Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2014 Facebook.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/stacktrace.h>
   8#include "messages.h"
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "locking.h"
  12#include "delayed-ref.h"
  13#include "ref-verify.h"
  14#include "fs.h"
  15#include "accessors.h"
  16
  17/*
  18 * Used to keep track the roots and number of refs each root has for a given
  19 * bytenr.  This just tracks the number of direct references, no shared
  20 * references.
  21 */
  22struct root_entry {
  23	u64 root_objectid;
  24	u64 num_refs;
  25	struct rb_node node;
  26};
  27
  28/*
  29 * These are meant to represent what should exist in the extent tree, these can
  30 * be used to verify the extent tree is consistent as these should all match
  31 * what the extent tree says.
  32 */
  33struct ref_entry {
  34	u64 root_objectid;
  35	u64 parent;
  36	u64 owner;
  37	u64 offset;
  38	u64 num_refs;
  39	struct rb_node node;
  40};
  41
  42#define MAX_TRACE	16
  43
  44/*
  45 * Whenever we add/remove a reference we record the action.  The action maps
  46 * back to the delayed ref action.  We hold the ref we are changing in the
  47 * action so we can account for the history properly, and we record the root we
  48 * were called with since it could be different from ref_root.  We also store
  49 * stack traces because that's how I roll.
  50 */
  51struct ref_action {
  52	int action;
  53	u64 root;
  54	struct ref_entry ref;
  55	struct list_head list;
  56	unsigned long trace[MAX_TRACE];
  57	unsigned int trace_len;
  58};
  59
  60/*
  61 * One of these for every block we reference, it holds the roots and references
  62 * to it as well as all of the ref actions that have occurred to it.  We never
  63 * free it until we unmount the file system in order to make sure re-allocations
  64 * are happening properly.
  65 */
  66struct block_entry {
  67	u64 bytenr;
  68	u64 len;
  69	u64 num_refs;
  70	int metadata;
  71	int from_disk;
  72	struct rb_root roots;
  73	struct rb_root refs;
  74	struct rb_node node;
  75	struct list_head actions;
  76};
  77
  78static struct block_entry *insert_block_entry(struct rb_root *root,
  79					      struct block_entry *be)
  80{
  81	struct rb_node **p = &root->rb_node;
  82	struct rb_node *parent_node = NULL;
  83	struct block_entry *entry;
  84
  85	while (*p) {
  86		parent_node = *p;
  87		entry = rb_entry(parent_node, struct block_entry, node);
  88		if (entry->bytenr > be->bytenr)
  89			p = &(*p)->rb_left;
  90		else if (entry->bytenr < be->bytenr)
  91			p = &(*p)->rb_right;
  92		else
  93			return entry;
  94	}
  95
  96	rb_link_node(&be->node, parent_node, p);
  97	rb_insert_color(&be->node, root);
  98	return NULL;
  99}
 100
 101static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
 102{
 103	struct rb_node *n;
 104	struct block_entry *entry = NULL;
 105
 106	n = root->rb_node;
 107	while (n) {
 108		entry = rb_entry(n, struct block_entry, node);
 109		if (entry->bytenr < bytenr)
 110			n = n->rb_right;
 111		else if (entry->bytenr > bytenr)
 112			n = n->rb_left;
 113		else
 114			return entry;
 115	}
 116	return NULL;
 117}
 118
 119static struct root_entry *insert_root_entry(struct rb_root *root,
 120					    struct root_entry *re)
 121{
 122	struct rb_node **p = &root->rb_node;
 123	struct rb_node *parent_node = NULL;
 124	struct root_entry *entry;
 125
 126	while (*p) {
 127		parent_node = *p;
 128		entry = rb_entry(parent_node, struct root_entry, node);
 129		if (entry->root_objectid > re->root_objectid)
 130			p = &(*p)->rb_left;
 131		else if (entry->root_objectid < re->root_objectid)
 132			p = &(*p)->rb_right;
 133		else
 134			return entry;
 135	}
 136
 137	rb_link_node(&re->node, parent_node, p);
 138	rb_insert_color(&re->node, root);
 139	return NULL;
 140
 141}
 142
 143static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
 144{
 145	if (ref1->root_objectid < ref2->root_objectid)
 146		return -1;
 147	if (ref1->root_objectid > ref2->root_objectid)
 148		return 1;
 149	if (ref1->parent < ref2->parent)
 150		return -1;
 151	if (ref1->parent > ref2->parent)
 152		return 1;
 153	if (ref1->owner < ref2->owner)
 154		return -1;
 155	if (ref1->owner > ref2->owner)
 156		return 1;
 157	if (ref1->offset < ref2->offset)
 158		return -1;
 159	if (ref1->offset > ref2->offset)
 160		return 1;
 161	return 0;
 162}
 163
 164static struct ref_entry *insert_ref_entry(struct rb_root *root,
 165					  struct ref_entry *ref)
 166{
 167	struct rb_node **p = &root->rb_node;
 168	struct rb_node *parent_node = NULL;
 169	struct ref_entry *entry;
 170	int cmp;
 171
 172	while (*p) {
 173		parent_node = *p;
 174		entry = rb_entry(parent_node, struct ref_entry, node);
 175		cmp = comp_refs(entry, ref);
 176		if (cmp > 0)
 177			p = &(*p)->rb_left;
 178		else if (cmp < 0)
 179			p = &(*p)->rb_right;
 180		else
 181			return entry;
 182	}
 183
 184	rb_link_node(&ref->node, parent_node, p);
 185	rb_insert_color(&ref->node, root);
 186	return NULL;
 187
 188}
 189
 190static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
 191{
 192	struct rb_node *n;
 193	struct root_entry *entry = NULL;
 194
 195	n = root->rb_node;
 196	while (n) {
 197		entry = rb_entry(n, struct root_entry, node);
 198		if (entry->root_objectid < objectid)
 199			n = n->rb_right;
 200		else if (entry->root_objectid > objectid)
 201			n = n->rb_left;
 202		else
 203			return entry;
 204	}
 205	return NULL;
 206}
 207
 208#ifdef CONFIG_STACKTRACE
 209static void __save_stack_trace(struct ref_action *ra)
 210{
 211	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
 212}
 213
 214static void __print_stack_trace(struct btrfs_fs_info *fs_info,
 215				struct ref_action *ra)
 216{
 217	if (ra->trace_len == 0) {
 218		btrfs_err(fs_info, "  ref-verify: no stacktrace");
 219		return;
 220	}
 221	stack_trace_print(ra->trace, ra->trace_len, 2);
 222}
 223#else
 224static inline void __save_stack_trace(struct ref_action *ra)
 225{
 226}
 227
 228static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
 229				       struct ref_action *ra)
 230{
 231	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
 232}
 233#endif
 234
 235static void free_block_entry(struct block_entry *be)
 236{
 237	struct root_entry *re;
 238	struct ref_entry *ref;
 239	struct ref_action *ra;
 240	struct rb_node *n;
 241
 242	while ((n = rb_first(&be->roots))) {
 243		re = rb_entry(n, struct root_entry, node);
 244		rb_erase(&re->node, &be->roots);
 245		kfree(re);
 246	}
 247
 248	while((n = rb_first(&be->refs))) {
 249		ref = rb_entry(n, struct ref_entry, node);
 250		rb_erase(&ref->node, &be->refs);
 251		kfree(ref);
 252	}
 253
 254	while (!list_empty(&be->actions)) {
 255		ra = list_first_entry(&be->actions, struct ref_action,
 256				      list);
 257		list_del(&ra->list);
 258		kfree(ra);
 259	}
 260	kfree(be);
 261}
 262
 263static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
 264					   u64 bytenr, u64 len,
 265					   u64 root_objectid)
 266{
 267	struct block_entry *be = NULL, *exist;
 268	struct root_entry *re = NULL;
 269
 270	re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
 271	be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
 272	if (!be || !re) {
 273		kfree(re);
 274		kfree(be);
 275		return ERR_PTR(-ENOMEM);
 276	}
 277	be->bytenr = bytenr;
 278	be->len = len;
 279
 280	re->root_objectid = root_objectid;
 281	re->num_refs = 0;
 282
 283	spin_lock(&fs_info->ref_verify_lock);
 284	exist = insert_block_entry(&fs_info->block_tree, be);
 285	if (exist) {
 286		if (root_objectid) {
 287			struct root_entry *exist_re;
 288
 289			exist_re = insert_root_entry(&exist->roots, re);
 290			if (exist_re)
 291				kfree(re);
 292		} else {
 293			kfree(re);
 294		}
 295		kfree(be);
 296		return exist;
 297	}
 298
 299	be->num_refs = 0;
 300	be->metadata = 0;
 301	be->from_disk = 0;
 302	be->roots = RB_ROOT;
 303	be->refs = RB_ROOT;
 304	INIT_LIST_HEAD(&be->actions);
 305	if (root_objectid)
 306		insert_root_entry(&be->roots, re);
 307	else
 308		kfree(re);
 309	return be;
 310}
 311
 312static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
 313			  u64 parent, u64 bytenr, int level)
 314{
 315	struct block_entry *be;
 316	struct root_entry *re;
 317	struct ref_entry *ref = NULL, *exist;
 318
 319	ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
 320	if (!ref)
 321		return -ENOMEM;
 322
 323	if (parent)
 324		ref->root_objectid = 0;
 325	else
 326		ref->root_objectid = ref_root;
 327	ref->parent = parent;
 328	ref->owner = level;
 329	ref->offset = 0;
 330	ref->num_refs = 1;
 331
 332	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
 333	if (IS_ERR(be)) {
 334		kfree(ref);
 335		return PTR_ERR(be);
 336	}
 337	be->num_refs++;
 338	be->from_disk = 1;
 339	be->metadata = 1;
 340
 341	if (!parent) {
 342		ASSERT(ref_root);
 343		re = lookup_root_entry(&be->roots, ref_root);
 344		ASSERT(re);
 345		re->num_refs++;
 346	}
 347	exist = insert_ref_entry(&be->refs, ref);
 348	if (exist) {
 349		exist->num_refs++;
 350		kfree(ref);
 351	}
 352	spin_unlock(&fs_info->ref_verify_lock);
 353
 354	return 0;
 355}
 356
 357static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
 358			       u64 parent, u32 num_refs, u64 bytenr,
 359			       u64 num_bytes)
 360{
 361	struct block_entry *be;
 362	struct ref_entry *ref;
 363
 364	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 365	if (!ref)
 366		return -ENOMEM;
 367	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
 368	if (IS_ERR(be)) {
 369		kfree(ref);
 370		return PTR_ERR(be);
 371	}
 372	be->num_refs += num_refs;
 373
 374	ref->parent = parent;
 375	ref->num_refs = num_refs;
 376	if (insert_ref_entry(&be->refs, ref)) {
 377		spin_unlock(&fs_info->ref_verify_lock);
 378		btrfs_err(fs_info, "existing shared ref when reading from disk?");
 379		kfree(ref);
 380		return -EINVAL;
 381	}
 382	spin_unlock(&fs_info->ref_verify_lock);
 383	return 0;
 384}
 385
 386static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
 387			       struct extent_buffer *leaf,
 388			       struct btrfs_extent_data_ref *dref,
 389			       u64 bytenr, u64 num_bytes)
 390{
 391	struct block_entry *be;
 392	struct ref_entry *ref;
 393	struct root_entry *re;
 394	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
 395	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
 396	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
 397	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
 398
 399	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 400	if (!ref)
 401		return -ENOMEM;
 402	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 403	if (IS_ERR(be)) {
 404		kfree(ref);
 405		return PTR_ERR(be);
 406	}
 407	be->num_refs += num_refs;
 408
 409	ref->parent = 0;
 410	ref->owner = owner;
 411	ref->root_objectid = ref_root;
 412	ref->offset = offset;
 413	ref->num_refs = num_refs;
 414	if (insert_ref_entry(&be->refs, ref)) {
 415		spin_unlock(&fs_info->ref_verify_lock);
 416		btrfs_err(fs_info, "existing ref when reading from disk?");
 417		kfree(ref);
 418		return -EINVAL;
 419	}
 420
 421	re = lookup_root_entry(&be->roots, ref_root);
 422	if (!re) {
 423		spin_unlock(&fs_info->ref_verify_lock);
 424		btrfs_err(fs_info, "missing root in new block entry?");
 425		return -EINVAL;
 426	}
 427	re->num_refs += num_refs;
 428	spin_unlock(&fs_info->ref_verify_lock);
 429	return 0;
 430}
 431
 432static int process_extent_item(struct btrfs_fs_info *fs_info,
 433			       struct btrfs_path *path, struct btrfs_key *key,
 434			       int slot, int *tree_block_level)
 435{
 436	struct btrfs_extent_item *ei;
 437	struct btrfs_extent_inline_ref *iref;
 438	struct btrfs_extent_data_ref *dref;
 439	struct btrfs_shared_data_ref *sref;
 440	struct extent_buffer *leaf = path->nodes[0];
 441	u32 item_size = btrfs_item_size(leaf, slot);
 442	unsigned long end, ptr;
 443	u64 offset, flags, count;
 444	int type;
 445	int ret = 0;
 446
 447	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 448	flags = btrfs_extent_flags(leaf, ei);
 449
 450	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
 451	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 452		struct btrfs_tree_block_info *info;
 453
 454		info = (struct btrfs_tree_block_info *)(ei + 1);
 455		*tree_block_level = btrfs_tree_block_level(leaf, info);
 456		iref = (struct btrfs_extent_inline_ref *)(info + 1);
 457	} else {
 458		if (key->type == BTRFS_METADATA_ITEM_KEY)
 459			*tree_block_level = key->offset;
 460		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 461	}
 462
 463	ptr = (unsigned long)iref;
 464	end = (unsigned long)ei + item_size;
 465	while (ptr < end) {
 466		iref = (struct btrfs_extent_inline_ref *)ptr;
 467		type = btrfs_extent_inline_ref_type(leaf, iref);
 468		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 469		switch (type) {
 470		case BTRFS_TREE_BLOCK_REF_KEY:
 471			ret = add_tree_block(fs_info, offset, 0, key->objectid,
 472					     *tree_block_level);
 473			break;
 474		case BTRFS_SHARED_BLOCK_REF_KEY:
 475			ret = add_tree_block(fs_info, 0, offset, key->objectid,
 476					     *tree_block_level);
 477			break;
 478		case BTRFS_EXTENT_DATA_REF_KEY:
 479			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 480			ret = add_extent_data_ref(fs_info, leaf, dref,
 481						  key->objectid, key->offset);
 482			break;
 483		case BTRFS_SHARED_DATA_REF_KEY:
 484			sref = (struct btrfs_shared_data_ref *)(iref + 1);
 485			count = btrfs_shared_data_ref_count(leaf, sref);
 486			ret = add_shared_data_ref(fs_info, offset, count,
 487						  key->objectid, key->offset);
 488			break;
 489		case BTRFS_EXTENT_OWNER_REF_KEY:
 490			if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) {
 491				btrfs_err(fs_info,
 492			  "found extent owner ref without simple quotas enabled");
 493				ret = -EINVAL;
 494			}
 495			break;
 496		default:
 497			btrfs_err(fs_info, "invalid key type in iref");
 498			ret = -EINVAL;
 499			break;
 500		}
 501		if (ret)
 502			break;
 503		ptr += btrfs_extent_inline_ref_size(type);
 504	}
 505	return ret;
 506}
 507
 508static int process_leaf(struct btrfs_root *root,
 509			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
 510			int *tree_block_level)
 511{
 512	struct btrfs_fs_info *fs_info = root->fs_info;
 513	struct extent_buffer *leaf = path->nodes[0];
 514	struct btrfs_extent_data_ref *dref;
 515	struct btrfs_shared_data_ref *sref;
 516	u32 count;
 517	int i = 0, ret = 0;
 518	struct btrfs_key key;
 519	int nritems = btrfs_header_nritems(leaf);
 520
 521	for (i = 0; i < nritems; i++) {
 522		btrfs_item_key_to_cpu(leaf, &key, i);
 523		switch (key.type) {
 524		case BTRFS_EXTENT_ITEM_KEY:
 525			*num_bytes = key.offset;
 526			fallthrough;
 527		case BTRFS_METADATA_ITEM_KEY:
 528			*bytenr = key.objectid;
 529			ret = process_extent_item(fs_info, path, &key, i,
 530						  tree_block_level);
 531			break;
 532		case BTRFS_TREE_BLOCK_REF_KEY:
 533			ret = add_tree_block(fs_info, key.offset, 0,
 534					     key.objectid, *tree_block_level);
 535			break;
 536		case BTRFS_SHARED_BLOCK_REF_KEY:
 537			ret = add_tree_block(fs_info, 0, key.offset,
 538					     key.objectid, *tree_block_level);
 539			break;
 540		case BTRFS_EXTENT_DATA_REF_KEY:
 541			dref = btrfs_item_ptr(leaf, i,
 542					      struct btrfs_extent_data_ref);
 543			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
 544						  *num_bytes);
 545			break;
 546		case BTRFS_SHARED_DATA_REF_KEY:
 547			sref = btrfs_item_ptr(leaf, i,
 548					      struct btrfs_shared_data_ref);
 549			count = btrfs_shared_data_ref_count(leaf, sref);
 550			ret = add_shared_data_ref(fs_info, key.offset, count,
 551						  *bytenr, *num_bytes);
 552			break;
 553		default:
 554			break;
 555		}
 556		if (ret)
 557			break;
 558	}
 559	return ret;
 560}
 561
 562/* Walk down to the leaf from the given level */
 563static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
 564			  int level, u64 *bytenr, u64 *num_bytes,
 565			  int *tree_block_level)
 566{
 567	struct extent_buffer *eb;
 568	int ret = 0;
 569
 570	while (level >= 0) {
 571		if (level) {
 572			eb = btrfs_read_node_slot(path->nodes[level],
 573						  path->slots[level]);
 574			if (IS_ERR(eb))
 575				return PTR_ERR(eb);
 576			btrfs_tree_read_lock(eb);
 577			path->nodes[level-1] = eb;
 578			path->slots[level-1] = 0;
 579			path->locks[level-1] = BTRFS_READ_LOCK;
 580		} else {
 581			ret = process_leaf(root, path, bytenr, num_bytes,
 582					   tree_block_level);
 583			if (ret)
 584				break;
 585		}
 586		level--;
 587	}
 588	return ret;
 589}
 590
 591/* Walk up to the next node that needs to be processed */
 592static int walk_up_tree(struct btrfs_path *path, int *level)
 593{
 594	int l;
 595
 596	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
 597		if (!path->nodes[l])
 598			continue;
 599		if (l) {
 600			path->slots[l]++;
 601			if (path->slots[l] <
 602			    btrfs_header_nritems(path->nodes[l])) {
 603				*level = l;
 604				return 0;
 605			}
 606		}
 607		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
 608		free_extent_buffer(path->nodes[l]);
 609		path->nodes[l] = NULL;
 610		path->slots[l] = 0;
 611		path->locks[l] = 0;
 612	}
 613
 614	return 1;
 615}
 616
 617static void dump_ref_action(struct btrfs_fs_info *fs_info,
 618			    struct ref_action *ra)
 619{
 620	btrfs_err(fs_info,
 621"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 622		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
 623		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
 624	__print_stack_trace(fs_info, ra);
 625}
 626
 627/*
 628 * Dumps all the information from the block entry to printk, it's going to be
 629 * awesome.
 630 */
 631static void dump_block_entry(struct btrfs_fs_info *fs_info,
 632			     struct block_entry *be)
 633{
 634	struct ref_entry *ref;
 635	struct root_entry *re;
 636	struct ref_action *ra;
 637	struct rb_node *n;
 638
 639	btrfs_err(fs_info,
 640"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
 641		  be->bytenr, be->len, be->num_refs, be->metadata,
 642		  be->from_disk);
 643
 644	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
 645		ref = rb_entry(n, struct ref_entry, node);
 646		btrfs_err(fs_info,
 647"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 648			  ref->root_objectid, ref->parent, ref->owner,
 649			  ref->offset, ref->num_refs);
 650	}
 651
 652	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
 653		re = rb_entry(n, struct root_entry, node);
 654		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
 655			  re->root_objectid, re->num_refs);
 656	}
 657
 658	list_for_each_entry(ra, &be->actions, list)
 659		dump_ref_action(fs_info, ra);
 660}
 661
 662/*
 663 * Called when we modify a ref for a bytenr.
 664 *
 665 * This will add an action item to the given bytenr and do sanity checks to make
 666 * sure we haven't messed something up.  If we are making a new allocation and
 667 * this block entry has history we will delete all previous actions as long as
 668 * our sanity checks pass as they are no longer needed.
 669 */
 670int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
 671		       struct btrfs_ref *generic_ref)
 672{
 673	struct ref_entry *ref = NULL, *exist;
 674	struct ref_action *ra = NULL;
 675	struct block_entry *be = NULL;
 676	struct root_entry *re = NULL;
 677	int action = generic_ref->action;
 678	int ret = 0;
 679	bool metadata;
 680	u64 bytenr = generic_ref->bytenr;
 681	u64 num_bytes = generic_ref->num_bytes;
 682	u64 parent = generic_ref->parent;
 683	u64 ref_root = 0;
 684	u64 owner = 0;
 685	u64 offset = 0;
 686
 687	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 688		return 0;
 689
 690	if (generic_ref->type == BTRFS_REF_METADATA) {
 691		if (!parent)
 692			ref_root = generic_ref->ref_root;
 693		owner = generic_ref->tree_ref.level;
 694	} else if (!parent) {
 695		ref_root = generic_ref->ref_root;
 696		owner = generic_ref->data_ref.objectid;
 697		offset = generic_ref->data_ref.offset;
 698	}
 699	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
 700
 701	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 702	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
 703	if (!ra || !ref) {
 704		kfree(ref);
 705		kfree(ra);
 706		ret = -ENOMEM;
 707		goto out;
 708	}
 709
 710	ref->parent = parent;
 711	ref->owner = owner;
 712	ref->root_objectid = ref_root;
 713	ref->offset = offset;
 714	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
 715
 716	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
 717	/*
 718	 * Save the extra info from the delayed ref in the ref action to make it
 719	 * easier to figure out what is happening.  The real ref's we add to the
 720	 * ref tree need to reflect what we save on disk so it matches any
 721	 * on-disk refs we pre-loaded.
 722	 */
 723	ra->ref.owner = owner;
 724	ra->ref.offset = offset;
 725	ra->ref.root_objectid = ref_root;
 726	__save_stack_trace(ra);
 727
 728	INIT_LIST_HEAD(&ra->list);
 729	ra->action = action;
 730	ra->root = generic_ref->real_root;
 731
 732	/*
 733	 * This is an allocation, preallocate the block_entry in case we haven't
 734	 * used it before.
 735	 */
 736	ret = -EINVAL;
 737	if (action == BTRFS_ADD_DELAYED_EXTENT) {
 738		/*
 739		 * For subvol_create we'll just pass in whatever the parent root
 740		 * is and the new root objectid, so let's not treat the passed
 741		 * in root as if it really has a ref for this bytenr.
 742		 */
 743		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 744		if (IS_ERR(be)) {
 745			kfree(ref);
 746			kfree(ra);
 747			ret = PTR_ERR(be);
 748			goto out;
 749		}
 750		be->num_refs++;
 751		if (metadata)
 752			be->metadata = 1;
 753
 754		if (be->num_refs != 1) {
 755			btrfs_err(fs_info,
 756			"re-allocated a block that still has references to it!");
 757			dump_block_entry(fs_info, be);
 758			dump_ref_action(fs_info, ra);
 759			kfree(ref);
 760			kfree(ra);
 761			goto out_unlock;
 762		}
 763
 764		while (!list_empty(&be->actions)) {
 765			struct ref_action *tmp;
 766
 767			tmp = list_first_entry(&be->actions, struct ref_action,
 768					       list);
 769			list_del(&tmp->list);
 770			kfree(tmp);
 771		}
 772	} else {
 773		struct root_entry *tmp;
 774
 775		if (!parent) {
 776			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
 777			if (!re) {
 778				kfree(ref);
 779				kfree(ra);
 780				ret = -ENOMEM;
 781				goto out;
 782			}
 783			/*
 784			 * This is the root that is modifying us, so it's the
 785			 * one we want to lookup below when we modify the
 786			 * re->num_refs.
 787			 */
 788			ref_root = generic_ref->real_root;
 789			re->root_objectid = generic_ref->real_root;
 790			re->num_refs = 0;
 791		}
 792
 793		spin_lock(&fs_info->ref_verify_lock);
 794		be = lookup_block_entry(&fs_info->block_tree, bytenr);
 795		if (!be) {
 796			btrfs_err(fs_info,
 797"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
 798				  action, bytenr, num_bytes);
 799			dump_ref_action(fs_info, ra);
 800			kfree(ref);
 801			kfree(ra);
 802			kfree(re);
 803			goto out_unlock;
 804		} else if (be->num_refs == 0) {
 805			btrfs_err(fs_info,
 806		"trying to do action %d for a bytenr that has 0 total references",
 807				action);
 808			dump_block_entry(fs_info, be);
 809			dump_ref_action(fs_info, ra);
 810			kfree(ref);
 811			kfree(ra);
 812			kfree(re);
 813			goto out_unlock;
 814		}
 815
 816		if (!parent) {
 817			tmp = insert_root_entry(&be->roots, re);
 818			if (tmp) {
 819				kfree(re);
 820				re = tmp;
 821			}
 822		}
 823	}
 824
 825	exist = insert_ref_entry(&be->refs, ref);
 826	if (exist) {
 827		if (action == BTRFS_DROP_DELAYED_REF) {
 828			if (exist->num_refs == 0) {
 829				btrfs_err(fs_info,
 830"dropping a ref for a existing root that doesn't have a ref on the block");
 831				dump_block_entry(fs_info, be);
 832				dump_ref_action(fs_info, ra);
 833				kfree(ref);
 834				kfree(ra);
 835				goto out_unlock;
 836			}
 837			exist->num_refs--;
 838			if (exist->num_refs == 0) {
 839				rb_erase(&exist->node, &be->refs);
 840				kfree(exist);
 841			}
 842		} else if (!be->metadata) {
 843			exist->num_refs++;
 844		} else {
 845			btrfs_err(fs_info,
 846"attempting to add another ref for an existing ref on a tree block");
 847			dump_block_entry(fs_info, be);
 848			dump_ref_action(fs_info, ra);
 849			kfree(ref);
 850			kfree(ra);
 851			goto out_unlock;
 852		}
 853		kfree(ref);
 854	} else {
 855		if (action == BTRFS_DROP_DELAYED_REF) {
 856			btrfs_err(fs_info,
 857"dropping a ref for a root that doesn't have a ref on the block");
 858			dump_block_entry(fs_info, be);
 859			dump_ref_action(fs_info, ra);
 860			rb_erase(&ref->node, &be->refs);
 861			kfree(ref);
 862			kfree(ra);
 863			goto out_unlock;
 864		}
 865	}
 866
 867	if (!parent && !re) {
 868		re = lookup_root_entry(&be->roots, ref_root);
 869		if (!re) {
 870			/*
 871			 * This shouldn't happen because we will add our re
 872			 * above when we lookup the be with !parent, but just in
 873			 * case catch this case so we don't panic because I
 874			 * didn't think of some other corner case.
 875			 */
 876			btrfs_err(fs_info, "failed to find root %llu for %llu",
 877				  generic_ref->real_root, be->bytenr);
 878			dump_block_entry(fs_info, be);
 879			dump_ref_action(fs_info, ra);
 880			kfree(ra);
 881			goto out_unlock;
 882		}
 883	}
 884	if (action == BTRFS_DROP_DELAYED_REF) {
 885		if (re)
 886			re->num_refs--;
 887		be->num_refs--;
 888	} else if (action == BTRFS_ADD_DELAYED_REF) {
 889		be->num_refs++;
 890		if (re)
 891			re->num_refs++;
 892	}
 893	list_add_tail(&ra->list, &be->actions);
 894	ret = 0;
 895out_unlock:
 896	spin_unlock(&fs_info->ref_verify_lock);
 897out:
 898	if (ret) {
 899		btrfs_free_ref_cache(fs_info);
 900		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
 901	}
 902	return ret;
 903}
 904
 905/* Free up the ref cache */
 906void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
 907{
 908	struct block_entry *be;
 909	struct rb_node *n;
 910
 911	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 912		return;
 913
 914	spin_lock(&fs_info->ref_verify_lock);
 915	while ((n = rb_first(&fs_info->block_tree))) {
 916		be = rb_entry(n, struct block_entry, node);
 917		rb_erase(&be->node, &fs_info->block_tree);
 918		free_block_entry(be);
 919		cond_resched_lock(&fs_info->ref_verify_lock);
 920	}
 921	spin_unlock(&fs_info->ref_verify_lock);
 922}
 923
 924void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
 925			       u64 len)
 926{
 927	struct block_entry *be = NULL, *entry;
 928	struct rb_node *n;
 929
 930	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 931		return;
 932
 933	spin_lock(&fs_info->ref_verify_lock);
 934	n = fs_info->block_tree.rb_node;
 935	while (n) {
 936		entry = rb_entry(n, struct block_entry, node);
 937		if (entry->bytenr < start) {
 938			n = n->rb_right;
 939		} else if (entry->bytenr > start) {
 940			n = n->rb_left;
 941		} else {
 942			be = entry;
 943			break;
 944		}
 945		/* We want to get as close to start as possible */
 946		if (be == NULL ||
 947		    (entry->bytenr < start && be->bytenr > start) ||
 948		    (entry->bytenr < start && entry->bytenr > be->bytenr))
 949			be = entry;
 950	}
 951
 952	/*
 953	 * Could have an empty block group, maybe have something to check for
 954	 * this case to verify we were actually empty?
 955	 */
 956	if (!be) {
 957		spin_unlock(&fs_info->ref_verify_lock);
 958		return;
 959	}
 960
 961	n = &be->node;
 962	while (n) {
 963		be = rb_entry(n, struct block_entry, node);
 964		n = rb_next(n);
 965		if (be->bytenr < start && be->bytenr + be->len > start) {
 966			btrfs_err(fs_info,
 967				"block entry overlaps a block group [%llu,%llu]!",
 968				start, len);
 969			dump_block_entry(fs_info, be);
 970			continue;
 971		}
 972		if (be->bytenr < start)
 973			continue;
 974		if (be->bytenr >= start + len)
 975			break;
 976		if (be->bytenr + be->len > start + len) {
 977			btrfs_err(fs_info,
 978				"block entry overlaps a block group [%llu,%llu]!",
 979				start, len);
 980			dump_block_entry(fs_info, be);
 981		}
 982		rb_erase(&be->node, &fs_info->block_tree);
 983		free_block_entry(be);
 984	}
 985	spin_unlock(&fs_info->ref_verify_lock);
 986}
 987
 988/* Walk down all roots and build the ref tree, meant to be called at mount */
 989int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
 990{
 991	struct btrfs_root *extent_root;
 992	struct btrfs_path *path;
 993	struct extent_buffer *eb;
 994	int tree_block_level = 0;
 995	u64 bytenr = 0, num_bytes = 0;
 996	int ret, level;
 997
 998	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 999		return 0;
1000
1001	path = btrfs_alloc_path();
1002	if (!path)
1003		return -ENOMEM;
1004
1005	extent_root = btrfs_extent_root(fs_info, 0);
1006	eb = btrfs_read_lock_root_node(extent_root);
1007	level = btrfs_header_level(eb);
1008	path->nodes[level] = eb;
1009	path->slots[level] = 0;
1010	path->locks[level] = BTRFS_READ_LOCK;
1011
1012	while (1) {
1013		/*
1014		 * We have to keep track of the bytenr/num_bytes we last hit
1015		 * because we could have run out of space for an inline ref, and
1016		 * would have had to added a ref key item which may appear on a
1017		 * different leaf from the original extent item.
1018		 */
1019		ret = walk_down_tree(extent_root, path, level,
1020				     &bytenr, &num_bytes, &tree_block_level);
1021		if (ret)
1022			break;
1023		ret = walk_up_tree(path, &level);
1024		if (ret < 0)
1025			break;
1026		if (ret > 0) {
1027			ret = 0;
1028			break;
1029		}
1030	}
1031	if (ret) {
1032		btrfs_free_ref_cache(fs_info);
1033		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1034	}
1035	btrfs_free_path(path);
1036	return ret;
1037}