Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6/*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18#include <linux/types.h>
19#include <linux/stddef.h>
20#include <linux/error-injection.h>
21#include "messages.h"
22#include "ctree.h"
23#include "tree-checker.h"
24#include "disk-io.h"
25#include "compression.h"
26#include "volumes.h"
27#include "misc.h"
28#include "btrfs_inode.h"
29#include "fs.h"
30#include "accessors.h"
31#include "file-item.h"
32
33/*
34 * Error message should follow the following format:
35 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
36 *
37 * @type: leaf or node
38 * @identifier: the necessary info to locate the leaf/node.
39 * It's recommended to decode key.objecitd/offset if it's
40 * meaningful.
41 * @reason: describe the error
42 * @bad_value: optional, it's recommended to output bad value and its
43 * expected value (range).
44 *
45 * Since comma is used to separate the components, only space is allowed
46 * inside each component.
47 */
48
49/*
50 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
51 * Allows callers to customize the output.
52 */
53__printf(3, 4)
54__cold
55static void generic_err(const struct extent_buffer *eb, int slot,
56 const char *fmt, ...)
57{
58 const struct btrfs_fs_info *fs_info = eb->fs_info;
59 struct va_format vaf;
60 va_list args;
61
62 va_start(args, fmt);
63
64 vaf.fmt = fmt;
65 vaf.va = &args;
66
67 btrfs_crit(fs_info,
68 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
69 btrfs_header_level(eb) == 0 ? "leaf" : "node",
70 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
71 va_end(args);
72}
73
74/*
75 * Customized reporter for extent data item, since its key objectid and
76 * offset has its own meaning.
77 */
78__printf(3, 4)
79__cold
80static void file_extent_err(const struct extent_buffer *eb, int slot,
81 const char *fmt, ...)
82{
83 const struct btrfs_fs_info *fs_info = eb->fs_info;
84 struct btrfs_key key;
85 struct va_format vaf;
86 va_list args;
87
88 btrfs_item_key_to_cpu(eb, &key, slot);
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 btrfs_crit(fs_info,
95 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
96 btrfs_header_level(eb) == 0 ? "leaf" : "node",
97 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
98 key.objectid, key.offset, &vaf);
99 va_end(args);
100}
101
102/*
103 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
104 * Else return 1
105 */
106#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
107({ \
108 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
109 (alignment)))) \
110 file_extent_err((leaf), (slot), \
111 "invalid %s for file extent, have %llu, should be aligned to %u", \
112 (#name), btrfs_file_extent_##name((leaf), (fi)), \
113 (alignment)); \
114 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
115})
116
117static u64 file_extent_end(struct extent_buffer *leaf,
118 struct btrfs_key *key,
119 struct btrfs_file_extent_item *extent)
120{
121 u64 end;
122 u64 len;
123
124 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
125 len = btrfs_file_extent_ram_bytes(leaf, extent);
126 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
127 } else {
128 len = btrfs_file_extent_num_bytes(leaf, extent);
129 end = key->offset + len;
130 }
131 return end;
132}
133
134/*
135 * Customized report for dir_item, the only new important information is
136 * key->objectid, which represents inode number
137 */
138__printf(3, 4)
139__cold
140static void dir_item_err(const struct extent_buffer *eb, int slot,
141 const char *fmt, ...)
142{
143 const struct btrfs_fs_info *fs_info = eb->fs_info;
144 struct btrfs_key key;
145 struct va_format vaf;
146 va_list args;
147
148 btrfs_item_key_to_cpu(eb, &key, slot);
149 va_start(args, fmt);
150
151 vaf.fmt = fmt;
152 vaf.va = &args;
153
154 btrfs_crit(fs_info,
155 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
156 btrfs_header_level(eb) == 0 ? "leaf" : "node",
157 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
158 key.objectid, &vaf);
159 va_end(args);
160}
161
162/*
163 * This functions checks prev_key->objectid, to ensure current key and prev_key
164 * share the same objectid as inode number.
165 *
166 * This is to detect missing INODE_ITEM in subvolume trees.
167 *
168 * Return true if everything is OK or we don't need to check.
169 * Return false if anything is wrong.
170 */
171static bool check_prev_ino(struct extent_buffer *leaf,
172 struct btrfs_key *key, int slot,
173 struct btrfs_key *prev_key)
174{
175 /* No prev key, skip check */
176 if (slot == 0)
177 return true;
178
179 /* Only these key->types needs to be checked */
180 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
181 key->type == BTRFS_INODE_REF_KEY ||
182 key->type == BTRFS_DIR_INDEX_KEY ||
183 key->type == BTRFS_DIR_ITEM_KEY ||
184 key->type == BTRFS_EXTENT_DATA_KEY);
185
186 /*
187 * Only subvolume trees along with their reloc trees need this check.
188 * Things like log tree doesn't follow this ino requirement.
189 */
190 if (!is_fstree(btrfs_header_owner(leaf)))
191 return true;
192
193 if (key->objectid == prev_key->objectid)
194 return true;
195
196 /* Error found */
197 dir_item_err(leaf, slot,
198 "invalid previous key objectid, have %llu expect %llu",
199 prev_key->objectid, key->objectid);
200 return false;
201}
202static int check_extent_data_item(struct extent_buffer *leaf,
203 struct btrfs_key *key, int slot,
204 struct btrfs_key *prev_key)
205{
206 struct btrfs_fs_info *fs_info = leaf->fs_info;
207 struct btrfs_file_extent_item *fi;
208 u32 sectorsize = fs_info->sectorsize;
209 u32 item_size = btrfs_item_size(leaf, slot);
210 u64 extent_end;
211
212 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
213 file_extent_err(leaf, slot,
214"unaligned file_offset for file extent, have %llu should be aligned to %u",
215 key->offset, sectorsize);
216 return -EUCLEAN;
217 }
218
219 /*
220 * Previous key must have the same key->objectid (ino).
221 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
222 * But if objectids mismatch, it means we have a missing
223 * INODE_ITEM.
224 */
225 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
226 return -EUCLEAN;
227
228 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
229
230 /*
231 * Make sure the item contains at least inline header, so the file
232 * extent type is not some garbage.
233 */
234 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
235 file_extent_err(leaf, slot,
236 "invalid item size, have %u expect [%zu, %u)",
237 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
238 SZ_4K);
239 return -EUCLEAN;
240 }
241 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
242 BTRFS_NR_FILE_EXTENT_TYPES)) {
243 file_extent_err(leaf, slot,
244 "invalid type for file extent, have %u expect range [0, %u]",
245 btrfs_file_extent_type(leaf, fi),
246 BTRFS_NR_FILE_EXTENT_TYPES - 1);
247 return -EUCLEAN;
248 }
249
250 /*
251 * Support for new compression/encryption must introduce incompat flag,
252 * and must be caught in open_ctree().
253 */
254 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
255 BTRFS_NR_COMPRESS_TYPES)) {
256 file_extent_err(leaf, slot,
257 "invalid compression for file extent, have %u expect range [0, %u]",
258 btrfs_file_extent_compression(leaf, fi),
259 BTRFS_NR_COMPRESS_TYPES - 1);
260 return -EUCLEAN;
261 }
262 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
263 file_extent_err(leaf, slot,
264 "invalid encryption for file extent, have %u expect 0",
265 btrfs_file_extent_encryption(leaf, fi));
266 return -EUCLEAN;
267 }
268 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
269 /* Inline extent must have 0 as key offset */
270 if (unlikely(key->offset)) {
271 file_extent_err(leaf, slot,
272 "invalid file_offset for inline file extent, have %llu expect 0",
273 key->offset);
274 return -EUCLEAN;
275 }
276
277 /* Compressed inline extent has no on-disk size, skip it */
278 if (btrfs_file_extent_compression(leaf, fi) !=
279 BTRFS_COMPRESS_NONE)
280 return 0;
281
282 /* Uncompressed inline extent size must match item size */
283 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
284 btrfs_file_extent_ram_bytes(leaf, fi))) {
285 file_extent_err(leaf, slot,
286 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
287 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
288 btrfs_file_extent_ram_bytes(leaf, fi));
289 return -EUCLEAN;
290 }
291 return 0;
292 }
293
294 /* Regular or preallocated extent has fixed item size */
295 if (unlikely(item_size != sizeof(*fi))) {
296 file_extent_err(leaf, slot,
297 "invalid item size for reg/prealloc file extent, have %u expect %zu",
298 item_size, sizeof(*fi));
299 return -EUCLEAN;
300 }
301 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
302 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
303 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
304 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
305 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
306 return -EUCLEAN;
307
308 /* Catch extent end overflow */
309 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
310 key->offset, &extent_end))) {
311 file_extent_err(leaf, slot,
312 "extent end overflow, have file offset %llu extent num bytes %llu",
313 key->offset,
314 btrfs_file_extent_num_bytes(leaf, fi));
315 return -EUCLEAN;
316 }
317
318 /*
319 * Check that no two consecutive file extent items, in the same leaf,
320 * present ranges that overlap each other.
321 */
322 if (slot > 0 &&
323 prev_key->objectid == key->objectid &&
324 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
325 struct btrfs_file_extent_item *prev_fi;
326 u64 prev_end;
327
328 prev_fi = btrfs_item_ptr(leaf, slot - 1,
329 struct btrfs_file_extent_item);
330 prev_end = file_extent_end(leaf, prev_key, prev_fi);
331 if (unlikely(prev_end > key->offset)) {
332 file_extent_err(leaf, slot - 1,
333"file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
334 prev_end, key->offset);
335 return -EUCLEAN;
336 }
337 }
338
339 return 0;
340}
341
342static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
343 int slot, struct btrfs_key *prev_key)
344{
345 struct btrfs_fs_info *fs_info = leaf->fs_info;
346 u32 sectorsize = fs_info->sectorsize;
347 const u32 csumsize = fs_info->csum_size;
348
349 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
350 generic_err(leaf, slot,
351 "invalid key objectid for csum item, have %llu expect %llu",
352 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
353 return -EUCLEAN;
354 }
355 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
356 generic_err(leaf, slot,
357 "unaligned key offset for csum item, have %llu should be aligned to %u",
358 key->offset, sectorsize);
359 return -EUCLEAN;
360 }
361 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
362 generic_err(leaf, slot,
363 "unaligned item size for csum item, have %u should be aligned to %u",
364 btrfs_item_size(leaf, slot), csumsize);
365 return -EUCLEAN;
366 }
367 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
368 u64 prev_csum_end;
369 u32 prev_item_size;
370
371 prev_item_size = btrfs_item_size(leaf, slot - 1);
372 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
373 prev_csum_end += prev_key->offset;
374 if (unlikely(prev_csum_end > key->offset)) {
375 generic_err(leaf, slot - 1,
376"csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
377 prev_csum_end, key->offset);
378 return -EUCLEAN;
379 }
380 }
381 return 0;
382}
383
384/* Inode item error output has the same format as dir_item_err() */
385#define inode_item_err(eb, slot, fmt, ...) \
386 dir_item_err(eb, slot, fmt, __VA_ARGS__)
387
388static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
389 int slot)
390{
391 struct btrfs_key item_key;
392 bool is_inode_item;
393
394 btrfs_item_key_to_cpu(leaf, &item_key, slot);
395 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
396
397 /* For XATTR_ITEM, location key should be all 0 */
398 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
399 if (unlikely(key->objectid != 0 || key->type != 0 ||
400 key->offset != 0))
401 return -EUCLEAN;
402 return 0;
403 }
404
405 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
406 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
407 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
408 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
409 if (is_inode_item) {
410 generic_err(leaf, slot,
411 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
412 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
413 BTRFS_FIRST_FREE_OBJECTID,
414 BTRFS_LAST_FREE_OBJECTID,
415 BTRFS_FREE_INO_OBJECTID);
416 } else {
417 dir_item_err(leaf, slot,
418"invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
419 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
420 BTRFS_FIRST_FREE_OBJECTID,
421 BTRFS_LAST_FREE_OBJECTID,
422 BTRFS_FREE_INO_OBJECTID);
423 }
424 return -EUCLEAN;
425 }
426 if (unlikely(key->offset != 0)) {
427 if (is_inode_item)
428 inode_item_err(leaf, slot,
429 "invalid key offset: has %llu expect 0",
430 key->offset);
431 else
432 dir_item_err(leaf, slot,
433 "invalid location key offset:has %llu expect 0",
434 key->offset);
435 return -EUCLEAN;
436 }
437 return 0;
438}
439
440static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
441 int slot)
442{
443 struct btrfs_key item_key;
444 bool is_root_item;
445
446 btrfs_item_key_to_cpu(leaf, &item_key, slot);
447 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
448
449 /* No such tree id */
450 if (unlikely(key->objectid == 0)) {
451 if (is_root_item)
452 generic_err(leaf, slot, "invalid root id 0");
453 else
454 dir_item_err(leaf, slot,
455 "invalid location key root id 0");
456 return -EUCLEAN;
457 }
458
459 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
460 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
461 dir_item_err(leaf, slot,
462 "invalid location key objectid, have %llu expect [%llu, %llu]",
463 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
464 BTRFS_LAST_FREE_OBJECTID);
465 return -EUCLEAN;
466 }
467
468 /*
469 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
470 * @offset transid.
471 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
472 *
473 * So here we only check offset for reloc tree whose key->offset must
474 * be a valid tree.
475 */
476 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
477 key->offset == 0)) {
478 generic_err(leaf, slot, "invalid root id 0 for reloc tree");
479 return -EUCLEAN;
480 }
481 return 0;
482}
483
484static int check_dir_item(struct extent_buffer *leaf,
485 struct btrfs_key *key, struct btrfs_key *prev_key,
486 int slot)
487{
488 struct btrfs_fs_info *fs_info = leaf->fs_info;
489 struct btrfs_dir_item *di;
490 u32 item_size = btrfs_item_size(leaf, slot);
491 u32 cur = 0;
492
493 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
494 return -EUCLEAN;
495
496 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
497 while (cur < item_size) {
498 struct btrfs_key location_key;
499 u32 name_len;
500 u32 data_len;
501 u32 max_name_len;
502 u32 total_size;
503 u32 name_hash;
504 u8 dir_type;
505 int ret;
506
507 /* header itself should not cross item boundary */
508 if (unlikely(cur + sizeof(*di) > item_size)) {
509 dir_item_err(leaf, slot,
510 "dir item header crosses item boundary, have %zu boundary %u",
511 cur + sizeof(*di), item_size);
512 return -EUCLEAN;
513 }
514
515 /* Location key check */
516 btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
517 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
518 ret = check_root_key(leaf, &location_key, slot);
519 if (unlikely(ret < 0))
520 return ret;
521 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
522 location_key.type == 0) {
523 ret = check_inode_key(leaf, &location_key, slot);
524 if (unlikely(ret < 0))
525 return ret;
526 } else {
527 dir_item_err(leaf, slot,
528 "invalid location key type, have %u, expect %u or %u",
529 location_key.type, BTRFS_ROOT_ITEM_KEY,
530 BTRFS_INODE_ITEM_KEY);
531 return -EUCLEAN;
532 }
533
534 /* dir type check */
535 dir_type = btrfs_dir_ftype(leaf, di);
536 if (unlikely(dir_type >= BTRFS_FT_MAX)) {
537 dir_item_err(leaf, slot,
538 "invalid dir item type, have %u expect [0, %u)",
539 dir_type, BTRFS_FT_MAX);
540 return -EUCLEAN;
541 }
542
543 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
544 dir_type != BTRFS_FT_XATTR)) {
545 dir_item_err(leaf, slot,
546 "invalid dir item type for XATTR key, have %u expect %u",
547 dir_type, BTRFS_FT_XATTR);
548 return -EUCLEAN;
549 }
550 if (unlikely(dir_type == BTRFS_FT_XATTR &&
551 key->type != BTRFS_XATTR_ITEM_KEY)) {
552 dir_item_err(leaf, slot,
553 "xattr dir type found for non-XATTR key");
554 return -EUCLEAN;
555 }
556 if (dir_type == BTRFS_FT_XATTR)
557 max_name_len = XATTR_NAME_MAX;
558 else
559 max_name_len = BTRFS_NAME_LEN;
560
561 /* Name/data length check */
562 name_len = btrfs_dir_name_len(leaf, di);
563 data_len = btrfs_dir_data_len(leaf, di);
564 if (unlikely(name_len > max_name_len)) {
565 dir_item_err(leaf, slot,
566 "dir item name len too long, have %u max %u",
567 name_len, max_name_len);
568 return -EUCLEAN;
569 }
570 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
571 dir_item_err(leaf, slot,
572 "dir item name and data len too long, have %u max %u",
573 name_len + data_len,
574 BTRFS_MAX_XATTR_SIZE(fs_info));
575 return -EUCLEAN;
576 }
577
578 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
579 dir_item_err(leaf, slot,
580 "dir item with invalid data len, have %u expect 0",
581 data_len);
582 return -EUCLEAN;
583 }
584
585 total_size = sizeof(*di) + name_len + data_len;
586
587 /* header and name/data should not cross item boundary */
588 if (unlikely(cur + total_size > item_size)) {
589 dir_item_err(leaf, slot,
590 "dir item data crosses item boundary, have %u boundary %u",
591 cur + total_size, item_size);
592 return -EUCLEAN;
593 }
594
595 /*
596 * Special check for XATTR/DIR_ITEM, as key->offset is name
597 * hash, should match its name
598 */
599 if (key->type == BTRFS_DIR_ITEM_KEY ||
600 key->type == BTRFS_XATTR_ITEM_KEY) {
601 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
602
603 read_extent_buffer(leaf, namebuf,
604 (unsigned long)(di + 1), name_len);
605 name_hash = btrfs_name_hash(namebuf, name_len);
606 if (unlikely(key->offset != name_hash)) {
607 dir_item_err(leaf, slot,
608 "name hash mismatch with key, have 0x%016x expect 0x%016llx",
609 name_hash, key->offset);
610 return -EUCLEAN;
611 }
612 }
613 cur += total_size;
614 di = (struct btrfs_dir_item *)((void *)di + total_size);
615 }
616 return 0;
617}
618
619__printf(3, 4)
620__cold
621static void block_group_err(const struct extent_buffer *eb, int slot,
622 const char *fmt, ...)
623{
624 const struct btrfs_fs_info *fs_info = eb->fs_info;
625 struct btrfs_key key;
626 struct va_format vaf;
627 va_list args;
628
629 btrfs_item_key_to_cpu(eb, &key, slot);
630 va_start(args, fmt);
631
632 vaf.fmt = fmt;
633 vaf.va = &args;
634
635 btrfs_crit(fs_info,
636 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
637 btrfs_header_level(eb) == 0 ? "leaf" : "node",
638 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
639 key.objectid, key.offset, &vaf);
640 va_end(args);
641}
642
643static int check_block_group_item(struct extent_buffer *leaf,
644 struct btrfs_key *key, int slot)
645{
646 struct btrfs_fs_info *fs_info = leaf->fs_info;
647 struct btrfs_block_group_item bgi;
648 u32 item_size = btrfs_item_size(leaf, slot);
649 u64 chunk_objectid;
650 u64 flags;
651 u64 type;
652
653 /*
654 * Here we don't really care about alignment since extent allocator can
655 * handle it. We care more about the size.
656 */
657 if (unlikely(key->offset == 0)) {
658 block_group_err(leaf, slot,
659 "invalid block group size 0");
660 return -EUCLEAN;
661 }
662
663 if (unlikely(item_size != sizeof(bgi))) {
664 block_group_err(leaf, slot,
665 "invalid item size, have %u expect %zu",
666 item_size, sizeof(bgi));
667 return -EUCLEAN;
668 }
669
670 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
671 sizeof(bgi));
672 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
673 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
674 /*
675 * We don't init the nr_global_roots until we load the global
676 * roots, so this could be 0 at mount time. If it's 0 we'll
677 * just assume we're fine, and later we'll check against our
678 * actual value.
679 */
680 if (unlikely(fs_info->nr_global_roots &&
681 chunk_objectid >= fs_info->nr_global_roots)) {
682 block_group_err(leaf, slot,
683 "invalid block group global root id, have %llu, needs to be <= %llu",
684 chunk_objectid,
685 fs_info->nr_global_roots);
686 return -EUCLEAN;
687 }
688 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
689 block_group_err(leaf, slot,
690 "invalid block group chunk objectid, have %llu expect %llu",
691 btrfs_stack_block_group_chunk_objectid(&bgi),
692 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
693 return -EUCLEAN;
694 }
695
696 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
697 block_group_err(leaf, slot,
698 "invalid block group used, have %llu expect [0, %llu)",
699 btrfs_stack_block_group_used(&bgi), key->offset);
700 return -EUCLEAN;
701 }
702
703 flags = btrfs_stack_block_group_flags(&bgi);
704 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
705 block_group_err(leaf, slot,
706"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
707 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
708 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
709 return -EUCLEAN;
710 }
711
712 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
713 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
714 type != BTRFS_BLOCK_GROUP_METADATA &&
715 type != BTRFS_BLOCK_GROUP_SYSTEM &&
716 type != (BTRFS_BLOCK_GROUP_METADATA |
717 BTRFS_BLOCK_GROUP_DATA))) {
718 block_group_err(leaf, slot,
719"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
720 type, hweight64(type),
721 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
722 BTRFS_BLOCK_GROUP_SYSTEM,
723 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
724 return -EUCLEAN;
725 }
726 return 0;
727}
728
729__printf(4, 5)
730__cold
731static void chunk_err(const struct extent_buffer *leaf,
732 const struct btrfs_chunk *chunk, u64 logical,
733 const char *fmt, ...)
734{
735 const struct btrfs_fs_info *fs_info = leaf->fs_info;
736 bool is_sb;
737 struct va_format vaf;
738 va_list args;
739 int i;
740 int slot = -1;
741
742 /* Only superblock eb is able to have such small offset */
743 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
744
745 if (!is_sb) {
746 /*
747 * Get the slot number by iterating through all slots, this
748 * would provide better readability.
749 */
750 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
751 if (btrfs_item_ptr_offset(leaf, i) ==
752 (unsigned long)chunk) {
753 slot = i;
754 break;
755 }
756 }
757 }
758 va_start(args, fmt);
759 vaf.fmt = fmt;
760 vaf.va = &args;
761
762 if (is_sb)
763 btrfs_crit(fs_info,
764 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
765 logical, &vaf);
766 else
767 btrfs_crit(fs_info,
768 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
769 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
770 logical, &vaf);
771 va_end(args);
772}
773
774/*
775 * The common chunk check which could also work on super block sys chunk array.
776 *
777 * Return -EUCLEAN if anything is corrupted.
778 * Return 0 if everything is OK.
779 */
780int btrfs_check_chunk_valid(struct extent_buffer *leaf,
781 struct btrfs_chunk *chunk, u64 logical)
782{
783 struct btrfs_fs_info *fs_info = leaf->fs_info;
784 u64 length;
785 u64 chunk_end;
786 u64 stripe_len;
787 u16 num_stripes;
788 u16 sub_stripes;
789 u64 type;
790 u64 features;
791 bool mixed = false;
792 int raid_index;
793 int nparity;
794 int ncopies;
795
796 length = btrfs_chunk_length(leaf, chunk);
797 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
798 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
799 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
800 type = btrfs_chunk_type(leaf, chunk);
801 raid_index = btrfs_bg_flags_to_raid_index(type);
802 ncopies = btrfs_raid_array[raid_index].ncopies;
803 nparity = btrfs_raid_array[raid_index].nparity;
804
805 if (unlikely(!num_stripes)) {
806 chunk_err(leaf, chunk, logical,
807 "invalid chunk num_stripes, have %u", num_stripes);
808 return -EUCLEAN;
809 }
810 if (unlikely(num_stripes < ncopies)) {
811 chunk_err(leaf, chunk, logical,
812 "invalid chunk num_stripes < ncopies, have %u < %d",
813 num_stripes, ncopies);
814 return -EUCLEAN;
815 }
816 if (unlikely(nparity && num_stripes == nparity)) {
817 chunk_err(leaf, chunk, logical,
818 "invalid chunk num_stripes == nparity, have %u == %d",
819 num_stripes, nparity);
820 return -EUCLEAN;
821 }
822 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
823 chunk_err(leaf, chunk, logical,
824 "invalid chunk logical, have %llu should aligned to %u",
825 logical, fs_info->sectorsize);
826 return -EUCLEAN;
827 }
828 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
829 chunk_err(leaf, chunk, logical,
830 "invalid chunk sectorsize, have %u expect %u",
831 btrfs_chunk_sector_size(leaf, chunk),
832 fs_info->sectorsize);
833 return -EUCLEAN;
834 }
835 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
836 chunk_err(leaf, chunk, logical,
837 "invalid chunk length, have %llu", length);
838 return -EUCLEAN;
839 }
840 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
841 chunk_err(leaf, chunk, logical,
842"invalid chunk logical start and length, have logical start %llu length %llu",
843 logical, length);
844 return -EUCLEAN;
845 }
846 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
847 chunk_err(leaf, chunk, logical,
848 "invalid chunk stripe length: %llu",
849 stripe_len);
850 return -EUCLEAN;
851 }
852 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
853 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
854 chunk_err(leaf, chunk, logical,
855 "unrecognized chunk type: 0x%llx",
856 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
857 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
858 btrfs_chunk_type(leaf, chunk));
859 return -EUCLEAN;
860 }
861
862 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
863 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
864 chunk_err(leaf, chunk, logical,
865 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
866 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
867 return -EUCLEAN;
868 }
869 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
870 chunk_err(leaf, chunk, logical,
871 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
872 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
873 return -EUCLEAN;
874 }
875
876 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
877 (type & (BTRFS_BLOCK_GROUP_METADATA |
878 BTRFS_BLOCK_GROUP_DATA)))) {
879 chunk_err(leaf, chunk, logical,
880 "system chunk with data or metadata type: 0x%llx",
881 type);
882 return -EUCLEAN;
883 }
884
885 features = btrfs_super_incompat_flags(fs_info->super_copy);
886 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
887 mixed = true;
888
889 if (!mixed) {
890 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
891 (type & BTRFS_BLOCK_GROUP_DATA))) {
892 chunk_err(leaf, chunk, logical,
893 "mixed chunk type in non-mixed mode: 0x%llx", type);
894 return -EUCLEAN;
895 }
896 }
897
898 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
899 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
900 (type & BTRFS_BLOCK_GROUP_RAID1 &&
901 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
902 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
903 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
904 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
905 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
906 (type & BTRFS_BLOCK_GROUP_RAID5 &&
907 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
908 (type & BTRFS_BLOCK_GROUP_RAID6 &&
909 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
910 (type & BTRFS_BLOCK_GROUP_DUP &&
911 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
912 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
913 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
914 chunk_err(leaf, chunk, logical,
915 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
916 num_stripes, sub_stripes,
917 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
918 return -EUCLEAN;
919 }
920
921 return 0;
922}
923
924/*
925 * Enhanced version of chunk item checker.
926 *
927 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
928 * to work on super block sys_chunk_array which doesn't have full item ptr.
929 */
930static int check_leaf_chunk_item(struct extent_buffer *leaf,
931 struct btrfs_chunk *chunk,
932 struct btrfs_key *key, int slot)
933{
934 int num_stripes;
935
936 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
937 chunk_err(leaf, chunk, key->offset,
938 "invalid chunk item size: have %u expect [%zu, %u)",
939 btrfs_item_size(leaf, slot),
940 sizeof(struct btrfs_chunk),
941 BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
942 return -EUCLEAN;
943 }
944
945 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
946 /* Let btrfs_check_chunk_valid() handle this error type */
947 if (num_stripes == 0)
948 goto out;
949
950 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
951 btrfs_item_size(leaf, slot))) {
952 chunk_err(leaf, chunk, key->offset,
953 "invalid chunk item size: have %u expect %lu",
954 btrfs_item_size(leaf, slot),
955 btrfs_chunk_item_size(num_stripes));
956 return -EUCLEAN;
957 }
958out:
959 return btrfs_check_chunk_valid(leaf, chunk, key->offset);
960}
961
962__printf(3, 4)
963__cold
964static void dev_item_err(const struct extent_buffer *eb, int slot,
965 const char *fmt, ...)
966{
967 struct btrfs_key key;
968 struct va_format vaf;
969 va_list args;
970
971 btrfs_item_key_to_cpu(eb, &key, slot);
972 va_start(args, fmt);
973
974 vaf.fmt = fmt;
975 vaf.va = &args;
976
977 btrfs_crit(eb->fs_info,
978 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
979 btrfs_header_level(eb) == 0 ? "leaf" : "node",
980 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
981 key.objectid, &vaf);
982 va_end(args);
983}
984
985static int check_dev_item(struct extent_buffer *leaf,
986 struct btrfs_key *key, int slot)
987{
988 struct btrfs_dev_item *ditem;
989 const u32 item_size = btrfs_item_size(leaf, slot);
990
991 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
992 dev_item_err(leaf, slot,
993 "invalid objectid: has=%llu expect=%llu",
994 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
995 return -EUCLEAN;
996 }
997
998 if (unlikely(item_size != sizeof(*ditem))) {
999 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1000 item_size, sizeof(*ditem));
1001 return -EUCLEAN;
1002 }
1003
1004 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1005 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1006 dev_item_err(leaf, slot,
1007 "devid mismatch: key has=%llu item has=%llu",
1008 key->offset, btrfs_device_id(leaf, ditem));
1009 return -EUCLEAN;
1010 }
1011
1012 /*
1013 * For device total_bytes, we don't have reliable way to check it, as
1014 * it can be 0 for device removal. Device size check can only be done
1015 * by dev extents check.
1016 */
1017 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1018 btrfs_device_total_bytes(leaf, ditem))) {
1019 dev_item_err(leaf, slot,
1020 "invalid bytes used: have %llu expect [0, %llu]",
1021 btrfs_device_bytes_used(leaf, ditem),
1022 btrfs_device_total_bytes(leaf, ditem));
1023 return -EUCLEAN;
1024 }
1025 /*
1026 * Remaining members like io_align/type/gen/dev_group aren't really
1027 * utilized. Skip them to make later usage of them easier.
1028 */
1029 return 0;
1030}
1031
1032static int check_inode_item(struct extent_buffer *leaf,
1033 struct btrfs_key *key, int slot)
1034{
1035 struct btrfs_fs_info *fs_info = leaf->fs_info;
1036 struct btrfs_inode_item *iitem;
1037 u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1038 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1039 const u32 item_size = btrfs_item_size(leaf, slot);
1040 u32 mode;
1041 int ret;
1042 u32 flags;
1043 u32 ro_flags;
1044
1045 ret = check_inode_key(leaf, key, slot);
1046 if (unlikely(ret < 0))
1047 return ret;
1048
1049 if (unlikely(item_size != sizeof(*iitem))) {
1050 generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1051 item_size, sizeof(*iitem));
1052 return -EUCLEAN;
1053 }
1054
1055 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1056
1057 /* Here we use super block generation + 1 to handle log tree */
1058 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1059 inode_item_err(leaf, slot,
1060 "invalid inode generation: has %llu expect (0, %llu]",
1061 btrfs_inode_generation(leaf, iitem),
1062 super_gen + 1);
1063 return -EUCLEAN;
1064 }
1065 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1066 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1067 inode_item_err(leaf, slot,
1068 "invalid inode transid: has %llu expect [0, %llu]",
1069 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1070 return -EUCLEAN;
1071 }
1072
1073 /*
1074 * For size and nbytes it's better not to be too strict, as for dir
1075 * item its size/nbytes can easily get wrong, but doesn't affect
1076 * anything in the fs. So here we skip the check.
1077 */
1078 mode = btrfs_inode_mode(leaf, iitem);
1079 if (unlikely(mode & ~valid_mask)) {
1080 inode_item_err(leaf, slot,
1081 "unknown mode bit detected: 0x%x",
1082 mode & ~valid_mask);
1083 return -EUCLEAN;
1084 }
1085
1086 /*
1087 * S_IFMT is not bit mapped so we can't completely rely on
1088 * is_power_of_2/has_single_bit_set, but it can save us from checking
1089 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1090 */
1091 if (!has_single_bit_set(mode & S_IFMT)) {
1092 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1093 inode_item_err(leaf, slot,
1094 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1095 mode & S_IFMT);
1096 return -EUCLEAN;
1097 }
1098 }
1099 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1100 inode_item_err(leaf, slot,
1101 "invalid nlink: has %u expect no more than 1 for dir",
1102 btrfs_inode_nlink(leaf, iitem));
1103 return -EUCLEAN;
1104 }
1105 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1106 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1107 inode_item_err(leaf, slot,
1108 "unknown incompat flags detected: 0x%x", flags);
1109 return -EUCLEAN;
1110 }
1111 if (unlikely(!sb_rdonly(fs_info->sb) &&
1112 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1113 inode_item_err(leaf, slot,
1114 "unknown ro-compat flags detected on writeable mount: 0x%x",
1115 ro_flags);
1116 return -EUCLEAN;
1117 }
1118 return 0;
1119}
1120
1121static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1122 int slot)
1123{
1124 struct btrfs_fs_info *fs_info = leaf->fs_info;
1125 struct btrfs_root_item ri = { 0 };
1126 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1127 BTRFS_ROOT_SUBVOL_DEAD;
1128 int ret;
1129
1130 ret = check_root_key(leaf, key, slot);
1131 if (unlikely(ret < 0))
1132 return ret;
1133
1134 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1135 btrfs_item_size(leaf, slot) !=
1136 btrfs_legacy_root_item_size())) {
1137 generic_err(leaf, slot,
1138 "invalid root item size, have %u expect %zu or %u",
1139 btrfs_item_size(leaf, slot), sizeof(ri),
1140 btrfs_legacy_root_item_size());
1141 return -EUCLEAN;
1142 }
1143
1144 /*
1145 * For legacy root item, the members starting at generation_v2 will be
1146 * all filled with 0.
1147 * And since we allow geneartion_v2 as 0, it will still pass the check.
1148 */
1149 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1150 btrfs_item_size(leaf, slot));
1151
1152 /* Generation related */
1153 if (unlikely(btrfs_root_generation(&ri) >
1154 btrfs_super_generation(fs_info->super_copy) + 1)) {
1155 generic_err(leaf, slot,
1156 "invalid root generation, have %llu expect (0, %llu]",
1157 btrfs_root_generation(&ri),
1158 btrfs_super_generation(fs_info->super_copy) + 1);
1159 return -EUCLEAN;
1160 }
1161 if (unlikely(btrfs_root_generation_v2(&ri) >
1162 btrfs_super_generation(fs_info->super_copy) + 1)) {
1163 generic_err(leaf, slot,
1164 "invalid root v2 generation, have %llu expect (0, %llu]",
1165 btrfs_root_generation_v2(&ri),
1166 btrfs_super_generation(fs_info->super_copy) + 1);
1167 return -EUCLEAN;
1168 }
1169 if (unlikely(btrfs_root_last_snapshot(&ri) >
1170 btrfs_super_generation(fs_info->super_copy) + 1)) {
1171 generic_err(leaf, slot,
1172 "invalid root last_snapshot, have %llu expect (0, %llu]",
1173 btrfs_root_last_snapshot(&ri),
1174 btrfs_super_generation(fs_info->super_copy) + 1);
1175 return -EUCLEAN;
1176 }
1177
1178 /* Alignment and level check */
1179 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1180 generic_err(leaf, slot,
1181 "invalid root bytenr, have %llu expect to be aligned to %u",
1182 btrfs_root_bytenr(&ri), fs_info->sectorsize);
1183 return -EUCLEAN;
1184 }
1185 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1186 generic_err(leaf, slot,
1187 "invalid root level, have %u expect [0, %u]",
1188 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1189 return -EUCLEAN;
1190 }
1191 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1192 generic_err(leaf, slot,
1193 "invalid root level, have %u expect [0, %u]",
1194 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1195 return -EUCLEAN;
1196 }
1197
1198 /* Flags check */
1199 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1200 generic_err(leaf, slot,
1201 "invalid root flags, have 0x%llx expect mask 0x%llx",
1202 btrfs_root_flags(&ri), valid_root_flags);
1203 return -EUCLEAN;
1204 }
1205 return 0;
1206}
1207
1208__printf(3,4)
1209__cold
1210static void extent_err(const struct extent_buffer *eb, int slot,
1211 const char *fmt, ...)
1212{
1213 struct btrfs_key key;
1214 struct va_format vaf;
1215 va_list args;
1216 u64 bytenr;
1217 u64 len;
1218
1219 btrfs_item_key_to_cpu(eb, &key, slot);
1220 bytenr = key.objectid;
1221 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1222 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1223 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1224 len = eb->fs_info->nodesize;
1225 else
1226 len = key.offset;
1227 va_start(args, fmt);
1228
1229 vaf.fmt = fmt;
1230 vaf.va = &args;
1231
1232 btrfs_crit(eb->fs_info,
1233 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1234 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1235 eb->start, slot, bytenr, len, &vaf);
1236 va_end(args);
1237}
1238
1239static int check_extent_item(struct extent_buffer *leaf,
1240 struct btrfs_key *key, int slot,
1241 struct btrfs_key *prev_key)
1242{
1243 struct btrfs_fs_info *fs_info = leaf->fs_info;
1244 struct btrfs_extent_item *ei;
1245 bool is_tree_block = false;
1246 unsigned long ptr; /* Current pointer inside inline refs */
1247 unsigned long end; /* Extent item end */
1248 const u32 item_size = btrfs_item_size(leaf, slot);
1249 u64 flags;
1250 u64 generation;
1251 u64 total_refs; /* Total refs in btrfs_extent_item */
1252 u64 inline_refs = 0; /* found total inline refs */
1253
1254 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1255 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1256 generic_err(leaf, slot,
1257"invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1258 return -EUCLEAN;
1259 }
1260 /* key->objectid is the bytenr for both key types */
1261 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1262 generic_err(leaf, slot,
1263 "invalid key objectid, have %llu expect to be aligned to %u",
1264 key->objectid, fs_info->sectorsize);
1265 return -EUCLEAN;
1266 }
1267
1268 /* key->offset is tree level for METADATA_ITEM_KEY */
1269 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1270 key->offset >= BTRFS_MAX_LEVEL)) {
1271 extent_err(leaf, slot,
1272 "invalid tree level, have %llu expect [0, %u]",
1273 key->offset, BTRFS_MAX_LEVEL - 1);
1274 return -EUCLEAN;
1275 }
1276
1277 /*
1278 * EXTENT/METADATA_ITEM consists of:
1279 * 1) One btrfs_extent_item
1280 * Records the total refs, type and generation of the extent.
1281 *
1282 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1283 * Records the first key and level of the tree block.
1284 *
1285 * 2) Zero or more btrfs_extent_inline_ref(s)
1286 * Each inline ref has one btrfs_extent_inline_ref shows:
1287 * 2.1) The ref type, one of the 4
1288 * TREE_BLOCK_REF Tree block only
1289 * SHARED_BLOCK_REF Tree block only
1290 * EXTENT_DATA_REF Data only
1291 * SHARED_DATA_REF Data only
1292 * 2.2) Ref type specific data
1293 * Either using btrfs_extent_inline_ref::offset, or specific
1294 * data structure.
1295 */
1296 if (unlikely(item_size < sizeof(*ei))) {
1297 extent_err(leaf, slot,
1298 "invalid item size, have %u expect [%zu, %u)",
1299 item_size, sizeof(*ei),
1300 BTRFS_LEAF_DATA_SIZE(fs_info));
1301 return -EUCLEAN;
1302 }
1303 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1304
1305 /* Checks against extent_item */
1306 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1307 flags = btrfs_extent_flags(leaf, ei);
1308 total_refs = btrfs_extent_refs(leaf, ei);
1309 generation = btrfs_extent_generation(leaf, ei);
1310 if (unlikely(generation >
1311 btrfs_super_generation(fs_info->super_copy) + 1)) {
1312 extent_err(leaf, slot,
1313 "invalid generation, have %llu expect (0, %llu]",
1314 generation,
1315 btrfs_super_generation(fs_info->super_copy) + 1);
1316 return -EUCLEAN;
1317 }
1318 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1319 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1320 extent_err(leaf, slot,
1321 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1322 flags, BTRFS_EXTENT_FLAG_DATA |
1323 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1324 return -EUCLEAN;
1325 }
1326 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1327 if (is_tree_block) {
1328 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1329 key->offset != fs_info->nodesize)) {
1330 extent_err(leaf, slot,
1331 "invalid extent length, have %llu expect %u",
1332 key->offset, fs_info->nodesize);
1333 return -EUCLEAN;
1334 }
1335 } else {
1336 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1337 extent_err(leaf, slot,
1338 "invalid key type, have %u expect %u for data backref",
1339 key->type, BTRFS_EXTENT_ITEM_KEY);
1340 return -EUCLEAN;
1341 }
1342 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1343 extent_err(leaf, slot,
1344 "invalid extent length, have %llu expect aligned to %u",
1345 key->offset, fs_info->sectorsize);
1346 return -EUCLEAN;
1347 }
1348 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1349 extent_err(leaf, slot,
1350 "invalid extent flag, data has full backref set");
1351 return -EUCLEAN;
1352 }
1353 }
1354 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1355
1356 /* Check the special case of btrfs_tree_block_info */
1357 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1358 struct btrfs_tree_block_info *info;
1359
1360 info = (struct btrfs_tree_block_info *)ptr;
1361 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1362 extent_err(leaf, slot,
1363 "invalid tree block info level, have %u expect [0, %u]",
1364 btrfs_tree_block_level(leaf, info),
1365 BTRFS_MAX_LEVEL - 1);
1366 return -EUCLEAN;
1367 }
1368 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1369 }
1370
1371 /* Check inline refs */
1372 while (ptr < end) {
1373 struct btrfs_extent_inline_ref *iref;
1374 struct btrfs_extent_data_ref *dref;
1375 struct btrfs_shared_data_ref *sref;
1376 u64 dref_offset;
1377 u64 inline_offset;
1378 u8 inline_type;
1379
1380 if (unlikely(ptr + sizeof(*iref) > end)) {
1381 extent_err(leaf, slot,
1382"inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1383 ptr, sizeof(*iref), end);
1384 return -EUCLEAN;
1385 }
1386 iref = (struct btrfs_extent_inline_ref *)ptr;
1387 inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1388 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1389 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1390 extent_err(leaf, slot,
1391"inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1392 ptr, inline_type, end);
1393 return -EUCLEAN;
1394 }
1395
1396 switch (inline_type) {
1397 /* inline_offset is subvolid of the owner, no need to check */
1398 case BTRFS_TREE_BLOCK_REF_KEY:
1399 inline_refs++;
1400 break;
1401 /* Contains parent bytenr */
1402 case BTRFS_SHARED_BLOCK_REF_KEY:
1403 if (unlikely(!IS_ALIGNED(inline_offset,
1404 fs_info->sectorsize))) {
1405 extent_err(leaf, slot,
1406 "invalid tree parent bytenr, have %llu expect aligned to %u",
1407 inline_offset, fs_info->sectorsize);
1408 return -EUCLEAN;
1409 }
1410 inline_refs++;
1411 break;
1412 /*
1413 * Contains owner subvolid, owner key objectid, adjusted offset.
1414 * The only obvious corruption can happen in that offset.
1415 */
1416 case BTRFS_EXTENT_DATA_REF_KEY:
1417 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1418 dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1419 if (unlikely(!IS_ALIGNED(dref_offset,
1420 fs_info->sectorsize))) {
1421 extent_err(leaf, slot,
1422 "invalid data ref offset, have %llu expect aligned to %u",
1423 dref_offset, fs_info->sectorsize);
1424 return -EUCLEAN;
1425 }
1426 inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1427 break;
1428 /* Contains parent bytenr and ref count */
1429 case BTRFS_SHARED_DATA_REF_KEY:
1430 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1431 if (unlikely(!IS_ALIGNED(inline_offset,
1432 fs_info->sectorsize))) {
1433 extent_err(leaf, slot,
1434 "invalid data parent bytenr, have %llu expect aligned to %u",
1435 inline_offset, fs_info->sectorsize);
1436 return -EUCLEAN;
1437 }
1438 inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1439 break;
1440 default:
1441 extent_err(leaf, slot, "unknown inline ref type: %u",
1442 inline_type);
1443 return -EUCLEAN;
1444 }
1445 ptr += btrfs_extent_inline_ref_size(inline_type);
1446 }
1447 /* No padding is allowed */
1448 if (unlikely(ptr != end)) {
1449 extent_err(leaf, slot,
1450 "invalid extent item size, padding bytes found");
1451 return -EUCLEAN;
1452 }
1453
1454 /* Finally, check the inline refs against total refs */
1455 if (unlikely(inline_refs > total_refs)) {
1456 extent_err(leaf, slot,
1457 "invalid extent refs, have %llu expect >= inline %llu",
1458 total_refs, inline_refs);
1459 return -EUCLEAN;
1460 }
1461
1462 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1463 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1464 u64 prev_end = prev_key->objectid;
1465
1466 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1467 prev_end += fs_info->nodesize;
1468 else
1469 prev_end += prev_key->offset;
1470
1471 if (unlikely(prev_end > key->objectid)) {
1472 extent_err(leaf, slot,
1473 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1474 prev_key->objectid, prev_key->type,
1475 prev_key->offset, key->objectid, key->type,
1476 key->offset);
1477 return -EUCLEAN;
1478 }
1479 }
1480
1481 return 0;
1482}
1483
1484static int check_simple_keyed_refs(struct extent_buffer *leaf,
1485 struct btrfs_key *key, int slot)
1486{
1487 u32 expect_item_size = 0;
1488
1489 if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1490 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1491
1492 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1493 generic_err(leaf, slot,
1494 "invalid item size, have %u expect %u for key type %u",
1495 btrfs_item_size(leaf, slot),
1496 expect_item_size, key->type);
1497 return -EUCLEAN;
1498 }
1499 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1500 generic_err(leaf, slot,
1501"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1502 key->objectid, leaf->fs_info->sectorsize);
1503 return -EUCLEAN;
1504 }
1505 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1506 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1507 extent_err(leaf, slot,
1508 "invalid tree parent bytenr, have %llu expect aligned to %u",
1509 key->offset, leaf->fs_info->sectorsize);
1510 return -EUCLEAN;
1511 }
1512 return 0;
1513}
1514
1515static int check_extent_data_ref(struct extent_buffer *leaf,
1516 struct btrfs_key *key, int slot)
1517{
1518 struct btrfs_extent_data_ref *dref;
1519 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1520 const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1521
1522 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1523 generic_err(leaf, slot,
1524 "invalid item size, have %u expect aligned to %zu for key type %u",
1525 btrfs_item_size(leaf, slot),
1526 sizeof(*dref), key->type);
1527 return -EUCLEAN;
1528 }
1529 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1530 generic_err(leaf, slot,
1531"invalid key objectid for shared block ref, have %llu expect aligned to %u",
1532 key->objectid, leaf->fs_info->sectorsize);
1533 return -EUCLEAN;
1534 }
1535 for (; ptr < end; ptr += sizeof(*dref)) {
1536 u64 offset;
1537
1538 /*
1539 * We cannot check the extent_data_ref hash due to possible
1540 * overflow from the leaf due to hash collisions.
1541 */
1542 dref = (struct btrfs_extent_data_ref *)ptr;
1543 offset = btrfs_extent_data_ref_offset(leaf, dref);
1544 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1545 extent_err(leaf, slot,
1546 "invalid extent data backref offset, have %llu expect aligned to %u",
1547 offset, leaf->fs_info->sectorsize);
1548 return -EUCLEAN;
1549 }
1550 }
1551 return 0;
1552}
1553
1554#define inode_ref_err(eb, slot, fmt, args...) \
1555 inode_item_err(eb, slot, fmt, ##args)
1556static int check_inode_ref(struct extent_buffer *leaf,
1557 struct btrfs_key *key, struct btrfs_key *prev_key,
1558 int slot)
1559{
1560 struct btrfs_inode_ref *iref;
1561 unsigned long ptr;
1562 unsigned long end;
1563
1564 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1565 return -EUCLEAN;
1566 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1567 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1568 inode_ref_err(leaf, slot,
1569 "invalid item size, have %u expect (%zu, %u)",
1570 btrfs_item_size(leaf, slot),
1571 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1572 return -EUCLEAN;
1573 }
1574
1575 ptr = btrfs_item_ptr_offset(leaf, slot);
1576 end = ptr + btrfs_item_size(leaf, slot);
1577 while (ptr < end) {
1578 u16 namelen;
1579
1580 if (unlikely(ptr + sizeof(iref) > end)) {
1581 inode_ref_err(leaf, slot,
1582 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1583 ptr, end, sizeof(iref));
1584 return -EUCLEAN;
1585 }
1586
1587 iref = (struct btrfs_inode_ref *)ptr;
1588 namelen = btrfs_inode_ref_name_len(leaf, iref);
1589 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1590 inode_ref_err(leaf, slot,
1591 "inode ref overflow, ptr %lu end %lu namelen %u",
1592 ptr, end, namelen);
1593 return -EUCLEAN;
1594 }
1595
1596 /*
1597 * NOTE: In theory we should record all found index numbers
1598 * to find any duplicated indexes, but that will be too time
1599 * consuming for inodes with too many hard links.
1600 */
1601 ptr += sizeof(*iref) + namelen;
1602 }
1603 return 0;
1604}
1605
1606/*
1607 * Common point to switch the item-specific validation.
1608 */
1609static int check_leaf_item(struct extent_buffer *leaf,
1610 struct btrfs_key *key, int slot,
1611 struct btrfs_key *prev_key)
1612{
1613 int ret = 0;
1614 struct btrfs_chunk *chunk;
1615
1616 switch (key->type) {
1617 case BTRFS_EXTENT_DATA_KEY:
1618 ret = check_extent_data_item(leaf, key, slot, prev_key);
1619 break;
1620 case BTRFS_EXTENT_CSUM_KEY:
1621 ret = check_csum_item(leaf, key, slot, prev_key);
1622 break;
1623 case BTRFS_DIR_ITEM_KEY:
1624 case BTRFS_DIR_INDEX_KEY:
1625 case BTRFS_XATTR_ITEM_KEY:
1626 ret = check_dir_item(leaf, key, prev_key, slot);
1627 break;
1628 case BTRFS_INODE_REF_KEY:
1629 ret = check_inode_ref(leaf, key, prev_key, slot);
1630 break;
1631 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1632 ret = check_block_group_item(leaf, key, slot);
1633 break;
1634 case BTRFS_CHUNK_ITEM_KEY:
1635 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1636 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1637 break;
1638 case BTRFS_DEV_ITEM_KEY:
1639 ret = check_dev_item(leaf, key, slot);
1640 break;
1641 case BTRFS_INODE_ITEM_KEY:
1642 ret = check_inode_item(leaf, key, slot);
1643 break;
1644 case BTRFS_ROOT_ITEM_KEY:
1645 ret = check_root_item(leaf, key, slot);
1646 break;
1647 case BTRFS_EXTENT_ITEM_KEY:
1648 case BTRFS_METADATA_ITEM_KEY:
1649 ret = check_extent_item(leaf, key, slot, prev_key);
1650 break;
1651 case BTRFS_TREE_BLOCK_REF_KEY:
1652 case BTRFS_SHARED_DATA_REF_KEY:
1653 case BTRFS_SHARED_BLOCK_REF_KEY:
1654 ret = check_simple_keyed_refs(leaf, key, slot);
1655 break;
1656 case BTRFS_EXTENT_DATA_REF_KEY:
1657 ret = check_extent_data_ref(leaf, key, slot);
1658 break;
1659 }
1660 return ret;
1661}
1662
1663static int check_leaf(struct extent_buffer *leaf, bool check_item_data)
1664{
1665 struct btrfs_fs_info *fs_info = leaf->fs_info;
1666 /* No valid key type is 0, so all key should be larger than this key */
1667 struct btrfs_key prev_key = {0, 0, 0};
1668 struct btrfs_key key;
1669 u32 nritems = btrfs_header_nritems(leaf);
1670 int slot;
1671
1672 if (unlikely(btrfs_header_level(leaf) != 0)) {
1673 generic_err(leaf, 0,
1674 "invalid level for leaf, have %d expect 0",
1675 btrfs_header_level(leaf));
1676 return -EUCLEAN;
1677 }
1678
1679 /*
1680 * Extent buffers from a relocation tree have a owner field that
1681 * corresponds to the subvolume tree they are based on. So just from an
1682 * extent buffer alone we can not find out what is the id of the
1683 * corresponding subvolume tree, so we can not figure out if the extent
1684 * buffer corresponds to the root of the relocation tree or not. So
1685 * skip this check for relocation trees.
1686 */
1687 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1688 u64 owner = btrfs_header_owner(leaf);
1689
1690 /* These trees must never be empty */
1691 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1692 owner == BTRFS_CHUNK_TREE_OBJECTID ||
1693 owner == BTRFS_DEV_TREE_OBJECTID ||
1694 owner == BTRFS_FS_TREE_OBJECTID ||
1695 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1696 generic_err(leaf, 0,
1697 "invalid root, root %llu must never be empty",
1698 owner);
1699 return -EUCLEAN;
1700 }
1701
1702 /* Unknown tree */
1703 if (unlikely(owner == 0)) {
1704 generic_err(leaf, 0,
1705 "invalid owner, root 0 is not defined");
1706 return -EUCLEAN;
1707 }
1708
1709 /* EXTENT_TREE_V2 can have empty extent trees. */
1710 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1711 return 0;
1712
1713 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1714 generic_err(leaf, 0,
1715 "invalid root, root %llu must never be empty",
1716 owner);
1717 return -EUCLEAN;
1718 }
1719
1720 return 0;
1721 }
1722
1723 if (unlikely(nritems == 0))
1724 return 0;
1725
1726 /*
1727 * Check the following things to make sure this is a good leaf, and
1728 * leaf users won't need to bother with similar sanity checks:
1729 *
1730 * 1) key ordering
1731 * 2) item offset and size
1732 * No overlap, no hole, all inside the leaf.
1733 * 3) item content
1734 * If possible, do comprehensive sanity check.
1735 * NOTE: All checks must only rely on the item data itself.
1736 */
1737 for (slot = 0; slot < nritems; slot++) {
1738 u32 item_end_expected;
1739 u64 item_data_end;
1740 int ret;
1741
1742 btrfs_item_key_to_cpu(leaf, &key, slot);
1743
1744 /* Make sure the keys are in the right order */
1745 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1746 generic_err(leaf, slot,
1747 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1748 prev_key.objectid, prev_key.type,
1749 prev_key.offset, key.objectid, key.type,
1750 key.offset);
1751 return -EUCLEAN;
1752 }
1753
1754 item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1755 btrfs_item_size(leaf, slot);
1756 /*
1757 * Make sure the offset and ends are right, remember that the
1758 * item data starts at the end of the leaf and grows towards the
1759 * front.
1760 */
1761 if (slot == 0)
1762 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
1763 else
1764 item_end_expected = btrfs_item_offset(leaf,
1765 slot - 1);
1766 if (unlikely(item_data_end != item_end_expected)) {
1767 generic_err(leaf, slot,
1768 "unexpected item end, have %llu expect %u",
1769 item_data_end, item_end_expected);
1770 return -EUCLEAN;
1771 }
1772
1773 /*
1774 * Check to make sure that we don't point outside of the leaf,
1775 * just in case all the items are consistent to each other, but
1776 * all point outside of the leaf.
1777 */
1778 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1779 generic_err(leaf, slot,
1780 "slot end outside of leaf, have %llu expect range [0, %u]",
1781 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
1782 return -EUCLEAN;
1783 }
1784
1785 /* Also check if the item pointer overlaps with btrfs item. */
1786 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1787 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1788 generic_err(leaf, slot,
1789 "slot overlaps with its data, item end %lu data start %lu",
1790 btrfs_item_nr_offset(leaf, slot) +
1791 sizeof(struct btrfs_item),
1792 btrfs_item_ptr_offset(leaf, slot));
1793 return -EUCLEAN;
1794 }
1795
1796 if (check_item_data) {
1797 /*
1798 * Check if the item size and content meet other
1799 * criteria
1800 */
1801 ret = check_leaf_item(leaf, &key, slot, &prev_key);
1802 if (unlikely(ret < 0))
1803 return ret;
1804 }
1805
1806 prev_key.objectid = key.objectid;
1807 prev_key.type = key.type;
1808 prev_key.offset = key.offset;
1809 }
1810
1811 return 0;
1812}
1813
1814int btrfs_check_leaf_full(struct extent_buffer *leaf)
1815{
1816 return check_leaf(leaf, true);
1817}
1818ALLOW_ERROR_INJECTION(btrfs_check_leaf_full, ERRNO);
1819
1820int btrfs_check_leaf_relaxed(struct extent_buffer *leaf)
1821{
1822 return check_leaf(leaf, false);
1823}
1824
1825int btrfs_check_node(struct extent_buffer *node)
1826{
1827 struct btrfs_fs_info *fs_info = node->fs_info;
1828 unsigned long nr = btrfs_header_nritems(node);
1829 struct btrfs_key key, next_key;
1830 int slot;
1831 int level = btrfs_header_level(node);
1832 u64 bytenr;
1833 int ret = 0;
1834
1835 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1836 generic_err(node, 0,
1837 "invalid level for node, have %d expect [1, %d]",
1838 level, BTRFS_MAX_LEVEL - 1);
1839 return -EUCLEAN;
1840 }
1841 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1842 btrfs_crit(fs_info,
1843"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1844 btrfs_header_owner(node), node->start,
1845 nr == 0 ? "small" : "large", nr,
1846 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1847 return -EUCLEAN;
1848 }
1849
1850 for (slot = 0; slot < nr - 1; slot++) {
1851 bytenr = btrfs_node_blockptr(node, slot);
1852 btrfs_node_key_to_cpu(node, &key, slot);
1853 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
1854
1855 if (unlikely(!bytenr)) {
1856 generic_err(node, slot,
1857 "invalid NULL node pointer");
1858 ret = -EUCLEAN;
1859 goto out;
1860 }
1861 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1862 generic_err(node, slot,
1863 "unaligned pointer, have %llu should be aligned to %u",
1864 bytenr, fs_info->sectorsize);
1865 ret = -EUCLEAN;
1866 goto out;
1867 }
1868
1869 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1870 generic_err(node, slot,
1871 "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1872 key.objectid, key.type, key.offset,
1873 next_key.objectid, next_key.type,
1874 next_key.offset);
1875 ret = -EUCLEAN;
1876 goto out;
1877 }
1878 }
1879out:
1880 return ret;
1881}
1882ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
1883
1884int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
1885{
1886 const bool is_subvol = is_fstree(root_owner);
1887 const u64 eb_owner = btrfs_header_owner(eb);
1888
1889 /*
1890 * Skip dummy fs, as selftests don't create unique ebs for each dummy
1891 * root.
1892 */
1893 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
1894 return 0;
1895 /*
1896 * There are several call sites (backref walking, qgroup, and data
1897 * reloc) passing 0 as @root_owner, as they are not holding the
1898 * tree root. In that case, we can not do a reliable ownership check,
1899 * so just exit.
1900 */
1901 if (root_owner == 0)
1902 return 0;
1903 /*
1904 * These trees use key.offset as their owner, our callers don't have
1905 * the extra capacity to pass key.offset here. So we just skip them.
1906 */
1907 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
1908 root_owner == BTRFS_TREE_RELOC_OBJECTID)
1909 return 0;
1910
1911 if (!is_subvol) {
1912 /* For non-subvolume trees, the eb owner should match root owner */
1913 if (unlikely(root_owner != eb_owner)) {
1914 btrfs_crit(eb->fs_info,
1915"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
1916 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1917 root_owner, btrfs_header_bytenr(eb), eb_owner,
1918 root_owner);
1919 return -EUCLEAN;
1920 }
1921 return 0;
1922 }
1923
1924 /*
1925 * For subvolume trees, owners can mismatch, but they should all belong
1926 * to subvolume trees.
1927 */
1928 if (unlikely(is_subvol != is_fstree(eb_owner))) {
1929 btrfs_crit(eb->fs_info,
1930"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
1931 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1932 root_owner, btrfs_header_bytenr(eb), eb_owner,
1933 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
1934 return -EUCLEAN;
1935 }
1936 return 0;
1937}