Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2014 Facebook.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/stacktrace.h>
   8#include "ctree.h"
   9#include "disk-io.h"
  10#include "locking.h"
  11#include "delayed-ref.h"
  12#include "ref-verify.h"
  13
  14/*
  15 * Used to keep track the roots and number of refs each root has for a given
  16 * bytenr.  This just tracks the number of direct references, no shared
  17 * references.
  18 */
  19struct root_entry {
  20	u64 root_objectid;
  21	u64 num_refs;
  22	struct rb_node node;
  23};
  24
  25/*
  26 * These are meant to represent what should exist in the extent tree, these can
  27 * be used to verify the extent tree is consistent as these should all match
  28 * what the extent tree says.
  29 */
  30struct ref_entry {
  31	u64 root_objectid;
  32	u64 parent;
  33	u64 owner;
  34	u64 offset;
  35	u64 num_refs;
  36	struct rb_node node;
  37};
  38
  39#define MAX_TRACE	16
  40
  41/*
  42 * Whenever we add/remove a reference we record the action.  The action maps
  43 * back to the delayed ref action.  We hold the ref we are changing in the
  44 * action so we can account for the history properly, and we record the root we
  45 * were called with since it could be different from ref_root.  We also store
  46 * stack traces because thats how I roll.
  47 */
  48struct ref_action {
  49	int action;
  50	u64 root;
  51	struct ref_entry ref;
  52	struct list_head list;
  53	unsigned long trace[MAX_TRACE];
  54	unsigned int trace_len;
  55};
  56
  57/*
  58 * One of these for every block we reference, it holds the roots and references
  59 * to it as well as all of the ref actions that have occured to it.  We never
  60 * free it until we unmount the file system in order to make sure re-allocations
  61 * are happening properly.
  62 */
  63struct block_entry {
  64	u64 bytenr;
  65	u64 len;
  66	u64 num_refs;
  67	int metadata;
  68	int from_disk;
  69	struct rb_root roots;
  70	struct rb_root refs;
  71	struct rb_node node;
  72	struct list_head actions;
  73};
  74
  75static struct block_entry *insert_block_entry(struct rb_root *root,
  76					      struct block_entry *be)
  77{
  78	struct rb_node **p = &root->rb_node;
  79	struct rb_node *parent_node = NULL;
  80	struct block_entry *entry;
  81
  82	while (*p) {
  83		parent_node = *p;
  84		entry = rb_entry(parent_node, struct block_entry, node);
  85		if (entry->bytenr > be->bytenr)
  86			p = &(*p)->rb_left;
  87		else if (entry->bytenr < be->bytenr)
  88			p = &(*p)->rb_right;
  89		else
  90			return entry;
  91	}
  92
  93	rb_link_node(&be->node, parent_node, p);
  94	rb_insert_color(&be->node, root);
  95	return NULL;
  96}
  97
  98static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
  99{
 100	struct rb_node *n;
 101	struct block_entry *entry = NULL;
 102
 103	n = root->rb_node;
 104	while (n) {
 105		entry = rb_entry(n, struct block_entry, node);
 106		if (entry->bytenr < bytenr)
 107			n = n->rb_right;
 108		else if (entry->bytenr > bytenr)
 109			n = n->rb_left;
 110		else
 111			return entry;
 112	}
 113	return NULL;
 114}
 115
 116static struct root_entry *insert_root_entry(struct rb_root *root,
 117					    struct root_entry *re)
 118{
 119	struct rb_node **p = &root->rb_node;
 120	struct rb_node *parent_node = NULL;
 121	struct root_entry *entry;
 122
 123	while (*p) {
 124		parent_node = *p;
 125		entry = rb_entry(parent_node, struct root_entry, node);
 126		if (entry->root_objectid > re->root_objectid)
 127			p = &(*p)->rb_left;
 128		else if (entry->root_objectid < re->root_objectid)
 129			p = &(*p)->rb_right;
 130		else
 131			return entry;
 132	}
 133
 134	rb_link_node(&re->node, parent_node, p);
 135	rb_insert_color(&re->node, root);
 136	return NULL;
 137
 138}
 139
 140static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
 141{
 142	if (ref1->root_objectid < ref2->root_objectid)
 143		return -1;
 144	if (ref1->root_objectid > ref2->root_objectid)
 145		return 1;
 146	if (ref1->parent < ref2->parent)
 147		return -1;
 148	if (ref1->parent > ref2->parent)
 149		return 1;
 150	if (ref1->owner < ref2->owner)
 151		return -1;
 152	if (ref1->owner > ref2->owner)
 153		return 1;
 154	if (ref1->offset < ref2->offset)
 155		return -1;
 156	if (ref1->offset > ref2->offset)
 157		return 1;
 158	return 0;
 159}
 160
 161static struct ref_entry *insert_ref_entry(struct rb_root *root,
 162					  struct ref_entry *ref)
 163{
 164	struct rb_node **p = &root->rb_node;
 165	struct rb_node *parent_node = NULL;
 166	struct ref_entry *entry;
 167	int cmp;
 168
 169	while (*p) {
 170		parent_node = *p;
 171		entry = rb_entry(parent_node, struct ref_entry, node);
 172		cmp = comp_refs(entry, ref);
 173		if (cmp > 0)
 174			p = &(*p)->rb_left;
 175		else if (cmp < 0)
 176			p = &(*p)->rb_right;
 177		else
 178			return entry;
 179	}
 180
 181	rb_link_node(&ref->node, parent_node, p);
 182	rb_insert_color(&ref->node, root);
 183	return NULL;
 184
 185}
 186
 187static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
 188{
 189	struct rb_node *n;
 190	struct root_entry *entry = NULL;
 191
 192	n = root->rb_node;
 193	while (n) {
 194		entry = rb_entry(n, struct root_entry, node);
 195		if (entry->root_objectid < objectid)
 196			n = n->rb_right;
 197		else if (entry->root_objectid > objectid)
 198			n = n->rb_left;
 199		else
 200			return entry;
 201	}
 202	return NULL;
 203}
 204
 205#ifdef CONFIG_STACKTRACE
 206static void __save_stack_trace(struct ref_action *ra)
 207{
 208	struct stack_trace stack_trace;
 209
 210	stack_trace.max_entries = MAX_TRACE;
 211	stack_trace.nr_entries = 0;
 212	stack_trace.entries = ra->trace;
 213	stack_trace.skip = 2;
 214	save_stack_trace(&stack_trace);
 215	ra->trace_len = stack_trace.nr_entries;
 216}
 217
 218static void __print_stack_trace(struct btrfs_fs_info *fs_info,
 219				struct ref_action *ra)
 220{
 221	struct stack_trace trace;
 222
 223	if (ra->trace_len == 0) {
 224		btrfs_err(fs_info, "  ref-verify: no stacktrace");
 225		return;
 226	}
 227	trace.nr_entries = ra->trace_len;
 228	trace.entries = ra->trace;
 229	print_stack_trace(&trace, 2);
 230}
 231#else
 232static void inline __save_stack_trace(struct ref_action *ra)
 233{
 234}
 235
 236static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
 237				       struct ref_action *ra)
 238{
 239	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
 240}
 241#endif
 242
 243static void free_block_entry(struct block_entry *be)
 244{
 245	struct root_entry *re;
 246	struct ref_entry *ref;
 247	struct ref_action *ra;
 248	struct rb_node *n;
 249
 250	while ((n = rb_first(&be->roots))) {
 251		re = rb_entry(n, struct root_entry, node);
 252		rb_erase(&re->node, &be->roots);
 253		kfree(re);
 254	}
 255
 256	while((n = rb_first(&be->refs))) {
 257		ref = rb_entry(n, struct ref_entry, node);
 258		rb_erase(&ref->node, &be->refs);
 259		kfree(ref);
 260	}
 261
 262	while (!list_empty(&be->actions)) {
 263		ra = list_first_entry(&be->actions, struct ref_action,
 264				      list);
 265		list_del(&ra->list);
 266		kfree(ra);
 267	}
 268	kfree(be);
 269}
 270
 271static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
 272					   u64 bytenr, u64 len,
 273					   u64 root_objectid)
 274{
 275	struct block_entry *be = NULL, *exist;
 276	struct root_entry *re = NULL;
 277
 278	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
 279	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
 280	if (!be || !re) {
 281		kfree(re);
 282		kfree(be);
 283		return ERR_PTR(-ENOMEM);
 284	}
 285	be->bytenr = bytenr;
 286	be->len = len;
 287
 288	re->root_objectid = root_objectid;
 289	re->num_refs = 0;
 290
 291	spin_lock(&fs_info->ref_verify_lock);
 292	exist = insert_block_entry(&fs_info->block_tree, be);
 293	if (exist) {
 294		if (root_objectid) {
 295			struct root_entry *exist_re;
 296
 297			exist_re = insert_root_entry(&exist->roots, re);
 298			if (exist_re)
 299				kfree(re);
 300		}
 301		kfree(be);
 302		return exist;
 303	}
 304
 305	be->num_refs = 0;
 306	be->metadata = 0;
 307	be->from_disk = 0;
 308	be->roots = RB_ROOT;
 309	be->refs = RB_ROOT;
 310	INIT_LIST_HEAD(&be->actions);
 311	if (root_objectid)
 312		insert_root_entry(&be->roots, re);
 313	else
 314		kfree(re);
 315	return be;
 316}
 317
 318static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
 319			  u64 parent, u64 bytenr, int level)
 320{
 321	struct block_entry *be;
 322	struct root_entry *re;
 323	struct ref_entry *ref = NULL, *exist;
 324
 325	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
 326	if (!ref)
 327		return -ENOMEM;
 328
 329	if (parent)
 330		ref->root_objectid = 0;
 331	else
 332		ref->root_objectid = ref_root;
 333	ref->parent = parent;
 334	ref->owner = level;
 335	ref->offset = 0;
 336	ref->num_refs = 1;
 337
 338	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
 339	if (IS_ERR(be)) {
 340		kfree(ref);
 341		return PTR_ERR(be);
 342	}
 343	be->num_refs++;
 344	be->from_disk = 1;
 345	be->metadata = 1;
 346
 347	if (!parent) {
 348		ASSERT(ref_root);
 349		re = lookup_root_entry(&be->roots, ref_root);
 350		ASSERT(re);
 351		re->num_refs++;
 352	}
 353	exist = insert_ref_entry(&be->refs, ref);
 354	if (exist) {
 355		exist->num_refs++;
 356		kfree(ref);
 357	}
 358	spin_unlock(&fs_info->ref_verify_lock);
 359
 360	return 0;
 361}
 362
 363static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
 364			       u64 parent, u32 num_refs, u64 bytenr,
 365			       u64 num_bytes)
 366{
 367	struct block_entry *be;
 368	struct ref_entry *ref;
 369
 370	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
 371	if (!ref)
 372		return -ENOMEM;
 373	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
 374	if (IS_ERR(be)) {
 375		kfree(ref);
 376		return PTR_ERR(be);
 377	}
 378	be->num_refs += num_refs;
 379
 380	ref->parent = parent;
 381	ref->num_refs = num_refs;
 382	if (insert_ref_entry(&be->refs, ref)) {
 383		spin_unlock(&fs_info->ref_verify_lock);
 384		btrfs_err(fs_info, "existing shared ref when reading from disk?");
 385		kfree(ref);
 386		return -EINVAL;
 387	}
 388	spin_unlock(&fs_info->ref_verify_lock);
 389	return 0;
 390}
 391
 392static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
 393			       struct extent_buffer *leaf,
 394			       struct btrfs_extent_data_ref *dref,
 395			       u64 bytenr, u64 num_bytes)
 396{
 397	struct block_entry *be;
 398	struct ref_entry *ref;
 399	struct root_entry *re;
 400	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
 401	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
 402	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
 403	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
 404
 405	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
 406	if (!ref)
 407		return -ENOMEM;
 408	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 409	if (IS_ERR(be)) {
 410		kfree(ref);
 411		return PTR_ERR(be);
 412	}
 413	be->num_refs += num_refs;
 414
 415	ref->parent = 0;
 416	ref->owner = owner;
 417	ref->root_objectid = ref_root;
 418	ref->offset = offset;
 419	ref->num_refs = num_refs;
 420	if (insert_ref_entry(&be->refs, ref)) {
 421		spin_unlock(&fs_info->ref_verify_lock);
 422		btrfs_err(fs_info, "existing ref when reading from disk?");
 423		kfree(ref);
 424		return -EINVAL;
 425	}
 426
 427	re = lookup_root_entry(&be->roots, ref_root);
 428	if (!re) {
 429		spin_unlock(&fs_info->ref_verify_lock);
 430		btrfs_err(fs_info, "missing root in new block entry?");
 431		return -EINVAL;
 432	}
 433	re->num_refs += num_refs;
 434	spin_unlock(&fs_info->ref_verify_lock);
 435	return 0;
 436}
 437
 438static int process_extent_item(struct btrfs_fs_info *fs_info,
 439			       struct btrfs_path *path, struct btrfs_key *key,
 440			       int slot, int *tree_block_level)
 441{
 442	struct btrfs_extent_item *ei;
 443	struct btrfs_extent_inline_ref *iref;
 444	struct btrfs_extent_data_ref *dref;
 445	struct btrfs_shared_data_ref *sref;
 446	struct extent_buffer *leaf = path->nodes[0];
 447	u32 item_size = btrfs_item_size_nr(leaf, slot);
 448	unsigned long end, ptr;
 449	u64 offset, flags, count;
 450	int type, ret;
 451
 452	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 453	flags = btrfs_extent_flags(leaf, ei);
 454
 455	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
 456	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 457		struct btrfs_tree_block_info *info;
 458
 459		info = (struct btrfs_tree_block_info *)(ei + 1);
 460		*tree_block_level = btrfs_tree_block_level(leaf, info);
 461		iref = (struct btrfs_extent_inline_ref *)(info + 1);
 462	} else {
 463		if (key->type == BTRFS_METADATA_ITEM_KEY)
 464			*tree_block_level = key->offset;
 465		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 466	}
 467
 468	ptr = (unsigned long)iref;
 469	end = (unsigned long)ei + item_size;
 470	while (ptr < end) {
 471		iref = (struct btrfs_extent_inline_ref *)ptr;
 472		type = btrfs_extent_inline_ref_type(leaf, iref);
 473		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 474		switch (type) {
 475		case BTRFS_TREE_BLOCK_REF_KEY:
 476			ret = add_tree_block(fs_info, offset, 0, key->objectid,
 477					     *tree_block_level);
 478			break;
 479		case BTRFS_SHARED_BLOCK_REF_KEY:
 480			ret = add_tree_block(fs_info, 0, offset, key->objectid,
 481					     *tree_block_level);
 482			break;
 483		case BTRFS_EXTENT_DATA_REF_KEY:
 484			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 485			ret = add_extent_data_ref(fs_info, leaf, dref,
 486						  key->objectid, key->offset);
 487			break;
 488		case BTRFS_SHARED_DATA_REF_KEY:
 489			sref = (struct btrfs_shared_data_ref *)(iref + 1);
 490			count = btrfs_shared_data_ref_count(leaf, sref);
 491			ret = add_shared_data_ref(fs_info, offset, count,
 492						  key->objectid, key->offset);
 493			break;
 494		default:
 495			btrfs_err(fs_info, "invalid key type in iref");
 496			ret = -EINVAL;
 497			break;
 498		}
 499		if (ret)
 500			break;
 501		ptr += btrfs_extent_inline_ref_size(type);
 502	}
 503	return ret;
 504}
 505
 506static int process_leaf(struct btrfs_root *root,
 507			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
 508{
 509	struct btrfs_fs_info *fs_info = root->fs_info;
 510	struct extent_buffer *leaf = path->nodes[0];
 511	struct btrfs_extent_data_ref *dref;
 512	struct btrfs_shared_data_ref *sref;
 513	u32 count;
 514	int i = 0, tree_block_level = 0, ret;
 515	struct btrfs_key key;
 516	int nritems = btrfs_header_nritems(leaf);
 517
 518	for (i = 0; i < nritems; i++) {
 519		btrfs_item_key_to_cpu(leaf, &key, i);
 520		switch (key.type) {
 521		case BTRFS_EXTENT_ITEM_KEY:
 522			*num_bytes = key.offset;
 523		case BTRFS_METADATA_ITEM_KEY:
 524			*bytenr = key.objectid;
 525			ret = process_extent_item(fs_info, path, &key, i,
 526						  &tree_block_level);
 527			break;
 528		case BTRFS_TREE_BLOCK_REF_KEY:
 529			ret = add_tree_block(fs_info, key.offset, 0,
 530					     key.objectid, tree_block_level);
 531			break;
 532		case BTRFS_SHARED_BLOCK_REF_KEY:
 533			ret = add_tree_block(fs_info, 0, key.offset,
 534					     key.objectid, tree_block_level);
 535			break;
 536		case BTRFS_EXTENT_DATA_REF_KEY:
 537			dref = btrfs_item_ptr(leaf, i,
 538					      struct btrfs_extent_data_ref);
 539			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
 540						  *num_bytes);
 541			break;
 542		case BTRFS_SHARED_DATA_REF_KEY:
 543			sref = btrfs_item_ptr(leaf, i,
 544					      struct btrfs_shared_data_ref);
 545			count = btrfs_shared_data_ref_count(leaf, sref);
 546			ret = add_shared_data_ref(fs_info, key.offset, count,
 547						  *bytenr, *num_bytes);
 548			break;
 549		default:
 550			break;
 551		}
 552		if (ret)
 553			break;
 554	}
 555	return ret;
 556}
 557
 558/* Walk down to the leaf from the given level */
 559static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
 560			  int level, u64 *bytenr, u64 *num_bytes)
 561{
 562	struct btrfs_fs_info *fs_info = root->fs_info;
 563	struct extent_buffer *eb;
 564	u64 block_bytenr, gen;
 565	int ret = 0;
 566
 567	while (level >= 0) {
 568		if (level) {
 569			struct btrfs_key first_key;
 570
 571			block_bytenr = btrfs_node_blockptr(path->nodes[level],
 572							   path->slots[level]);
 573			gen = btrfs_node_ptr_generation(path->nodes[level],
 574							path->slots[level]);
 575			btrfs_node_key_to_cpu(path->nodes[level], &first_key,
 576					      path->slots[level]);
 577			eb = read_tree_block(fs_info, block_bytenr, gen,
 578					     level - 1, &first_key);
 579			if (IS_ERR(eb))
 580				return PTR_ERR(eb);
 581			if (!extent_buffer_uptodate(eb)) {
 582				free_extent_buffer(eb);
 583				return -EIO;
 584			}
 585			btrfs_tree_read_lock(eb);
 586			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 587			path->nodes[level-1] = eb;
 588			path->slots[level-1] = 0;
 589			path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
 590		} else {
 591			ret = process_leaf(root, path, bytenr, num_bytes);
 592			if (ret)
 593				break;
 594		}
 595		level--;
 596	}
 597	return ret;
 598}
 599
 600/* Walk up to the next node that needs to be processed */
 601static int walk_up_tree(struct btrfs_path *path, int *level)
 602{
 603	int l;
 604
 605	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
 606		if (!path->nodes[l])
 607			continue;
 608		if (l) {
 609			path->slots[l]++;
 610			if (path->slots[l] <
 611			    btrfs_header_nritems(path->nodes[l])) {
 612				*level = l;
 613				return 0;
 614			}
 615		}
 616		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
 617		free_extent_buffer(path->nodes[l]);
 618		path->nodes[l] = NULL;
 619		path->slots[l] = 0;
 620		path->locks[l] = 0;
 621	}
 622
 623	return 1;
 624}
 625
 626static void dump_ref_action(struct btrfs_fs_info *fs_info,
 627			    struct ref_action *ra)
 628{
 629	btrfs_err(fs_info,
 630"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 631		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
 632		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
 633	__print_stack_trace(fs_info, ra);
 634}
 635
 636/*
 637 * Dumps all the information from the block entry to printk, it's going to be
 638 * awesome.
 639 */
 640static void dump_block_entry(struct btrfs_fs_info *fs_info,
 641			     struct block_entry *be)
 642{
 643	struct ref_entry *ref;
 644	struct root_entry *re;
 645	struct ref_action *ra;
 646	struct rb_node *n;
 647
 648	btrfs_err(fs_info,
 649"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
 650		  be->bytenr, be->len, be->num_refs, be->metadata,
 651		  be->from_disk);
 652
 653	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
 654		ref = rb_entry(n, struct ref_entry, node);
 655		btrfs_err(fs_info,
 656"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 657			  ref->root_objectid, ref->parent, ref->owner,
 658			  ref->offset, ref->num_refs);
 659	}
 660
 661	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
 662		re = rb_entry(n, struct root_entry, node);
 663		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
 664			  re->root_objectid, re->num_refs);
 665	}
 666
 667	list_for_each_entry(ra, &be->actions, list)
 668		dump_ref_action(fs_info, ra);
 669}
 670
 671/*
 672 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
 673 * @root: the root we are making this modification from.
 674 * @bytenr: the bytenr we are modifying.
 675 * @num_bytes: number of bytes.
 676 * @parent: the parent bytenr.
 677 * @ref_root: the original root owner of the bytenr.
 678 * @owner: level in the case of metadata, inode in the case of data.
 679 * @offset: 0 for metadata, file offset for data.
 680 * @action: the action that we are doing, this is the same as the delayed ref
 681 *	action.
 682 *
 683 * This will add an action item to the given bytenr and do sanity checks to make
 684 * sure we haven't messed something up.  If we are making a new allocation and
 685 * this block entry has history we will delete all previous actions as long as
 686 * our sanity checks pass as they are no longer needed.
 687 */
 688int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes,
 689		       u64 parent, u64 ref_root, u64 owner, u64 offset,
 690		       int action)
 691{
 692	struct btrfs_fs_info *fs_info = root->fs_info;
 693	struct ref_entry *ref = NULL, *exist;
 694	struct ref_action *ra = NULL;
 695	struct block_entry *be = NULL;
 696	struct root_entry *re = NULL;
 697	int ret = 0;
 698	bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
 699
 700	if (!btrfs_test_opt(root->fs_info, REF_VERIFY))
 701		return 0;
 702
 703	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 704	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
 705	if (!ra || !ref) {
 706		kfree(ref);
 707		kfree(ra);
 708		ret = -ENOMEM;
 709		goto out;
 710	}
 711
 712	if (parent) {
 713		ref->parent = parent;
 714	} else {
 715		ref->root_objectid = ref_root;
 716		ref->owner = owner;
 717		ref->offset = offset;
 718	}
 719	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
 720
 721	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
 722	/*
 723	 * Save the extra info from the delayed ref in the ref action to make it
 724	 * easier to figure out what is happening.  The real ref's we add to the
 725	 * ref tree need to reflect what we save on disk so it matches any
 726	 * on-disk refs we pre-loaded.
 727	 */
 728	ra->ref.owner = owner;
 729	ra->ref.offset = offset;
 730	ra->ref.root_objectid = ref_root;
 731	__save_stack_trace(ra);
 732
 733	INIT_LIST_HEAD(&ra->list);
 734	ra->action = action;
 735	ra->root = root->objectid;
 736
 737	/*
 738	 * This is an allocation, preallocate the block_entry in case we haven't
 739	 * used it before.
 740	 */
 741	ret = -EINVAL;
 742	if (action == BTRFS_ADD_DELAYED_EXTENT) {
 743		/*
 744		 * For subvol_create we'll just pass in whatever the parent root
 745		 * is and the new root objectid, so let's not treat the passed
 746		 * in root as if it really has a ref for this bytenr.
 747		 */
 748		be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root);
 749		if (IS_ERR(be)) {
 750			kfree(ra);
 751			ret = PTR_ERR(be);
 752			goto out;
 753		}
 754		be->num_refs++;
 755		if (metadata)
 756			be->metadata = 1;
 757
 758		if (be->num_refs != 1) {
 759			btrfs_err(fs_info,
 760			"re-allocated a block that still has references to it!");
 761			dump_block_entry(fs_info, be);
 762			dump_ref_action(fs_info, ra);
 763			goto out_unlock;
 764		}
 765
 766		while (!list_empty(&be->actions)) {
 767			struct ref_action *tmp;
 768
 769			tmp = list_first_entry(&be->actions, struct ref_action,
 770					       list);
 771			list_del(&tmp->list);
 772			kfree(tmp);
 773		}
 774	} else {
 775		struct root_entry *tmp;
 776
 777		if (!parent) {
 778			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
 779			if (!re) {
 780				kfree(ref);
 781				kfree(ra);
 782				ret = -ENOMEM;
 783				goto out;
 784			}
 785			/*
 786			 * This is the root that is modifying us, so it's the
 787			 * one we want to lookup below when we modify the
 788			 * re->num_refs.
 789			 */
 790			ref_root = root->objectid;
 791			re->root_objectid = root->objectid;
 792			re->num_refs = 0;
 793		}
 794
 795		spin_lock(&root->fs_info->ref_verify_lock);
 796		be = lookup_block_entry(&root->fs_info->block_tree, bytenr);
 797		if (!be) {
 798			btrfs_err(fs_info,
 799"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
 800				  action, (unsigned long long)bytenr,
 801				  (unsigned long long)num_bytes);
 802			dump_ref_action(fs_info, ra);
 803			kfree(ref);
 804			kfree(ra);
 805			goto out_unlock;
 806		}
 807
 808		if (!parent) {
 809			tmp = insert_root_entry(&be->roots, re);
 810			if (tmp) {
 811				kfree(re);
 812				re = tmp;
 813			}
 814		}
 815	}
 816
 817	exist = insert_ref_entry(&be->refs, ref);
 818	if (exist) {
 819		if (action == BTRFS_DROP_DELAYED_REF) {
 820			if (exist->num_refs == 0) {
 821				btrfs_err(fs_info,
 822"dropping a ref for a existing root that doesn't have a ref on the block");
 823				dump_block_entry(fs_info, be);
 824				dump_ref_action(fs_info, ra);
 825				kfree(ra);
 826				goto out_unlock;
 827			}
 828			exist->num_refs--;
 829			if (exist->num_refs == 0) {
 830				rb_erase(&exist->node, &be->refs);
 831				kfree(exist);
 832			}
 833		} else if (!be->metadata) {
 834			exist->num_refs++;
 835		} else {
 836			btrfs_err(fs_info,
 837"attempting to add another ref for an existing ref on a tree block");
 838			dump_block_entry(fs_info, be);
 839			dump_ref_action(fs_info, ra);
 840			kfree(ra);
 841			goto out_unlock;
 842		}
 843		kfree(ref);
 844	} else {
 845		if (action == BTRFS_DROP_DELAYED_REF) {
 846			btrfs_err(fs_info,
 847"dropping a ref for a root that doesn't have a ref on the block");
 848			dump_block_entry(fs_info, be);
 849			dump_ref_action(fs_info, ra);
 850			kfree(ra);
 851			goto out_unlock;
 852		}
 853	}
 854
 855	if (!parent && !re) {
 856		re = lookup_root_entry(&be->roots, ref_root);
 857		if (!re) {
 858			/*
 859			 * This shouldn't happen because we will add our re
 860			 * above when we lookup the be with !parent, but just in
 861			 * case catch this case so we don't panic because I
 862			 * didn't thik of some other corner case.
 863			 */
 864			btrfs_err(fs_info, "failed to find root %llu for %llu",
 865				  root->objectid, be->bytenr);
 866			dump_block_entry(fs_info, be);
 867			dump_ref_action(fs_info, ra);
 868			kfree(ra);
 869			goto out_unlock;
 870		}
 871	}
 872	if (action == BTRFS_DROP_DELAYED_REF) {
 873		if (re)
 874			re->num_refs--;
 875		be->num_refs--;
 876	} else if (action == BTRFS_ADD_DELAYED_REF) {
 877		be->num_refs++;
 878		if (re)
 879			re->num_refs++;
 880	}
 881	list_add_tail(&ra->list, &be->actions);
 882	ret = 0;
 883out_unlock:
 884	spin_unlock(&root->fs_info->ref_verify_lock);
 885out:
 886	if (ret)
 887		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
 888	return ret;
 889}
 890
 891/* Free up the ref cache */
 892void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
 893{
 894	struct block_entry *be;
 895	struct rb_node *n;
 896
 897	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 898		return;
 899
 900	spin_lock(&fs_info->ref_verify_lock);
 901	while ((n = rb_first(&fs_info->block_tree))) {
 902		be = rb_entry(n, struct block_entry, node);
 903		rb_erase(&be->node, &fs_info->block_tree);
 904		free_block_entry(be);
 905		cond_resched_lock(&fs_info->ref_verify_lock);
 906	}
 907	spin_unlock(&fs_info->ref_verify_lock);
 908}
 909
 910void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
 911			       u64 len)
 912{
 913	struct block_entry *be = NULL, *entry;
 914	struct rb_node *n;
 915
 916	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 917		return;
 918
 919	spin_lock(&fs_info->ref_verify_lock);
 920	n = fs_info->block_tree.rb_node;
 921	while (n) {
 922		entry = rb_entry(n, struct block_entry, node);
 923		if (entry->bytenr < start) {
 924			n = n->rb_right;
 925		} else if (entry->bytenr > start) {
 926			n = n->rb_left;
 927		} else {
 928			be = entry;
 929			break;
 930		}
 931		/* We want to get as close to start as possible */
 932		if (be == NULL ||
 933		    (entry->bytenr < start && be->bytenr > start) ||
 934		    (entry->bytenr < start && entry->bytenr > be->bytenr))
 935			be = entry;
 936	}
 937
 938	/*
 939	 * Could have an empty block group, maybe have something to check for
 940	 * this case to verify we were actually empty?
 941	 */
 942	if (!be) {
 943		spin_unlock(&fs_info->ref_verify_lock);
 944		return;
 945	}
 946
 947	n = &be->node;
 948	while (n) {
 949		be = rb_entry(n, struct block_entry, node);
 950		n = rb_next(n);
 951		if (be->bytenr < start && be->bytenr + be->len > start) {
 952			btrfs_err(fs_info,
 953				"block entry overlaps a block group [%llu,%llu]!",
 954				start, len);
 955			dump_block_entry(fs_info, be);
 956			continue;
 957		}
 958		if (be->bytenr < start)
 959			continue;
 960		if (be->bytenr >= start + len)
 961			break;
 962		if (be->bytenr + be->len > start + len) {
 963			btrfs_err(fs_info,
 964				"block entry overlaps a block group [%llu,%llu]!",
 965				start, len);
 966			dump_block_entry(fs_info, be);
 967		}
 968		rb_erase(&be->node, &fs_info->block_tree);
 969		free_block_entry(be);
 970	}
 971	spin_unlock(&fs_info->ref_verify_lock);
 972}
 973
 974/* Walk down all roots and build the ref tree, meant to be called at mount */
 975int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
 976{
 977	struct btrfs_path *path;
 978	struct extent_buffer *eb;
 979	u64 bytenr = 0, num_bytes = 0;
 980	int ret, level;
 981
 982	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 983		return 0;
 984
 985	path = btrfs_alloc_path();
 986	if (!path)
 987		return -ENOMEM;
 988
 989	eb = btrfs_read_lock_root_node(fs_info->extent_root);
 990	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 991	level = btrfs_header_level(eb);
 992	path->nodes[level] = eb;
 993	path->slots[level] = 0;
 994	path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
 995
 996	while (1) {
 997		/*
 998		 * We have to keep track of the bytenr/num_bytes we last hit
 999		 * because we could have run out of space for an inline ref, and
1000		 * would have had to added a ref key item which may appear on a
1001		 * different leaf from the original extent item.
1002		 */
1003		ret = walk_down_tree(fs_info->extent_root, path, level,
1004				     &bytenr, &num_bytes);
1005		if (ret)
1006			break;
1007		ret = walk_up_tree(path, &level);
1008		if (ret < 0)
1009			break;
1010		if (ret > 0) {
1011			ret = 0;
1012			break;
1013		}
1014	}
1015	if (ret) {
1016		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1017		btrfs_free_ref_cache(fs_info);
1018	}
1019	btrfs_free_path(path);
1020	return ret;
1021}