Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019-2020 NXP
   7 * Copyright 2020 Puresoftware Ltd.
   8 *
   9 * FlexSPI is a flexsible SPI host controller which supports two SPI
  10 * channels and up to 4 external devices. Each channel supports
  11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  12 * data lines).
  13 *
  14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  15 * LUT registers are a look-up-table for sequences of instructions.
  16 * A valid sequence consists of four LUT registers.
  17 * Maximum 32 LUT sequences can be programmed simultaneously.
  18 *
  19 * LUTs are being created at run-time based on the commands passed
  20 * from the spi-mem framework, thus using single LUT index.
  21 *
  22 * Software triggered Flash read/write access by IP Bus.
  23 *
  24 * Memory mapped read access by AHB Bus.
  25 *
  26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  27 *
  28 * Author:
  29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  30 *     Boris Brezillon <bbrezillon@kernel.org>
  31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  32 */
  33
  34#include <linux/acpi.h>
  35#include <linux/bitops.h>
  36#include <linux/bitfield.h>
  37#include <linux/clk.h>
  38#include <linux/completion.h>
  39#include <linux/delay.h>
  40#include <linux/err.h>
  41#include <linux/errno.h>
  42#include <linux/interrupt.h>
  43#include <linux/io.h>
  44#include <linux/iopoll.h>
  45#include <linux/jiffies.h>
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/mutex.h>
  49#include <linux/of.h>
  50#include <linux/platform_device.h>
  51#include <linux/pm_qos.h>
  52#include <linux/regmap.h>
  53#include <linux/sizes.h>
  54#include <linux/sys_soc.h>
  55
  56#include <linux/mfd/syscon.h>
  57#include <linux/spi/spi.h>
  58#include <linux/spi/spi-mem.h>
  59
  60/* Registers used by the driver */
  61#define FSPI_MCR0			0x00
  62#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
  63#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
  64#define FSPI_MCR0_LEARN_EN		BIT(15)
  65#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
  66#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
  67#define FSPI_MCR0_DOZE_EN		BIT(12)
  68#define FSPI_MCR0_HSEN			BIT(11)
  69#define FSPI_MCR0_SERCLKDIV		BIT(8)
  70#define FSPI_MCR0_ATDF_EN		BIT(7)
  71#define FSPI_MCR0_ARDF_EN		BIT(6)
  72#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
  73#define FSPI_MCR0_END_CFG(x)		((x) << 2)
  74#define FSPI_MCR0_MDIS			BIT(1)
  75#define FSPI_MCR0_SWRST			BIT(0)
  76
  77#define FSPI_MCR1			0x04
  78#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
  79#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
  80
  81#define FSPI_MCR2			0x08
  82#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
  83#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
  84#define FSPI_MCR2_CLRLRPHS		BIT(14)
  85#define FSPI_MCR2_ABRDATSZ		BIT(8)
  86#define FSPI_MCR2_ABRLEARN		BIT(7)
  87#define FSPI_MCR2_ABR_READ		BIT(6)
  88#define FSPI_MCR2_ABRWRITE		BIT(5)
  89#define FSPI_MCR2_ABRDUMMY		BIT(4)
  90#define FSPI_MCR2_ABR_MODE		BIT(3)
  91#define FSPI_MCR2_ABRCADDR		BIT(2)
  92#define FSPI_MCR2_ABRRADDR		BIT(1)
  93#define FSPI_MCR2_ABR_CMD		BIT(0)
  94
  95#define FSPI_AHBCR			0x0c
  96#define FSPI_AHBCR_RDADDROPT		BIT(6)
  97#define FSPI_AHBCR_PREF_EN		BIT(5)
  98#define FSPI_AHBCR_BUFF_EN		BIT(4)
  99#define FSPI_AHBCR_CACH_EN		BIT(3)
 100#define FSPI_AHBCR_CLRTXBUF		BIT(2)
 101#define FSPI_AHBCR_CLRRXBUF		BIT(1)
 102#define FSPI_AHBCR_PAR_EN		BIT(0)
 103
 104#define FSPI_INTEN			0x10
 105#define FSPI_INTEN_SCLKSBWR		BIT(9)
 106#define FSPI_INTEN_SCLKSBRD		BIT(8)
 107#define FSPI_INTEN_DATALRNFL		BIT(7)
 108#define FSPI_INTEN_IPTXWE		BIT(6)
 109#define FSPI_INTEN_IPRXWA		BIT(5)
 110#define FSPI_INTEN_AHBCMDERR		BIT(4)
 111#define FSPI_INTEN_IPCMDERR		BIT(3)
 112#define FSPI_INTEN_AHBCMDGE		BIT(2)
 113#define FSPI_INTEN_IPCMDGE		BIT(1)
 114#define FSPI_INTEN_IPCMDDONE		BIT(0)
 115
 116#define FSPI_INTR			0x14
 117#define FSPI_INTR_SCLKSBWR		BIT(9)
 118#define FSPI_INTR_SCLKSBRD		BIT(8)
 119#define FSPI_INTR_DATALRNFL		BIT(7)
 120#define FSPI_INTR_IPTXWE		BIT(6)
 121#define FSPI_INTR_IPRXWA		BIT(5)
 122#define FSPI_INTR_AHBCMDERR		BIT(4)
 123#define FSPI_INTR_IPCMDERR		BIT(3)
 124#define FSPI_INTR_AHBCMDGE		BIT(2)
 125#define FSPI_INTR_IPCMDGE		BIT(1)
 126#define FSPI_INTR_IPCMDDONE		BIT(0)
 127
 128#define FSPI_LUTKEY			0x18
 129#define FSPI_LUTKEY_VALUE		0x5AF05AF0
 130
 131#define FSPI_LCKCR			0x1C
 132
 133#define FSPI_LCKER_LOCK			0x1
 134#define FSPI_LCKER_UNLOCK		0x2
 135
 136#define FSPI_BUFXCR_INVALID_MSTRID	0xE
 137#define FSPI_AHBRX_BUF0CR0		0x20
 138#define FSPI_AHBRX_BUF1CR0		0x24
 139#define FSPI_AHBRX_BUF2CR0		0x28
 140#define FSPI_AHBRX_BUF3CR0		0x2C
 141#define FSPI_AHBRX_BUF4CR0		0x30
 142#define FSPI_AHBRX_BUF5CR0		0x34
 143#define FSPI_AHBRX_BUF6CR0		0x38
 144#define FSPI_AHBRX_BUF7CR0		0x3C
 145#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
 146
 147#define FSPI_AHBRX_BUF0CR1		0x40
 148#define FSPI_AHBRX_BUF1CR1		0x44
 149#define FSPI_AHBRX_BUF2CR1		0x48
 150#define FSPI_AHBRX_BUF3CR1		0x4C
 151#define FSPI_AHBRX_BUF4CR1		0x50
 152#define FSPI_AHBRX_BUF5CR1		0x54
 153#define FSPI_AHBRX_BUF6CR1		0x58
 154#define FSPI_AHBRX_BUF7CR1		0x5C
 155
 156#define FSPI_FLSHA1CR0			0x60
 157#define FSPI_FLSHA2CR0			0x64
 158#define FSPI_FLSHB1CR0			0x68
 159#define FSPI_FLSHB2CR0			0x6C
 160#define FSPI_FLSHXCR0_SZ_KB		10
 161#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
 162
 163#define FSPI_FLSHA1CR1			0x70
 164#define FSPI_FLSHA2CR1			0x74
 165#define FSPI_FLSHB1CR1			0x78
 166#define FSPI_FLSHB2CR1			0x7C
 167#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
 168#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
 169#define FSPI_FLSHXCR1_WA		BIT(10)
 170#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
 171#define FSPI_FLSHXCR1_TCSS(x)		(x)
 172
 173#define FSPI_FLSHA1CR2			0x80
 174#define FSPI_FLSHA2CR2			0x84
 175#define FSPI_FLSHB1CR2			0x88
 176#define FSPI_FLSHB2CR2			0x8C
 177#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
 178#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
 179#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
 180#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
 181#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
 182#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
 183
 184#define FSPI_IPCR0			0xA0
 185
 186#define FSPI_IPCR1			0xA4
 187#define FSPI_IPCR1_IPAREN		BIT(31)
 188#define FSPI_IPCR1_SEQNUM_SHIFT		24
 189#define FSPI_IPCR1_SEQID_SHIFT		16
 190#define FSPI_IPCR1_IDATSZ(x)		(x)
 191
 192#define FSPI_IPCMD			0xB0
 193#define FSPI_IPCMD_TRG			BIT(0)
 194
 195#define FSPI_DLPR			0xB4
 196
 197#define FSPI_IPRXFCR			0xB8
 198#define FSPI_IPRXFCR_CLR		BIT(0)
 199#define FSPI_IPRXFCR_DMA_EN		BIT(1)
 200#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
 201
 202#define FSPI_IPTXFCR			0xBC
 203#define FSPI_IPTXFCR_CLR		BIT(0)
 204#define FSPI_IPTXFCR_DMA_EN		BIT(1)
 205#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
 206
 207#define FSPI_DLLACR			0xC0
 208#define FSPI_DLLACR_OVRDEN		BIT(8)
 209#define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
 210#define FSPI_DLLACR_DLLRESET		BIT(1)
 211#define FSPI_DLLACR_DLLEN		BIT(0)
 212
 213#define FSPI_DLLBCR			0xC4
 214#define FSPI_DLLBCR_OVRDEN		BIT(8)
 215#define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
 216#define FSPI_DLLBCR_DLLRESET		BIT(1)
 217#define FSPI_DLLBCR_DLLEN		BIT(0)
 218
 219#define FSPI_STS0			0xE0
 220#define FSPI_STS0_DLPHB(x)		((x) << 8)
 221#define FSPI_STS0_DLPHA(x)		((x) << 4)
 222#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
 223#define FSPI_STS0_ARB_IDLE		BIT(1)
 224#define FSPI_STS0_SEQ_IDLE		BIT(0)
 225
 226#define FSPI_STS1			0xE4
 227#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
 228#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
 229#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
 230#define FSPI_STS1_AHB_ERRID(x)		(x)
 231
 232#define FSPI_STS2			0xE8
 233#define FSPI_STS2_BREFLOCK		BIT(17)
 234#define FSPI_STS2_BSLVLOCK		BIT(16)
 235#define FSPI_STS2_AREFLOCK		BIT(1)
 236#define FSPI_STS2_ASLVLOCK		BIT(0)
 237#define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
 238					 FSPI_STS2_BSLVLOCK | \
 239					 FSPI_STS2_AREFLOCK | \
 240					 FSPI_STS2_ASLVLOCK)
 241
 242#define FSPI_AHBSPNST			0xEC
 243#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
 244#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
 245#define FSPI_AHBSPNST_ACTIVE		BIT(0)
 246
 247#define FSPI_IPRXFSTS			0xF0
 248#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
 249#define FSPI_IPRXFSTS_FILL(x)		(x)
 250
 251#define FSPI_IPTXFSTS			0xF4
 252#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
 253#define FSPI_IPTXFSTS_FILL(x)		(x)
 254
 255#define FSPI_RFDR			0x100
 256#define FSPI_TFDR			0x180
 257
 258#define FSPI_LUT_BASE			0x200
 259
 260/* register map end */
 261
 262/* Instruction set for the LUT register. */
 263#define LUT_STOP			0x00
 264#define LUT_CMD				0x01
 265#define LUT_ADDR			0x02
 266#define LUT_CADDR_SDR			0x03
 267#define LUT_MODE			0x04
 268#define LUT_MODE2			0x05
 269#define LUT_MODE4			0x06
 270#define LUT_MODE8			0x07
 271#define LUT_NXP_WRITE			0x08
 272#define LUT_NXP_READ			0x09
 273#define LUT_LEARN_SDR			0x0A
 274#define LUT_DATSZ_SDR			0x0B
 275#define LUT_DUMMY			0x0C
 276#define LUT_DUMMY_RWDS_SDR		0x0D
 277#define LUT_JMP_ON_CS			0x1F
 278#define LUT_CMD_DDR			0x21
 279#define LUT_ADDR_DDR			0x22
 280#define LUT_CADDR_DDR			0x23
 281#define LUT_MODE_DDR			0x24
 282#define LUT_MODE2_DDR			0x25
 283#define LUT_MODE4_DDR			0x26
 284#define LUT_MODE8_DDR			0x27
 285#define LUT_WRITE_DDR			0x28
 286#define LUT_READ_DDR			0x29
 287#define LUT_LEARN_DDR			0x2A
 288#define LUT_DATSZ_DDR			0x2B
 289#define LUT_DUMMY_DDR			0x2C
 290#define LUT_DUMMY_RWDS_DDR		0x2D
 291
 292/*
 293 * Calculate number of required PAD bits for LUT register.
 294 *
 295 * The pad stands for the number of IO lines [0:7].
 296 * For example, the octal read needs eight IO lines,
 297 * so you should use LUT_PAD(8). This macro
 298 * returns 3 i.e. use eight (2^3) IP lines for read.
 299 */
 300#define LUT_PAD(x) (fls(x) - 1)
 301
 302/*
 303 * Macro for constructing the LUT entries with the following
 304 * register layout:
 305 *
 306 *  ---------------------------------------------------
 307 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 308 *  ---------------------------------------------------
 309 */
 310#define PAD_SHIFT		8
 311#define INSTR_SHIFT		10
 312#define OPRND_SHIFT		16
 313
 314/* Macros for constructing the LUT register. */
 315#define LUT_DEF(idx, ins, pad, opr)			  \
 316	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 317	(opr)) << (((idx) % 2) * OPRND_SHIFT))
 318
 319#define POLL_TOUT		5000
 320#define NXP_FSPI_MAX_CHIPSELECT		4
 321#define NXP_FSPI_MIN_IOMAP	SZ_4M
 322
 323#define DCFG_RCWSR1		0x100
 324#define SYS_PLL_RAT		GENMASK(6, 2)
 325
 326/* Access flash memory using IP bus only */
 327#define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
 328
 329struct nxp_fspi_devtype_data {
 330	unsigned int rxfifo;
 331	unsigned int txfifo;
 332	unsigned int ahb_buf_size;
 333	unsigned int quirks;
 334	unsigned int lut_num;
 335	bool little_endian;
 336};
 337
 338static struct nxp_fspi_devtype_data lx2160a_data = {
 339	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 340	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 341	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 342	.quirks = 0,
 343	.lut_num = 32,
 344	.little_endian = true,  /* little-endian    */
 345};
 346
 347static struct nxp_fspi_devtype_data imx8mm_data = {
 348	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 349	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 350	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 351	.quirks = 0,
 352	.lut_num = 32,
 353	.little_endian = true,  /* little-endian    */
 354};
 355
 356static struct nxp_fspi_devtype_data imx8qxp_data = {
 357	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 358	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 359	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 360	.quirks = 0,
 361	.lut_num = 32,
 362	.little_endian = true,  /* little-endian    */
 363};
 364
 365static struct nxp_fspi_devtype_data imx8dxl_data = {
 366	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 367	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 368	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 369	.quirks = FSPI_QUIRK_USE_IP_ONLY,
 370	.lut_num = 32,
 371	.little_endian = true,  /* little-endian    */
 372};
 373
 374static struct nxp_fspi_devtype_data imx8ulp_data = {
 375	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 376	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 377	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 378	.quirks = 0,
 379	.lut_num = 16,
 380	.little_endian = true,  /* little-endian    */
 381};
 382
 383struct nxp_fspi {
 384	void __iomem *iobase;
 385	void __iomem *ahb_addr;
 386	u32 memmap_phy;
 387	u32 memmap_phy_size;
 388	u32 memmap_start;
 389	u32 memmap_len;
 390	struct clk *clk, *clk_en;
 391	struct device *dev;
 392	struct completion c;
 393	struct nxp_fspi_devtype_data *devtype_data;
 394	struct mutex lock;
 395	struct pm_qos_request pm_qos_req;
 396	int selected;
 397};
 398
 399static inline int needs_ip_only(struct nxp_fspi *f)
 400{
 401	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
 402}
 403
 404/*
 405 * R/W functions for big- or little-endian registers:
 406 * The FSPI controller's endianness is independent of
 407 * the CPU core's endianness. So far, although the CPU
 408 * core is little-endian the FSPI controller can use
 409 * big-endian or little-endian.
 410 */
 411static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 412{
 413	if (f->devtype_data->little_endian)
 414		iowrite32(val, addr);
 415	else
 416		iowrite32be(val, addr);
 417}
 418
 419static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 420{
 421	if (f->devtype_data->little_endian)
 422		return ioread32(addr);
 423	else
 424		return ioread32be(addr);
 425}
 426
 427static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 428{
 429	struct nxp_fspi *f = dev_id;
 430	u32 reg;
 431
 432	/* clear interrupt */
 433	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 434	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 435
 436	if (reg & FSPI_INTR_IPCMDDONE)
 437		complete(&f->c);
 438
 439	return IRQ_HANDLED;
 440}
 441
 442static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 443{
 444	switch (width) {
 445	case 1:
 446	case 2:
 447	case 4:
 448	case 8:
 449		return 0;
 450	}
 451
 452	return -ENOTSUPP;
 453}
 454
 455static bool nxp_fspi_supports_op(struct spi_mem *mem,
 456				 const struct spi_mem_op *op)
 457{
 458	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 459	int ret;
 460
 461	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 462
 463	if (op->addr.nbytes)
 464		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 465
 466	if (op->dummy.nbytes)
 467		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 468
 469	if (op->data.nbytes)
 470		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 471
 472	if (ret)
 473		return false;
 474
 475	/*
 476	 * The number of address bytes should be equal to or less than 4 bytes.
 477	 */
 478	if (op->addr.nbytes > 4)
 479		return false;
 480
 481	/*
 482	 * If requested address value is greater than controller assigned
 483	 * memory mapped space, return error as it didn't fit in the range
 484	 * of assigned address space.
 485	 */
 486	if (op->addr.val >= f->memmap_phy_size)
 487		return false;
 488
 489	/* Max 64 dummy clock cycles supported */
 490	if (op->dummy.buswidth &&
 491	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 492		return false;
 493
 494	/* Max data length, check controller limits and alignment */
 495	if (op->data.dir == SPI_MEM_DATA_IN &&
 496	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 497	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 498	      !IS_ALIGNED(op->data.nbytes, 8))))
 499		return false;
 500
 501	if (op->data.dir == SPI_MEM_DATA_OUT &&
 502	    op->data.nbytes > f->devtype_data->txfifo)
 503		return false;
 504
 505	return spi_mem_default_supports_op(mem, op);
 506}
 507
 508/* Instead of busy looping invoke readl_poll_timeout functionality. */
 509static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 510				u32 mask, u32 delay_us,
 511				u32 timeout_us, bool c)
 512{
 513	u32 reg;
 514
 515	if (!f->devtype_data->little_endian)
 516		mask = (u32)cpu_to_be32(mask);
 517
 518	if (c)
 519		return readl_poll_timeout(base, reg, (reg & mask),
 520					  delay_us, timeout_us);
 521	else
 522		return readl_poll_timeout(base, reg, !(reg & mask),
 523					  delay_us, timeout_us);
 524}
 525
 526/*
 527 * If the target device content being changed by Write/Erase, need to
 528 * invalidate the AHB buffer. This can be achieved by doing the reset
 529 * of controller after setting MCR0[SWRESET] bit.
 530 */
 531static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 532{
 533	u32 reg;
 534	int ret;
 535
 536	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 537	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 538
 539	/* w1c register, wait unit clear */
 540	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 541				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 542	WARN_ON(ret);
 543}
 544
 545static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 546				 const struct spi_mem_op *op)
 547{
 548	void __iomem *base = f->iobase;
 549	u32 lutval[4] = {};
 550	int lutidx = 1, i;
 551	u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
 552	u32 target_lut_reg;
 553
 554	/* cmd */
 555	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 556			     op->cmd.opcode);
 557
 558	/* addr bytes */
 559	if (op->addr.nbytes) {
 560		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 561					      LUT_PAD(op->addr.buswidth),
 562					      op->addr.nbytes * 8);
 563		lutidx++;
 564	}
 565
 566	/* dummy bytes, if needed */
 567	if (op->dummy.nbytes) {
 568		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 569		/*
 570		 * Due to FlexSPI controller limitation number of PAD for dummy
 571		 * buswidth needs to be programmed as equal to data buswidth.
 572		 */
 573					      LUT_PAD(op->data.buswidth),
 574					      op->dummy.nbytes * 8 /
 575					      op->dummy.buswidth);
 576		lutidx++;
 577	}
 578
 579	/* read/write data bytes */
 580	if (op->data.nbytes) {
 581		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 582					      op->data.dir == SPI_MEM_DATA_IN ?
 583					      LUT_NXP_READ : LUT_NXP_WRITE,
 584					      LUT_PAD(op->data.buswidth),
 585					      0);
 586		lutidx++;
 587	}
 588
 589	/* stop condition. */
 590	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 591
 592	/* unlock LUT */
 593	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 594	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 595
 596	/* fill LUT */
 597	for (i = 0; i < ARRAY_SIZE(lutval); i++) {
 598		target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
 599		fspi_writel(f, lutval[i], base + target_lut_reg);
 600	}
 601
 602	dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
 603		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
 604
 605	/* lock LUT */
 606	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 607	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 608}
 609
 610static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 611{
 612	int ret;
 613
 614	if (is_acpi_node(dev_fwnode(f->dev)))
 615		return 0;
 616
 617	ret = clk_prepare_enable(f->clk_en);
 618	if (ret)
 619		return ret;
 620
 621	ret = clk_prepare_enable(f->clk);
 622	if (ret) {
 623		clk_disable_unprepare(f->clk_en);
 624		return ret;
 625	}
 626
 627	return 0;
 628}
 629
 630static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 631{
 632	if (is_acpi_node(dev_fwnode(f->dev)))
 633		return 0;
 634
 635	clk_disable_unprepare(f->clk);
 636	clk_disable_unprepare(f->clk_en);
 637
 638	return 0;
 639}
 640
 641static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
 642{
 643	int ret;
 644
 645	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
 646	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
 647	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
 648	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
 649	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
 650
 651	/*
 652	 * Enable the DLL calibration mode.
 653	 * The delay target for slave delay line is:
 654	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
 655	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
 656	 * means half of clock cycle of reference clock.
 657	 */
 658	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
 659		    f->iobase + FSPI_DLLACR);
 660	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
 661		    f->iobase + FSPI_DLLBCR);
 662
 663	/* Wait to get REF/SLV lock */
 664	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
 665				   0, POLL_TOUT, true);
 666	if (ret)
 667		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
 668}
 669
 670/*
 671 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 672 * register and start base address of the target device.
 673 *
 674 *							    (Higher address)
 675 *				--------    <-- FLSHB2CR0
 676 *				|  B2  |
 677 *				|      |
 678 *	B2 start address -->	--------    <-- FLSHB1CR0
 679 *				|  B1  |
 680 *				|      |
 681 *	B1 start address -->	--------    <-- FLSHA2CR0
 682 *				|  A2  |
 683 *				|      |
 684 *	A2 start address -->	--------    <-- FLSHA1CR0
 685 *				|  A1  |
 686 *				|      |
 687 *	A1 start address -->	--------		    (Lower address)
 688 *
 689 *
 690 * Start base address defines the starting address range for given CS and
 691 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
 692 *
 693 * But, different targets are having different combinations of number of CS,
 694 * some targets only have single CS or two CS covering controller's full
 695 * memory mapped space area.
 696 * Thus, implementation is being done as independent of the size and number
 697 * of the connected target device.
 698 * Assign controller memory mapped space size as the size to the connected
 699 * target device.
 700 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 701 * chip-select Flash configuration register.
 702 *
 703 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 704 * memory mapped size of the controller.
 705 * Value for rest of the CS FLSHxxCR0 register would be zero.
 706 *
 707 */
 708static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 709{
 710	unsigned long rate = spi->max_speed_hz;
 711	int ret;
 712	uint64_t size_kb;
 713
 714	/*
 715	 * Return, if previously selected target device is same as current
 716	 * requested target device.
 717	 */
 718	if (f->selected == spi_get_chipselect(spi, 0))
 719		return;
 720
 721	/* Reset FLSHxxCR0 registers */
 722	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 723	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 724	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 725	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 726
 727	/* Assign controller memory mapped space as size, KBytes, of flash. */
 728	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 729
 730	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 731		    4 * spi_get_chipselect(spi, 0));
 732
 733	dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
 734
 735	nxp_fspi_clk_disable_unprep(f);
 736
 737	ret = clk_set_rate(f->clk, rate);
 738	if (ret)
 739		return;
 740
 741	ret = nxp_fspi_clk_prep_enable(f);
 742	if (ret)
 743		return;
 744
 745	/*
 746	 * If clock rate > 100MHz, then switch from DLL override mode to
 747	 * DLL calibration mode.
 748	 */
 749	if (rate > 100000000)
 750		nxp_fspi_dll_calibration(f);
 751
 752	f->selected = spi_get_chipselect(spi, 0);
 753}
 754
 755static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 756{
 757	u32 start = op->addr.val;
 758	u32 len = op->data.nbytes;
 759
 760	/* if necessary, ioremap before AHB read */
 761	if ((!f->ahb_addr) || start < f->memmap_start ||
 762	     start + len > f->memmap_start + f->memmap_len) {
 763		if (f->ahb_addr)
 764			iounmap(f->ahb_addr);
 765
 766		f->memmap_start = start;
 767		f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
 768
 769		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
 770					 f->memmap_len);
 771
 772		if (!f->ahb_addr) {
 773			dev_err(f->dev, "failed to alloc memory\n");
 774			return -ENOMEM;
 775		}
 776	}
 777
 778	/* Read out the data directly from the AHB buffer. */
 779	memcpy_fromio(op->data.buf.in,
 780		      f->ahb_addr + start - f->memmap_start, len);
 781
 782	return 0;
 783}
 784
 785static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 786				 const struct spi_mem_op *op)
 787{
 788	void __iomem *base = f->iobase;
 789	int i, ret;
 790	u8 *buf = (u8 *) op->data.buf.out;
 791
 792	/* clear the TX FIFO. */
 793	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 794
 795	/*
 796	 * Default value of water mark level is 8 bytes, hence in single
 797	 * write request controller can write max 8 bytes of data.
 798	 */
 799
 800	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 801		/* Wait for TXFIFO empty */
 802		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 803					   FSPI_INTR_IPTXWE, 0,
 804					   POLL_TOUT, true);
 805		WARN_ON(ret);
 806
 807		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 808		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 809		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 810	}
 811
 812	if (i < op->data.nbytes) {
 813		u32 data = 0;
 814		int j;
 815		int remaining = op->data.nbytes - i;
 816		/* Wait for TXFIFO empty */
 817		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 818					   FSPI_INTR_IPTXWE, 0,
 819					   POLL_TOUT, true);
 820		WARN_ON(ret);
 821
 822		for (j = 0; j < ALIGN(remaining, 4); j += 4) {
 823			memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
 824			fspi_writel(f, data, base + FSPI_TFDR + j);
 825		}
 826		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 827	}
 828}
 829
 830static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 831			  const struct spi_mem_op *op)
 832{
 833	void __iomem *base = f->iobase;
 834	int i, ret;
 835	int len = op->data.nbytes;
 836	u8 *buf = (u8 *) op->data.buf.in;
 837
 838	/*
 839	 * Default value of water mark level is 8 bytes, hence in single
 840	 * read request controller can read max 8 bytes of data.
 841	 */
 842	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 843		/* Wait for RXFIFO available */
 844		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 845					   FSPI_INTR_IPRXWA, 0,
 846					   POLL_TOUT, true);
 847		WARN_ON(ret);
 848
 849		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 850		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 851		/* move the FIFO pointer */
 852		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 853	}
 854
 855	if (i < len) {
 856		u32 tmp;
 857		int size, j;
 858
 859		buf = op->data.buf.in + i;
 860		/* Wait for RXFIFO available */
 861		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 862					   FSPI_INTR_IPRXWA, 0,
 863					   POLL_TOUT, true);
 864		WARN_ON(ret);
 865
 866		len = op->data.nbytes - i;
 867		for (j = 0; j < op->data.nbytes - i; j += 4) {
 868			tmp = fspi_readl(f, base + FSPI_RFDR + j);
 869			size = min(len, 4);
 870			memcpy(buf + j, &tmp, size);
 871			len -= size;
 872		}
 873	}
 874
 875	/* invalid the RXFIFO */
 876	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 877	/* move the FIFO pointer */
 878	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 879}
 880
 881static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 882{
 883	void __iomem *base = f->iobase;
 884	int seqnum = 0;
 885	int err = 0;
 886	u32 reg, seqid_lut;
 887
 888	reg = fspi_readl(f, base + FSPI_IPRXFCR);
 889	/* invalid RXFIFO first */
 890	reg &= ~FSPI_IPRXFCR_DMA_EN;
 891	reg = reg | FSPI_IPRXFCR_CLR;
 892	fspi_writel(f, reg, base + FSPI_IPRXFCR);
 893
 894	init_completion(&f->c);
 895
 896	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 897	/*
 898	 * Always start the sequence at the same index since we update
 899	 * the LUT at each exec_op() call. And also specify the DATA
 900	 * length, since it's has not been specified in the LUT.
 901	 */
 902	seqid_lut = f->devtype_data->lut_num - 1;
 903	fspi_writel(f, op->data.nbytes |
 904		 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
 905		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 906		 base + FSPI_IPCR1);
 907
 908	/* Trigger the LUT now. */
 909	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 910
 911	/* Wait for the interrupt. */
 912	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 913		err = -ETIMEDOUT;
 914
 915	/* Invoke IP data read, if request is of data read. */
 916	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 917		nxp_fspi_read_rxfifo(f, op);
 918
 919	return err;
 920}
 921
 922static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 923{
 924	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 925	int err = 0;
 926
 927	mutex_lock(&f->lock);
 928
 929	/* Wait for controller being ready. */
 930	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 931				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 932	WARN_ON(err);
 933
 934	nxp_fspi_select_mem(f, mem->spi);
 935
 936	nxp_fspi_prepare_lut(f, op);
 937	/*
 938	 * If we have large chunks of data, we read them through the AHB bus by
 939	 * accessing the mapped memory. In all other cases we use IP commands
 940	 * to access the flash. Read via AHB bus may be corrupted due to
 941	 * existence of an errata and therefore discard AHB read in such cases.
 942	 */
 943	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 944	    op->data.dir == SPI_MEM_DATA_IN &&
 945	    !needs_ip_only(f)) {
 946		err = nxp_fspi_read_ahb(f, op);
 947	} else {
 948		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 949			nxp_fspi_fill_txfifo(f, op);
 950
 951		err = nxp_fspi_do_op(f, op);
 952	}
 953
 954	/* Invalidate the data in the AHB buffer. */
 955	nxp_fspi_invalid(f);
 956
 957	mutex_unlock(&f->lock);
 958
 959	return err;
 960}
 961
 962static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 963{
 964	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 965
 966	if (op->data.dir == SPI_MEM_DATA_OUT) {
 967		if (op->data.nbytes > f->devtype_data->txfifo)
 968			op->data.nbytes = f->devtype_data->txfifo;
 969	} else {
 970		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 971			op->data.nbytes = f->devtype_data->ahb_buf_size;
 972		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 973			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 974	}
 975
 976	/* Limit data bytes to RX FIFO in case of IP read only */
 977	if (op->data.dir == SPI_MEM_DATA_IN &&
 978	    needs_ip_only(f) &&
 979	    op->data.nbytes > f->devtype_data->rxfifo)
 980		op->data.nbytes = f->devtype_data->rxfifo;
 981
 982	return 0;
 983}
 984
 985static void erratum_err050568(struct nxp_fspi *f)
 986{
 987	static const struct soc_device_attribute ls1028a_soc_attr[] = {
 988		{ .family = "QorIQ LS1028A" },
 989		{ /* sentinel */ }
 990	};
 991	struct regmap *map;
 992	u32 val, sys_pll_ratio;
 993	int ret;
 994
 995	/* Check for LS1028A family */
 996	if (!soc_device_match(ls1028a_soc_attr)) {
 997		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
 998		return;
 999	}
1000
1001	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1002	if (IS_ERR(map)) {
1003		dev_err(f->dev, "No syscon regmap\n");
1004		goto err;
1005	}
1006
1007	ret = regmap_read(map, DCFG_RCWSR1, &val);
1008	if (ret < 0)
1009		goto err;
1010
1011	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1012	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1013
1014	/* Use IP bus only if platform clock is 300MHz */
1015	if (sys_pll_ratio == 3)
1016		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1017
1018	return;
1019
1020err:
1021	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1022}
1023
1024static int nxp_fspi_default_setup(struct nxp_fspi *f)
1025{
1026	void __iomem *base = f->iobase;
1027	int ret, i;
1028	u32 reg, seqid_lut;
1029
1030	/* disable and unprepare clock to avoid glitch pass to controller */
1031	nxp_fspi_clk_disable_unprep(f);
1032
1033	/* the default frequency, we will change it later if necessary. */
1034	ret = clk_set_rate(f->clk, 20000000);
1035	if (ret)
1036		return ret;
1037
1038	ret = nxp_fspi_clk_prep_enable(f);
1039	if (ret)
1040		return ret;
1041
1042	/*
1043	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1044	 * platform frequency equal to 300 MHz on LS1028A.
1045	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1046	 * Layerscape LS1028A platform.
1047	 */
1048	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1049		erratum_err050568(f);
1050
1051	/* Reset the module */
1052	/* w1c register, wait unit clear */
1053	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1054				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1055	WARN_ON(ret);
1056
1057	/* Disable the module */
1058	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1059
1060	/*
1061	 * Config the DLL register to default value, enable the target clock delay
1062	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1063	 * chain, this is the suggested setting when clock rate < 100MHz.
1064	 */
1065	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1066	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1067
1068	/* enable module */
1069	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1070		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1071		    base + FSPI_MCR0);
1072
1073	/*
1074	 * Disable same device enable bit and configure all target devices
1075	 * independently.
1076	 */
1077	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1078	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1079	fspi_writel(f, reg, base + FSPI_MCR2);
1080
1081	/* AHB configuration for access buffer 0~7. */
1082	for (i = 0; i < 7; i++)
1083		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1084
1085	/*
1086	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1087	 * performance.
1088	 */
1089	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1090		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1091
1092	/* prefetch and no start address alignment limitation */
1093	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1094		 base + FSPI_AHBCR);
1095
1096	/* Reset the FLSHxCR1 registers. */
1097	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1098	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1099	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1100	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1101	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1102
1103	/*
1104	 * The driver only uses one single LUT entry, that is updated on
1105	 * each call of exec_op(). Index 0 is preset at boot with a basic
1106	 * read operation, so let's use the last entry.
1107	 */
1108	seqid_lut = f->devtype_data->lut_num - 1;
1109	/* AHB Read - Set lut sequence ID for all CS. */
1110	fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1111	fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1112	fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1113	fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1114
1115	f->selected = -1;
1116
1117	/* enable the interrupt */
1118	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1119
1120	return 0;
1121}
1122
1123static const char *nxp_fspi_get_name(struct spi_mem *mem)
1124{
1125	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1126	struct device *dev = &mem->spi->dev;
1127	const char *name;
1128
1129	// Set custom name derived from the platform_device of the controller.
1130	if (of_get_available_child_count(f->dev->of_node) == 1)
1131		return dev_name(f->dev);
1132
1133	name = devm_kasprintf(dev, GFP_KERNEL,
1134			      "%s-%d", dev_name(f->dev),
1135			      spi_get_chipselect(mem->spi, 0));
1136
1137	if (!name) {
1138		dev_err(dev, "failed to get memory for custom flash name\n");
1139		return ERR_PTR(-ENOMEM);
1140	}
1141
1142	return name;
1143}
1144
1145static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1146	.adjust_op_size = nxp_fspi_adjust_op_size,
1147	.supports_op = nxp_fspi_supports_op,
1148	.exec_op = nxp_fspi_exec_op,
1149	.get_name = nxp_fspi_get_name,
1150};
1151
1152static int nxp_fspi_probe(struct platform_device *pdev)
1153{
1154	struct spi_controller *ctlr;
1155	struct device *dev = &pdev->dev;
1156	struct device_node *np = dev->of_node;
1157	struct resource *res;
1158	struct nxp_fspi *f;
1159	int ret;
1160	u32 reg;
1161
1162	ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
1163	if (!ctlr)
1164		return -ENOMEM;
1165
1166	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1167			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1168
1169	f = spi_controller_get_devdata(ctlr);
1170	f->dev = dev;
1171	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1172	if (!f->devtype_data) {
1173		ret = -ENODEV;
1174		goto err_put_ctrl;
1175	}
1176
1177	platform_set_drvdata(pdev, f);
1178
1179	/* find the resources - configuration register address space */
1180	if (is_acpi_node(dev_fwnode(f->dev)))
1181		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1182	else
1183		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1184
1185	if (IS_ERR(f->iobase)) {
1186		ret = PTR_ERR(f->iobase);
1187		goto err_put_ctrl;
1188	}
1189
1190	/* find the resources - controller memory mapped space */
1191	if (is_acpi_node(dev_fwnode(f->dev)))
1192		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1193	else
1194		res = platform_get_resource_byname(pdev,
1195				IORESOURCE_MEM, "fspi_mmap");
1196
1197	if (!res) {
1198		ret = -ENODEV;
1199		goto err_put_ctrl;
1200	}
1201
1202	/* assign memory mapped starting address and mapped size. */
1203	f->memmap_phy = res->start;
1204	f->memmap_phy_size = resource_size(res);
1205
1206	/* find the clocks */
1207	if (dev_of_node(&pdev->dev)) {
1208		f->clk_en = devm_clk_get(dev, "fspi_en");
1209		if (IS_ERR(f->clk_en)) {
1210			ret = PTR_ERR(f->clk_en);
1211			goto err_put_ctrl;
1212		}
1213
1214		f->clk = devm_clk_get(dev, "fspi");
1215		if (IS_ERR(f->clk)) {
1216			ret = PTR_ERR(f->clk);
1217			goto err_put_ctrl;
1218		}
1219
1220		ret = nxp_fspi_clk_prep_enable(f);
1221		if (ret) {
1222			dev_err(dev, "can not enable the clock\n");
1223			goto err_put_ctrl;
1224		}
1225	}
1226
1227	/* Clear potential interrupts */
1228	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1229	if (reg)
1230		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1231
1232	/* find the irq */
1233	ret = platform_get_irq(pdev, 0);
1234	if (ret < 0)
1235		goto err_disable_clk;
1236
1237	ret = devm_request_irq(dev, ret,
1238			nxp_fspi_irq_handler, 0, pdev->name, f);
1239	if (ret) {
1240		dev_err(dev, "failed to request irq: %d\n", ret);
1241		goto err_disable_clk;
1242	}
1243
1244	mutex_init(&f->lock);
1245
1246	ctlr->bus_num = -1;
1247	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1248	ctlr->mem_ops = &nxp_fspi_mem_ops;
1249
1250	nxp_fspi_default_setup(f);
1251
1252	ctlr->dev.of_node = np;
1253
1254	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1255	if (ret)
1256		goto err_destroy_mutex;
1257
1258	return 0;
1259
1260err_destroy_mutex:
1261	mutex_destroy(&f->lock);
1262
1263err_disable_clk:
1264	nxp_fspi_clk_disable_unprep(f);
1265
1266err_put_ctrl:
1267	spi_controller_put(ctlr);
1268
1269	dev_err(dev, "NXP FSPI probe failed\n");
1270	return ret;
1271}
1272
1273static void nxp_fspi_remove(struct platform_device *pdev)
1274{
1275	struct nxp_fspi *f = platform_get_drvdata(pdev);
1276
1277	/* disable the hardware */
1278	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1279
1280	nxp_fspi_clk_disable_unprep(f);
1281
1282	mutex_destroy(&f->lock);
1283
1284	if (f->ahb_addr)
1285		iounmap(f->ahb_addr);
1286}
1287
1288static int nxp_fspi_suspend(struct device *dev)
1289{
1290	return 0;
1291}
1292
1293static int nxp_fspi_resume(struct device *dev)
1294{
1295	struct nxp_fspi *f = dev_get_drvdata(dev);
1296
1297	nxp_fspi_default_setup(f);
1298
1299	return 0;
1300}
1301
1302static const struct of_device_id nxp_fspi_dt_ids[] = {
1303	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1304	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1305	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1306	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1307	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1308	{ .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1309	{ /* sentinel */ }
1310};
1311MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1312
1313#ifdef CONFIG_ACPI
1314static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1315	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1316	{}
1317};
1318MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1319#endif
1320
1321static const struct dev_pm_ops nxp_fspi_pm_ops = {
1322	.suspend	= nxp_fspi_suspend,
1323	.resume		= nxp_fspi_resume,
1324};
1325
1326static struct platform_driver nxp_fspi_driver = {
1327	.driver = {
1328		.name	= "nxp-fspi",
1329		.of_match_table = nxp_fspi_dt_ids,
1330		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1331		.pm =   &nxp_fspi_pm_ops,
1332	},
1333	.probe          = nxp_fspi_probe,
1334	.remove		= nxp_fspi_remove,
1335};
1336module_platform_driver(nxp_fspi_driver);
1337
1338MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1339MODULE_AUTHOR("NXP Semiconductor");
1340MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1341MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1342MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1343MODULE_LICENSE("GPL v2");