Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27
28#include <linux/mmc/card.h>
29#include <linux/mmc/host.h>
30#include <linux/mmc/mmc.h>
31#include <linux/mmc/sd.h>
32
33#include "core.h"
34#include "bus.h"
35#include "host.h"
36#include "sdio_bus.h"
37
38#include "mmc_ops.h"
39#include "sd_ops.h"
40#include "sdio_ops.h"
41
42static struct workqueue_struct *workqueue;
43
44/*
45 * Enabling software CRCs on the data blocks can be a significant (30%)
46 * performance cost, and for other reasons may not always be desired.
47 * So we allow it it to be disabled.
48 */
49int use_spi_crc = 1;
50module_param(use_spi_crc, bool, 0);
51
52/*
53 * We normally treat cards as removed during suspend if they are not
54 * known to be on a non-removable bus, to avoid the risk of writing
55 * back data to a different card after resume. Allow this to be
56 * overridden if necessary.
57 */
58#ifdef CONFIG_MMC_UNSAFE_RESUME
59int mmc_assume_removable;
60#else
61int mmc_assume_removable = 1;
62#endif
63EXPORT_SYMBOL(mmc_assume_removable);
64module_param_named(removable, mmc_assume_removable, bool, 0644);
65MODULE_PARM_DESC(
66 removable,
67 "MMC/SD cards are removable and may be removed during suspend");
68
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
86/**
87 * mmc_request_done - finish processing an MMC request
88 * @host: MMC host which completed request
89 * @mrq: MMC request which request
90 *
91 * MMC drivers should call this function when they have completed
92 * their processing of a request.
93 */
94void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95{
96 struct mmc_command *cmd = mrq->cmd;
97 int err = cmd->error;
98
99 if (err && cmd->retries && mmc_host_is_spi(host)) {
100 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
101 cmd->retries = 0;
102 }
103
104 if (err && cmd->retries) {
105 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
106 mmc_hostname(host), cmd->opcode, err);
107
108 cmd->retries--;
109 cmd->error = 0;
110 host->ops->request(host, mrq);
111 } else {
112 led_trigger_event(host->led, LED_OFF);
113
114 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
115 mmc_hostname(host), cmd->opcode, err,
116 cmd->resp[0], cmd->resp[1],
117 cmd->resp[2], cmd->resp[3]);
118
119 if (mrq->data) {
120 pr_debug("%s: %d bytes transferred: %d\n",
121 mmc_hostname(host),
122 mrq->data->bytes_xfered, mrq->data->error);
123 }
124
125 if (mrq->stop) {
126 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
127 mmc_hostname(host), mrq->stop->opcode,
128 mrq->stop->error,
129 mrq->stop->resp[0], mrq->stop->resp[1],
130 mrq->stop->resp[2], mrq->stop->resp[3]);
131 }
132
133 if (mrq->done)
134 mrq->done(mrq);
135
136 mmc_host_clk_release(host);
137 }
138}
139
140EXPORT_SYMBOL(mmc_request_done);
141
142static void
143mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144{
145#ifdef CONFIG_MMC_DEBUG
146 unsigned int i, sz;
147 struct scatterlist *sg;
148#endif
149
150 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
151 mmc_hostname(host), mrq->cmd->opcode,
152 mrq->cmd->arg, mrq->cmd->flags);
153
154 if (mrq->data) {
155 pr_debug("%s: blksz %d blocks %d flags %08x "
156 "tsac %d ms nsac %d\n",
157 mmc_hostname(host), mrq->data->blksz,
158 mrq->data->blocks, mrq->data->flags,
159 mrq->data->timeout_ns / 1000000,
160 mrq->data->timeout_clks);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: CMD%u arg %08x flags %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->arg, mrq->stop->flags);
167 }
168
169 WARN_ON(!host->claimed);
170
171 mrq->cmd->error = 0;
172 mrq->cmd->mrq = mrq;
173 if (mrq->data) {
174 BUG_ON(mrq->data->blksz > host->max_blk_size);
175 BUG_ON(mrq->data->blocks > host->max_blk_count);
176 BUG_ON(mrq->data->blocks * mrq->data->blksz >
177 host->max_req_size);
178
179#ifdef CONFIG_MMC_DEBUG
180 sz = 0;
181 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
182 sz += sg->length;
183 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
184#endif
185
186 mrq->cmd->data = mrq->data;
187 mrq->data->error = 0;
188 mrq->data->mrq = mrq;
189 if (mrq->stop) {
190 mrq->data->stop = mrq->stop;
191 mrq->stop->error = 0;
192 mrq->stop->mrq = mrq;
193 }
194 }
195 mmc_host_clk_hold(host);
196 led_trigger_event(host->led, LED_FULL);
197 host->ops->request(host, mrq);
198}
199
200static void mmc_wait_done(struct mmc_request *mrq)
201{
202 complete(&mrq->completion);
203}
204
205static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
206{
207 init_completion(&mrq->completion);
208 mrq->done = mmc_wait_done;
209 mmc_start_request(host, mrq);
210}
211
212static void mmc_wait_for_req_done(struct mmc_host *host,
213 struct mmc_request *mrq)
214{
215 wait_for_completion(&mrq->completion);
216}
217
218/**
219 * mmc_pre_req - Prepare for a new request
220 * @host: MMC host to prepare command
221 * @mrq: MMC request to prepare for
222 * @is_first_req: true if there is no previous started request
223 * that may run in parellel to this call, otherwise false
224 *
225 * mmc_pre_req() is called in prior to mmc_start_req() to let
226 * host prepare for the new request. Preparation of a request may be
227 * performed while another request is running on the host.
228 */
229static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
230 bool is_first_req)
231{
232 if (host->ops->pre_req)
233 host->ops->pre_req(host, mrq, is_first_req);
234}
235
236/**
237 * mmc_post_req - Post process a completed request
238 * @host: MMC host to post process command
239 * @mrq: MMC request to post process for
240 * @err: Error, if non zero, clean up any resources made in pre_req
241 *
242 * Let the host post process a completed request. Post processing of
243 * a request may be performed while another reuqest is running.
244 */
245static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
246 int err)
247{
248 if (host->ops->post_req)
249 host->ops->post_req(host, mrq, err);
250}
251
252/**
253 * mmc_start_req - start a non-blocking request
254 * @host: MMC host to start command
255 * @areq: async request to start
256 * @error: out parameter returns 0 for success, otherwise non zero
257 *
258 * Start a new MMC custom command request for a host.
259 * If there is on ongoing async request wait for completion
260 * of that request and start the new one and return.
261 * Does not wait for the new request to complete.
262 *
263 * Returns the completed request, NULL in case of none completed.
264 * Wait for the an ongoing request (previoulsy started) to complete and
265 * return the completed request. If there is no ongoing request, NULL
266 * is returned without waiting. NULL is not an error condition.
267 */
268struct mmc_async_req *mmc_start_req(struct mmc_host *host,
269 struct mmc_async_req *areq, int *error)
270{
271 int err = 0;
272 struct mmc_async_req *data = host->areq;
273
274 /* Prepare a new request */
275 if (areq)
276 mmc_pre_req(host, areq->mrq, !host->areq);
277
278 if (host->areq) {
279 mmc_wait_for_req_done(host, host->areq->mrq);
280 err = host->areq->err_check(host->card, host->areq);
281 if (err) {
282 mmc_post_req(host, host->areq->mrq, 0);
283 if (areq)
284 mmc_post_req(host, areq->mrq, -EINVAL);
285
286 host->areq = NULL;
287 goto out;
288 }
289 }
290
291 if (areq)
292 __mmc_start_req(host, areq->mrq);
293
294 if (host->areq)
295 mmc_post_req(host, host->areq->mrq, 0);
296
297 host->areq = areq;
298 out:
299 if (error)
300 *error = err;
301 return data;
302}
303EXPORT_SYMBOL(mmc_start_req);
304
305/**
306 * mmc_wait_for_req - start a request and wait for completion
307 * @host: MMC host to start command
308 * @mrq: MMC request to start
309 *
310 * Start a new MMC custom command request for a host, and wait
311 * for the command to complete. Does not attempt to parse the
312 * response.
313 */
314void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
315{
316 __mmc_start_req(host, mrq);
317 mmc_wait_for_req_done(host, mrq);
318}
319EXPORT_SYMBOL(mmc_wait_for_req);
320
321/**
322 * mmc_wait_for_cmd - start a command and wait for completion
323 * @host: MMC host to start command
324 * @cmd: MMC command to start
325 * @retries: maximum number of retries
326 *
327 * Start a new MMC command for a host, and wait for the command
328 * to complete. Return any error that occurred while the command
329 * was executing. Do not attempt to parse the response.
330 */
331int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
332{
333 struct mmc_request mrq = {0};
334
335 WARN_ON(!host->claimed);
336
337 memset(cmd->resp, 0, sizeof(cmd->resp));
338 cmd->retries = retries;
339
340 mrq.cmd = cmd;
341 cmd->data = NULL;
342
343 mmc_wait_for_req(host, &mrq);
344
345 return cmd->error;
346}
347
348EXPORT_SYMBOL(mmc_wait_for_cmd);
349
350/**
351 * mmc_set_data_timeout - set the timeout for a data command
352 * @data: data phase for command
353 * @card: the MMC card associated with the data transfer
354 *
355 * Computes the data timeout parameters according to the
356 * correct algorithm given the card type.
357 */
358void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
359{
360 unsigned int mult;
361
362 /*
363 * SDIO cards only define an upper 1 s limit on access.
364 */
365 if (mmc_card_sdio(card)) {
366 data->timeout_ns = 1000000000;
367 data->timeout_clks = 0;
368 return;
369 }
370
371 /*
372 * SD cards use a 100 multiplier rather than 10
373 */
374 mult = mmc_card_sd(card) ? 100 : 10;
375
376 /*
377 * Scale up the multiplier (and therefore the timeout) by
378 * the r2w factor for writes.
379 */
380 if (data->flags & MMC_DATA_WRITE)
381 mult <<= card->csd.r2w_factor;
382
383 data->timeout_ns = card->csd.tacc_ns * mult;
384 data->timeout_clks = card->csd.tacc_clks * mult;
385
386 /*
387 * SD cards also have an upper limit on the timeout.
388 */
389 if (mmc_card_sd(card)) {
390 unsigned int timeout_us, limit_us;
391
392 timeout_us = data->timeout_ns / 1000;
393 if (mmc_host_clk_rate(card->host))
394 timeout_us += data->timeout_clks * 1000 /
395 (mmc_host_clk_rate(card->host) / 1000);
396
397 if (data->flags & MMC_DATA_WRITE)
398 /*
399 * The limit is really 250 ms, but that is
400 * insufficient for some crappy cards.
401 */
402 limit_us = 300000;
403 else
404 limit_us = 100000;
405
406 /*
407 * SDHC cards always use these fixed values.
408 */
409 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
410 data->timeout_ns = limit_us * 1000;
411 data->timeout_clks = 0;
412 }
413 }
414 /*
415 * Some cards need very high timeouts if driven in SPI mode.
416 * The worst observed timeout was 900ms after writing a
417 * continuous stream of data until the internal logic
418 * overflowed.
419 */
420 if (mmc_host_is_spi(card->host)) {
421 if (data->flags & MMC_DATA_WRITE) {
422 if (data->timeout_ns < 1000000000)
423 data->timeout_ns = 1000000000; /* 1s */
424 } else {
425 if (data->timeout_ns < 100000000)
426 data->timeout_ns = 100000000; /* 100ms */
427 }
428 }
429}
430EXPORT_SYMBOL(mmc_set_data_timeout);
431
432/**
433 * mmc_align_data_size - pads a transfer size to a more optimal value
434 * @card: the MMC card associated with the data transfer
435 * @sz: original transfer size
436 *
437 * Pads the original data size with a number of extra bytes in
438 * order to avoid controller bugs and/or performance hits
439 * (e.g. some controllers revert to PIO for certain sizes).
440 *
441 * Returns the improved size, which might be unmodified.
442 *
443 * Note that this function is only relevant when issuing a
444 * single scatter gather entry.
445 */
446unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
447{
448 /*
449 * FIXME: We don't have a system for the controller to tell
450 * the core about its problems yet, so for now we just 32-bit
451 * align the size.
452 */
453 sz = ((sz + 3) / 4) * 4;
454
455 return sz;
456}
457EXPORT_SYMBOL(mmc_align_data_size);
458
459/**
460 * mmc_host_enable - enable a host.
461 * @host: mmc host to enable
462 *
463 * Hosts that support power saving can use the 'enable' and 'disable'
464 * methods to exit and enter power saving states. For more information
465 * see comments for struct mmc_host_ops.
466 */
467int mmc_host_enable(struct mmc_host *host)
468{
469 if (!(host->caps & MMC_CAP_DISABLE))
470 return 0;
471
472 if (host->en_dis_recurs)
473 return 0;
474
475 if (host->nesting_cnt++)
476 return 0;
477
478 cancel_delayed_work_sync(&host->disable);
479
480 if (host->enabled)
481 return 0;
482
483 if (host->ops->enable) {
484 int err;
485
486 host->en_dis_recurs = 1;
487 err = host->ops->enable(host);
488 host->en_dis_recurs = 0;
489
490 if (err) {
491 pr_debug("%s: enable error %d\n",
492 mmc_hostname(host), err);
493 return err;
494 }
495 }
496 host->enabled = 1;
497 return 0;
498}
499EXPORT_SYMBOL(mmc_host_enable);
500
501static int mmc_host_do_disable(struct mmc_host *host, int lazy)
502{
503 if (host->ops->disable) {
504 int err;
505
506 host->en_dis_recurs = 1;
507 err = host->ops->disable(host, lazy);
508 host->en_dis_recurs = 0;
509
510 if (err < 0) {
511 pr_debug("%s: disable error %d\n",
512 mmc_hostname(host), err);
513 return err;
514 }
515 if (err > 0) {
516 unsigned long delay = msecs_to_jiffies(err);
517
518 mmc_schedule_delayed_work(&host->disable, delay);
519 }
520 }
521 host->enabled = 0;
522 return 0;
523}
524
525/**
526 * mmc_host_disable - disable a host.
527 * @host: mmc host to disable
528 *
529 * Hosts that support power saving can use the 'enable' and 'disable'
530 * methods to exit and enter power saving states. For more information
531 * see comments for struct mmc_host_ops.
532 */
533int mmc_host_disable(struct mmc_host *host)
534{
535 int err;
536
537 if (!(host->caps & MMC_CAP_DISABLE))
538 return 0;
539
540 if (host->en_dis_recurs)
541 return 0;
542
543 if (--host->nesting_cnt)
544 return 0;
545
546 if (!host->enabled)
547 return 0;
548
549 err = mmc_host_do_disable(host, 0);
550 return err;
551}
552EXPORT_SYMBOL(mmc_host_disable);
553
554/**
555 * __mmc_claim_host - exclusively claim a host
556 * @host: mmc host to claim
557 * @abort: whether or not the operation should be aborted
558 *
559 * Claim a host for a set of operations. If @abort is non null and
560 * dereference a non-zero value then this will return prematurely with
561 * that non-zero value without acquiring the lock. Returns zero
562 * with the lock held otherwise.
563 */
564int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
565{
566 DECLARE_WAITQUEUE(wait, current);
567 unsigned long flags;
568 int stop;
569
570 might_sleep();
571
572 add_wait_queue(&host->wq, &wait);
573 spin_lock_irqsave(&host->lock, flags);
574 while (1) {
575 set_current_state(TASK_UNINTERRUPTIBLE);
576 stop = abort ? atomic_read(abort) : 0;
577 if (stop || !host->claimed || host->claimer == current)
578 break;
579 spin_unlock_irqrestore(&host->lock, flags);
580 schedule();
581 spin_lock_irqsave(&host->lock, flags);
582 }
583 set_current_state(TASK_RUNNING);
584 if (!stop) {
585 host->claimed = 1;
586 host->claimer = current;
587 host->claim_cnt += 1;
588 } else
589 wake_up(&host->wq);
590 spin_unlock_irqrestore(&host->lock, flags);
591 remove_wait_queue(&host->wq, &wait);
592 if (!stop)
593 mmc_host_enable(host);
594 return stop;
595}
596
597EXPORT_SYMBOL(__mmc_claim_host);
598
599/**
600 * mmc_try_claim_host - try exclusively to claim a host
601 * @host: mmc host to claim
602 *
603 * Returns %1 if the host is claimed, %0 otherwise.
604 */
605int mmc_try_claim_host(struct mmc_host *host)
606{
607 int claimed_host = 0;
608 unsigned long flags;
609
610 spin_lock_irqsave(&host->lock, flags);
611 if (!host->claimed || host->claimer == current) {
612 host->claimed = 1;
613 host->claimer = current;
614 host->claim_cnt += 1;
615 claimed_host = 1;
616 }
617 spin_unlock_irqrestore(&host->lock, flags);
618 return claimed_host;
619}
620EXPORT_SYMBOL(mmc_try_claim_host);
621
622/**
623 * mmc_do_release_host - release a claimed host
624 * @host: mmc host to release
625 *
626 * If you successfully claimed a host, this function will
627 * release it again.
628 */
629void mmc_do_release_host(struct mmc_host *host)
630{
631 unsigned long flags;
632
633 spin_lock_irqsave(&host->lock, flags);
634 if (--host->claim_cnt) {
635 /* Release for nested claim */
636 spin_unlock_irqrestore(&host->lock, flags);
637 } else {
638 host->claimed = 0;
639 host->claimer = NULL;
640 spin_unlock_irqrestore(&host->lock, flags);
641 wake_up(&host->wq);
642 }
643}
644EXPORT_SYMBOL(mmc_do_release_host);
645
646void mmc_host_deeper_disable(struct work_struct *work)
647{
648 struct mmc_host *host =
649 container_of(work, struct mmc_host, disable.work);
650
651 /* If the host is claimed then we do not want to disable it anymore */
652 if (!mmc_try_claim_host(host))
653 return;
654 mmc_host_do_disable(host, 1);
655 mmc_do_release_host(host);
656}
657
658/**
659 * mmc_host_lazy_disable - lazily disable a host.
660 * @host: mmc host to disable
661 *
662 * Hosts that support power saving can use the 'enable' and 'disable'
663 * methods to exit and enter power saving states. For more information
664 * see comments for struct mmc_host_ops.
665 */
666int mmc_host_lazy_disable(struct mmc_host *host)
667{
668 if (!(host->caps & MMC_CAP_DISABLE))
669 return 0;
670
671 if (host->en_dis_recurs)
672 return 0;
673
674 if (--host->nesting_cnt)
675 return 0;
676
677 if (!host->enabled)
678 return 0;
679
680 if (host->disable_delay) {
681 mmc_schedule_delayed_work(&host->disable,
682 msecs_to_jiffies(host->disable_delay));
683 return 0;
684 } else
685 return mmc_host_do_disable(host, 1);
686}
687EXPORT_SYMBOL(mmc_host_lazy_disable);
688
689/**
690 * mmc_release_host - release a host
691 * @host: mmc host to release
692 *
693 * Release a MMC host, allowing others to claim the host
694 * for their operations.
695 */
696void mmc_release_host(struct mmc_host *host)
697{
698 WARN_ON(!host->claimed);
699
700 mmc_host_lazy_disable(host);
701
702 mmc_do_release_host(host);
703}
704
705EXPORT_SYMBOL(mmc_release_host);
706
707/*
708 * Internal function that does the actual ios call to the host driver,
709 * optionally printing some debug output.
710 */
711static inline void mmc_set_ios(struct mmc_host *host)
712{
713 struct mmc_ios *ios = &host->ios;
714
715 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
716 "width %u timing %u\n",
717 mmc_hostname(host), ios->clock, ios->bus_mode,
718 ios->power_mode, ios->chip_select, ios->vdd,
719 ios->bus_width, ios->timing);
720
721 if (ios->clock > 0)
722 mmc_set_ungated(host);
723 host->ops->set_ios(host, ios);
724}
725
726/*
727 * Control chip select pin on a host.
728 */
729void mmc_set_chip_select(struct mmc_host *host, int mode)
730{
731 mmc_host_clk_hold(host);
732 host->ios.chip_select = mode;
733 mmc_set_ios(host);
734 mmc_host_clk_release(host);
735}
736
737/*
738 * Sets the host clock to the highest possible frequency that
739 * is below "hz".
740 */
741static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
742{
743 WARN_ON(hz < host->f_min);
744
745 if (hz > host->f_max)
746 hz = host->f_max;
747
748 host->ios.clock = hz;
749 mmc_set_ios(host);
750}
751
752void mmc_set_clock(struct mmc_host *host, unsigned int hz)
753{
754 mmc_host_clk_hold(host);
755 __mmc_set_clock(host, hz);
756 mmc_host_clk_release(host);
757}
758
759#ifdef CONFIG_MMC_CLKGATE
760/*
761 * This gates the clock by setting it to 0 Hz.
762 */
763void mmc_gate_clock(struct mmc_host *host)
764{
765 unsigned long flags;
766
767 spin_lock_irqsave(&host->clk_lock, flags);
768 host->clk_old = host->ios.clock;
769 host->ios.clock = 0;
770 host->clk_gated = true;
771 spin_unlock_irqrestore(&host->clk_lock, flags);
772 mmc_set_ios(host);
773}
774
775/*
776 * This restores the clock from gating by using the cached
777 * clock value.
778 */
779void mmc_ungate_clock(struct mmc_host *host)
780{
781 /*
782 * We should previously have gated the clock, so the clock shall
783 * be 0 here! The clock may however be 0 during initialization,
784 * when some request operations are performed before setting
785 * the frequency. When ungate is requested in that situation
786 * we just ignore the call.
787 */
788 if (host->clk_old) {
789 BUG_ON(host->ios.clock);
790 /* This call will also set host->clk_gated to false */
791 __mmc_set_clock(host, host->clk_old);
792 }
793}
794
795void mmc_set_ungated(struct mmc_host *host)
796{
797 unsigned long flags;
798
799 /*
800 * We've been given a new frequency while the clock is gated,
801 * so make sure we regard this as ungating it.
802 */
803 spin_lock_irqsave(&host->clk_lock, flags);
804 host->clk_gated = false;
805 spin_unlock_irqrestore(&host->clk_lock, flags);
806}
807
808#else
809void mmc_set_ungated(struct mmc_host *host)
810{
811}
812#endif
813
814/*
815 * Change the bus mode (open drain/push-pull) of a host.
816 */
817void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
818{
819 mmc_host_clk_hold(host);
820 host->ios.bus_mode = mode;
821 mmc_set_ios(host);
822 mmc_host_clk_release(host);
823}
824
825/*
826 * Change data bus width of a host.
827 */
828void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
829{
830 mmc_host_clk_hold(host);
831 host->ios.bus_width = width;
832 mmc_set_ios(host);
833 mmc_host_clk_release(host);
834}
835
836/**
837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
838 * @vdd: voltage (mV)
839 * @low_bits: prefer low bits in boundary cases
840 *
841 * This function returns the OCR bit number according to the provided @vdd
842 * value. If conversion is not possible a negative errno value returned.
843 *
844 * Depending on the @low_bits flag the function prefers low or high OCR bits
845 * on boundary voltages. For example,
846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
848 *
849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
850 */
851static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
852{
853 const int max_bit = ilog2(MMC_VDD_35_36);
854 int bit;
855
856 if (vdd < 1650 || vdd > 3600)
857 return -EINVAL;
858
859 if (vdd >= 1650 && vdd <= 1950)
860 return ilog2(MMC_VDD_165_195);
861
862 if (low_bits)
863 vdd -= 1;
864
865 /* Base 2000 mV, step 100 mV, bit's base 8. */
866 bit = (vdd - 2000) / 100 + 8;
867 if (bit > max_bit)
868 return max_bit;
869 return bit;
870}
871
872/**
873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
874 * @vdd_min: minimum voltage value (mV)
875 * @vdd_max: maximum voltage value (mV)
876 *
877 * This function returns the OCR mask bits according to the provided @vdd_min
878 * and @vdd_max values. If conversion is not possible the function returns 0.
879 *
880 * Notes wrt boundary cases:
881 * This function sets the OCR bits for all boundary voltages, for example
882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
883 * MMC_VDD_34_35 mask.
884 */
885u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
886{
887 u32 mask = 0;
888
889 if (vdd_max < vdd_min)
890 return 0;
891
892 /* Prefer high bits for the boundary vdd_max values. */
893 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
894 if (vdd_max < 0)
895 return 0;
896
897 /* Prefer low bits for the boundary vdd_min values. */
898 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
899 if (vdd_min < 0)
900 return 0;
901
902 /* Fill the mask, from max bit to min bit. */
903 while (vdd_max >= vdd_min)
904 mask |= 1 << vdd_max--;
905
906 return mask;
907}
908EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
909
910#ifdef CONFIG_REGULATOR
911
912/**
913 * mmc_regulator_get_ocrmask - return mask of supported voltages
914 * @supply: regulator to use
915 *
916 * This returns either a negative errno, or a mask of voltages that
917 * can be provided to MMC/SD/SDIO devices using the specified voltage
918 * regulator. This would normally be called before registering the
919 * MMC host adapter.
920 */
921int mmc_regulator_get_ocrmask(struct regulator *supply)
922{
923 int result = 0;
924 int count;
925 int i;
926
927 count = regulator_count_voltages(supply);
928 if (count < 0)
929 return count;
930
931 for (i = 0; i < count; i++) {
932 int vdd_uV;
933 int vdd_mV;
934
935 vdd_uV = regulator_list_voltage(supply, i);
936 if (vdd_uV <= 0)
937 continue;
938
939 vdd_mV = vdd_uV / 1000;
940 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
941 }
942
943 return result;
944}
945EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
946
947/**
948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
949 * @mmc: the host to regulate
950 * @supply: regulator to use
951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
952 *
953 * Returns zero on success, else negative errno.
954 *
955 * MMC host drivers may use this to enable or disable a regulator using
956 * a particular supply voltage. This would normally be called from the
957 * set_ios() method.
958 */
959int mmc_regulator_set_ocr(struct mmc_host *mmc,
960 struct regulator *supply,
961 unsigned short vdd_bit)
962{
963 int result = 0;
964 int min_uV, max_uV;
965
966 if (vdd_bit) {
967 int tmp;
968 int voltage;
969
970 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
971 * bits this regulator doesn't quite support ... don't
972 * be too picky, most cards and regulators are OK with
973 * a 0.1V range goof (it's a small error percentage).
974 */
975 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
976 if (tmp == 0) {
977 min_uV = 1650 * 1000;
978 max_uV = 1950 * 1000;
979 } else {
980 min_uV = 1900 * 1000 + tmp * 100 * 1000;
981 max_uV = min_uV + 100 * 1000;
982 }
983
984 /* avoid needless changes to this voltage; the regulator
985 * might not allow this operation
986 */
987 voltage = regulator_get_voltage(supply);
988 if (voltage < 0)
989 result = voltage;
990 else if (voltage < min_uV || voltage > max_uV)
991 result = regulator_set_voltage(supply, min_uV, max_uV);
992 else
993 result = 0;
994
995 if (result == 0 && !mmc->regulator_enabled) {
996 result = regulator_enable(supply);
997 if (!result)
998 mmc->regulator_enabled = true;
999 }
1000 } else if (mmc->regulator_enabled) {
1001 result = regulator_disable(supply);
1002 if (result == 0)
1003 mmc->regulator_enabled = false;
1004 }
1005
1006 if (result)
1007 dev_err(mmc_dev(mmc),
1008 "could not set regulator OCR (%d)\n", result);
1009 return result;
1010}
1011EXPORT_SYMBOL(mmc_regulator_set_ocr);
1012
1013#endif /* CONFIG_REGULATOR */
1014
1015/*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020{
1021 int bit;
1022
1023 ocr &= host->ocr_avail;
1024
1025 bit = ffs(ocr);
1026 if (bit) {
1027 bit -= 1;
1028
1029 ocr &= 3 << bit;
1030
1031 mmc_host_clk_hold(host);
1032 host->ios.vdd = bit;
1033 mmc_set_ios(host);
1034 mmc_host_clk_release(host);
1035 } else {
1036 pr_warning("%s: host doesn't support card's voltages\n",
1037 mmc_hostname(host));
1038 ocr = 0;
1039 }
1040
1041 return ocr;
1042}
1043
1044int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045{
1046 struct mmc_command cmd = {0};
1047 int err = 0;
1048
1049 BUG_ON(!host);
1050
1051 /*
1052 * Send CMD11 only if the request is to switch the card to
1053 * 1.8V signalling.
1054 */
1055 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056 cmd.opcode = SD_SWITCH_VOLTAGE;
1057 cmd.arg = 0;
1058 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060 err = mmc_wait_for_cmd(host, &cmd, 0);
1061 if (err)
1062 return err;
1063
1064 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065 return -EIO;
1066 }
1067
1068 host->ios.signal_voltage = signal_voltage;
1069
1070 if (host->ops->start_signal_voltage_switch)
1071 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1072
1073 return err;
1074}
1075
1076/*
1077 * Select timing parameters for host.
1078 */
1079void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080{
1081 mmc_host_clk_hold(host);
1082 host->ios.timing = timing;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085}
1086
1087/*
1088 * Select appropriate driver type for host.
1089 */
1090void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091{
1092 mmc_host_clk_hold(host);
1093 host->ios.drv_type = drv_type;
1094 mmc_set_ios(host);
1095 mmc_host_clk_release(host);
1096}
1097
1098/*
1099 * Apply power to the MMC stack. This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise. Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109static void mmc_power_up(struct mmc_host *host)
1110{
1111 int bit;
1112
1113 mmc_host_clk_hold(host);
1114
1115 /* If ocr is set, we use it */
1116 if (host->ocr)
1117 bit = ffs(host->ocr) - 1;
1118 else
1119 bit = fls(host->ocr_avail) - 1;
1120
1121 host->ios.vdd = bit;
1122 if (mmc_host_is_spi(host)) {
1123 host->ios.chip_select = MMC_CS_HIGH;
1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 } else {
1126 host->ios.chip_select = MMC_CS_DONTCARE;
1127 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128 }
1129 host->ios.power_mode = MMC_POWER_UP;
1130 host->ios.bus_width = MMC_BUS_WIDTH_1;
1131 host->ios.timing = MMC_TIMING_LEGACY;
1132 mmc_set_ios(host);
1133
1134 /*
1135 * This delay should be sufficient to allow the power supply
1136 * to reach the minimum voltage.
1137 */
1138 mmc_delay(10);
1139
1140 host->ios.clock = host->f_init;
1141
1142 host->ios.power_mode = MMC_POWER_ON;
1143 mmc_set_ios(host);
1144
1145 /*
1146 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147 * time required to reach a stable voltage.
1148 */
1149 mmc_delay(10);
1150
1151 mmc_host_clk_release(host);
1152}
1153
1154static void mmc_power_off(struct mmc_host *host)
1155{
1156 mmc_host_clk_hold(host);
1157
1158 host->ios.clock = 0;
1159 host->ios.vdd = 0;
1160
1161 /*
1162 * Reset ocr mask to be the highest possible voltage supported for
1163 * this mmc host. This value will be used at next power up.
1164 */
1165 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167 if (!mmc_host_is_spi(host)) {
1168 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169 host->ios.chip_select = MMC_CS_DONTCARE;
1170 }
1171 host->ios.power_mode = MMC_POWER_OFF;
1172 host->ios.bus_width = MMC_BUS_WIDTH_1;
1173 host->ios.timing = MMC_TIMING_LEGACY;
1174 mmc_set_ios(host);
1175
1176 mmc_host_clk_release(host);
1177}
1178
1179/*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182static void __mmc_release_bus(struct mmc_host *host)
1183{
1184 BUG_ON(!host);
1185 BUG_ON(host->bus_refs);
1186 BUG_ON(!host->bus_dead);
1187
1188 host->bus_ops = NULL;
1189}
1190
1191/*
1192 * Increase reference count of bus operator
1193 */
1194static inline void mmc_bus_get(struct mmc_host *host)
1195{
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&host->lock, flags);
1199 host->bus_refs++;
1200 spin_unlock_irqrestore(&host->lock, flags);
1201}
1202
1203/*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207static inline void mmc_bus_put(struct mmc_host *host)
1208{
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&host->lock, flags);
1212 host->bus_refs--;
1213 if ((host->bus_refs == 0) && host->bus_ops)
1214 __mmc_release_bus(host);
1215 spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218/*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223{
1224 unsigned long flags;
1225
1226 BUG_ON(!host);
1227 BUG_ON(!ops);
1228
1229 WARN_ON(!host->claimed);
1230
1231 spin_lock_irqsave(&host->lock, flags);
1232
1233 BUG_ON(host->bus_ops);
1234 BUG_ON(host->bus_refs);
1235
1236 host->bus_ops = ops;
1237 host->bus_refs = 1;
1238 host->bus_dead = 0;
1239
1240 spin_unlock_irqrestore(&host->lock, flags);
1241}
1242
1243/*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247void mmc_detach_bus(struct mmc_host *host)
1248{
1249 unsigned long flags;
1250
1251 BUG_ON(!host);
1252
1253 WARN_ON(!host->claimed);
1254 WARN_ON(!host->bus_ops);
1255
1256 spin_lock_irqsave(&host->lock, flags);
1257
1258 host->bus_dead = 1;
1259
1260 spin_unlock_irqrestore(&host->lock, flags);
1261
1262 mmc_power_off(host);
1263
1264 mmc_bus_put(host);
1265}
1266
1267/**
1268 * mmc_detect_change - process change of state on a MMC socket
1269 * @host: host which changed state.
1270 * @delay: optional delay to wait before detection (jiffies)
1271 *
1272 * MMC drivers should call this when they detect a card has been
1273 * inserted or removed. The MMC layer will confirm that any
1274 * present card is still functional, and initialize any newly
1275 * inserted.
1276 */
1277void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278{
1279#ifdef CONFIG_MMC_DEBUG
1280 unsigned long flags;
1281 spin_lock_irqsave(&host->lock, flags);
1282 WARN_ON(host->removed);
1283 spin_unlock_irqrestore(&host->lock, flags);
1284#endif
1285
1286 mmc_schedule_delayed_work(&host->detect, delay);
1287}
1288
1289EXPORT_SYMBOL(mmc_detect_change);
1290
1291void mmc_init_erase(struct mmc_card *card)
1292{
1293 unsigned int sz;
1294
1295 if (is_power_of_2(card->erase_size))
1296 card->erase_shift = ffs(card->erase_size) - 1;
1297 else
1298 card->erase_shift = 0;
1299
1300 /*
1301 * It is possible to erase an arbitrarily large area of an SD or MMC
1302 * card. That is not desirable because it can take a long time
1303 * (minutes) potentially delaying more important I/O, and also the
1304 * timeout calculations become increasingly hugely over-estimated.
1305 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306 * to that size and alignment.
1307 *
1308 * For SD cards that define Allocation Unit size, limit erases to one
1309 * Allocation Unit at a time. For MMC cards that define High Capacity
1310 * Erase Size, whether it is switched on or not, limit to that size.
1311 * Otherwise just have a stab at a good value. For modern cards it
1312 * will end up being 4MiB. Note that if the value is too small, it
1313 * can end up taking longer to erase.
1314 */
1315 if (mmc_card_sd(card) && card->ssr.au) {
1316 card->pref_erase = card->ssr.au;
1317 card->erase_shift = ffs(card->ssr.au) - 1;
1318 } else if (card->ext_csd.hc_erase_size) {
1319 card->pref_erase = card->ext_csd.hc_erase_size;
1320 } else {
1321 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322 if (sz < 128)
1323 card->pref_erase = 512 * 1024 / 512;
1324 else if (sz < 512)
1325 card->pref_erase = 1024 * 1024 / 512;
1326 else if (sz < 1024)
1327 card->pref_erase = 2 * 1024 * 1024 / 512;
1328 else
1329 card->pref_erase = 4 * 1024 * 1024 / 512;
1330 if (card->pref_erase < card->erase_size)
1331 card->pref_erase = card->erase_size;
1332 else {
1333 sz = card->pref_erase % card->erase_size;
1334 if (sz)
1335 card->pref_erase += card->erase_size - sz;
1336 }
1337 }
1338}
1339
1340static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341 unsigned int arg, unsigned int qty)
1342{
1343 unsigned int erase_timeout;
1344
1345 if (card->ext_csd.erase_group_def & 1) {
1346 /* High Capacity Erase Group Size uses HC timeouts */
1347 if (arg == MMC_TRIM_ARG)
1348 erase_timeout = card->ext_csd.trim_timeout;
1349 else
1350 erase_timeout = card->ext_csd.hc_erase_timeout;
1351 } else {
1352 /* CSD Erase Group Size uses write timeout */
1353 unsigned int mult = (10 << card->csd.r2w_factor);
1354 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355 unsigned int timeout_us;
1356
1357 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358 if (card->csd.tacc_ns < 1000000)
1359 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360 else
1361 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363 /*
1364 * ios.clock is only a target. The real clock rate might be
1365 * less but not that much less, so fudge it by multiplying by 2.
1366 */
1367 timeout_clks <<= 1;
1368 timeout_us += (timeout_clks * 1000) /
1369 (mmc_host_clk_rate(card->host) / 1000);
1370
1371 erase_timeout = timeout_us / 1000;
1372
1373 /*
1374 * Theoretically, the calculation could underflow so round up
1375 * to 1ms in that case.
1376 */
1377 if (!erase_timeout)
1378 erase_timeout = 1;
1379 }
1380
1381 /* Multiplier for secure operations */
1382 if (arg & MMC_SECURE_ARGS) {
1383 if (arg == MMC_SECURE_ERASE_ARG)
1384 erase_timeout *= card->ext_csd.sec_erase_mult;
1385 else
1386 erase_timeout *= card->ext_csd.sec_trim_mult;
1387 }
1388
1389 erase_timeout *= qty;
1390
1391 /*
1392 * Ensure at least a 1 second timeout for SPI as per
1393 * 'mmc_set_data_timeout()'
1394 */
1395 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396 erase_timeout = 1000;
1397
1398 return erase_timeout;
1399}
1400
1401static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402 unsigned int arg,
1403 unsigned int qty)
1404{
1405 unsigned int erase_timeout;
1406
1407 if (card->ssr.erase_timeout) {
1408 /* Erase timeout specified in SD Status Register (SSR) */
1409 erase_timeout = card->ssr.erase_timeout * qty +
1410 card->ssr.erase_offset;
1411 } else {
1412 /*
1413 * Erase timeout not specified in SD Status Register (SSR) so
1414 * use 250ms per write block.
1415 */
1416 erase_timeout = 250 * qty;
1417 }
1418
1419 /* Must not be less than 1 second */
1420 if (erase_timeout < 1000)
1421 erase_timeout = 1000;
1422
1423 return erase_timeout;
1424}
1425
1426static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427 unsigned int arg,
1428 unsigned int qty)
1429{
1430 if (mmc_card_sd(card))
1431 return mmc_sd_erase_timeout(card, arg, qty);
1432 else
1433 return mmc_mmc_erase_timeout(card, arg, qty);
1434}
1435
1436static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437 unsigned int to, unsigned int arg)
1438{
1439 struct mmc_command cmd = {0};
1440 unsigned int qty = 0;
1441 int err;
1442
1443 /*
1444 * qty is used to calculate the erase timeout which depends on how many
1445 * erase groups (or allocation units in SD terminology) are affected.
1446 * We count erasing part of an erase group as one erase group.
1447 * For SD, the allocation units are always a power of 2. For MMC, the
1448 * erase group size is almost certainly also power of 2, but it does not
1449 * seem to insist on that in the JEDEC standard, so we fall back to
1450 * division in that case. SD may not specify an allocation unit size,
1451 * in which case the timeout is based on the number of write blocks.
1452 *
1453 * Note that the timeout for secure trim 2 will only be correct if the
1454 * number of erase groups specified is the same as the total of all
1455 * preceding secure trim 1 commands. Since the power may have been
1456 * lost since the secure trim 1 commands occurred, it is generally
1457 * impossible to calculate the secure trim 2 timeout correctly.
1458 */
1459 if (card->erase_shift)
1460 qty += ((to >> card->erase_shift) -
1461 (from >> card->erase_shift)) + 1;
1462 else if (mmc_card_sd(card))
1463 qty += to - from + 1;
1464 else
1465 qty += ((to / card->erase_size) -
1466 (from / card->erase_size)) + 1;
1467
1468 if (!mmc_card_blockaddr(card)) {
1469 from <<= 9;
1470 to <<= 9;
1471 }
1472
1473 if (mmc_card_sd(card))
1474 cmd.opcode = SD_ERASE_WR_BLK_START;
1475 else
1476 cmd.opcode = MMC_ERASE_GROUP_START;
1477 cmd.arg = from;
1478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480 if (err) {
1481 printk(KERN_ERR "mmc_erase: group start error %d, "
1482 "status %#x\n", err, cmd.resp[0]);
1483 err = -EINVAL;
1484 goto out;
1485 }
1486
1487 memset(&cmd, 0, sizeof(struct mmc_command));
1488 if (mmc_card_sd(card))
1489 cmd.opcode = SD_ERASE_WR_BLK_END;
1490 else
1491 cmd.opcode = MMC_ERASE_GROUP_END;
1492 cmd.arg = to;
1493 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495 if (err) {
1496 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497 err, cmd.resp[0]);
1498 err = -EINVAL;
1499 goto out;
1500 }
1501
1502 memset(&cmd, 0, sizeof(struct mmc_command));
1503 cmd.opcode = MMC_ERASE;
1504 cmd.arg = arg;
1505 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1507 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508 if (err) {
1509 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510 err, cmd.resp[0]);
1511 err = -EIO;
1512 goto out;
1513 }
1514
1515 if (mmc_host_is_spi(card->host))
1516 goto out;
1517
1518 do {
1519 memset(&cmd, 0, sizeof(struct mmc_command));
1520 cmd.opcode = MMC_SEND_STATUS;
1521 cmd.arg = card->rca << 16;
1522 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523 /* Do not retry else we can't see errors */
1524 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525 if (err || (cmd.resp[0] & 0xFDF92000)) {
1526 printk(KERN_ERR "error %d requesting status %#x\n",
1527 err, cmd.resp[0]);
1528 err = -EIO;
1529 goto out;
1530 }
1531 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533out:
1534 return err;
1535}
1536
1537/**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547 unsigned int arg)
1548{
1549 unsigned int rem, to = from + nr;
1550
1551 if (!(card->host->caps & MMC_CAP_ERASE) ||
1552 !(card->csd.cmdclass & CCC_ERASE))
1553 return -EOPNOTSUPP;
1554
1555 if (!card->erase_size)
1556 return -EOPNOTSUPP;
1557
1558 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559 return -EOPNOTSUPP;
1560
1561 if ((arg & MMC_SECURE_ARGS) &&
1562 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563 return -EOPNOTSUPP;
1564
1565 if ((arg & MMC_TRIM_ARGS) &&
1566 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567 return -EOPNOTSUPP;
1568
1569 if (arg == MMC_SECURE_ERASE_ARG) {
1570 if (from % card->erase_size || nr % card->erase_size)
1571 return -EINVAL;
1572 }
1573
1574 if (arg == MMC_ERASE_ARG) {
1575 rem = from % card->erase_size;
1576 if (rem) {
1577 rem = card->erase_size - rem;
1578 from += rem;
1579 if (nr > rem)
1580 nr -= rem;
1581 else
1582 return 0;
1583 }
1584 rem = nr % card->erase_size;
1585 if (rem)
1586 nr -= rem;
1587 }
1588
1589 if (nr == 0)
1590 return 0;
1591
1592 to = from + nr;
1593
1594 if (to <= from)
1595 return -EINVAL;
1596
1597 /* 'from' and 'to' are inclusive */
1598 to -= 1;
1599
1600 return mmc_do_erase(card, from, to, arg);
1601}
1602EXPORT_SYMBOL(mmc_erase);
1603
1604int mmc_can_erase(struct mmc_card *card)
1605{
1606 if ((card->host->caps & MMC_CAP_ERASE) &&
1607 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608 return 1;
1609 return 0;
1610}
1611EXPORT_SYMBOL(mmc_can_erase);
1612
1613int mmc_can_trim(struct mmc_card *card)
1614{
1615 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1616 return 1;
1617 return 0;
1618}
1619EXPORT_SYMBOL(mmc_can_trim);
1620
1621int mmc_can_secure_erase_trim(struct mmc_card *card)
1622{
1623 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1624 return 1;
1625 return 0;
1626}
1627EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630 unsigned int nr)
1631{
1632 if (!card->erase_size)
1633 return 0;
1634 if (from % card->erase_size || nr % card->erase_size)
1635 return 0;
1636 return 1;
1637}
1638EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641 unsigned int arg)
1642{
1643 struct mmc_host *host = card->host;
1644 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645 unsigned int last_timeout = 0;
1646
1647 if (card->erase_shift)
1648 max_qty = UINT_MAX >> card->erase_shift;
1649 else if (mmc_card_sd(card))
1650 max_qty = UINT_MAX;
1651 else
1652 max_qty = UINT_MAX / card->erase_size;
1653
1654 /* Find the largest qty with an OK timeout */
1655 do {
1656 y = 0;
1657 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658 timeout = mmc_erase_timeout(card, arg, qty + x);
1659 if (timeout > host->max_discard_to)
1660 break;
1661 if (timeout < last_timeout)
1662 break;
1663 last_timeout = timeout;
1664 y = x;
1665 }
1666 qty += y;
1667 } while (y);
1668
1669 if (!qty)
1670 return 0;
1671
1672 if (qty == 1)
1673 return 1;
1674
1675 /* Convert qty to sectors */
1676 if (card->erase_shift)
1677 max_discard = --qty << card->erase_shift;
1678 else if (mmc_card_sd(card))
1679 max_discard = qty;
1680 else
1681 max_discard = --qty * card->erase_size;
1682
1683 return max_discard;
1684}
1685
1686unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687{
1688 struct mmc_host *host = card->host;
1689 unsigned int max_discard, max_trim;
1690
1691 if (!host->max_discard_to)
1692 return UINT_MAX;
1693
1694 /*
1695 * Without erase_group_def set, MMC erase timeout depends on clock
1696 * frequence which can change. In that case, the best choice is
1697 * just the preferred erase size.
1698 */
1699 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700 return card->pref_erase;
1701
1702 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703 if (mmc_can_trim(card)) {
1704 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705 if (max_trim < max_discard)
1706 max_discard = max_trim;
1707 } else if (max_discard < card->erase_size) {
1708 max_discard = 0;
1709 }
1710 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711 mmc_hostname(host), max_discard, host->max_discard_to);
1712 return max_discard;
1713}
1714EXPORT_SYMBOL(mmc_calc_max_discard);
1715
1716int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717{
1718 struct mmc_command cmd = {0};
1719
1720 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1721 return 0;
1722
1723 cmd.opcode = MMC_SET_BLOCKLEN;
1724 cmd.arg = blocklen;
1725 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726 return mmc_wait_for_cmd(card->host, &cmd, 5);
1727}
1728EXPORT_SYMBOL(mmc_set_blocklen);
1729
1730static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1731{
1732 host->f_init = freq;
1733
1734#ifdef CONFIG_MMC_DEBUG
1735 pr_info("%s: %s: trying to init card at %u Hz\n",
1736 mmc_hostname(host), __func__, host->f_init);
1737#endif
1738 mmc_power_up(host);
1739
1740 /*
1741 * sdio_reset sends CMD52 to reset card. Since we do not know
1742 * if the card is being re-initialized, just send it. CMD52
1743 * should be ignored by SD/eMMC cards.
1744 */
1745 sdio_reset(host);
1746 mmc_go_idle(host);
1747
1748 mmc_send_if_cond(host, host->ocr_avail);
1749
1750 /* Order's important: probe SDIO, then SD, then MMC */
1751 if (!mmc_attach_sdio(host))
1752 return 0;
1753 if (!mmc_attach_sd(host))
1754 return 0;
1755 if (!mmc_attach_mmc(host))
1756 return 0;
1757
1758 mmc_power_off(host);
1759 return -EIO;
1760}
1761
1762void mmc_rescan(struct work_struct *work)
1763{
1764 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765 struct mmc_host *host =
1766 container_of(work, struct mmc_host, detect.work);
1767 int i;
1768
1769 if (host->rescan_disable)
1770 return;
1771
1772 mmc_bus_get(host);
1773
1774 /*
1775 * if there is a _removable_ card registered, check whether it is
1776 * still present
1777 */
1778 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779 && !(host->caps & MMC_CAP_NONREMOVABLE))
1780 host->bus_ops->detect(host);
1781
1782 /*
1783 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784 * the card is no longer present.
1785 */
1786 mmc_bus_put(host);
1787 mmc_bus_get(host);
1788
1789 /* if there still is a card present, stop here */
1790 if (host->bus_ops != NULL) {
1791 mmc_bus_put(host);
1792 goto out;
1793 }
1794
1795 /*
1796 * Only we can add a new handler, so it's safe to
1797 * release the lock here.
1798 */
1799 mmc_bus_put(host);
1800
1801 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1802 goto out;
1803
1804 mmc_claim_host(host);
1805 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807 break;
1808 if (freqs[i] <= host->f_min)
1809 break;
1810 }
1811 mmc_release_host(host);
1812
1813 out:
1814 if (host->caps & MMC_CAP_NEEDS_POLL)
1815 mmc_schedule_delayed_work(&host->detect, HZ);
1816}
1817
1818void mmc_start_host(struct mmc_host *host)
1819{
1820 mmc_power_off(host);
1821 mmc_detect_change(host, 0);
1822}
1823
1824void mmc_stop_host(struct mmc_host *host)
1825{
1826#ifdef CONFIG_MMC_DEBUG
1827 unsigned long flags;
1828 spin_lock_irqsave(&host->lock, flags);
1829 host->removed = 1;
1830 spin_unlock_irqrestore(&host->lock, flags);
1831#endif
1832
1833 if (host->caps & MMC_CAP_DISABLE)
1834 cancel_delayed_work(&host->disable);
1835 cancel_delayed_work_sync(&host->detect);
1836 mmc_flush_scheduled_work();
1837
1838 /* clear pm flags now and let card drivers set them as needed */
1839 host->pm_flags = 0;
1840
1841 mmc_bus_get(host);
1842 if (host->bus_ops && !host->bus_dead) {
1843 if (host->bus_ops->remove)
1844 host->bus_ops->remove(host);
1845
1846 mmc_claim_host(host);
1847 mmc_detach_bus(host);
1848 mmc_release_host(host);
1849 mmc_bus_put(host);
1850 return;
1851 }
1852 mmc_bus_put(host);
1853
1854 BUG_ON(host->card);
1855
1856 mmc_power_off(host);
1857}
1858
1859int mmc_power_save_host(struct mmc_host *host)
1860{
1861 int ret = 0;
1862
1863#ifdef CONFIG_MMC_DEBUG
1864 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865#endif
1866
1867 mmc_bus_get(host);
1868
1869 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870 mmc_bus_put(host);
1871 return -EINVAL;
1872 }
1873
1874 if (host->bus_ops->power_save)
1875 ret = host->bus_ops->power_save(host);
1876
1877 mmc_bus_put(host);
1878
1879 mmc_power_off(host);
1880
1881 return ret;
1882}
1883EXPORT_SYMBOL(mmc_power_save_host);
1884
1885int mmc_power_restore_host(struct mmc_host *host)
1886{
1887 int ret;
1888
1889#ifdef CONFIG_MMC_DEBUG
1890 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891#endif
1892
1893 mmc_bus_get(host);
1894
1895 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896 mmc_bus_put(host);
1897 return -EINVAL;
1898 }
1899
1900 mmc_power_up(host);
1901 ret = host->bus_ops->power_restore(host);
1902
1903 mmc_bus_put(host);
1904
1905 return ret;
1906}
1907EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909int mmc_card_awake(struct mmc_host *host)
1910{
1911 int err = -ENOSYS;
1912
1913 mmc_bus_get(host);
1914
1915 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916 err = host->bus_ops->awake(host);
1917
1918 mmc_bus_put(host);
1919
1920 return err;
1921}
1922EXPORT_SYMBOL(mmc_card_awake);
1923
1924int mmc_card_sleep(struct mmc_host *host)
1925{
1926 int err = -ENOSYS;
1927
1928 mmc_bus_get(host);
1929
1930 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931 err = host->bus_ops->sleep(host);
1932
1933 mmc_bus_put(host);
1934
1935 return err;
1936}
1937EXPORT_SYMBOL(mmc_card_sleep);
1938
1939int mmc_card_can_sleep(struct mmc_host *host)
1940{
1941 struct mmc_card *card = host->card;
1942
1943 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944 return 1;
1945 return 0;
1946}
1947EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949#ifdef CONFIG_PM
1950
1951/**
1952 * mmc_suspend_host - suspend a host
1953 * @host: mmc host
1954 */
1955int mmc_suspend_host(struct mmc_host *host)
1956{
1957 int err = 0;
1958
1959 if (host->caps & MMC_CAP_DISABLE)
1960 cancel_delayed_work(&host->disable);
1961 cancel_delayed_work(&host->detect);
1962 mmc_flush_scheduled_work();
1963
1964 mmc_bus_get(host);
1965 if (host->bus_ops && !host->bus_dead) {
1966 if (host->bus_ops->suspend)
1967 err = host->bus_ops->suspend(host);
1968 if (err == -ENOSYS || !host->bus_ops->resume) {
1969 /*
1970 * We simply "remove" the card in this case.
1971 * It will be redetected on resume.
1972 */
1973 if (host->bus_ops->remove)
1974 host->bus_ops->remove(host);
1975 mmc_claim_host(host);
1976 mmc_detach_bus(host);
1977 mmc_release_host(host);
1978 host->pm_flags = 0;
1979 err = 0;
1980 }
1981 }
1982 mmc_bus_put(host);
1983
1984 if (!err && !mmc_card_keep_power(host))
1985 mmc_power_off(host);
1986
1987 return err;
1988}
1989
1990EXPORT_SYMBOL(mmc_suspend_host);
1991
1992/**
1993 * mmc_resume_host - resume a previously suspended host
1994 * @host: mmc host
1995 */
1996int mmc_resume_host(struct mmc_host *host)
1997{
1998 int err = 0;
1999
2000 mmc_bus_get(host);
2001 if (host->bus_ops && !host->bus_dead) {
2002 if (!mmc_card_keep_power(host)) {
2003 mmc_power_up(host);
2004 mmc_select_voltage(host, host->ocr);
2005 /*
2006 * Tell runtime PM core we just powered up the card,
2007 * since it still believes the card is powered off.
2008 * Note that currently runtime PM is only enabled
2009 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010 */
2011 if (mmc_card_sdio(host->card) &&
2012 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013 pm_runtime_disable(&host->card->dev);
2014 pm_runtime_set_active(&host->card->dev);
2015 pm_runtime_enable(&host->card->dev);
2016 }
2017 }
2018 BUG_ON(!host->bus_ops->resume);
2019 err = host->bus_ops->resume(host);
2020 if (err) {
2021 printk(KERN_WARNING "%s: error %d during resume "
2022 "(card was removed?)\n",
2023 mmc_hostname(host), err);
2024 err = 0;
2025 }
2026 }
2027 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028 mmc_bus_put(host);
2029
2030 return err;
2031}
2032EXPORT_SYMBOL(mmc_resume_host);
2033
2034/* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036 to sync the card.
2037*/
2038int mmc_pm_notify(struct notifier_block *notify_block,
2039 unsigned long mode, void *unused)
2040{
2041 struct mmc_host *host = container_of(
2042 notify_block, struct mmc_host, pm_notify);
2043 unsigned long flags;
2044
2045
2046 switch (mode) {
2047 case PM_HIBERNATION_PREPARE:
2048 case PM_SUSPEND_PREPARE:
2049
2050 spin_lock_irqsave(&host->lock, flags);
2051 host->rescan_disable = 1;
2052 spin_unlock_irqrestore(&host->lock, flags);
2053 cancel_delayed_work_sync(&host->detect);
2054
2055 if (!host->bus_ops || host->bus_ops->suspend)
2056 break;
2057
2058 mmc_claim_host(host);
2059
2060 if (host->bus_ops->remove)
2061 host->bus_ops->remove(host);
2062
2063 mmc_detach_bus(host);
2064 mmc_release_host(host);
2065 host->pm_flags = 0;
2066 break;
2067
2068 case PM_POST_SUSPEND:
2069 case PM_POST_HIBERNATION:
2070 case PM_POST_RESTORE:
2071
2072 spin_lock_irqsave(&host->lock, flags);
2073 host->rescan_disable = 0;
2074 spin_unlock_irqrestore(&host->lock, flags);
2075 mmc_detect_change(host, 0);
2076
2077 }
2078
2079 return 0;
2080}
2081#endif
2082
2083static int __init mmc_init(void)
2084{
2085 int ret;
2086
2087 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088 if (!workqueue)
2089 return -ENOMEM;
2090
2091 ret = mmc_register_bus();
2092 if (ret)
2093 goto destroy_workqueue;
2094
2095 ret = mmc_register_host_class();
2096 if (ret)
2097 goto unregister_bus;
2098
2099 ret = sdio_register_bus();
2100 if (ret)
2101 goto unregister_host_class;
2102
2103 return 0;
2104
2105unregister_host_class:
2106 mmc_unregister_host_class();
2107unregister_bus:
2108 mmc_unregister_bus();
2109destroy_workqueue:
2110 destroy_workqueue(workqueue);
2111
2112 return ret;
2113}
2114
2115static void __exit mmc_exit(void)
2116{
2117 sdio_unregister_bus();
2118 mmc_unregister_host_class();
2119 mmc_unregister_bus();
2120 destroy_workqueue(workqueue);
2121}
2122
2123subsys_initcall(mmc_init);
2124module_exit(mmc_exit);
2125
2126MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd->opcode) &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
151
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
155 }
156
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
159
160 mmc_complete_cmd(mrq);
161
162 trace_mmc_request_done(host, mrq);
163
164 /*
165 * We list various conditions for the command to be considered
166 * properly done:
167 *
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
172 */
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
175
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
178
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 }
186
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
191
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
196 }
197
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
204 }
205 }
206 /*
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
209 */
210 if (mrq->done)
211 mrq->done(mrq);
212}
213
214EXPORT_SYMBOL(mmc_request_done);
215
216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217{
218 int err;
219
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
226 }
227
228 /*
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
232 */
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
236
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
239
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
244 }
245 }
246
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
249 /*
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
252 */
253 reinit_completion(&mrq->cmd_completion);
254 }
255
256 trace_mmc_request_start(host, mrq);
257
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
260
261 host->ops->request(host, mrq);
262}
263
264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
266{
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
271 }
272
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 }
281
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
289 }
290
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
295 }
296}
297
298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299{
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
302
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
307 }
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
311 }
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
317
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
322
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
329 }
330 }
331
332 return 0;
333}
334
335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336{
337 int err;
338
339 if (mrq->cmd && mrq->cmd->has_ext_addr)
340 mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341
342 init_completion(&mrq->cmd_completion);
343
344 mmc_retune_hold(host);
345
346 if (mmc_card_removed(host->card))
347 return -ENOMEDIUM;
348
349 mmc_mrq_pr_debug(host, mrq, false);
350
351 WARN_ON(!host->claimed);
352
353 err = mmc_mrq_prep(host, mrq);
354 if (err)
355 return err;
356
357 if (host->uhs2_sd_tran)
358 mmc_uhs2_prepare_cmd(host, mrq);
359
360 led_trigger_event(host->led, LED_FULL);
361 __mmc_start_request(host, mrq);
362
363 return 0;
364}
365EXPORT_SYMBOL(mmc_start_request);
366
367static void mmc_wait_done(struct mmc_request *mrq)
368{
369 complete(&mrq->completion);
370}
371
372static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373{
374 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
375
376 /*
377 * If there is an ongoing transfer, wait for the command line to become
378 * available.
379 */
380 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
381 wait_for_completion(&ongoing_mrq->cmd_completion);
382}
383
384static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
385{
386 int err;
387
388 mmc_wait_ongoing_tfr_cmd(host);
389
390 init_completion(&mrq->completion);
391 mrq->done = mmc_wait_done;
392
393 err = mmc_start_request(host, mrq);
394 if (err) {
395 mrq->cmd->error = err;
396 mmc_complete_cmd(mrq);
397 complete(&mrq->completion);
398 }
399
400 return err;
401}
402
403void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404{
405 struct mmc_command *cmd;
406
407 while (1) {
408 wait_for_completion(&mrq->completion);
409
410 cmd = mrq->cmd;
411
412 if (!cmd->error || !cmd->retries ||
413 mmc_card_removed(host->card))
414 break;
415
416 mmc_retune_recheck(host);
417
418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 mmc_hostname(host), cmd->opcode, cmd->error);
420 cmd->retries--;
421 cmd->error = 0;
422 __mmc_start_request(host, mrq);
423 }
424
425 mmc_retune_release(host);
426}
427EXPORT_SYMBOL(mmc_wait_for_req_done);
428
429/*
430 * mmc_cqe_start_req - Start a CQE request.
431 * @host: MMC host to start the request
432 * @mrq: request to start
433 *
434 * Start the request, re-tuning if needed and it is possible. Returns an error
435 * code if the request fails to start or -EBUSY if CQE is busy.
436 */
437int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
438{
439 int err;
440
441 /*
442 * CQE cannot process re-tuning commands. Caller must hold retuning
443 * while CQE is in use. Re-tuning can happen here only when CQE has no
444 * active requests i.e. this is the first. Note, re-tuning will call
445 * ->cqe_off().
446 */
447 err = mmc_retune(host);
448 if (err)
449 goto out_err;
450
451 mrq->host = host;
452
453 mmc_mrq_pr_debug(host, mrq, true);
454
455 err = mmc_mrq_prep(host, mrq);
456 if (err)
457 goto out_err;
458
459 if (host->uhs2_sd_tran)
460 mmc_uhs2_prepare_cmd(host, mrq);
461
462 err = host->cqe_ops->cqe_request(host, mrq);
463 if (err)
464 goto out_err;
465
466 trace_mmc_request_start(host, mrq);
467
468 return 0;
469
470out_err:
471 if (mrq->cmd) {
472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 mmc_hostname(host), mrq->cmd->opcode, err);
474 } else {
475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 mmc_hostname(host), mrq->tag, err);
477 }
478 return err;
479}
480EXPORT_SYMBOL(mmc_cqe_start_req);
481
482/**
483 * mmc_cqe_request_done - CQE has finished processing an MMC request
484 * @host: MMC host which completed request
485 * @mrq: MMC request which completed
486 *
487 * CQE drivers should call this function when they have completed
488 * their processing of a request.
489 */
490void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491{
492 mmc_should_fail_request(host, mrq);
493
494 /* Flag re-tuning needed on CRC errors */
495 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
496 (mrq->data && mrq->data->error == -EILSEQ))
497 mmc_retune_needed(host);
498
499 trace_mmc_request_done(host, mrq);
500
501 if (mrq->cmd) {
502 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 } else {
505 pr_debug("%s: CQE transfer done tag %d\n",
506 mmc_hostname(host), mrq->tag);
507 }
508
509 if (mrq->data) {
510 pr_debug("%s: %d bytes transferred: %d\n",
511 mmc_hostname(host),
512 mrq->data->bytes_xfered, mrq->data->error);
513 }
514
515 mrq->done(mrq);
516}
517EXPORT_SYMBOL(mmc_cqe_request_done);
518
519/**
520 * mmc_cqe_post_req - CQE post process of a completed MMC request
521 * @host: MMC host
522 * @mrq: MMC request to be processed
523 */
524void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525{
526 if (host->cqe_ops->cqe_post_req)
527 host->cqe_ops->cqe_post_req(host, mrq);
528}
529EXPORT_SYMBOL(mmc_cqe_post_req);
530
531/* Arbitrary 1 second timeout */
532#define MMC_CQE_RECOVERY_TIMEOUT 1000
533
534/*
535 * mmc_cqe_recovery - Recover from CQE errors.
536 * @host: MMC host to recover
537 *
538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539 * in eMMC, and discarding the queue in CQE. CQE must call
540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541 * fails to discard its queue.
542 */
543int mmc_cqe_recovery(struct mmc_host *host)
544{
545 struct mmc_command cmd;
546 int err;
547
548 mmc_retune_hold_now(host);
549
550 /*
551 * Recovery is expected seldom, if at all, but it reduces performance,
552 * so make sure it is not completely silent.
553 */
554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555
556 host->cqe_ops->cqe_recovery_start(host);
557
558 memset(&cmd, 0, sizeof(cmd));
559 cmd.opcode = MMC_STOP_TRANSMISSION;
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
564
565 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
566
567 memset(&cmd, 0, sizeof(cmd));
568 cmd.opcode = MMC_CMDQ_TASK_MGMT;
569 cmd.arg = 1; /* Discard entire queue */
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
573 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
574
575 host->cqe_ops->cqe_recovery_finish(host);
576
577 if (err)
578 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
579
580 mmc_retune_release(host);
581
582 return err;
583}
584EXPORT_SYMBOL(mmc_cqe_recovery);
585
586/**
587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588 * @host: MMC host
589 * @mrq: MMC request
590 *
591 * mmc_is_req_done() is used with requests that have
592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593 * starting a request and before waiting for it to complete. That is,
594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595 * and before mmc_wait_for_req_done(). If it is called at other times the
596 * result is not meaningful.
597 */
598bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
599{
600 return completion_done(&mrq->completion);
601}
602EXPORT_SYMBOL(mmc_is_req_done);
603
604/**
605 * mmc_wait_for_req - start a request and wait for completion
606 * @host: MMC host to start command
607 * @mrq: MMC request to start
608 *
609 * Start a new MMC custom command request for a host, and wait
610 * for the command to complete. In the case of 'cap_cmd_during_tfr'
611 * requests, the transfer is ongoing and the caller can issue further
612 * commands that do not use the data lines, and then wait by calling
613 * mmc_wait_for_req_done().
614 * Does not attempt to parse the response.
615 */
616void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
617{
618 __mmc_start_req(host, mrq);
619
620 if (!mrq->cap_cmd_during_tfr)
621 mmc_wait_for_req_done(host, mrq);
622}
623EXPORT_SYMBOL(mmc_wait_for_req);
624
625/**
626 * mmc_wait_for_cmd - start a command and wait for completion
627 * @host: MMC host to start command
628 * @cmd: MMC command to start
629 * @retries: maximum number of retries
630 *
631 * Start a new MMC command for a host, and wait for the command
632 * to complete. Return any error that occurred while the command
633 * was executing. Do not attempt to parse the response.
634 */
635int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
636{
637 struct mmc_request mrq = {};
638
639 WARN_ON(!host->claimed);
640
641 memset(cmd->resp, 0, sizeof(cmd->resp));
642 cmd->retries = retries;
643
644 mrq.cmd = cmd;
645 cmd->data = NULL;
646
647 mmc_wait_for_req(host, &mrq);
648
649 return cmd->error;
650}
651
652EXPORT_SYMBOL(mmc_wait_for_cmd);
653
654/**
655 * mmc_set_data_timeout - set the timeout for a data command
656 * @data: data phase for command
657 * @card: the MMC card associated with the data transfer
658 *
659 * Computes the data timeout parameters according to the
660 * correct algorithm given the card type.
661 */
662void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
663{
664 unsigned int mult;
665
666 /*
667 * SDIO cards only define an upper 1 s limit on access.
668 */
669 if (mmc_card_sdio(card)) {
670 data->timeout_ns = 1000000000;
671 data->timeout_clks = 0;
672 return;
673 }
674
675 /*
676 * SD cards use a 100 multiplier rather than 10
677 */
678 mult = mmc_card_sd(card) ? 100 : 10;
679
680 /*
681 * Scale up the multiplier (and therefore the timeout) by
682 * the r2w factor for writes.
683 */
684 if (data->flags & MMC_DATA_WRITE)
685 mult <<= card->csd.r2w_factor;
686
687 data->timeout_ns = card->csd.taac_ns * mult;
688 data->timeout_clks = card->csd.taac_clks * mult;
689
690 /*
691 * SD cards also have an upper limit on the timeout.
692 */
693 if (mmc_card_sd(card)) {
694 unsigned int timeout_us, limit_us;
695
696 timeout_us = data->timeout_ns / 1000;
697 if (card->host->ios.clock)
698 timeout_us += data->timeout_clks * 1000 /
699 (card->host->ios.clock / 1000);
700
701 if (data->flags & MMC_DATA_WRITE)
702 /*
703 * The MMC spec "It is strongly recommended
704 * for hosts to implement more than 500ms
705 * timeout value even if the card indicates
706 * the 250ms maximum busy length." Even the
707 * previous value of 300ms is known to be
708 * insufficient for some cards.
709 */
710 limit_us = 3000000;
711 else
712 limit_us = 100000;
713
714 /*
715 * SDHC cards always use these fixed values.
716 */
717 if (timeout_us > limit_us) {
718 data->timeout_ns = limit_us * 1000;
719 data->timeout_clks = 0;
720 }
721
722 /* assign limit value if invalid */
723 if (timeout_us == 0)
724 data->timeout_ns = limit_us * 1000;
725 }
726
727 /*
728 * Some cards require longer data read timeout than indicated in CSD.
729 * Address this by setting the read timeout to a "reasonably high"
730 * value. For the cards tested, 600ms has proven enough. If necessary,
731 * this value can be increased if other problematic cards require this.
732 */
733 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
734 data->timeout_ns = 600000000;
735 data->timeout_clks = 0;
736 }
737
738 /*
739 * Some cards need very high timeouts if driven in SPI mode.
740 * The worst observed timeout was 900ms after writing a
741 * continuous stream of data until the internal logic
742 * overflowed.
743 */
744 if (mmc_host_is_spi(card->host)) {
745 if (data->flags & MMC_DATA_WRITE) {
746 if (data->timeout_ns < 1000000000)
747 data->timeout_ns = 1000000000; /* 1s */
748 } else {
749 if (data->timeout_ns < 100000000)
750 data->timeout_ns = 100000000; /* 100ms */
751 }
752 }
753}
754EXPORT_SYMBOL(mmc_set_data_timeout);
755
756/*
757 * Allow claiming an already claimed host if the context is the same or there is
758 * no context but the task is the same.
759 */
760static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
761 struct task_struct *task)
762{
763 return host->claimer == ctx ||
764 (!ctx && task && host->claimer->task == task);
765}
766
767static inline void mmc_ctx_set_claimer(struct mmc_host *host,
768 struct mmc_ctx *ctx,
769 struct task_struct *task)
770{
771 if (!host->claimer) {
772 if (ctx)
773 host->claimer = ctx;
774 else
775 host->claimer = &host->default_ctx;
776 }
777 if (task)
778 host->claimer->task = task;
779}
780
781/**
782 * __mmc_claim_host - exclusively claim a host
783 * @host: mmc host to claim
784 * @ctx: context that claims the host or NULL in which case the default
785 * context will be used
786 * @abort: whether or not the operation should be aborted
787 *
788 * Claim a host for a set of operations. If @abort is non null and
789 * dereference a non-zero value then this will return prematurely with
790 * that non-zero value without acquiring the lock. Returns zero
791 * with the lock held otherwise.
792 */
793int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
794 atomic_t *abort)
795{
796 struct task_struct *task = ctx ? NULL : current;
797 DECLARE_WAITQUEUE(wait, current);
798 unsigned long flags;
799 int stop;
800 bool pm = false;
801
802 might_sleep();
803
804 add_wait_queue(&host->wq, &wait);
805 spin_lock_irqsave(&host->lock, flags);
806 while (1) {
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 stop = abort ? atomic_read(abort) : 0;
809 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
810 break;
811 spin_unlock_irqrestore(&host->lock, flags);
812 schedule();
813 spin_lock_irqsave(&host->lock, flags);
814 }
815 set_current_state(TASK_RUNNING);
816 if (!stop) {
817 host->claimed = 1;
818 mmc_ctx_set_claimer(host, ctx, task);
819 host->claim_cnt += 1;
820 if (host->claim_cnt == 1)
821 pm = true;
822 } else
823 wake_up(&host->wq);
824 spin_unlock_irqrestore(&host->lock, flags);
825 remove_wait_queue(&host->wq, &wait);
826
827 if (pm)
828 pm_runtime_get_sync(mmc_dev(host));
829
830 return stop;
831}
832EXPORT_SYMBOL(__mmc_claim_host);
833
834/**
835 * mmc_release_host - release a host
836 * @host: mmc host to release
837 *
838 * Release a MMC host, allowing others to claim the host
839 * for their operations.
840 */
841void mmc_release_host(struct mmc_host *host)
842{
843 unsigned long flags;
844
845 WARN_ON(!host->claimed);
846
847 spin_lock_irqsave(&host->lock, flags);
848 if (--host->claim_cnt) {
849 /* Release for nested claim */
850 spin_unlock_irqrestore(&host->lock, flags);
851 } else {
852 host->claimed = 0;
853 host->claimer->task = NULL;
854 host->claimer = NULL;
855 spin_unlock_irqrestore(&host->lock, flags);
856 wake_up(&host->wq);
857 pm_runtime_mark_last_busy(mmc_dev(host));
858 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
859 pm_runtime_put_sync_suspend(mmc_dev(host));
860 else
861 pm_runtime_put_autosuspend(mmc_dev(host));
862 }
863}
864EXPORT_SYMBOL(mmc_release_host);
865
866/*
867 * This is a helper function, which fetches a runtime pm reference for the
868 * card device and also claims the host.
869 */
870void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
871{
872 pm_runtime_get_sync(&card->dev);
873 __mmc_claim_host(card->host, ctx, NULL);
874}
875EXPORT_SYMBOL(mmc_get_card);
876
877/*
878 * This is a helper function, which releases the host and drops the runtime
879 * pm reference for the card device.
880 */
881void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
882{
883 struct mmc_host *host = card->host;
884
885 WARN_ON(ctx && host->claimer != ctx);
886
887 mmc_release_host(host);
888 pm_runtime_mark_last_busy(&card->dev);
889 pm_runtime_put_autosuspend(&card->dev);
890}
891EXPORT_SYMBOL(mmc_put_card);
892
893/*
894 * Internal function that does the actual ios call to the host driver,
895 * optionally printing some debug output.
896 */
897static inline void mmc_set_ios(struct mmc_host *host)
898{
899 struct mmc_ios *ios = &host->ios;
900
901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 "width %u timing %u\n",
903 mmc_hostname(host), ios->clock, ios->bus_mode,
904 ios->power_mode, ios->chip_select, ios->vdd,
905 1 << ios->bus_width, ios->timing);
906
907 host->ops->set_ios(host, ios);
908}
909
910/*
911 * Control chip select pin on a host.
912 */
913void mmc_set_chip_select(struct mmc_host *host, int mode)
914{
915 host->ios.chip_select = mode;
916 mmc_set_ios(host);
917}
918
919/*
920 * Sets the host clock to the highest possible frequency that
921 * is below "hz".
922 */
923void mmc_set_clock(struct mmc_host *host, unsigned int hz)
924{
925 WARN_ON(hz && hz < host->f_min);
926
927 if (hz > host->f_max)
928 hz = host->f_max;
929
930 host->ios.clock = hz;
931 mmc_set_ios(host);
932}
933
934int mmc_execute_tuning(struct mmc_card *card)
935{
936 struct mmc_host *host = card->host;
937 u32 opcode;
938 int err;
939
940 if (!host->ops->execute_tuning)
941 return 0;
942
943 if (host->cqe_on)
944 host->cqe_ops->cqe_off(host);
945
946 if (mmc_card_mmc(card))
947 opcode = MMC_SEND_TUNING_BLOCK_HS200;
948 else
949 opcode = MMC_SEND_TUNING_BLOCK;
950
951 err = host->ops->execute_tuning(host, opcode);
952 if (!err) {
953 mmc_retune_clear(host);
954 mmc_retune_enable(host);
955 return 0;
956 }
957
958 /* Only print error when we don't check for card removal */
959 if (!host->detect_change) {
960 pr_err("%s: tuning execution failed: %d\n",
961 mmc_hostname(host), err);
962 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
963 }
964
965 return err;
966}
967
968/*
969 * Change the bus mode (open drain/push-pull) of a host.
970 */
971void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972{
973 host->ios.bus_mode = mode;
974 mmc_set_ios(host);
975}
976
977/*
978 * Change data bus width of a host.
979 */
980void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981{
982 host->ios.bus_width = width;
983 mmc_set_ios(host);
984}
985
986/*
987 * Set initial state after a power cycle or a hw_reset.
988 */
989void mmc_set_initial_state(struct mmc_host *host)
990{
991 if (host->cqe_on)
992 host->cqe_ops->cqe_off(host);
993
994 mmc_retune_disable(host);
995
996 if (mmc_host_is_spi(host))
997 host->ios.chip_select = MMC_CS_HIGH;
998 else
999 host->ios.chip_select = MMC_CS_DONTCARE;
1000 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001 host->ios.bus_width = MMC_BUS_WIDTH_1;
1002 host->ios.timing = MMC_TIMING_LEGACY;
1003 host->ios.drv_type = 0;
1004 host->ios.enhanced_strobe = false;
1005
1006 /*
1007 * Make sure we are in non-enhanced strobe mode before we
1008 * actually enable it in ext_csd.
1009 */
1010 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011 host->ops->hs400_enhanced_strobe)
1012 host->ops->hs400_enhanced_strobe(host, &host->ios);
1013
1014 mmc_set_ios(host);
1015
1016 mmc_crypto_set_initial_state(host);
1017}
1018
1019/**
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd: voltage (mV)
1022 * @low_bits: prefer low bits in boundary cases
1023 *
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1026 *
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031 *
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033 */
1034static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035{
1036 const int max_bit = ilog2(MMC_VDD_35_36);
1037 int bit;
1038
1039 if (vdd < 1650 || vdd > 3600)
1040 return -EINVAL;
1041
1042 if (vdd >= 1650 && vdd <= 1950)
1043 return ilog2(MMC_VDD_165_195);
1044
1045 if (low_bits)
1046 vdd -= 1;
1047
1048 /* Base 2000 mV, step 100 mV, bit's base 8. */
1049 bit = (vdd - 2000) / 100 + 8;
1050 if (bit > max_bit)
1051 return max_bit;
1052 return bit;
1053}
1054
1055/**
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min: minimum voltage value (mV)
1058 * @vdd_max: maximum voltage value (mV)
1059 *
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1062 *
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1067 */
1068u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069{
1070 u32 mask = 0;
1071
1072 if (vdd_max < vdd_min)
1073 return 0;
1074
1075 /* Prefer high bits for the boundary vdd_max values. */
1076 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 if (vdd_max < 0)
1078 return 0;
1079
1080 /* Prefer low bits for the boundary vdd_min values. */
1081 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 if (vdd_min < 0)
1083 return 0;
1084
1085 /* Fill the mask, from max bit to min bit. */
1086 while (vdd_max >= vdd_min)
1087 mask |= 1 << vdd_max--;
1088
1089 return mask;
1090}
1091
1092static int mmc_of_get_func_num(struct device_node *node)
1093{
1094 u32 reg;
1095 int ret;
1096
1097 ret = of_property_read_u32(node, "reg", ®);
1098 if (ret < 0)
1099 return ret;
1100
1101 return reg;
1102}
1103
1104struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105 unsigned func_num)
1106{
1107 struct device_node *node;
1108
1109 if (!host->parent || !host->parent->of_node)
1110 return NULL;
1111
1112 for_each_child_of_node(host->parent->of_node, node) {
1113 if (mmc_of_get_func_num(node) == func_num)
1114 return node;
1115 }
1116
1117 return NULL;
1118}
1119
1120/*
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1123 */
1124u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125{
1126 int bit;
1127
1128 /*
1129 * Sanity check the voltages that the card claims to
1130 * support.
1131 */
1132 if (ocr & 0x7F) {
1133 dev_warn(mmc_dev(host),
1134 "card claims to support voltages below defined range\n");
1135 ocr &= ~0x7F;
1136 }
1137
1138 ocr &= host->ocr_avail;
1139 if (!ocr) {
1140 dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 return 0;
1142 }
1143
1144 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145 bit = ffs(ocr) - 1;
1146 ocr &= 3 << bit;
1147 mmc_power_cycle(host, ocr);
1148 } else {
1149 bit = fls(ocr) - 1;
1150 /*
1151 * The bit variable represents the highest voltage bit set in
1152 * the OCR register.
1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 * we must shift the mask '3' with (bit - 1).
1155 */
1156 ocr &= 3 << (bit - 1);
1157 if (bit != host->ios.vdd)
1158 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159 }
1160
1161 return ocr;
1162}
1163
1164int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165{
1166 int err = 0;
1167 int old_signal_voltage = host->ios.signal_voltage;
1168
1169 host->ios.signal_voltage = signal_voltage;
1170 if (host->ops->start_signal_voltage_switch)
1171 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172
1173 if (err)
1174 host->ios.signal_voltage = old_signal_voltage;
1175
1176 return err;
1177
1178}
1179
1180void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181{
1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189}
1190
1191int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192{
1193 u32 clock;
1194
1195 /*
1196 * During a signal voltage level switch, the clock must be gated
1197 * for 5 ms according to the SD spec
1198 */
1199 clock = host->ios.clock;
1200 host->ios.clock = 0;
1201 mmc_set_ios(host);
1202
1203 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204 return -EAGAIN;
1205
1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207 mmc_delay(10);
1208 host->ios.clock = clock;
1209 mmc_set_ios(host);
1210
1211 return 0;
1212}
1213
1214int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215{
1216 struct mmc_command cmd = {};
1217 int err = 0;
1218
1219 /*
1220 * If we cannot switch voltages, return failure so the caller
1221 * can continue without UHS mode
1222 */
1223 if (!host->ops->start_signal_voltage_switch)
1224 return -EPERM;
1225 if (!host->ops->card_busy)
1226 pr_warn("%s: cannot verify signal voltage switch\n",
1227 mmc_hostname(host));
1228
1229 cmd.opcode = SD_SWITCH_VOLTAGE;
1230 cmd.arg = 0;
1231 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232
1233 err = mmc_wait_for_cmd(host, &cmd, 0);
1234 if (err)
1235 goto power_cycle;
1236
1237 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 return -EIO;
1239
1240 /*
1241 * The card should drive cmd and dat[0:3] low immediately
1242 * after the response of cmd11, but wait 1 ms to be sure
1243 */
1244 mmc_delay(1);
1245 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246 err = -EAGAIN;
1247 goto power_cycle;
1248 }
1249
1250 if (mmc_host_set_uhs_voltage(host)) {
1251 /*
1252 * Voltages may not have been switched, but we've already
1253 * sent CMD11, so a power cycle is required anyway
1254 */
1255 err = -EAGAIN;
1256 goto power_cycle;
1257 }
1258
1259 /* Wait for at least 1 ms according to spec */
1260 mmc_delay(1);
1261
1262 /*
1263 * Failure to switch is indicated by the card holding
1264 * dat[0:3] low
1265 */
1266 if (host->ops->card_busy && host->ops->card_busy(host))
1267 err = -EAGAIN;
1268
1269power_cycle:
1270 if (err) {
1271 pr_debug("%s: Signal voltage switch failed, "
1272 "power cycling card\n", mmc_hostname(host));
1273 mmc_power_cycle(host, ocr);
1274 }
1275
1276 return err;
1277}
1278
1279/*
1280 * Select timing parameters for host.
1281 */
1282void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283{
1284 host->ios.timing = timing;
1285 mmc_set_ios(host);
1286}
1287
1288/*
1289 * Select appropriate driver type for host.
1290 */
1291void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292{
1293 host->ios.drv_type = drv_type;
1294 mmc_set_ios(host);
1295}
1296
1297int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298 int card_drv_type, int *drv_type)
1299{
1300 struct mmc_host *host = card->host;
1301 int host_drv_type = SD_DRIVER_TYPE_B;
1302
1303 *drv_type = 0;
1304
1305 if (!host->ops->select_drive_strength)
1306 return 0;
1307
1308 /* Use SD definition of driver strength for hosts */
1309 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310 host_drv_type |= SD_DRIVER_TYPE_A;
1311
1312 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313 host_drv_type |= SD_DRIVER_TYPE_C;
1314
1315 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316 host_drv_type |= SD_DRIVER_TYPE_D;
1317
1318 /*
1319 * The drive strength that the hardware can support
1320 * depends on the board design. Pass the appropriate
1321 * information and let the hardware specific code
1322 * return what is possible given the options
1323 */
1324 return host->ops->select_drive_strength(card, max_dtr,
1325 host_drv_type,
1326 card_drv_type,
1327 drv_type);
1328}
1329
1330/*
1331 * Apply power to the MMC stack. This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise. Finally,
1334 * enable the bus drivers and clock to the card.
1335 *
1336 * We must _NOT_ enable the clock prior to power stablising.
1337 *
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1340 */
1341void mmc_power_up(struct mmc_host *host, u32 ocr)
1342{
1343 if (host->ios.power_mode == MMC_POWER_ON)
1344 return;
1345
1346 mmc_pwrseq_pre_power_on(host);
1347
1348 host->ios.vdd = fls(ocr) - 1;
1349 host->ios.power_mode = MMC_POWER_UP;
1350 /* Set initial state and call mmc_set_ios */
1351 mmc_set_initial_state(host);
1352
1353 mmc_set_initial_signal_voltage(host);
1354
1355 /*
1356 * This delay should be sufficient to allow the power supply
1357 * to reach the minimum voltage.
1358 */
1359 mmc_delay(host->ios.power_delay_ms);
1360
1361 mmc_pwrseq_post_power_on(host);
1362
1363 host->ios.clock = host->f_init;
1364
1365 host->ios.power_mode = MMC_POWER_ON;
1366 mmc_set_ios(host);
1367
1368 /*
1369 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 * time required to reach a stable voltage.
1371 */
1372 mmc_delay(host->ios.power_delay_ms);
1373}
1374
1375void mmc_power_off(struct mmc_host *host)
1376{
1377 if (host->ios.power_mode == MMC_POWER_OFF)
1378 return;
1379
1380 mmc_pwrseq_power_off(host);
1381
1382 host->ios.clock = 0;
1383 host->ios.vdd = 0;
1384
1385 host->ios.power_mode = MMC_POWER_OFF;
1386 /* Set initial state and call mmc_set_ios */
1387 mmc_set_initial_state(host);
1388
1389 /*
1390 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 * XO-1.5, require a short delay after poweroff before the card
1392 * can be successfully turned on again.
1393 */
1394 mmc_delay(1);
1395}
1396
1397void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398{
1399 mmc_power_off(host);
1400 /* Wait at least 1 ms according to SD spec */
1401 mmc_delay(1);
1402 mmc_power_up(host, ocr);
1403}
1404
1405/*
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1408 */
1409void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410{
1411 host->bus_ops = ops;
1412}
1413
1414/*
1415 * Remove the current bus handler from a host.
1416 */
1417void mmc_detach_bus(struct mmc_host *host)
1418{
1419 host->bus_ops = NULL;
1420}
1421
1422void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1423{
1424 /*
1425 * Prevent system sleep for 5s to allow user space to consume the
1426 * corresponding uevent. This is especially useful, when CD irq is used
1427 * as a system wakeup, but doesn't hurt in other cases.
1428 */
1429 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430 __pm_wakeup_event(host->ws, 5000);
1431
1432 host->detect_change = 1;
1433 mmc_schedule_delayed_work(&host->detect, delay);
1434}
1435
1436/**
1437 * mmc_detect_change - process change of state on a MMC socket
1438 * @host: host which changed state.
1439 * @delay: optional delay to wait before detection (jiffies)
1440 *
1441 * MMC drivers should call this when they detect a card has been
1442 * inserted or removed. The MMC layer will confirm that any
1443 * present card is still functional, and initialize any newly
1444 * inserted.
1445 */
1446void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447{
1448 _mmc_detect_change(host, delay, true);
1449}
1450EXPORT_SYMBOL(mmc_detect_change);
1451
1452void mmc_init_erase(struct mmc_card *card)
1453{
1454 unsigned int sz;
1455
1456 if (is_power_of_2(card->erase_size))
1457 card->erase_shift = ffs(card->erase_size) - 1;
1458 else
1459 card->erase_shift = 0;
1460
1461 /*
1462 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 * card. That is not desirable because it can take a long time
1464 * (minutes) potentially delaying more important I/O, and also the
1465 * timeout calculations become increasingly hugely over-estimated.
1466 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 * to that size and alignment.
1468 *
1469 * For SD cards that define Allocation Unit size, limit erases to one
1470 * Allocation Unit at a time.
1471 * For MMC, have a stab at ai good value and for modern cards it will
1472 * end up being 4MiB. Note that if the value is too small, it can end
1473 * up taking longer to erase. Also note, erase_size is already set to
1474 * High Capacity Erase Size if available when this function is called.
1475 */
1476 if (mmc_card_sd(card) && card->ssr.au) {
1477 card->pref_erase = card->ssr.au;
1478 card->erase_shift = ffs(card->ssr.au) - 1;
1479 } else if (card->erase_size) {
1480 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481 if (sz < 128)
1482 card->pref_erase = 512 * 1024 / 512;
1483 else if (sz < 512)
1484 card->pref_erase = 1024 * 1024 / 512;
1485 else if (sz < 1024)
1486 card->pref_erase = 2 * 1024 * 1024 / 512;
1487 else
1488 card->pref_erase = 4 * 1024 * 1024 / 512;
1489 if (card->pref_erase < card->erase_size)
1490 card->pref_erase = card->erase_size;
1491 else {
1492 sz = card->pref_erase % card->erase_size;
1493 if (sz)
1494 card->pref_erase += card->erase_size - sz;
1495 }
1496 } else
1497 card->pref_erase = 0;
1498}
1499
1500static bool is_trim_arg(unsigned int arg)
1501{
1502 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503}
1504
1505static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506 unsigned int arg, unsigned int qty)
1507{
1508 unsigned int erase_timeout;
1509
1510 if (arg == MMC_DISCARD_ARG ||
1511 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512 erase_timeout = card->ext_csd.trim_timeout;
1513 } else if (card->ext_csd.erase_group_def & 1) {
1514 /* High Capacity Erase Group Size uses HC timeouts */
1515 if (arg == MMC_TRIM_ARG)
1516 erase_timeout = card->ext_csd.trim_timeout;
1517 else
1518 erase_timeout = card->ext_csd.hc_erase_timeout;
1519 } else {
1520 /* CSD Erase Group Size uses write timeout */
1521 unsigned int mult = (10 << card->csd.r2w_factor);
1522 unsigned int timeout_clks = card->csd.taac_clks * mult;
1523 unsigned int timeout_us;
1524
1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 if (card->csd.taac_ns < 1000000)
1527 timeout_us = (card->csd.taac_ns * mult) / 1000;
1528 else
1529 timeout_us = (card->csd.taac_ns / 1000) * mult;
1530
1531 /*
1532 * ios.clock is only a target. The real clock rate might be
1533 * less but not that much less, so fudge it by multiplying by 2.
1534 */
1535 timeout_clks <<= 1;
1536 timeout_us += (timeout_clks * 1000) /
1537 (card->host->ios.clock / 1000);
1538
1539 erase_timeout = timeout_us / 1000;
1540
1541 /*
1542 * Theoretically, the calculation could underflow so round up
1543 * to 1ms in that case.
1544 */
1545 if (!erase_timeout)
1546 erase_timeout = 1;
1547 }
1548
1549 /* Multiplier for secure operations */
1550 if (arg & MMC_SECURE_ARGS) {
1551 if (arg == MMC_SECURE_ERASE_ARG)
1552 erase_timeout *= card->ext_csd.sec_erase_mult;
1553 else
1554 erase_timeout *= card->ext_csd.sec_trim_mult;
1555 }
1556
1557 erase_timeout *= qty;
1558
1559 /*
1560 * Ensure at least a 1 second timeout for SPI as per
1561 * 'mmc_set_data_timeout()'
1562 */
1563 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564 erase_timeout = 1000;
1565
1566 return erase_timeout;
1567}
1568
1569static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 unsigned int arg,
1571 unsigned int qty)
1572{
1573 unsigned int erase_timeout;
1574
1575 /* for DISCARD none of the below calculation applies.
1576 * the busy timeout is 250msec per discard command.
1577 */
1578 if (arg == SD_DISCARD_ARG)
1579 return SD_DISCARD_TIMEOUT_MS;
1580
1581 if (card->ssr.erase_timeout) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout = card->ssr.erase_timeout * qty +
1584 card->ssr.erase_offset;
1585 } else {
1586 /*
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1589 */
1590 erase_timeout = 250 * qty;
1591 }
1592
1593 /* Must not be less than 1 second */
1594 if (erase_timeout < 1000)
1595 erase_timeout = 1000;
1596
1597 return erase_timeout;
1598}
1599
1600static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1603{
1604 if (mmc_card_sd(card))
1605 return mmc_sd_erase_timeout(card, arg, qty);
1606 else
1607 return mmc_mmc_erase_timeout(card, arg, qty);
1608}
1609
1610static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611 sector_t to, unsigned int arg)
1612{
1613 struct mmc_command cmd = {};
1614 unsigned int qty = 0, busy_timeout = 0;
1615 bool use_r1b_resp;
1616 int err;
1617
1618 mmc_retune_hold(card->host);
1619
1620 /*
1621 * qty is used to calculate the erase timeout which depends on how many
1622 * erase groups (or allocation units in SD terminology) are affected.
1623 * We count erasing part of an erase group as one erase group.
1624 * For SD, the allocation units are always a power of 2. For MMC, the
1625 * erase group size is almost certainly also power of 2, but it does not
1626 * seem to insist on that in the JEDEC standard, so we fall back to
1627 * division in that case. SD may not specify an allocation unit size,
1628 * in which case the timeout is based on the number of write blocks.
1629 *
1630 * Note that the timeout for secure trim 2 will only be correct if the
1631 * number of erase groups specified is the same as the total of all
1632 * preceding secure trim 1 commands. Since the power may have been
1633 * lost since the secure trim 1 commands occurred, it is generally
1634 * impossible to calculate the secure trim 2 timeout correctly.
1635 */
1636 if (card->erase_shift)
1637 qty += ((to >> card->erase_shift) -
1638 (from >> card->erase_shift)) + 1;
1639 else if (mmc_card_sd(card))
1640 qty += to - from + 1;
1641 else
1642 qty += (mmc_sector_div(to, card->erase_size) -
1643 mmc_sector_div(from, card->erase_size)) + 1;
1644
1645 if (!mmc_card_blockaddr(card)) {
1646 from <<= 9;
1647 to <<= 9;
1648 }
1649
1650 if (mmc_card_sd(card))
1651 cmd.opcode = SD_ERASE_WR_BLK_START;
1652 else
1653 cmd.opcode = MMC_ERASE_GROUP_START;
1654 cmd.arg = from;
1655 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656
1657 if (mmc_card_ult_capacity(card)) {
1658 cmd.ext_addr = from >> 32;
1659 cmd.has_ext_addr = true;
1660 }
1661
1662 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 if (err) {
1664 pr_err("mmc_erase: group start error %d, "
1665 "status %#x\n", err, cmd.resp[0]);
1666 err = -EIO;
1667 goto out;
1668 }
1669
1670 memset(&cmd, 0, sizeof(struct mmc_command));
1671 if (mmc_card_sd(card))
1672 cmd.opcode = SD_ERASE_WR_BLK_END;
1673 else
1674 cmd.opcode = MMC_ERASE_GROUP_END;
1675 cmd.arg = to;
1676 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677
1678 if (mmc_card_ult_capacity(card)) {
1679 cmd.ext_addr = to >> 32;
1680 cmd.has_ext_addr = true;
1681 }
1682
1683 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 if (err) {
1685 pr_err("mmc_erase: group end error %d, status %#x\n",
1686 err, cmd.resp[0]);
1687 err = -EIO;
1688 goto out;
1689 }
1690
1691 memset(&cmd, 0, sizeof(struct mmc_command));
1692 cmd.opcode = MMC_ERASE;
1693 cmd.arg = arg;
1694 busy_timeout = mmc_erase_timeout(card, arg, qty);
1695 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1696
1697 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698 if (err) {
1699 pr_err("mmc_erase: erase error %d, status %#x\n",
1700 err, cmd.resp[0]);
1701 err = -EIO;
1702 goto out;
1703 }
1704
1705 if (mmc_host_is_spi(card->host))
1706 goto out;
1707
1708 /*
1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710 * shall be avoided.
1711 */
1712 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713 goto out;
1714
1715 /* Let's poll to find out when the erase operation completes. */
1716 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1717
1718out:
1719 mmc_retune_release(card->host);
1720 return err;
1721}
1722
1723static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724 sector_t *from,
1725 sector_t *to,
1726 unsigned int nr)
1727{
1728 sector_t from_new = *from;
1729 unsigned int nr_new = nr, rem;
1730
1731 /*
1732 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 * to align the erase size efficiently.
1734 */
1735 if (is_power_of_2(card->erase_size)) {
1736 sector_t temp = from_new;
1737
1738 from_new = round_up(temp, card->erase_size);
1739 rem = from_new - temp;
1740
1741 if (nr_new > rem)
1742 nr_new -= rem;
1743 else
1744 return 0;
1745
1746 nr_new = round_down(nr_new, card->erase_size);
1747 } else {
1748 rem = mmc_sector_mod(from_new, card->erase_size);
1749 if (rem) {
1750 rem = card->erase_size - rem;
1751 from_new += rem;
1752 if (nr_new > rem)
1753 nr_new -= rem;
1754 else
1755 return 0;
1756 }
1757
1758 rem = nr_new % card->erase_size;
1759 if (rem)
1760 nr_new -= rem;
1761 }
1762
1763 if (nr_new == 0)
1764 return 0;
1765
1766 *to = from_new + nr_new;
1767 *from = from_new;
1768
1769 return nr_new;
1770}
1771
1772/**
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1778 *
1779 * Caller must claim host before calling this function.
1780 */
1781int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 unsigned int arg)
1783{
1784 unsigned int rem;
1785 sector_t to = from + nr;
1786
1787 int err;
1788
1789 if (!(card->csd.cmdclass & CCC_ERASE))
1790 return -EOPNOTSUPP;
1791
1792 if (!card->erase_size)
1793 return -EOPNOTSUPP;
1794
1795 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796 return -EOPNOTSUPP;
1797
1798 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800 return -EOPNOTSUPP;
1801
1802 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804 return -EOPNOTSUPP;
1805
1806 if (arg == MMC_SECURE_ERASE_ARG) {
1807 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 return -EINVAL;
1809 }
1810
1811 if (arg == MMC_ERASE_ARG)
1812 nr = mmc_align_erase_size(card, &from, &to, nr);
1813
1814 if (nr == 0)
1815 return 0;
1816
1817 if (to <= from)
1818 return -EINVAL;
1819
1820 /* 'from' and 'to' are inclusive */
1821 to -= 1;
1822
1823 /*
1824 * Special case where only one erase-group fits in the timeout budget:
1825 * If the region crosses an erase-group boundary on this particular
1826 * case, we will be trimming more than one erase-group which, does not
1827 * fit in the timeout budget of the controller, so we need to split it
1828 * and call mmc_do_erase() twice if necessary. This special case is
1829 * identified by the card->eg_boundary flag.
1830 */
1831 rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833 err = mmc_do_erase(card, from, from + rem - 1, arg);
1834 from += rem;
1835 if ((err) || (to <= from))
1836 return err;
1837 }
1838
1839 return mmc_do_erase(card, from, to, arg);
1840}
1841EXPORT_SYMBOL(mmc_erase);
1842
1843int mmc_can_erase(struct mmc_card *card)
1844{
1845 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1846 return 1;
1847 return 0;
1848}
1849EXPORT_SYMBOL(mmc_can_erase);
1850
1851int mmc_can_trim(struct mmc_card *card)
1852{
1853 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855 return 1;
1856 return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_trim);
1859
1860int mmc_can_discard(struct mmc_card *card)
1861{
1862 /*
1863 * As there's no way to detect the discard support bit at v4.5
1864 * use the s/w feature support filed.
1865 */
1866 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867 return 1;
1868 return 0;
1869}
1870EXPORT_SYMBOL(mmc_can_discard);
1871
1872int mmc_can_sanitize(struct mmc_card *card)
1873{
1874 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875 return 0;
1876 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877 return 1;
1878 return 0;
1879}
1880
1881int mmc_can_secure_erase_trim(struct mmc_card *card)
1882{
1883 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885 return 1;
1886 return 0;
1887}
1888EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889
1890int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891 unsigned int nr)
1892{
1893 if (!card->erase_size)
1894 return 0;
1895 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896 return 0;
1897 return 1;
1898}
1899EXPORT_SYMBOL(mmc_erase_group_aligned);
1900
1901static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902 unsigned int arg)
1903{
1904 struct mmc_host *host = card->host;
1905 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906 unsigned int last_timeout = 0;
1907 unsigned int max_busy_timeout = host->max_busy_timeout ?
1908 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909
1910 if (card->erase_shift) {
1911 max_qty = UINT_MAX >> card->erase_shift;
1912 min_qty = card->pref_erase >> card->erase_shift;
1913 } else if (mmc_card_sd(card)) {
1914 max_qty = UINT_MAX;
1915 min_qty = card->pref_erase;
1916 } else {
1917 max_qty = UINT_MAX / card->erase_size;
1918 min_qty = card->pref_erase / card->erase_size;
1919 }
1920
1921 /*
1922 * We should not only use 'host->max_busy_timeout' as the limitation
1923 * when deciding the max discard sectors. We should set a balance value
1924 * to improve the erase speed, and it can not get too long timeout at
1925 * the same time.
1926 *
1927 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 * matter what size of 'host->max_busy_timeout', but if the
1929 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 * then we can continue to increase the max discard sectors until we
1931 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 * isn't specified, use the default max erase timeout.
1933 */
1934 do {
1935 y = 0;
1936 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937 timeout = mmc_erase_timeout(card, arg, qty + x);
1938
1939 if (qty + x > min_qty && timeout > max_busy_timeout)
1940 break;
1941
1942 if (timeout < last_timeout)
1943 break;
1944 last_timeout = timeout;
1945 y = x;
1946 }
1947 qty += y;
1948 } while (y);
1949
1950 if (!qty)
1951 return 0;
1952
1953 /*
1954 * When specifying a sector range to trim, chances are we might cross
1955 * an erase-group boundary even if the amount of sectors is less than
1956 * one erase-group.
1957 * If we can only fit one erase-group in the controller timeout budget,
1958 * we have to care that erase-group boundaries are not crossed by a
1959 * single trim operation. We flag that special case with "eg_boundary".
1960 * In all other cases we can just decrement qty and pretend that we
1961 * always touch (qty + 1) erase-groups as a simple optimization.
1962 */
1963 if (qty == 1)
1964 card->eg_boundary = 1;
1965 else
1966 qty--;
1967
1968 /* Convert qty to sectors */
1969 if (card->erase_shift)
1970 max_discard = qty << card->erase_shift;
1971 else if (mmc_card_sd(card))
1972 max_discard = qty + 1;
1973 else
1974 max_discard = qty * card->erase_size;
1975
1976 return max_discard;
1977}
1978
1979unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980{
1981 struct mmc_host *host = card->host;
1982 unsigned int max_discard, max_trim;
1983
1984 /*
1985 * Without erase_group_def set, MMC erase timeout depends on clock
1986 * frequence which can change. In that case, the best choice is
1987 * just the preferred erase size.
1988 */
1989 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990 return card->pref_erase;
1991
1992 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993 if (mmc_can_trim(card)) {
1994 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995 if (max_trim < max_discard || max_discard == 0)
1996 max_discard = max_trim;
1997 } else if (max_discard < card->erase_size) {
1998 max_discard = 0;
1999 }
2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003 return max_discard;
2004}
2005EXPORT_SYMBOL(mmc_calc_max_discard);
2006
2007bool mmc_card_is_blockaddr(struct mmc_card *card)
2008{
2009 return card ? mmc_card_blockaddr(card) : false;
2010}
2011EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012
2013int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014{
2015 struct mmc_command cmd = {};
2016
2017 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018 mmc_card_hs400(card) || mmc_card_hs400es(card))
2019 return 0;
2020
2021 cmd.opcode = MMC_SET_BLOCKLEN;
2022 cmd.arg = blocklen;
2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 return mmc_wait_for_cmd(card->host, &cmd, 5);
2025}
2026EXPORT_SYMBOL(mmc_set_blocklen);
2027
2028static void mmc_hw_reset_for_init(struct mmc_host *host)
2029{
2030 mmc_pwrseq_reset(host);
2031
2032 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033 return;
2034 host->ops->card_hw_reset(host);
2035}
2036
2037/**
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2040 *
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2044 *
2045 * Return: 0 on success, -errno on failure
2046 */
2047int mmc_hw_reset(struct mmc_card *card)
2048{
2049 struct mmc_host *host = card->host;
2050 int ret;
2051
2052 ret = host->bus_ops->hw_reset(host);
2053 if (ret < 0)
2054 pr_warn("%s: tried to HW reset card, got error %d\n",
2055 mmc_hostname(host), ret);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL(mmc_hw_reset);
2060
2061int mmc_sw_reset(struct mmc_card *card)
2062{
2063 struct mmc_host *host = card->host;
2064 int ret;
2065
2066 if (!host->bus_ops->sw_reset)
2067 return -EOPNOTSUPP;
2068
2069 ret = host->bus_ops->sw_reset(host);
2070 if (ret)
2071 pr_warn("%s: tried to SW reset card, got error %d\n",
2072 mmc_hostname(host), ret);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL(mmc_sw_reset);
2077
2078static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079{
2080 host->f_init = freq;
2081
2082 pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 mmc_hostname(host), __func__, host->f_init);
2084
2085 mmc_power_up(host, host->ocr_avail);
2086
2087 /*
2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 * do a hardware reset if possible.
2090 */
2091 mmc_hw_reset_for_init(host);
2092
2093 /*
2094 * sdio_reset sends CMD52 to reset card. Since we do not know
2095 * if the card is being re-initialized, just send it. CMD52
2096 * should be ignored by SD/eMMC cards.
2097 * Skip it if we already know that we do not support SDIO commands
2098 */
2099 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100 sdio_reset(host);
2101
2102 mmc_go_idle(host);
2103
2104 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106 goto out;
2107 if (mmc_card_sd_express(host))
2108 return 0;
2109 }
2110
2111 /* Order's important: probe SDIO, then SD, then MMC */
2112 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113 if (!mmc_attach_sdio(host))
2114 return 0;
2115
2116 if (!(host->caps2 & MMC_CAP2_NO_SD))
2117 if (!mmc_attach_sd(host))
2118 return 0;
2119
2120 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121 if (!mmc_attach_mmc(host))
2122 return 0;
2123
2124out:
2125 mmc_power_off(host);
2126 return -EIO;
2127}
2128
2129int _mmc_detect_card_removed(struct mmc_host *host)
2130{
2131 int ret;
2132
2133 if (!host->card || mmc_card_removed(host->card))
2134 return 1;
2135
2136 ret = host->bus_ops->alive(host);
2137
2138 /*
2139 * Card detect status and alive check may be out of sync if card is
2140 * removed slowly, when card detect switch changes while card/slot
2141 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 * detect work 200ms later for this case.
2144 */
2145 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146 mmc_detect_change(host, msecs_to_jiffies(200));
2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148 }
2149
2150 if (ret) {
2151 mmc_card_set_removed(host->card);
2152 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153 }
2154
2155 return ret;
2156}
2157
2158int mmc_detect_card_removed(struct mmc_host *host)
2159{
2160 struct mmc_card *card = host->card;
2161 int ret;
2162
2163 WARN_ON(!host->claimed);
2164
2165 if (!card)
2166 return 1;
2167
2168 if (!mmc_card_is_removable(host))
2169 return 0;
2170
2171 ret = mmc_card_removed(card);
2172 /*
2173 * The card will be considered unchanged unless we have been asked to
2174 * detect a change or host requires polling to provide card detection.
2175 */
2176 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177 return ret;
2178
2179 host->detect_change = 0;
2180 if (!ret) {
2181 ret = _mmc_detect_card_removed(host);
2182 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183 /*
2184 * Schedule a detect work as soon as possible to let a
2185 * rescan handle the card removal.
2186 */
2187 cancel_delayed_work(&host->detect);
2188 _mmc_detect_change(host, 0, false);
2189 }
2190 }
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL(mmc_detect_card_removed);
2195
2196int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197{
2198 unsigned int boot_sectors_num;
2199
2200 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201 return -EOPNOTSUPP;
2202
2203 /* filter out unrelated cards */
2204 if (card->ext_csd.rev < 3 ||
2205 !mmc_card_mmc(card) ||
2206 !mmc_card_is_blockaddr(card) ||
2207 mmc_card_is_removable(card->host))
2208 return -ENOENT;
2209
2210 /*
2211 * eMMC storage has two special boot partitions in addition to the
2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 * accesses, this means that the partition table addresses are shifted
2214 * by the size of boot partitions. In accordance with the eMMC
2215 * specification, the boot partition size is calculated as follows:
2216 *
2217 * boot partition size = 128K byte x BOOT_SIZE_MULT
2218 *
2219 * Calculate number of sectors occupied by the both boot partitions.
2220 */
2221 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222 SZ_512 * MMC_NUM_BOOT_PARTITION;
2223
2224 /* Defined by NVIDIA and used by Android devices. */
2225 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226
2227 return 0;
2228}
2229EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230
2231void mmc_rescan(struct work_struct *work)
2232{
2233 struct mmc_host *host =
2234 container_of(work, struct mmc_host, detect.work);
2235 int i;
2236
2237 if (host->rescan_disable)
2238 return;
2239
2240 /* If there is a non-removable card registered, only scan once */
2241 if (!mmc_card_is_removable(host) && host->rescan_entered)
2242 return;
2243 host->rescan_entered = 1;
2244
2245 if (host->trigger_card_event && host->ops->card_event) {
2246 mmc_claim_host(host);
2247 host->ops->card_event(host);
2248 mmc_release_host(host);
2249 host->trigger_card_event = false;
2250 }
2251
2252 /* Verify a registered card to be functional, else remove it. */
2253 if (host->bus_ops)
2254 host->bus_ops->detect(host);
2255
2256 host->detect_change = 0;
2257
2258 /* if there still is a card present, stop here */
2259 if (host->bus_ops != NULL)
2260 goto out;
2261
2262 mmc_claim_host(host);
2263 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264 host->ops->get_cd(host) == 0) {
2265 mmc_power_off(host);
2266 mmc_release_host(host);
2267 goto out;
2268 }
2269
2270 /* If an SD express card is present, then leave it as is. */
2271 if (mmc_card_sd_express(host)) {
2272 mmc_release_host(host);
2273 goto out;
2274 }
2275
2276 /*
2277 * Ideally we should favor initialization of legacy SD cards and defer
2278 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 * announce their support for UHS-II in the response to the ACMD41,
2280 * while initializing the legacy SD interface. Therefore, let's start
2281 * with UHS-II for now.
2282 */
2283 if (!mmc_attach_sd_uhs2(host)) {
2284 mmc_release_host(host);
2285 goto out;
2286 }
2287
2288 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289 unsigned int freq = freqs[i];
2290 if (freq > host->f_max) {
2291 if (i + 1 < ARRAY_SIZE(freqs))
2292 continue;
2293 freq = host->f_max;
2294 }
2295 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296 break;
2297 if (freqs[i] <= host->f_min)
2298 break;
2299 }
2300
2301 /* A non-removable card should have been detected by now. */
2302 if (!mmc_card_is_removable(host) && !host->bus_ops)
2303 pr_info("%s: Failed to initialize a non-removable card",
2304 mmc_hostname(host));
2305
2306 /*
2307 * Ignore the command timeout errors observed during
2308 * the card init as those are excepted.
2309 */
2310 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311 mmc_release_host(host);
2312
2313 out:
2314 if (host->caps & MMC_CAP_NEEDS_POLL)
2315 mmc_schedule_delayed_work(&host->detect, HZ);
2316}
2317
2318void mmc_start_host(struct mmc_host *host)
2319{
2320 bool power_up = !(host->caps2 &
2321 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322
2323 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324 host->rescan_disable = 0;
2325
2326 if (power_up) {
2327 mmc_claim_host(host);
2328 mmc_power_up(host, host->ocr_avail);
2329 mmc_release_host(host);
2330 }
2331
2332 mmc_gpiod_request_cd_irq(host);
2333 _mmc_detect_change(host, 0, false);
2334}
2335
2336void __mmc_stop_host(struct mmc_host *host)
2337{
2338 if (host->rescan_disable)
2339 return;
2340
2341 if (host->slot.cd_irq >= 0) {
2342 mmc_gpio_set_cd_wake(host, false);
2343 disable_irq(host->slot.cd_irq);
2344 }
2345
2346 host->rescan_disable = 1;
2347 cancel_delayed_work_sync(&host->detect);
2348}
2349
2350void mmc_stop_host(struct mmc_host *host)
2351{
2352 __mmc_stop_host(host);
2353
2354 /* clear pm flags now and let card drivers set them as needed */
2355 host->pm_flags = 0;
2356
2357 if (host->bus_ops) {
2358 /* Calling bus_ops->remove() with a claimed host can deadlock */
2359 host->bus_ops->remove(host);
2360 mmc_claim_host(host);
2361 mmc_detach_bus(host);
2362 mmc_power_off(host);
2363 mmc_release_host(host);
2364 return;
2365 }
2366
2367 mmc_claim_host(host);
2368 mmc_power_off(host);
2369 mmc_release_host(host);
2370}
2371
2372static int __init mmc_init(void)
2373{
2374 int ret;
2375
2376 ret = mmc_register_bus();
2377 if (ret)
2378 return ret;
2379
2380 ret = mmc_register_host_class();
2381 if (ret)
2382 goto unregister_bus;
2383
2384 ret = sdio_register_bus();
2385 if (ret)
2386 goto unregister_host_class;
2387
2388 return 0;
2389
2390unregister_host_class:
2391 mmc_unregister_host_class();
2392unregister_bus:
2393 mmc_unregister_bus();
2394 return ret;
2395}
2396
2397static void __exit mmc_exit(void)
2398{
2399 sdio_unregister_bus();
2400 mmc_unregister_host_class();
2401 mmc_unregister_bus();
2402}
2403
2404subsys_initcall(mmc_init);
2405module_exit(mmc_exit);
2406
2407MODULE_DESCRIPTION("MMC core driver");
2408MODULE_LICENSE("GPL");