT_XATTR);
 585			return -EUCLEAN;
 586		}
 587		if (unlikely(dir_type == BTRFS_FT_XATTR &&
 588			     key->type != BTRFS_XATTR_ITEM_KEY)) {
 589			dir_item_err(leaf, slot,
 590			"xattr dir type found for non-XATTR key");
 591			return -EUCLEAN;
 592		}
 593		if (dir_type == BTRFS_FT_XATTR)
 594			max_name_len = XATTR_NAME_MAX;
 595		else
 596			max_name_len = BTRFS_NAME_LEN;
 597
 598		/* Name/data length check */
 599		name_len = btrfs_dir_name_len(leaf, di);
 600		data_len = btrfs_dir_data_len(leaf, di);
 601		if (unlikely(name_len > max_name_len)) {
 602			dir_item_err(leaf, slot,
 603			"dir item name len too long, have %u max %u",
 604				name_len, max_name_len);
 605			return -EUCLEAN;
 606		}
 607		if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
 608			dir_item_err(leaf, slot,
 609			"dir item name and data len too long, have %u max %u",
 610				name_len + data_len,
 611				BTRFS_MAX_XATTR_SIZE(fs_info));
 612			return -EUCLEAN;
 613		}
 614
 615		if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
 616			dir_item_err(leaf, slot,
 617			"dir item with invalid data len, have %u expect 0",
 618				data_len);
 619			return -EUCLEAN;
 620		}
 621
 622		total_size = sizeof(*di) + name_len + data_len;
 623
 624		/* header and name/data should not cross item boundary */
 625		if (unlikely(cur + total_size > item_size)) {
 626			dir_item_err(leaf, slot,
 627		"dir item data crosses item boundary, have %u boundary %u",
 628				cur + total_size, item_size);
 629			return -EUCLEAN;
 630		}
 631
 632		/*
 633		 * Special check for XATTR/DIR_ITEM, as key->offset is name
 634		 * hash, should match its name
 635		 */
 636		if (key->type == BTRFS_DIR_ITEM_KEY ||
 637		    key->type == BTRFS_XATTR_ITEM_KEY) {
 638			char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
 639
 640			read_extent_buffer(leaf, namebuf,
 641					(unsigned long)(di + 1), name_len);
 642			name_hash = btrfs_name_hash(namebuf, name_len);
 643			if (unlikely(key->offset != name_hash)) {
 644				dir_item_err(leaf, slot,
 645		"name hash mismatch with key, have 0x%016x expect 0x%016llx",
 646					name_hash, key->offset);
 647				return -EUCLEAN;
 648			}
 649		}
 650		cur += total_size;
 651		di = (struct btrfs_dir_item *)((void *)di + total_size);
 652	}
 653	return 0;
 654}
 655
 656__printf(3, 4)
 657__cold
 658static void block_group_err(const struct extent_buffer *eb, int slot,
 659			    const char *fmt, ...)
 660{
 661	const struct btrfs_fs_info *fs_info = eb->fs_info;
 662	struct btrfs_key key;
 663	struct va_format vaf;
 664	va_list args;
 665
 666	btrfs_item_key_to_cpu(eb, &key, slot);
 667	va_start(args, fmt);
 668
 669	vaf.fmt = fmt;
 670	vaf.va = &args;
 671
 672	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
 673	btrfs_crit(fs_info,
 674	"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
 675		btrfs_header_level(eb) == 0 ? "leaf" : "node",
 676		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
 677		key.objectid, key.offset, &vaf);
 678	va_end(args);
 679}
 680
 681static int check_block_group_item(struct extent_buffer *leaf,
 682				  struct btrfs_key *key, int slot)
 683{
 684	struct btrfs_fs_info *fs_info = leaf->fs_info;
 685	struct btrfs_block_group_item bgi;
 686	u32 item_size = btrfs_item_size(leaf, slot);
 687	u64 chunk_objectid;
 688	u64 flags;
 689	u64 type;
 690
 691	/*
 692	 * Here we don't really care about alignment since extent allocator can
 693	 * handle it.  We care more about the size.
 694	 */
 695	if (unlikely(key->offset == 0)) {
 696		block_group_err(leaf, slot,
 697				"invalid block group size 0");
 698		return -EUCLEAN;
 699	}
 700
 701	if (unlikely(item_size != sizeof(bgi))) {
 702		block_group_err(leaf, slot,
 703			"invalid item size, have %u expect %zu",
 704				item_size, sizeof(bgi));
 705		return -EUCLEAN;
 706	}
 707
 708	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
 709			   sizeof(bgi));
 710	chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
 711	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
 712		/*
 713		 * We don't init the nr_global_roots until we load the global
 714		 * roots, so this could be 0 at mount time.  If it's 0 we'll
 715		 * just assume we're fine, and later we'll check against our
 716		 * actual value.
 717		 */
 718		if (unlikely(fs_info->nr_global_roots &&
 719			     chunk_objectid >= fs_info->nr_global_roots)) {
 720			block_group_err(leaf, slot,
 721	"invalid block group global root id, have %llu, needs to be <= %llu",
 722					chunk_objectid,
 723					fs_info->nr_global_roots);
 724			return -EUCLEAN;
 725		}
 726	} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
 727		block_group_err(leaf, slot,
 728		"invalid block group chunk objectid, have %llu expect %llu",
 729				btrfs_stack_block_group_chunk_objectid(&bgi),
 730				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
 731		return -EUCLEAN;
 732	}
 733
 734	if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
 735		block_group_err(leaf, slot,
 736			"invalid block group used, have %llu expect [0, %llu)",
 737				btrfs_stack_block_group_used(&bgi), key->offset);
 738		return -EUCLEAN;
 739	}
 740
 741	flags = btrfs_stack_block_group_flags(&bgi);
 742	if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
 743		block_group_err(leaf, slot,
 744"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
 745			flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
 746			hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
 747		return -EUCLEAN;
 748	}
 749
 750	type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 751	if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
 752		     type != BTRFS_BLOCK_GROUP_METADATA &&
 753		     type != BTRFS_BLOCK_GROUP_SYSTEM &&
 754		     type != (BTRFS_BLOCK_GROUP_METADATA |
 755			      BTRFS_BLOCK_GROUP_DATA))) {
 756		block_group_err(leaf, slot,
 757"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
 758			type, hweight64(type),
 759			BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
 760			BTRFS_BLOCK_GROUP_SYSTEM,
 761			BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
 762		return -EUCLEAN;
 763	}
 764	return 0;
 765}
 766
 767__printf(4, 5)
 768__cold
 769static void chunk_err(const struct extent_buffer *leaf,
 770		      const struct btrfs_chunk *chunk, u64 logical,
 771		      const char *fmt, ...)
 772{
 773	const struct btrfs_fs_info *fs_info = leaf->fs_info;
 774	bool is_sb;
 775	struct va_format vaf;
 776	va_list args;
 777	int i;
 778	int slot = -1;
 779
 780	/* Only superblock eb is able to have such small offset */
 781	is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
 782
 783	if (!is_sb) {
 784		/*
 785		 * Get the slot number by iterating through all slots, this
 786		 * would provide better readability.
 787		 */
 788		for (i = 0; i < btrfs_header_nritems(leaf); i++) {
 789			if (btrfs_item_ptr_offset(leaf, i) ==
 790					(unsigned long)chunk) {
 791				slot = i;
 792				break;
 793			}
 794		}
 795	}
 796	va_start(args, fmt);
 797	vaf.fmt = fmt;
 798	vaf.va = &args;
 799
 800	if (is_sb)
 801		btrfs_crit(fs_info,
 802		"corrupt superblock syschunk array: chunk_start=%llu, %pV",
 803			   logical, &vaf);
 804	else
 805		btrfs_crit(fs_info,
 806	"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
 807			   BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
 808			   logical, &vaf);
 809	va_end(args);
 810}
 811
 812/*
 813 * The common chunk check which could also work on super block sys chunk array.
 814 *
 815 * Return -EUCLEAN if anything is corrupted.
 816 * Return 0 if everything is OK.
 817 */
 818int btrfs_check_chunk_valid(struct extent_buffer *leaf,
 819			    struct btrfs_chunk *chunk, u64 logical)
 820{
 821	struct btrfs_fs_info *fs_info = leaf->fs_info;
 822	u64 length;
 823	u64 chunk_end;
 824	u64 stripe_len;
 825	u16 num_stripes;
 826	u16 sub_stripes;
 827	u64 type;
 828	u64 features;
 829	bool mixed = false;
 830	int raid_index;
 831	int nparity;
 832	int ncopies;
 833
 834	length = btrfs_chunk_length(leaf, chunk);
 835	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 836	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 837	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 838	type = btrfs_chunk_type(leaf, chunk);
 839	raid_index = btrfs_bg_flags_to_raid_index(type);
 840	ncopies = btrfs_raid_array[raid_index].ncopies;
 841	nparity = btrfs_raid_array[raid_index].nparity;
 842
 843	if (unlikely(!num_stripes)) {
 844		chunk_err(leaf, chunk, logical,
 845			  "invalid chunk num_stripes, have %u", num_stripes);
 846		return -EUCLEAN;
 847	}
 848	if (unlikely(num_stripes < ncopies)) {
 849		chunk_err(leaf, chunk, logical,
 850			  "invalid chunk num_stripes < ncopies, have %u < %d",
 851			  num_stripes, ncopies);
 852		return -EUCLEAN;
 853	}
 854	if (unlikely(nparity && num_stripes == nparity)) {
 855		chunk_err(leaf, chunk, logical,
 856			  "invalid chunk num_stripes == nparity, have %u == %d",
 857			  num_stripes, nparity);
 858		return -EUCLEAN;
 859	}
 860	if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
 861		chunk_err(leaf, chunk, logical,
 862		"invalid chunk logical, have %llu should aligned to %u",
 863			  logical, fs_info->sectorsize);
 864		return -EUCLEAN;
 865	}
 866	if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
 867		chunk_err(leaf, chunk, logical,
 868			  "invalid chunk sectorsize, have %u expect %u",
 869			  btrfs_chunk_sector_size(leaf, chunk),
 870			  fs_info->sectorsize);
 871		return -EUCLEAN;
 872	}
 873	if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
 874		chunk_err(leaf, chunk, logical,
 875			  "invalid chunk length, have %llu", length);
 876		return -EUCLEAN;
 877	}
 878	if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
 879		chunk_err(leaf, chunk, logical,
 880"invalid chunk logical start and length, have logical start %llu length %llu",
 881			  logical, length);
 882		return -EUCLEAN;
 883	}
 884	if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
 885		chunk_err(leaf, chunk, logical,
 886			  "invalid chunk stripe length: %llu",
 887			  stripe_len);
 888		return -EUCLEAN;
 889	}
 890	/*
 891	 * We artificially limit the chunk size, so that the number of stripes
 892	 * inside a chunk can be fit into a U32.  The current limit (256G) is
 893	 * way too large for real world usage anyway, and it's also much larger
 894	 * than our existing limit (10G).
 895	 *
 896	 * Thus it should be a good way to catch obvious bitflips.
 897	 */
 898	if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
 899		chunk_err(leaf, chunk, logical,
 900			  "chunk length too large: have %llu limit %llu",
 901			  length, btrfs_stripe_nr_to_offset(U32_MAX));
 902		return -EUCLEAN;
 903	}
 904	if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
 905			      BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
 906		chunk_err(leaf, chunk, logical,
 907			  "unrecognized chunk type: 0x%llx",
 908			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
 909			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
 910			  btrfs_chunk_type(leaf, chunk));
 911		return -EUCLEAN;
 912	}
 913
 914	if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
 915		     (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
 916		chunk_err(leaf, chunk, logical,
 917		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
 918			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 919		return -EUCLEAN;
 920	}
 921	if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
 922		chunk_err(leaf, chunk, logical,
 923	"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
 924			  type, BTRFS_BLOCK_GROUP_TYPE_MASK);
 925		return -EUCLEAN;
 926	}
 927
 928	if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
 929		     (type & (BTRFS_BLOCK_GROUP_METADATA |
 930			      BTRFS_BLOCK_GROUP_DATA)))) {
 931		chunk_err(leaf, chunk, logical,
 932			  "system chunk with data or metadata type: 0x%llx",
 933			  type);
 934		return -EUCLEAN;
 935	}
 936
 937	features = btrfs_super_incompat_flags(fs_info->super_copy);
 938	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 939		mixed = true;
 940
 941	if (!mixed) {
 942		if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
 943			     (type & BTRFS_BLOCK_GROUP_DATA))) {
 944			chunk_err(leaf, chunk, logical,
 945			"mixed chunk type in non-mixed mode: 0x%llx", type);
 946			return -EUCLEAN;
 947		}
 948	}
 949
 950	if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
 951		      sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
 952		     (type & BTRFS_BLOCK_GROUP_RAID1 &&
 953		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
 954		     (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
 955		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
 956		     (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
 957		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
 958		     (type & BTRFS_BLOCK_GROUP_RAID5 &&
 959		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
 960		     (type & BTRFS_BLOCK_GROUP_RAID6 &&
 961		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
 962		     (type & BTRFS_BLOCK_GROUP_DUP &&
 963		      num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
 964		     ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
 965		      num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
 966		chunk_err(leaf, chunk, logical,
 967			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
 968			num_stripes, sub_stripes,
 969			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 970		return -EUCLEAN;
 971	}
 972
 973	return 0;
 974}
 975
 976/*
 977 * Enhanced version of chunk item checker.
 978 *
 979 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
 980 * to work on super block sys_chunk_array which doesn't have full item ptr.
 981 */
 982static int check_leaf_chunk_item(struct extent_buffer *leaf,
 983				 struct btrfs_chunk *chunk,
 984				 struct btrfs_key *key, int slot)
 985{
 986	int num_stripes;
 987
 988	if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
 989		chunk_err(leaf, chunk, key->offset,
 990			"invalid chunk item size: have %u expect [%zu, %u)",
 991			btrfs_item_size(leaf, slot),
 992			sizeof(struct btrfs_chunk),
 993			BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
 994		return -EUCLEAN;
 995	}
 996
 997	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 998	/* Let btrfs_check_chunk_valid() handle this error type */
 999	if (num_stripes == 0)
1000		goto out;
1001
1002	if (unlikely(btrfs_chunk_item_size(num_stripes) !=
1003		     btrfs_item_size(leaf, slot))) {
1004		chunk_err(leaf, chunk, key->offset,
1005			"invalid chunk item size: have %u expect %lu",
1006			btrfs_item_size(leaf, slot),
1007			btrfs_chunk_item_size(num_stripes));
1008		return -EUCLEAN;
1009	}
1010out:
1011	return btrfs_check_chunk_valid(leaf, chunk, key->offset);
1012}
1013
1014__printf(3, 4)
1015__cold
1016static void dev_item_err(const struct extent_buffer *eb, int slot,
1017			 const char *fmt, ...)
1018{
1019	struct btrfs_key key;
1020	struct va_format vaf;
1021	va_list args;
1022
1023	btrfs_item_key_to_cpu(eb, &key, slot);
1024	va_start(args, fmt);
1025
1026	vaf.fmt = fmt;
1027	vaf.va = &args;
1028
1029	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1030	btrfs_crit(eb->fs_info,
1031	"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1032		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1033		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1034		key.objectid, &vaf);
1035	va_end(args);
1036}
1037
1038static int check_dev_item(struct extent_buffer *leaf,
1039			  struct btrfs_key *key, int slot)
1040{
1041	struct btrfs_dev_item *ditem;
1042	const u32 item_size = btrfs_item_size(leaf, slot);
1043
1044	if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1045		dev_item_err(leaf, slot,
1046			     "invalid objectid: has=%llu expect=%llu",
1047			     key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1048		return -EUCLEAN;
1049	}
1050
1051	if (unlikely(item_size != sizeof(*ditem))) {
1052		dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1053			     item_size, sizeof(*ditem));
1054		return -EUCLEAN;
1055	}
1056
1057	ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1058	if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1059		dev_item_err(leaf, slot,
1060			     "devid mismatch: key has=%llu item has=%llu",
1061			     key->offset, btrfs_device_id(leaf, ditem));
1062		return -EUCLEAN;
1063	}
1064
1065	/*
1066	 * For device total_bytes, we don't have reliable way to check it, as
1067	 * it can be 0 for device removal. Device size check can only be done
1068	 * by dev extents check.
1069	 */
1070	if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1071		     btrfs_device_total_bytes(leaf, ditem))) {
1072		dev_item_err(leaf, slot,
1073			     "invalid bytes used: have %llu expect [0, %llu]",
1074			     btrfs_device_bytes_used(leaf, ditem),
1075			     btrfs_device_total_bytes(leaf, ditem));
1076		return -EUCLEAN;
1077	}
1078	/*
1079	 * Remaining members like io_align/type/gen/dev_group aren't really
1080	 * utilized.  Skip them to make later usage of them easier.
1081	 */
1082	return 0;
1083}
1084
1085static int check_inode_item(struct extent_buffer *leaf,
1086			    struct btrfs_key *key, int slot)
1087{
1088	struct btrfs_fs_info *fs_info = leaf->fs_info;
1089	struct btrfs_inode_item *iitem;
1090	u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1091	u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1092	const u32 item_size = btrfs_item_size(leaf, slot);
1093	u32 mode;
1094	int ret;
1095	u32 flags;
1096	u32 ro_flags;
1097
1098	ret = check_inode_key(leaf, key, slot);
1099	if (unlikely(ret < 0))
1100		return ret;
1101
1102	if (unlikely(item_size != sizeof(*iitem))) {
1103		generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1104			    item_size, sizeof(*iitem));
1105		return -EUCLEAN;
1106	}
1107
1108	iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1109
1110	/* Here we use super block generation + 1 to handle log tree */
1111	if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1112		inode_item_err(leaf, slot,
1113			"invalid inode generation: has %llu expect (0, %llu]",
1114			       btrfs_inode_generation(leaf, iitem),
1115			       super_gen + 1);
1116		return -EUCLEAN;
1117	}
1118	/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1119	if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1120		inode_item_err(leaf, slot,
1121			"invalid inode transid: has %llu expect [0, %llu]",
1122			       btrfs_inode_transid(leaf, iitem), super_gen + 1);
1123		return -EUCLEAN;
1124	}
1125
1126	/*
1127	 * For size and nbytes it's better not to be too strict, as for dir
1128	 * item its size/nbytes can easily get wrong, but doesn't affect
1129	 * anything in the fs. So here we skip the check.
1130	 */
1131	mode = btrfs_inode_mode(leaf, iitem);
1132	if (unlikely(mode & ~valid_mask)) {
1133		inode_item_err(leaf, slot,
1134			       "unknown mode bit detected: 0x%x",
1135			       mode & ~valid_mask);
1136		return -EUCLEAN;
1137	}
1138
1139	/*
1140	 * S_IFMT is not bit mapped so we can't completely rely on
1141	 * is_power_of_2/has_single_bit_set, but it can save us from checking
1142	 * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1143	 */
1144	if (!has_single_bit_set(mode & S_IFMT)) {
1145		if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1146			inode_item_err(leaf, slot,
1147			"invalid mode: has 0%o expect valid S_IF* bit(s)",
1148				       mode & S_IFMT);
1149			return -EUCLEAN;
1150		}
1151	}
1152	if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1153		inode_item_err(leaf, slot,
1154		       "invalid nlink: has %u expect no more than 1 for dir",
1155			btrfs_inode_nlink(leaf, iitem));
1156		return -EUCLEAN;
1157	}
1158	btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1159	if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1160		inode_item_err(leaf, slot,
1161			       "unknown incompat flags detected: 0x%x", flags);
1162		return -EUCLEAN;
1163	}
1164	if (unlikely(!sb_rdonly(fs_info->sb) &&
1165		     (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1166		inode_item_err(leaf, slot,
1167			"unknown ro-compat flags detected on writeable mount: 0x%x",
1168			ro_flags);
1169		return -EUCLEAN;
1170	}
1171	return 0;
1172}
1173
1174static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1175			   int slot)
1176{
1177	struct btrfs_fs_info *fs_info = leaf->fs_info;
1178	struct btrfs_root_item ri = { 0 };
1179	const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1180				     BTRFS_ROOT_SUBVOL_DEAD;
1181	int ret;
1182
1183	ret = check_root_key(leaf, key, slot);
1184	if (unlikely(ret < 0))
1185		return ret;
1186
1187	if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1188		     btrfs_item_size(leaf, slot) !=
1189		     btrfs_legacy_root_item_size())) {
1190		generic_err(leaf, slot,
1191			    "invalid root item size, have %u expect %zu or %u",
1192			    btrfs_item_size(leaf, slot), sizeof(ri),
1193			    btrfs_legacy_root_item_size());
1194		return -EUCLEAN;
1195	}
1196
1197	/*
1198	 * For legacy root item, the members starting at generation_v2 will be
1199	 * all filled with 0.
1200	 * And since we allow geneartion_v2 as 0, it will still pass the check.
1201	 */
1202	read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1203			   btrfs_item_size(leaf, slot));
1204
1205	/* Generation related */
1206	if (unlikely(btrfs_root_generation(&ri) >
1207		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1208		generic_err(leaf, slot,
1209			"invalid root generation, have %llu expect (0, %llu]",
1210			    btrfs_root_generation(&ri),
1211			    btrfs_super_generation(fs_info->super_copy) + 1);
1212		return -EUCLEAN;
1213	}
1214	if (unlikely(btrfs_root_generation_v2(&ri) >
1215		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1216		generic_err(leaf, slot,
1217		"invalid root v2 generation, have %llu expect (0, %llu]",
1218			    btrfs_root_generation_v2(&ri),
1219			    btrfs_super_generation(fs_info->super_copy) + 1);
1220		return -EUCLEAN;
1221	}
1222	if (unlikely(btrfs_root_last_snapshot(&ri) >
1223		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1224		generic_err(leaf, slot,
1225		"invalid root last_snapshot, have %llu expect (0, %llu]",
1226			    btrfs_root_last_snapshot(&ri),
1227			    btrfs_super_generation(fs_info->super_copy) + 1);
1228		return -EUCLEAN;
1229	}
1230
1231	/* Alignment and level check */
1232	if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1233		generic_err(leaf, slot,
1234		"invalid root bytenr, have %llu expect to be aligned to %u",
1235			    btrfs_root_bytenr(&ri), fs_info->sectorsize);
1236		return -EUCLEAN;
1237	}
1238	if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1239		generic_err(leaf, slot,
1240			    "invalid root level, have %u expect [0, %u]",
1241			    btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1242		return -EUCLEAN;
1243	}
1244	if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1245		generic_err(leaf, slot,
1246			    "invalid root level, have %u expect [0, %u]",
1247			    btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1248		return -EUCLEAN;
1249	}
1250
1251	/* Flags check */
1252	if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1253		generic_err(leaf, slot,
1254			    "invalid root flags, have 0x%llx expect mask 0x%llx",
1255			    btrfs_root_flags(&ri), valid_root_flags);
1256		return -EUCLEAN;
1257	}
1258	return 0;
1259}
1260
1261__printf(3,4)
1262__cold
1263static void extent_err(const struct extent_buffer *eb, int slot,
1264		       const char *fmt, ...)
1265{
1266	struct btrfs_key key;
1267	struct va_format vaf;
1268	va_list args;
1269	u64 bytenr;
1270	u64 len;
1271
1272	btrfs_item_key_to_cpu(eb, &key, slot);
1273	bytenr = key.objectid;
1274	if (key.type == BTRFS_METADATA_ITEM_KEY ||
1275	    key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1276	    key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1277		len = eb->fs_info->nodesize;
1278	else
1279		len = key.offset;
1280	va_start(args, fmt);
1281
1282	vaf.fmt = fmt;
1283	vaf.va = &args;
1284
1285	dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1286	btrfs_crit(eb->fs_info,
1287	"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1288		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1289		eb->start, slot, bytenr, len, &vaf);
1290	va_end(args);
1291}
1292
1293static bool is_valid_dref_root(u64 rootid)
1294{
1295	/*
1296	 * The following tree root objectids are allowed to have a data backref:
1297	 * - subvolume trees
1298	 * - data reloc tree
1299	 * - tree root
1300	 *   For v1 space cache
1301	 */
1302	return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID ||
1303	       rootid == BTRFS_ROOT_TREE_OBJECTID;
1304}
1305
1306static int check_extent_item(struct extent_buffer *leaf,
1307			     struct btrfs_key *key, int slot,
1308			     struct btrfs_key *prev_key)
1309{
1310	struct btrfs_fs_info *fs_info = leaf->fs_info;
1311	struct btrfs_extent_item *ei;
1312	bool is_tree_block = false;
1313	unsigned long ptr;	/* Current pointer inside inline refs */
1314	unsigned long end;	/* Extent item end */
1315	const u32 item_size = btrfs_item_size(leaf, slot);
1316	u8 last_type = 0;
1317	u64 last_seq = U64_MAX;
1318	u64 flags;
1319	u64 generation;
1320	u64 total_refs;		/* Total refs in btrfs_extent_item */
1321	u64 inline_refs = 0;	/* found total inline refs */
1322
1323	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1324		     !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1325		generic_err(leaf, slot,
1326"invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1327		return -EUCLEAN;
1328	}
1329	/* key->objectid is the bytenr for both key types */
1330	if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1331		generic_err(leaf, slot,
1332		"invalid key objectid, have %llu expect to be aligned to %u",
1333			   key->objectid, fs_info->sectorsize);
1334		return -EUCLEAN;
1335	}
1336
1337	/* key->offset is tree level for METADATA_ITEM_KEY */
1338	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1339		     key->offset >= BTRFS_MAX_LEVEL)) {
1340		extent_err(leaf, slot,
1341			   "invalid tree level, have %llu expect [0, %u]",
1342			   key->offset, BTRFS_MAX_LEVEL - 1);
1343		return -EUCLEAN;
1344	}
1345
1346	/*
1347	 * EXTENT/METADATA_ITEM consists of:
1348	 * 1) One btrfs_extent_item
1349	 *    Records the total refs, type and generation of the extent.
1350	 *
1351	 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1352	 *    Records the first key and level of the tree block.
1353	 *
1354	 * 2) Zero or more btrfs_extent_inline_ref(s)
1355	 *    Each inline ref has one btrfs_extent_inline_ref shows:
1356	 *    2.1) The ref type, one of the 4
1357	 *         TREE_BLOCK_REF	Tree block only
1358	 *         SHARED_BLOCK_REF	Tree block only
1359	 *         EXTENT_DATA_REF	Data only
1360	 *         SHARED_DATA_REF	Data only
1361	 *    2.2) Ref type specific data
1362	 *         Either using btrfs_extent_inline_ref::offset, or specific
1363	 *         data structure.
1364	 *
1365	 *    All above inline items should follow the order:
1366	 *
1367	 *    - All btrfs_extent_inline_ref::type should be in an ascending
1368	 *      order
1369	 *
1370	 *    - Within the same type, the items should follow a descending
1371	 *      order by their sequence number. The sequence number is
1372	 *      determined by:
1373	 *      * btrfs_extent_inline_ref::offset for all types  other than
1374	 *        EXTENT_DATA_REF
1375	 *      * hash_extent_data_ref() for EXTENT_DATA_REF
1376	 */
1377	if (unlikely(item_size < sizeof(*ei))) {
1378		extent_err(leaf, slot,
1379			   "invalid item size, have %u expect [%zu, %u)",
1380			   item_size, sizeof(*ei),
1381			   BTRFS_LEAF_DATA_SIZE(fs_info));
1382		return -EUCLEAN;
1383	}
1384	end = item_size + btrfs_item_ptr_offset(leaf, slot);
1385
1386	/* Checks against extent_item */
1387	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1388	flags = btrfs_extent_flags(leaf, ei);
1389	total_refs = btrfs_extent_refs(leaf, ei);
1390	generation = btrfs_extent_generation(leaf, ei);
1391	if (unlikely(generation >
1392		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1393		extent_err(leaf, slot,
1394			   "invalid generation, have %llu expect (0, %llu]",
1395			   generation,
1396			   btrfs_super_generation(fs_info->super_copy) + 1);
1397		return -EUCLEAN;
1398	}
1399	if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1400						  BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1401		extent_err(leaf, slot,
1402		"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1403			flags, BTRFS_EXTENT_FLAG_DATA |
1404			BTRFS_EXTENT_FLAG_TREE_BLOCK);
1405		return -EUCLEAN;
1406	}
1407	is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1408	if (is_tree_block) {
1409		if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1410			     key->offset != fs_info->nodesize)) {
1411			extent_err(leaf, slot,
1412				   "invalid extent length, have %llu expect %u",
1413				   key->offset, fs_info->nodesize);
1414			return -EUCLEAN;
1415		}
1416	} else {
1417		if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1418			extent_err(leaf, slot,
1419			"invalid key type, have %u expect %u for data backref",
1420				   key->type, BTRFS_EXTENT_ITEM_KEY);
1421			return -EUCLEAN;
1422		}
1423		if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1424			extent_err(leaf, slot,
1425			"invalid extent length, have %llu expect aligned to %u",
1426				   key->offset, fs_info->sectorsize);
1427			return -EUCLEAN;
1428		}
1429		if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1430			extent_err(leaf, slot,
1431			"invalid extent flag, data has full backref set");
1432			return -EUCLEAN;
1433		}
1434	}
1435	ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1436
1437	/* Check the special case of btrfs_tree_block_info */
1438	if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1439		struct btrfs_tree_block_info *info;
1440
1441		info = (struct btrfs_tree_block_info *)ptr;
1442		if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1443			extent_err(leaf, slot,
1444			"invalid tree block info level, have %u expect [0, %u]",
1445				   btrfs_tree_block_level(leaf, info),
1446				   BTRFS_MAX_LEVEL - 1);
1447			return -EUCLEAN;
1448		}
1449		ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1450	}
1451
1452	/* Check inline refs */
1453	while (ptr < end) {
1454		struct btrfs_extent_inline_ref *iref;
1455		struct btrfs_extent_data_ref *dref;
1456		struct btrfs_shared_data_ref *sref;
1457		u64 seq;
1458		u64 dref_root;
1459		u64 dref_objectid;
1460		u64 dref_offset;
1461		u64 inline_offset;
1462		u8 inline_type;
1463
1464		if (unlikely(ptr + sizeof(*iref) > end)) {
1465			extent_err(leaf, slot,
1466"inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1467				   ptr, sizeof(*iref), end);
1468			return -EUCLEAN;
1469		}
1470		iref = (struct btrfs_extent_inline_ref *)ptr;
1471		inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1472		inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1473		seq = inline_offset;
1474		if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1475			extent_err(leaf, slot,
1476"inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1477				   ptr, btrfs_extent_inline_ref_size(inline_type), end);
1478			return -EUCLEAN;
1479		}
1480
1481		switch (inline_type) {
1482		/* inline_offset is subvolid of the owner, no need to check */
1483		case BTRFS_TREE_BLOCK_REF_KEY:
1484			inline_refs++;
1485			break;
1486		/* Contains parent bytenr */
1487		case BTRFS_SHARED_BLOCK_REF_KEY:
1488			if (unlikely(!IS_ALIGNED(inline_offset,
1489						 fs_info->sectorsize))) {
1490				extent_err(leaf, slot,
1491		"invalid tree parent bytenr, have %llu expect aligned to %u",
1492					   inline_offset, fs_info->sectorsize);
1493				return -EUCLEAN;
1494			}
1495			inline_refs++;
1496			break;
1497		/*
1498		 * Contains owner subvolid, owner key objectid, adjusted offset.
1499		 * The only obvious corruption can happen in that offset.
1500		 */
1501		case BTRFS_EXTENT_DATA_REF_KEY:
1502			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1503			dref_root = btrfs_extent_data_ref_root(leaf, dref);
1504			dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1505			dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1506			seq = hash_extent_data_ref(
1507					btrfs_extent_data_ref_root(leaf, dref),
1508					btrfs_extent_data_ref_objectid(leaf, dref),
1509					btrfs_extent_data_ref_offset(leaf, dref));
1510			if (unlikely(!is_valid_dref_root(dref_root))) {
1511				extent_err(leaf, slot,
1512					   "invalid data ref root value %llu",
1513					   dref_root);
1514				return -EUCLEAN;
1515			}
1516			if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID ||
1517				     dref_objectid > BTRFS_LAST_FREE_OBJECTID)) {
1518				extent_err(leaf, slot,
1519					   "invalid data ref objectid value %llu",
1520					   dref_objectid);
1521				return -EUCLEAN;
1522			}
1523			if (unlikely(!IS_ALIGNED(dref_offset,
1524						 fs_info->sectorsize))) {
1525				extent_err(leaf, slot,
1526		"invalid data ref offset, have %llu expect aligned to %u",
1527					   dref_offset, fs_info->sectorsize);
1528				return -EUCLEAN;
1529			}
1530			if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1531				extent_err(leaf, slot,
1532			"invalid data ref count, should have non-zero value");
1533				return -EUCLEAN;
1534			}
1535			inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1536			break;
1537		/* Contains parent bytenr and ref count */
1538		case BTRFS_SHARED_DATA_REF_KEY:
1539			sref = (struct btrfs_shared_data_ref *)(iref + 1);
1540			if (unlikely(!IS_ALIGNED(inline_offset,
1541						 fs_info->sectorsize))) {
1542				extent_err(leaf, slot,
1543		"invalid data parent bytenr, have %llu expect aligned to %u",
1544					   inline_offset, fs_info->sectorsize);
1545				return -EUCLEAN;
1546			}
1547			if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1548				extent_err(leaf, slot,
1549			"invalid shared data ref count, should have non-zero value");
1550				return -EUCLEAN;
1551			}
1552			inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1553			break;
1554		case BTRFS_EXTENT_OWNER_REF_KEY:
1555			WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1556			break;
1557		default:
1558			extent_err(leaf, slot, "unknown inline ref type: %u",
1559				   inline_type);
1560			return -EUCLEAN;
1561		}
1562		if (inline_type < last_type) {
1563			extent_err(leaf, slot,
1564				   "inline ref out-of-order: has type %u, prev type %u",
1565				   inline_type, last_type);
1566			return -EUCLEAN;
1567		}
1568		/* Type changed, allow the sequence starts from U64_MAX again. */
1569		if (inline_type > last_type)
1570			last_seq = U64_MAX;
1571		if (seq > last_seq) {
1572			extent_err(leaf, slot,
1573"inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1574				   inline_type, inline_offset, seq,
1575				   last_type, last_seq);
1576			return -EUCLEAN;
1577		}
1578		last_type = inline_type;
1579		last_seq = seq;
1580		ptr += btrfs_extent_inline_ref_size(inline_type);
1581	}
1582	/* No padding is allowed */
1583	if (unlikely(ptr != end)) {
1584		extent_err(leaf, slot,
1585			   "invalid extent item size, padding bytes found");
1586		return -EUCLEAN;
1587	}
1588
1589	/* Finally, check the inline refs against total refs */
1590	if (unlikely(inline_refs > total_refs)) {
1591		extent_err(leaf, slot,
1592			"invalid extent refs, have %llu expect >= inline %llu",
1593			   total_refs, inline_refs);
1594		return -EUCLEAN;
1595	}
1596
1597	if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1598	    (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1599		u64 prev_end = prev_key->objectid;
1600
1601		if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1602			prev_end += fs_info->nodesize;
1603		else
1604			prev_end += prev_key->offset;
1605
1606		if (unlikely(prev_end > key->objectid)) {
1607			extent_err(leaf, slot,
1608	"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1609				   prev_key->objectid, prev_key->type,
1610				   prev_key->offset, key->objectid, key->type,
1611				   key->offset);
1612			return -EUCLEAN;
1613		}
1614	}
1615
1616	return 0;
1617}
1618
1619static int check_simple_keyed_refs(struct extent_buffer *leaf,
1620				   struct btrfs_key *key, int slot)
1621{
1622	u32 expect_item_size = 0;
1623
1624	if (key->type == BTRFS_SHARED_DATA_REF_KEY) {
1625		struct btrfs_shared_data_ref *sref;
1626
1627		sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref);
1628		if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) {
1629			extent_err(leaf, slot,
1630		"invalid shared data backref count, should have non-zero value");
1631			return -EUCLEAN;
1632		}
1633
1634		expect_item_size = sizeof(struct btrfs_shared_data_ref);
1635	}
1636
1637	if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1638		generic_err(leaf, slot,
1639		"invalid item size, have %u expect %u for key type %u",
1640			    btrfs_item_size(leaf, slot),
1641			    expect_item_size, key->type);
1642		return -EUCLEAN;
1643	}
1644	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1645		generic_err(leaf, slot,
1646"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1647			    key->objectid, leaf->fs_info->sectorsize);
1648		return -EUCLEAN;
1649	}
1650	if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1651		     !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1652		extent_err(leaf, slot,
1653		"invalid tree parent bytenr, have %llu expect aligned to %u",
1654			   key->offset, leaf->fs_info->sectorsize);
1655		return -EUCLEAN;
1656	}
1657	return 0;
1658}
1659
1660static int check_extent_data_ref(struct extent_buffer *leaf,
1661				 struct btrfs_key *key, int slot)
1662{
1663	struct btrfs_extent_data_ref *dref;
1664	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1665	const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1666
1667	if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1668		generic_err(leaf, slot,
1669	"invalid item size, have %u expect aligned to %zu for key type %u",
1670			    btrfs_item_size(leaf, slot),
1671			    sizeof(*dref), key->type);
1672		return -EUCLEAN;
1673	}
1674	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1675		generic_err(leaf, slot,
1676"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1677			    key->objectid, leaf->fs_info->sectorsize);
1678		return -EUCLEAN;
1679	}
1680	for (; ptr < end; ptr += sizeof(*dref)) {
1681		u64 root;
1682		u64 objectid;
1683		u64 offset;
1684
1685		/*
1686		 * We cannot check the extent_data_ref hash due to possible
1687		 * overflow from the leaf due to hash collisions.
1688		 */
1689		dref = (struct btrfs_extent_data_ref *)ptr;
1690		root = btrfs_extent_data_ref_root(leaf, dref);
1691		objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1692		offset = btrfs_extent_data_ref_offset(leaf, dref);
1693		if (unlikely(!is_valid_dref_root(root))) {
1694			extent_err(leaf, slot,
1695				   "invalid extent data backref root value %llu",
1696				   root);
1697			return -EUCLEAN;
1698		}
1699		if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID ||
1700			     objectid > BTRFS_LAST_FREE_OBJECTID)) {
1701			extent_err(leaf, slot,
1702				   "invalid extent data backref objectid value %llu",
1703				   root);
1704			return -EUCLEAN;
1705		}
1706		if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1707			extent_err(leaf, slot,
1708	"invalid extent data backref offset, have %llu expect aligned to %u",
1709				   offset, leaf->fs_info->sectorsize);
1710			return -EUCLEAN;
1711		}
1712		if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) {
1713			extent_err(leaf, slot,
1714	"invalid extent data backref count, should have non-zero value");
1715			return -EUCLEAN;
1716		}
1717	}
1718	return 0;
1719}
1720
1721#define inode_ref_err(eb, slot, fmt, args...)			\
1722	inode_item_err(eb, slot, fmt, ##args)
1723static int check_inode_ref(struct extent_buffer *leaf,
1724			   struct btrfs_key *key, struct btrfs_key *prev_key,
1725			   int slot)
1726{
1727	struct btrfs_inode_ref *iref;
1728	unsigned long ptr;
1729	unsigned long end;
1730
1731	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1732		return -EUCLEAN;
1733	/* namelen can't be 0, so item_size == sizeof() is also invalid */
1734	if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1735		inode_ref_err(leaf, slot,
1736			"invalid item size, have %u expect (%zu, %u)",
1737			btrfs_item_size(leaf, slot),
1738			sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1739		return -EUCLEAN;
1740	}
1741
1742	ptr = btrfs_item_ptr_offset(leaf, slot);
1743	end = ptr + btrfs_item_size(leaf, slot);
1744	while (ptr < end) {
1745		u16 namelen;
1746
1747		if (unlikely(ptr + sizeof(iref) > end)) {
1748			inode_ref_err(leaf, slot,
1749			"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1750				ptr, end, sizeof(iref));
1751			return -EUCLEAN;
1752		}
1753
1754		iref = (struct btrfs_inode_ref *)ptr;
1755		namelen = btrfs_inode_ref_name_len(leaf, iref);
1756		if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1757			inode_ref_err(leaf, slot,
1758				"inode ref overflow, ptr %lu end %lu namelen %u",
1759				ptr, end, namelen);
1760			return -EUCLEAN;
1761		}
1762
1763		/*
1764		 * NOTE: In theory we should record all found index numbers
1765		 * to find any duplicated indexes, but that will be too time
1766		 * consuming for inodes with too many hard links.
1767		 */
1768		ptr += sizeof(*iref) + namelen;
1769	}
1770	return 0;
1771}
1772
1773static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1774				    const struct btrfs_key *key, int slot)
1775{
1776	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1777		generic_err(leaf, slot,
1778"invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1779			    key->objectid, leaf->fs_info->sectorsize);
1780		return -EUCLEAN;
1781	}
1782
1783	if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1784		generic_err(leaf, slot,
1785	"RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1786		return -EUCLEAN;
1787	}
1788
1789	return 0;
1790}
1791
1792static int check_dev_extent_item(const struct extent_buffer *leaf,
1793				 const struct btrfs_key *key,
1794				 int slot,
1795				 struct btrfs_key *prev_key)
1796{
1797	struct btrfs_dev_extent *de;
1798	const u32 sectorsize = leaf->fs_info->sectorsize;
1799
1800	de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
1801	/* Basic fixed member checks. */
1802	if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) !=
1803		     BTRFS_CHUNK_TREE_OBJECTID)) {
1804		generic_err(leaf, slot,
1805			    "invalid dev extent chunk tree id, has %llu expect %llu",
1806			    btrfs_dev_extent_chunk_tree(leaf, de),
1807			    BTRFS_CHUNK_TREE_OBJECTID);
1808		return -EUCLEAN;
1809	}
1810	if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) !=
1811		     BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
1812		generic_err(leaf, slot,
1813			    "invalid dev extent chunk objectid, has %llu expect %llu",
1814			    btrfs_dev_extent_chunk_objectid(leaf, de),
1815			    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1816		return -EUCLEAN;
1817	}
1818	/* Alignment check. */
1819	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
1820		generic_err(leaf, slot,
1821			    "invalid dev extent key.offset, has %llu not aligned to %u",
1822			    key->offset, sectorsize);
1823		return -EUCLEAN;
1824	}
1825	if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de),
1826				 sectorsize))) {
1827		generic_err(leaf, slot,
1828			    "invalid dev extent chunk offset, has %llu not aligned to %u",
1829			    btrfs_dev_extent_chunk_objectid(leaf, de),
1830			    sectorsize);
1831		return -EUCLEAN;
1832	}
1833	if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de),
1834				 sectorsize))) {
1835		generic_err(leaf, slot,
1836			    "invalid dev extent length, has %llu not aligned to %u",
1837			    btrfs_dev_extent_length(leaf, de), sectorsize);
1838		return -EUCLEAN;
1839	}
1840	/* Overlap check with previous dev extent. */
1841	if (slot && prev_key->objectid == key->objectid &&
1842	    prev_key->type == key->type) {
1843		struct btrfs_dev_extent *prev_de;
1844		u64 prev_len;
1845
1846		prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent);
1847		prev_len = btrfs_dev_extent_length(leaf, prev_de);
1848		if (unlikely(prev_key->offset + prev_len > key->offset)) {
1849			generic_err(leaf, slot,
1850		"dev extent overlap, prev offset %llu len %llu current offset %llu",
1851				    prev_key->objectid, prev_len, key->offset);
1852			return -EUCLEAN;
1853		}
1854	}
1855	return 0;
1856}
1857
1858/*
1859 * Common point to switch the item-specific validation.
1860 */
1861static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1862						    struct btrfs_key *key,
1863						    int slot,
1864						    struct btrfs_key *prev_key)
1865{
1866	int ret = 0;
1867	struct btrfs_chunk *chunk;
1868
1869	switch (key->type) {
1870	case BTRFS_EXTENT_DATA_KEY:
1871		ret = check_extent_data_item(leaf, key, slot, prev_key);
1872		break;
1873	case BTRFS_EXTENT_CSUM_KEY:
1874		ret = check_csum_item(leaf, key, slot, prev_key);
1875		break;
1876	case BTRFS_DIR_ITEM_KEY:
1877	case BTRFS_DIR_INDEX_KEY:
1878	case BTRFS_XATTR_ITEM_KEY:
1879		ret = check_dir_item(leaf, key, prev_key, slot);
1880		break;
1881	case BTRFS_INODE_REF_KEY:
1882		ret = check_inode_ref(leaf, key, prev_key, slot);
1883		break;
1884	case BTRFS_BLOCK_GROUP_ITEM_KEY:
1885		ret = check_block_group_item(leaf, key, slot);
1886		break;
1887	case BTRFS_CHUNK_ITEM_KEY:
1888		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1889		ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1890		break;
1891	case BTRFS_DEV_ITEM_KEY:
1892		ret = check_dev_item(leaf, key, slot);
1893		break;
1894	case BTRFS_DEV_EXTENT_KEY:
1895		ret = check_dev_extent_item(leaf, key, slot, prev_key);
1896		break;
1897	case BTRFS_INODE_ITEM_KEY:
1898		ret = check_inode_item(leaf, key, slot);
1899		break;
1900	case BTRFS_ROOT_ITEM_KEY:
1901		ret = check_root_item(leaf, key, slot);
1902		break;
1903	case BTRFS_EXTENT_ITEM_KEY:
1904	case BTRFS_METADATA_ITEM_KEY:
1905		ret = check_extent_item(leaf, key, slot, prev_key);
1906		break;
1907	case BTRFS_TREE_BLOCK_REF_KEY:
1908	case BTRFS_SHARED_DATA_REF_KEY:
1909	case BTRFS_SHARED_BLOCK_REF_KEY:
1910		ret = check_simple_keyed_refs(leaf, key, slot);
1911		break;
1912	case BTRFS_EXTENT_DATA_REF_KEY:
1913		ret = check_extent_data_ref(leaf, key, slot);
1914		break;
1915	case BTRFS_RAID_STRIPE_KEY:
1916		ret = check_raid_stripe_extent(leaf, key, slot);
1917		break;
1918	}
1919
1920	if (ret)
1921		return BTRFS_TREE_BLOCK_INVALID_ITEM;
1922	return BTRFS_TREE_BLOCK_CLEAN;
1923}
1924
1925enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1926{
1927	struct btrfs_fs_info *fs_info = leaf->fs_info;
1928	/* No valid key type is 0, so all key should be larger than this key */
1929	struct btrfs_key prev_key = {0, 0, 0};
1930	struct btrfs_key key;
1931	u32 nritems = btrfs_header_nritems(leaf);
1932	int slot;
1933
1934	if (unlikely(btrfs_header_level(leaf) != 0)) {
1935		generic_err(leaf, 0,
1936			"invalid level for leaf, have %d expect 0",
1937			btrfs_header_level(leaf));
1938		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1939	}
1940
1941	if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) {
1942		generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set");
1943		return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
1944	}
1945
1946	/*
1947	 * Extent buffers from a relocation tree have a owner field that
1948	 * corresponds to the subvolume tree they are based on. So just from an
1949	 * extent buffer alone we can not find out what is the id of the
1950	 * corresponding subvolume tree, so we can not figure out if the extent
1951	 * buffer corresponds to the root of the relocation tree or not. So
1952	 * skip this check for relocation trees.
1953	 */
1954	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1955		u64 owner = btrfs_header_owner(leaf);
1956
1957		/* These trees must never be empty */
1958		if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1959			     owner == BTRFS_CHUNK_TREE_OBJECTID ||
1960			     owner == BTRFS_DEV_TREE_OBJECTID ||
1961			     owner == BTRFS_FS_TREE_OBJECTID ||
1962			     owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1963			generic_err(leaf, 0,
1964			"invalid root, root %llu must never be empty",
1965				    owner);
1966			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1967		}
1968
1969		/* Unknown tree */
1970		if (unlikely(owner == 0)) {
1971			generic_err(leaf, 0,
1972				"invalid owner, root 0 is not defined");
1973			return BTRFS_TREE_BLOCK_INVALID_OWNER;
1974		}
1975
1976		/* EXTENT_TREE_V2 can have empty extent trees. */
1977		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1978			return BTRFS_TREE_BLOCK_CLEAN;
1979
1980		if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1981			generic_err(leaf, 0,
1982			"invalid root, root %llu must never be empty",
1983				    owner);
1984			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1985		}
1986
1987		return BTRFS_TREE_BLOCK_CLEAN;
1988	}
1989
1990	if (unlikely(nritems == 0))
1991		return BTRFS_TREE_BLOCK_CLEAN;
1992
1993	/*
1994	 * Check the following things to make sure this is a good leaf, and
1995	 * leaf users won't need to bother with similar sanity checks:
1996	 *
1997	 * 1) key ordering
1998	 * 2) item offset and size
1999	 *    No overlap, no hole, all inside the leaf.
2000	 * 3) item content
2001	 *    If possible, do comprehensive sanity check.
2002	 *    NOTE: All checks must only rely on the item data itself.
2003	 */
2004	for (slot = 0; slot < nritems; slot++) {
2005		u32 item_end_expected;
2006		u64 item_data_end;
2007		enum btrfs_tree_block_status ret;
2008
2009		btrfs_item_key_to_cpu(leaf, &key, slot);
2010
2011		/* Make sure the keys are in the right order */
2012		if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
2013			generic_err(leaf, slot,
2014	"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
2015				prev_key.objectid, prev_key.type,
2016				prev_key.offset, key.objectid, key.type,
2017				key.offset);
2018			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2019		}
2020
2021		item_data_end = (u64)btrfs_item_offset(leaf, slot) +
2022				btrfs_item_size(leaf, slot);
2023		/*
2024		 * Make sure the offset and ends are right, remember that the
2025		 * item data starts at the end of the leaf and grows towards the
2026		 * front.
2027		 */
2028		if (slot == 0)
2029			item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
2030		else
2031			item_end_expected = btrfs_item_offset(leaf,
2032								 slot - 1);
2033		if (unlikely(item_data_end != item_end_expected)) {
2034			generic_err(leaf, slot,
2035				"unexpected item end, have %llu expect %u",
2036				item_data_end, item_end_expected);
2037			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2038		}
2039
2040		/*
2041		 * Check to make sure that we don't point outside of the leaf,
2042		 * just in case all the items are consistent to each other, but
2043		 * all point outside of the leaf.
2044		 */
2045		if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
2046			generic_err(leaf, slot,
2047			"slot end outside of leaf, have %llu expect range [0, %u]",
2048				item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
2049			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2050		}
2051
2052		/* Also check if the item pointer overlaps with btrfs item. */
2053		if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
2054			     btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
2055			generic_err(leaf, slot,
2056		"slot overlaps with its data, item end %lu data start %lu",
2057				btrfs_item_nr_offset(leaf, slot) +
2058				sizeof(struct btrfs_item),
2059				btrfs_item_ptr_offset(leaf, slot));
2060			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2061		}
2062
2063		/* Check if the item size and content meet other criteria. */
2064		ret = check_leaf_item(leaf, &key, slot, &prev_key);
2065		if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2066			return ret;
2067
2068		prev_key.objectid = key.objectid;
2069		prev_key.type = key.type;
2070		prev_key.offset = key.offset;
2071	}
2072
2073	return BTRFS_TREE_BLOCK_CLEAN;
2074}
2075
2076int btrfs_check_leaf(struct extent_buffer *leaf)
2077{
2078	enum btrfs_tree_block_status ret;
2079
2080	ret = __btrfs_check_leaf(leaf);
2081	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2082		return -EUCLEAN;
2083	return 0;
2084}
2085ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
2086
2087enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
2088{
2089	struct btrfs_fs_info *fs_info = node->fs_info;
2090	unsigned long nr = btrfs_header_nritems(node);
2091	struct btrfs_key key, next_key;
2092	int slot;
2093	int level = btrfs_header_level(node);
2094	u64 bytenr;
2095
2096	if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) {
2097		generic_err(node, 0, "invalid flag for node, WRITTEN not set");
2098		return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2099	}
2100
2101	if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
2102		generic_err(node, 0,
2103			"invalid level for node, have %d expect [1, %d]",
2104			level, BTRFS_MAX_LEVEL - 1);
2105		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2106	}
2107	if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
2108		btrfs_crit(fs_info,
2109"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
2110			   btrfs_header_owner(node), node->start,
2111			   nr == 0 ? "small" : "large", nr,
2112			   BTRFS_NODEPTRS_PER_BLOCK(fs_info));
2113		return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2114	}
2115
2116	for (slot = 0; slot < nr - 1; slot++) {
2117		bytenr = btrfs_node_blockptr(node, slot);
2118		btrfs_node_key_to_cpu(node, &key, slot);
2119		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
2120
2121		if (unlikely(!bytenr)) {
2122			generic_err(node, slot,
2123				"invalid NULL node pointer");
2124			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2125		}
2126		if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
2127			generic_err(node, slot,
2128			"unaligned pointer, have %llu should be aligned to %u",
2129				bytenr, fs_info->sectorsize);
2130			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2131		}
2132
2133		if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
2134			generic_err(node, slot,
2135	"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
2136				key.objectid, key.type, key.offset,
2137				next_key.objectid, next_key.type,
2138				next_key.offset);
2139			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2140		}
2141	}
2142	return BTRFS_TREE_BLOCK_CLEAN;
2143}
2144
2145int btrfs_check_node(struct extent_buffer *node)
2146{
2147	enum btrfs_tree_block_status ret;
2148
2149	ret = __btrfs_check_node(node);
2150	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2151		return -EUCLEAN;
2152	return 0;
2153}
2154ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2155
2156int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2157{
2158	const bool is_subvol = is_fstree(root_owner);
2159	const u64 eb_owner = btrfs_header_owner(eb);
2160
2161	/*
2162	 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2163	 * root.
2164	 */
2165	if (btrfs_is_testing(eb->fs_info))
2166		return 0;
2167	/*
2168	 * There are several call sites (backref walking, qgroup, and data
2169	 * reloc) passing 0 as @root_owner, as they are not holding the
2170	 * tree root.  In that case, we can not do a reliable ownership check,
2171	 * so just exit.
2172	 */
2173	if (root_owner == 0)
2174		return 0;
2175	/*
2176	 * These trees use key.offset as their owner, our callers don't have
2177	 * the extra capacity to pass key.offset here.  So we just skip them.
2178	 */
2179	if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2180	    root_owner == BTRFS_TREE_RELOC_OBJECTID)
2181		return 0;
2182
2183	if (!is_subvol) {
2184		/* For non-subvolume trees, the eb owner should match root owner */
2185		if (unlikely(root_owner != eb_owner)) {
2186			btrfs_crit(eb->fs_info,
2187"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2188				btrfs_header_level(eb) == 0 ? "leaf" : "node",
2189				root_owner, btrfs_header_bytenr(eb), eb_owner,
2190				root_owner);
2191			return -EUCLEAN;
2192		}
2193		return 0;
2194	}
2195
2196	/*
2197	 * For subvolume trees, owners can mismatch, but they should all belong
2198	 * to subvolume trees.
2199	 */
2200	if (unlikely(is_subvol != is_fstree(eb_owner))) {
2201		btrfs_crit(eb->fs_info,
2202"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2203			btrfs_header_level(eb) == 0 ? "leaf" : "node",
2204			root_owner, btrfs_header_bytenr(eb), eb_owner,
2205			BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2206		return -EUCLEAN;
2207	}
2208	return 0;
2209}
2210
2211int btrfs_verify_level_key(struct extent_buffer *eb,
2212			   const struct btrfs_tree_parent_check *check)
2213{
2214	struct btrfs_fs_info *fs_info = eb->fs_info;
2215	int found_level;
2216	struct btrfs_key found_key;
2217	int ret;
2218
2219	found_level = btrfs_header_level(eb);
2220	if (found_level != check->level) {
2221		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2222		     KERN_ERR "BTRFS: tree level check failed\n");
2223		btrfs_err(fs_info,
2224"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2225			  eb->start, check->level, found_level);
2226		return -EIO;
2227	}
2228
2229	if (!check->has_first_key)
2230		return 0;
2231
2232	/*
2233	 * For live tree block (new tree blocks in current transaction),
2234	 * we need proper lock context to avoid race, which is impossible here.
2235	 * So we only checks tree blocks which is read from disk, whose
2236	 * generation <= fs_info->last_trans_committed.
2237	 */
2238	if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2239		return 0;
2240
2241	/* We have @first_key, so this @eb must have at least one item */
2242	if (btrfs_header_nritems(eb) == 0) {
2243		btrfs_err(fs_info,
2244		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2245			  eb->start);
2246		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2247		return -EUCLEAN;
2248	}
2249
2250	if (found_level)
2251		btrfs_node_key_to_cpu(eb, &found_key, 0);
2252	else
2253		btrfs_item_key_to_cpu(eb, &found_key, 0);
2254	ret = btrfs_comp_cpu_keys(&check->first_key, &found_key);
2255
2256	if (ret) {
2257		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2258		     KERN_ERR "BTRFS: tree first key check failed\n");
2259		btrfs_err(fs_info,
2260"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2261			  eb->start, check->transid, check->first_key.objectid,
2262			  check->first_key.type, check->first_key.offset,
2263			  found_key.objectid, found_key.type,
2264			  found_key.offset);
2265	}
2266	return ret;
2267}