Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019-2020 NXP
   7 * Copyright 2020 Puresoftware Ltd.
   8 *
   9 * FlexSPI is a flexsible SPI host controller which supports two SPI
  10 * channels and up to 4 external devices. Each channel supports
  11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  12 * data lines).
  13 *
  14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  15 * LUT registers are a look-up-table for sequences of instructions.
  16 * A valid sequence consists of four LUT registers.
  17 * Maximum 32 LUT sequences can be programmed simultaneously.
  18 *
  19 * LUTs are being created at run-time based on the commands passed
  20 * from the spi-mem framework, thus using single LUT index.
  21 *
  22 * Software triggered Flash read/write access by IP Bus.
  23 *
  24 * Memory mapped read access by AHB Bus.
  25 *
  26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  27 *
  28 * Author:
  29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  30 *     Boris Brezillon <bbrezillon@kernel.org>
  31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  32 */
  33
  34#include <linux/acpi.h>
  35#include <linux/bitops.h>
  36#include <linux/bitfield.h>
  37#include <linux/clk.h>
  38#include <linux/completion.h>
  39#include <linux/delay.h>
  40#include <linux/err.h>
  41#include <linux/errno.h>
  42#include <linux/interrupt.h>
  43#include <linux/io.h>
  44#include <linux/iopoll.h>
  45#include <linux/jiffies.h>
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/mutex.h>
  49#include <linux/of.h>
  50#include <linux/platform_device.h>
  51#include <linux/pm_qos.h>
  52#include <linux/regmap.h>
  53#include <linux/sizes.h>
  54#include <linux/sys_soc.h>
  55
  56#include <linux/mfd/syscon.h>
  57#include <linux/spi/spi.h>
  58#include <linux/spi/spi-mem.h>
  59
  60/*
  61 * The driver only uses one single LUT entry, that is updated on
  62 * each call of exec_op(). Index 0 is preset at boot with a basic
  63 * read operation, so let's use the last entry (31).
  64 */
  65#define	SEQID_LUT			31
  66
  67/* Registers used by the driver */
  68#define FSPI_MCR0			0x00
  69#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
  70#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
  71#define FSPI_MCR0_LEARN_EN		BIT(15)
  72#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
  73#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
  74#define FSPI_MCR0_DOZE_EN		BIT(12)
  75#define FSPI_MCR0_HSEN			BIT(11)
  76#define FSPI_MCR0_SERCLKDIV		BIT(8)
  77#define FSPI_MCR0_ATDF_EN		BIT(7)
  78#define FSPI_MCR0_ARDF_EN		BIT(6)
  79#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
  80#define FSPI_MCR0_END_CFG(x)		((x) << 2)
  81#define FSPI_MCR0_MDIS			BIT(1)
  82#define FSPI_MCR0_SWRST			BIT(0)
  83
  84#define FSPI_MCR1			0x04
  85#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
  86#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
  87
  88#define FSPI_MCR2			0x08
  89#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
  90#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
  91#define FSPI_MCR2_CLRLRPHS		BIT(14)
  92#define FSPI_MCR2_ABRDATSZ		BIT(8)
  93#define FSPI_MCR2_ABRLEARN		BIT(7)
  94#define FSPI_MCR2_ABR_READ		BIT(6)
  95#define FSPI_MCR2_ABRWRITE		BIT(5)
  96#define FSPI_MCR2_ABRDUMMY		BIT(4)
  97#define FSPI_MCR2_ABR_MODE		BIT(3)
  98#define FSPI_MCR2_ABRCADDR		BIT(2)
  99#define FSPI_MCR2_ABRRADDR		BIT(1)
 100#define FSPI_MCR2_ABR_CMD		BIT(0)
 101
 102#define FSPI_AHBCR			0x0c
 103#define FSPI_AHBCR_RDADDROPT		BIT(6)
 104#define FSPI_AHBCR_PREF_EN		BIT(5)
 105#define FSPI_AHBCR_BUFF_EN		BIT(4)
 106#define FSPI_AHBCR_CACH_EN		BIT(3)
 107#define FSPI_AHBCR_CLRTXBUF		BIT(2)
 108#define FSPI_AHBCR_CLRRXBUF		BIT(1)
 109#define FSPI_AHBCR_PAR_EN		BIT(0)
 110
 111#define FSPI_INTEN			0x10
 112#define FSPI_INTEN_SCLKSBWR		BIT(9)
 113#define FSPI_INTEN_SCLKSBRD		BIT(8)
 114#define FSPI_INTEN_DATALRNFL		BIT(7)
 115#define FSPI_INTEN_IPTXWE		BIT(6)
 116#define FSPI_INTEN_IPRXWA		BIT(5)
 117#define FSPI_INTEN_AHBCMDERR		BIT(4)
 118#define FSPI_INTEN_IPCMDERR		BIT(3)
 119#define FSPI_INTEN_AHBCMDGE		BIT(2)
 120#define FSPI_INTEN_IPCMDGE		BIT(1)
 121#define FSPI_INTEN_IPCMDDONE		BIT(0)
 122
 123#define FSPI_INTR			0x14
 124#define FSPI_INTR_SCLKSBWR		BIT(9)
 125#define FSPI_INTR_SCLKSBRD		BIT(8)
 126#define FSPI_INTR_DATALRNFL		BIT(7)
 127#define FSPI_INTR_IPTXWE		BIT(6)
 128#define FSPI_INTR_IPRXWA		BIT(5)
 129#define FSPI_INTR_AHBCMDERR		BIT(4)
 130#define FSPI_INTR_IPCMDERR		BIT(3)
 131#define FSPI_INTR_AHBCMDGE		BIT(2)
 132#define FSPI_INTR_IPCMDGE		BIT(1)
 133#define FSPI_INTR_IPCMDDONE		BIT(0)
 134
 135#define FSPI_LUTKEY			0x18
 136#define FSPI_LUTKEY_VALUE		0x5AF05AF0
 137
 138#define FSPI_LCKCR			0x1C
 139
 140#define FSPI_LCKER_LOCK			0x1
 141#define FSPI_LCKER_UNLOCK		0x2
 142
 143#define FSPI_BUFXCR_INVALID_MSTRID	0xE
 144#define FSPI_AHBRX_BUF0CR0		0x20
 145#define FSPI_AHBRX_BUF1CR0		0x24
 146#define FSPI_AHBRX_BUF2CR0		0x28
 147#define FSPI_AHBRX_BUF3CR0		0x2C
 148#define FSPI_AHBRX_BUF4CR0		0x30
 149#define FSPI_AHBRX_BUF5CR0		0x34
 150#define FSPI_AHBRX_BUF6CR0		0x38
 151#define FSPI_AHBRX_BUF7CR0		0x3C
 152#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
 153
 154#define FSPI_AHBRX_BUF0CR1		0x40
 155#define FSPI_AHBRX_BUF1CR1		0x44
 156#define FSPI_AHBRX_BUF2CR1		0x48
 157#define FSPI_AHBRX_BUF3CR1		0x4C
 158#define FSPI_AHBRX_BUF4CR1		0x50
 159#define FSPI_AHBRX_BUF5CR1		0x54
 160#define FSPI_AHBRX_BUF6CR1		0x58
 161#define FSPI_AHBRX_BUF7CR1		0x5C
 162
 163#define FSPI_FLSHA1CR0			0x60
 164#define FSPI_FLSHA2CR0			0x64
 165#define FSPI_FLSHB1CR0			0x68
 166#define FSPI_FLSHB2CR0			0x6C
 167#define FSPI_FLSHXCR0_SZ_KB		10
 168#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
 169
 170#define FSPI_FLSHA1CR1			0x70
 171#define FSPI_FLSHA2CR1			0x74
 172#define FSPI_FLSHB1CR1			0x78
 173#define FSPI_FLSHB2CR1			0x7C
 174#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
 175#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
 176#define FSPI_FLSHXCR1_WA		BIT(10)
 177#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
 178#define FSPI_FLSHXCR1_TCSS(x)		(x)
 179
 180#define FSPI_FLSHA1CR2			0x80
 181#define FSPI_FLSHA2CR2			0x84
 182#define FSPI_FLSHB1CR2			0x88
 183#define FSPI_FLSHB2CR2			0x8C
 184#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
 185#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
 186#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
 187#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
 188#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
 189#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
 190
 191#define FSPI_IPCR0			0xA0
 192
 193#define FSPI_IPCR1			0xA4
 194#define FSPI_IPCR1_IPAREN		BIT(31)
 195#define FSPI_IPCR1_SEQNUM_SHIFT		24
 196#define FSPI_IPCR1_SEQID_SHIFT		16
 197#define FSPI_IPCR1_IDATSZ(x)		(x)
 198
 199#define FSPI_IPCMD			0xB0
 200#define FSPI_IPCMD_TRG			BIT(0)
 201
 202#define FSPI_DLPR			0xB4
 203
 204#define FSPI_IPRXFCR			0xB8
 205#define FSPI_IPRXFCR_CLR		BIT(0)
 206#define FSPI_IPRXFCR_DMA_EN		BIT(1)
 207#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
 208
 209#define FSPI_IPTXFCR			0xBC
 210#define FSPI_IPTXFCR_CLR		BIT(0)
 211#define FSPI_IPTXFCR_DMA_EN		BIT(1)
 212#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
 213
 214#define FSPI_DLLACR			0xC0
 215#define FSPI_DLLACR_OVRDEN		BIT(8)
 216#define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
 217#define FSPI_DLLACR_DLLRESET		BIT(1)
 218#define FSPI_DLLACR_DLLEN		BIT(0)
 219
 220#define FSPI_DLLBCR			0xC4
 221#define FSPI_DLLBCR_OVRDEN		BIT(8)
 222#define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
 223#define FSPI_DLLBCR_DLLRESET		BIT(1)
 224#define FSPI_DLLBCR_DLLEN		BIT(0)
 225
 226#define FSPI_STS0			0xE0
 227#define FSPI_STS0_DLPHB(x)		((x) << 8)
 228#define FSPI_STS0_DLPHA(x)		((x) << 4)
 229#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
 230#define FSPI_STS0_ARB_IDLE		BIT(1)
 231#define FSPI_STS0_SEQ_IDLE		BIT(0)
 232
 233#define FSPI_STS1			0xE4
 234#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
 235#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
 236#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
 237#define FSPI_STS1_AHB_ERRID(x)		(x)
 238
 239#define FSPI_STS2			0xE8
 240#define FSPI_STS2_BREFLOCK		BIT(17)
 241#define FSPI_STS2_BSLVLOCK		BIT(16)
 242#define FSPI_STS2_AREFLOCK		BIT(1)
 243#define FSPI_STS2_ASLVLOCK		BIT(0)
 244#define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
 245					 FSPI_STS2_BSLVLOCK | \
 246					 FSPI_STS2_AREFLOCK | \
 247					 FSPI_STS2_ASLVLOCK)
 248
 249#define FSPI_AHBSPNST			0xEC
 250#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
 251#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
 252#define FSPI_AHBSPNST_ACTIVE		BIT(0)
 253
 254#define FSPI_IPRXFSTS			0xF0
 255#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
 256#define FSPI_IPRXFSTS_FILL(x)		(x)
 257
 258#define FSPI_IPTXFSTS			0xF4
 259#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
 260#define FSPI_IPTXFSTS_FILL(x)		(x)
 261
 262#define FSPI_RFDR			0x100
 263#define FSPI_TFDR			0x180
 264
 265#define FSPI_LUT_BASE			0x200
 266#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
 267#define FSPI_LUT_REG(idx) \
 268	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 269
 270/* register map end */
 271
 272/* Instruction set for the LUT register. */
 273#define LUT_STOP			0x00
 274#define LUT_CMD				0x01
 275#define LUT_ADDR			0x02
 276#define LUT_CADDR_SDR			0x03
 277#define LUT_MODE			0x04
 278#define LUT_MODE2			0x05
 279#define LUT_MODE4			0x06
 280#define LUT_MODE8			0x07
 281#define LUT_NXP_WRITE			0x08
 282#define LUT_NXP_READ			0x09
 283#define LUT_LEARN_SDR			0x0A
 284#define LUT_DATSZ_SDR			0x0B
 285#define LUT_DUMMY			0x0C
 286#define LUT_DUMMY_RWDS_SDR		0x0D
 287#define LUT_JMP_ON_CS			0x1F
 288#define LUT_CMD_DDR			0x21
 289#define LUT_ADDR_DDR			0x22
 290#define LUT_CADDR_DDR			0x23
 291#define LUT_MODE_DDR			0x24
 292#define LUT_MODE2_DDR			0x25
 293#define LUT_MODE4_DDR			0x26
 294#define LUT_MODE8_DDR			0x27
 295#define LUT_WRITE_DDR			0x28
 296#define LUT_READ_DDR			0x29
 297#define LUT_LEARN_DDR			0x2A
 298#define LUT_DATSZ_DDR			0x2B
 299#define LUT_DUMMY_DDR			0x2C
 300#define LUT_DUMMY_RWDS_DDR		0x2D
 301
 302/*
 303 * Calculate number of required PAD bits for LUT register.
 304 *
 305 * The pad stands for the number of IO lines [0:7].
 306 * For example, the octal read needs eight IO lines,
 307 * so you should use LUT_PAD(8). This macro
 308 * returns 3 i.e. use eight (2^3) IP lines for read.
 309 */
 310#define LUT_PAD(x) (fls(x) - 1)
 311
 312/*
 313 * Macro for constructing the LUT entries with the following
 314 * register layout:
 315 *
 316 *  ---------------------------------------------------
 317 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 318 *  ---------------------------------------------------
 319 */
 320#define PAD_SHIFT		8
 321#define INSTR_SHIFT		10
 322#define OPRND_SHIFT		16
 323
 324/* Macros for constructing the LUT register. */
 325#define LUT_DEF(idx, ins, pad, opr)			  \
 326	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 327	(opr)) << (((idx) % 2) * OPRND_SHIFT))
 328
 329#define POLL_TOUT		5000
 330#define NXP_FSPI_MAX_CHIPSELECT		4
 331#define NXP_FSPI_MIN_IOMAP	SZ_4M
 332
 333#define DCFG_RCWSR1		0x100
 334#define SYS_PLL_RAT		GENMASK(6, 2)
 335
 336/* Access flash memory using IP bus only */
 337#define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
 338
 339struct nxp_fspi_devtype_data {
 340	unsigned int rxfifo;
 341	unsigned int txfifo;
 342	unsigned int ahb_buf_size;
 343	unsigned int quirks;
 344	bool little_endian;
 345};
 346
 347static struct nxp_fspi_devtype_data lx2160a_data = {
 348	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 349	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 350	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 351	.quirks = 0,
 352	.little_endian = true,  /* little-endian    */
 353};
 354
 355static struct nxp_fspi_devtype_data imx8mm_data = {
 356	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 357	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 358	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 359	.quirks = 0,
 360	.little_endian = true,  /* little-endian    */
 361};
 362
 363static struct nxp_fspi_devtype_data imx8qxp_data = {
 364	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 365	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 366	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 367	.quirks = 0,
 368	.little_endian = true,  /* little-endian    */
 369};
 370
 371static struct nxp_fspi_devtype_data imx8dxl_data = {
 372	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 373	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 374	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 375	.quirks = FSPI_QUIRK_USE_IP_ONLY,
 376	.little_endian = true,  /* little-endian    */
 377};
 378
 379struct nxp_fspi {
 380	void __iomem *iobase;
 381	void __iomem *ahb_addr;
 382	u32 memmap_phy;
 383	u32 memmap_phy_size;
 384	u32 memmap_start;
 385	u32 memmap_len;
 386	struct clk *clk, *clk_en;
 387	struct device *dev;
 388	struct completion c;
 389	struct nxp_fspi_devtype_data *devtype_data;
 390	struct mutex lock;
 391	struct pm_qos_request pm_qos_req;
 392	int selected;
 393};
 394
 395static inline int needs_ip_only(struct nxp_fspi *f)
 396{
 397	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
 398}
 399
 400/*
 401 * R/W functions for big- or little-endian registers:
 402 * The FSPI controller's endianness is independent of
 403 * the CPU core's endianness. So far, although the CPU
 404 * core is little-endian the FSPI controller can use
 405 * big-endian or little-endian.
 406 */
 407static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 408{
 409	if (f->devtype_data->little_endian)
 410		iowrite32(val, addr);
 411	else
 412		iowrite32be(val, addr);
 413}
 414
 415static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 416{
 417	if (f->devtype_data->little_endian)
 418		return ioread32(addr);
 419	else
 420		return ioread32be(addr);
 421}
 422
 423static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 424{
 425	struct nxp_fspi *f = dev_id;
 426	u32 reg;
 427
 428	/* clear interrupt */
 429	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 430	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 431
 432	if (reg & FSPI_INTR_IPCMDDONE)
 433		complete(&f->c);
 434
 435	return IRQ_HANDLED;
 436}
 437
 438static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 439{
 440	switch (width) {
 441	case 1:
 442	case 2:
 443	case 4:
 444	case 8:
 445		return 0;
 446	}
 447
 448	return -ENOTSUPP;
 449}
 450
 451static bool nxp_fspi_supports_op(struct spi_mem *mem,
 452				 const struct spi_mem_op *op)
 453{
 454	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 455	int ret;
 456
 457	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 458
 459	if (op->addr.nbytes)
 460		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 461
 462	if (op->dummy.nbytes)
 463		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 464
 465	if (op->data.nbytes)
 466		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 467
 468	if (ret)
 469		return false;
 470
 471	/*
 472	 * The number of address bytes should be equal to or less than 4 bytes.
 473	 */
 474	if (op->addr.nbytes > 4)
 475		return false;
 476
 477	/*
 478	 * If requested address value is greater than controller assigned
 479	 * memory mapped space, return error as it didn't fit in the range
 480	 * of assigned address space.
 481	 */
 482	if (op->addr.val >= f->memmap_phy_size)
 483		return false;
 484
 485	/* Max 64 dummy clock cycles supported */
 486	if (op->dummy.buswidth &&
 487	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 488		return false;
 489
 490	/* Max data length, check controller limits and alignment */
 491	if (op->data.dir == SPI_MEM_DATA_IN &&
 492	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 493	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 494	      !IS_ALIGNED(op->data.nbytes, 8))))
 495		return false;
 496
 497	if (op->data.dir == SPI_MEM_DATA_OUT &&
 498	    op->data.nbytes > f->devtype_data->txfifo)
 499		return false;
 500
 501	return spi_mem_default_supports_op(mem, op);
 502}
 503
 504/* Instead of busy looping invoke readl_poll_timeout functionality. */
 505static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 506				u32 mask, u32 delay_us,
 507				u32 timeout_us, bool c)
 508{
 509	u32 reg;
 510
 511	if (!f->devtype_data->little_endian)
 512		mask = (u32)cpu_to_be32(mask);
 513
 514	if (c)
 515		return readl_poll_timeout(base, reg, (reg & mask),
 516					  delay_us, timeout_us);
 517	else
 518		return readl_poll_timeout(base, reg, !(reg & mask),
 519					  delay_us, timeout_us);
 520}
 521
 522/*
 523 * If the target device content being changed by Write/Erase, need to
 524 * invalidate the AHB buffer. This can be achieved by doing the reset
 525 * of controller after setting MCR0[SWRESET] bit.
 526 */
 527static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 528{
 529	u32 reg;
 530	int ret;
 531
 532	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 533	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 534
 535	/* w1c register, wait unit clear */
 536	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 537				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 538	WARN_ON(ret);
 539}
 540
 541static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 542				 const struct spi_mem_op *op)
 543{
 544	void __iomem *base = f->iobase;
 545	u32 lutval[4] = {};
 546	int lutidx = 1, i;
 547
 548	/* cmd */
 549	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 550			     op->cmd.opcode);
 551
 552	/* addr bytes */
 553	if (op->addr.nbytes) {
 554		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 555					      LUT_PAD(op->addr.buswidth),
 556					      op->addr.nbytes * 8);
 557		lutidx++;
 558	}
 559
 560	/* dummy bytes, if needed */
 561	if (op->dummy.nbytes) {
 562		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 563		/*
 564		 * Due to FlexSPI controller limitation number of PAD for dummy
 565		 * buswidth needs to be programmed as equal to data buswidth.
 566		 */
 567					      LUT_PAD(op->data.buswidth),
 568					      op->dummy.nbytes * 8 /
 569					      op->dummy.buswidth);
 570		lutidx++;
 571	}
 572
 573	/* read/write data bytes */
 574	if (op->data.nbytes) {
 575		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 576					      op->data.dir == SPI_MEM_DATA_IN ?
 577					      LUT_NXP_READ : LUT_NXP_WRITE,
 578					      LUT_PAD(op->data.buswidth),
 579					      0);
 580		lutidx++;
 581	}
 582
 583	/* stop condition. */
 584	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 585
 586	/* unlock LUT */
 587	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 588	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 589
 590	/* fill LUT */
 591	for (i = 0; i < ARRAY_SIZE(lutval); i++)
 592		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 593
 594	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
 595		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
 596
 597	/* lock LUT */
 598	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 599	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 600}
 601
 602static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 603{
 604	int ret;
 605
 606	if (is_acpi_node(dev_fwnode(f->dev)))
 607		return 0;
 608
 609	ret = clk_prepare_enable(f->clk_en);
 610	if (ret)
 611		return ret;
 612
 613	ret = clk_prepare_enable(f->clk);
 614	if (ret) {
 615		clk_disable_unprepare(f->clk_en);
 616		return ret;
 617	}
 618
 619	return 0;
 620}
 621
 622static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 623{
 624	if (is_acpi_node(dev_fwnode(f->dev)))
 625		return 0;
 626
 627	clk_disable_unprepare(f->clk);
 628	clk_disable_unprepare(f->clk_en);
 629
 630	return 0;
 631}
 632
 633static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
 634{
 635	int ret;
 636
 637	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
 638	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
 639	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
 640	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
 641	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
 642
 643	/*
 644	 * Enable the DLL calibration mode.
 645	 * The delay target for slave delay line is:
 646	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
 647	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
 648	 * means half of clock cycle of reference clock.
 649	 */
 650	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
 651		    f->iobase + FSPI_DLLACR);
 652	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
 653		    f->iobase + FSPI_DLLBCR);
 654
 655	/* Wait to get REF/SLV lock */
 656	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
 657				   0, POLL_TOUT, true);
 658	if (ret)
 659		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
 660}
 661
 662/*
 663 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 664 * register and start base address of the target device.
 665 *
 666 *							    (Higher address)
 667 *				--------    <-- FLSHB2CR0
 668 *				|  B2  |
 669 *				|      |
 670 *	B2 start address -->	--------    <-- FLSHB1CR0
 671 *				|  B1  |
 672 *				|      |
 673 *	B1 start address -->	--------    <-- FLSHA2CR0
 674 *				|  A2  |
 675 *				|      |
 676 *	A2 start address -->	--------    <-- FLSHA1CR0
 677 *				|  A1  |
 678 *				|      |
 679 *	A1 start address -->	--------		    (Lower address)
 680 *
 681 *
 682 * Start base address defines the starting address range for given CS and
 683 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
 684 *
 685 * But, different targets are having different combinations of number of CS,
 686 * some targets only have single CS or two CS covering controller's full
 687 * memory mapped space area.
 688 * Thus, implementation is being done as independent of the size and number
 689 * of the connected target device.
 690 * Assign controller memory mapped space size as the size to the connected
 691 * target device.
 692 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 693 * chip-select Flash configuration register.
 694 *
 695 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 696 * memory mapped size of the controller.
 697 * Value for rest of the CS FLSHxxCR0 register would be zero.
 698 *
 699 */
 700static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 701{
 702	unsigned long rate = spi->max_speed_hz;
 703	int ret;
 704	uint64_t size_kb;
 705
 706	/*
 707	 * Return, if previously selected target device is same as current
 708	 * requested target device.
 709	 */
 710	if (f->selected == spi_get_chipselect(spi, 0))
 711		return;
 712
 713	/* Reset FLSHxxCR0 registers */
 714	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 715	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 716	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 717	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 718
 719	/* Assign controller memory mapped space as size, KBytes, of flash. */
 720	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 721
 722	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 723		    4 * spi_get_chipselect(spi, 0));
 724
 725	dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
 726
 727	nxp_fspi_clk_disable_unprep(f);
 728
 729	ret = clk_set_rate(f->clk, rate);
 730	if (ret)
 731		return;
 732
 733	ret = nxp_fspi_clk_prep_enable(f);
 734	if (ret)
 735		return;
 736
 737	/*
 738	 * If clock rate > 100MHz, then switch from DLL override mode to
 739	 * DLL calibration mode.
 740	 */
 741	if (rate > 100000000)
 742		nxp_fspi_dll_calibration(f);
 743
 744	f->selected = spi_get_chipselect(spi, 0);
 745}
 746
 747static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 748{
 749	u32 start = op->addr.val;
 750	u32 len = op->data.nbytes;
 751
 752	/* if necessary, ioremap before AHB read */
 753	if ((!f->ahb_addr) || start < f->memmap_start ||
 754	     start + len > f->memmap_start + f->memmap_len) {
 755		if (f->ahb_addr)
 756			iounmap(f->ahb_addr);
 757
 758		f->memmap_start = start;
 759		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
 760				len : NXP_FSPI_MIN_IOMAP;
 761
 762		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
 763					 f->memmap_len);
 764
 765		if (!f->ahb_addr) {
 766			dev_err(f->dev, "failed to alloc memory\n");
 767			return -ENOMEM;
 768		}
 769	}
 770
 771	/* Read out the data directly from the AHB buffer. */
 772	memcpy_fromio(op->data.buf.in,
 773		      f->ahb_addr + start - f->memmap_start, len);
 774
 775	return 0;
 776}
 777
 778static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 779				 const struct spi_mem_op *op)
 780{
 781	void __iomem *base = f->iobase;
 782	int i, ret;
 783	u8 *buf = (u8 *) op->data.buf.out;
 784
 785	/* clear the TX FIFO. */
 786	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 787
 788	/*
 789	 * Default value of water mark level is 8 bytes, hence in single
 790	 * write request controller can write max 8 bytes of data.
 791	 */
 792
 793	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 794		/* Wait for TXFIFO empty */
 795		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 796					   FSPI_INTR_IPTXWE, 0,
 797					   POLL_TOUT, true);
 798		WARN_ON(ret);
 799
 800		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 801		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 802		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 803	}
 804
 805	if (i < op->data.nbytes) {
 806		u32 data = 0;
 807		int j;
 808		/* Wait for TXFIFO empty */
 809		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 810					   FSPI_INTR_IPTXWE, 0,
 811					   POLL_TOUT, true);
 812		WARN_ON(ret);
 813
 814		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 815			memcpy(&data, buf + i + j, 4);
 816			fspi_writel(f, data, base + FSPI_TFDR + j);
 817		}
 818		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 819	}
 820}
 821
 822static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 823			  const struct spi_mem_op *op)
 824{
 825	void __iomem *base = f->iobase;
 826	int i, ret;
 827	int len = op->data.nbytes;
 828	u8 *buf = (u8 *) op->data.buf.in;
 829
 830	/*
 831	 * Default value of water mark level is 8 bytes, hence in single
 832	 * read request controller can read max 8 bytes of data.
 833	 */
 834	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 835		/* Wait for RXFIFO available */
 836		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 837					   FSPI_INTR_IPRXWA, 0,
 838					   POLL_TOUT, true);
 839		WARN_ON(ret);
 840
 841		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 842		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 843		/* move the FIFO pointer */
 844		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 845	}
 846
 847	if (i < len) {
 848		u32 tmp;
 849		int size, j;
 850
 851		buf = op->data.buf.in + i;
 852		/* Wait for RXFIFO available */
 853		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 854					   FSPI_INTR_IPRXWA, 0,
 855					   POLL_TOUT, true);
 856		WARN_ON(ret);
 857
 858		len = op->data.nbytes - i;
 859		for (j = 0; j < op->data.nbytes - i; j += 4) {
 860			tmp = fspi_readl(f, base + FSPI_RFDR + j);
 861			size = min(len, 4);
 862			memcpy(buf + j, &tmp, size);
 863			len -= size;
 864		}
 865	}
 866
 867	/* invalid the RXFIFO */
 868	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 869	/* move the FIFO pointer */
 870	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 871}
 872
 873static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 874{
 875	void __iomem *base = f->iobase;
 876	int seqnum = 0;
 877	int err = 0;
 878	u32 reg;
 879
 880	reg = fspi_readl(f, base + FSPI_IPRXFCR);
 881	/* invalid RXFIFO first */
 882	reg &= ~FSPI_IPRXFCR_DMA_EN;
 883	reg = reg | FSPI_IPRXFCR_CLR;
 884	fspi_writel(f, reg, base + FSPI_IPRXFCR);
 885
 886	init_completion(&f->c);
 887
 888	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 889	/*
 890	 * Always start the sequence at the same index since we update
 891	 * the LUT at each exec_op() call. And also specify the DATA
 892	 * length, since it's has not been specified in the LUT.
 893	 */
 894	fspi_writel(f, op->data.nbytes |
 895		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 896		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 897		 base + FSPI_IPCR1);
 898
 899	/* Trigger the LUT now. */
 900	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 901
 902	/* Wait for the interrupt. */
 903	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 904		err = -ETIMEDOUT;
 905
 906	/* Invoke IP data read, if request is of data read. */
 907	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 908		nxp_fspi_read_rxfifo(f, op);
 909
 910	return err;
 911}
 912
 913static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 914{
 915	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 916	int err = 0;
 917
 918	mutex_lock(&f->lock);
 919
 920	/* Wait for controller being ready. */
 921	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 922				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 923	WARN_ON(err);
 924
 925	nxp_fspi_select_mem(f, mem->spi);
 926
 927	nxp_fspi_prepare_lut(f, op);
 928	/*
 929	 * If we have large chunks of data, we read them through the AHB bus by
 930	 * accessing the mapped memory. In all other cases we use IP commands
 931	 * to access the flash. Read via AHB bus may be corrupted due to
 932	 * existence of an errata and therefore discard AHB read in such cases.
 933	 */
 934	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 935	    op->data.dir == SPI_MEM_DATA_IN &&
 936	    !needs_ip_only(f)) {
 937		err = nxp_fspi_read_ahb(f, op);
 938	} else {
 939		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 940			nxp_fspi_fill_txfifo(f, op);
 941
 942		err = nxp_fspi_do_op(f, op);
 943	}
 944
 945	/* Invalidate the data in the AHB buffer. */
 946	nxp_fspi_invalid(f);
 947
 948	mutex_unlock(&f->lock);
 949
 950	return err;
 951}
 952
 953static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 954{
 955	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 956
 957	if (op->data.dir == SPI_MEM_DATA_OUT) {
 958		if (op->data.nbytes > f->devtype_data->txfifo)
 959			op->data.nbytes = f->devtype_data->txfifo;
 960	} else {
 961		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 962			op->data.nbytes = f->devtype_data->ahb_buf_size;
 963		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 964			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 965	}
 966
 967	/* Limit data bytes to RX FIFO in case of IP read only */
 968	if (op->data.dir == SPI_MEM_DATA_IN &&
 969	    needs_ip_only(f) &&
 970	    op->data.nbytes > f->devtype_data->rxfifo)
 971		op->data.nbytes = f->devtype_data->rxfifo;
 972
 973	return 0;
 974}
 975
 976static void erratum_err050568(struct nxp_fspi *f)
 977{
 978	static const struct soc_device_attribute ls1028a_soc_attr[] = {
 979		{ .family = "QorIQ LS1028A" },
 980		{ /* sentinel */ }
 981	};
 982	struct regmap *map;
 983	u32 val, sys_pll_ratio;
 984	int ret;
 985
 986	/* Check for LS1028A family */
 987	if (!soc_device_match(ls1028a_soc_attr)) {
 988		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
 989		return;
 990	}
 991
 992	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
 993	if (IS_ERR(map)) {
 994		dev_err(f->dev, "No syscon regmap\n");
 995		goto err;
 996	}
 997
 998	ret = regmap_read(map, DCFG_RCWSR1, &val);
 999	if (ret < 0)
1000		goto err;
1001
1002	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1003	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1004
1005	/* Use IP bus only if platform clock is 300MHz */
1006	if (sys_pll_ratio == 3)
1007		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1008
1009	return;
1010
1011err:
1012	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1013}
1014
1015static int nxp_fspi_default_setup(struct nxp_fspi *f)
1016{
1017	void __iomem *base = f->iobase;
1018	int ret, i;
1019	u32 reg;
1020
1021	/* disable and unprepare clock to avoid glitch pass to controller */
1022	nxp_fspi_clk_disable_unprep(f);
1023
1024	/* the default frequency, we will change it later if necessary. */
1025	ret = clk_set_rate(f->clk, 20000000);
1026	if (ret)
1027		return ret;
1028
1029	ret = nxp_fspi_clk_prep_enable(f);
1030	if (ret)
1031		return ret;
1032
1033	/*
1034	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1035	 * platform frequency equal to 300 MHz on LS1028A.
1036	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1037	 * Layerscape LS1028A platform.
1038	 */
1039	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1040		erratum_err050568(f);
1041
1042	/* Reset the module */
1043	/* w1c register, wait unit clear */
1044	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1045				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1046	WARN_ON(ret);
1047
1048	/* Disable the module */
1049	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1050
1051	/*
1052	 * Config the DLL register to default value, enable the target clock delay
1053	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1054	 * chain, this is the suggested setting when clock rate < 100MHz.
1055	 */
1056	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1057	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1058
1059	/* enable module */
1060	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1061		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1062		    base + FSPI_MCR0);
1063
1064	/*
1065	 * Disable same device enable bit and configure all target devices
1066	 * independently.
1067	 */
1068	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1069	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1070	fspi_writel(f, reg, base + FSPI_MCR2);
1071
1072	/* AHB configuration for access buffer 0~7. */
1073	for (i = 0; i < 7; i++)
1074		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1075
1076	/*
1077	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1078	 * performance.
1079	 */
1080	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1081		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1082
1083	/* prefetch and no start address alignment limitation */
1084	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1085		 base + FSPI_AHBCR);
1086
1087	/* Reset the FLSHxCR1 registers. */
1088	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1089	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1090	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1091	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1092	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1093
1094	/* AHB Read - Set lut sequence ID for all CS. */
1095	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1096	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1097	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1098	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1099
1100	f->selected = -1;
1101
1102	/* enable the interrupt */
1103	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1104
1105	return 0;
1106}
1107
1108static const char *nxp_fspi_get_name(struct spi_mem *mem)
1109{
1110	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1111	struct device *dev = &mem->spi->dev;
1112	const char *name;
1113
1114	// Set custom name derived from the platform_device of the controller.
1115	if (of_get_available_child_count(f->dev->of_node) == 1)
1116		return dev_name(f->dev);
1117
1118	name = devm_kasprintf(dev, GFP_KERNEL,
1119			      "%s-%d", dev_name(f->dev),
1120			      spi_get_chipselect(mem->spi, 0));
1121
1122	if (!name) {
1123		dev_err(dev, "failed to get memory for custom flash name\n");
1124		return ERR_PTR(-ENOMEM);
1125	}
1126
1127	return name;
1128}
1129
1130static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1131	.adjust_op_size = nxp_fspi_adjust_op_size,
1132	.supports_op = nxp_fspi_supports_op,
1133	.exec_op = nxp_fspi_exec_op,
1134	.get_name = nxp_fspi_get_name,
1135};
1136
1137static int nxp_fspi_probe(struct platform_device *pdev)
1138{
1139	struct spi_controller *ctlr;
1140	struct device *dev = &pdev->dev;
1141	struct device_node *np = dev->of_node;
1142	struct resource *res;
1143	struct nxp_fspi *f;
1144	int ret;
1145	u32 reg;
1146
1147	ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
1148	if (!ctlr)
1149		return -ENOMEM;
1150
1151	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1152			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1153
1154	f = spi_controller_get_devdata(ctlr);
1155	f->dev = dev;
1156	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1157	if (!f->devtype_data) {
1158		ret = -ENODEV;
1159		goto err_put_ctrl;
1160	}
1161
1162	platform_set_drvdata(pdev, f);
1163
1164	/* find the resources - configuration register address space */
1165	if (is_acpi_node(dev_fwnode(f->dev)))
1166		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1167	else
1168		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1169
1170	if (IS_ERR(f->iobase)) {
1171		ret = PTR_ERR(f->iobase);
1172		goto err_put_ctrl;
1173	}
1174
1175	/* find the resources - controller memory mapped space */
1176	if (is_acpi_node(dev_fwnode(f->dev)))
1177		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1178	else
1179		res = platform_get_resource_byname(pdev,
1180				IORESOURCE_MEM, "fspi_mmap");
1181
1182	if (!res) {
1183		ret = -ENODEV;
1184		goto err_put_ctrl;
1185	}
1186
1187	/* assign memory mapped starting address and mapped size. */
1188	f->memmap_phy = res->start;
1189	f->memmap_phy_size = resource_size(res);
1190
1191	/* find the clocks */
1192	if (dev_of_node(&pdev->dev)) {
1193		f->clk_en = devm_clk_get(dev, "fspi_en");
1194		if (IS_ERR(f->clk_en)) {
1195			ret = PTR_ERR(f->clk_en);
1196			goto err_put_ctrl;
1197		}
1198
1199		f->clk = devm_clk_get(dev, "fspi");
1200		if (IS_ERR(f->clk)) {
1201			ret = PTR_ERR(f->clk);
1202			goto err_put_ctrl;
1203		}
1204
1205		ret = nxp_fspi_clk_prep_enable(f);
1206		if (ret) {
1207			dev_err(dev, "can not enable the clock\n");
1208			goto err_put_ctrl;
1209		}
1210	}
1211
1212	/* Clear potential interrupts */
1213	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1214	if (reg)
1215		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1216
1217	/* find the irq */
1218	ret = platform_get_irq(pdev, 0);
1219	if (ret < 0)
1220		goto err_disable_clk;
1221
1222	ret = devm_request_irq(dev, ret,
1223			nxp_fspi_irq_handler, 0, pdev->name, f);
1224	if (ret) {
1225		dev_err(dev, "failed to request irq: %d\n", ret);
1226		goto err_disable_clk;
1227	}
1228
1229	mutex_init(&f->lock);
1230
1231	ctlr->bus_num = -1;
1232	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1233	ctlr->mem_ops = &nxp_fspi_mem_ops;
1234
1235	nxp_fspi_default_setup(f);
1236
1237	ctlr->dev.of_node = np;
1238
1239	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1240	if (ret)
1241		goto err_destroy_mutex;
1242
1243	return 0;
1244
1245err_destroy_mutex:
1246	mutex_destroy(&f->lock);
1247
1248err_disable_clk:
1249	nxp_fspi_clk_disable_unprep(f);
1250
1251err_put_ctrl:
1252	spi_controller_put(ctlr);
1253
1254	dev_err(dev, "NXP FSPI probe failed\n");
1255	return ret;
1256}
1257
1258static void nxp_fspi_remove(struct platform_device *pdev)
1259{
1260	struct nxp_fspi *f = platform_get_drvdata(pdev);
1261
1262	/* disable the hardware */
1263	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1264
1265	nxp_fspi_clk_disable_unprep(f);
1266
1267	mutex_destroy(&f->lock);
1268
1269	if (f->ahb_addr)
1270		iounmap(f->ahb_addr);
1271}
1272
1273static int nxp_fspi_suspend(struct device *dev)
1274{
1275	return 0;
1276}
1277
1278static int nxp_fspi_resume(struct device *dev)
1279{
1280	struct nxp_fspi *f = dev_get_drvdata(dev);
1281
1282	nxp_fspi_default_setup(f);
1283
1284	return 0;
1285}
1286
1287static const struct of_device_id nxp_fspi_dt_ids[] = {
1288	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1289	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1290	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1291	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1292	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1293	{ /* sentinel */ }
1294};
1295MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1296
1297#ifdef CONFIG_ACPI
1298static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1299	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1300	{}
1301};
1302MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1303#endif
1304
1305static const struct dev_pm_ops nxp_fspi_pm_ops = {
1306	.suspend	= nxp_fspi_suspend,
1307	.resume		= nxp_fspi_resume,
1308};
1309
1310static struct platform_driver nxp_fspi_driver = {
1311	.driver = {
1312		.name	= "nxp-fspi",
1313		.of_match_table = nxp_fspi_dt_ids,
1314		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1315		.pm =   &nxp_fspi_pm_ops,
1316	},
1317	.probe          = nxp_fspi_probe,
1318	.remove_new	= nxp_fspi_remove,
1319};
1320module_platform_driver(nxp_fspi_driver);
1321
1322MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1323MODULE_AUTHOR("NXP Semiconductor");
1324MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1325MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1326MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1327MODULE_LICENSE("GPL v2");