Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019 NXP.
   7 *
   8 * FlexSPI is a flexsible SPI host controller which supports two SPI
   9 * channels and up to 4 external devices. Each channel supports
  10 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  11 * data lines).
  12 *
  13 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  14 * LUT registers are a look-up-table for sequences of instructions.
  15 * A valid sequence consists of four LUT registers.
  16 * Maximum 32 LUT sequences can be programmed simultaneously.
  17 *
  18 * LUTs are being created at run-time based on the commands passed
  19 * from the spi-mem framework, thus using single LUT index.
  20 *
  21 * Software triggered Flash read/write access by IP Bus.
  22 *
  23 * Memory mapped read access by AHB Bus.
  24 *
  25 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  26 *
  27 * Author:
  28 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  29 *     Boris Brezillon <bbrezillon@kernel.org>
  30 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  31 */
  32
  33#include <linux/bitops.h>
  34#include <linux/clk.h>
  35#include <linux/completion.h>
  36#include <linux/delay.h>
  37#include <linux/err.h>
  38#include <linux/errno.h>
  39#include <linux/interrupt.h>
  40#include <linux/io.h>
  41#include <linux/iopoll.h>
  42#include <linux/jiffies.h>
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/mutex.h>
  46#include <linux/of.h>
  47#include <linux/of_device.h>
  48#include <linux/platform_device.h>
  49#include <linux/pm_qos.h>
  50#include <linux/sizes.h>
  51
  52#include <linux/spi/spi.h>
  53#include <linux/spi/spi-mem.h>
  54
  55/*
  56 * The driver only uses one single LUT entry, that is updated on
  57 * each call of exec_op(). Index 0 is preset at boot with a basic
  58 * read operation, so let's use the last entry (31).
  59 */
  60#define	SEQID_LUT			31
  61
  62/* Registers used by the driver */
  63#define FSPI_MCR0			0x00
  64#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
  65#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
  66#define FSPI_MCR0_LEARN_EN		BIT(15)
  67#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
  68#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
  69#define FSPI_MCR0_DOZE_EN		BIT(12)
  70#define FSPI_MCR0_HSEN			BIT(11)
  71#define FSPI_MCR0_SERCLKDIV		BIT(8)
  72#define FSPI_MCR0_ATDF_EN		BIT(7)
  73#define FSPI_MCR0_ARDF_EN		BIT(6)
  74#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
  75#define FSPI_MCR0_END_CFG(x)		((x) << 2)
  76#define FSPI_MCR0_MDIS			BIT(1)
  77#define FSPI_MCR0_SWRST			BIT(0)
  78
  79#define FSPI_MCR1			0x04
  80#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
  81#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
  82
  83#define FSPI_MCR2			0x08
  84#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
  85#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
  86#define FSPI_MCR2_CLRLRPHS		BIT(14)
  87#define FSPI_MCR2_ABRDATSZ		BIT(8)
  88#define FSPI_MCR2_ABRLEARN		BIT(7)
  89#define FSPI_MCR2_ABR_READ		BIT(6)
  90#define FSPI_MCR2_ABRWRITE		BIT(5)
  91#define FSPI_MCR2_ABRDUMMY		BIT(4)
  92#define FSPI_MCR2_ABR_MODE		BIT(3)
  93#define FSPI_MCR2_ABRCADDR		BIT(2)
  94#define FSPI_MCR2_ABRRADDR		BIT(1)
  95#define FSPI_MCR2_ABR_CMD		BIT(0)
  96
  97#define FSPI_AHBCR			0x0c
  98#define FSPI_AHBCR_RDADDROPT		BIT(6)
  99#define FSPI_AHBCR_PREF_EN		BIT(5)
 100#define FSPI_AHBCR_BUFF_EN		BIT(4)
 101#define FSPI_AHBCR_CACH_EN		BIT(3)
 102#define FSPI_AHBCR_CLRTXBUF		BIT(2)
 103#define FSPI_AHBCR_CLRRXBUF		BIT(1)
 104#define FSPI_AHBCR_PAR_EN		BIT(0)
 105
 106#define FSPI_INTEN			0x10
 107#define FSPI_INTEN_SCLKSBWR		BIT(9)
 108#define FSPI_INTEN_SCLKSBRD		BIT(8)
 109#define FSPI_INTEN_DATALRNFL		BIT(7)
 110#define FSPI_INTEN_IPTXWE		BIT(6)
 111#define FSPI_INTEN_IPRXWA		BIT(5)
 112#define FSPI_INTEN_AHBCMDERR		BIT(4)
 113#define FSPI_INTEN_IPCMDERR		BIT(3)
 114#define FSPI_INTEN_AHBCMDGE		BIT(2)
 115#define FSPI_INTEN_IPCMDGE		BIT(1)
 116#define FSPI_INTEN_IPCMDDONE		BIT(0)
 117
 118#define FSPI_INTR			0x14
 119#define FSPI_INTR_SCLKSBWR		BIT(9)
 120#define FSPI_INTR_SCLKSBRD		BIT(8)
 121#define FSPI_INTR_DATALRNFL		BIT(7)
 122#define FSPI_INTR_IPTXWE		BIT(6)
 123#define FSPI_INTR_IPRXWA		BIT(5)
 124#define FSPI_INTR_AHBCMDERR		BIT(4)
 125#define FSPI_INTR_IPCMDERR		BIT(3)
 126#define FSPI_INTR_AHBCMDGE		BIT(2)
 127#define FSPI_INTR_IPCMDGE		BIT(1)
 128#define FSPI_INTR_IPCMDDONE		BIT(0)
 129
 130#define FSPI_LUTKEY			0x18
 131#define FSPI_LUTKEY_VALUE		0x5AF05AF0
 132
 133#define FSPI_LCKCR			0x1C
 134
 135#define FSPI_LCKER_LOCK			0x1
 136#define FSPI_LCKER_UNLOCK		0x2
 137
 138#define FSPI_BUFXCR_INVALID_MSTRID	0xE
 139#define FSPI_AHBRX_BUF0CR0		0x20
 140#define FSPI_AHBRX_BUF1CR0		0x24
 141#define FSPI_AHBRX_BUF2CR0		0x28
 142#define FSPI_AHBRX_BUF3CR0		0x2C
 143#define FSPI_AHBRX_BUF4CR0		0x30
 144#define FSPI_AHBRX_BUF5CR0		0x34
 145#define FSPI_AHBRX_BUF6CR0		0x38
 146#define FSPI_AHBRX_BUF7CR0		0x3C
 147#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
 148
 149#define FSPI_AHBRX_BUF0CR1		0x40
 150#define FSPI_AHBRX_BUF1CR1		0x44
 151#define FSPI_AHBRX_BUF2CR1		0x48
 152#define FSPI_AHBRX_BUF3CR1		0x4C
 153#define FSPI_AHBRX_BUF4CR1		0x50
 154#define FSPI_AHBRX_BUF5CR1		0x54
 155#define FSPI_AHBRX_BUF6CR1		0x58
 156#define FSPI_AHBRX_BUF7CR1		0x5C
 157
 158#define FSPI_FLSHA1CR0			0x60
 159#define FSPI_FLSHA2CR0			0x64
 160#define FSPI_FLSHB1CR0			0x68
 161#define FSPI_FLSHB2CR0			0x6C
 162#define FSPI_FLSHXCR0_SZ_KB		10
 163#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
 164
 165#define FSPI_FLSHA1CR1			0x70
 166#define FSPI_FLSHA2CR1			0x74
 167#define FSPI_FLSHB1CR1			0x78
 168#define FSPI_FLSHB2CR1			0x7C
 169#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
 170#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
 171#define FSPI_FLSHXCR1_WA		BIT(10)
 172#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
 173#define FSPI_FLSHXCR1_TCSS(x)		(x)
 174
 175#define FSPI_FLSHA1CR2			0x80
 176#define FSPI_FLSHA2CR2			0x84
 177#define FSPI_FLSHB1CR2			0x88
 178#define FSPI_FLSHB2CR2			0x8C
 179#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
 180#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
 181#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
 182#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
 183#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
 184#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
 185
 186#define FSPI_IPCR0			0xA0
 187
 188#define FSPI_IPCR1			0xA4
 189#define FSPI_IPCR1_IPAREN		BIT(31)
 190#define FSPI_IPCR1_SEQNUM_SHIFT		24
 191#define FSPI_IPCR1_SEQID_SHIFT		16
 192#define FSPI_IPCR1_IDATSZ(x)		(x)
 193
 194#define FSPI_IPCMD			0xB0
 195#define FSPI_IPCMD_TRG			BIT(0)
 196
 197#define FSPI_DLPR			0xB4
 198
 199#define FSPI_IPRXFCR			0xB8
 200#define FSPI_IPRXFCR_CLR		BIT(0)
 201#define FSPI_IPRXFCR_DMA_EN		BIT(1)
 202#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
 203
 204#define FSPI_IPTXFCR			0xBC
 205#define FSPI_IPTXFCR_CLR		BIT(0)
 206#define FSPI_IPTXFCR_DMA_EN		BIT(1)
 207#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
 208
 209#define FSPI_DLLACR			0xC0
 210#define FSPI_DLLACR_OVRDEN		BIT(8)
 211
 212#define FSPI_DLLBCR			0xC4
 213#define FSPI_DLLBCR_OVRDEN		BIT(8)
 214
 215#define FSPI_STS0			0xE0
 216#define FSPI_STS0_DLPHB(x)		((x) << 8)
 217#define FSPI_STS0_DLPHA(x)		((x) << 4)
 218#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
 219#define FSPI_STS0_ARB_IDLE		BIT(1)
 220#define FSPI_STS0_SEQ_IDLE		BIT(0)
 221
 222#define FSPI_STS1			0xE4
 223#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
 224#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
 225#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
 226#define FSPI_STS1_AHB_ERRID(x)		(x)
 227
 228#define FSPI_AHBSPNST			0xEC
 229#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
 230#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
 231#define FSPI_AHBSPNST_ACTIVE		BIT(0)
 232
 233#define FSPI_IPRXFSTS			0xF0
 234#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
 235#define FSPI_IPRXFSTS_FILL(x)		(x)
 236
 237#define FSPI_IPTXFSTS			0xF4
 238#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
 239#define FSPI_IPTXFSTS_FILL(x)		(x)
 240
 241#define FSPI_RFDR			0x100
 242#define FSPI_TFDR			0x180
 243
 244#define FSPI_LUT_BASE			0x200
 245#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
 246#define FSPI_LUT_REG(idx) \
 247	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 248
 249/* register map end */
 250
 251/* Instruction set for the LUT register. */
 252#define LUT_STOP			0x00
 253#define LUT_CMD				0x01
 254#define LUT_ADDR			0x02
 255#define LUT_CADDR_SDR			0x03
 256#define LUT_MODE			0x04
 257#define LUT_MODE2			0x05
 258#define LUT_MODE4			0x06
 259#define LUT_MODE8			0x07
 260#define LUT_NXP_WRITE			0x08
 261#define LUT_NXP_READ			0x09
 262#define LUT_LEARN_SDR			0x0A
 263#define LUT_DATSZ_SDR			0x0B
 264#define LUT_DUMMY			0x0C
 265#define LUT_DUMMY_RWDS_SDR		0x0D
 266#define LUT_JMP_ON_CS			0x1F
 267#define LUT_CMD_DDR			0x21
 268#define LUT_ADDR_DDR			0x22
 269#define LUT_CADDR_DDR			0x23
 270#define LUT_MODE_DDR			0x24
 271#define LUT_MODE2_DDR			0x25
 272#define LUT_MODE4_DDR			0x26
 273#define LUT_MODE8_DDR			0x27
 274#define LUT_WRITE_DDR			0x28
 275#define LUT_READ_DDR			0x29
 276#define LUT_LEARN_DDR			0x2A
 277#define LUT_DATSZ_DDR			0x2B
 278#define LUT_DUMMY_DDR			0x2C
 279#define LUT_DUMMY_RWDS_DDR		0x2D
 280
 281/*
 282 * Calculate number of required PAD bits for LUT register.
 283 *
 284 * The pad stands for the number of IO lines [0:7].
 285 * For example, the octal read needs eight IO lines,
 286 * so you should use LUT_PAD(8). This macro
 287 * returns 3 i.e. use eight (2^3) IP lines for read.
 288 */
 289#define LUT_PAD(x) (fls(x) - 1)
 290
 291/*
 292 * Macro for constructing the LUT entries with the following
 293 * register layout:
 294 *
 295 *  ---------------------------------------------------
 296 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 297 *  ---------------------------------------------------
 298 */
 299#define PAD_SHIFT		8
 300#define INSTR_SHIFT		10
 301#define OPRND_SHIFT		16
 302
 303/* Macros for constructing the LUT register. */
 304#define LUT_DEF(idx, ins, pad, opr)			  \
 305	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 306	(opr)) << (((idx) % 2) * OPRND_SHIFT))
 307
 308#define POLL_TOUT		5000
 309#define NXP_FSPI_MAX_CHIPSELECT		4
 310
 311struct nxp_fspi_devtype_data {
 312	unsigned int rxfifo;
 313	unsigned int txfifo;
 314	unsigned int ahb_buf_size;
 315	unsigned int quirks;
 316	bool little_endian;
 317};
 318
 319static const struct nxp_fspi_devtype_data lx2160a_data = {
 320	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 321	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 322	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 323	.quirks = 0,
 324	.little_endian = true,  /* little-endian    */
 325};
 326
 327struct nxp_fspi {
 328	void __iomem *iobase;
 329	void __iomem *ahb_addr;
 330	u32 memmap_phy;
 331	u32 memmap_phy_size;
 332	struct clk *clk, *clk_en;
 333	struct device *dev;
 334	struct completion c;
 335	const struct nxp_fspi_devtype_data *devtype_data;
 336	struct mutex lock;
 337	struct pm_qos_request pm_qos_req;
 338	int selected;
 339};
 340
 341/*
 342 * R/W functions for big- or little-endian registers:
 343 * The FSPI controller's endianness is independent of
 344 * the CPU core's endianness. So far, although the CPU
 345 * core is little-endian the FSPI controller can use
 346 * big-endian or little-endian.
 347 */
 348static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 349{
 350	if (f->devtype_data->little_endian)
 351		iowrite32(val, addr);
 352	else
 353		iowrite32be(val, addr);
 354}
 355
 356static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 357{
 358	if (f->devtype_data->little_endian)
 359		return ioread32(addr);
 360	else
 361		return ioread32be(addr);
 362}
 363
 364static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 365{
 366	struct nxp_fspi *f = dev_id;
 367	u32 reg;
 368
 369	/* clear interrupt */
 370	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 371	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 372
 373	if (reg & FSPI_INTR_IPCMDDONE)
 374		complete(&f->c);
 375
 376	return IRQ_HANDLED;
 377}
 378
 379static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 380{
 381	switch (width) {
 382	case 1:
 383	case 2:
 384	case 4:
 385	case 8:
 386		return 0;
 387	}
 388
 389	return -ENOTSUPP;
 390}
 391
 392static bool nxp_fspi_supports_op(struct spi_mem *mem,
 393				 const struct spi_mem_op *op)
 394{
 395	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 396	int ret;
 397
 398	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 399
 400	if (op->addr.nbytes)
 401		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 402
 403	if (op->dummy.nbytes)
 404		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 405
 406	if (op->data.nbytes)
 407		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 408
 409	if (ret)
 410		return false;
 411
 412	/*
 413	 * The number of address bytes should be equal to or less than 4 bytes.
 414	 */
 415	if (op->addr.nbytes > 4)
 416		return false;
 417
 418	/*
 419	 * If requested address value is greater than controller assigned
 420	 * memory mapped space, return error as it didn't fit in the range
 421	 * of assigned address space.
 422	 */
 423	if (op->addr.val >= f->memmap_phy_size)
 424		return false;
 425
 426	/* Max 64 dummy clock cycles supported */
 427	if (op->dummy.buswidth &&
 428	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 429		return false;
 430
 431	/* Max data length, check controller limits and alignment */
 432	if (op->data.dir == SPI_MEM_DATA_IN &&
 433	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 434	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 435	      !IS_ALIGNED(op->data.nbytes, 8))))
 436		return false;
 437
 438	if (op->data.dir == SPI_MEM_DATA_OUT &&
 439	    op->data.nbytes > f->devtype_data->txfifo)
 440		return false;
 441
 442	return true;
 443}
 444
 445/* Instead of busy looping invoke readl_poll_timeout functionality. */
 446static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 447				u32 mask, u32 delay_us,
 448				u32 timeout_us, bool c)
 449{
 450	u32 reg;
 451
 452	if (!f->devtype_data->little_endian)
 453		mask = (u32)cpu_to_be32(mask);
 454
 455	if (c)
 456		return readl_poll_timeout(base, reg, (reg & mask),
 457					  delay_us, timeout_us);
 458	else
 459		return readl_poll_timeout(base, reg, !(reg & mask),
 460					  delay_us, timeout_us);
 461}
 462
 463/*
 464 * If the slave device content being changed by Write/Erase, need to
 465 * invalidate the AHB buffer. This can be achieved by doing the reset
 466 * of controller after setting MCR0[SWRESET] bit.
 467 */
 468static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 469{
 470	u32 reg;
 471	int ret;
 472
 473	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 474	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 475
 476	/* w1c register, wait unit clear */
 477	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 478				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 479	WARN_ON(ret);
 480}
 481
 482static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 483				 const struct spi_mem_op *op)
 484{
 485	void __iomem *base = f->iobase;
 486	u32 lutval[4] = {};
 487	int lutidx = 1, i;
 488
 489	/* cmd */
 490	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 491			     op->cmd.opcode);
 492
 493	/* addr bytes */
 494	if (op->addr.nbytes) {
 495		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 496					      LUT_PAD(op->addr.buswidth),
 497					      op->addr.nbytes * 8);
 498		lutidx++;
 499	}
 500
 501	/* dummy bytes, if needed */
 502	if (op->dummy.nbytes) {
 503		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 504		/*
 505		 * Due to FlexSPI controller limitation number of PAD for dummy
 506		 * buswidth needs to be programmed as equal to data buswidth.
 507		 */
 508					      LUT_PAD(op->data.buswidth),
 509					      op->dummy.nbytes * 8 /
 510					      op->dummy.buswidth);
 511		lutidx++;
 512	}
 513
 514	/* read/write data bytes */
 515	if (op->data.nbytes) {
 516		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 517					      op->data.dir == SPI_MEM_DATA_IN ?
 518					      LUT_NXP_READ : LUT_NXP_WRITE,
 519					      LUT_PAD(op->data.buswidth),
 520					      0);
 521		lutidx++;
 522	}
 523
 524	/* stop condition. */
 525	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 526
 527	/* unlock LUT */
 528	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 529	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 530
 531	/* fill LUT */
 532	for (i = 0; i < ARRAY_SIZE(lutval); i++)
 533		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 534
 535	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
 536		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
 537
 538	/* lock LUT */
 539	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 540	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 541}
 542
 543static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 544{
 545	int ret;
 546
 547	ret = clk_prepare_enable(f->clk_en);
 548	if (ret)
 549		return ret;
 550
 551	ret = clk_prepare_enable(f->clk);
 552	if (ret) {
 553		clk_disable_unprepare(f->clk_en);
 554		return ret;
 555	}
 556
 557	return 0;
 558}
 559
 560static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 561{
 562	clk_disable_unprepare(f->clk);
 563	clk_disable_unprepare(f->clk_en);
 564}
 565
 566/*
 567 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 568 * register and start base address of the slave device.
 569 *
 570 *							    (Higher address)
 571 *				--------    <-- FLSHB2CR0
 572 *				|  B2  |
 573 *				|      |
 574 *	B2 start address -->	--------    <-- FLSHB1CR0
 575 *				|  B1  |
 576 *				|      |
 577 *	B1 start address -->	--------    <-- FLSHA2CR0
 578 *				|  A2  |
 579 *				|      |
 580 *	A2 start address -->	--------    <-- FLSHA1CR0
 581 *				|  A1  |
 582 *				|      |
 583 *	A1 start address -->	--------		    (Lower address)
 584 *
 585 *
 586 * Start base address defines the starting address range for given CS and
 587 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 588 *
 589 * But, different targets are having different combinations of number of CS,
 590 * some targets only have single CS or two CS covering controller's full
 591 * memory mapped space area.
 592 * Thus, implementation is being done as independent of the size and number
 593 * of the connected slave device.
 594 * Assign controller memory mapped space size as the size to the connected
 595 * slave device.
 596 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 597 * chip-select Flash configuration register.
 598 *
 599 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 600 * memory mapped size of the controller.
 601 * Value for rest of the CS FLSHxxCR0 register would be zero.
 602 *
 603 */
 604static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 605{
 606	unsigned long rate = spi->max_speed_hz;
 607	int ret;
 608	uint64_t size_kb;
 609
 610	/*
 611	 * Return, if previously selected slave device is same as current
 612	 * requested slave device.
 613	 */
 614	if (f->selected == spi->chip_select)
 615		return;
 616
 617	/* Reset FLSHxxCR0 registers */
 618	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 619	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 620	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 621	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 622
 623	/* Assign controller memory mapped space as size, KBytes, of flash. */
 624	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 625
 626	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 627		    4 * spi->chip_select);
 628
 629	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
 630
 631	nxp_fspi_clk_disable_unprep(f);
 632
 633	ret = clk_set_rate(f->clk, rate);
 634	if (ret)
 635		return;
 636
 637	ret = nxp_fspi_clk_prep_enable(f);
 638	if (ret)
 639		return;
 640
 641	f->selected = spi->chip_select;
 642}
 643
 644static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 645{
 646	u32 len = op->data.nbytes;
 647
 648	/* Read out the data directly from the AHB buffer. */
 649	memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
 650}
 651
 652static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 653				 const struct spi_mem_op *op)
 654{
 655	void __iomem *base = f->iobase;
 656	int i, ret;
 657	u8 *buf = (u8 *) op->data.buf.out;
 658
 659	/* clear the TX FIFO. */
 660	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 661
 662	/*
 663	 * Default value of water mark level is 8 bytes, hence in single
 664	 * write request controller can write max 8 bytes of data.
 665	 */
 666
 667	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 668		/* Wait for TXFIFO empty */
 669		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 670					   FSPI_INTR_IPTXWE, 0,
 671					   POLL_TOUT, true);
 672		WARN_ON(ret);
 673
 674		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 675		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 676		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 677	}
 678
 679	if (i < op->data.nbytes) {
 680		u32 data = 0;
 681		int j;
 682		/* Wait for TXFIFO empty */
 683		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 684					   FSPI_INTR_IPTXWE, 0,
 685					   POLL_TOUT, true);
 686		WARN_ON(ret);
 687
 688		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 689			memcpy(&data, buf + i + j, 4);
 690			fspi_writel(f, data, base + FSPI_TFDR + j);
 691		}
 692		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 693	}
 694}
 695
 696static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 697			  const struct spi_mem_op *op)
 698{
 699	void __iomem *base = f->iobase;
 700	int i, ret;
 701	int len = op->data.nbytes;
 702	u8 *buf = (u8 *) op->data.buf.in;
 703
 704	/*
 705	 * Default value of water mark level is 8 bytes, hence in single
 706	 * read request controller can read max 8 bytes of data.
 707	 */
 708	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 709		/* Wait for RXFIFO available */
 710		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 711					   FSPI_INTR_IPRXWA, 0,
 712					   POLL_TOUT, true);
 713		WARN_ON(ret);
 714
 715		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 716		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 717		/* move the FIFO pointer */
 718		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 719	}
 720
 721	if (i < len) {
 722		u32 tmp;
 723		int size, j;
 724
 725		buf = op->data.buf.in + i;
 726		/* Wait for RXFIFO available */
 727		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 728					   FSPI_INTR_IPRXWA, 0,
 729					   POLL_TOUT, true);
 730		WARN_ON(ret);
 731
 732		len = op->data.nbytes - i;
 733		for (j = 0; j < op->data.nbytes - i; j += 4) {
 734			tmp = fspi_readl(f, base + FSPI_RFDR + j);
 735			size = min(len, 4);
 736			memcpy(buf + j, &tmp, size);
 737			len -= size;
 738		}
 739	}
 740
 741	/* invalid the RXFIFO */
 742	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 743	/* move the FIFO pointer */
 744	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 745}
 746
 747static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 748{
 749	void __iomem *base = f->iobase;
 750	int seqnum = 0;
 751	int err = 0;
 752	u32 reg;
 753
 754	reg = fspi_readl(f, base + FSPI_IPRXFCR);
 755	/* invalid RXFIFO first */
 756	reg &= ~FSPI_IPRXFCR_DMA_EN;
 757	reg = reg | FSPI_IPRXFCR_CLR;
 758	fspi_writel(f, reg, base + FSPI_IPRXFCR);
 759
 760	init_completion(&f->c);
 761
 762	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 763	/*
 764	 * Always start the sequence at the same index since we update
 765	 * the LUT at each exec_op() call. And also specify the DATA
 766	 * length, since it's has not been specified in the LUT.
 767	 */
 768	fspi_writel(f, op->data.nbytes |
 769		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 770		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 771		 base + FSPI_IPCR1);
 772
 773	/* Trigger the LUT now. */
 774	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 775
 776	/* Wait for the interrupt. */
 777	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 778		err = -ETIMEDOUT;
 779
 780	/* Invoke IP data read, if request is of data read. */
 781	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 782		nxp_fspi_read_rxfifo(f, op);
 783
 784	return err;
 785}
 786
 787static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 788{
 789	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 790	int err = 0;
 791
 792	mutex_lock(&f->lock);
 793
 794	/* Wait for controller being ready. */
 795	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 796				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 797	WARN_ON(err);
 798
 799	nxp_fspi_select_mem(f, mem->spi);
 800
 801	nxp_fspi_prepare_lut(f, op);
 802	/*
 803	 * If we have large chunks of data, we read them through the AHB bus
 804	 * by accessing the mapped memory. In all other cases we use
 805	 * IP commands to access the flash.
 806	 */
 807	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 808	    op->data.dir == SPI_MEM_DATA_IN) {
 809		nxp_fspi_read_ahb(f, op);
 810	} else {
 811		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 812			nxp_fspi_fill_txfifo(f, op);
 813
 814		err = nxp_fspi_do_op(f, op);
 815	}
 816
 817	/* Invalidate the data in the AHB buffer. */
 818	nxp_fspi_invalid(f);
 819
 820	mutex_unlock(&f->lock);
 821
 822	return err;
 823}
 824
 825static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 826{
 827	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 828
 829	if (op->data.dir == SPI_MEM_DATA_OUT) {
 830		if (op->data.nbytes > f->devtype_data->txfifo)
 831			op->data.nbytes = f->devtype_data->txfifo;
 832	} else {
 833		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 834			op->data.nbytes = f->devtype_data->ahb_buf_size;
 835		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 836			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 837	}
 838
 839	return 0;
 840}
 841
 842static int nxp_fspi_default_setup(struct nxp_fspi *f)
 843{
 844	void __iomem *base = f->iobase;
 845	int ret, i;
 846	u32 reg;
 847
 848	/* disable and unprepare clock to avoid glitch pass to controller */
 849	nxp_fspi_clk_disable_unprep(f);
 850
 851	/* the default frequency, we will change it later if necessary. */
 852	ret = clk_set_rate(f->clk, 20000000);
 853	if (ret)
 854		return ret;
 855
 856	ret = nxp_fspi_clk_prep_enable(f);
 857	if (ret)
 858		return ret;
 859
 860	/* Reset the module */
 861	/* w1c register, wait unit clear */
 862	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 863				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 864	WARN_ON(ret);
 865
 866	/* Disable the module */
 867	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 868
 869	/* Reset the DLL register to default value */
 870	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 871	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 872
 873	/* enable module */
 874	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
 875		 base + FSPI_MCR0);
 876
 877	/*
 878	 * Disable same device enable bit and configure all slave devices
 879	 * independently.
 880	 */
 881	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 882	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 883	fspi_writel(f, reg, base + FSPI_MCR2);
 884
 885	/* AHB configuration for access buffer 0~7. */
 886	for (i = 0; i < 7; i++)
 887		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 888
 889	/*
 890	 * Set ADATSZ with the maximum AHB buffer size to improve the read
 891	 * performance.
 892	 */
 893	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 894		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 895
 896	/* prefetch and no start address alignment limitation */
 897	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 898		 base + FSPI_AHBCR);
 899
 900	/* AHB Read - Set lut sequence ID for all CS. */
 901	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
 902	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
 903	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
 904	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
 905
 906	f->selected = -1;
 907
 908	/* enable the interrupt */
 909	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
 910
 911	return 0;
 912}
 913
 914static const char *nxp_fspi_get_name(struct spi_mem *mem)
 915{
 916	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 917	struct device *dev = &mem->spi->dev;
 918	const char *name;
 919
 920	// Set custom name derived from the platform_device of the controller.
 921	if (of_get_available_child_count(f->dev->of_node) == 1)
 922		return dev_name(f->dev);
 923
 924	name = devm_kasprintf(dev, GFP_KERNEL,
 925			      "%s-%d", dev_name(f->dev),
 926			      mem->spi->chip_select);
 927
 928	if (!name) {
 929		dev_err(dev, "failed to get memory for custom flash name\n");
 930		return ERR_PTR(-ENOMEM);
 931	}
 932
 933	return name;
 934}
 935
 936static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
 937	.adjust_op_size = nxp_fspi_adjust_op_size,
 938	.supports_op = nxp_fspi_supports_op,
 939	.exec_op = nxp_fspi_exec_op,
 940	.get_name = nxp_fspi_get_name,
 941};
 942
 943static int nxp_fspi_probe(struct platform_device *pdev)
 944{
 945	struct spi_controller *ctlr;
 946	struct device *dev = &pdev->dev;
 947	struct device_node *np = dev->of_node;
 948	struct resource *res;
 949	struct nxp_fspi *f;
 950	int ret;
 951
 952	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
 953	if (!ctlr)
 954		return -ENOMEM;
 955
 956	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
 957			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
 958
 959	f = spi_controller_get_devdata(ctlr);
 960	f->dev = dev;
 961	f->devtype_data = of_device_get_match_data(dev);
 962	if (!f->devtype_data) {
 963		ret = -ENODEV;
 964		goto err_put_ctrl;
 965	}
 966
 967	platform_set_drvdata(pdev, f);
 968
 969	/* find the resources - configuration register address space */
 970	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base");
 971	f->iobase = devm_ioremap_resource(dev, res);
 972	if (IS_ERR(f->iobase)) {
 973		ret = PTR_ERR(f->iobase);
 974		goto err_put_ctrl;
 975	}
 976
 977	/* find the resources - controller memory mapped space */
 978	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap");
 979	f->ahb_addr = devm_ioremap_resource(dev, res);
 980	if (IS_ERR(f->ahb_addr)) {
 981		ret = PTR_ERR(f->ahb_addr);
 982		goto err_put_ctrl;
 983	}
 984
 985	/* assign memory mapped starting address and mapped size. */
 986	f->memmap_phy = res->start;
 987	f->memmap_phy_size = resource_size(res);
 988
 989	/* find the clocks */
 990	f->clk_en = devm_clk_get(dev, "fspi_en");
 991	if (IS_ERR(f->clk_en)) {
 992		ret = PTR_ERR(f->clk_en);
 993		goto err_put_ctrl;
 994	}
 995
 996	f->clk = devm_clk_get(dev, "fspi");
 997	if (IS_ERR(f->clk)) {
 998		ret = PTR_ERR(f->clk);
 999		goto err_put_ctrl;
1000	}
1001
1002	ret = nxp_fspi_clk_prep_enable(f);
1003	if (ret) {
1004		dev_err(dev, "can not enable the clock\n");
1005		goto err_put_ctrl;
1006	}
1007
1008	/* find the irq */
1009	ret = platform_get_irq(pdev, 0);
1010	if (ret < 0)
1011		goto err_disable_clk;
1012
1013	ret = devm_request_irq(dev, ret,
1014			nxp_fspi_irq_handler, 0, pdev->name, f);
1015	if (ret) {
1016		dev_err(dev, "failed to request irq: %d\n", ret);
1017		goto err_disable_clk;
1018	}
1019
1020	mutex_init(&f->lock);
1021
1022	ctlr->bus_num = -1;
1023	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1024	ctlr->mem_ops = &nxp_fspi_mem_ops;
1025
1026	nxp_fspi_default_setup(f);
1027
1028	ctlr->dev.of_node = np;
1029
1030	ret = spi_register_controller(ctlr);
1031	if (ret)
1032		goto err_destroy_mutex;
1033
1034	return 0;
1035
1036err_destroy_mutex:
1037	mutex_destroy(&f->lock);
1038
1039err_disable_clk:
1040	nxp_fspi_clk_disable_unprep(f);
1041
1042err_put_ctrl:
1043	spi_controller_put(ctlr);
1044
1045	dev_err(dev, "NXP FSPI probe failed\n");
1046	return ret;
1047}
1048
1049static int nxp_fspi_remove(struct platform_device *pdev)
1050{
1051	struct nxp_fspi *f = platform_get_drvdata(pdev);
1052
1053	/* disable the hardware */
1054	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1055
1056	nxp_fspi_clk_disable_unprep(f);
1057
1058	mutex_destroy(&f->lock);
1059
1060	return 0;
1061}
1062
1063static int nxp_fspi_suspend(struct device *dev)
1064{
1065	return 0;
1066}
1067
1068static int nxp_fspi_resume(struct device *dev)
1069{
1070	struct nxp_fspi *f = dev_get_drvdata(dev);
1071
1072	nxp_fspi_default_setup(f);
1073
1074	return 0;
1075}
1076
1077static const struct of_device_id nxp_fspi_dt_ids[] = {
1078	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1079	{ /* sentinel */ }
1080};
1081MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1082
1083static const struct dev_pm_ops nxp_fspi_pm_ops = {
1084	.suspend	= nxp_fspi_suspend,
1085	.resume		= nxp_fspi_resume,
1086};
1087
1088static struct platform_driver nxp_fspi_driver = {
1089	.driver = {
1090		.name	= "nxp-fspi",
1091		.of_match_table = nxp_fspi_dt_ids,
1092		.pm =   &nxp_fspi_pm_ops,
1093	},
1094	.probe          = nxp_fspi_probe,
1095	.remove		= nxp_fspi_remove,
1096};
1097module_platform_driver(nxp_fspi_driver);
1098
1099MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1100MODULE_AUTHOR("NXP Semiconductor");
1101MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1102MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1103MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1104MODULE_LICENSE("GPL v2");