Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/suspend.h>
 
 
 
 
  27
  28#include <linux/mmc/card.h>
  29#include <linux/mmc/host.h>
  30#include <linux/mmc/mmc.h>
  31#include <linux/mmc/sd.h>
 
  32
  33#include "core.h"
  34#include "bus.h"
  35#include "host.h"
  36#include "sdio_bus.h"
  37
  38#include "mmc_ops.h"
  39#include "sd_ops.h"
  40#include "sdio_ops.h"
  41
 
 
 
 
 
 
 
 
 
  42static struct workqueue_struct *workqueue;
 
  43
  44/*
  45 * Enabling software CRCs on the data blocks can be a significant (30%)
  46 * performance cost, and for other reasons may not always be desired.
  47 * So we allow it it to be disabled.
  48 */
  49int use_spi_crc = 1;
  50module_param(use_spi_crc, bool, 0);
  51
  52/*
  53 * We normally treat cards as removed during suspend if they are not
  54 * known to be on a non-removable bus, to avoid the risk of writing
  55 * back data to a different card after resume.  Allow this to be
  56 * overridden if necessary.
  57 */
  58#ifdef CONFIG_MMC_UNSAFE_RESUME
  59int mmc_assume_removable;
  60#else
  61int mmc_assume_removable = 1;
  62#endif
  63EXPORT_SYMBOL(mmc_assume_removable);
  64module_param_named(removable, mmc_assume_removable, bool, 0644);
  65MODULE_PARM_DESC(
  66	removable,
  67	"MMC/SD cards are removable and may be removed during suspend");
  68
  69/*
  70 * Internal function. Schedule delayed work in the MMC work queue.
  71 */
  72static int mmc_schedule_delayed_work(struct delayed_work *work,
  73				     unsigned long delay)
  74{
  75	return queue_delayed_work(workqueue, work, delay);
  76}
  77
  78/*
  79 * Internal function. Flush all scheduled work from the MMC work queue.
  80 */
  81static void mmc_flush_scheduled_work(void)
  82{
  83	flush_workqueue(workqueue);
  84}
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86/**
  87 *	mmc_request_done - finish processing an MMC request
  88 *	@host: MMC host which completed request
  89 *	@mrq: MMC request which request
  90 *
  91 *	MMC drivers should call this function when they have completed
  92 *	their processing of a request.
  93 */
  94void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
  95{
  96	struct mmc_command *cmd = mrq->cmd;
  97	int err = cmd->error;
  98
  99	if (err && cmd->retries && mmc_host_is_spi(host)) {
 100		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 101			cmd->retries = 0;
 102	}
 103
 104	if (err && cmd->retries) {
 105		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 106			mmc_hostname(host), cmd->opcode, err);
 107
 108		cmd->retries--;
 109		cmd->error = 0;
 110		host->ops->request(host, mrq);
 111	} else {
 
 
 112		led_trigger_event(host->led, LED_OFF);
 113
 114		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 115			mmc_hostname(host), cmd->opcode, err,
 116			cmd->resp[0], cmd->resp[1],
 117			cmd->resp[2], cmd->resp[3]);
 118
 119		if (mrq->data) {
 120			pr_debug("%s:     %d bytes transferred: %d\n",
 121				mmc_hostname(host),
 122				mrq->data->bytes_xfered, mrq->data->error);
 123		}
 124
 125		if (mrq->stop) {
 126			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 127				mmc_hostname(host), mrq->stop->opcode,
 128				mrq->stop->error,
 129				mrq->stop->resp[0], mrq->stop->resp[1],
 130				mrq->stop->resp[2], mrq->stop->resp[3]);
 131		}
 132
 133		if (mrq->done)
 134			mrq->done(mrq);
 135
 136		mmc_host_clk_release(host);
 137	}
 138}
 139
 140EXPORT_SYMBOL(mmc_request_done);
 141
 142static void
 143mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 144{
 145#ifdef CONFIG_MMC_DEBUG
 146	unsigned int i, sz;
 147	struct scatterlist *sg;
 148#endif
 149
 
 
 
 
 
 
 150	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 151		 mmc_hostname(host), mrq->cmd->opcode,
 152		 mrq->cmd->arg, mrq->cmd->flags);
 153
 154	if (mrq->data) {
 155		pr_debug("%s:     blksz %d blocks %d flags %08x "
 156			"tsac %d ms nsac %d\n",
 157			mmc_hostname(host), mrq->data->blksz,
 158			mrq->data->blocks, mrq->data->flags,
 159			mrq->data->timeout_ns / 1000000,
 160			mrq->data->timeout_clks);
 161	}
 162
 163	if (mrq->stop) {
 164		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 165			 mmc_hostname(host), mrq->stop->opcode,
 166			 mrq->stop->arg, mrq->stop->flags);
 167	}
 168
 169	WARN_ON(!host->claimed);
 170
 171	mrq->cmd->error = 0;
 172	mrq->cmd->mrq = mrq;
 173	if (mrq->data) {
 174		BUG_ON(mrq->data->blksz > host->max_blk_size);
 175		BUG_ON(mrq->data->blocks > host->max_blk_count);
 176		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 177			host->max_req_size);
 178
 179#ifdef CONFIG_MMC_DEBUG
 180		sz = 0;
 181		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 182			sz += sg->length;
 183		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 184#endif
 185
 186		mrq->cmd->data = mrq->data;
 187		mrq->data->error = 0;
 188		mrq->data->mrq = mrq;
 189		if (mrq->stop) {
 190			mrq->data->stop = mrq->stop;
 191			mrq->stop->error = 0;
 192			mrq->stop->mrq = mrq;
 193		}
 194	}
 195	mmc_host_clk_hold(host);
 196	led_trigger_event(host->led, LED_FULL);
 197	host->ops->request(host, mrq);
 198}
 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200static void mmc_wait_done(struct mmc_request *mrq)
 201{
 202	complete(&mrq->completion);
 203}
 204
 205static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206{
 207	init_completion(&mrq->completion);
 208	mrq->done = mmc_wait_done;
 
 
 
 
 
 209	mmc_start_request(host, mrq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210}
 211
 212static void mmc_wait_for_req_done(struct mmc_host *host,
 213				  struct mmc_request *mrq)
 214{
 215	wait_for_completion(&mrq->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216}
 217
 218/**
 219 *	mmc_pre_req - Prepare for a new request
 220 *	@host: MMC host to prepare command
 221 *	@mrq: MMC request to prepare for
 222 *	@is_first_req: true if there is no previous started request
 223 *                     that may run in parellel to this call, otherwise false
 224 *
 225 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 226 *	host prepare for the new request. Preparation of a request may be
 227 *	performed while another request is running on the host.
 228 */
 229static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 230		 bool is_first_req)
 231{
 232	if (host->ops->pre_req)
 
 233		host->ops->pre_req(host, mrq, is_first_req);
 
 
 234}
 235
 236/**
 237 *	mmc_post_req - Post process a completed request
 238 *	@host: MMC host to post process command
 239 *	@mrq: MMC request to post process for
 240 *	@err: Error, if non zero, clean up any resources made in pre_req
 241 *
 242 *	Let the host post process a completed request. Post processing of
 243 *	a request may be performed while another reuqest is running.
 244 */
 245static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 246			 int err)
 247{
 248	if (host->ops->post_req)
 
 249		host->ops->post_req(host, mrq, err);
 
 
 250}
 251
 252/**
 253 *	mmc_start_req - start a non-blocking request
 254 *	@host: MMC host to start command
 255 *	@areq: async request to start
 256 *	@error: out parameter returns 0 for success, otherwise non zero
 257 *
 258 *	Start a new MMC custom command request for a host.
 259 *	If there is on ongoing async request wait for completion
 260 *	of that request and start the new one and return.
 261 *	Does not wait for the new request to complete.
 262 *
 263 *      Returns the completed request, NULL in case of none completed.
 264 *	Wait for the an ongoing request (previoulsy started) to complete and
 265 *	return the completed request. If there is no ongoing request, NULL
 266 *	is returned without waiting. NULL is not an error condition.
 267 */
 268struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 269				    struct mmc_async_req *areq, int *error)
 270{
 271	int err = 0;
 
 272	struct mmc_async_req *data = host->areq;
 273
 274	/* Prepare a new request */
 275	if (areq)
 276		mmc_pre_req(host, areq->mrq, !host->areq);
 277
 278	if (host->areq) {
 279		mmc_wait_for_req_done(host, host->areq->mrq);
 280		err = host->areq->err_check(host->card, host->areq);
 281		if (err) {
 282			mmc_post_req(host, host->areq->mrq, 0);
 283			if (areq)
 284				mmc_post_req(host, areq->mrq, -EINVAL);
 285
 286			host->areq = NULL;
 287			goto out;
 288		}
 
 
 
 
 
 
 
 
 289	}
 290
 291	if (areq)
 292		__mmc_start_req(host, areq->mrq);
 293
 294	if (host->areq)
 295		mmc_post_req(host, host->areq->mrq, 0);
 296
 297	host->areq = areq;
 298 out:
 
 
 
 
 
 
 
 299	if (error)
 300		*error = err;
 301	return data;
 302}
 303EXPORT_SYMBOL(mmc_start_req);
 304
 305/**
 306 *	mmc_wait_for_req - start a request and wait for completion
 307 *	@host: MMC host to start command
 308 *	@mrq: MMC request to start
 309 *
 310 *	Start a new MMC custom command request for a host, and wait
 311 *	for the command to complete. Does not attempt to parse the
 312 *	response.
 313 */
 314void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 315{
 316	__mmc_start_req(host, mrq);
 317	mmc_wait_for_req_done(host, mrq);
 318}
 319EXPORT_SYMBOL(mmc_wait_for_req);
 320
 321/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322 *	mmc_wait_for_cmd - start a command and wait for completion
 323 *	@host: MMC host to start command
 324 *	@cmd: MMC command to start
 325 *	@retries: maximum number of retries
 326 *
 327 *	Start a new MMC command for a host, and wait for the command
 328 *	to complete.  Return any error that occurred while the command
 329 *	was executing.  Do not attempt to parse the response.
 330 */
 331int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 332{
 333	struct mmc_request mrq = {0};
 334
 335	WARN_ON(!host->claimed);
 336
 337	memset(cmd->resp, 0, sizeof(cmd->resp));
 338	cmd->retries = retries;
 339
 340	mrq.cmd = cmd;
 341	cmd->data = NULL;
 342
 343	mmc_wait_for_req(host, &mrq);
 344
 345	return cmd->error;
 346}
 347
 348EXPORT_SYMBOL(mmc_wait_for_cmd);
 349
 350/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351 *	mmc_set_data_timeout - set the timeout for a data command
 352 *	@data: data phase for command
 353 *	@card: the MMC card associated with the data transfer
 354 *
 355 *	Computes the data timeout parameters according to the
 356 *	correct algorithm given the card type.
 357 */
 358void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 359{
 360	unsigned int mult;
 361
 362	/*
 363	 * SDIO cards only define an upper 1 s limit on access.
 364	 */
 365	if (mmc_card_sdio(card)) {
 366		data->timeout_ns = 1000000000;
 367		data->timeout_clks = 0;
 368		return;
 369	}
 370
 371	/*
 372	 * SD cards use a 100 multiplier rather than 10
 373	 */
 374	mult = mmc_card_sd(card) ? 100 : 10;
 375
 376	/*
 377	 * Scale up the multiplier (and therefore the timeout) by
 378	 * the r2w factor for writes.
 379	 */
 380	if (data->flags & MMC_DATA_WRITE)
 381		mult <<= card->csd.r2w_factor;
 382
 383	data->timeout_ns = card->csd.tacc_ns * mult;
 384	data->timeout_clks = card->csd.tacc_clks * mult;
 385
 386	/*
 387	 * SD cards also have an upper limit on the timeout.
 388	 */
 389	if (mmc_card_sd(card)) {
 390		unsigned int timeout_us, limit_us;
 391
 392		timeout_us = data->timeout_ns / 1000;
 393		if (mmc_host_clk_rate(card->host))
 394			timeout_us += data->timeout_clks * 1000 /
 395				(mmc_host_clk_rate(card->host) / 1000);
 396
 397		if (data->flags & MMC_DATA_WRITE)
 398			/*
 399			 * The limit is really 250 ms, but that is
 400			 * insufficient for some crappy cards.
 
 
 
 
 401			 */
 402			limit_us = 300000;
 403		else
 404			limit_us = 100000;
 405
 406		/*
 407		 * SDHC cards always use these fixed values.
 408		 */
 409		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 410			data->timeout_ns = limit_us * 1000;
 411			data->timeout_clks = 0;
 412		}
 413	}
 
 
 
 
 
 
 
 
 
 
 
 
 414	/*
 415	 * Some cards need very high timeouts if driven in SPI mode.
 416	 * The worst observed timeout was 900ms after writing a
 417	 * continuous stream of data until the internal logic
 418	 * overflowed.
 419	 */
 420	if (mmc_host_is_spi(card->host)) {
 421		if (data->flags & MMC_DATA_WRITE) {
 422			if (data->timeout_ns < 1000000000)
 423				data->timeout_ns = 1000000000;	/* 1s */
 424		} else {
 425			if (data->timeout_ns < 100000000)
 426				data->timeout_ns =  100000000;	/* 100ms */
 427		}
 428	}
 429}
 430EXPORT_SYMBOL(mmc_set_data_timeout);
 431
 432/**
 433 *	mmc_align_data_size - pads a transfer size to a more optimal value
 434 *	@card: the MMC card associated with the data transfer
 435 *	@sz: original transfer size
 436 *
 437 *	Pads the original data size with a number of extra bytes in
 438 *	order to avoid controller bugs and/or performance hits
 439 *	(e.g. some controllers revert to PIO for certain sizes).
 440 *
 441 *	Returns the improved size, which might be unmodified.
 442 *
 443 *	Note that this function is only relevant when issuing a
 444 *	single scatter gather entry.
 445 */
 446unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 447{
 448	/*
 449	 * FIXME: We don't have a system for the controller to tell
 450	 * the core about its problems yet, so for now we just 32-bit
 451	 * align the size.
 452	 */
 453	sz = ((sz + 3) / 4) * 4;
 454
 455	return sz;
 456}
 457EXPORT_SYMBOL(mmc_align_data_size);
 458
 459/**
 460 *	mmc_host_enable - enable a host.
 461 *	@host: mmc host to enable
 462 *
 463 *	Hosts that support power saving can use the 'enable' and 'disable'
 464 *	methods to exit and enter power saving states. For more information
 465 *	see comments for struct mmc_host_ops.
 466 */
 467int mmc_host_enable(struct mmc_host *host)
 468{
 469	if (!(host->caps & MMC_CAP_DISABLE))
 470		return 0;
 471
 472	if (host->en_dis_recurs)
 473		return 0;
 474
 475	if (host->nesting_cnt++)
 476		return 0;
 477
 478	cancel_delayed_work_sync(&host->disable);
 479
 480	if (host->enabled)
 481		return 0;
 482
 483	if (host->ops->enable) {
 484		int err;
 485
 486		host->en_dis_recurs = 1;
 487		err = host->ops->enable(host);
 488		host->en_dis_recurs = 0;
 489
 490		if (err) {
 491			pr_debug("%s: enable error %d\n",
 492				 mmc_hostname(host), err);
 493			return err;
 494		}
 495	}
 496	host->enabled = 1;
 497	return 0;
 498}
 499EXPORT_SYMBOL(mmc_host_enable);
 500
 501static int mmc_host_do_disable(struct mmc_host *host, int lazy)
 502{
 503	if (host->ops->disable) {
 504		int err;
 505
 506		host->en_dis_recurs = 1;
 507		err = host->ops->disable(host, lazy);
 508		host->en_dis_recurs = 0;
 509
 510		if (err < 0) {
 511			pr_debug("%s: disable error %d\n",
 512				 mmc_hostname(host), err);
 513			return err;
 514		}
 515		if (err > 0) {
 516			unsigned long delay = msecs_to_jiffies(err);
 517
 518			mmc_schedule_delayed_work(&host->disable, delay);
 519		}
 520	}
 521	host->enabled = 0;
 522	return 0;
 523}
 524
 525/**
 526 *	mmc_host_disable - disable a host.
 527 *	@host: mmc host to disable
 528 *
 529 *	Hosts that support power saving can use the 'enable' and 'disable'
 530 *	methods to exit and enter power saving states. For more information
 531 *	see comments for struct mmc_host_ops.
 532 */
 533int mmc_host_disable(struct mmc_host *host)
 534{
 535	int err;
 536
 537	if (!(host->caps & MMC_CAP_DISABLE))
 538		return 0;
 539
 540	if (host->en_dis_recurs)
 541		return 0;
 542
 543	if (--host->nesting_cnt)
 544		return 0;
 545
 546	if (!host->enabled)
 547		return 0;
 548
 549	err = mmc_host_do_disable(host, 0);
 550	return err;
 551}
 552EXPORT_SYMBOL(mmc_host_disable);
 553
 554/**
 555 *	__mmc_claim_host - exclusively claim a host
 556 *	@host: mmc host to claim
 557 *	@abort: whether or not the operation should be aborted
 558 *
 559 *	Claim a host for a set of operations.  If @abort is non null and
 560 *	dereference a non-zero value then this will return prematurely with
 561 *	that non-zero value without acquiring the lock.  Returns zero
 562 *	with the lock held otherwise.
 563 */
 564int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 565{
 566	DECLARE_WAITQUEUE(wait, current);
 567	unsigned long flags;
 568	int stop;
 569
 570	might_sleep();
 571
 572	add_wait_queue(&host->wq, &wait);
 573	spin_lock_irqsave(&host->lock, flags);
 574	while (1) {
 575		set_current_state(TASK_UNINTERRUPTIBLE);
 576		stop = abort ? atomic_read(abort) : 0;
 577		if (stop || !host->claimed || host->claimer == current)
 578			break;
 579		spin_unlock_irqrestore(&host->lock, flags);
 580		schedule();
 581		spin_lock_irqsave(&host->lock, flags);
 582	}
 583	set_current_state(TASK_RUNNING);
 584	if (!stop) {
 585		host->claimed = 1;
 586		host->claimer = current;
 587		host->claim_cnt += 1;
 588	} else
 589		wake_up(&host->wq);
 590	spin_unlock_irqrestore(&host->lock, flags);
 591	remove_wait_queue(&host->wq, &wait);
 592	if (!stop)
 593		mmc_host_enable(host);
 594	return stop;
 595}
 596
 597EXPORT_SYMBOL(__mmc_claim_host);
 598
 599/**
 600 *	mmc_try_claim_host - try exclusively to claim a host
 601 *	@host: mmc host to claim
 602 *
 603 *	Returns %1 if the host is claimed, %0 otherwise.
 
 604 */
 605int mmc_try_claim_host(struct mmc_host *host)
 606{
 607	int claimed_host = 0;
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&host->lock, flags);
 611	if (!host->claimed || host->claimer == current) {
 612		host->claimed = 1;
 613		host->claimer = current;
 614		host->claim_cnt += 1;
 615		claimed_host = 1;
 616	}
 617	spin_unlock_irqrestore(&host->lock, flags);
 618	return claimed_host;
 619}
 620EXPORT_SYMBOL(mmc_try_claim_host);
 621
 622/**
 623 *	mmc_do_release_host - release a claimed host
 624 *	@host: mmc host to release
 625 *
 626 *	If you successfully claimed a host, this function will
 627 *	release it again.
 628 */
 629void mmc_do_release_host(struct mmc_host *host)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&host->lock, flags);
 634	if (--host->claim_cnt) {
 635		/* Release for nested claim */
 636		spin_unlock_irqrestore(&host->lock, flags);
 637	} else {
 638		host->claimed = 0;
 639		host->claimer = NULL;
 640		spin_unlock_irqrestore(&host->lock, flags);
 641		wake_up(&host->wq);
 642	}
 643}
 644EXPORT_SYMBOL(mmc_do_release_host);
 645
 646void mmc_host_deeper_disable(struct work_struct *work)
 647{
 648	struct mmc_host *host =
 649		container_of(work, struct mmc_host, disable.work);
 650
 651	/* If the host is claimed then we do not want to disable it anymore */
 652	if (!mmc_try_claim_host(host))
 653		return;
 654	mmc_host_do_disable(host, 1);
 655	mmc_do_release_host(host);
 656}
 657
 658/**
 659 *	mmc_host_lazy_disable - lazily disable a host.
 660 *	@host: mmc host to disable
 661 *
 662 *	Hosts that support power saving can use the 'enable' and 'disable'
 663 *	methods to exit and enter power saving states. For more information
 664 *	see comments for struct mmc_host_ops.
 665 */
 666int mmc_host_lazy_disable(struct mmc_host *host)
 667{
 668	if (!(host->caps & MMC_CAP_DISABLE))
 669		return 0;
 670
 671	if (host->en_dis_recurs)
 672		return 0;
 673
 674	if (--host->nesting_cnt)
 675		return 0;
 676
 677	if (!host->enabled)
 678		return 0;
 679
 680	if (host->disable_delay) {
 681		mmc_schedule_delayed_work(&host->disable,
 682				msecs_to_jiffies(host->disable_delay));
 683		return 0;
 684	} else
 685		return mmc_host_do_disable(host, 1);
 686}
 687EXPORT_SYMBOL(mmc_host_lazy_disable);
 688
 689/**
 690 *	mmc_release_host - release a host
 691 *	@host: mmc host to release
 692 *
 693 *	Release a MMC host, allowing others to claim the host
 694 *	for their operations.
 695 */
 696void mmc_release_host(struct mmc_host *host)
 697{
 698	WARN_ON(!host->claimed);
 699
 700	mmc_host_lazy_disable(host);
 701
 702	mmc_do_release_host(host);
 703}
 704
 705EXPORT_SYMBOL(mmc_release_host);
 706
 707/*
 708 * Internal function that does the actual ios call to the host driver,
 709 * optionally printing some debug output.
 710 */
 711static inline void mmc_set_ios(struct mmc_host *host)
 712{
 713	struct mmc_ios *ios = &host->ios;
 714
 715	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 716		"width %u timing %u\n",
 717		 mmc_hostname(host), ios->clock, ios->bus_mode,
 718		 ios->power_mode, ios->chip_select, ios->vdd,
 719		 ios->bus_width, ios->timing);
 720
 721	if (ios->clock > 0)
 722		mmc_set_ungated(host);
 723	host->ops->set_ios(host, ios);
 724}
 725
 726/*
 727 * Control chip select pin on a host.
 728 */
 729void mmc_set_chip_select(struct mmc_host *host, int mode)
 730{
 731	mmc_host_clk_hold(host);
 732	host->ios.chip_select = mode;
 733	mmc_set_ios(host);
 734	mmc_host_clk_release(host);
 735}
 736
 737/*
 738 * Sets the host clock to the highest possible frequency that
 739 * is below "hz".
 740 */
 741static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 742{
 743	WARN_ON(hz < host->f_min);
 744
 745	if (hz > host->f_max)
 746		hz = host->f_max;
 747
 748	host->ios.clock = hz;
 749	mmc_set_ios(host);
 750}
 751
 752void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 753{
 754	mmc_host_clk_hold(host);
 755	__mmc_set_clock(host, hz);
 756	mmc_host_clk_release(host);
 757}
 758
 759#ifdef CONFIG_MMC_CLKGATE
 760/*
 761 * This gates the clock by setting it to 0 Hz.
 762 */
 763void mmc_gate_clock(struct mmc_host *host)
 764{
 765	unsigned long flags;
 766
 767	spin_lock_irqsave(&host->clk_lock, flags);
 768	host->clk_old = host->ios.clock;
 769	host->ios.clock = 0;
 770	host->clk_gated = true;
 771	spin_unlock_irqrestore(&host->clk_lock, flags);
 772	mmc_set_ios(host);
 773}
 774
 775/*
 776 * This restores the clock from gating by using the cached
 777 * clock value.
 778 */
 779void mmc_ungate_clock(struct mmc_host *host)
 780{
 781	/*
 782	 * We should previously have gated the clock, so the clock shall
 783	 * be 0 here! The clock may however be 0 during initialization,
 784	 * when some request operations are performed before setting
 785	 * the frequency. When ungate is requested in that situation
 786	 * we just ignore the call.
 787	 */
 788	if (host->clk_old) {
 789		BUG_ON(host->ios.clock);
 790		/* This call will also set host->clk_gated to false */
 791		__mmc_set_clock(host, host->clk_old);
 792	}
 793}
 794
 795void mmc_set_ungated(struct mmc_host *host)
 796{
 797	unsigned long flags;
 798
 799	/*
 800	 * We've been given a new frequency while the clock is gated,
 801	 * so make sure we regard this as ungating it.
 802	 */
 803	spin_lock_irqsave(&host->clk_lock, flags);
 804	host->clk_gated = false;
 805	spin_unlock_irqrestore(&host->clk_lock, flags);
 806}
 807
 808#else
 809void mmc_set_ungated(struct mmc_host *host)
 810{
 811}
 812#endif
 813
 814/*
 815 * Change the bus mode (open drain/push-pull) of a host.
 816 */
 817void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 818{
 819	mmc_host_clk_hold(host);
 820	host->ios.bus_mode = mode;
 821	mmc_set_ios(host);
 822	mmc_host_clk_release(host);
 823}
 824
 825/*
 826 * Change data bus width of a host.
 827 */
 828void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 829{
 830	mmc_host_clk_hold(host);
 831	host->ios.bus_width = width;
 832	mmc_set_ios(host);
 833	mmc_host_clk_release(host);
 834}
 835
 836/**
 837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 838 * @vdd:	voltage (mV)
 839 * @low_bits:	prefer low bits in boundary cases
 840 *
 841 * This function returns the OCR bit number according to the provided @vdd
 842 * value. If conversion is not possible a negative errno value returned.
 843 *
 844 * Depending on the @low_bits flag the function prefers low or high OCR bits
 845 * on boundary voltages. For example,
 846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 848 *
 849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 850 */
 851static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
 852{
 853	const int max_bit = ilog2(MMC_VDD_35_36);
 854	int bit;
 855
 856	if (vdd < 1650 || vdd > 3600)
 857		return -EINVAL;
 858
 859	if (vdd >= 1650 && vdd <= 1950)
 860		return ilog2(MMC_VDD_165_195);
 861
 862	if (low_bits)
 863		vdd -= 1;
 864
 865	/* Base 2000 mV, step 100 mV, bit's base 8. */
 866	bit = (vdd - 2000) / 100 + 8;
 867	if (bit > max_bit)
 868		return max_bit;
 869	return bit;
 870}
 871
 872/**
 873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 874 * @vdd_min:	minimum voltage value (mV)
 875 * @vdd_max:	maximum voltage value (mV)
 876 *
 877 * This function returns the OCR mask bits according to the provided @vdd_min
 878 * and @vdd_max values. If conversion is not possible the function returns 0.
 879 *
 880 * Notes wrt boundary cases:
 881 * This function sets the OCR bits for all boundary voltages, for example
 882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 883 * MMC_VDD_34_35 mask.
 884 */
 885u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
 886{
 887	u32 mask = 0;
 888
 889	if (vdd_max < vdd_min)
 890		return 0;
 891
 892	/* Prefer high bits for the boundary vdd_max values. */
 893	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
 894	if (vdd_max < 0)
 895		return 0;
 896
 897	/* Prefer low bits for the boundary vdd_min values. */
 898	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
 899	if (vdd_min < 0)
 900		return 0;
 901
 902	/* Fill the mask, from max bit to min bit. */
 903	while (vdd_max >= vdd_min)
 904		mask |= 1 << vdd_max--;
 905
 906	return mask;
 907}
 908EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
 909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910#ifdef CONFIG_REGULATOR
 911
 912/**
 913 * mmc_regulator_get_ocrmask - return mask of supported voltages
 914 * @supply: regulator to use
 915 *
 916 * This returns either a negative errno, or a mask of voltages that
 917 * can be provided to MMC/SD/SDIO devices using the specified voltage
 918 * regulator.  This would normally be called before registering the
 919 * MMC host adapter.
 920 */
 921int mmc_regulator_get_ocrmask(struct regulator *supply)
 922{
 923	int			result = 0;
 924	int			count;
 925	int			i;
 926
 927	count = regulator_count_voltages(supply);
 928	if (count < 0)
 929		return count;
 930
 931	for (i = 0; i < count; i++) {
 932		int		vdd_uV;
 933		int		vdd_mV;
 934
 935		vdd_uV = regulator_list_voltage(supply, i);
 936		if (vdd_uV <= 0)
 937			continue;
 938
 939		vdd_mV = vdd_uV / 1000;
 940		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 941	}
 942
 943	return result;
 944}
 945EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
 946
 947/**
 948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 949 * @mmc: the host to regulate
 950 * @supply: regulator to use
 951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 952 *
 953 * Returns zero on success, else negative errno.
 954 *
 955 * MMC host drivers may use this to enable or disable a regulator using
 956 * a particular supply voltage.  This would normally be called from the
 957 * set_ios() method.
 958 */
 959int mmc_regulator_set_ocr(struct mmc_host *mmc,
 960			struct regulator *supply,
 961			unsigned short vdd_bit)
 962{
 963	int			result = 0;
 964	int			min_uV, max_uV;
 965
 966	if (vdd_bit) {
 967		int		tmp;
 968		int		voltage;
 969
 970		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
 
 971		 * bits this regulator doesn't quite support ... don't
 972		 * be too picky, most cards and regulators are OK with
 973		 * a 0.1V range goof (it's a small error percentage).
 974		 */
 975		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
 976		if (tmp == 0) {
 977			min_uV = 1650 * 1000;
 978			max_uV = 1950 * 1000;
 979		} else {
 980			min_uV = 1900 * 1000 + tmp * 100 * 1000;
 981			max_uV = min_uV + 100 * 1000;
 982		}
 983
 984		/* avoid needless changes to this voltage; the regulator
 985		 * might not allow this operation
 
 986		 */
 987		voltage = regulator_get_voltage(supply);
 
 
 
 
 988		if (voltage < 0)
 989			result = voltage;
 990		else if (voltage < min_uV || voltage > max_uV)
 991			result = regulator_set_voltage(supply, min_uV, max_uV);
 992		else
 993			result = 0;
 994
 995		if (result == 0 && !mmc->regulator_enabled) {
 996			result = regulator_enable(supply);
 997			if (!result)
 998				mmc->regulator_enabled = true;
 999		}
1000	} else if (mmc->regulator_enabled) {
1001		result = regulator_disable(supply);
1002		if (result == 0)
1003			mmc->regulator_enabled = false;
1004	}
1005
1006	if (result)
1007		dev_err(mmc_dev(mmc),
1008			"could not set regulator OCR (%d)\n", result);
1009	return result;
1010}
1011EXPORT_SYMBOL(mmc_regulator_set_ocr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013#endif /* CONFIG_REGULATOR */
1014
1015/*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020{
1021	int bit;
1022
1023	ocr &= host->ocr_avail;
 
 
 
 
 
 
 
 
1024
1025	bit = ffs(ocr);
1026	if (bit) {
1027		bit -= 1;
 
 
1028
 
 
 
 
 
 
1029		ocr &= 3 << bit;
 
 
 
 
 
 
1030
 
 
 
 
 
 
 
1031		mmc_host_clk_hold(host);
1032		host->ios.vdd = bit;
1033		mmc_set_ios(host);
1034		mmc_host_clk_release(host);
1035	} else {
1036		pr_warning("%s: host doesn't support card's voltages\n",
1037				mmc_hostname(host));
1038		ocr = 0;
1039	}
1040
1041	return ocr;
 
 
 
 
1042}
1043
1044int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045{
1046	struct mmc_command cmd = {0};
1047	int err = 0;
 
1048
1049	BUG_ON(!host);
1050
1051	/*
1052	 * Send CMD11 only if the request is to switch the card to
1053	 * 1.8V signalling.
1054	 */
1055	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056		cmd.opcode = SD_SWITCH_VOLTAGE;
1057		cmd.arg = 0;
1058		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060		err = mmc_wait_for_cmd(host, &cmd, 0);
1061		if (err)
1062			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065			return -EIO;
 
 
 
 
 
 
 
1066	}
 
 
 
 
 
 
 
1067
1068	host->ios.signal_voltage = signal_voltage;
 
 
 
 
 
 
 
1069
1070	if (host->ops->start_signal_voltage_switch)
1071		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	return err;
1074}
1075
1076/*
1077 * Select timing parameters for host.
1078 */
1079void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.timing = timing;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
1085}
1086
1087/*
1088 * Select appropriate driver type for host.
1089 */
1090void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091{
1092	mmc_host_clk_hold(host);
1093	host->ios.drv_type = drv_type;
1094	mmc_set_ios(host);
1095	mmc_host_clk_release(host);
1096}
1097
1098/*
1099 * Apply power to the MMC stack.  This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise.  Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109static void mmc_power_up(struct mmc_host *host)
1110{
1111	int bit;
 
1112
1113	mmc_host_clk_hold(host);
1114
1115	/* If ocr is set, we use it */
1116	if (host->ocr)
1117		bit = ffs(host->ocr) - 1;
1118	else
1119		bit = fls(host->ocr_avail) - 1;
1120
1121	host->ios.vdd = bit;
1122	if (mmc_host_is_spi(host)) {
1123		host->ios.chip_select = MMC_CS_HIGH;
1124		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125	} else {
1126		host->ios.chip_select = MMC_CS_DONTCARE;
1127		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128	}
1129	host->ios.power_mode = MMC_POWER_UP;
1130	host->ios.bus_width = MMC_BUS_WIDTH_1;
1131	host->ios.timing = MMC_TIMING_LEGACY;
1132	mmc_set_ios(host);
1133
 
 
 
1134	/*
1135	 * This delay should be sufficient to allow the power supply
1136	 * to reach the minimum voltage.
1137	 */
1138	mmc_delay(10);
1139
1140	host->ios.clock = host->f_init;
1141
1142	host->ios.power_mode = MMC_POWER_ON;
1143	mmc_set_ios(host);
1144
1145	/*
1146	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147	 * time required to reach a stable voltage.
1148	 */
1149	mmc_delay(10);
1150
1151	mmc_host_clk_release(host);
1152}
1153
1154static void mmc_power_off(struct mmc_host *host)
1155{
 
 
 
1156	mmc_host_clk_hold(host);
1157
1158	host->ios.clock = 0;
1159	host->ios.vdd = 0;
1160
1161	/*
1162	 * Reset ocr mask to be the highest possible voltage supported for
1163	 * this mmc host. This value will be used at next power up.
1164	 */
1165	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167	if (!mmc_host_is_spi(host)) {
1168		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169		host->ios.chip_select = MMC_CS_DONTCARE;
1170	}
1171	host->ios.power_mode = MMC_POWER_OFF;
1172	host->ios.bus_width = MMC_BUS_WIDTH_1;
1173	host->ios.timing = MMC_TIMING_LEGACY;
1174	mmc_set_ios(host);
1175
 
 
 
 
 
 
 
1176	mmc_host_clk_release(host);
1177}
1178
 
 
 
 
 
 
 
 
1179/*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182static void __mmc_release_bus(struct mmc_host *host)
1183{
1184	BUG_ON(!host);
1185	BUG_ON(host->bus_refs);
1186	BUG_ON(!host->bus_dead);
1187
1188	host->bus_ops = NULL;
1189}
1190
1191/*
1192 * Increase reference count of bus operator
1193 */
1194static inline void mmc_bus_get(struct mmc_host *host)
1195{
1196	unsigned long flags;
1197
1198	spin_lock_irqsave(&host->lock, flags);
1199	host->bus_refs++;
1200	spin_unlock_irqrestore(&host->lock, flags);
1201}
1202
1203/*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207static inline void mmc_bus_put(struct mmc_host *host)
1208{
1209	unsigned long flags;
1210
1211	spin_lock_irqsave(&host->lock, flags);
1212	host->bus_refs--;
1213	if ((host->bus_refs == 0) && host->bus_ops)
1214		__mmc_release_bus(host);
1215	spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218/*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223{
1224	unsigned long flags;
1225
1226	BUG_ON(!host);
1227	BUG_ON(!ops);
1228
1229	WARN_ON(!host->claimed);
1230
1231	spin_lock_irqsave(&host->lock, flags);
1232
1233	BUG_ON(host->bus_ops);
1234	BUG_ON(host->bus_refs);
1235
1236	host->bus_ops = ops;
1237	host->bus_refs = 1;
1238	host->bus_dead = 0;
1239
1240	spin_unlock_irqrestore(&host->lock, flags);
1241}
1242
1243/*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247void mmc_detach_bus(struct mmc_host *host)
1248{
1249	unsigned long flags;
1250
1251	BUG_ON(!host);
1252
1253	WARN_ON(!host->claimed);
1254	WARN_ON(!host->bus_ops);
1255
1256	spin_lock_irqsave(&host->lock, flags);
1257
1258	host->bus_dead = 1;
1259
1260	spin_unlock_irqrestore(&host->lock, flags);
1261
1262	mmc_power_off(host);
1263
1264	mmc_bus_put(host);
1265}
1266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267/**
1268 *	mmc_detect_change - process change of state on a MMC socket
1269 *	@host: host which changed state.
1270 *	@delay: optional delay to wait before detection (jiffies)
1271 *
1272 *	MMC drivers should call this when they detect a card has been
1273 *	inserted or removed. The MMC layer will confirm that any
1274 *	present card is still functional, and initialize any newly
1275 *	inserted.
1276 */
1277void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278{
1279#ifdef CONFIG_MMC_DEBUG
1280	unsigned long flags;
1281	spin_lock_irqsave(&host->lock, flags);
1282	WARN_ON(host->removed);
1283	spin_unlock_irqrestore(&host->lock, flags);
1284#endif
1285
1286	mmc_schedule_delayed_work(&host->detect, delay);
1287}
1288
1289EXPORT_SYMBOL(mmc_detect_change);
1290
1291void mmc_init_erase(struct mmc_card *card)
1292{
1293	unsigned int sz;
1294
1295	if (is_power_of_2(card->erase_size))
1296		card->erase_shift = ffs(card->erase_size) - 1;
1297	else
1298		card->erase_shift = 0;
1299
1300	/*
1301	 * It is possible to erase an arbitrarily large area of an SD or MMC
1302	 * card.  That is not desirable because it can take a long time
1303	 * (minutes) potentially delaying more important I/O, and also the
1304	 * timeout calculations become increasingly hugely over-estimated.
1305	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306	 * to that size and alignment.
1307	 *
1308	 * For SD cards that define Allocation Unit size, limit erases to one
1309	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1310	 * Erase Size, whether it is switched on or not, limit to that size.
1311	 * Otherwise just have a stab at a good value.  For modern cards it
1312	 * will end up being 4MiB.  Note that if the value is too small, it
1313	 * can end up taking longer to erase.
1314	 */
1315	if (mmc_card_sd(card) && card->ssr.au) {
1316		card->pref_erase = card->ssr.au;
1317		card->erase_shift = ffs(card->ssr.au) - 1;
1318	} else if (card->ext_csd.hc_erase_size) {
1319		card->pref_erase = card->ext_csd.hc_erase_size;
1320	} else {
1321		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322		if (sz < 128)
1323			card->pref_erase = 512 * 1024 / 512;
1324		else if (sz < 512)
1325			card->pref_erase = 1024 * 1024 / 512;
1326		else if (sz < 1024)
1327			card->pref_erase = 2 * 1024 * 1024 / 512;
1328		else
1329			card->pref_erase = 4 * 1024 * 1024 / 512;
1330		if (card->pref_erase < card->erase_size)
1331			card->pref_erase = card->erase_size;
1332		else {
1333			sz = card->pref_erase % card->erase_size;
1334			if (sz)
1335				card->pref_erase += card->erase_size - sz;
1336		}
1337	}
1338}
1339
1340static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341				          unsigned int arg, unsigned int qty)
1342{
1343	unsigned int erase_timeout;
1344
1345	if (card->ext_csd.erase_group_def & 1) {
 
 
 
1346		/* High Capacity Erase Group Size uses HC timeouts */
1347		if (arg == MMC_TRIM_ARG)
1348			erase_timeout = card->ext_csd.trim_timeout;
1349		else
1350			erase_timeout = card->ext_csd.hc_erase_timeout;
1351	} else {
1352		/* CSD Erase Group Size uses write timeout */
1353		unsigned int mult = (10 << card->csd.r2w_factor);
1354		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355		unsigned int timeout_us;
1356
1357		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358		if (card->csd.tacc_ns < 1000000)
1359			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360		else
1361			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363		/*
1364		 * ios.clock is only a target.  The real clock rate might be
1365		 * less but not that much less, so fudge it by multiplying by 2.
1366		 */
1367		timeout_clks <<= 1;
1368		timeout_us += (timeout_clks * 1000) /
1369			      (mmc_host_clk_rate(card->host) / 1000);
1370
1371		erase_timeout = timeout_us / 1000;
1372
1373		/*
1374		 * Theoretically, the calculation could underflow so round up
1375		 * to 1ms in that case.
1376		 */
1377		if (!erase_timeout)
1378			erase_timeout = 1;
1379	}
1380
1381	/* Multiplier for secure operations */
1382	if (arg & MMC_SECURE_ARGS) {
1383		if (arg == MMC_SECURE_ERASE_ARG)
1384			erase_timeout *= card->ext_csd.sec_erase_mult;
1385		else
1386			erase_timeout *= card->ext_csd.sec_trim_mult;
1387	}
1388
1389	erase_timeout *= qty;
1390
1391	/*
1392	 * Ensure at least a 1 second timeout for SPI as per
1393	 * 'mmc_set_data_timeout()'
1394	 */
1395	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396		erase_timeout = 1000;
1397
1398	return erase_timeout;
1399}
1400
1401static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402					 unsigned int arg,
1403					 unsigned int qty)
1404{
1405	unsigned int erase_timeout;
1406
1407	if (card->ssr.erase_timeout) {
1408		/* Erase timeout specified in SD Status Register (SSR) */
1409		erase_timeout = card->ssr.erase_timeout * qty +
1410				card->ssr.erase_offset;
1411	} else {
1412		/*
1413		 * Erase timeout not specified in SD Status Register (SSR) so
1414		 * use 250ms per write block.
1415		 */
1416		erase_timeout = 250 * qty;
1417	}
1418
1419	/* Must not be less than 1 second */
1420	if (erase_timeout < 1000)
1421		erase_timeout = 1000;
1422
1423	return erase_timeout;
1424}
1425
1426static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427				      unsigned int arg,
1428				      unsigned int qty)
1429{
1430	if (mmc_card_sd(card))
1431		return mmc_sd_erase_timeout(card, arg, qty);
1432	else
1433		return mmc_mmc_erase_timeout(card, arg, qty);
1434}
1435
1436static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437			unsigned int to, unsigned int arg)
1438{
1439	struct mmc_command cmd = {0};
1440	unsigned int qty = 0;
 
1441	int err;
1442
1443	/*
1444	 * qty is used to calculate the erase timeout which depends on how many
1445	 * erase groups (or allocation units in SD terminology) are affected.
1446	 * We count erasing part of an erase group as one erase group.
1447	 * For SD, the allocation units are always a power of 2.  For MMC, the
1448	 * erase group size is almost certainly also power of 2, but it does not
1449	 * seem to insist on that in the JEDEC standard, so we fall back to
1450	 * division in that case.  SD may not specify an allocation unit size,
1451	 * in which case the timeout is based on the number of write blocks.
1452	 *
1453	 * Note that the timeout for secure trim 2 will only be correct if the
1454	 * number of erase groups specified is the same as the total of all
1455	 * preceding secure trim 1 commands.  Since the power may have been
1456	 * lost since the secure trim 1 commands occurred, it is generally
1457	 * impossible to calculate the secure trim 2 timeout correctly.
1458	 */
1459	if (card->erase_shift)
1460		qty += ((to >> card->erase_shift) -
1461			(from >> card->erase_shift)) + 1;
1462	else if (mmc_card_sd(card))
1463		qty += to - from + 1;
1464	else
1465		qty += ((to / card->erase_size) -
1466			(from / card->erase_size)) + 1;
1467
1468	if (!mmc_card_blockaddr(card)) {
1469		from <<= 9;
1470		to <<= 9;
1471	}
1472
1473	if (mmc_card_sd(card))
1474		cmd.opcode = SD_ERASE_WR_BLK_START;
1475	else
1476		cmd.opcode = MMC_ERASE_GROUP_START;
1477	cmd.arg = from;
1478	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480	if (err) {
1481		printk(KERN_ERR "mmc_erase: group start error %d, "
1482		       "status %#x\n", err, cmd.resp[0]);
1483		err = -EINVAL;
1484		goto out;
1485	}
1486
1487	memset(&cmd, 0, sizeof(struct mmc_command));
1488	if (mmc_card_sd(card))
1489		cmd.opcode = SD_ERASE_WR_BLK_END;
1490	else
1491		cmd.opcode = MMC_ERASE_GROUP_END;
1492	cmd.arg = to;
1493	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495	if (err) {
1496		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497		       err, cmd.resp[0]);
1498		err = -EINVAL;
1499		goto out;
1500	}
1501
1502	memset(&cmd, 0, sizeof(struct mmc_command));
1503	cmd.opcode = MMC_ERASE;
1504	cmd.arg = arg;
1505	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1507	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508	if (err) {
1509		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510		       err, cmd.resp[0]);
1511		err = -EIO;
1512		goto out;
1513	}
1514
1515	if (mmc_host_is_spi(card->host))
1516		goto out;
1517
 
1518	do {
1519		memset(&cmd, 0, sizeof(struct mmc_command));
1520		cmd.opcode = MMC_SEND_STATUS;
1521		cmd.arg = card->rca << 16;
1522		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523		/* Do not retry else we can't see errors */
1524		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525		if (err || (cmd.resp[0] & 0xFDF92000)) {
1526			printk(KERN_ERR "error %d requesting status %#x\n",
1527				err, cmd.resp[0]);
1528			err = -EIO;
1529			goto out;
1530		}
 
 
 
 
 
 
 
 
 
 
 
1531	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533out:
1534	return err;
1535}
1536
1537/**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547	      unsigned int arg)
1548{
1549	unsigned int rem, to = from + nr;
1550
1551	if (!(card->host->caps & MMC_CAP_ERASE) ||
1552	    !(card->csd.cmdclass & CCC_ERASE))
1553		return -EOPNOTSUPP;
1554
1555	if (!card->erase_size)
1556		return -EOPNOTSUPP;
1557
1558	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559		return -EOPNOTSUPP;
1560
1561	if ((arg & MMC_SECURE_ARGS) &&
1562	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563		return -EOPNOTSUPP;
1564
1565	if ((arg & MMC_TRIM_ARGS) &&
1566	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567		return -EOPNOTSUPP;
1568
1569	if (arg == MMC_SECURE_ERASE_ARG) {
1570		if (from % card->erase_size || nr % card->erase_size)
1571			return -EINVAL;
1572	}
1573
1574	if (arg == MMC_ERASE_ARG) {
1575		rem = from % card->erase_size;
1576		if (rem) {
1577			rem = card->erase_size - rem;
1578			from += rem;
1579			if (nr > rem)
1580				nr -= rem;
1581			else
1582				return 0;
1583		}
1584		rem = nr % card->erase_size;
1585		if (rem)
1586			nr -= rem;
1587	}
1588
1589	if (nr == 0)
1590		return 0;
1591
1592	to = from + nr;
1593
1594	if (to <= from)
1595		return -EINVAL;
1596
1597	/* 'from' and 'to' are inclusive */
1598	to -= 1;
1599
1600	return mmc_do_erase(card, from, to, arg);
1601}
1602EXPORT_SYMBOL(mmc_erase);
1603
1604int mmc_can_erase(struct mmc_card *card)
1605{
1606	if ((card->host->caps & MMC_CAP_ERASE) &&
1607	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608		return 1;
1609	return 0;
1610}
1611EXPORT_SYMBOL(mmc_can_erase);
1612
1613int mmc_can_trim(struct mmc_card *card)
1614{
1615	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1616		return 1;
1617	return 0;
1618}
1619EXPORT_SYMBOL(mmc_can_trim);
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621int mmc_can_secure_erase_trim(struct mmc_card *card)
1622{
1623	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1624		return 1;
1625	return 0;
1626}
1627EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630			    unsigned int nr)
1631{
1632	if (!card->erase_size)
1633		return 0;
1634	if (from % card->erase_size || nr % card->erase_size)
1635		return 0;
1636	return 1;
1637}
1638EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641					    unsigned int arg)
1642{
1643	struct mmc_host *host = card->host;
1644	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645	unsigned int last_timeout = 0;
1646
1647	if (card->erase_shift)
1648		max_qty = UINT_MAX >> card->erase_shift;
1649	else if (mmc_card_sd(card))
1650		max_qty = UINT_MAX;
1651	else
1652		max_qty = UINT_MAX / card->erase_size;
1653
1654	/* Find the largest qty with an OK timeout */
1655	do {
1656		y = 0;
1657		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658			timeout = mmc_erase_timeout(card, arg, qty + x);
1659			if (timeout > host->max_discard_to)
1660				break;
1661			if (timeout < last_timeout)
1662				break;
1663			last_timeout = timeout;
1664			y = x;
1665		}
1666		qty += y;
1667	} while (y);
1668
1669	if (!qty)
1670		return 0;
1671
1672	if (qty == 1)
1673		return 1;
1674
1675	/* Convert qty to sectors */
1676	if (card->erase_shift)
1677		max_discard = --qty << card->erase_shift;
1678	else if (mmc_card_sd(card))
1679		max_discard = qty;
1680	else
1681		max_discard = --qty * card->erase_size;
1682
1683	return max_discard;
1684}
1685
1686unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687{
1688	struct mmc_host *host = card->host;
1689	unsigned int max_discard, max_trim;
1690
1691	if (!host->max_discard_to)
1692		return UINT_MAX;
1693
1694	/*
1695	 * Without erase_group_def set, MMC erase timeout depends on clock
1696	 * frequence which can change.  In that case, the best choice is
1697	 * just the preferred erase size.
1698	 */
1699	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700		return card->pref_erase;
1701
1702	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703	if (mmc_can_trim(card)) {
1704		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705		if (max_trim < max_discard)
1706			max_discard = max_trim;
1707	} else if (max_discard < card->erase_size) {
1708		max_discard = 0;
1709	}
1710	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711		 mmc_hostname(host), max_discard, host->max_discard_to);
1712	return max_discard;
1713}
1714EXPORT_SYMBOL(mmc_calc_max_discard);
1715
1716int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717{
1718	struct mmc_command cmd = {0};
1719
1720	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1721		return 0;
1722
1723	cmd.opcode = MMC_SET_BLOCKLEN;
1724	cmd.arg = blocklen;
1725	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726	return mmc_wait_for_cmd(card->host, &cmd, 5);
1727}
1728EXPORT_SYMBOL(mmc_set_blocklen);
1729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1731{
1732	host->f_init = freq;
1733
1734#ifdef CONFIG_MMC_DEBUG
1735	pr_info("%s: %s: trying to init card at %u Hz\n",
1736		mmc_hostname(host), __func__, host->f_init);
1737#endif
1738	mmc_power_up(host);
 
 
 
 
 
 
1739
1740	/*
1741	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1742	 * if the card is being re-initialized, just send it.  CMD52
1743	 * should be ignored by SD/eMMC cards.
1744	 */
1745	sdio_reset(host);
1746	mmc_go_idle(host);
1747
1748	mmc_send_if_cond(host, host->ocr_avail);
1749
1750	/* Order's important: probe SDIO, then SD, then MMC */
1751	if (!mmc_attach_sdio(host))
1752		return 0;
1753	if (!mmc_attach_sd(host))
1754		return 0;
1755	if (!mmc_attach_mmc(host))
1756		return 0;
1757
1758	mmc_power_off(host);
1759	return -EIO;
1760}
1761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762void mmc_rescan(struct work_struct *work)
1763{
1764	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765	struct mmc_host *host =
1766		container_of(work, struct mmc_host, detect.work);
1767	int i;
1768
1769	if (host->rescan_disable)
1770		return;
1771
 
 
 
 
 
1772	mmc_bus_get(host);
1773
1774	/*
1775	 * if there is a _removable_ card registered, check whether it is
1776	 * still present
1777	 */
1778	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1780		host->bus_ops->detect(host);
1781
 
 
1782	/*
1783	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784	 * the card is no longer present.
1785	 */
1786	mmc_bus_put(host);
1787	mmc_bus_get(host);
1788
1789	/* if there still is a card present, stop here */
1790	if (host->bus_ops != NULL) {
1791		mmc_bus_put(host);
1792		goto out;
1793	}
1794
1795	/*
1796	 * Only we can add a new handler, so it's safe to
1797	 * release the lock here.
1798	 */
1799	mmc_bus_put(host);
1800
1801	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
 
 
 
 
1802		goto out;
 
1803
1804	mmc_claim_host(host);
1805	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807			break;
1808		if (freqs[i] <= host->f_min)
1809			break;
1810	}
1811	mmc_release_host(host);
1812
1813 out:
1814	if (host->caps & MMC_CAP_NEEDS_POLL)
1815		mmc_schedule_delayed_work(&host->detect, HZ);
1816}
1817
1818void mmc_start_host(struct mmc_host *host)
1819{
1820	mmc_power_off(host);
1821	mmc_detect_change(host, 0);
 
 
 
 
 
 
1822}
1823
1824void mmc_stop_host(struct mmc_host *host)
1825{
1826#ifdef CONFIG_MMC_DEBUG
1827	unsigned long flags;
1828	spin_lock_irqsave(&host->lock, flags);
1829	host->removed = 1;
1830	spin_unlock_irqrestore(&host->lock, flags);
1831#endif
 
 
1832
1833	if (host->caps & MMC_CAP_DISABLE)
1834		cancel_delayed_work(&host->disable);
1835	cancel_delayed_work_sync(&host->detect);
1836	mmc_flush_scheduled_work();
1837
1838	/* clear pm flags now and let card drivers set them as needed */
1839	host->pm_flags = 0;
1840
1841	mmc_bus_get(host);
1842	if (host->bus_ops && !host->bus_dead) {
1843		if (host->bus_ops->remove)
1844			host->bus_ops->remove(host);
1845
1846		mmc_claim_host(host);
1847		mmc_detach_bus(host);
 
1848		mmc_release_host(host);
1849		mmc_bus_put(host);
1850		return;
1851	}
1852	mmc_bus_put(host);
1853
1854	BUG_ON(host->card);
1855
1856	mmc_power_off(host);
1857}
1858
1859int mmc_power_save_host(struct mmc_host *host)
1860{
1861	int ret = 0;
1862
1863#ifdef CONFIG_MMC_DEBUG
1864	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865#endif
1866
1867	mmc_bus_get(host);
1868
1869	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870		mmc_bus_put(host);
1871		return -EINVAL;
1872	}
1873
1874	if (host->bus_ops->power_save)
1875		ret = host->bus_ops->power_save(host);
1876
1877	mmc_bus_put(host);
1878
1879	mmc_power_off(host);
1880
1881	return ret;
1882}
1883EXPORT_SYMBOL(mmc_power_save_host);
1884
1885int mmc_power_restore_host(struct mmc_host *host)
1886{
1887	int ret;
1888
1889#ifdef CONFIG_MMC_DEBUG
1890	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891#endif
1892
1893	mmc_bus_get(host);
1894
1895	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896		mmc_bus_put(host);
1897		return -EINVAL;
1898	}
1899
1900	mmc_power_up(host);
1901	ret = host->bus_ops->power_restore(host);
1902
1903	mmc_bus_put(host);
1904
1905	return ret;
1906}
1907EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909int mmc_card_awake(struct mmc_host *host)
1910{
1911	int err = -ENOSYS;
1912
1913	mmc_bus_get(host);
1914
1915	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916		err = host->bus_ops->awake(host);
1917
1918	mmc_bus_put(host);
1919
1920	return err;
1921}
1922EXPORT_SYMBOL(mmc_card_awake);
1923
1924int mmc_card_sleep(struct mmc_host *host)
1925{
1926	int err = -ENOSYS;
1927
1928	mmc_bus_get(host);
1929
1930	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931		err = host->bus_ops->sleep(host);
1932
1933	mmc_bus_put(host);
1934
1935	return err;
1936}
1937EXPORT_SYMBOL(mmc_card_sleep);
1938
1939int mmc_card_can_sleep(struct mmc_host *host)
1940{
1941	struct mmc_card *card = host->card;
1942
1943	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944		return 1;
1945	return 0;
1946}
1947EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949#ifdef CONFIG_PM
1950
1951/**
1952 *	mmc_suspend_host - suspend a host
1953 *	@host: mmc host
1954 */
1955int mmc_suspend_host(struct mmc_host *host)
1956{
1957	int err = 0;
1958
1959	if (host->caps & MMC_CAP_DISABLE)
1960		cancel_delayed_work(&host->disable);
1961	cancel_delayed_work(&host->detect);
1962	mmc_flush_scheduled_work();
1963
1964	mmc_bus_get(host);
1965	if (host->bus_ops && !host->bus_dead) {
1966		if (host->bus_ops->suspend)
1967			err = host->bus_ops->suspend(host);
1968		if (err == -ENOSYS || !host->bus_ops->resume) {
1969			/*
1970			 * We simply "remove" the card in this case.
1971			 * It will be redetected on resume.
1972			 */
1973			if (host->bus_ops->remove)
1974				host->bus_ops->remove(host);
1975			mmc_claim_host(host);
1976			mmc_detach_bus(host);
1977			mmc_release_host(host);
1978			host->pm_flags = 0;
1979			err = 0;
1980		}
1981	}
1982	mmc_bus_put(host);
1983
1984	if (!err && !mmc_card_keep_power(host))
1985		mmc_power_off(host);
1986
1987	return err;
1988}
 
1989
1990EXPORT_SYMBOL(mmc_suspend_host);
1991
1992/**
1993 *	mmc_resume_host - resume a previously suspended host
1994 *	@host: mmc host
1995 */
1996int mmc_resume_host(struct mmc_host *host)
1997{
1998	int err = 0;
1999
2000	mmc_bus_get(host);
2001	if (host->bus_ops && !host->bus_dead) {
2002		if (!mmc_card_keep_power(host)) {
2003			mmc_power_up(host);
2004			mmc_select_voltage(host, host->ocr);
2005			/*
2006			 * Tell runtime PM core we just powered up the card,
2007			 * since it still believes the card is powered off.
2008			 * Note that currently runtime PM is only enabled
2009			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010			 */
2011			if (mmc_card_sdio(host->card) &&
2012			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013				pm_runtime_disable(&host->card->dev);
2014				pm_runtime_set_active(&host->card->dev);
2015				pm_runtime_enable(&host->card->dev);
2016			}
2017		}
2018		BUG_ON(!host->bus_ops->resume);
2019		err = host->bus_ops->resume(host);
2020		if (err) {
2021			printk(KERN_WARNING "%s: error %d during resume "
2022					    "(card was removed?)\n",
2023					    mmc_hostname(host), err);
2024			err = 0;
2025		}
2026	}
2027	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028	mmc_bus_put(host);
2029
2030	return err;
2031}
2032EXPORT_SYMBOL(mmc_resume_host);
2033
2034/* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036   to sync the card.
2037*/
2038int mmc_pm_notify(struct notifier_block *notify_block,
2039					unsigned long mode, void *unused)
2040{
2041	struct mmc_host *host = container_of(
2042		notify_block, struct mmc_host, pm_notify);
2043	unsigned long flags;
2044
2045
2046	switch (mode) {
2047	case PM_HIBERNATION_PREPARE:
2048	case PM_SUSPEND_PREPARE:
2049
2050		spin_lock_irqsave(&host->lock, flags);
2051		host->rescan_disable = 1;
2052		spin_unlock_irqrestore(&host->lock, flags);
2053		cancel_delayed_work_sync(&host->detect);
2054
2055		if (!host->bus_ops || host->bus_ops->suspend)
2056			break;
2057
2058		mmc_claim_host(host);
2059
2060		if (host->bus_ops->remove)
2061			host->bus_ops->remove(host);
 
2062
 
 
 
2063		mmc_detach_bus(host);
 
2064		mmc_release_host(host);
2065		host->pm_flags = 0;
2066		break;
2067
2068	case PM_POST_SUSPEND:
2069	case PM_POST_HIBERNATION:
2070	case PM_POST_RESTORE:
2071
2072		spin_lock_irqsave(&host->lock, flags);
2073		host->rescan_disable = 0;
2074		spin_unlock_irqrestore(&host->lock, flags);
2075		mmc_detect_change(host, 0);
2076
2077	}
2078
2079	return 0;
2080}
2081#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082
2083static int __init mmc_init(void)
2084{
2085	int ret;
2086
2087	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088	if (!workqueue)
2089		return -ENOMEM;
2090
2091	ret = mmc_register_bus();
2092	if (ret)
2093		goto destroy_workqueue;
2094
2095	ret = mmc_register_host_class();
2096	if (ret)
2097		goto unregister_bus;
2098
2099	ret = sdio_register_bus();
2100	if (ret)
2101		goto unregister_host_class;
2102
2103	return 0;
2104
2105unregister_host_class:
2106	mmc_unregister_host_class();
2107unregister_bus:
2108	mmc_unregister_bus();
2109destroy_workqueue:
2110	destroy_workqueue(workqueue);
2111
2112	return ret;
2113}
2114
2115static void __exit mmc_exit(void)
2116{
2117	sdio_unregister_bus();
2118	mmc_unregister_host_class();
2119	mmc_unregister_bus();
2120	destroy_workqueue(workqueue);
2121}
2122
2123subsys_initcall(mmc_init);
2124module_exit(mmc_exit);
2125
2126MODULE_LICENSE("GPL");
v3.15
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#include "core.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43
  44#include "mmc_ops.h"
  45#include "sd_ops.h"
  46#include "sdio_ops.h"
  47
  48/* If the device is not responding */
  49#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  50
  51/*
  52 * Background operations can take a long time, depending on the housekeeping
  53 * operations the card has to perform.
  54 */
  55#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  56
  57static struct workqueue_struct *workqueue;
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
  68/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69 * Internal function. Schedule delayed work in the MMC work queue.
  70 */
  71static int mmc_schedule_delayed_work(struct delayed_work *work,
  72				     unsigned long delay)
  73{
  74	return queue_delayed_work(workqueue, work, delay);
  75}
  76
  77/*
  78 * Internal function. Flush all scheduled work from the MMC work queue.
  79 */
  80static void mmc_flush_scheduled_work(void)
  81{
  82	flush_workqueue(workqueue);
  83}
  84
  85#ifdef CONFIG_FAIL_MMC_REQUEST
  86
  87/*
  88 * Internal function. Inject random data errors.
  89 * If mmc_data is NULL no errors are injected.
  90 */
  91static void mmc_should_fail_request(struct mmc_host *host,
  92				    struct mmc_request *mrq)
  93{
  94	struct mmc_command *cmd = mrq->cmd;
  95	struct mmc_data *data = mrq->data;
  96	static const int data_errors[] = {
  97		-ETIMEDOUT,
  98		-EILSEQ,
  99		-EIO,
 100	};
 101
 102	if (!data)
 103		return;
 104
 105	if (cmd->error || data->error ||
 106	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 107		return;
 108
 109	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 110	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 111}
 112
 113#else /* CONFIG_FAIL_MMC_REQUEST */
 114
 115static inline void mmc_should_fail_request(struct mmc_host *host,
 116					   struct mmc_request *mrq)
 117{
 118}
 119
 120#endif /* CONFIG_FAIL_MMC_REQUEST */
 121
 122/**
 123 *	mmc_request_done - finish processing an MMC request
 124 *	@host: MMC host which completed request
 125 *	@mrq: MMC request which request
 126 *
 127 *	MMC drivers should call this function when they have completed
 128 *	their processing of a request.
 129 */
 130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 131{
 132	struct mmc_command *cmd = mrq->cmd;
 133	int err = cmd->error;
 134
 135	if (err && cmd->retries && mmc_host_is_spi(host)) {
 136		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 137			cmd->retries = 0;
 138	}
 139
 140	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 141		/*
 142		 * Request starter must handle retries - see
 143		 * mmc_wait_for_req_done().
 144		 */
 145		if (mrq->done)
 146			mrq->done(mrq);
 147	} else {
 148		mmc_should_fail_request(host, mrq);
 149
 150		led_trigger_event(host->led, LED_OFF);
 151
 152		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 153			mmc_hostname(host), cmd->opcode, err,
 154			cmd->resp[0], cmd->resp[1],
 155			cmd->resp[2], cmd->resp[3]);
 156
 157		if (mrq->data) {
 158			pr_debug("%s:     %d bytes transferred: %d\n",
 159				mmc_hostname(host),
 160				mrq->data->bytes_xfered, mrq->data->error);
 161		}
 162
 163		if (mrq->stop) {
 164			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 165				mmc_hostname(host), mrq->stop->opcode,
 166				mrq->stop->error,
 167				mrq->stop->resp[0], mrq->stop->resp[1],
 168				mrq->stop->resp[2], mrq->stop->resp[3]);
 169		}
 170
 171		if (mrq->done)
 172			mrq->done(mrq);
 173
 174		mmc_host_clk_release(host);
 175	}
 176}
 177
 178EXPORT_SYMBOL(mmc_request_done);
 179
 180static void
 181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 182{
 183#ifdef CONFIG_MMC_DEBUG
 184	unsigned int i, sz;
 185	struct scatterlist *sg;
 186#endif
 187
 188	if (mrq->sbc) {
 189		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 190			 mmc_hostname(host), mrq->sbc->opcode,
 191			 mrq->sbc->arg, mrq->sbc->flags);
 192	}
 193
 194	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 195		 mmc_hostname(host), mrq->cmd->opcode,
 196		 mrq->cmd->arg, mrq->cmd->flags);
 197
 198	if (mrq->data) {
 199		pr_debug("%s:     blksz %d blocks %d flags %08x "
 200			"tsac %d ms nsac %d\n",
 201			mmc_hostname(host), mrq->data->blksz,
 202			mrq->data->blocks, mrq->data->flags,
 203			mrq->data->timeout_ns / 1000000,
 204			mrq->data->timeout_clks);
 205	}
 206
 207	if (mrq->stop) {
 208		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 209			 mmc_hostname(host), mrq->stop->opcode,
 210			 mrq->stop->arg, mrq->stop->flags);
 211	}
 212
 213	WARN_ON(!host->claimed);
 214
 215	mrq->cmd->error = 0;
 216	mrq->cmd->mrq = mrq;
 217	if (mrq->data) {
 218		BUG_ON(mrq->data->blksz > host->max_blk_size);
 219		BUG_ON(mrq->data->blocks > host->max_blk_count);
 220		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 221			host->max_req_size);
 222
 223#ifdef CONFIG_MMC_DEBUG
 224		sz = 0;
 225		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 226			sz += sg->length;
 227		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 228#endif
 229
 230		mrq->cmd->data = mrq->data;
 231		mrq->data->error = 0;
 232		mrq->data->mrq = mrq;
 233		if (mrq->stop) {
 234			mrq->data->stop = mrq->stop;
 235			mrq->stop->error = 0;
 236			mrq->stop->mrq = mrq;
 237		}
 238	}
 239	mmc_host_clk_hold(host);
 240	led_trigger_event(host->led, LED_FULL);
 241	host->ops->request(host, mrq);
 242}
 243
 244/**
 245 *	mmc_start_bkops - start BKOPS for supported cards
 246 *	@card: MMC card to start BKOPS
 247 *	@form_exception: A flag to indicate if this function was
 248 *			 called due to an exception raised by the card
 249 *
 250 *	Start background operations whenever requested.
 251 *	When the urgent BKOPS bit is set in a R1 command response
 252 *	then background operations should be started immediately.
 253*/
 254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 255{
 256	int err;
 257	int timeout;
 258	bool use_busy_signal;
 259
 260	BUG_ON(!card);
 261
 262	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 263		return;
 264
 265	err = mmc_read_bkops_status(card);
 266	if (err) {
 267		pr_err("%s: Failed to read bkops status: %d\n",
 268		       mmc_hostname(card->host), err);
 269		return;
 270	}
 271
 272	if (!card->ext_csd.raw_bkops_status)
 273		return;
 274
 275	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 276	    from_exception)
 277		return;
 278
 279	mmc_claim_host(card->host);
 280	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 281		timeout = MMC_BKOPS_MAX_TIMEOUT;
 282		use_busy_signal = true;
 283	} else {
 284		timeout = 0;
 285		use_busy_signal = false;
 286	}
 287
 288	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 289			EXT_CSD_BKOPS_START, 1, timeout,
 290			use_busy_signal, true, false);
 291	if (err) {
 292		pr_warn("%s: Error %d starting bkops\n",
 293			mmc_hostname(card->host), err);
 294		goto out;
 295	}
 296
 297	/*
 298	 * For urgent bkops status (LEVEL_2 and more)
 299	 * bkops executed synchronously, otherwise
 300	 * the operation is in progress
 301	 */
 302	if (!use_busy_signal)
 303		mmc_card_set_doing_bkops(card);
 304out:
 305	mmc_release_host(card->host);
 306}
 307EXPORT_SYMBOL(mmc_start_bkops);
 308
 309/*
 310 * mmc_wait_data_done() - done callback for data request
 311 * @mrq: done data request
 312 *
 313 * Wakes up mmc context, passed as a callback to host controller driver
 314 */
 315static void mmc_wait_data_done(struct mmc_request *mrq)
 316{
 317	mrq->host->context_info.is_done_rcv = true;
 318	wake_up_interruptible(&mrq->host->context_info.wait);
 319}
 320
 321static void mmc_wait_done(struct mmc_request *mrq)
 322{
 323	complete(&mrq->completion);
 324}
 325
 326/*
 327 *__mmc_start_data_req() - starts data request
 328 * @host: MMC host to start the request
 329 * @mrq: data request to start
 330 *
 331 * Sets the done callback to be called when request is completed by the card.
 332 * Starts data mmc request execution
 333 */
 334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 335{
 336	mrq->done = mmc_wait_data_done;
 337	mrq->host = host;
 338	if (mmc_card_removed(host->card)) {
 339		mrq->cmd->error = -ENOMEDIUM;
 340		mmc_wait_data_done(mrq);
 341		return -ENOMEDIUM;
 342	}
 343	mmc_start_request(host, mrq);
 344
 345	return 0;
 346}
 347
 348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 349{
 350	init_completion(&mrq->completion);
 351	mrq->done = mmc_wait_done;
 352	if (mmc_card_removed(host->card)) {
 353		mrq->cmd->error = -ENOMEDIUM;
 354		complete(&mrq->completion);
 355		return -ENOMEDIUM;
 356	}
 357	mmc_start_request(host, mrq);
 358	return 0;
 359}
 360
 361/*
 362 * mmc_wait_for_data_req_done() - wait for request completed
 363 * @host: MMC host to prepare the command.
 364 * @mrq: MMC request to wait for
 365 *
 366 * Blocks MMC context till host controller will ack end of data request
 367 * execution or new request notification arrives from the block layer.
 368 * Handles command retries.
 369 *
 370 * Returns enum mmc_blk_status after checking errors.
 371 */
 372static int mmc_wait_for_data_req_done(struct mmc_host *host,
 373				      struct mmc_request *mrq,
 374				      struct mmc_async_req *next_req)
 375{
 376	struct mmc_command *cmd;
 377	struct mmc_context_info *context_info = &host->context_info;
 378	int err;
 379	unsigned long flags;
 380
 381	while (1) {
 382		wait_event_interruptible(context_info->wait,
 383				(context_info->is_done_rcv ||
 384				 context_info->is_new_req));
 385		spin_lock_irqsave(&context_info->lock, flags);
 386		context_info->is_waiting_last_req = false;
 387		spin_unlock_irqrestore(&context_info->lock, flags);
 388		if (context_info->is_done_rcv) {
 389			context_info->is_done_rcv = false;
 390			context_info->is_new_req = false;
 391			cmd = mrq->cmd;
 392
 393			if (!cmd->error || !cmd->retries ||
 394			    mmc_card_removed(host->card)) {
 395				err = host->areq->err_check(host->card,
 396							    host->areq);
 397				break; /* return err */
 398			} else {
 399				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 400					mmc_hostname(host),
 401					cmd->opcode, cmd->error);
 402				cmd->retries--;
 403				cmd->error = 0;
 404				host->ops->request(host, mrq);
 405				continue; /* wait for done/new event again */
 406			}
 407		} else if (context_info->is_new_req) {
 408			context_info->is_new_req = false;
 409			if (!next_req) {
 410				err = MMC_BLK_NEW_REQUEST;
 411				break; /* return err */
 412			}
 413		}
 414	}
 415	return err;
 416}
 417
 418static void mmc_wait_for_req_done(struct mmc_host *host,
 419				  struct mmc_request *mrq)
 420{
 421	struct mmc_command *cmd;
 422
 423	while (1) {
 424		wait_for_completion(&mrq->completion);
 425
 426		cmd = mrq->cmd;
 427
 428		/*
 429		 * If host has timed out waiting for the sanitize
 430		 * to complete, card might be still in programming state
 431		 * so let's try to bring the card out of programming
 432		 * state.
 433		 */
 434		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 435			if (!mmc_interrupt_hpi(host->card)) {
 436				pr_warning("%s: %s: Interrupted sanitize\n",
 437					   mmc_hostname(host), __func__);
 438				cmd->error = 0;
 439				break;
 440			} else {
 441				pr_err("%s: %s: Failed to interrupt sanitize\n",
 442				       mmc_hostname(host), __func__);
 443			}
 444		}
 445		if (!cmd->error || !cmd->retries ||
 446		    mmc_card_removed(host->card))
 447			break;
 448
 449		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 450			 mmc_hostname(host), cmd->opcode, cmd->error);
 451		cmd->retries--;
 452		cmd->error = 0;
 453		host->ops->request(host, mrq);
 454	}
 455}
 456
 457/**
 458 *	mmc_pre_req - Prepare for a new request
 459 *	@host: MMC host to prepare command
 460 *	@mrq: MMC request to prepare for
 461 *	@is_first_req: true if there is no previous started request
 462 *                     that may run in parellel to this call, otherwise false
 463 *
 464 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 465 *	host prepare for the new request. Preparation of a request may be
 466 *	performed while another request is running on the host.
 467 */
 468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 469		 bool is_first_req)
 470{
 471	if (host->ops->pre_req) {
 472		mmc_host_clk_hold(host);
 473		host->ops->pre_req(host, mrq, is_first_req);
 474		mmc_host_clk_release(host);
 475	}
 476}
 477
 478/**
 479 *	mmc_post_req - Post process a completed request
 480 *	@host: MMC host to post process command
 481 *	@mrq: MMC request to post process for
 482 *	@err: Error, if non zero, clean up any resources made in pre_req
 483 *
 484 *	Let the host post process a completed request. Post processing of
 485 *	a request may be performed while another reuqest is running.
 486 */
 487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 488			 int err)
 489{
 490	if (host->ops->post_req) {
 491		mmc_host_clk_hold(host);
 492		host->ops->post_req(host, mrq, err);
 493		mmc_host_clk_release(host);
 494	}
 495}
 496
 497/**
 498 *	mmc_start_req - start a non-blocking request
 499 *	@host: MMC host to start command
 500 *	@areq: async request to start
 501 *	@error: out parameter returns 0 for success, otherwise non zero
 502 *
 503 *	Start a new MMC custom command request for a host.
 504 *	If there is on ongoing async request wait for completion
 505 *	of that request and start the new one and return.
 506 *	Does not wait for the new request to complete.
 507 *
 508 *      Returns the completed request, NULL in case of none completed.
 509 *	Wait for the an ongoing request (previoulsy started) to complete and
 510 *	return the completed request. If there is no ongoing request, NULL
 511 *	is returned without waiting. NULL is not an error condition.
 512 */
 513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 514				    struct mmc_async_req *areq, int *error)
 515{
 516	int err = 0;
 517	int start_err = 0;
 518	struct mmc_async_req *data = host->areq;
 519
 520	/* Prepare a new request */
 521	if (areq)
 522		mmc_pre_req(host, areq->mrq, !host->areq);
 523
 524	if (host->areq) {
 525		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
 526		if (err == MMC_BLK_NEW_REQUEST) {
 527			if (error)
 528				*error = err;
 529			/*
 530			 * The previous request was not completed,
 531			 * nothing to return
 532			 */
 533			return NULL;
 534		}
 535		/*
 536		 * Check BKOPS urgency for each R1 response
 537		 */
 538		if (host->card && mmc_card_mmc(host->card) &&
 539		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 540		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 541		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 542			mmc_start_bkops(host->card, true);
 543	}
 544
 545	if (!err && areq)
 546		start_err = __mmc_start_data_req(host, areq->mrq);
 547
 548	if (host->areq)
 549		mmc_post_req(host, host->areq->mrq, 0);
 550
 551	 /* Cancel a prepared request if it was not started. */
 552	if ((err || start_err) && areq)
 553		mmc_post_req(host, areq->mrq, -EINVAL);
 554
 555	if (err)
 556		host->areq = NULL;
 557	else
 558		host->areq = areq;
 559
 560	if (error)
 561		*error = err;
 562	return data;
 563}
 564EXPORT_SYMBOL(mmc_start_req);
 565
 566/**
 567 *	mmc_wait_for_req - start a request and wait for completion
 568 *	@host: MMC host to start command
 569 *	@mrq: MMC request to start
 570 *
 571 *	Start a new MMC custom command request for a host, and wait
 572 *	for the command to complete. Does not attempt to parse the
 573 *	response.
 574 */
 575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 576{
 577	__mmc_start_req(host, mrq);
 578	mmc_wait_for_req_done(host, mrq);
 579}
 580EXPORT_SYMBOL(mmc_wait_for_req);
 581
 582/**
 583 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 584 *	@card: the MMC card associated with the HPI transfer
 585 *
 586 *	Issued High Priority Interrupt, and check for card status
 587 *	until out-of prg-state.
 588 */
 589int mmc_interrupt_hpi(struct mmc_card *card)
 590{
 591	int err;
 592	u32 status;
 593	unsigned long prg_wait;
 594
 595	BUG_ON(!card);
 596
 597	if (!card->ext_csd.hpi_en) {
 598		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 599		return 1;
 600	}
 601
 602	mmc_claim_host(card->host);
 603	err = mmc_send_status(card, &status);
 604	if (err) {
 605		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 606		goto out;
 607	}
 608
 609	switch (R1_CURRENT_STATE(status)) {
 610	case R1_STATE_IDLE:
 611	case R1_STATE_READY:
 612	case R1_STATE_STBY:
 613	case R1_STATE_TRAN:
 614		/*
 615		 * In idle and transfer states, HPI is not needed and the caller
 616		 * can issue the next intended command immediately
 617		 */
 618		goto out;
 619	case R1_STATE_PRG:
 620		break;
 621	default:
 622		/* In all other states, it's illegal to issue HPI */
 623		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 624			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 625		err = -EINVAL;
 626		goto out;
 627	}
 628
 629	err = mmc_send_hpi_cmd(card, &status);
 630	if (err)
 631		goto out;
 632
 633	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 634	do {
 635		err = mmc_send_status(card, &status);
 636
 637		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 638			break;
 639		if (time_after(jiffies, prg_wait))
 640			err = -ETIMEDOUT;
 641	} while (!err);
 642
 643out:
 644	mmc_release_host(card->host);
 645	return err;
 646}
 647EXPORT_SYMBOL(mmc_interrupt_hpi);
 648
 649/**
 650 *	mmc_wait_for_cmd - start a command and wait for completion
 651 *	@host: MMC host to start command
 652 *	@cmd: MMC command to start
 653 *	@retries: maximum number of retries
 654 *
 655 *	Start a new MMC command for a host, and wait for the command
 656 *	to complete.  Return any error that occurred while the command
 657 *	was executing.  Do not attempt to parse the response.
 658 */
 659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 660{
 661	struct mmc_request mrq = {NULL};
 662
 663	WARN_ON(!host->claimed);
 664
 665	memset(cmd->resp, 0, sizeof(cmd->resp));
 666	cmd->retries = retries;
 667
 668	mrq.cmd = cmd;
 669	cmd->data = NULL;
 670
 671	mmc_wait_for_req(host, &mrq);
 672
 673	return cmd->error;
 674}
 675
 676EXPORT_SYMBOL(mmc_wait_for_cmd);
 677
 678/**
 679 *	mmc_stop_bkops - stop ongoing BKOPS
 680 *	@card: MMC card to check BKOPS
 681 *
 682 *	Send HPI command to stop ongoing background operations to
 683 *	allow rapid servicing of foreground operations, e.g. read/
 684 *	writes. Wait until the card comes out of the programming state
 685 *	to avoid errors in servicing read/write requests.
 686 */
 687int mmc_stop_bkops(struct mmc_card *card)
 688{
 689	int err = 0;
 690
 691	BUG_ON(!card);
 692	err = mmc_interrupt_hpi(card);
 693
 694	/*
 695	 * If err is EINVAL, we can't issue an HPI.
 696	 * It should complete the BKOPS.
 697	 */
 698	if (!err || (err == -EINVAL)) {
 699		mmc_card_clr_doing_bkops(card);
 700		err = 0;
 701	}
 702
 703	return err;
 704}
 705EXPORT_SYMBOL(mmc_stop_bkops);
 706
 707int mmc_read_bkops_status(struct mmc_card *card)
 708{
 709	int err;
 710	u8 *ext_csd;
 711
 712	/*
 713	 * In future work, we should consider storing the entire ext_csd.
 714	 */
 715	ext_csd = kmalloc(512, GFP_KERNEL);
 716	if (!ext_csd) {
 717		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 718		       mmc_hostname(card->host));
 719		return -ENOMEM;
 720	}
 721
 722	mmc_claim_host(card->host);
 723	err = mmc_send_ext_csd(card, ext_csd);
 724	mmc_release_host(card->host);
 725	if (err)
 726		goto out;
 727
 728	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 729	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 730out:
 731	kfree(ext_csd);
 732	return err;
 733}
 734EXPORT_SYMBOL(mmc_read_bkops_status);
 735
 736/**
 737 *	mmc_set_data_timeout - set the timeout for a data command
 738 *	@data: data phase for command
 739 *	@card: the MMC card associated with the data transfer
 740 *
 741 *	Computes the data timeout parameters according to the
 742 *	correct algorithm given the card type.
 743 */
 744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 745{
 746	unsigned int mult;
 747
 748	/*
 749	 * SDIO cards only define an upper 1 s limit on access.
 750	 */
 751	if (mmc_card_sdio(card)) {
 752		data->timeout_ns = 1000000000;
 753		data->timeout_clks = 0;
 754		return;
 755	}
 756
 757	/*
 758	 * SD cards use a 100 multiplier rather than 10
 759	 */
 760	mult = mmc_card_sd(card) ? 100 : 10;
 761
 762	/*
 763	 * Scale up the multiplier (and therefore the timeout) by
 764	 * the r2w factor for writes.
 765	 */
 766	if (data->flags & MMC_DATA_WRITE)
 767		mult <<= card->csd.r2w_factor;
 768
 769	data->timeout_ns = card->csd.tacc_ns * mult;
 770	data->timeout_clks = card->csd.tacc_clks * mult;
 771
 772	/*
 773	 * SD cards also have an upper limit on the timeout.
 774	 */
 775	if (mmc_card_sd(card)) {
 776		unsigned int timeout_us, limit_us;
 777
 778		timeout_us = data->timeout_ns / 1000;
 779		if (mmc_host_clk_rate(card->host))
 780			timeout_us += data->timeout_clks * 1000 /
 781				(mmc_host_clk_rate(card->host) / 1000);
 782
 783		if (data->flags & MMC_DATA_WRITE)
 784			/*
 785			 * The MMC spec "It is strongly recommended
 786			 * for hosts to implement more than 500ms
 787			 * timeout value even if the card indicates
 788			 * the 250ms maximum busy length."  Even the
 789			 * previous value of 300ms is known to be
 790			 * insufficient for some cards.
 791			 */
 792			limit_us = 3000000;
 793		else
 794			limit_us = 100000;
 795
 796		/*
 797		 * SDHC cards always use these fixed values.
 798		 */
 799		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 800			data->timeout_ns = limit_us * 1000;
 801			data->timeout_clks = 0;
 802		}
 803	}
 804
 805	/*
 806	 * Some cards require longer data read timeout than indicated in CSD.
 807	 * Address this by setting the read timeout to a "reasonably high"
 808	 * value. For the cards tested, 300ms has proven enough. If necessary,
 809	 * this value can be increased if other problematic cards require this.
 810	 */
 811	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 812		data->timeout_ns = 300000000;
 813		data->timeout_clks = 0;
 814	}
 815
 816	/*
 817	 * Some cards need very high timeouts if driven in SPI mode.
 818	 * The worst observed timeout was 900ms after writing a
 819	 * continuous stream of data until the internal logic
 820	 * overflowed.
 821	 */
 822	if (mmc_host_is_spi(card->host)) {
 823		if (data->flags & MMC_DATA_WRITE) {
 824			if (data->timeout_ns < 1000000000)
 825				data->timeout_ns = 1000000000;	/* 1s */
 826		} else {
 827			if (data->timeout_ns < 100000000)
 828				data->timeout_ns =  100000000;	/* 100ms */
 829		}
 830	}
 831}
 832EXPORT_SYMBOL(mmc_set_data_timeout);
 833
 834/**
 835 *	mmc_align_data_size - pads a transfer size to a more optimal value
 836 *	@card: the MMC card associated with the data transfer
 837 *	@sz: original transfer size
 838 *
 839 *	Pads the original data size with a number of extra bytes in
 840 *	order to avoid controller bugs and/or performance hits
 841 *	(e.g. some controllers revert to PIO for certain sizes).
 842 *
 843 *	Returns the improved size, which might be unmodified.
 844 *
 845 *	Note that this function is only relevant when issuing a
 846 *	single scatter gather entry.
 847 */
 848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 849{
 850	/*
 851	 * FIXME: We don't have a system for the controller to tell
 852	 * the core about its problems yet, so for now we just 32-bit
 853	 * align the size.
 854	 */
 855	sz = ((sz + 3) / 4) * 4;
 856
 857	return sz;
 858}
 859EXPORT_SYMBOL(mmc_align_data_size);
 860
 861/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862 *	__mmc_claim_host - exclusively claim a host
 863 *	@host: mmc host to claim
 864 *	@abort: whether or not the operation should be aborted
 865 *
 866 *	Claim a host for a set of operations.  If @abort is non null and
 867 *	dereference a non-zero value then this will return prematurely with
 868 *	that non-zero value without acquiring the lock.  Returns zero
 869 *	with the lock held otherwise.
 870 */
 871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 872{
 873	DECLARE_WAITQUEUE(wait, current);
 874	unsigned long flags;
 875	int stop;
 876
 877	might_sleep();
 878
 879	add_wait_queue(&host->wq, &wait);
 880	spin_lock_irqsave(&host->lock, flags);
 881	while (1) {
 882		set_current_state(TASK_UNINTERRUPTIBLE);
 883		stop = abort ? atomic_read(abort) : 0;
 884		if (stop || !host->claimed || host->claimer == current)
 885			break;
 886		spin_unlock_irqrestore(&host->lock, flags);
 887		schedule();
 888		spin_lock_irqsave(&host->lock, flags);
 889	}
 890	set_current_state(TASK_RUNNING);
 891	if (!stop) {
 892		host->claimed = 1;
 893		host->claimer = current;
 894		host->claim_cnt += 1;
 895	} else
 896		wake_up(&host->wq);
 897	spin_unlock_irqrestore(&host->lock, flags);
 898	remove_wait_queue(&host->wq, &wait);
 899	if (host->ops->enable && !stop && host->claim_cnt == 1)
 900		host->ops->enable(host);
 901	return stop;
 902}
 903
 904EXPORT_SYMBOL(__mmc_claim_host);
 905
 906/**
 907 *	mmc_release_host - release a host
 908 *	@host: mmc host to release
 909 *
 910 *	Release a MMC host, allowing others to claim the host
 911 *	for their operations.
 912 */
 913void mmc_release_host(struct mmc_host *host)
 914{
 
 915	unsigned long flags;
 916
 917	WARN_ON(!host->claimed);
 
 
 
 
 
 
 
 
 
 
 918
 919	if (host->ops->disable && host->claim_cnt == 1)
 920		host->ops->disable(host);
 
 
 
 
 
 
 
 
 921
 922	spin_lock_irqsave(&host->lock, flags);
 923	if (--host->claim_cnt) {
 924		/* Release for nested claim */
 925		spin_unlock_irqrestore(&host->lock, flags);
 926	} else {
 927		host->claimed = 0;
 928		host->claimer = NULL;
 929		spin_unlock_irqrestore(&host->lock, flags);
 930		wake_up(&host->wq);
 931	}
 932}
 933EXPORT_SYMBOL(mmc_release_host);
 
 
 
 
 
 
 
 
 
 
 
 
 934
 935/*
 936 * This is a helper function, which fetches a runtime pm reference for the
 937 * card device and also claims the host.
 
 
 
 
 938 */
 939void mmc_get_card(struct mmc_card *card)
 940{
 941	pm_runtime_get_sync(&card->dev);
 942	mmc_claim_host(card->host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943}
 944EXPORT_SYMBOL(mmc_get_card);
 945
 946/*
 947 * This is a helper function, which releases the host and drops the runtime
 948 * pm reference for the card device.
 
 
 
 949 */
 950void mmc_put_card(struct mmc_card *card)
 951{
 952	mmc_release_host(card->host);
 953	pm_runtime_mark_last_busy(&card->dev);
 954	pm_runtime_put_autosuspend(&card->dev);
 
 
 955}
 956EXPORT_SYMBOL(mmc_put_card);
 
 957
 958/*
 959 * Internal function that does the actual ios call to the host driver,
 960 * optionally printing some debug output.
 961 */
 962static inline void mmc_set_ios(struct mmc_host *host)
 963{
 964	struct mmc_ios *ios = &host->ios;
 965
 966	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 967		"width %u timing %u\n",
 968		 mmc_hostname(host), ios->clock, ios->bus_mode,
 969		 ios->power_mode, ios->chip_select, ios->vdd,
 970		 ios->bus_width, ios->timing);
 971
 972	if (ios->clock > 0)
 973		mmc_set_ungated(host);
 974	host->ops->set_ios(host, ios);
 975}
 976
 977/*
 978 * Control chip select pin on a host.
 979 */
 980void mmc_set_chip_select(struct mmc_host *host, int mode)
 981{
 982	mmc_host_clk_hold(host);
 983	host->ios.chip_select = mode;
 984	mmc_set_ios(host);
 985	mmc_host_clk_release(host);
 986}
 987
 988/*
 989 * Sets the host clock to the highest possible frequency that
 990 * is below "hz".
 991 */
 992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 993{
 994	WARN_ON(hz < host->f_min);
 995
 996	if (hz > host->f_max)
 997		hz = host->f_max;
 998
 999	host->ios.clock = hz;
1000	mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005	mmc_host_clk_hold(host);
1006	__mmc_set_clock(host, hz);
1007	mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016	unsigned long flags;
1017
1018	spin_lock_irqsave(&host->clk_lock, flags);
1019	host->clk_old = host->ios.clock;
1020	host->ios.clock = 0;
1021	host->clk_gated = true;
1022	spin_unlock_irqrestore(&host->clk_lock, flags);
1023	mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032	/*
1033	 * We should previously have gated the clock, so the clock shall
1034	 * be 0 here! The clock may however be 0 during initialization,
1035	 * when some request operations are performed before setting
1036	 * the frequency. When ungate is requested in that situation
1037	 * we just ignore the call.
1038	 */
1039	if (host->clk_old) {
1040		BUG_ON(host->ios.clock);
1041		/* This call will also set host->clk_gated to false */
1042		__mmc_set_clock(host, host->clk_old);
1043	}
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048	unsigned long flags;
1049
1050	/*
1051	 * We've been given a new frequency while the clock is gated,
1052	 * so make sure we regard this as ungating it.
1053	 */
1054	spin_lock_irqsave(&host->clk_lock, flags);
1055	host->clk_gated = false;
1056	spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070	mmc_host_clk_hold(host);
1071	host->ios.bus_mode = mode;
1072	mmc_set_ios(host);
1073	mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.bus_width = width;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd:	voltage (mV)
1090 * @low_bits:	prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104	const int max_bit = ilog2(MMC_VDD_35_36);
1105	int bit;
1106
1107	if (vdd < 1650 || vdd > 3600)
1108		return -EINVAL;
1109
1110	if (vdd >= 1650 && vdd <= 1950)
1111		return ilog2(MMC_VDD_165_195);
1112
1113	if (low_bits)
1114		vdd -= 1;
1115
1116	/* Base 2000 mV, step 100 mV, bit's base 8. */
1117	bit = (vdd - 2000) / 100 + 8;
1118	if (bit > max_bit)
1119		return max_bit;
1120	return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min:	minimum voltage value (mV)
1126 * @vdd_max:	maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138	u32 mask = 0;
1139
1140	if (vdd_max < vdd_min)
1141		return 0;
1142
1143	/* Prefer high bits for the boundary vdd_max values. */
1144	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145	if (vdd_max < 0)
1146		return 0;
1147
1148	/* Prefer low bits for the boundary vdd_min values. */
1149	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150	if (vdd_min < 0)
1151		return 0;
1152
1153	/* Fill the mask, from max bit to min bit. */
1154	while (vdd_max >= vdd_min)
1155		mask |= 1 << vdd_max--;
1156
1157	return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173	const u32 *voltage_ranges;
1174	int num_ranges, i;
1175
1176	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178	if (!voltage_ranges || !num_ranges) {
1179		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180		return -EINVAL;
1181	}
1182
1183	for (i = 0; i < num_ranges; i++) {
1184		const int j = i * 2;
1185		u32 ocr_mask;
1186
1187		ocr_mask = mmc_vddrange_to_ocrmask(
1188				be32_to_cpu(voltage_ranges[j]),
1189				be32_to_cpu(voltage_ranges[j + 1]));
1190		if (!ocr_mask) {
1191			pr_err("%s: voltage-range #%d is invalid\n",
1192				np->full_name, i);
1193			return -EINVAL;
1194		}
1195		*mask |= ocr_mask;
1196	}
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator.  This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217	int			result = 0;
1218	int			count;
1219	int			i;
1220
1221	count = regulator_count_voltages(supply);
1222	if (count < 0)
1223		return count;
1224
1225	for (i = 0; i < count; i++) {
1226		int		vdd_uV;
1227		int		vdd_mV;
1228
1229		vdd_uV = regulator_list_voltage(supply, i);
1230		if (vdd_uV <= 0)
1231			continue;
1232
1233		vdd_mV = vdd_uV / 1000;
1234		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235	}
1236
1237	return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage.  This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254			struct regulator *supply,
1255			unsigned short vdd_bit)
1256{
1257	int			result = 0;
1258	int			min_uV, max_uV;
1259
1260	if (vdd_bit) {
1261		int		tmp;
1262		int		voltage;
1263
1264		/*
1265		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266		 * bits this regulator doesn't quite support ... don't
1267		 * be too picky, most cards and regulators are OK with
1268		 * a 0.1V range goof (it's a small error percentage).
1269		 */
1270		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271		if (tmp == 0) {
1272			min_uV = 1650 * 1000;
1273			max_uV = 1950 * 1000;
1274		} else {
1275			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276			max_uV = min_uV + 100 * 1000;
1277		}
1278
1279		/*
1280		 * If we're using a fixed/static regulator, don't call
1281		 * regulator_set_voltage; it would fail.
1282		 */
1283		voltage = regulator_get_voltage(supply);
1284
1285		if (!regulator_can_change_voltage(supply))
1286			min_uV = max_uV = voltage;
1287
1288		if (voltage < 0)
1289			result = voltage;
1290		else if (voltage < min_uV || voltage > max_uV)
1291			result = regulator_set_voltage(supply, min_uV, max_uV);
1292		else
1293			result = 0;
1294
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315	struct device *dev = mmc_dev(mmc);
1316	struct regulator *supply;
1317	int ret;
1318
1319	supply = devm_regulator_get(dev, "vmmc");
1320	mmc->supply.vmmc = supply;
1321	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323	if (IS_ERR(supply))
1324		return PTR_ERR(supply);
1325
1326	ret = mmc_regulator_get_ocrmask(supply);
1327	if (ret > 0)
1328		mmc->ocr_avail = ret;
1329	else
1330		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332	return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344	int bit;
1345
1346	/*
1347	 * Sanity check the voltages that the card claims to
1348	 * support.
1349	 */
1350	if (ocr & 0x7F) {
1351		dev_warn(mmc_dev(host),
1352		"card claims to support voltages below defined range\n");
1353		ocr &= ~0x7F;
1354	}
1355
1356	ocr &= host->ocr_avail;
1357	if (!ocr) {
1358		dev_warn(mmc_dev(host), "no support for card's volts\n");
1359		return 0;
1360	}
1361
1362	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363		bit = ffs(ocr) - 1;
1364		ocr &= 3 << bit;
1365		mmc_power_cycle(host, ocr);
1366	} else {
1367		bit = fls(ocr) - 1;
1368		ocr &= 3 << bit;
1369		if (bit != host->ios.vdd)
1370			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371	}
1372
1373	return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378	int err = 0;
1379	int old_signal_voltage = host->ios.signal_voltage;
1380
1381	host->ios.signal_voltage = signal_voltage;
1382	if (host->ops->start_signal_voltage_switch) {
1383		mmc_host_clk_hold(host);
1384		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
1385		mmc_host_clk_release(host);
 
 
 
 
1386	}
1387
1388	if (err)
1389		host->ios.signal_voltage = old_signal_voltage;
1390
1391	return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397	struct mmc_command cmd = {0};
1398	int err = 0;
1399	u32 clock;
1400
1401	BUG_ON(!host);
1402
1403	/*
1404	 * Send CMD11 only if the request is to switch the card to
1405	 * 1.8V signalling.
1406	 */
1407	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408		return __mmc_set_signal_voltage(host, signal_voltage);
 
 
1409
1410	/*
1411	 * If we cannot switch voltages, return failure so the caller
1412	 * can continue without UHS mode
1413	 */
1414	if (!host->ops->start_signal_voltage_switch)
1415		return -EPERM;
1416	if (!host->ops->card_busy)
1417		pr_warning("%s: cannot verify signal voltage switch\n",
1418				mmc_hostname(host));
1419
1420	cmd.opcode = SD_SWITCH_VOLTAGE;
1421	cmd.arg = 0;
1422	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424	err = mmc_wait_for_cmd(host, &cmd, 0);
1425	if (err)
1426		return err;
1427
1428	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429		return -EIO;
1430
1431	mmc_host_clk_hold(host);
1432	/*
1433	 * The card should drive cmd and dat[0:3] low immediately
1434	 * after the response of cmd11, but wait 1 ms to be sure
1435	 */
1436	mmc_delay(1);
1437	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438		err = -EAGAIN;
1439		goto power_cycle;
1440	}
1441	/*
1442	 * During a signal voltage level switch, the clock must be gated
1443	 * for 5 ms according to the SD spec
1444	 */
1445	clock = host->ios.clock;
1446	host->ios.clock = 0;
1447	mmc_set_ios(host);
1448
1449	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450		/*
1451		 * Voltages may not have been switched, but we've already
1452		 * sent CMD11, so a power cycle is required anyway
1453		 */
1454		err = -EAGAIN;
1455		goto power_cycle;
1456	}
1457
1458	/* Keep clock gated for at least 5 ms */
1459	mmc_delay(5);
1460	host->ios.clock = clock;
1461	mmc_set_ios(host);
1462
1463	/* Wait for at least 1 ms according to spec */
1464	mmc_delay(1);
1465
1466	/*
1467	 * Failure to switch is indicated by the card holding
1468	 * dat[0:3] low
1469	 */
1470	if (host->ops->card_busy && host->ops->card_busy(host))
1471		err = -EAGAIN;
1472
1473power_cycle:
1474	if (err) {
1475		pr_debug("%s: Signal voltage switch failed, "
1476			"power cycling card\n", mmc_hostname(host));
1477		mmc_power_cycle(host, ocr);
1478	}
1479
1480	mmc_host_clk_release(host);
1481
1482	return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490	mmc_host_clk_hold(host);
1491	host->ios.timing = timing;
1492	mmc_set_ios(host);
1493	mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501	mmc_host_clk_hold(host);
1502	host->ios.drv_type = drv_type;
1503	mmc_set_ios(host);
1504	mmc_host_clk_release(host);
1505}
1506
1507/*
1508 * Apply power to the MMC stack.  This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise.  Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520	if (host->ios.power_mode == MMC_POWER_ON)
1521		return;
1522
1523	mmc_host_clk_hold(host);
1524
1525	host->ios.vdd = fls(ocr) - 1;
1526	if (mmc_host_is_spi(host))
 
 
 
 
 
 
1527		host->ios.chip_select = MMC_CS_HIGH;
1528	else
 
1529		host->ios.chip_select = MMC_CS_DONTCARE;
1530	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 
1531	host->ios.power_mode = MMC_POWER_UP;
1532	host->ios.bus_width = MMC_BUS_WIDTH_1;
1533	host->ios.timing = MMC_TIMING_LEGACY;
1534	mmc_set_ios(host);
1535
1536	/* Set signal voltage to 3.3V */
1537	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539	/*
1540	 * This delay should be sufficient to allow the power supply
1541	 * to reach the minimum voltage.
1542	 */
1543	mmc_delay(10);
1544
1545	host->ios.clock = host->f_init;
1546
1547	host->ios.power_mode = MMC_POWER_ON;
1548	mmc_set_ios(host);
1549
1550	/*
1551	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552	 * time required to reach a stable voltage.
1553	 */
1554	mmc_delay(10);
1555
1556	mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561	if (host->ios.power_mode == MMC_POWER_OFF)
1562		return;
1563
1564	mmc_host_clk_hold(host);
1565
1566	host->ios.clock = 0;
1567	host->ios.vdd = 0;
1568
 
 
 
 
 
 
1569	if (!mmc_host_is_spi(host)) {
1570		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571		host->ios.chip_select = MMC_CS_DONTCARE;
1572	}
1573	host->ios.power_mode = MMC_POWER_OFF;
1574	host->ios.bus_width = MMC_BUS_WIDTH_1;
1575	host->ios.timing = MMC_TIMING_LEGACY;
1576	mmc_set_ios(host);
1577
1578	/*
1579	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580	 * XO-1.5, require a short delay after poweroff before the card
1581	 * can be successfully turned on again.
1582	 */
1583	mmc_delay(1);
1584
1585	mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590	mmc_power_off(host);
1591	/* Wait at least 1 ms according to SD spec */
1592	mmc_delay(1);
1593	mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601	BUG_ON(!host);
1602	BUG_ON(host->bus_refs);
1603	BUG_ON(!host->bus_dead);
1604
1605	host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&host->lock, flags);
1616	host->bus_refs++;
1617	spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626	unsigned long flags;
1627
1628	spin_lock_irqsave(&host->lock, flags);
1629	host->bus_refs--;
1630	if ((host->bus_refs == 0) && host->bus_ops)
1631		__mmc_release_bus(host);
1632	spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641	unsigned long flags;
1642
1643	BUG_ON(!host);
1644	BUG_ON(!ops);
1645
1646	WARN_ON(!host->claimed);
1647
1648	spin_lock_irqsave(&host->lock, flags);
1649
1650	BUG_ON(host->bus_ops);
1651	BUG_ON(host->bus_refs);
1652
1653	host->bus_ops = ops;
1654	host->bus_refs = 1;
1655	host->bus_dead = 0;
1656
1657	spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
 
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665	unsigned long flags;
1666
1667	BUG_ON(!host);
1668
1669	WARN_ON(!host->claimed);
1670	WARN_ON(!host->bus_ops);
1671
1672	spin_lock_irqsave(&host->lock, flags);
1673
1674	host->bus_dead = 1;
1675
1676	spin_unlock_irqrestore(&host->lock, flags);
1677
 
 
1678	mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682				bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685	unsigned long flags;
1686	spin_lock_irqsave(&host->lock, flags);
1687	WARN_ON(host->removed);
1688	spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691	/*
1692	 * If the device is configured as wakeup, we prevent a new sleep for
1693	 * 5 s to give provision for user space to consume the event.
1694	 */
1695	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696		device_can_wakeup(mmc_dev(host)))
1697		pm_wakeup_event(mmc_dev(host), 5000);
1698
1699	host->detect_change = 1;
1700	mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 *	mmc_detect_change - process change of state on a MMC socket
1705 *	@host: host which changed state.
1706 *	@delay: optional delay to wait before detection (jiffies)
1707 *
1708 *	MMC drivers should call this when they detect a card has been
1709 *	inserted or removed. The MMC layer will confirm that any
1710 *	present card is still functional, and initialize any newly
1711 *	inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715	_mmc_detect_change(host, delay, true);
 
 
 
 
 
 
 
1716}
 
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721	unsigned int sz;
1722
1723	if (is_power_of_2(card->erase_size))
1724		card->erase_shift = ffs(card->erase_size) - 1;
1725	else
1726		card->erase_shift = 0;
1727
1728	/*
1729	 * It is possible to erase an arbitrarily large area of an SD or MMC
1730	 * card.  That is not desirable because it can take a long time
1731	 * (minutes) potentially delaying more important I/O, and also the
1732	 * timeout calculations become increasingly hugely over-estimated.
1733	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734	 * to that size and alignment.
1735	 *
1736	 * For SD cards that define Allocation Unit size, limit erases to one
1737	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1738	 * Erase Size, whether it is switched on or not, limit to that size.
1739	 * Otherwise just have a stab at a good value.  For modern cards it
1740	 * will end up being 4MiB.  Note that if the value is too small, it
1741	 * can end up taking longer to erase.
1742	 */
1743	if (mmc_card_sd(card) && card->ssr.au) {
1744		card->pref_erase = card->ssr.au;
1745		card->erase_shift = ffs(card->ssr.au) - 1;
1746	} else if (card->ext_csd.hc_erase_size) {
1747		card->pref_erase = card->ext_csd.hc_erase_size;
1748	} else {
1749		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750		if (sz < 128)
1751			card->pref_erase = 512 * 1024 / 512;
1752		else if (sz < 512)
1753			card->pref_erase = 1024 * 1024 / 512;
1754		else if (sz < 1024)
1755			card->pref_erase = 2 * 1024 * 1024 / 512;
1756		else
1757			card->pref_erase = 4 * 1024 * 1024 / 512;
1758		if (card->pref_erase < card->erase_size)
1759			card->pref_erase = card->erase_size;
1760		else {
1761			sz = card->pref_erase % card->erase_size;
1762			if (sz)
1763				card->pref_erase += card->erase_size - sz;
1764		}
1765	}
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769				          unsigned int arg, unsigned int qty)
1770{
1771	unsigned int erase_timeout;
1772
1773	if (arg == MMC_DISCARD_ARG ||
1774	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775		erase_timeout = card->ext_csd.trim_timeout;
1776	} else if (card->ext_csd.erase_group_def & 1) {
1777		/* High Capacity Erase Group Size uses HC timeouts */
1778		if (arg == MMC_TRIM_ARG)
1779			erase_timeout = card->ext_csd.trim_timeout;
1780		else
1781			erase_timeout = card->ext_csd.hc_erase_timeout;
1782	} else {
1783		/* CSD Erase Group Size uses write timeout */
1784		unsigned int mult = (10 << card->csd.r2w_factor);
1785		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786		unsigned int timeout_us;
1787
1788		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789		if (card->csd.tacc_ns < 1000000)
1790			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791		else
1792			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794		/*
1795		 * ios.clock is only a target.  The real clock rate might be
1796		 * less but not that much less, so fudge it by multiplying by 2.
1797		 */
1798		timeout_clks <<= 1;
1799		timeout_us += (timeout_clks * 1000) /
1800			      (mmc_host_clk_rate(card->host) / 1000);
1801
1802		erase_timeout = timeout_us / 1000;
1803
1804		/*
1805		 * Theoretically, the calculation could underflow so round up
1806		 * to 1ms in that case.
1807		 */
1808		if (!erase_timeout)
1809			erase_timeout = 1;
1810	}
1811
1812	/* Multiplier for secure operations */
1813	if (arg & MMC_SECURE_ARGS) {
1814		if (arg == MMC_SECURE_ERASE_ARG)
1815			erase_timeout *= card->ext_csd.sec_erase_mult;
1816		else
1817			erase_timeout *= card->ext_csd.sec_trim_mult;
1818	}
1819
1820	erase_timeout *= qty;
1821
1822	/*
1823	 * Ensure at least a 1 second timeout for SPI as per
1824	 * 'mmc_set_data_timeout()'
1825	 */
1826	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827		erase_timeout = 1000;
1828
1829	return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833					 unsigned int arg,
1834					 unsigned int qty)
1835{
1836	unsigned int erase_timeout;
1837
1838	if (card->ssr.erase_timeout) {
1839		/* Erase timeout specified in SD Status Register (SSR) */
1840		erase_timeout = card->ssr.erase_timeout * qty +
1841				card->ssr.erase_offset;
1842	} else {
1843		/*
1844		 * Erase timeout not specified in SD Status Register (SSR) so
1845		 * use 250ms per write block.
1846		 */
1847		erase_timeout = 250 * qty;
1848	}
1849
1850	/* Must not be less than 1 second */
1851	if (erase_timeout < 1000)
1852		erase_timeout = 1000;
1853
1854	return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858				      unsigned int arg,
1859				      unsigned int qty)
1860{
1861	if (mmc_card_sd(card))
1862		return mmc_sd_erase_timeout(card, arg, qty);
1863	else
1864		return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868			unsigned int to, unsigned int arg)
1869{
1870	struct mmc_command cmd = {0};
1871	unsigned int qty = 0;
1872	unsigned long timeout;
1873	int err;
1874
1875	/*
1876	 * qty is used to calculate the erase timeout which depends on how many
1877	 * erase groups (or allocation units in SD terminology) are affected.
1878	 * We count erasing part of an erase group as one erase group.
1879	 * For SD, the allocation units are always a power of 2.  For MMC, the
1880	 * erase group size is almost certainly also power of 2, but it does not
1881	 * seem to insist on that in the JEDEC standard, so we fall back to
1882	 * division in that case.  SD may not specify an allocation unit size,
1883	 * in which case the timeout is based on the number of write blocks.
1884	 *
1885	 * Note that the timeout for secure trim 2 will only be correct if the
1886	 * number of erase groups specified is the same as the total of all
1887	 * preceding secure trim 1 commands.  Since the power may have been
1888	 * lost since the secure trim 1 commands occurred, it is generally
1889	 * impossible to calculate the secure trim 2 timeout correctly.
1890	 */
1891	if (card->erase_shift)
1892		qty += ((to >> card->erase_shift) -
1893			(from >> card->erase_shift)) + 1;
1894	else if (mmc_card_sd(card))
1895		qty += to - from + 1;
1896	else
1897		qty += ((to / card->erase_size) -
1898			(from / card->erase_size)) + 1;
1899
1900	if (!mmc_card_blockaddr(card)) {
1901		from <<= 9;
1902		to <<= 9;
1903	}
1904
1905	if (mmc_card_sd(card))
1906		cmd.opcode = SD_ERASE_WR_BLK_START;
1907	else
1908		cmd.opcode = MMC_ERASE_GROUP_START;
1909	cmd.arg = from;
1910	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912	if (err) {
1913		pr_err("mmc_erase: group start error %d, "
1914		       "status %#x\n", err, cmd.resp[0]);
1915		err = -EIO;
1916		goto out;
1917	}
1918
1919	memset(&cmd, 0, sizeof(struct mmc_command));
1920	if (mmc_card_sd(card))
1921		cmd.opcode = SD_ERASE_WR_BLK_END;
1922	else
1923		cmd.opcode = MMC_ERASE_GROUP_END;
1924	cmd.arg = to;
1925	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927	if (err) {
1928		pr_err("mmc_erase: group end error %d, status %#x\n",
1929		       err, cmd.resp[0]);
1930		err = -EIO;
1931		goto out;
1932	}
1933
1934	memset(&cmd, 0, sizeof(struct mmc_command));
1935	cmd.opcode = MMC_ERASE;
1936	cmd.arg = arg;
1937	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940	if (err) {
1941		pr_err("mmc_erase: erase error %d, status %#x\n",
1942		       err, cmd.resp[0]);
1943		err = -EIO;
1944		goto out;
1945	}
1946
1947	if (mmc_host_is_spi(card->host))
1948		goto out;
1949
1950	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951	do {
1952		memset(&cmd, 0, sizeof(struct mmc_command));
1953		cmd.opcode = MMC_SEND_STATUS;
1954		cmd.arg = card->rca << 16;
1955		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956		/* Do not retry else we can't see errors */
1957		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958		if (err || (cmd.resp[0] & 0xFDF92000)) {
1959			pr_err("error %d requesting status %#x\n",
1960				err, cmd.resp[0]);
1961			err = -EIO;
1962			goto out;
1963		}
1964
1965		/* Timeout if the device never becomes ready for data and
1966		 * never leaves the program state.
1967		 */
1968		if (time_after(jiffies, timeout)) {
1969			pr_err("%s: Card stuck in programming state! %s\n",
1970				mmc_hostname(card->host), __func__);
1971			err =  -EIO;
1972			goto out;
1973		}
1974
1975	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
1978	return err;
1979}
1980
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991	      unsigned int arg)
1992{
1993	unsigned int rem, to = from + nr;
1994
1995	if (!(card->host->caps & MMC_CAP_ERASE) ||
1996	    !(card->csd.cmdclass & CCC_ERASE))
1997		return -EOPNOTSUPP;
1998
1999	if (!card->erase_size)
2000		return -EOPNOTSUPP;
2001
2002	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003		return -EOPNOTSUPP;
2004
2005	if ((arg & MMC_SECURE_ARGS) &&
2006	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007		return -EOPNOTSUPP;
2008
2009	if ((arg & MMC_TRIM_ARGS) &&
2010	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011		return -EOPNOTSUPP;
2012
2013	if (arg == MMC_SECURE_ERASE_ARG) {
2014		if (from % card->erase_size || nr % card->erase_size)
2015			return -EINVAL;
2016	}
2017
2018	if (arg == MMC_ERASE_ARG) {
2019		rem = from % card->erase_size;
2020		if (rem) {
2021			rem = card->erase_size - rem;
2022			from += rem;
2023			if (nr > rem)
2024				nr -= rem;
2025			else
2026				return 0;
2027		}
2028		rem = nr % card->erase_size;
2029		if (rem)
2030			nr -= rem;
2031	}
2032
2033	if (nr == 0)
2034		return 0;
2035
2036	to = from + nr;
2037
2038	if (to <= from)
2039		return -EINVAL;
2040
2041	/* 'from' and 'to' are inclusive */
2042	to -= 1;
2043
2044	return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050	if ((card->host->caps & MMC_CAP_ERASE) &&
2051	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052		return 1;
2053	return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060		return 1;
2061	return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067	/*
2068	 * As there's no way to detect the discard support bit at v4.5
2069	 * use the s/w feature support filed.
2070	 */
2071	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072		return 1;
2073	return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080		return 0;
2081	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082		return 1;
2083	return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090		return 1;
2091	return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096			    unsigned int nr)
2097{
2098	if (!card->erase_size)
2099		return 0;
2100	if (from % card->erase_size || nr % card->erase_size)
2101		return 0;
2102	return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107					    unsigned int arg)
2108{
2109	struct mmc_host *host = card->host;
2110	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111	unsigned int last_timeout = 0;
2112
2113	if (card->erase_shift)
2114		max_qty = UINT_MAX >> card->erase_shift;
2115	else if (mmc_card_sd(card))
2116		max_qty = UINT_MAX;
2117	else
2118		max_qty = UINT_MAX / card->erase_size;
2119
2120	/* Find the largest qty with an OK timeout */
2121	do {
2122		y = 0;
2123		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124			timeout = mmc_erase_timeout(card, arg, qty + x);
2125			if (timeout > host->max_busy_timeout)
2126				break;
2127			if (timeout < last_timeout)
2128				break;
2129			last_timeout = timeout;
2130			y = x;
2131		}
2132		qty += y;
2133	} while (y);
2134
2135	if (!qty)
2136		return 0;
2137
2138	if (qty == 1)
2139		return 1;
2140
2141	/* Convert qty to sectors */
2142	if (card->erase_shift)
2143		max_discard = --qty << card->erase_shift;
2144	else if (mmc_card_sd(card))
2145		max_discard = qty;
2146	else
2147		max_discard = --qty * card->erase_size;
2148
2149	return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154	struct mmc_host *host = card->host;
2155	unsigned int max_discard, max_trim;
2156
2157	if (!host->max_busy_timeout)
2158		return UINT_MAX;
2159
2160	/*
2161	 * Without erase_group_def set, MMC erase timeout depends on clock
2162	 * frequence which can change.  In that case, the best choice is
2163	 * just the preferred erase size.
2164	 */
2165	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166		return card->pref_erase;
2167
2168	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169	if (mmc_can_trim(card)) {
2170		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171		if (max_trim < max_discard)
2172			max_discard = max_trim;
2173	} else if (max_discard < card->erase_size) {
2174		max_discard = 0;
2175	}
2176	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178	return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184	struct mmc_command cmd = {0};
2185
2186	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187		return 0;
2188
2189	cmd.opcode = MMC_SET_BLOCKLEN;
2190	cmd.arg = blocklen;
2191	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192	return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197			bool is_rel_write)
2198{
2199	struct mmc_command cmd = {0};
2200
2201	cmd.opcode = MMC_SET_BLOCK_COUNT;
2202	cmd.arg = blockcount & 0x0000FFFF;
2203	if (is_rel_write)
2204		cmd.arg |= 1 << 31;
2205	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206	return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213		return;
2214	mmc_host_clk_hold(host);
2215	host->ops->hw_reset(host);
2216	mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221	u8 rst_n_function;
2222
2223	if (!mmc_card_mmc(card))
2224		return 0;
2225	rst_n_function = card->ext_csd.rst_n_function;
2226	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227		return 0;
2228	return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234	struct mmc_card *card = host->card;
2235
2236	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237		return -EOPNOTSUPP;
2238
2239	if (!card)
2240		return -EINVAL;
2241
2242	if (!mmc_can_reset(card))
2243		return -EOPNOTSUPP;
2244
2245	mmc_host_clk_hold(host);
2246	mmc_set_clock(host, host->f_init);
2247
2248	host->ops->hw_reset(host);
2249
2250	/* If the reset has happened, then a status command will fail */
2251	if (check) {
2252		struct mmc_command cmd = {0};
2253		int err;
2254
2255		cmd.opcode = MMC_SEND_STATUS;
2256		if (!mmc_host_is_spi(card->host))
2257			cmd.arg = card->rca << 16;
2258		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260		if (!err) {
2261			mmc_host_clk_release(host);
2262			return -ENOSYS;
2263		}
2264	}
2265
2266	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267	if (mmc_host_is_spi(host)) {
2268		host->ios.chip_select = MMC_CS_HIGH;
2269		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270	} else {
2271		host->ios.chip_select = MMC_CS_DONTCARE;
2272		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273	}
2274	host->ios.bus_width = MMC_BUS_WIDTH_1;
2275	host->ios.timing = MMC_TIMING_LEGACY;
2276	mmc_set_ios(host);
2277
2278	mmc_host_clk_release(host);
2279
2280	return host->bus_ops->power_restore(host);
2281}
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285	return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291	return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297	host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300	pr_info("%s: %s: trying to init card at %u Hz\n",
2301		mmc_hostname(host), __func__, host->f_init);
2302#endif
2303	mmc_power_up(host, host->ocr_avail);
2304
2305	/*
2306	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307	 * do a hardware reset if possible.
2308	 */
2309	mmc_hw_reset_for_init(host);
2310
2311	/*
2312	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2313	 * if the card is being re-initialized, just send it.  CMD52
2314	 * should be ignored by SD/eMMC cards.
2315	 */
2316	sdio_reset(host);
2317	mmc_go_idle(host);
2318
2319	mmc_send_if_cond(host, host->ocr_avail);
2320
2321	/* Order's important: probe SDIO, then SD, then MMC */
2322	if (!mmc_attach_sdio(host))
2323		return 0;
2324	if (!mmc_attach_sd(host))
2325		return 0;
2326	if (!mmc_attach_mmc(host))
2327		return 0;
2328
2329	mmc_power_off(host);
2330	return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335	int ret;
2336
2337	if (host->caps & MMC_CAP_NONREMOVABLE)
2338		return 0;
2339
2340	if (!host->card || mmc_card_removed(host->card))
2341		return 1;
2342
2343	ret = host->bus_ops->alive(host);
2344
2345	/*
2346	 * Card detect status and alive check may be out of sync if card is
2347	 * removed slowly, when card detect switch changes while card/slot
2348	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350	 * detect work 200ms later for this case.
2351	 */
2352	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353		mmc_detect_change(host, msecs_to_jiffies(200));
2354		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355	}
2356
2357	if (ret) {
2358		mmc_card_set_removed(host->card);
2359		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360	}
2361
2362	return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367	struct mmc_card *card = host->card;
2368	int ret;
2369
2370	WARN_ON(!host->claimed);
2371
2372	if (!card)
2373		return 1;
2374
2375	ret = mmc_card_removed(card);
2376	/*
2377	 * The card will be considered unchanged unless we have been asked to
2378	 * detect a change or host requires polling to provide card detection.
2379	 */
2380	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381		return ret;
2382
2383	host->detect_change = 0;
2384	if (!ret) {
2385		ret = _mmc_detect_card_removed(host);
2386		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387			/*
2388			 * Schedule a detect work as soon as possible to let a
2389			 * rescan handle the card removal.
2390			 */
2391			cancel_delayed_work(&host->detect);
2392			_mmc_detect_change(host, 0, false);
2393		}
2394	}
2395
2396	return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
 
2402	struct mmc_host *host =
2403		container_of(work, struct mmc_host, detect.work);
2404	int i;
2405
2406	if (host->rescan_disable)
2407		return;
2408
2409	/* If there is a non-removable card registered, only scan once */
2410	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411		return;
2412	host->rescan_entered = 1;
2413
2414	mmc_bus_get(host);
2415
2416	/*
2417	 * if there is a _removable_ card registered, check whether it is
2418	 * still present
2419	 */
2420	if (host->bus_ops && !host->bus_dead
2421	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2422		host->bus_ops->detect(host);
2423
2424	host->detect_change = 0;
2425
2426	/*
2427	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428	 * the card is no longer present.
2429	 */
2430	mmc_bus_put(host);
2431	mmc_bus_get(host);
2432
2433	/* if there still is a card present, stop here */
2434	if (host->bus_ops != NULL) {
2435		mmc_bus_put(host);
2436		goto out;
2437	}
2438
2439	/*
2440	 * Only we can add a new handler, so it's safe to
2441	 * release the lock here.
2442	 */
2443	mmc_bus_put(host);
2444
2445	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446			host->ops->get_cd(host) == 0) {
2447		mmc_claim_host(host);
2448		mmc_power_off(host);
2449		mmc_release_host(host);
2450		goto out;
2451	}
2452
2453	mmc_claim_host(host);
2454	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456			break;
2457		if (freqs[i] <= host->f_min)
2458			break;
2459	}
2460	mmc_release_host(host);
2461
2462 out:
2463	if (host->caps & MMC_CAP_NEEDS_POLL)
2464		mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469	host->f_init = max(freqs[0], host->f_min);
2470	host->rescan_disable = 0;
2471	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472		mmc_power_off(host);
2473	else
2474		mmc_power_up(host, host->ocr_avail);
2475	mmc_gpiod_request_cd_irq(host);
2476	_mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482	unsigned long flags;
2483	spin_lock_irqsave(&host->lock, flags);
2484	host->removed = 1;
2485	spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487	if (host->slot.cd_irq >= 0)
2488		disable_irq(host->slot.cd_irq);
2489
2490	host->rescan_disable = 1;
 
2491	cancel_delayed_work_sync(&host->detect);
2492	mmc_flush_scheduled_work();
2493
2494	/* clear pm flags now and let card drivers set them as needed */
2495	host->pm_flags = 0;
2496
2497	mmc_bus_get(host);
2498	if (host->bus_ops && !host->bus_dead) {
2499		/* Calling bus_ops->remove() with a claimed host can deadlock */
2500		host->bus_ops->remove(host);
 
2501		mmc_claim_host(host);
2502		mmc_detach_bus(host);
2503		mmc_power_off(host);
2504		mmc_release_host(host);
2505		mmc_bus_put(host);
2506		return;
2507	}
2508	mmc_bus_put(host);
2509
2510	BUG_ON(host->card);
2511
2512	mmc_power_off(host);
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517	int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523	mmc_bus_get(host);
2524
2525	if (!host->bus_ops || host->bus_dead) {
2526		mmc_bus_put(host);
2527		return -EINVAL;
2528	}
2529
2530	if (host->bus_ops->power_save)
2531		ret = host->bus_ops->power_save(host);
2532
2533	mmc_bus_put(host);
2534
2535	mmc_power_off(host);
2536
2537	return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543	int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549	mmc_bus_get(host);
2550
2551	if (!host->bus_ops || host->bus_dead) {
2552		mmc_bus_put(host);
2553		return -EINVAL;
2554	}
2555
2556	mmc_power_up(host, host->card->ocr);
2557	ret = host->bus_ops->power_restore(host);
2558
2559	mmc_bus_put(host);
2560
2561	return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570	int err = 0;
2571
2572	if (mmc_card_mmc(card) &&
2573			(card->ext_csd.cache_size > 0) &&
2574			(card->ext_csd.cache_ctrl & 1)) {
2575		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576				EXT_CSD_FLUSH_CACHE, 1, 0);
2577		if (err)
2578			pr_err("%s: cache flush error %d\n",
2579					mmc_hostname(card->host), err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2580	}
 
 
 
 
2581
2582	return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590   to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593					unsigned long mode, void *unused)
2594{
2595	struct mmc_host *host = container_of(
2596		notify_block, struct mmc_host, pm_notify);
2597	unsigned long flags;
2598	int err = 0;
2599
2600	switch (mode) {
2601	case PM_HIBERNATION_PREPARE:
2602	case PM_SUSPEND_PREPARE:
 
2603		spin_lock_irqsave(&host->lock, flags);
2604		host->rescan_disable = 1;
2605		spin_unlock_irqrestore(&host->lock, flags);
2606		cancel_delayed_work_sync(&host->detect);
2607
2608		if (!host->bus_ops)
2609			break;
2610
2611		/* Validate prerequisites for suspend */
2612		if (host->bus_ops->pre_suspend)
2613			err = host->bus_ops->pre_suspend(host);
2614		if (!err)
2615			break;
2616
2617		/* Calling bus_ops->remove() with a claimed host can deadlock */
2618		host->bus_ops->remove(host);
2619		mmc_claim_host(host);
2620		mmc_detach_bus(host);
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		host->pm_flags = 0;
2624		break;
2625
2626	case PM_POST_SUSPEND:
2627	case PM_POST_HIBERNATION:
2628	case PM_POST_RESTORE:
2629
2630		spin_lock_irqsave(&host->lock, flags);
2631		host->rescan_disable = 0;
2632		spin_unlock_irqrestore(&host->lock, flags);
2633		_mmc_detect_change(host, 0, false);
2634
2635	}
2636
2637	return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651	spin_lock_init(&host->context_info.lock);
2652	host->context_info.is_new_req = false;
2653	host->context_info.is_done_rcv = false;
2654	host->context_info.is_waiting_last_req = false;
2655	init_waitqueue_head(&host->context_info.wait);
2656}
2657
2658static int __init mmc_init(void)
2659{
2660	int ret;
2661
2662	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663	if (!workqueue)
2664		return -ENOMEM;
2665
2666	ret = mmc_register_bus();
2667	if (ret)
2668		goto destroy_workqueue;
2669
2670	ret = mmc_register_host_class();
2671	if (ret)
2672		goto unregister_bus;
2673
2674	ret = sdio_register_bus();
2675	if (ret)
2676		goto unregister_host_class;
2677
2678	return 0;
2679
2680unregister_host_class:
2681	mmc_unregister_host_class();
2682unregister_bus:
2683	mmc_unregister_bus();
2684destroy_workqueue:
2685	destroy_workqueue(workqueue);
2686
2687	return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692	sdio_unregister_bus();
2693	mmc_unregister_host_class();
2694	mmc_unregister_bus();
2695	destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");