Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2014 Facebook.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/stacktrace.h>
   8#include "ctree.h"
   9#include "disk-io.h"
  10#include "locking.h"
  11#include "delayed-ref.h"
  12#include "ref-verify.h"
  13
  14/*
  15 * Used to keep track the roots and number of refs each root has for a given
  16 * bytenr.  This just tracks the number of direct references, no shared
  17 * references.
  18 */
  19struct root_entry {
  20	u64 root_objectid;
  21	u64 num_refs;
  22	struct rb_node node;
  23};
  24
  25/*
  26 * These are meant to represent what should exist in the extent tree, these can
  27 * be used to verify the extent tree is consistent as these should all match
  28 * what the extent tree says.
  29 */
  30struct ref_entry {
  31	u64 root_objectid;
  32	u64 parent;
  33	u64 owner;
  34	u64 offset;
  35	u64 num_refs;
  36	struct rb_node node;
  37};
  38
  39#define MAX_TRACE	16
  40
  41/*
  42 * Whenever we add/remove a reference we record the action.  The action maps
  43 * back to the delayed ref action.  We hold the ref we are changing in the
  44 * action so we can account for the history properly, and we record the root we
  45 * were called with since it could be different from ref_root.  We also store
  46 * stack traces because that's how I roll.
  47 */
  48struct ref_action {
  49	int action;
  50	u64 root;
  51	struct ref_entry ref;
  52	struct list_head list;
  53	unsigned long trace[MAX_TRACE];
  54	unsigned int trace_len;
  55};
  56
  57/*
  58 * One of these for every block we reference, it holds the roots and references
  59 * to it as well as all of the ref actions that have occurred to it.  We never
  60 * free it until we unmount the file system in order to make sure re-allocations
  61 * are happening properly.
  62 */
  63struct block_entry {
  64	u64 bytenr;
  65	u64 len;
  66	u64 num_refs;
  67	int metadata;
  68	int from_disk;
  69	struct rb_root roots;
  70	struct rb_root refs;
  71	struct rb_node node;
  72	struct list_head actions;
  73};
  74
  75static struct block_entry *insert_block_entry(struct rb_root *root,
  76					      struct block_entry *be)
  77{
  78	struct rb_node **p = &root->rb_node;
  79	struct rb_node *parent_node = NULL;
  80	struct block_entry *entry;
  81
  82	while (*p) {
  83		parent_node = *p;
  84		entry = rb_entry(parent_node, struct block_entry, node);
  85		if (entry->bytenr > be->bytenr)
  86			p = &(*p)->rb_left;
  87		else if (entry->bytenr < be->bytenr)
  88			p = &(*p)->rb_right;
  89		else
  90			return entry;
  91	}
  92
  93	rb_link_node(&be->node, parent_node, p);
  94	rb_insert_color(&be->node, root);
  95	return NULL;
  96}
  97
  98static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
  99{
 100	struct rb_node *n;
 101	struct block_entry *entry = NULL;
 102
 103	n = root->rb_node;
 104	while (n) {
 105		entry = rb_entry(n, struct block_entry, node);
 106		if (entry->bytenr < bytenr)
 107			n = n->rb_right;
 108		else if (entry->bytenr > bytenr)
 109			n = n->rb_left;
 110		else
 111			return entry;
 112	}
 113	return NULL;
 114}
 115
 116static struct root_entry *insert_root_entry(struct rb_root *root,
 117					    struct root_entry *re)
 118{
 119	struct rb_node **p = &root->rb_node;
 120	struct rb_node *parent_node = NULL;
 121	struct root_entry *entry;
 122
 123	while (*p) {
 124		parent_node = *p;
 125		entry = rb_entry(parent_node, struct root_entry, node);
 126		if (entry->root_objectid > re->root_objectid)
 127			p = &(*p)->rb_left;
 128		else if (entry->root_objectid < re->root_objectid)
 129			p = &(*p)->rb_right;
 130		else
 131			return entry;
 132	}
 133
 134	rb_link_node(&re->node, parent_node, p);
 135	rb_insert_color(&re->node, root);
 136	return NULL;
 137
 138}
 139
 140static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
 141{
 142	if (ref1->root_objectid < ref2->root_objectid)
 143		return -1;
 144	if (ref1->root_objectid > ref2->root_objectid)
 145		return 1;
 146	if (ref1->parent < ref2->parent)
 147		return -1;
 148	if (ref1->parent > ref2->parent)
 149		return 1;
 150	if (ref1->owner < ref2->owner)
 151		return -1;
 152	if (ref1->owner > ref2->owner)
 153		return 1;
 154	if (ref1->offset < ref2->offset)
 155		return -1;
 156	if (ref1->offset > ref2->offset)
 157		return 1;
 158	return 0;
 159}
 160
 161static struct ref_entry *insert_ref_entry(struct rb_root *root,
 162					  struct ref_entry *ref)
 163{
 164	struct rb_node **p = &root->rb_node;
 165	struct rb_node *parent_node = NULL;
 166	struct ref_entry *entry;
 167	int cmp;
 168
 169	while (*p) {
 170		parent_node = *p;
 171		entry = rb_entry(parent_node, struct ref_entry, node);
 172		cmp = comp_refs(entry, ref);
 173		if (cmp > 0)
 174			p = &(*p)->rb_left;
 175		else if (cmp < 0)
 176			p = &(*p)->rb_right;
 177		else
 178			return entry;
 179	}
 180
 181	rb_link_node(&ref->node, parent_node, p);
 182	rb_insert_color(&ref->node, root);
 183	return NULL;
 184
 185}
 186
 187static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
 188{
 189	struct rb_node *n;
 190	struct root_entry *entry = NULL;
 191
 192	n = root->rb_node;
 193	while (n) {
 194		entry = rb_entry(n, struct root_entry, node);
 195		if (entry->root_objectid < objectid)
 196			n = n->rb_right;
 197		else if (entry->root_objectid > objectid)
 198			n = n->rb_left;
 199		else
 200			return entry;
 201	}
 202	return NULL;
 203}
 204
 205#ifdef CONFIG_STACKTRACE
 206static void __save_stack_trace(struct ref_action *ra)
 207{
 208	ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
 209}
 210
 211static void __print_stack_trace(struct btrfs_fs_info *fs_info,
 212				struct ref_action *ra)
 213{
 214	if (ra->trace_len == 0) {
 215		btrfs_err(fs_info, "  ref-verify: no stacktrace");
 216		return;
 217	}
 218	stack_trace_print(ra->trace, ra->trace_len, 2);
 219}
 220#else
 221static void inline __save_stack_trace(struct ref_action *ra)
 222{
 223}
 224
 225static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
 226				       struct ref_action *ra)
 227{
 228	btrfs_err(fs_info, "  ref-verify: no stacktrace support");
 229}
 230#endif
 231
 232static void free_block_entry(struct block_entry *be)
 233{
 234	struct root_entry *re;
 235	struct ref_entry *ref;
 236	struct ref_action *ra;
 237	struct rb_node *n;
 238
 239	while ((n = rb_first(&be->roots))) {
 240		re = rb_entry(n, struct root_entry, node);
 241		rb_erase(&re->node, &be->roots);
 242		kfree(re);
 243	}
 244
 245	while((n = rb_first(&be->refs))) {
 246		ref = rb_entry(n, struct ref_entry, node);
 247		rb_erase(&ref->node, &be->refs);
 248		kfree(ref);
 249	}
 250
 251	while (!list_empty(&be->actions)) {
 252		ra = list_first_entry(&be->actions, struct ref_action,
 253				      list);
 254		list_del(&ra->list);
 255		kfree(ra);
 256	}
 257	kfree(be);
 258}
 259
 260static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
 261					   u64 bytenr, u64 len,
 262					   u64 root_objectid)
 263{
 264	struct block_entry *be = NULL, *exist;
 265	struct root_entry *re = NULL;
 266
 267	re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
 268	be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
 269	if (!be || !re) {
 270		kfree(re);
 271		kfree(be);
 272		return ERR_PTR(-ENOMEM);
 273	}
 274	be->bytenr = bytenr;
 275	be->len = len;
 276
 277	re->root_objectid = root_objectid;
 278	re->num_refs = 0;
 279
 280	spin_lock(&fs_info->ref_verify_lock);
 281	exist = insert_block_entry(&fs_info->block_tree, be);
 282	if (exist) {
 283		if (root_objectid) {
 284			struct root_entry *exist_re;
 285
 286			exist_re = insert_root_entry(&exist->roots, re);
 287			if (exist_re)
 288				kfree(re);
 289		} else {
 290			kfree(re);
 291		}
 292		kfree(be);
 293		return exist;
 294	}
 295
 296	be->num_refs = 0;
 297	be->metadata = 0;
 298	be->from_disk = 0;
 299	be->roots = RB_ROOT;
 300	be->refs = RB_ROOT;
 301	INIT_LIST_HEAD(&be->actions);
 302	if (root_objectid)
 303		insert_root_entry(&be->roots, re);
 304	else
 305		kfree(re);
 306	return be;
 307}
 308
 309static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
 310			  u64 parent, u64 bytenr, int level)
 311{
 312	struct block_entry *be;
 313	struct root_entry *re;
 314	struct ref_entry *ref = NULL, *exist;
 315
 316	ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
 317	if (!ref)
 318		return -ENOMEM;
 319
 320	if (parent)
 321		ref->root_objectid = 0;
 322	else
 323		ref->root_objectid = ref_root;
 324	ref->parent = parent;
 325	ref->owner = level;
 326	ref->offset = 0;
 327	ref->num_refs = 1;
 328
 329	be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
 330	if (IS_ERR(be)) {
 331		kfree(ref);
 332		return PTR_ERR(be);
 333	}
 334	be->num_refs++;
 335	be->from_disk = 1;
 336	be->metadata = 1;
 337
 338	if (!parent) {
 339		ASSERT(ref_root);
 340		re = lookup_root_entry(&be->roots, ref_root);
 341		ASSERT(re);
 342		re->num_refs++;
 343	}
 344	exist = insert_ref_entry(&be->refs, ref);
 345	if (exist) {
 346		exist->num_refs++;
 347		kfree(ref);
 348	}
 349	spin_unlock(&fs_info->ref_verify_lock);
 350
 351	return 0;
 352}
 353
 354static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
 355			       u64 parent, u32 num_refs, u64 bytenr,
 356			       u64 num_bytes)
 357{
 358	struct block_entry *be;
 359	struct ref_entry *ref;
 360
 361	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
 362	if (!ref)
 363		return -ENOMEM;
 364	be = add_block_entry(fs_info, bytenr, num_bytes, 0);
 365	if (IS_ERR(be)) {
 366		kfree(ref);
 367		return PTR_ERR(be);
 368	}
 369	be->num_refs += num_refs;
 370
 371	ref->parent = parent;
 372	ref->num_refs = num_refs;
 373	if (insert_ref_entry(&be->refs, ref)) {
 374		spin_unlock(&fs_info->ref_verify_lock);
 375		btrfs_err(fs_info, "existing shared ref when reading from disk?");
 376		kfree(ref);
 377		return -EINVAL;
 378	}
 379	spin_unlock(&fs_info->ref_verify_lock);
 380	return 0;
 381}
 382
 383static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
 384			       struct extent_buffer *leaf,
 385			       struct btrfs_extent_data_ref *dref,
 386			       u64 bytenr, u64 num_bytes)
 387{
 388	struct block_entry *be;
 389	struct ref_entry *ref;
 390	struct root_entry *re;
 391	u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
 392	u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
 393	u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
 394	u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
 395
 396	ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
 397	if (!ref)
 398		return -ENOMEM;
 399	be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 400	if (IS_ERR(be)) {
 401		kfree(ref);
 402		return PTR_ERR(be);
 403	}
 404	be->num_refs += num_refs;
 405
 406	ref->parent = 0;
 407	ref->owner = owner;
 408	ref->root_objectid = ref_root;
 409	ref->offset = offset;
 410	ref->num_refs = num_refs;
 411	if (insert_ref_entry(&be->refs, ref)) {
 412		spin_unlock(&fs_info->ref_verify_lock);
 413		btrfs_err(fs_info, "existing ref when reading from disk?");
 414		kfree(ref);
 415		return -EINVAL;
 416	}
 417
 418	re = lookup_root_entry(&be->roots, ref_root);
 419	if (!re) {
 420		spin_unlock(&fs_info->ref_verify_lock);
 421		btrfs_err(fs_info, "missing root in new block entry?");
 422		return -EINVAL;
 423	}
 424	re->num_refs += num_refs;
 425	spin_unlock(&fs_info->ref_verify_lock);
 426	return 0;
 427}
 428
 429static int process_extent_item(struct btrfs_fs_info *fs_info,
 430			       struct btrfs_path *path, struct btrfs_key *key,
 431			       int slot, int *tree_block_level)
 432{
 433	struct btrfs_extent_item *ei;
 434	struct btrfs_extent_inline_ref *iref;
 435	struct btrfs_extent_data_ref *dref;
 436	struct btrfs_shared_data_ref *sref;
 437	struct extent_buffer *leaf = path->nodes[0];
 438	u32 item_size = btrfs_item_size_nr(leaf, slot);
 439	unsigned long end, ptr;
 440	u64 offset, flags, count;
 441	int type, ret;
 442
 443	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 444	flags = btrfs_extent_flags(leaf, ei);
 445
 446	if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
 447	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 448		struct btrfs_tree_block_info *info;
 449
 450		info = (struct btrfs_tree_block_info *)(ei + 1);
 451		*tree_block_level = btrfs_tree_block_level(leaf, info);
 452		iref = (struct btrfs_extent_inline_ref *)(info + 1);
 453	} else {
 454		if (key->type == BTRFS_METADATA_ITEM_KEY)
 455			*tree_block_level = key->offset;
 456		iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 457	}
 458
 459	ptr = (unsigned long)iref;
 460	end = (unsigned long)ei + item_size;
 461	while (ptr < end) {
 462		iref = (struct btrfs_extent_inline_ref *)ptr;
 463		type = btrfs_extent_inline_ref_type(leaf, iref);
 464		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 465		switch (type) {
 466		case BTRFS_TREE_BLOCK_REF_KEY:
 467			ret = add_tree_block(fs_info, offset, 0, key->objectid,
 468					     *tree_block_level);
 469			break;
 470		case BTRFS_SHARED_BLOCK_REF_KEY:
 471			ret = add_tree_block(fs_info, 0, offset, key->objectid,
 472					     *tree_block_level);
 473			break;
 474		case BTRFS_EXTENT_DATA_REF_KEY:
 475			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 476			ret = add_extent_data_ref(fs_info, leaf, dref,
 477						  key->objectid, key->offset);
 478			break;
 479		case BTRFS_SHARED_DATA_REF_KEY:
 480			sref = (struct btrfs_shared_data_ref *)(iref + 1);
 481			count = btrfs_shared_data_ref_count(leaf, sref);
 482			ret = add_shared_data_ref(fs_info, offset, count,
 483						  key->objectid, key->offset);
 484			break;
 485		default:
 486			btrfs_err(fs_info, "invalid key type in iref");
 487			ret = -EINVAL;
 488			break;
 489		}
 490		if (ret)
 491			break;
 492		ptr += btrfs_extent_inline_ref_size(type);
 493	}
 494	return ret;
 495}
 496
 497static int process_leaf(struct btrfs_root *root,
 498			struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
 499{
 500	struct btrfs_fs_info *fs_info = root->fs_info;
 501	struct extent_buffer *leaf = path->nodes[0];
 502	struct btrfs_extent_data_ref *dref;
 503	struct btrfs_shared_data_ref *sref;
 504	u32 count;
 505	int i = 0, tree_block_level = 0, ret = 0;
 506	struct btrfs_key key;
 507	int nritems = btrfs_header_nritems(leaf);
 508
 509	for (i = 0; i < nritems; i++) {
 510		btrfs_item_key_to_cpu(leaf, &key, i);
 511		switch (key.type) {
 512		case BTRFS_EXTENT_ITEM_KEY:
 513			*num_bytes = key.offset;
 514			fallthrough;
 515		case BTRFS_METADATA_ITEM_KEY:
 516			*bytenr = key.objectid;
 517			ret = process_extent_item(fs_info, path, &key, i,
 518						  &tree_block_level);
 519			break;
 520		case BTRFS_TREE_BLOCK_REF_KEY:
 521			ret = add_tree_block(fs_info, key.offset, 0,
 522					     key.objectid, tree_block_level);
 523			break;
 524		case BTRFS_SHARED_BLOCK_REF_KEY:
 525			ret = add_tree_block(fs_info, 0, key.offset,
 526					     key.objectid, tree_block_level);
 527			break;
 528		case BTRFS_EXTENT_DATA_REF_KEY:
 529			dref = btrfs_item_ptr(leaf, i,
 530					      struct btrfs_extent_data_ref);
 531			ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
 532						  *num_bytes);
 533			break;
 534		case BTRFS_SHARED_DATA_REF_KEY:
 535			sref = btrfs_item_ptr(leaf, i,
 536					      struct btrfs_shared_data_ref);
 537			count = btrfs_shared_data_ref_count(leaf, sref);
 538			ret = add_shared_data_ref(fs_info, key.offset, count,
 539						  *bytenr, *num_bytes);
 540			break;
 541		default:
 542			break;
 543		}
 544		if (ret)
 545			break;
 546	}
 547	return ret;
 548}
 549
 550/* Walk down to the leaf from the given level */
 551static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
 552			  int level, u64 *bytenr, u64 *num_bytes)
 553{
 554	struct btrfs_fs_info *fs_info = root->fs_info;
 555	struct extent_buffer *eb;
 556	u64 block_bytenr, gen;
 557	int ret = 0;
 558
 559	while (level >= 0) {
 560		if (level) {
 561			struct btrfs_key first_key;
 562
 563			block_bytenr = btrfs_node_blockptr(path->nodes[level],
 564							   path->slots[level]);
 565			gen = btrfs_node_ptr_generation(path->nodes[level],
 566							path->slots[level]);
 567			btrfs_node_key_to_cpu(path->nodes[level], &first_key,
 568					      path->slots[level]);
 569			eb = read_tree_block(fs_info, block_bytenr, gen,
 570					     level - 1, &first_key);
 571			if (IS_ERR(eb))
 572				return PTR_ERR(eb);
 573			if (!extent_buffer_uptodate(eb)) {
 574				free_extent_buffer(eb);
 575				return -EIO;
 576			}
 577			btrfs_tree_read_lock(eb);
 578			btrfs_set_lock_blocking_read(eb);
 579			path->nodes[level-1] = eb;
 580			path->slots[level-1] = 0;
 581			path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
 582		} else {
 583			ret = process_leaf(root, path, bytenr, num_bytes);
 584			if (ret)
 585				break;
 586		}
 587		level--;
 588	}
 589	return ret;
 590}
 591
 592/* Walk up to the next node that needs to be processed */
 593static int walk_up_tree(struct btrfs_path *path, int *level)
 594{
 595	int l;
 596
 597	for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
 598		if (!path->nodes[l])
 599			continue;
 600		if (l) {
 601			path->slots[l]++;
 602			if (path->slots[l] <
 603			    btrfs_header_nritems(path->nodes[l])) {
 604				*level = l;
 605				return 0;
 606			}
 607		}
 608		btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
 609		free_extent_buffer(path->nodes[l]);
 610		path->nodes[l] = NULL;
 611		path->slots[l] = 0;
 612		path->locks[l] = 0;
 613	}
 614
 615	return 1;
 616}
 617
 618static void dump_ref_action(struct btrfs_fs_info *fs_info,
 619			    struct ref_action *ra)
 620{
 621	btrfs_err(fs_info,
 622"  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 623		  ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
 624		  ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
 625	__print_stack_trace(fs_info, ra);
 626}
 627
 628/*
 629 * Dumps all the information from the block entry to printk, it's going to be
 630 * awesome.
 631 */
 632static void dump_block_entry(struct btrfs_fs_info *fs_info,
 633			     struct block_entry *be)
 634{
 635	struct ref_entry *ref;
 636	struct root_entry *re;
 637	struct ref_action *ra;
 638	struct rb_node *n;
 639
 640	btrfs_err(fs_info,
 641"dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
 642		  be->bytenr, be->len, be->num_refs, be->metadata,
 643		  be->from_disk);
 644
 645	for (n = rb_first(&be->refs); n; n = rb_next(n)) {
 646		ref = rb_entry(n, struct ref_entry, node);
 647		btrfs_err(fs_info,
 648"  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
 649			  ref->root_objectid, ref->parent, ref->owner,
 650			  ref->offset, ref->num_refs);
 651	}
 652
 653	for (n = rb_first(&be->roots); n; n = rb_next(n)) {
 654		re = rb_entry(n, struct root_entry, node);
 655		btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
 656			  re->root_objectid, re->num_refs);
 657	}
 658
 659	list_for_each_entry(ra, &be->actions, list)
 660		dump_ref_action(fs_info, ra);
 661}
 662
 663/*
 664 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
 665 *
 666 * This will add an action item to the given bytenr and do sanity checks to make
 667 * sure we haven't messed something up.  If we are making a new allocation and
 668 * this block entry has history we will delete all previous actions as long as
 669 * our sanity checks pass as they are no longer needed.
 670 */
 671int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
 672		       struct btrfs_ref *generic_ref)
 673{
 674	struct ref_entry *ref = NULL, *exist;
 675	struct ref_action *ra = NULL;
 676	struct block_entry *be = NULL;
 677	struct root_entry *re = NULL;
 678	int action = generic_ref->action;
 679	int ret = 0;
 680	bool metadata;
 681	u64 bytenr = generic_ref->bytenr;
 682	u64 num_bytes = generic_ref->len;
 683	u64 parent = generic_ref->parent;
 684	u64 ref_root;
 685	u64 owner;
 686	u64 offset;
 687
 688	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 689		return 0;
 690
 691	if (generic_ref->type == BTRFS_REF_METADATA) {
 692		ref_root = generic_ref->tree_ref.root;
 693		owner = generic_ref->tree_ref.level;
 694		offset = 0;
 695	} else {
 696		ref_root = generic_ref->data_ref.ref_root;
 697		owner = generic_ref->data_ref.ino;
 698		offset = generic_ref->data_ref.offset;
 699	}
 700	metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
 701
 702	ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
 703	ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
 704	if (!ra || !ref) {
 705		kfree(ref);
 706		kfree(ra);
 707		ret = -ENOMEM;
 708		goto out;
 709	}
 710
 711	if (parent) {
 712		ref->parent = parent;
 713	} else {
 714		ref->root_objectid = ref_root;
 715		ref->owner = owner;
 716		ref->offset = offset;
 717	}
 718	ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
 719
 720	memcpy(&ra->ref, ref, sizeof(struct ref_entry));
 721	/*
 722	 * Save the extra info from the delayed ref in the ref action to make it
 723	 * easier to figure out what is happening.  The real ref's we add to the
 724	 * ref tree need to reflect what we save on disk so it matches any
 725	 * on-disk refs we pre-loaded.
 726	 */
 727	ra->ref.owner = owner;
 728	ra->ref.offset = offset;
 729	ra->ref.root_objectid = ref_root;
 730	__save_stack_trace(ra);
 731
 732	INIT_LIST_HEAD(&ra->list);
 733	ra->action = action;
 734	ra->root = generic_ref->real_root;
 735
 736	/*
 737	 * This is an allocation, preallocate the block_entry in case we haven't
 738	 * used it before.
 739	 */
 740	ret = -EINVAL;
 741	if (action == BTRFS_ADD_DELAYED_EXTENT) {
 742		/*
 743		 * For subvol_create we'll just pass in whatever the parent root
 744		 * is and the new root objectid, so let's not treat the passed
 745		 * in root as if it really has a ref for this bytenr.
 746		 */
 747		be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
 748		if (IS_ERR(be)) {
 749			kfree(ref);
 750			kfree(ra);
 751			ret = PTR_ERR(be);
 752			goto out;
 753		}
 754		be->num_refs++;
 755		if (metadata)
 756			be->metadata = 1;
 757
 758		if (be->num_refs != 1) {
 759			btrfs_err(fs_info,
 760			"re-allocated a block that still has references to it!");
 761			dump_block_entry(fs_info, be);
 762			dump_ref_action(fs_info, ra);
 763			kfree(ref);
 764			kfree(ra);
 765			goto out_unlock;
 766		}
 767
 768		while (!list_empty(&be->actions)) {
 769			struct ref_action *tmp;
 770
 771			tmp = list_first_entry(&be->actions, struct ref_action,
 772					       list);
 773			list_del(&tmp->list);
 774			kfree(tmp);
 775		}
 776	} else {
 777		struct root_entry *tmp;
 778
 779		if (!parent) {
 780			re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
 781			if (!re) {
 782				kfree(ref);
 783				kfree(ra);
 784				ret = -ENOMEM;
 785				goto out;
 786			}
 787			/*
 788			 * This is the root that is modifying us, so it's the
 789			 * one we want to lookup below when we modify the
 790			 * re->num_refs.
 791			 */
 792			ref_root = generic_ref->real_root;
 793			re->root_objectid = generic_ref->real_root;
 794			re->num_refs = 0;
 795		}
 796
 797		spin_lock(&fs_info->ref_verify_lock);
 798		be = lookup_block_entry(&fs_info->block_tree, bytenr);
 799		if (!be) {
 800			btrfs_err(fs_info,
 801"trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
 802				  action, (unsigned long long)bytenr,
 803				  (unsigned long long)num_bytes);
 804			dump_ref_action(fs_info, ra);
 805			kfree(ref);
 806			kfree(ra);
 807			goto out_unlock;
 808		} else if (be->num_refs == 0) {
 809			btrfs_err(fs_info,
 810		"trying to do action %d for a bytenr that has 0 total references",
 811				action);
 812			dump_block_entry(fs_info, be);
 813			dump_ref_action(fs_info, ra);
 814			kfree(ref);
 815			kfree(ra);
 816			goto out_unlock;
 817		}
 818
 819		if (!parent) {
 820			tmp = insert_root_entry(&be->roots, re);
 821			if (tmp) {
 822				kfree(re);
 823				re = tmp;
 824			}
 825		}
 826	}
 827
 828	exist = insert_ref_entry(&be->refs, ref);
 829	if (exist) {
 830		if (action == BTRFS_DROP_DELAYED_REF) {
 831			if (exist->num_refs == 0) {
 832				btrfs_err(fs_info,
 833"dropping a ref for a existing root that doesn't have a ref on the block");
 834				dump_block_entry(fs_info, be);
 835				dump_ref_action(fs_info, ra);
 836				kfree(ref);
 837				kfree(ra);
 838				goto out_unlock;
 839			}
 840			exist->num_refs--;
 841			if (exist->num_refs == 0) {
 842				rb_erase(&exist->node, &be->refs);
 843				kfree(exist);
 844			}
 845		} else if (!be->metadata) {
 846			exist->num_refs++;
 847		} else {
 848			btrfs_err(fs_info,
 849"attempting to add another ref for an existing ref on a tree block");
 850			dump_block_entry(fs_info, be);
 851			dump_ref_action(fs_info, ra);
 852			kfree(ref);
 853			kfree(ra);
 854			goto out_unlock;
 855		}
 856		kfree(ref);
 857	} else {
 858		if (action == BTRFS_DROP_DELAYED_REF) {
 859			btrfs_err(fs_info,
 860"dropping a ref for a root that doesn't have a ref on the block");
 861			dump_block_entry(fs_info, be);
 862			dump_ref_action(fs_info, ra);
 863			kfree(ra);
 864			goto out_unlock;
 865		}
 866	}
 867
 868	if (!parent && !re) {
 869		re = lookup_root_entry(&be->roots, ref_root);
 870		if (!re) {
 871			/*
 872			 * This shouldn't happen because we will add our re
 873			 * above when we lookup the be with !parent, but just in
 874			 * case catch this case so we don't panic because I
 875			 * didn't think of some other corner case.
 876			 */
 877			btrfs_err(fs_info, "failed to find root %llu for %llu",
 878				  generic_ref->real_root, be->bytenr);
 879			dump_block_entry(fs_info, be);
 880			dump_ref_action(fs_info, ra);
 881			kfree(ra);
 882			goto out_unlock;
 883		}
 884	}
 885	if (action == BTRFS_DROP_DELAYED_REF) {
 886		if (re)
 887			re->num_refs--;
 888		be->num_refs--;
 889	} else if (action == BTRFS_ADD_DELAYED_REF) {
 890		be->num_refs++;
 891		if (re)
 892			re->num_refs++;
 893	}
 894	list_add_tail(&ra->list, &be->actions);
 895	ret = 0;
 896out_unlock:
 897	spin_unlock(&fs_info->ref_verify_lock);
 898out:
 899	if (ret)
 900		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
 901	return ret;
 902}
 903
 904/* Free up the ref cache */
 905void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
 906{
 907	struct block_entry *be;
 908	struct rb_node *n;
 909
 910	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 911		return;
 912
 913	spin_lock(&fs_info->ref_verify_lock);
 914	while ((n = rb_first(&fs_info->block_tree))) {
 915		be = rb_entry(n, struct block_entry, node);
 916		rb_erase(&be->node, &fs_info->block_tree);
 917		free_block_entry(be);
 918		cond_resched_lock(&fs_info->ref_verify_lock);
 919	}
 920	spin_unlock(&fs_info->ref_verify_lock);
 921}
 922
 923void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
 924			       u64 len)
 925{
 926	struct block_entry *be = NULL, *entry;
 927	struct rb_node *n;
 928
 929	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 930		return;
 931
 932	spin_lock(&fs_info->ref_verify_lock);
 933	n = fs_info->block_tree.rb_node;
 934	while (n) {
 935		entry = rb_entry(n, struct block_entry, node);
 936		if (entry->bytenr < start) {
 937			n = n->rb_right;
 938		} else if (entry->bytenr > start) {
 939			n = n->rb_left;
 940		} else {
 941			be = entry;
 942			break;
 943		}
 944		/* We want to get as close to start as possible */
 945		if (be == NULL ||
 946		    (entry->bytenr < start && be->bytenr > start) ||
 947		    (entry->bytenr < start && entry->bytenr > be->bytenr))
 948			be = entry;
 949	}
 950
 951	/*
 952	 * Could have an empty block group, maybe have something to check for
 953	 * this case to verify we were actually empty?
 954	 */
 955	if (!be) {
 956		spin_unlock(&fs_info->ref_verify_lock);
 957		return;
 958	}
 959
 960	n = &be->node;
 961	while (n) {
 962		be = rb_entry(n, struct block_entry, node);
 963		n = rb_next(n);
 964		if (be->bytenr < start && be->bytenr + be->len > start) {
 965			btrfs_err(fs_info,
 966				"block entry overlaps a block group [%llu,%llu]!",
 967				start, len);
 968			dump_block_entry(fs_info, be);
 969			continue;
 970		}
 971		if (be->bytenr < start)
 972			continue;
 973		if (be->bytenr >= start + len)
 974			break;
 975		if (be->bytenr + be->len > start + len) {
 976			btrfs_err(fs_info,
 977				"block entry overlaps a block group [%llu,%llu]!",
 978				start, len);
 979			dump_block_entry(fs_info, be);
 980		}
 981		rb_erase(&be->node, &fs_info->block_tree);
 982		free_block_entry(be);
 983	}
 984	spin_unlock(&fs_info->ref_verify_lock);
 985}
 986
 987/* Walk down all roots and build the ref tree, meant to be called at mount */
 988int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
 989{
 990	struct btrfs_path *path;
 991	struct extent_buffer *eb;
 992	u64 bytenr = 0, num_bytes = 0;
 993	int ret, level;
 994
 995	if (!btrfs_test_opt(fs_info, REF_VERIFY))
 996		return 0;
 997
 998	path = btrfs_alloc_path();
 999	if (!path)
1000		return -ENOMEM;
1001
1002	eb = btrfs_read_lock_root_node(fs_info->extent_root);
1003	btrfs_set_lock_blocking_read(eb);
1004	level = btrfs_header_level(eb);
1005	path->nodes[level] = eb;
1006	path->slots[level] = 0;
1007	path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1008
1009	while (1) {
1010		/*
1011		 * We have to keep track of the bytenr/num_bytes we last hit
1012		 * because we could have run out of space for an inline ref, and
1013		 * would have had to added a ref key item which may appear on a
1014		 * different leaf from the original extent item.
1015		 */
1016		ret = walk_down_tree(fs_info->extent_root, path, level,
1017				     &bytenr, &num_bytes);
1018		if (ret)
1019			break;
1020		ret = walk_up_tree(path, &level);
1021		if (ret < 0)
1022			break;
1023		if (ret > 0) {
1024			ret = 0;
1025			break;
1026		}
1027	}
1028	if (ret) {
1029		btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1030		btrfs_free_ref_cache(fs_info);
1031	}
1032	btrfs_free_path(path);
1033	return ret;
1034}