Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27
28#include <linux/mmc/card.h>
29#include <linux/mmc/host.h>
30#include <linux/mmc/mmc.h>
31#include <linux/mmc/sd.h>
32
33#include "core.h"
34#include "bus.h"
35#include "host.h"
36#include "sdio_bus.h"
37
38#include "mmc_ops.h"
39#include "sd_ops.h"
40#include "sdio_ops.h"
41
42static struct workqueue_struct *workqueue;
43
44/*
45 * Enabling software CRCs on the data blocks can be a significant (30%)
46 * performance cost, and for other reasons may not always be desired.
47 * So we allow it it to be disabled.
48 */
49int use_spi_crc = 1;
50module_param(use_spi_crc, bool, 0);
51
52/*
53 * We normally treat cards as removed during suspend if they are not
54 * known to be on a non-removable bus, to avoid the risk of writing
55 * back data to a different card after resume. Allow this to be
56 * overridden if necessary.
57 */
58#ifdef CONFIG_MMC_UNSAFE_RESUME
59int mmc_assume_removable;
60#else
61int mmc_assume_removable = 1;
62#endif
63EXPORT_SYMBOL(mmc_assume_removable);
64module_param_named(removable, mmc_assume_removable, bool, 0644);
65MODULE_PARM_DESC(
66 removable,
67 "MMC/SD cards are removable and may be removed during suspend");
68
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
86/**
87 * mmc_request_done - finish processing an MMC request
88 * @host: MMC host which completed request
89 * @mrq: MMC request which request
90 *
91 * MMC drivers should call this function when they have completed
92 * their processing of a request.
93 */
94void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95{
96 struct mmc_command *cmd = mrq->cmd;
97 int err = cmd->error;
98
99 if (err && cmd->retries && mmc_host_is_spi(host)) {
100 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
101 cmd->retries = 0;
102 }
103
104 if (err && cmd->retries) {
105 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
106 mmc_hostname(host), cmd->opcode, err);
107
108 cmd->retries--;
109 cmd->error = 0;
110 host->ops->request(host, mrq);
111 } else {
112 led_trigger_event(host->led, LED_OFF);
113
114 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
115 mmc_hostname(host), cmd->opcode, err,
116 cmd->resp[0], cmd->resp[1],
117 cmd->resp[2], cmd->resp[3]);
118
119 if (mrq->data) {
120 pr_debug("%s: %d bytes transferred: %d\n",
121 mmc_hostname(host),
122 mrq->data->bytes_xfered, mrq->data->error);
123 }
124
125 if (mrq->stop) {
126 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
127 mmc_hostname(host), mrq->stop->opcode,
128 mrq->stop->error,
129 mrq->stop->resp[0], mrq->stop->resp[1],
130 mrq->stop->resp[2], mrq->stop->resp[3]);
131 }
132
133 if (mrq->done)
134 mrq->done(mrq);
135
136 mmc_host_clk_release(host);
137 }
138}
139
140EXPORT_SYMBOL(mmc_request_done);
141
142static void
143mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144{
145#ifdef CONFIG_MMC_DEBUG
146 unsigned int i, sz;
147 struct scatterlist *sg;
148#endif
149
150 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
151 mmc_hostname(host), mrq->cmd->opcode,
152 mrq->cmd->arg, mrq->cmd->flags);
153
154 if (mrq->data) {
155 pr_debug("%s: blksz %d blocks %d flags %08x "
156 "tsac %d ms nsac %d\n",
157 mmc_hostname(host), mrq->data->blksz,
158 mrq->data->blocks, mrq->data->flags,
159 mrq->data->timeout_ns / 1000000,
160 mrq->data->timeout_clks);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: CMD%u arg %08x flags %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->arg, mrq->stop->flags);
167 }
168
169 WARN_ON(!host->claimed);
170
171 mrq->cmd->error = 0;
172 mrq->cmd->mrq = mrq;
173 if (mrq->data) {
174 BUG_ON(mrq->data->blksz > host->max_blk_size);
175 BUG_ON(mrq->data->blocks > host->max_blk_count);
176 BUG_ON(mrq->data->blocks * mrq->data->blksz >
177 host->max_req_size);
178
179#ifdef CONFIG_MMC_DEBUG
180 sz = 0;
181 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
182 sz += sg->length;
183 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
184#endif
185
186 mrq->cmd->data = mrq->data;
187 mrq->data->error = 0;
188 mrq->data->mrq = mrq;
189 if (mrq->stop) {
190 mrq->data->stop = mrq->stop;
191 mrq->stop->error = 0;
192 mrq->stop->mrq = mrq;
193 }
194 }
195 mmc_host_clk_hold(host);
196 led_trigger_event(host->led, LED_FULL);
197 host->ops->request(host, mrq);
198}
199
200static void mmc_wait_done(struct mmc_request *mrq)
201{
202 complete(&mrq->completion);
203}
204
205static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
206{
207 init_completion(&mrq->completion);
208 mrq->done = mmc_wait_done;
209 mmc_start_request(host, mrq);
210}
211
212static void mmc_wait_for_req_done(struct mmc_host *host,
213 struct mmc_request *mrq)
214{
215 wait_for_completion(&mrq->completion);
216}
217
218/**
219 * mmc_pre_req - Prepare for a new request
220 * @host: MMC host to prepare command
221 * @mrq: MMC request to prepare for
222 * @is_first_req: true if there is no previous started request
223 * that may run in parellel to this call, otherwise false
224 *
225 * mmc_pre_req() is called in prior to mmc_start_req() to let
226 * host prepare for the new request. Preparation of a request may be
227 * performed while another request is running on the host.
228 */
229static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
230 bool is_first_req)
231{
232 if (host->ops->pre_req)
233 host->ops->pre_req(host, mrq, is_first_req);
234}
235
236/**
237 * mmc_post_req - Post process a completed request
238 * @host: MMC host to post process command
239 * @mrq: MMC request to post process for
240 * @err: Error, if non zero, clean up any resources made in pre_req
241 *
242 * Let the host post process a completed request. Post processing of
243 * a request may be performed while another reuqest is running.
244 */
245static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
246 int err)
247{
248 if (host->ops->post_req)
249 host->ops->post_req(host, mrq, err);
250}
251
252/**
253 * mmc_start_req - start a non-blocking request
254 * @host: MMC host to start command
255 * @areq: async request to start
256 * @error: out parameter returns 0 for success, otherwise non zero
257 *
258 * Start a new MMC custom command request for a host.
259 * If there is on ongoing async request wait for completion
260 * of that request and start the new one and return.
261 * Does not wait for the new request to complete.
262 *
263 * Returns the completed request, NULL in case of none completed.
264 * Wait for the an ongoing request (previoulsy started) to complete and
265 * return the completed request. If there is no ongoing request, NULL
266 * is returned without waiting. NULL is not an error condition.
267 */
268struct mmc_async_req *mmc_start_req(struct mmc_host *host,
269 struct mmc_async_req *areq, int *error)
270{
271 int err = 0;
272 struct mmc_async_req *data = host->areq;
273
274 /* Prepare a new request */
275 if (areq)
276 mmc_pre_req(host, areq->mrq, !host->areq);
277
278 if (host->areq) {
279 mmc_wait_for_req_done(host, host->areq->mrq);
280 err = host->areq->err_check(host->card, host->areq);
281 if (err) {
282 mmc_post_req(host, host->areq->mrq, 0);
283 if (areq)
284 mmc_post_req(host, areq->mrq, -EINVAL);
285
286 host->areq = NULL;
287 goto out;
288 }
289 }
290
291 if (areq)
292 __mmc_start_req(host, areq->mrq);
293
294 if (host->areq)
295 mmc_post_req(host, host->areq->mrq, 0);
296
297 host->areq = areq;
298 out:
299 if (error)
300 *error = err;
301 return data;
302}
303EXPORT_SYMBOL(mmc_start_req);
304
305/**
306 * mmc_wait_for_req - start a request and wait for completion
307 * @host: MMC host to start command
308 * @mrq: MMC request to start
309 *
310 * Start a new MMC custom command request for a host, and wait
311 * for the command to complete. Does not attempt to parse the
312 * response.
313 */
314void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
315{
316 __mmc_start_req(host, mrq);
317 mmc_wait_for_req_done(host, mrq);
318}
319EXPORT_SYMBOL(mmc_wait_for_req);
320
321/**
322 * mmc_wait_for_cmd - start a command and wait for completion
323 * @host: MMC host to start command
324 * @cmd: MMC command to start
325 * @retries: maximum number of retries
326 *
327 * Start a new MMC command for a host, and wait for the command
328 * to complete. Return any error that occurred while the command
329 * was executing. Do not attempt to parse the response.
330 */
331int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
332{
333 struct mmc_request mrq = {0};
334
335 WARN_ON(!host->claimed);
336
337 memset(cmd->resp, 0, sizeof(cmd->resp));
338 cmd->retries = retries;
339
340 mrq.cmd = cmd;
341 cmd->data = NULL;
342
343 mmc_wait_for_req(host, &mrq);
344
345 return cmd->error;
346}
347
348EXPORT_SYMBOL(mmc_wait_for_cmd);
349
350/**
351 * mmc_set_data_timeout - set the timeout for a data command
352 * @data: data phase for command
353 * @card: the MMC card associated with the data transfer
354 *
355 * Computes the data timeout parameters according to the
356 * correct algorithm given the card type.
357 */
358void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
359{
360 unsigned int mult;
361
362 /*
363 * SDIO cards only define an upper 1 s limit on access.
364 */
365 if (mmc_card_sdio(card)) {
366 data->timeout_ns = 1000000000;
367 data->timeout_clks = 0;
368 return;
369 }
370
371 /*
372 * SD cards use a 100 multiplier rather than 10
373 */
374 mult = mmc_card_sd(card) ? 100 : 10;
375
376 /*
377 * Scale up the multiplier (and therefore the timeout) by
378 * the r2w factor for writes.
379 */
380 if (data->flags & MMC_DATA_WRITE)
381 mult <<= card->csd.r2w_factor;
382
383 data->timeout_ns = card->csd.tacc_ns * mult;
384 data->timeout_clks = card->csd.tacc_clks * mult;
385
386 /*
387 * SD cards also have an upper limit on the timeout.
388 */
389 if (mmc_card_sd(card)) {
390 unsigned int timeout_us, limit_us;
391
392 timeout_us = data->timeout_ns / 1000;
393 if (mmc_host_clk_rate(card->host))
394 timeout_us += data->timeout_clks * 1000 /
395 (mmc_host_clk_rate(card->host) / 1000);
396
397 if (data->flags & MMC_DATA_WRITE)
398 /*
399 * The limit is really 250 ms, but that is
400 * insufficient for some crappy cards.
401 */
402 limit_us = 300000;
403 else
404 limit_us = 100000;
405
406 /*
407 * SDHC cards always use these fixed values.
408 */
409 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
410 data->timeout_ns = limit_us * 1000;
411 data->timeout_clks = 0;
412 }
413 }
414 /*
415 * Some cards need very high timeouts if driven in SPI mode.
416 * The worst observed timeout was 900ms after writing a
417 * continuous stream of data until the internal logic
418 * overflowed.
419 */
420 if (mmc_host_is_spi(card->host)) {
421 if (data->flags & MMC_DATA_WRITE) {
422 if (data->timeout_ns < 1000000000)
423 data->timeout_ns = 1000000000; /* 1s */
424 } else {
425 if (data->timeout_ns < 100000000)
426 data->timeout_ns = 100000000; /* 100ms */
427 }
428 }
429}
430EXPORT_SYMBOL(mmc_set_data_timeout);
431
432/**
433 * mmc_align_data_size - pads a transfer size to a more optimal value
434 * @card: the MMC card associated with the data transfer
435 * @sz: original transfer size
436 *
437 * Pads the original data size with a number of extra bytes in
438 * order to avoid controller bugs and/or performance hits
439 * (e.g. some controllers revert to PIO for certain sizes).
440 *
441 * Returns the improved size, which might be unmodified.
442 *
443 * Note that this function is only relevant when issuing a
444 * single scatter gather entry.
445 */
446unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
447{
448 /*
449 * FIXME: We don't have a system for the controller to tell
450 * the core about its problems yet, so for now we just 32-bit
451 * align the size.
452 */
453 sz = ((sz + 3) / 4) * 4;
454
455 return sz;
456}
457EXPORT_SYMBOL(mmc_align_data_size);
458
459/**
460 * mmc_host_enable - enable a host.
461 * @host: mmc host to enable
462 *
463 * Hosts that support power saving can use the 'enable' and 'disable'
464 * methods to exit and enter power saving states. For more information
465 * see comments for struct mmc_host_ops.
466 */
467int mmc_host_enable(struct mmc_host *host)
468{
469 if (!(host->caps & MMC_CAP_DISABLE))
470 return 0;
471
472 if (host->en_dis_recurs)
473 return 0;
474
475 if (host->nesting_cnt++)
476 return 0;
477
478 cancel_delayed_work_sync(&host->disable);
479
480 if (host->enabled)
481 return 0;
482
483 if (host->ops->enable) {
484 int err;
485
486 host->en_dis_recurs = 1;
487 err = host->ops->enable(host);
488 host->en_dis_recurs = 0;
489
490 if (err) {
491 pr_debug("%s: enable error %d\n",
492 mmc_hostname(host), err);
493 return err;
494 }
495 }
496 host->enabled = 1;
497 return 0;
498}
499EXPORT_SYMBOL(mmc_host_enable);
500
501static int mmc_host_do_disable(struct mmc_host *host, int lazy)
502{
503 if (host->ops->disable) {
504 int err;
505
506 host->en_dis_recurs = 1;
507 err = host->ops->disable(host, lazy);
508 host->en_dis_recurs = 0;
509
510 if (err < 0) {
511 pr_debug("%s: disable error %d\n",
512 mmc_hostname(host), err);
513 return err;
514 }
515 if (err > 0) {
516 unsigned long delay = msecs_to_jiffies(err);
517
518 mmc_schedule_delayed_work(&host->disable, delay);
519 }
520 }
521 host->enabled = 0;
522 return 0;
523}
524
525/**
526 * mmc_host_disable - disable a host.
527 * @host: mmc host to disable
528 *
529 * Hosts that support power saving can use the 'enable' and 'disable'
530 * methods to exit and enter power saving states. For more information
531 * see comments for struct mmc_host_ops.
532 */
533int mmc_host_disable(struct mmc_host *host)
534{
535 int err;
536
537 if (!(host->caps & MMC_CAP_DISABLE))
538 return 0;
539
540 if (host->en_dis_recurs)
541 return 0;
542
543 if (--host->nesting_cnt)
544 return 0;
545
546 if (!host->enabled)
547 return 0;
548
549 err = mmc_host_do_disable(host, 0);
550 return err;
551}
552EXPORT_SYMBOL(mmc_host_disable);
553
554/**
555 * __mmc_claim_host - exclusively claim a host
556 * @host: mmc host to claim
557 * @abort: whether or not the operation should be aborted
558 *
559 * Claim a host for a set of operations. If @abort is non null and
560 * dereference a non-zero value then this will return prematurely with
561 * that non-zero value without acquiring the lock. Returns zero
562 * with the lock held otherwise.
563 */
564int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
565{
566 DECLARE_WAITQUEUE(wait, current);
567 unsigned long flags;
568 int stop;
569
570 might_sleep();
571
572 add_wait_queue(&host->wq, &wait);
573 spin_lock_irqsave(&host->lock, flags);
574 while (1) {
575 set_current_state(TASK_UNINTERRUPTIBLE);
576 stop = abort ? atomic_read(abort) : 0;
577 if (stop || !host->claimed || host->claimer == current)
578 break;
579 spin_unlock_irqrestore(&host->lock, flags);
580 schedule();
581 spin_lock_irqsave(&host->lock, flags);
582 }
583 set_current_state(TASK_RUNNING);
584 if (!stop) {
585 host->claimed = 1;
586 host->claimer = current;
587 host->claim_cnt += 1;
588 } else
589 wake_up(&host->wq);
590 spin_unlock_irqrestore(&host->lock, flags);
591 remove_wait_queue(&host->wq, &wait);
592 if (!stop)
593 mmc_host_enable(host);
594 return stop;
595}
596
597EXPORT_SYMBOL(__mmc_claim_host);
598
599/**
600 * mmc_try_claim_host - try exclusively to claim a host
601 * @host: mmc host to claim
602 *
603 * Returns %1 if the host is claimed, %0 otherwise.
604 */
605int mmc_try_claim_host(struct mmc_host *host)
606{
607 int claimed_host = 0;
608 unsigned long flags;
609
610 spin_lock_irqsave(&host->lock, flags);
611 if (!host->claimed || host->claimer == current) {
612 host->claimed = 1;
613 host->claimer = current;
614 host->claim_cnt += 1;
615 claimed_host = 1;
616 }
617 spin_unlock_irqrestore(&host->lock, flags);
618 return claimed_host;
619}
620EXPORT_SYMBOL(mmc_try_claim_host);
621
622/**
623 * mmc_do_release_host - release a claimed host
624 * @host: mmc host to release
625 *
626 * If you successfully claimed a host, this function will
627 * release it again.
628 */
629void mmc_do_release_host(struct mmc_host *host)
630{
631 unsigned long flags;
632
633 spin_lock_irqsave(&host->lock, flags);
634 if (--host->claim_cnt) {
635 /* Release for nested claim */
636 spin_unlock_irqrestore(&host->lock, flags);
637 } else {
638 host->claimed = 0;
639 host->claimer = NULL;
640 spin_unlock_irqrestore(&host->lock, flags);
641 wake_up(&host->wq);
642 }
643}
644EXPORT_SYMBOL(mmc_do_release_host);
645
646void mmc_host_deeper_disable(struct work_struct *work)
647{
648 struct mmc_host *host =
649 container_of(work, struct mmc_host, disable.work);
650
651 /* If the host is claimed then we do not want to disable it anymore */
652 if (!mmc_try_claim_host(host))
653 return;
654 mmc_host_do_disable(host, 1);
655 mmc_do_release_host(host);
656}
657
658/**
659 * mmc_host_lazy_disable - lazily disable a host.
660 * @host: mmc host to disable
661 *
662 * Hosts that support power saving can use the 'enable' and 'disable'
663 * methods to exit and enter power saving states. For more information
664 * see comments for struct mmc_host_ops.
665 */
666int mmc_host_lazy_disable(struct mmc_host *host)
667{
668 if (!(host->caps & MMC_CAP_DISABLE))
669 return 0;
670
671 if (host->en_dis_recurs)
672 return 0;
673
674 if (--host->nesting_cnt)
675 return 0;
676
677 if (!host->enabled)
678 return 0;
679
680 if (host->disable_delay) {
681 mmc_schedule_delayed_work(&host->disable,
682 msecs_to_jiffies(host->disable_delay));
683 return 0;
684 } else
685 return mmc_host_do_disable(host, 1);
686}
687EXPORT_SYMBOL(mmc_host_lazy_disable);
688
689/**
690 * mmc_release_host - release a host
691 * @host: mmc host to release
692 *
693 * Release a MMC host, allowing others to claim the host
694 * for their operations.
695 */
696void mmc_release_host(struct mmc_host *host)
697{
698 WARN_ON(!host->claimed);
699
700 mmc_host_lazy_disable(host);
701
702 mmc_do_release_host(host);
703}
704
705EXPORT_SYMBOL(mmc_release_host);
706
707/*
708 * Internal function that does the actual ios call to the host driver,
709 * optionally printing some debug output.
710 */
711static inline void mmc_set_ios(struct mmc_host *host)
712{
713 struct mmc_ios *ios = &host->ios;
714
715 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
716 "width %u timing %u\n",
717 mmc_hostname(host), ios->clock, ios->bus_mode,
718 ios->power_mode, ios->chip_select, ios->vdd,
719 ios->bus_width, ios->timing);
720
721 if (ios->clock > 0)
722 mmc_set_ungated(host);
723 host->ops->set_ios(host, ios);
724}
725
726/*
727 * Control chip select pin on a host.
728 */
729void mmc_set_chip_select(struct mmc_host *host, int mode)
730{
731 mmc_host_clk_hold(host);
732 host->ios.chip_select = mode;
733 mmc_set_ios(host);
734 mmc_host_clk_release(host);
735}
736
737/*
738 * Sets the host clock to the highest possible frequency that
739 * is below "hz".
740 */
741static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
742{
743 WARN_ON(hz < host->f_min);
744
745 if (hz > host->f_max)
746 hz = host->f_max;
747
748 host->ios.clock = hz;
749 mmc_set_ios(host);
750}
751
752void mmc_set_clock(struct mmc_host *host, unsigned int hz)
753{
754 mmc_host_clk_hold(host);
755 __mmc_set_clock(host, hz);
756 mmc_host_clk_release(host);
757}
758
759#ifdef CONFIG_MMC_CLKGATE
760/*
761 * This gates the clock by setting it to 0 Hz.
762 */
763void mmc_gate_clock(struct mmc_host *host)
764{
765 unsigned long flags;
766
767 spin_lock_irqsave(&host->clk_lock, flags);
768 host->clk_old = host->ios.clock;
769 host->ios.clock = 0;
770 host->clk_gated = true;
771 spin_unlock_irqrestore(&host->clk_lock, flags);
772 mmc_set_ios(host);
773}
774
775/*
776 * This restores the clock from gating by using the cached
777 * clock value.
778 */
779void mmc_ungate_clock(struct mmc_host *host)
780{
781 /*
782 * We should previously have gated the clock, so the clock shall
783 * be 0 here! The clock may however be 0 during initialization,
784 * when some request operations are performed before setting
785 * the frequency. When ungate is requested in that situation
786 * we just ignore the call.
787 */
788 if (host->clk_old) {
789 BUG_ON(host->ios.clock);
790 /* This call will also set host->clk_gated to false */
791 __mmc_set_clock(host, host->clk_old);
792 }
793}
794
795void mmc_set_ungated(struct mmc_host *host)
796{
797 unsigned long flags;
798
799 /*
800 * We've been given a new frequency while the clock is gated,
801 * so make sure we regard this as ungating it.
802 */
803 spin_lock_irqsave(&host->clk_lock, flags);
804 host->clk_gated = false;
805 spin_unlock_irqrestore(&host->clk_lock, flags);
806}
807
808#else
809void mmc_set_ungated(struct mmc_host *host)
810{
811}
812#endif
813
814/*
815 * Change the bus mode (open drain/push-pull) of a host.
816 */
817void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
818{
819 mmc_host_clk_hold(host);
820 host->ios.bus_mode = mode;
821 mmc_set_ios(host);
822 mmc_host_clk_release(host);
823}
824
825/*
826 * Change data bus width of a host.
827 */
828void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
829{
830 mmc_host_clk_hold(host);
831 host->ios.bus_width = width;
832 mmc_set_ios(host);
833 mmc_host_clk_release(host);
834}
835
836/**
837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
838 * @vdd: voltage (mV)
839 * @low_bits: prefer low bits in boundary cases
840 *
841 * This function returns the OCR bit number according to the provided @vdd
842 * value. If conversion is not possible a negative errno value returned.
843 *
844 * Depending on the @low_bits flag the function prefers low or high OCR bits
845 * on boundary voltages. For example,
846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
848 *
849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
850 */
851static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
852{
853 const int max_bit = ilog2(MMC_VDD_35_36);
854 int bit;
855
856 if (vdd < 1650 || vdd > 3600)
857 return -EINVAL;
858
859 if (vdd >= 1650 && vdd <= 1950)
860 return ilog2(MMC_VDD_165_195);
861
862 if (low_bits)
863 vdd -= 1;
864
865 /* Base 2000 mV, step 100 mV, bit's base 8. */
866 bit = (vdd - 2000) / 100 + 8;
867 if (bit > max_bit)
868 return max_bit;
869 return bit;
870}
871
872/**
873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
874 * @vdd_min: minimum voltage value (mV)
875 * @vdd_max: maximum voltage value (mV)
876 *
877 * This function returns the OCR mask bits according to the provided @vdd_min
878 * and @vdd_max values. If conversion is not possible the function returns 0.
879 *
880 * Notes wrt boundary cases:
881 * This function sets the OCR bits for all boundary voltages, for example
882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
883 * MMC_VDD_34_35 mask.
884 */
885u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
886{
887 u32 mask = 0;
888
889 if (vdd_max < vdd_min)
890 return 0;
891
892 /* Prefer high bits for the boundary vdd_max values. */
893 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
894 if (vdd_max < 0)
895 return 0;
896
897 /* Prefer low bits for the boundary vdd_min values. */
898 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
899 if (vdd_min < 0)
900 return 0;
901
902 /* Fill the mask, from max bit to min bit. */
903 while (vdd_max >= vdd_min)
904 mask |= 1 << vdd_max--;
905
906 return mask;
907}
908EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
909
910#ifdef CONFIG_REGULATOR
911
912/**
913 * mmc_regulator_get_ocrmask - return mask of supported voltages
914 * @supply: regulator to use
915 *
916 * This returns either a negative errno, or a mask of voltages that
917 * can be provided to MMC/SD/SDIO devices using the specified voltage
918 * regulator. This would normally be called before registering the
919 * MMC host adapter.
920 */
921int mmc_regulator_get_ocrmask(struct regulator *supply)
922{
923 int result = 0;
924 int count;
925 int i;
926
927 count = regulator_count_voltages(supply);
928 if (count < 0)
929 return count;
930
931 for (i = 0; i < count; i++) {
932 int vdd_uV;
933 int vdd_mV;
934
935 vdd_uV = regulator_list_voltage(supply, i);
936 if (vdd_uV <= 0)
937 continue;
938
939 vdd_mV = vdd_uV / 1000;
940 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
941 }
942
943 return result;
944}
945EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
946
947/**
948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
949 * @mmc: the host to regulate
950 * @supply: regulator to use
951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
952 *
953 * Returns zero on success, else negative errno.
954 *
955 * MMC host drivers may use this to enable or disable a regulator using
956 * a particular supply voltage. This would normally be called from the
957 * set_ios() method.
958 */
959int mmc_regulator_set_ocr(struct mmc_host *mmc,
960 struct regulator *supply,
961 unsigned short vdd_bit)
962{
963 int result = 0;
964 int min_uV, max_uV;
965
966 if (vdd_bit) {
967 int tmp;
968 int voltage;
969
970 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
971 * bits this regulator doesn't quite support ... don't
972 * be too picky, most cards and regulators are OK with
973 * a 0.1V range goof (it's a small error percentage).
974 */
975 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
976 if (tmp == 0) {
977 min_uV = 1650 * 1000;
978 max_uV = 1950 * 1000;
979 } else {
980 min_uV = 1900 * 1000 + tmp * 100 * 1000;
981 max_uV = min_uV + 100 * 1000;
982 }
983
984 /* avoid needless changes to this voltage; the regulator
985 * might not allow this operation
986 */
987 voltage = regulator_get_voltage(supply);
988 if (voltage < 0)
989 result = voltage;
990 else if (voltage < min_uV || voltage > max_uV)
991 result = regulator_set_voltage(supply, min_uV, max_uV);
992 else
993 result = 0;
994
995 if (result == 0 && !mmc->regulator_enabled) {
996 result = regulator_enable(supply);
997 if (!result)
998 mmc->regulator_enabled = true;
999 }
1000 } else if (mmc->regulator_enabled) {
1001 result = regulator_disable(supply);
1002 if (result == 0)
1003 mmc->regulator_enabled = false;
1004 }
1005
1006 if (result)
1007 dev_err(mmc_dev(mmc),
1008 "could not set regulator OCR (%d)\n", result);
1009 return result;
1010}
1011EXPORT_SYMBOL(mmc_regulator_set_ocr);
1012
1013#endif /* CONFIG_REGULATOR */
1014
1015/*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020{
1021 int bit;
1022
1023 ocr &= host->ocr_avail;
1024
1025 bit = ffs(ocr);
1026 if (bit) {
1027 bit -= 1;
1028
1029 ocr &= 3 << bit;
1030
1031 mmc_host_clk_hold(host);
1032 host->ios.vdd = bit;
1033 mmc_set_ios(host);
1034 mmc_host_clk_release(host);
1035 } else {
1036 pr_warning("%s: host doesn't support card's voltages\n",
1037 mmc_hostname(host));
1038 ocr = 0;
1039 }
1040
1041 return ocr;
1042}
1043
1044int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045{
1046 struct mmc_command cmd = {0};
1047 int err = 0;
1048
1049 BUG_ON(!host);
1050
1051 /*
1052 * Send CMD11 only if the request is to switch the card to
1053 * 1.8V signalling.
1054 */
1055 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056 cmd.opcode = SD_SWITCH_VOLTAGE;
1057 cmd.arg = 0;
1058 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060 err = mmc_wait_for_cmd(host, &cmd, 0);
1061 if (err)
1062 return err;
1063
1064 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065 return -EIO;
1066 }
1067
1068 host->ios.signal_voltage = signal_voltage;
1069
1070 if (host->ops->start_signal_voltage_switch)
1071 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1072
1073 return err;
1074}
1075
1076/*
1077 * Select timing parameters for host.
1078 */
1079void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080{
1081 mmc_host_clk_hold(host);
1082 host->ios.timing = timing;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085}
1086
1087/*
1088 * Select appropriate driver type for host.
1089 */
1090void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091{
1092 mmc_host_clk_hold(host);
1093 host->ios.drv_type = drv_type;
1094 mmc_set_ios(host);
1095 mmc_host_clk_release(host);
1096}
1097
1098/*
1099 * Apply power to the MMC stack. This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise. Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109static void mmc_power_up(struct mmc_host *host)
1110{
1111 int bit;
1112
1113 mmc_host_clk_hold(host);
1114
1115 /* If ocr is set, we use it */
1116 if (host->ocr)
1117 bit = ffs(host->ocr) - 1;
1118 else
1119 bit = fls(host->ocr_avail) - 1;
1120
1121 host->ios.vdd = bit;
1122 if (mmc_host_is_spi(host)) {
1123 host->ios.chip_select = MMC_CS_HIGH;
1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 } else {
1126 host->ios.chip_select = MMC_CS_DONTCARE;
1127 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128 }
1129 host->ios.power_mode = MMC_POWER_UP;
1130 host->ios.bus_width = MMC_BUS_WIDTH_1;
1131 host->ios.timing = MMC_TIMING_LEGACY;
1132 mmc_set_ios(host);
1133
1134 /*
1135 * This delay should be sufficient to allow the power supply
1136 * to reach the minimum voltage.
1137 */
1138 mmc_delay(10);
1139
1140 host->ios.clock = host->f_init;
1141
1142 host->ios.power_mode = MMC_POWER_ON;
1143 mmc_set_ios(host);
1144
1145 /*
1146 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147 * time required to reach a stable voltage.
1148 */
1149 mmc_delay(10);
1150
1151 mmc_host_clk_release(host);
1152}
1153
1154static void mmc_power_off(struct mmc_host *host)
1155{
1156 mmc_host_clk_hold(host);
1157
1158 host->ios.clock = 0;
1159 host->ios.vdd = 0;
1160
1161 /*
1162 * Reset ocr mask to be the highest possible voltage supported for
1163 * this mmc host. This value will be used at next power up.
1164 */
1165 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167 if (!mmc_host_is_spi(host)) {
1168 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169 host->ios.chip_select = MMC_CS_DONTCARE;
1170 }
1171 host->ios.power_mode = MMC_POWER_OFF;
1172 host->ios.bus_width = MMC_BUS_WIDTH_1;
1173 host->ios.timing = MMC_TIMING_LEGACY;
1174 mmc_set_ios(host);
1175
1176 mmc_host_clk_release(host);
1177}
1178
1179/*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182static void __mmc_release_bus(struct mmc_host *host)
1183{
1184 BUG_ON(!host);
1185 BUG_ON(host->bus_refs);
1186 BUG_ON(!host->bus_dead);
1187
1188 host->bus_ops = NULL;
1189}
1190
1191/*
1192 * Increase reference count of bus operator
1193 */
1194static inline void mmc_bus_get(struct mmc_host *host)
1195{
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&host->lock, flags);
1199 host->bus_refs++;
1200 spin_unlock_irqrestore(&host->lock, flags);
1201}
1202
1203/*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207static inline void mmc_bus_put(struct mmc_host *host)
1208{
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&host->lock, flags);
1212 host->bus_refs--;
1213 if ((host->bus_refs == 0) && host->bus_ops)
1214 __mmc_release_bus(host);
1215 spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218/*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223{
1224 unsigned long flags;
1225
1226 BUG_ON(!host);
1227 BUG_ON(!ops);
1228
1229 WARN_ON(!host->claimed);
1230
1231 spin_lock_irqsave(&host->lock, flags);
1232
1233 BUG_ON(host->bus_ops);
1234 BUG_ON(host->bus_refs);
1235
1236 host->bus_ops = ops;
1237 host->bus_refs = 1;
1238 host->bus_dead = 0;
1239
1240 spin_unlock_irqrestore(&host->lock, flags);
1241}
1242
1243/*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247void mmc_detach_bus(struct mmc_host *host)
1248{
1249 unsigned long flags;
1250
1251 BUG_ON(!host);
1252
1253 WARN_ON(!host->claimed);
1254 WARN_ON(!host->bus_ops);
1255
1256 spin_lock_irqsave(&host->lock, flags);
1257
1258 host->bus_dead = 1;
1259
1260 spin_unlock_irqrestore(&host->lock, flags);
1261
1262 mmc_power_off(host);
1263
1264 mmc_bus_put(host);
1265}
1266
1267/**
1268 * mmc_detect_change - process change of state on a MMC socket
1269 * @host: host which changed state.
1270 * @delay: optional delay to wait before detection (jiffies)
1271 *
1272 * MMC drivers should call this when they detect a card has been
1273 * inserted or removed. The MMC layer will confirm that any
1274 * present card is still functional, and initialize any newly
1275 * inserted.
1276 */
1277void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278{
1279#ifdef CONFIG_MMC_DEBUG
1280 unsigned long flags;
1281 spin_lock_irqsave(&host->lock, flags);
1282 WARN_ON(host->removed);
1283 spin_unlock_irqrestore(&host->lock, flags);
1284#endif
1285
1286 mmc_schedule_delayed_work(&host->detect, delay);
1287}
1288
1289EXPORT_SYMBOL(mmc_detect_change);
1290
1291void mmc_init_erase(struct mmc_card *card)
1292{
1293 unsigned int sz;
1294
1295 if (is_power_of_2(card->erase_size))
1296 card->erase_shift = ffs(card->erase_size) - 1;
1297 else
1298 card->erase_shift = 0;
1299
1300 /*
1301 * It is possible to erase an arbitrarily large area of an SD or MMC
1302 * card. That is not desirable because it can take a long time
1303 * (minutes) potentially delaying more important I/O, and also the
1304 * timeout calculations become increasingly hugely over-estimated.
1305 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306 * to that size and alignment.
1307 *
1308 * For SD cards that define Allocation Unit size, limit erases to one
1309 * Allocation Unit at a time. For MMC cards that define High Capacity
1310 * Erase Size, whether it is switched on or not, limit to that size.
1311 * Otherwise just have a stab at a good value. For modern cards it
1312 * will end up being 4MiB. Note that if the value is too small, it
1313 * can end up taking longer to erase.
1314 */
1315 if (mmc_card_sd(card) && card->ssr.au) {
1316 card->pref_erase = card->ssr.au;
1317 card->erase_shift = ffs(card->ssr.au) - 1;
1318 } else if (card->ext_csd.hc_erase_size) {
1319 card->pref_erase = card->ext_csd.hc_erase_size;
1320 } else {
1321 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322 if (sz < 128)
1323 card->pref_erase = 512 * 1024 / 512;
1324 else if (sz < 512)
1325 card->pref_erase = 1024 * 1024 / 512;
1326 else if (sz < 1024)
1327 card->pref_erase = 2 * 1024 * 1024 / 512;
1328 else
1329 card->pref_erase = 4 * 1024 * 1024 / 512;
1330 if (card->pref_erase < card->erase_size)
1331 card->pref_erase = card->erase_size;
1332 else {
1333 sz = card->pref_erase % card->erase_size;
1334 if (sz)
1335 card->pref_erase += card->erase_size - sz;
1336 }
1337 }
1338}
1339
1340static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341 unsigned int arg, unsigned int qty)
1342{
1343 unsigned int erase_timeout;
1344
1345 if (card->ext_csd.erase_group_def & 1) {
1346 /* High Capacity Erase Group Size uses HC timeouts */
1347 if (arg == MMC_TRIM_ARG)
1348 erase_timeout = card->ext_csd.trim_timeout;
1349 else
1350 erase_timeout = card->ext_csd.hc_erase_timeout;
1351 } else {
1352 /* CSD Erase Group Size uses write timeout */
1353 unsigned int mult = (10 << card->csd.r2w_factor);
1354 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355 unsigned int timeout_us;
1356
1357 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358 if (card->csd.tacc_ns < 1000000)
1359 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360 else
1361 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363 /*
1364 * ios.clock is only a target. The real clock rate might be
1365 * less but not that much less, so fudge it by multiplying by 2.
1366 */
1367 timeout_clks <<= 1;
1368 timeout_us += (timeout_clks * 1000) /
1369 (mmc_host_clk_rate(card->host) / 1000);
1370
1371 erase_timeout = timeout_us / 1000;
1372
1373 /*
1374 * Theoretically, the calculation could underflow so round up
1375 * to 1ms in that case.
1376 */
1377 if (!erase_timeout)
1378 erase_timeout = 1;
1379 }
1380
1381 /* Multiplier for secure operations */
1382 if (arg & MMC_SECURE_ARGS) {
1383 if (arg == MMC_SECURE_ERASE_ARG)
1384 erase_timeout *= card->ext_csd.sec_erase_mult;
1385 else
1386 erase_timeout *= card->ext_csd.sec_trim_mult;
1387 }
1388
1389 erase_timeout *= qty;
1390
1391 /*
1392 * Ensure at least a 1 second timeout for SPI as per
1393 * 'mmc_set_data_timeout()'
1394 */
1395 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396 erase_timeout = 1000;
1397
1398 return erase_timeout;
1399}
1400
1401static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402 unsigned int arg,
1403 unsigned int qty)
1404{
1405 unsigned int erase_timeout;
1406
1407 if (card->ssr.erase_timeout) {
1408 /* Erase timeout specified in SD Status Register (SSR) */
1409 erase_timeout = card->ssr.erase_timeout * qty +
1410 card->ssr.erase_offset;
1411 } else {
1412 /*
1413 * Erase timeout not specified in SD Status Register (SSR) so
1414 * use 250ms per write block.
1415 */
1416 erase_timeout = 250 * qty;
1417 }
1418
1419 /* Must not be less than 1 second */
1420 if (erase_timeout < 1000)
1421 erase_timeout = 1000;
1422
1423 return erase_timeout;
1424}
1425
1426static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427 unsigned int arg,
1428 unsigned int qty)
1429{
1430 if (mmc_card_sd(card))
1431 return mmc_sd_erase_timeout(card, arg, qty);
1432 else
1433 return mmc_mmc_erase_timeout(card, arg, qty);
1434}
1435
1436static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437 unsigned int to, unsigned int arg)
1438{
1439 struct mmc_command cmd = {0};
1440 unsigned int qty = 0;
1441 int err;
1442
1443 /*
1444 * qty is used to calculate the erase timeout which depends on how many
1445 * erase groups (or allocation units in SD terminology) are affected.
1446 * We count erasing part of an erase group as one erase group.
1447 * For SD, the allocation units are always a power of 2. For MMC, the
1448 * erase group size is almost certainly also power of 2, but it does not
1449 * seem to insist on that in the JEDEC standard, so we fall back to
1450 * division in that case. SD may not specify an allocation unit size,
1451 * in which case the timeout is based on the number of write blocks.
1452 *
1453 * Note that the timeout for secure trim 2 will only be correct if the
1454 * number of erase groups specified is the same as the total of all
1455 * preceding secure trim 1 commands. Since the power may have been
1456 * lost since the secure trim 1 commands occurred, it is generally
1457 * impossible to calculate the secure trim 2 timeout correctly.
1458 */
1459 if (card->erase_shift)
1460 qty += ((to >> card->erase_shift) -
1461 (from >> card->erase_shift)) + 1;
1462 else if (mmc_card_sd(card))
1463 qty += to - from + 1;
1464 else
1465 qty += ((to / card->erase_size) -
1466 (from / card->erase_size)) + 1;
1467
1468 if (!mmc_card_blockaddr(card)) {
1469 from <<= 9;
1470 to <<= 9;
1471 }
1472
1473 if (mmc_card_sd(card))
1474 cmd.opcode = SD_ERASE_WR_BLK_START;
1475 else
1476 cmd.opcode = MMC_ERASE_GROUP_START;
1477 cmd.arg = from;
1478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480 if (err) {
1481 printk(KERN_ERR "mmc_erase: group start error %d, "
1482 "status %#x\n", err, cmd.resp[0]);
1483 err = -EINVAL;
1484 goto out;
1485 }
1486
1487 memset(&cmd, 0, sizeof(struct mmc_command));
1488 if (mmc_card_sd(card))
1489 cmd.opcode = SD_ERASE_WR_BLK_END;
1490 else
1491 cmd.opcode = MMC_ERASE_GROUP_END;
1492 cmd.arg = to;
1493 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495 if (err) {
1496 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497 err, cmd.resp[0]);
1498 err = -EINVAL;
1499 goto out;
1500 }
1501
1502 memset(&cmd, 0, sizeof(struct mmc_command));
1503 cmd.opcode = MMC_ERASE;
1504 cmd.arg = arg;
1505 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1507 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508 if (err) {
1509 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510 err, cmd.resp[0]);
1511 err = -EIO;
1512 goto out;
1513 }
1514
1515 if (mmc_host_is_spi(card->host))
1516 goto out;
1517
1518 do {
1519 memset(&cmd, 0, sizeof(struct mmc_command));
1520 cmd.opcode = MMC_SEND_STATUS;
1521 cmd.arg = card->rca << 16;
1522 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523 /* Do not retry else we can't see errors */
1524 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525 if (err || (cmd.resp[0] & 0xFDF92000)) {
1526 printk(KERN_ERR "error %d requesting status %#x\n",
1527 err, cmd.resp[0]);
1528 err = -EIO;
1529 goto out;
1530 }
1531 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533out:
1534 return err;
1535}
1536
1537/**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547 unsigned int arg)
1548{
1549 unsigned int rem, to = from + nr;
1550
1551 if (!(card->host->caps & MMC_CAP_ERASE) ||
1552 !(card->csd.cmdclass & CCC_ERASE))
1553 return -EOPNOTSUPP;
1554
1555 if (!card->erase_size)
1556 return -EOPNOTSUPP;
1557
1558 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559 return -EOPNOTSUPP;
1560
1561 if ((arg & MMC_SECURE_ARGS) &&
1562 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563 return -EOPNOTSUPP;
1564
1565 if ((arg & MMC_TRIM_ARGS) &&
1566 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567 return -EOPNOTSUPP;
1568
1569 if (arg == MMC_SECURE_ERASE_ARG) {
1570 if (from % card->erase_size || nr % card->erase_size)
1571 return -EINVAL;
1572 }
1573
1574 if (arg == MMC_ERASE_ARG) {
1575 rem = from % card->erase_size;
1576 if (rem) {
1577 rem = card->erase_size - rem;
1578 from += rem;
1579 if (nr > rem)
1580 nr -= rem;
1581 else
1582 return 0;
1583 }
1584 rem = nr % card->erase_size;
1585 if (rem)
1586 nr -= rem;
1587 }
1588
1589 if (nr == 0)
1590 return 0;
1591
1592 to = from + nr;
1593
1594 if (to <= from)
1595 return -EINVAL;
1596
1597 /* 'from' and 'to' are inclusive */
1598 to -= 1;
1599
1600 return mmc_do_erase(card, from, to, arg);
1601}
1602EXPORT_SYMBOL(mmc_erase);
1603
1604int mmc_can_erase(struct mmc_card *card)
1605{
1606 if ((card->host->caps & MMC_CAP_ERASE) &&
1607 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608 return 1;
1609 return 0;
1610}
1611EXPORT_SYMBOL(mmc_can_erase);
1612
1613int mmc_can_trim(struct mmc_card *card)
1614{
1615 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1616 return 1;
1617 return 0;
1618}
1619EXPORT_SYMBOL(mmc_can_trim);
1620
1621int mmc_can_secure_erase_trim(struct mmc_card *card)
1622{
1623 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1624 return 1;
1625 return 0;
1626}
1627EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630 unsigned int nr)
1631{
1632 if (!card->erase_size)
1633 return 0;
1634 if (from % card->erase_size || nr % card->erase_size)
1635 return 0;
1636 return 1;
1637}
1638EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641 unsigned int arg)
1642{
1643 struct mmc_host *host = card->host;
1644 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645 unsigned int last_timeout = 0;
1646
1647 if (card->erase_shift)
1648 max_qty = UINT_MAX >> card->erase_shift;
1649 else if (mmc_card_sd(card))
1650 max_qty = UINT_MAX;
1651 else
1652 max_qty = UINT_MAX / card->erase_size;
1653
1654 /* Find the largest qty with an OK timeout */
1655 do {
1656 y = 0;
1657 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658 timeout = mmc_erase_timeout(card, arg, qty + x);
1659 if (timeout > host->max_discard_to)
1660 break;
1661 if (timeout < last_timeout)
1662 break;
1663 last_timeout = timeout;
1664 y = x;
1665 }
1666 qty += y;
1667 } while (y);
1668
1669 if (!qty)
1670 return 0;
1671
1672 if (qty == 1)
1673 return 1;
1674
1675 /* Convert qty to sectors */
1676 if (card->erase_shift)
1677 max_discard = --qty << card->erase_shift;
1678 else if (mmc_card_sd(card))
1679 max_discard = qty;
1680 else
1681 max_discard = --qty * card->erase_size;
1682
1683 return max_discard;
1684}
1685
1686unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687{
1688 struct mmc_host *host = card->host;
1689 unsigned int max_discard, max_trim;
1690
1691 if (!host->max_discard_to)
1692 return UINT_MAX;
1693
1694 /*
1695 * Without erase_group_def set, MMC erase timeout depends on clock
1696 * frequence which can change. In that case, the best choice is
1697 * just the preferred erase size.
1698 */
1699 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700 return card->pref_erase;
1701
1702 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703 if (mmc_can_trim(card)) {
1704 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705 if (max_trim < max_discard)
1706 max_discard = max_trim;
1707 } else if (max_discard < card->erase_size) {
1708 max_discard = 0;
1709 }
1710 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711 mmc_hostname(host), max_discard, host->max_discard_to);
1712 return max_discard;
1713}
1714EXPORT_SYMBOL(mmc_calc_max_discard);
1715
1716int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717{
1718 struct mmc_command cmd = {0};
1719
1720 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1721 return 0;
1722
1723 cmd.opcode = MMC_SET_BLOCKLEN;
1724 cmd.arg = blocklen;
1725 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726 return mmc_wait_for_cmd(card->host, &cmd, 5);
1727}
1728EXPORT_SYMBOL(mmc_set_blocklen);
1729
1730static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1731{
1732 host->f_init = freq;
1733
1734#ifdef CONFIG_MMC_DEBUG
1735 pr_info("%s: %s: trying to init card at %u Hz\n",
1736 mmc_hostname(host), __func__, host->f_init);
1737#endif
1738 mmc_power_up(host);
1739
1740 /*
1741 * sdio_reset sends CMD52 to reset card. Since we do not know
1742 * if the card is being re-initialized, just send it. CMD52
1743 * should be ignored by SD/eMMC cards.
1744 */
1745 sdio_reset(host);
1746 mmc_go_idle(host);
1747
1748 mmc_send_if_cond(host, host->ocr_avail);
1749
1750 /* Order's important: probe SDIO, then SD, then MMC */
1751 if (!mmc_attach_sdio(host))
1752 return 0;
1753 if (!mmc_attach_sd(host))
1754 return 0;
1755 if (!mmc_attach_mmc(host))
1756 return 0;
1757
1758 mmc_power_off(host);
1759 return -EIO;
1760}
1761
1762void mmc_rescan(struct work_struct *work)
1763{
1764 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765 struct mmc_host *host =
1766 container_of(work, struct mmc_host, detect.work);
1767 int i;
1768
1769 if (host->rescan_disable)
1770 return;
1771
1772 mmc_bus_get(host);
1773
1774 /*
1775 * if there is a _removable_ card registered, check whether it is
1776 * still present
1777 */
1778 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779 && !(host->caps & MMC_CAP_NONREMOVABLE))
1780 host->bus_ops->detect(host);
1781
1782 /*
1783 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784 * the card is no longer present.
1785 */
1786 mmc_bus_put(host);
1787 mmc_bus_get(host);
1788
1789 /* if there still is a card present, stop here */
1790 if (host->bus_ops != NULL) {
1791 mmc_bus_put(host);
1792 goto out;
1793 }
1794
1795 /*
1796 * Only we can add a new handler, so it's safe to
1797 * release the lock here.
1798 */
1799 mmc_bus_put(host);
1800
1801 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1802 goto out;
1803
1804 mmc_claim_host(host);
1805 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807 break;
1808 if (freqs[i] <= host->f_min)
1809 break;
1810 }
1811 mmc_release_host(host);
1812
1813 out:
1814 if (host->caps & MMC_CAP_NEEDS_POLL)
1815 mmc_schedule_delayed_work(&host->detect, HZ);
1816}
1817
1818void mmc_start_host(struct mmc_host *host)
1819{
1820 mmc_power_off(host);
1821 mmc_detect_change(host, 0);
1822}
1823
1824void mmc_stop_host(struct mmc_host *host)
1825{
1826#ifdef CONFIG_MMC_DEBUG
1827 unsigned long flags;
1828 spin_lock_irqsave(&host->lock, flags);
1829 host->removed = 1;
1830 spin_unlock_irqrestore(&host->lock, flags);
1831#endif
1832
1833 if (host->caps & MMC_CAP_DISABLE)
1834 cancel_delayed_work(&host->disable);
1835 cancel_delayed_work_sync(&host->detect);
1836 mmc_flush_scheduled_work();
1837
1838 /* clear pm flags now and let card drivers set them as needed */
1839 host->pm_flags = 0;
1840
1841 mmc_bus_get(host);
1842 if (host->bus_ops && !host->bus_dead) {
1843 if (host->bus_ops->remove)
1844 host->bus_ops->remove(host);
1845
1846 mmc_claim_host(host);
1847 mmc_detach_bus(host);
1848 mmc_release_host(host);
1849 mmc_bus_put(host);
1850 return;
1851 }
1852 mmc_bus_put(host);
1853
1854 BUG_ON(host->card);
1855
1856 mmc_power_off(host);
1857}
1858
1859int mmc_power_save_host(struct mmc_host *host)
1860{
1861 int ret = 0;
1862
1863#ifdef CONFIG_MMC_DEBUG
1864 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865#endif
1866
1867 mmc_bus_get(host);
1868
1869 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870 mmc_bus_put(host);
1871 return -EINVAL;
1872 }
1873
1874 if (host->bus_ops->power_save)
1875 ret = host->bus_ops->power_save(host);
1876
1877 mmc_bus_put(host);
1878
1879 mmc_power_off(host);
1880
1881 return ret;
1882}
1883EXPORT_SYMBOL(mmc_power_save_host);
1884
1885int mmc_power_restore_host(struct mmc_host *host)
1886{
1887 int ret;
1888
1889#ifdef CONFIG_MMC_DEBUG
1890 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891#endif
1892
1893 mmc_bus_get(host);
1894
1895 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896 mmc_bus_put(host);
1897 return -EINVAL;
1898 }
1899
1900 mmc_power_up(host);
1901 ret = host->bus_ops->power_restore(host);
1902
1903 mmc_bus_put(host);
1904
1905 return ret;
1906}
1907EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909int mmc_card_awake(struct mmc_host *host)
1910{
1911 int err = -ENOSYS;
1912
1913 mmc_bus_get(host);
1914
1915 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916 err = host->bus_ops->awake(host);
1917
1918 mmc_bus_put(host);
1919
1920 return err;
1921}
1922EXPORT_SYMBOL(mmc_card_awake);
1923
1924int mmc_card_sleep(struct mmc_host *host)
1925{
1926 int err = -ENOSYS;
1927
1928 mmc_bus_get(host);
1929
1930 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931 err = host->bus_ops->sleep(host);
1932
1933 mmc_bus_put(host);
1934
1935 return err;
1936}
1937EXPORT_SYMBOL(mmc_card_sleep);
1938
1939int mmc_card_can_sleep(struct mmc_host *host)
1940{
1941 struct mmc_card *card = host->card;
1942
1943 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944 return 1;
1945 return 0;
1946}
1947EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949#ifdef CONFIG_PM
1950
1951/**
1952 * mmc_suspend_host - suspend a host
1953 * @host: mmc host
1954 */
1955int mmc_suspend_host(struct mmc_host *host)
1956{
1957 int err = 0;
1958
1959 if (host->caps & MMC_CAP_DISABLE)
1960 cancel_delayed_work(&host->disable);
1961 cancel_delayed_work(&host->detect);
1962 mmc_flush_scheduled_work();
1963
1964 mmc_bus_get(host);
1965 if (host->bus_ops && !host->bus_dead) {
1966 if (host->bus_ops->suspend)
1967 err = host->bus_ops->suspend(host);
1968 if (err == -ENOSYS || !host->bus_ops->resume) {
1969 /*
1970 * We simply "remove" the card in this case.
1971 * It will be redetected on resume.
1972 */
1973 if (host->bus_ops->remove)
1974 host->bus_ops->remove(host);
1975 mmc_claim_host(host);
1976 mmc_detach_bus(host);
1977 mmc_release_host(host);
1978 host->pm_flags = 0;
1979 err = 0;
1980 }
1981 }
1982 mmc_bus_put(host);
1983
1984 if (!err && !mmc_card_keep_power(host))
1985 mmc_power_off(host);
1986
1987 return err;
1988}
1989
1990EXPORT_SYMBOL(mmc_suspend_host);
1991
1992/**
1993 * mmc_resume_host - resume a previously suspended host
1994 * @host: mmc host
1995 */
1996int mmc_resume_host(struct mmc_host *host)
1997{
1998 int err = 0;
1999
2000 mmc_bus_get(host);
2001 if (host->bus_ops && !host->bus_dead) {
2002 if (!mmc_card_keep_power(host)) {
2003 mmc_power_up(host);
2004 mmc_select_voltage(host, host->ocr);
2005 /*
2006 * Tell runtime PM core we just powered up the card,
2007 * since it still believes the card is powered off.
2008 * Note that currently runtime PM is only enabled
2009 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010 */
2011 if (mmc_card_sdio(host->card) &&
2012 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013 pm_runtime_disable(&host->card->dev);
2014 pm_runtime_set_active(&host->card->dev);
2015 pm_runtime_enable(&host->card->dev);
2016 }
2017 }
2018 BUG_ON(!host->bus_ops->resume);
2019 err = host->bus_ops->resume(host);
2020 if (err) {
2021 printk(KERN_WARNING "%s: error %d during resume "
2022 "(card was removed?)\n",
2023 mmc_hostname(host), err);
2024 err = 0;
2025 }
2026 }
2027 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028 mmc_bus_put(host);
2029
2030 return err;
2031}
2032EXPORT_SYMBOL(mmc_resume_host);
2033
2034/* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036 to sync the card.
2037*/
2038int mmc_pm_notify(struct notifier_block *notify_block,
2039 unsigned long mode, void *unused)
2040{
2041 struct mmc_host *host = container_of(
2042 notify_block, struct mmc_host, pm_notify);
2043 unsigned long flags;
2044
2045
2046 switch (mode) {
2047 case PM_HIBERNATION_PREPARE:
2048 case PM_SUSPEND_PREPARE:
2049
2050 spin_lock_irqsave(&host->lock, flags);
2051 host->rescan_disable = 1;
2052 spin_unlock_irqrestore(&host->lock, flags);
2053 cancel_delayed_work_sync(&host->detect);
2054
2055 if (!host->bus_ops || host->bus_ops->suspend)
2056 break;
2057
2058 mmc_claim_host(host);
2059
2060 if (host->bus_ops->remove)
2061 host->bus_ops->remove(host);
2062
2063 mmc_detach_bus(host);
2064 mmc_release_host(host);
2065 host->pm_flags = 0;
2066 break;
2067
2068 case PM_POST_SUSPEND:
2069 case PM_POST_HIBERNATION:
2070 case PM_POST_RESTORE:
2071
2072 spin_lock_irqsave(&host->lock, flags);
2073 host->rescan_disable = 0;
2074 spin_unlock_irqrestore(&host->lock, flags);
2075 mmc_detect_change(host, 0);
2076
2077 }
2078
2079 return 0;
2080}
2081#endif
2082
2083static int __init mmc_init(void)
2084{
2085 int ret;
2086
2087 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088 if (!workqueue)
2089 return -ENOMEM;
2090
2091 ret = mmc_register_bus();
2092 if (ret)
2093 goto destroy_workqueue;
2094
2095 ret = mmc_register_host_class();
2096 if (ret)
2097 goto unregister_bus;
2098
2099 ret = sdio_register_bus();
2100 if (ret)
2101 goto unregister_host_class;
2102
2103 return 0;
2104
2105unregister_host_class:
2106 mmc_unregister_host_class();
2107unregister_bus:
2108 mmc_unregister_bus();
2109destroy_workqueue:
2110 destroy_workqueue(workqueue);
2111
2112 return ret;
2113}
2114
2115static void __exit mmc_exit(void)
2116{
2117 sdio_unregister_bus();
2118 mmc_unregister_host_class();
2119 mmc_unregister_bus();
2120 destroy_workqueue(workqueue);
2121}
2122
2123subsys_initcall(mmc_init);
2124module_exit(mmc_exit);
2125
2126MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#include "core.h"
40#include "bus.h"
41#include "host.h"
42#include "sdio_bus.h"
43
44#include "mmc_ops.h"
45#include "sd_ops.h"
46#include "sdio_ops.h"
47
48/* If the device is not responding */
49#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50
51/*
52 * Background operations can take a long time, depending on the housekeeping
53 * operations the card has to perform.
54 */
55#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
56
57static struct workqueue_struct *workqueue;
58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59
60/*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
65bool use_spi_crc = 1;
66module_param(use_spi_crc, bool, 0);
67
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73{
74 return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82 flush_workqueue(workqueue);
83}
84
85#ifdef CONFIG_FAIL_MMC_REQUEST
86
87/*
88 * Internal function. Inject random data errors.
89 * If mmc_data is NULL no errors are injected.
90 */
91static void mmc_should_fail_request(struct mmc_host *host,
92 struct mmc_request *mrq)
93{
94 struct mmc_command *cmd = mrq->cmd;
95 struct mmc_data *data = mrq->data;
96 static const int data_errors[] = {
97 -ETIMEDOUT,
98 -EILSEQ,
99 -EIO,
100 };
101
102 if (!data)
103 return;
104
105 if (cmd->error || data->error ||
106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 return;
108
109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111}
112
113#else /* CONFIG_FAIL_MMC_REQUEST */
114
115static inline void mmc_should_fail_request(struct mmc_host *host,
116 struct mmc_request *mrq)
117{
118}
119
120#endif /* CONFIG_FAIL_MMC_REQUEST */
121
122/**
123 * mmc_request_done - finish processing an MMC request
124 * @host: MMC host which completed request
125 * @mrq: MMC request which request
126 *
127 * MMC drivers should call this function when they have completed
128 * their processing of a request.
129 */
130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131{
132 struct mmc_command *cmd = mrq->cmd;
133 int err = cmd->error;
134
135 if (err && cmd->retries && mmc_host_is_spi(host)) {
136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 cmd->retries = 0;
138 }
139
140 if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 /*
142 * Request starter must handle retries - see
143 * mmc_wait_for_req_done().
144 */
145 if (mrq->done)
146 mrq->done(mrq);
147 } else {
148 mmc_should_fail_request(host, mrq);
149
150 led_trigger_event(host->led, LED_OFF);
151
152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 mmc_hostname(host), cmd->opcode, err,
154 cmd->resp[0], cmd->resp[1],
155 cmd->resp[2], cmd->resp[3]);
156
157 if (mrq->data) {
158 pr_debug("%s: %d bytes transferred: %d\n",
159 mmc_hostname(host),
160 mrq->data->bytes_xfered, mrq->data->error);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->error,
167 mrq->stop->resp[0], mrq->stop->resp[1],
168 mrq->stop->resp[2], mrq->stop->resp[3]);
169 }
170
171 if (mrq->done)
172 mrq->done(mrq);
173
174 mmc_host_clk_release(host);
175 }
176}
177
178EXPORT_SYMBOL(mmc_request_done);
179
180static void
181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182{
183#ifdef CONFIG_MMC_DEBUG
184 unsigned int i, sz;
185 struct scatterlist *sg;
186#endif
187
188 if (mrq->sbc) {
189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 mmc_hostname(host), mrq->sbc->opcode,
191 mrq->sbc->arg, mrq->sbc->flags);
192 }
193
194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 mmc_hostname(host), mrq->cmd->opcode,
196 mrq->cmd->arg, mrq->cmd->flags);
197
198 if (mrq->data) {
199 pr_debug("%s: blksz %d blocks %d flags %08x "
200 "tsac %d ms nsac %d\n",
201 mmc_hostname(host), mrq->data->blksz,
202 mrq->data->blocks, mrq->data->flags,
203 mrq->data->timeout_ns / 1000000,
204 mrq->data->timeout_clks);
205 }
206
207 if (mrq->stop) {
208 pr_debug("%s: CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->stop->opcode,
210 mrq->stop->arg, mrq->stop->flags);
211 }
212
213 WARN_ON(!host->claimed);
214
215 mrq->cmd->error = 0;
216 mrq->cmd->mrq = mrq;
217 if (mrq->data) {
218 BUG_ON(mrq->data->blksz > host->max_blk_size);
219 BUG_ON(mrq->data->blocks > host->max_blk_count);
220 BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 host->max_req_size);
222
223#ifdef CONFIG_MMC_DEBUG
224 sz = 0;
225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 sz += sg->length;
227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228#endif
229
230 mrq->cmd->data = mrq->data;
231 mrq->data->error = 0;
232 mrq->data->mrq = mrq;
233 if (mrq->stop) {
234 mrq->data->stop = mrq->stop;
235 mrq->stop->error = 0;
236 mrq->stop->mrq = mrq;
237 }
238 }
239 mmc_host_clk_hold(host);
240 led_trigger_event(host->led, LED_FULL);
241 host->ops->request(host, mrq);
242}
243
244/**
245 * mmc_start_bkops - start BKOPS for supported cards
246 * @card: MMC card to start BKOPS
247 * @form_exception: A flag to indicate if this function was
248 * called due to an exception raised by the card
249 *
250 * Start background operations whenever requested.
251 * When the urgent BKOPS bit is set in a R1 command response
252 * then background operations should be started immediately.
253*/
254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255{
256 int err;
257 int timeout;
258 bool use_busy_signal;
259
260 BUG_ON(!card);
261
262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 return;
264
265 err = mmc_read_bkops_status(card);
266 if (err) {
267 pr_err("%s: Failed to read bkops status: %d\n",
268 mmc_hostname(card->host), err);
269 return;
270 }
271
272 if (!card->ext_csd.raw_bkops_status)
273 return;
274
275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 from_exception)
277 return;
278
279 mmc_claim_host(card->host);
280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 timeout = MMC_BKOPS_MAX_TIMEOUT;
282 use_busy_signal = true;
283 } else {
284 timeout = 0;
285 use_busy_signal = false;
286 }
287
288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 EXT_CSD_BKOPS_START, 1, timeout,
290 use_busy_signal, true, false);
291 if (err) {
292 pr_warn("%s: Error %d starting bkops\n",
293 mmc_hostname(card->host), err);
294 goto out;
295 }
296
297 /*
298 * For urgent bkops status (LEVEL_2 and more)
299 * bkops executed synchronously, otherwise
300 * the operation is in progress
301 */
302 if (!use_busy_signal)
303 mmc_card_set_doing_bkops(card);
304out:
305 mmc_release_host(card->host);
306}
307EXPORT_SYMBOL(mmc_start_bkops);
308
309/*
310 * mmc_wait_data_done() - done callback for data request
311 * @mrq: done data request
312 *
313 * Wakes up mmc context, passed as a callback to host controller driver
314 */
315static void mmc_wait_data_done(struct mmc_request *mrq)
316{
317 mrq->host->context_info.is_done_rcv = true;
318 wake_up_interruptible(&mrq->host->context_info.wait);
319}
320
321static void mmc_wait_done(struct mmc_request *mrq)
322{
323 complete(&mrq->completion);
324}
325
326/*
327 *__mmc_start_data_req() - starts data request
328 * @host: MMC host to start the request
329 * @mrq: data request to start
330 *
331 * Sets the done callback to be called when request is completed by the card.
332 * Starts data mmc request execution
333 */
334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335{
336 mrq->done = mmc_wait_data_done;
337 mrq->host = host;
338 if (mmc_card_removed(host->card)) {
339 mrq->cmd->error = -ENOMEDIUM;
340 mmc_wait_data_done(mrq);
341 return -ENOMEDIUM;
342 }
343 mmc_start_request(host, mrq);
344
345 return 0;
346}
347
348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349{
350 init_completion(&mrq->completion);
351 mrq->done = mmc_wait_done;
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
354 complete(&mrq->completion);
355 return -ENOMEDIUM;
356 }
357 mmc_start_request(host, mrq);
358 return 0;
359}
360
361/*
362 * mmc_wait_for_data_req_done() - wait for request completed
363 * @host: MMC host to prepare the command.
364 * @mrq: MMC request to wait for
365 *
366 * Blocks MMC context till host controller will ack end of data request
367 * execution or new request notification arrives from the block layer.
368 * Handles command retries.
369 *
370 * Returns enum mmc_blk_status after checking errors.
371 */
372static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 struct mmc_request *mrq,
374 struct mmc_async_req *next_req)
375{
376 struct mmc_command *cmd;
377 struct mmc_context_info *context_info = &host->context_info;
378 int err;
379 unsigned long flags;
380
381 while (1) {
382 wait_event_interruptible(context_info->wait,
383 (context_info->is_done_rcv ||
384 context_info->is_new_req));
385 spin_lock_irqsave(&context_info->lock, flags);
386 context_info->is_waiting_last_req = false;
387 spin_unlock_irqrestore(&context_info->lock, flags);
388 if (context_info->is_done_rcv) {
389 context_info->is_done_rcv = false;
390 context_info->is_new_req = false;
391 cmd = mrq->cmd;
392
393 if (!cmd->error || !cmd->retries ||
394 mmc_card_removed(host->card)) {
395 err = host->areq->err_check(host->card,
396 host->areq);
397 break; /* return err */
398 } else {
399 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 mmc_hostname(host),
401 cmd->opcode, cmd->error);
402 cmd->retries--;
403 cmd->error = 0;
404 host->ops->request(host, mrq);
405 continue; /* wait for done/new event again */
406 }
407 } else if (context_info->is_new_req) {
408 context_info->is_new_req = false;
409 if (!next_req) {
410 err = MMC_BLK_NEW_REQUEST;
411 break; /* return err */
412 }
413 }
414 }
415 return err;
416}
417
418static void mmc_wait_for_req_done(struct mmc_host *host,
419 struct mmc_request *mrq)
420{
421 struct mmc_command *cmd;
422
423 while (1) {
424 wait_for_completion(&mrq->completion);
425
426 cmd = mrq->cmd;
427
428 /*
429 * If host has timed out waiting for the sanitize
430 * to complete, card might be still in programming state
431 * so let's try to bring the card out of programming
432 * state.
433 */
434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 if (!mmc_interrupt_hpi(host->card)) {
436 pr_warning("%s: %s: Interrupted sanitize\n",
437 mmc_hostname(host), __func__);
438 cmd->error = 0;
439 break;
440 } else {
441 pr_err("%s: %s: Failed to interrupt sanitize\n",
442 mmc_hostname(host), __func__);
443 }
444 }
445 if (!cmd->error || !cmd->retries ||
446 mmc_card_removed(host->card))
447 break;
448
449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host), cmd->opcode, cmd->error);
451 cmd->retries--;
452 cmd->error = 0;
453 host->ops->request(host, mrq);
454 }
455}
456
457/**
458 * mmc_pre_req - Prepare for a new request
459 * @host: MMC host to prepare command
460 * @mrq: MMC request to prepare for
461 * @is_first_req: true if there is no previous started request
462 * that may run in parellel to this call, otherwise false
463 *
464 * mmc_pre_req() is called in prior to mmc_start_req() to let
465 * host prepare for the new request. Preparation of a request may be
466 * performed while another request is running on the host.
467 */
468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 bool is_first_req)
470{
471 if (host->ops->pre_req) {
472 mmc_host_clk_hold(host);
473 host->ops->pre_req(host, mrq, is_first_req);
474 mmc_host_clk_release(host);
475 }
476}
477
478/**
479 * mmc_post_req - Post process a completed request
480 * @host: MMC host to post process command
481 * @mrq: MMC request to post process for
482 * @err: Error, if non zero, clean up any resources made in pre_req
483 *
484 * Let the host post process a completed request. Post processing of
485 * a request may be performed while another reuqest is running.
486 */
487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 int err)
489{
490 if (host->ops->post_req) {
491 mmc_host_clk_hold(host);
492 host->ops->post_req(host, mrq, err);
493 mmc_host_clk_release(host);
494 }
495}
496
497/**
498 * mmc_start_req - start a non-blocking request
499 * @host: MMC host to start command
500 * @areq: async request to start
501 * @error: out parameter returns 0 for success, otherwise non zero
502 *
503 * Start a new MMC custom command request for a host.
504 * If there is on ongoing async request wait for completion
505 * of that request and start the new one and return.
506 * Does not wait for the new request to complete.
507 *
508 * Returns the completed request, NULL in case of none completed.
509 * Wait for the an ongoing request (previoulsy started) to complete and
510 * return the completed request. If there is no ongoing request, NULL
511 * is returned without waiting. NULL is not an error condition.
512 */
513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 struct mmc_async_req *areq, int *error)
515{
516 int err = 0;
517 int start_err = 0;
518 struct mmc_async_req *data = host->areq;
519
520 /* Prepare a new request */
521 if (areq)
522 mmc_pre_req(host, areq->mrq, !host->areq);
523
524 if (host->areq) {
525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
526 if (err == MMC_BLK_NEW_REQUEST) {
527 if (error)
528 *error = err;
529 /*
530 * The previous request was not completed,
531 * nothing to return
532 */
533 return NULL;
534 }
535 /*
536 * Check BKOPS urgency for each R1 response
537 */
538 if (host->card && mmc_card_mmc(host->card) &&
539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 mmc_start_bkops(host->card, true);
543 }
544
545 if (!err && areq)
546 start_err = __mmc_start_data_req(host, areq->mrq);
547
548 if (host->areq)
549 mmc_post_req(host, host->areq->mrq, 0);
550
551 /* Cancel a prepared request if it was not started. */
552 if ((err || start_err) && areq)
553 mmc_post_req(host, areq->mrq, -EINVAL);
554
555 if (err)
556 host->areq = NULL;
557 else
558 host->areq = areq;
559
560 if (error)
561 *error = err;
562 return data;
563}
564EXPORT_SYMBOL(mmc_start_req);
565
566/**
567 * mmc_wait_for_req - start a request and wait for completion
568 * @host: MMC host to start command
569 * @mrq: MMC request to start
570 *
571 * Start a new MMC custom command request for a host, and wait
572 * for the command to complete. Does not attempt to parse the
573 * response.
574 */
575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576{
577 __mmc_start_req(host, mrq);
578 mmc_wait_for_req_done(host, mrq);
579}
580EXPORT_SYMBOL(mmc_wait_for_req);
581
582/**
583 * mmc_interrupt_hpi - Issue for High priority Interrupt
584 * @card: the MMC card associated with the HPI transfer
585 *
586 * Issued High Priority Interrupt, and check for card status
587 * until out-of prg-state.
588 */
589int mmc_interrupt_hpi(struct mmc_card *card)
590{
591 int err;
592 u32 status;
593 unsigned long prg_wait;
594
595 BUG_ON(!card);
596
597 if (!card->ext_csd.hpi_en) {
598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 return 1;
600 }
601
602 mmc_claim_host(card->host);
603 err = mmc_send_status(card, &status);
604 if (err) {
605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 goto out;
607 }
608
609 switch (R1_CURRENT_STATE(status)) {
610 case R1_STATE_IDLE:
611 case R1_STATE_READY:
612 case R1_STATE_STBY:
613 case R1_STATE_TRAN:
614 /*
615 * In idle and transfer states, HPI is not needed and the caller
616 * can issue the next intended command immediately
617 */
618 goto out;
619 case R1_STATE_PRG:
620 break;
621 default:
622 /* In all other states, it's illegal to issue HPI */
623 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 err = -EINVAL;
626 goto out;
627 }
628
629 err = mmc_send_hpi_cmd(card, &status);
630 if (err)
631 goto out;
632
633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 do {
635 err = mmc_send_status(card, &status);
636
637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 break;
639 if (time_after(jiffies, prg_wait))
640 err = -ETIMEDOUT;
641 } while (!err);
642
643out:
644 mmc_release_host(card->host);
645 return err;
646}
647EXPORT_SYMBOL(mmc_interrupt_hpi);
648
649/**
650 * mmc_wait_for_cmd - start a command and wait for completion
651 * @host: MMC host to start command
652 * @cmd: MMC command to start
653 * @retries: maximum number of retries
654 *
655 * Start a new MMC command for a host, and wait for the command
656 * to complete. Return any error that occurred while the command
657 * was executing. Do not attempt to parse the response.
658 */
659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660{
661 struct mmc_request mrq = {NULL};
662
663 WARN_ON(!host->claimed);
664
665 memset(cmd->resp, 0, sizeof(cmd->resp));
666 cmd->retries = retries;
667
668 mrq.cmd = cmd;
669 cmd->data = NULL;
670
671 mmc_wait_for_req(host, &mrq);
672
673 return cmd->error;
674}
675
676EXPORT_SYMBOL(mmc_wait_for_cmd);
677
678/**
679 * mmc_stop_bkops - stop ongoing BKOPS
680 * @card: MMC card to check BKOPS
681 *
682 * Send HPI command to stop ongoing background operations to
683 * allow rapid servicing of foreground operations, e.g. read/
684 * writes. Wait until the card comes out of the programming state
685 * to avoid errors in servicing read/write requests.
686 */
687int mmc_stop_bkops(struct mmc_card *card)
688{
689 int err = 0;
690
691 BUG_ON(!card);
692 err = mmc_interrupt_hpi(card);
693
694 /*
695 * If err is EINVAL, we can't issue an HPI.
696 * It should complete the BKOPS.
697 */
698 if (!err || (err == -EINVAL)) {
699 mmc_card_clr_doing_bkops(card);
700 err = 0;
701 }
702
703 return err;
704}
705EXPORT_SYMBOL(mmc_stop_bkops);
706
707int mmc_read_bkops_status(struct mmc_card *card)
708{
709 int err;
710 u8 *ext_csd;
711
712 /*
713 * In future work, we should consider storing the entire ext_csd.
714 */
715 ext_csd = kmalloc(512, GFP_KERNEL);
716 if (!ext_csd) {
717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 mmc_hostname(card->host));
719 return -ENOMEM;
720 }
721
722 mmc_claim_host(card->host);
723 err = mmc_send_ext_csd(card, ext_csd);
724 mmc_release_host(card->host);
725 if (err)
726 goto out;
727
728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730out:
731 kfree(ext_csd);
732 return err;
733}
734EXPORT_SYMBOL(mmc_read_bkops_status);
735
736/**
737 * mmc_set_data_timeout - set the timeout for a data command
738 * @data: data phase for command
739 * @card: the MMC card associated with the data transfer
740 *
741 * Computes the data timeout parameters according to the
742 * correct algorithm given the card type.
743 */
744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745{
746 unsigned int mult;
747
748 /*
749 * SDIO cards only define an upper 1 s limit on access.
750 */
751 if (mmc_card_sdio(card)) {
752 data->timeout_ns = 1000000000;
753 data->timeout_clks = 0;
754 return;
755 }
756
757 /*
758 * SD cards use a 100 multiplier rather than 10
759 */
760 mult = mmc_card_sd(card) ? 100 : 10;
761
762 /*
763 * Scale up the multiplier (and therefore the timeout) by
764 * the r2w factor for writes.
765 */
766 if (data->flags & MMC_DATA_WRITE)
767 mult <<= card->csd.r2w_factor;
768
769 data->timeout_ns = card->csd.tacc_ns * mult;
770 data->timeout_clks = card->csd.tacc_clks * mult;
771
772 /*
773 * SD cards also have an upper limit on the timeout.
774 */
775 if (mmc_card_sd(card)) {
776 unsigned int timeout_us, limit_us;
777
778 timeout_us = data->timeout_ns / 1000;
779 if (mmc_host_clk_rate(card->host))
780 timeout_us += data->timeout_clks * 1000 /
781 (mmc_host_clk_rate(card->host) / 1000);
782
783 if (data->flags & MMC_DATA_WRITE)
784 /*
785 * The MMC spec "It is strongly recommended
786 * for hosts to implement more than 500ms
787 * timeout value even if the card indicates
788 * the 250ms maximum busy length." Even the
789 * previous value of 300ms is known to be
790 * insufficient for some cards.
791 */
792 limit_us = 3000000;
793 else
794 limit_us = 100000;
795
796 /*
797 * SDHC cards always use these fixed values.
798 */
799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 data->timeout_ns = limit_us * 1000;
801 data->timeout_clks = 0;
802 }
803 }
804
805 /*
806 * Some cards require longer data read timeout than indicated in CSD.
807 * Address this by setting the read timeout to a "reasonably high"
808 * value. For the cards tested, 300ms has proven enough. If necessary,
809 * this value can be increased if other problematic cards require this.
810 */
811 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
812 data->timeout_ns = 300000000;
813 data->timeout_clks = 0;
814 }
815
816 /*
817 * Some cards need very high timeouts if driven in SPI mode.
818 * The worst observed timeout was 900ms after writing a
819 * continuous stream of data until the internal logic
820 * overflowed.
821 */
822 if (mmc_host_is_spi(card->host)) {
823 if (data->flags & MMC_DATA_WRITE) {
824 if (data->timeout_ns < 1000000000)
825 data->timeout_ns = 1000000000; /* 1s */
826 } else {
827 if (data->timeout_ns < 100000000)
828 data->timeout_ns = 100000000; /* 100ms */
829 }
830 }
831}
832EXPORT_SYMBOL(mmc_set_data_timeout);
833
834/**
835 * mmc_align_data_size - pads a transfer size to a more optimal value
836 * @card: the MMC card associated with the data transfer
837 * @sz: original transfer size
838 *
839 * Pads the original data size with a number of extra bytes in
840 * order to avoid controller bugs and/or performance hits
841 * (e.g. some controllers revert to PIO for certain sizes).
842 *
843 * Returns the improved size, which might be unmodified.
844 *
845 * Note that this function is only relevant when issuing a
846 * single scatter gather entry.
847 */
848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
849{
850 /*
851 * FIXME: We don't have a system for the controller to tell
852 * the core about its problems yet, so for now we just 32-bit
853 * align the size.
854 */
855 sz = ((sz + 3) / 4) * 4;
856
857 return sz;
858}
859EXPORT_SYMBOL(mmc_align_data_size);
860
861/**
862 * __mmc_claim_host - exclusively claim a host
863 * @host: mmc host to claim
864 * @abort: whether or not the operation should be aborted
865 *
866 * Claim a host for a set of operations. If @abort is non null and
867 * dereference a non-zero value then this will return prematurely with
868 * that non-zero value without acquiring the lock. Returns zero
869 * with the lock held otherwise.
870 */
871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
872{
873 DECLARE_WAITQUEUE(wait, current);
874 unsigned long flags;
875 int stop;
876
877 might_sleep();
878
879 add_wait_queue(&host->wq, &wait);
880 spin_lock_irqsave(&host->lock, flags);
881 while (1) {
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 stop = abort ? atomic_read(abort) : 0;
884 if (stop || !host->claimed || host->claimer == current)
885 break;
886 spin_unlock_irqrestore(&host->lock, flags);
887 schedule();
888 spin_lock_irqsave(&host->lock, flags);
889 }
890 set_current_state(TASK_RUNNING);
891 if (!stop) {
892 host->claimed = 1;
893 host->claimer = current;
894 host->claim_cnt += 1;
895 } else
896 wake_up(&host->wq);
897 spin_unlock_irqrestore(&host->lock, flags);
898 remove_wait_queue(&host->wq, &wait);
899 if (host->ops->enable && !stop && host->claim_cnt == 1)
900 host->ops->enable(host);
901 return stop;
902}
903
904EXPORT_SYMBOL(__mmc_claim_host);
905
906/**
907 * mmc_release_host - release a host
908 * @host: mmc host to release
909 *
910 * Release a MMC host, allowing others to claim the host
911 * for their operations.
912 */
913void mmc_release_host(struct mmc_host *host)
914{
915 unsigned long flags;
916
917 WARN_ON(!host->claimed);
918
919 if (host->ops->disable && host->claim_cnt == 1)
920 host->ops->disable(host);
921
922 spin_lock_irqsave(&host->lock, flags);
923 if (--host->claim_cnt) {
924 /* Release for nested claim */
925 spin_unlock_irqrestore(&host->lock, flags);
926 } else {
927 host->claimed = 0;
928 host->claimer = NULL;
929 spin_unlock_irqrestore(&host->lock, flags);
930 wake_up(&host->wq);
931 }
932}
933EXPORT_SYMBOL(mmc_release_host);
934
935/*
936 * This is a helper function, which fetches a runtime pm reference for the
937 * card device and also claims the host.
938 */
939void mmc_get_card(struct mmc_card *card)
940{
941 pm_runtime_get_sync(&card->dev);
942 mmc_claim_host(card->host);
943}
944EXPORT_SYMBOL(mmc_get_card);
945
946/*
947 * This is a helper function, which releases the host and drops the runtime
948 * pm reference for the card device.
949 */
950void mmc_put_card(struct mmc_card *card)
951{
952 mmc_release_host(card->host);
953 pm_runtime_mark_last_busy(&card->dev);
954 pm_runtime_put_autosuspend(&card->dev);
955}
956EXPORT_SYMBOL(mmc_put_card);
957
958/*
959 * Internal function that does the actual ios call to the host driver,
960 * optionally printing some debug output.
961 */
962static inline void mmc_set_ios(struct mmc_host *host)
963{
964 struct mmc_ios *ios = &host->ios;
965
966 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
967 "width %u timing %u\n",
968 mmc_hostname(host), ios->clock, ios->bus_mode,
969 ios->power_mode, ios->chip_select, ios->vdd,
970 ios->bus_width, ios->timing);
971
972 if (ios->clock > 0)
973 mmc_set_ungated(host);
974 host->ops->set_ios(host, ios);
975}
976
977/*
978 * Control chip select pin on a host.
979 */
980void mmc_set_chip_select(struct mmc_host *host, int mode)
981{
982 mmc_host_clk_hold(host);
983 host->ios.chip_select = mode;
984 mmc_set_ios(host);
985 mmc_host_clk_release(host);
986}
987
988/*
989 * Sets the host clock to the highest possible frequency that
990 * is below "hz".
991 */
992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
993{
994 WARN_ON(hz < host->f_min);
995
996 if (hz > host->f_max)
997 hz = host->f_max;
998
999 host->ios.clock = hz;
1000 mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005 mmc_host_clk_hold(host);
1006 __mmc_set_clock(host, hz);
1007 mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&host->clk_lock, flags);
1019 host->clk_old = host->ios.clock;
1020 host->ios.clock = 0;
1021 host->clk_gated = true;
1022 spin_unlock_irqrestore(&host->clk_lock, flags);
1023 mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032 /*
1033 * We should previously have gated the clock, so the clock shall
1034 * be 0 here! The clock may however be 0 during initialization,
1035 * when some request operations are performed before setting
1036 * the frequency. When ungate is requested in that situation
1037 * we just ignore the call.
1038 */
1039 if (host->clk_old) {
1040 BUG_ON(host->ios.clock);
1041 /* This call will also set host->clk_gated to false */
1042 __mmc_set_clock(host, host->clk_old);
1043 }
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048 unsigned long flags;
1049
1050 /*
1051 * We've been given a new frequency while the clock is gated,
1052 * so make sure we regard this as ungating it.
1053 */
1054 spin_lock_irqsave(&host->clk_lock, flags);
1055 host->clk_gated = false;
1056 spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070 mmc_host_clk_hold(host);
1071 host->ios.bus_mode = mode;
1072 mmc_set_ios(host);
1073 mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081 mmc_host_clk_hold(host);
1082 host->ios.bus_width = width;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd: voltage (mV)
1090 * @low_bits: prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104 const int max_bit = ilog2(MMC_VDD_35_36);
1105 int bit;
1106
1107 if (vdd < 1650 || vdd > 3600)
1108 return -EINVAL;
1109
1110 if (vdd >= 1650 && vdd <= 1950)
1111 return ilog2(MMC_VDD_165_195);
1112
1113 if (low_bits)
1114 vdd -= 1;
1115
1116 /* Base 2000 mV, step 100 mV, bit's base 8. */
1117 bit = (vdd - 2000) / 100 + 8;
1118 if (bit > max_bit)
1119 return max_bit;
1120 return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min: minimum voltage value (mV)
1126 * @vdd_max: maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138 u32 mask = 0;
1139
1140 if (vdd_max < vdd_min)
1141 return 0;
1142
1143 /* Prefer high bits for the boundary vdd_max values. */
1144 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145 if (vdd_max < 0)
1146 return 0;
1147
1148 /* Prefer low bits for the boundary vdd_min values. */
1149 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150 if (vdd_min < 0)
1151 return 0;
1152
1153 /* Fill the mask, from max bit to min bit. */
1154 while (vdd_max >= vdd_min)
1155 mask |= 1 << vdd_max--;
1156
1157 return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173 const u32 *voltage_ranges;
1174 int num_ranges, i;
1175
1176 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178 if (!voltage_ranges || !num_ranges) {
1179 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180 return -EINVAL;
1181 }
1182
1183 for (i = 0; i < num_ranges; i++) {
1184 const int j = i * 2;
1185 u32 ocr_mask;
1186
1187 ocr_mask = mmc_vddrange_to_ocrmask(
1188 be32_to_cpu(voltage_ranges[j]),
1189 be32_to_cpu(voltage_ranges[j + 1]));
1190 if (!ocr_mask) {
1191 pr_err("%s: voltage-range #%d is invalid\n",
1192 np->full_name, i);
1193 return -EINVAL;
1194 }
1195 *mask |= ocr_mask;
1196 }
1197
1198 return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator. This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217 int result = 0;
1218 int count;
1219 int i;
1220
1221 count = regulator_count_voltages(supply);
1222 if (count < 0)
1223 return count;
1224
1225 for (i = 0; i < count; i++) {
1226 int vdd_uV;
1227 int vdd_mV;
1228
1229 vdd_uV = regulator_list_voltage(supply, i);
1230 if (vdd_uV <= 0)
1231 continue;
1232
1233 vdd_mV = vdd_uV / 1000;
1234 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235 }
1236
1237 return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage. This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254 struct regulator *supply,
1255 unsigned short vdd_bit)
1256{
1257 int result = 0;
1258 int min_uV, max_uV;
1259
1260 if (vdd_bit) {
1261 int tmp;
1262 int voltage;
1263
1264 /*
1265 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266 * bits this regulator doesn't quite support ... don't
1267 * be too picky, most cards and regulators are OK with
1268 * a 0.1V range goof (it's a small error percentage).
1269 */
1270 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271 if (tmp == 0) {
1272 min_uV = 1650 * 1000;
1273 max_uV = 1950 * 1000;
1274 } else {
1275 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276 max_uV = min_uV + 100 * 1000;
1277 }
1278
1279 /*
1280 * If we're using a fixed/static regulator, don't call
1281 * regulator_set_voltage; it would fail.
1282 */
1283 voltage = regulator_get_voltage(supply);
1284
1285 if (!regulator_can_change_voltage(supply))
1286 min_uV = max_uV = voltage;
1287
1288 if (voltage < 0)
1289 result = voltage;
1290 else if (voltage < min_uV || voltage > max_uV)
1291 result = regulator_set_voltage(supply, min_uV, max_uV);
1292 else
1293 result = 0;
1294
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315 struct device *dev = mmc_dev(mmc);
1316 struct regulator *supply;
1317 int ret;
1318
1319 supply = devm_regulator_get(dev, "vmmc");
1320 mmc->supply.vmmc = supply;
1321 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323 if (IS_ERR(supply))
1324 return PTR_ERR(supply);
1325
1326 ret = mmc_regulator_get_ocrmask(supply);
1327 if (ret > 0)
1328 mmc->ocr_avail = ret;
1329 else
1330 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332 return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344 int bit;
1345
1346 /*
1347 * Sanity check the voltages that the card claims to
1348 * support.
1349 */
1350 if (ocr & 0x7F) {
1351 dev_warn(mmc_dev(host),
1352 "card claims to support voltages below defined range\n");
1353 ocr &= ~0x7F;
1354 }
1355
1356 ocr &= host->ocr_avail;
1357 if (!ocr) {
1358 dev_warn(mmc_dev(host), "no support for card's volts\n");
1359 return 0;
1360 }
1361
1362 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363 bit = ffs(ocr) - 1;
1364 ocr &= 3 << bit;
1365 mmc_power_cycle(host, ocr);
1366 } else {
1367 bit = fls(ocr) - 1;
1368 ocr &= 3 << bit;
1369 if (bit != host->ios.vdd)
1370 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371 }
1372
1373 return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378 int err = 0;
1379 int old_signal_voltage = host->ios.signal_voltage;
1380
1381 host->ios.signal_voltage = signal_voltage;
1382 if (host->ops->start_signal_voltage_switch) {
1383 mmc_host_clk_hold(host);
1384 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385 mmc_host_clk_release(host);
1386 }
1387
1388 if (err)
1389 host->ios.signal_voltage = old_signal_voltage;
1390
1391 return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397 struct mmc_command cmd = {0};
1398 int err = 0;
1399 u32 clock;
1400
1401 BUG_ON(!host);
1402
1403 /*
1404 * Send CMD11 only if the request is to switch the card to
1405 * 1.8V signalling.
1406 */
1407 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408 return __mmc_set_signal_voltage(host, signal_voltage);
1409
1410 /*
1411 * If we cannot switch voltages, return failure so the caller
1412 * can continue without UHS mode
1413 */
1414 if (!host->ops->start_signal_voltage_switch)
1415 return -EPERM;
1416 if (!host->ops->card_busy)
1417 pr_warning("%s: cannot verify signal voltage switch\n",
1418 mmc_hostname(host));
1419
1420 cmd.opcode = SD_SWITCH_VOLTAGE;
1421 cmd.arg = 0;
1422 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424 err = mmc_wait_for_cmd(host, &cmd, 0);
1425 if (err)
1426 return err;
1427
1428 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429 return -EIO;
1430
1431 mmc_host_clk_hold(host);
1432 /*
1433 * The card should drive cmd and dat[0:3] low immediately
1434 * after the response of cmd11, but wait 1 ms to be sure
1435 */
1436 mmc_delay(1);
1437 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438 err = -EAGAIN;
1439 goto power_cycle;
1440 }
1441 /*
1442 * During a signal voltage level switch, the clock must be gated
1443 * for 5 ms according to the SD spec
1444 */
1445 clock = host->ios.clock;
1446 host->ios.clock = 0;
1447 mmc_set_ios(host);
1448
1449 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450 /*
1451 * Voltages may not have been switched, but we've already
1452 * sent CMD11, so a power cycle is required anyway
1453 */
1454 err = -EAGAIN;
1455 goto power_cycle;
1456 }
1457
1458 /* Keep clock gated for at least 5 ms */
1459 mmc_delay(5);
1460 host->ios.clock = clock;
1461 mmc_set_ios(host);
1462
1463 /* Wait for at least 1 ms according to spec */
1464 mmc_delay(1);
1465
1466 /*
1467 * Failure to switch is indicated by the card holding
1468 * dat[0:3] low
1469 */
1470 if (host->ops->card_busy && host->ops->card_busy(host))
1471 err = -EAGAIN;
1472
1473power_cycle:
1474 if (err) {
1475 pr_debug("%s: Signal voltage switch failed, "
1476 "power cycling card\n", mmc_hostname(host));
1477 mmc_power_cycle(host, ocr);
1478 }
1479
1480 mmc_host_clk_release(host);
1481
1482 return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490 mmc_host_clk_hold(host);
1491 host->ios.timing = timing;
1492 mmc_set_ios(host);
1493 mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501 mmc_host_clk_hold(host);
1502 host->ios.drv_type = drv_type;
1503 mmc_set_ios(host);
1504 mmc_host_clk_release(host);
1505}
1506
1507/*
1508 * Apply power to the MMC stack. This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise. Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520 if (host->ios.power_mode == MMC_POWER_ON)
1521 return;
1522
1523 mmc_host_clk_hold(host);
1524
1525 host->ios.vdd = fls(ocr) - 1;
1526 if (mmc_host_is_spi(host))
1527 host->ios.chip_select = MMC_CS_HIGH;
1528 else
1529 host->ios.chip_select = MMC_CS_DONTCARE;
1530 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531 host->ios.power_mode = MMC_POWER_UP;
1532 host->ios.bus_width = MMC_BUS_WIDTH_1;
1533 host->ios.timing = MMC_TIMING_LEGACY;
1534 mmc_set_ios(host);
1535
1536 /* Set signal voltage to 3.3V */
1537 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539 /*
1540 * This delay should be sufficient to allow the power supply
1541 * to reach the minimum voltage.
1542 */
1543 mmc_delay(10);
1544
1545 host->ios.clock = host->f_init;
1546
1547 host->ios.power_mode = MMC_POWER_ON;
1548 mmc_set_ios(host);
1549
1550 /*
1551 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552 * time required to reach a stable voltage.
1553 */
1554 mmc_delay(10);
1555
1556 mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561 if (host->ios.power_mode == MMC_POWER_OFF)
1562 return;
1563
1564 mmc_host_clk_hold(host);
1565
1566 host->ios.clock = 0;
1567 host->ios.vdd = 0;
1568
1569 if (!mmc_host_is_spi(host)) {
1570 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571 host->ios.chip_select = MMC_CS_DONTCARE;
1572 }
1573 host->ios.power_mode = MMC_POWER_OFF;
1574 host->ios.bus_width = MMC_BUS_WIDTH_1;
1575 host->ios.timing = MMC_TIMING_LEGACY;
1576 mmc_set_ios(host);
1577
1578 /*
1579 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580 * XO-1.5, require a short delay after poweroff before the card
1581 * can be successfully turned on again.
1582 */
1583 mmc_delay(1);
1584
1585 mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590 mmc_power_off(host);
1591 /* Wait at least 1 ms according to SD spec */
1592 mmc_delay(1);
1593 mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601 BUG_ON(!host);
1602 BUG_ON(host->bus_refs);
1603 BUG_ON(!host->bus_dead);
1604
1605 host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&host->lock, flags);
1616 host->bus_refs++;
1617 spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&host->lock, flags);
1629 host->bus_refs--;
1630 if ((host->bus_refs == 0) && host->bus_ops)
1631 __mmc_release_bus(host);
1632 spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641 unsigned long flags;
1642
1643 BUG_ON(!host);
1644 BUG_ON(!ops);
1645
1646 WARN_ON(!host->claimed);
1647
1648 spin_lock_irqsave(&host->lock, flags);
1649
1650 BUG_ON(host->bus_ops);
1651 BUG_ON(host->bus_refs);
1652
1653 host->bus_ops = ops;
1654 host->bus_refs = 1;
1655 host->bus_dead = 0;
1656
1657 spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665 unsigned long flags;
1666
1667 BUG_ON(!host);
1668
1669 WARN_ON(!host->claimed);
1670 WARN_ON(!host->bus_ops);
1671
1672 spin_lock_irqsave(&host->lock, flags);
1673
1674 host->bus_dead = 1;
1675
1676 spin_unlock_irqrestore(&host->lock, flags);
1677
1678 mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682 bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685 unsigned long flags;
1686 spin_lock_irqsave(&host->lock, flags);
1687 WARN_ON(host->removed);
1688 spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691 /*
1692 * If the device is configured as wakeup, we prevent a new sleep for
1693 * 5 s to give provision for user space to consume the event.
1694 */
1695 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696 device_can_wakeup(mmc_dev(host)))
1697 pm_wakeup_event(mmc_dev(host), 5000);
1698
1699 host->detect_change = 1;
1700 mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 * mmc_detect_change - process change of state on a MMC socket
1705 * @host: host which changed state.
1706 * @delay: optional delay to wait before detection (jiffies)
1707 *
1708 * MMC drivers should call this when they detect a card has been
1709 * inserted or removed. The MMC layer will confirm that any
1710 * present card is still functional, and initialize any newly
1711 * inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715 _mmc_detect_change(host, delay, true);
1716}
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721 unsigned int sz;
1722
1723 if (is_power_of_2(card->erase_size))
1724 card->erase_shift = ffs(card->erase_size) - 1;
1725 else
1726 card->erase_shift = 0;
1727
1728 /*
1729 * It is possible to erase an arbitrarily large area of an SD or MMC
1730 * card. That is not desirable because it can take a long time
1731 * (minutes) potentially delaying more important I/O, and also the
1732 * timeout calculations become increasingly hugely over-estimated.
1733 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734 * to that size and alignment.
1735 *
1736 * For SD cards that define Allocation Unit size, limit erases to one
1737 * Allocation Unit at a time. For MMC cards that define High Capacity
1738 * Erase Size, whether it is switched on or not, limit to that size.
1739 * Otherwise just have a stab at a good value. For modern cards it
1740 * will end up being 4MiB. Note that if the value is too small, it
1741 * can end up taking longer to erase.
1742 */
1743 if (mmc_card_sd(card) && card->ssr.au) {
1744 card->pref_erase = card->ssr.au;
1745 card->erase_shift = ffs(card->ssr.au) - 1;
1746 } else if (card->ext_csd.hc_erase_size) {
1747 card->pref_erase = card->ext_csd.hc_erase_size;
1748 } else {
1749 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750 if (sz < 128)
1751 card->pref_erase = 512 * 1024 / 512;
1752 else if (sz < 512)
1753 card->pref_erase = 1024 * 1024 / 512;
1754 else if (sz < 1024)
1755 card->pref_erase = 2 * 1024 * 1024 / 512;
1756 else
1757 card->pref_erase = 4 * 1024 * 1024 / 512;
1758 if (card->pref_erase < card->erase_size)
1759 card->pref_erase = card->erase_size;
1760 else {
1761 sz = card->pref_erase % card->erase_size;
1762 if (sz)
1763 card->pref_erase += card->erase_size - sz;
1764 }
1765 }
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769 unsigned int arg, unsigned int qty)
1770{
1771 unsigned int erase_timeout;
1772
1773 if (arg == MMC_DISCARD_ARG ||
1774 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775 erase_timeout = card->ext_csd.trim_timeout;
1776 } else if (card->ext_csd.erase_group_def & 1) {
1777 /* High Capacity Erase Group Size uses HC timeouts */
1778 if (arg == MMC_TRIM_ARG)
1779 erase_timeout = card->ext_csd.trim_timeout;
1780 else
1781 erase_timeout = card->ext_csd.hc_erase_timeout;
1782 } else {
1783 /* CSD Erase Group Size uses write timeout */
1784 unsigned int mult = (10 << card->csd.r2w_factor);
1785 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786 unsigned int timeout_us;
1787
1788 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789 if (card->csd.tacc_ns < 1000000)
1790 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791 else
1792 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794 /*
1795 * ios.clock is only a target. The real clock rate might be
1796 * less but not that much less, so fudge it by multiplying by 2.
1797 */
1798 timeout_clks <<= 1;
1799 timeout_us += (timeout_clks * 1000) /
1800 (mmc_host_clk_rate(card->host) / 1000);
1801
1802 erase_timeout = timeout_us / 1000;
1803
1804 /*
1805 * Theoretically, the calculation could underflow so round up
1806 * to 1ms in that case.
1807 */
1808 if (!erase_timeout)
1809 erase_timeout = 1;
1810 }
1811
1812 /* Multiplier for secure operations */
1813 if (arg & MMC_SECURE_ARGS) {
1814 if (arg == MMC_SECURE_ERASE_ARG)
1815 erase_timeout *= card->ext_csd.sec_erase_mult;
1816 else
1817 erase_timeout *= card->ext_csd.sec_trim_mult;
1818 }
1819
1820 erase_timeout *= qty;
1821
1822 /*
1823 * Ensure at least a 1 second timeout for SPI as per
1824 * 'mmc_set_data_timeout()'
1825 */
1826 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827 erase_timeout = 1000;
1828
1829 return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833 unsigned int arg,
1834 unsigned int qty)
1835{
1836 unsigned int erase_timeout;
1837
1838 if (card->ssr.erase_timeout) {
1839 /* Erase timeout specified in SD Status Register (SSR) */
1840 erase_timeout = card->ssr.erase_timeout * qty +
1841 card->ssr.erase_offset;
1842 } else {
1843 /*
1844 * Erase timeout not specified in SD Status Register (SSR) so
1845 * use 250ms per write block.
1846 */
1847 erase_timeout = 250 * qty;
1848 }
1849
1850 /* Must not be less than 1 second */
1851 if (erase_timeout < 1000)
1852 erase_timeout = 1000;
1853
1854 return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858 unsigned int arg,
1859 unsigned int qty)
1860{
1861 if (mmc_card_sd(card))
1862 return mmc_sd_erase_timeout(card, arg, qty);
1863 else
1864 return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868 unsigned int to, unsigned int arg)
1869{
1870 struct mmc_command cmd = {0};
1871 unsigned int qty = 0;
1872 unsigned long timeout;
1873 int err;
1874
1875 /*
1876 * qty is used to calculate the erase timeout which depends on how many
1877 * erase groups (or allocation units in SD terminology) are affected.
1878 * We count erasing part of an erase group as one erase group.
1879 * For SD, the allocation units are always a power of 2. For MMC, the
1880 * erase group size is almost certainly also power of 2, but it does not
1881 * seem to insist on that in the JEDEC standard, so we fall back to
1882 * division in that case. SD may not specify an allocation unit size,
1883 * in which case the timeout is based on the number of write blocks.
1884 *
1885 * Note that the timeout for secure trim 2 will only be correct if the
1886 * number of erase groups specified is the same as the total of all
1887 * preceding secure trim 1 commands. Since the power may have been
1888 * lost since the secure trim 1 commands occurred, it is generally
1889 * impossible to calculate the secure trim 2 timeout correctly.
1890 */
1891 if (card->erase_shift)
1892 qty += ((to >> card->erase_shift) -
1893 (from >> card->erase_shift)) + 1;
1894 else if (mmc_card_sd(card))
1895 qty += to - from + 1;
1896 else
1897 qty += ((to / card->erase_size) -
1898 (from / card->erase_size)) + 1;
1899
1900 if (!mmc_card_blockaddr(card)) {
1901 from <<= 9;
1902 to <<= 9;
1903 }
1904
1905 if (mmc_card_sd(card))
1906 cmd.opcode = SD_ERASE_WR_BLK_START;
1907 else
1908 cmd.opcode = MMC_ERASE_GROUP_START;
1909 cmd.arg = from;
1910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912 if (err) {
1913 pr_err("mmc_erase: group start error %d, "
1914 "status %#x\n", err, cmd.resp[0]);
1915 err = -EIO;
1916 goto out;
1917 }
1918
1919 memset(&cmd, 0, sizeof(struct mmc_command));
1920 if (mmc_card_sd(card))
1921 cmd.opcode = SD_ERASE_WR_BLK_END;
1922 else
1923 cmd.opcode = MMC_ERASE_GROUP_END;
1924 cmd.arg = to;
1925 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 if (err) {
1928 pr_err("mmc_erase: group end error %d, status %#x\n",
1929 err, cmd.resp[0]);
1930 err = -EIO;
1931 goto out;
1932 }
1933
1934 memset(&cmd, 0, sizeof(struct mmc_command));
1935 cmd.opcode = MMC_ERASE;
1936 cmd.arg = arg;
1937 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940 if (err) {
1941 pr_err("mmc_erase: erase error %d, status %#x\n",
1942 err, cmd.resp[0]);
1943 err = -EIO;
1944 goto out;
1945 }
1946
1947 if (mmc_host_is_spi(card->host))
1948 goto out;
1949
1950 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951 do {
1952 memset(&cmd, 0, sizeof(struct mmc_command));
1953 cmd.opcode = MMC_SEND_STATUS;
1954 cmd.arg = card->rca << 16;
1955 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956 /* Do not retry else we can't see errors */
1957 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 if (err || (cmd.resp[0] & 0xFDF92000)) {
1959 pr_err("error %d requesting status %#x\n",
1960 err, cmd.resp[0]);
1961 err = -EIO;
1962 goto out;
1963 }
1964
1965 /* Timeout if the device never becomes ready for data and
1966 * never leaves the program state.
1967 */
1968 if (time_after(jiffies, timeout)) {
1969 pr_err("%s: Card stuck in programming state! %s\n",
1970 mmc_hostname(card->host), __func__);
1971 err = -EIO;
1972 goto out;
1973 }
1974
1975 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
1978 return err;
1979}
1980
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991 unsigned int arg)
1992{
1993 unsigned int rem, to = from + nr;
1994
1995 if (!(card->host->caps & MMC_CAP_ERASE) ||
1996 !(card->csd.cmdclass & CCC_ERASE))
1997 return -EOPNOTSUPP;
1998
1999 if (!card->erase_size)
2000 return -EOPNOTSUPP;
2001
2002 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003 return -EOPNOTSUPP;
2004
2005 if ((arg & MMC_SECURE_ARGS) &&
2006 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007 return -EOPNOTSUPP;
2008
2009 if ((arg & MMC_TRIM_ARGS) &&
2010 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011 return -EOPNOTSUPP;
2012
2013 if (arg == MMC_SECURE_ERASE_ARG) {
2014 if (from % card->erase_size || nr % card->erase_size)
2015 return -EINVAL;
2016 }
2017
2018 if (arg == MMC_ERASE_ARG) {
2019 rem = from % card->erase_size;
2020 if (rem) {
2021 rem = card->erase_size - rem;
2022 from += rem;
2023 if (nr > rem)
2024 nr -= rem;
2025 else
2026 return 0;
2027 }
2028 rem = nr % card->erase_size;
2029 if (rem)
2030 nr -= rem;
2031 }
2032
2033 if (nr == 0)
2034 return 0;
2035
2036 to = from + nr;
2037
2038 if (to <= from)
2039 return -EINVAL;
2040
2041 /* 'from' and 'to' are inclusive */
2042 to -= 1;
2043
2044 return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050 if ((card->host->caps & MMC_CAP_ERASE) &&
2051 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052 return 1;
2053 return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060 return 1;
2061 return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067 /*
2068 * As there's no way to detect the discard support bit at v4.5
2069 * use the s/w feature support filed.
2070 */
2071 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072 return 1;
2073 return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080 return 0;
2081 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082 return 1;
2083 return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090 return 1;
2091 return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096 unsigned int nr)
2097{
2098 if (!card->erase_size)
2099 return 0;
2100 if (from % card->erase_size || nr % card->erase_size)
2101 return 0;
2102 return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107 unsigned int arg)
2108{
2109 struct mmc_host *host = card->host;
2110 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111 unsigned int last_timeout = 0;
2112
2113 if (card->erase_shift)
2114 max_qty = UINT_MAX >> card->erase_shift;
2115 else if (mmc_card_sd(card))
2116 max_qty = UINT_MAX;
2117 else
2118 max_qty = UINT_MAX / card->erase_size;
2119
2120 /* Find the largest qty with an OK timeout */
2121 do {
2122 y = 0;
2123 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124 timeout = mmc_erase_timeout(card, arg, qty + x);
2125 if (timeout > host->max_busy_timeout)
2126 break;
2127 if (timeout < last_timeout)
2128 break;
2129 last_timeout = timeout;
2130 y = x;
2131 }
2132 qty += y;
2133 } while (y);
2134
2135 if (!qty)
2136 return 0;
2137
2138 if (qty == 1)
2139 return 1;
2140
2141 /* Convert qty to sectors */
2142 if (card->erase_shift)
2143 max_discard = --qty << card->erase_shift;
2144 else if (mmc_card_sd(card))
2145 max_discard = qty;
2146 else
2147 max_discard = --qty * card->erase_size;
2148
2149 return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154 struct mmc_host *host = card->host;
2155 unsigned int max_discard, max_trim;
2156
2157 if (!host->max_busy_timeout)
2158 return UINT_MAX;
2159
2160 /*
2161 * Without erase_group_def set, MMC erase timeout depends on clock
2162 * frequence which can change. In that case, the best choice is
2163 * just the preferred erase size.
2164 */
2165 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166 return card->pref_erase;
2167
2168 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169 if (mmc_can_trim(card)) {
2170 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171 if (max_trim < max_discard)
2172 max_discard = max_trim;
2173 } else if (max_discard < card->erase_size) {
2174 max_discard = 0;
2175 }
2176 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178 return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184 struct mmc_command cmd = {0};
2185
2186 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187 return 0;
2188
2189 cmd.opcode = MMC_SET_BLOCKLEN;
2190 cmd.arg = blocklen;
2191 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192 return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197 bool is_rel_write)
2198{
2199 struct mmc_command cmd = {0};
2200
2201 cmd.opcode = MMC_SET_BLOCK_COUNT;
2202 cmd.arg = blockcount & 0x0000FFFF;
2203 if (is_rel_write)
2204 cmd.arg |= 1 << 31;
2205 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206 return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213 return;
2214 mmc_host_clk_hold(host);
2215 host->ops->hw_reset(host);
2216 mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221 u8 rst_n_function;
2222
2223 if (!mmc_card_mmc(card))
2224 return 0;
2225 rst_n_function = card->ext_csd.rst_n_function;
2226 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227 return 0;
2228 return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234 struct mmc_card *card = host->card;
2235
2236 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237 return -EOPNOTSUPP;
2238
2239 if (!card)
2240 return -EINVAL;
2241
2242 if (!mmc_can_reset(card))
2243 return -EOPNOTSUPP;
2244
2245 mmc_host_clk_hold(host);
2246 mmc_set_clock(host, host->f_init);
2247
2248 host->ops->hw_reset(host);
2249
2250 /* If the reset has happened, then a status command will fail */
2251 if (check) {
2252 struct mmc_command cmd = {0};
2253 int err;
2254
2255 cmd.opcode = MMC_SEND_STATUS;
2256 if (!mmc_host_is_spi(card->host))
2257 cmd.arg = card->rca << 16;
2258 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260 if (!err) {
2261 mmc_host_clk_release(host);
2262 return -ENOSYS;
2263 }
2264 }
2265
2266 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267 if (mmc_host_is_spi(host)) {
2268 host->ios.chip_select = MMC_CS_HIGH;
2269 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270 } else {
2271 host->ios.chip_select = MMC_CS_DONTCARE;
2272 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273 }
2274 host->ios.bus_width = MMC_BUS_WIDTH_1;
2275 host->ios.timing = MMC_TIMING_LEGACY;
2276 mmc_set_ios(host);
2277
2278 mmc_host_clk_release(host);
2279
2280 return host->bus_ops->power_restore(host);
2281}
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285 return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291 return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297 host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300 pr_info("%s: %s: trying to init card at %u Hz\n",
2301 mmc_hostname(host), __func__, host->f_init);
2302#endif
2303 mmc_power_up(host, host->ocr_avail);
2304
2305 /*
2306 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307 * do a hardware reset if possible.
2308 */
2309 mmc_hw_reset_for_init(host);
2310
2311 /*
2312 * sdio_reset sends CMD52 to reset card. Since we do not know
2313 * if the card is being re-initialized, just send it. CMD52
2314 * should be ignored by SD/eMMC cards.
2315 */
2316 sdio_reset(host);
2317 mmc_go_idle(host);
2318
2319 mmc_send_if_cond(host, host->ocr_avail);
2320
2321 /* Order's important: probe SDIO, then SD, then MMC */
2322 if (!mmc_attach_sdio(host))
2323 return 0;
2324 if (!mmc_attach_sd(host))
2325 return 0;
2326 if (!mmc_attach_mmc(host))
2327 return 0;
2328
2329 mmc_power_off(host);
2330 return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335 int ret;
2336
2337 if (host->caps & MMC_CAP_NONREMOVABLE)
2338 return 0;
2339
2340 if (!host->card || mmc_card_removed(host->card))
2341 return 1;
2342
2343 ret = host->bus_ops->alive(host);
2344
2345 /*
2346 * Card detect status and alive check may be out of sync if card is
2347 * removed slowly, when card detect switch changes while card/slot
2348 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350 * detect work 200ms later for this case.
2351 */
2352 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353 mmc_detect_change(host, msecs_to_jiffies(200));
2354 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355 }
2356
2357 if (ret) {
2358 mmc_card_set_removed(host->card);
2359 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360 }
2361
2362 return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367 struct mmc_card *card = host->card;
2368 int ret;
2369
2370 WARN_ON(!host->claimed);
2371
2372 if (!card)
2373 return 1;
2374
2375 ret = mmc_card_removed(card);
2376 /*
2377 * The card will be considered unchanged unless we have been asked to
2378 * detect a change or host requires polling to provide card detection.
2379 */
2380 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381 return ret;
2382
2383 host->detect_change = 0;
2384 if (!ret) {
2385 ret = _mmc_detect_card_removed(host);
2386 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387 /*
2388 * Schedule a detect work as soon as possible to let a
2389 * rescan handle the card removal.
2390 */
2391 cancel_delayed_work(&host->detect);
2392 _mmc_detect_change(host, 0, false);
2393 }
2394 }
2395
2396 return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
2402 struct mmc_host *host =
2403 container_of(work, struct mmc_host, detect.work);
2404 int i;
2405
2406 if (host->rescan_disable)
2407 return;
2408
2409 /* If there is a non-removable card registered, only scan once */
2410 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411 return;
2412 host->rescan_entered = 1;
2413
2414 mmc_bus_get(host);
2415
2416 /*
2417 * if there is a _removable_ card registered, check whether it is
2418 * still present
2419 */
2420 if (host->bus_ops && !host->bus_dead
2421 && !(host->caps & MMC_CAP_NONREMOVABLE))
2422 host->bus_ops->detect(host);
2423
2424 host->detect_change = 0;
2425
2426 /*
2427 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428 * the card is no longer present.
2429 */
2430 mmc_bus_put(host);
2431 mmc_bus_get(host);
2432
2433 /* if there still is a card present, stop here */
2434 if (host->bus_ops != NULL) {
2435 mmc_bus_put(host);
2436 goto out;
2437 }
2438
2439 /*
2440 * Only we can add a new handler, so it's safe to
2441 * release the lock here.
2442 */
2443 mmc_bus_put(host);
2444
2445 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446 host->ops->get_cd(host) == 0) {
2447 mmc_claim_host(host);
2448 mmc_power_off(host);
2449 mmc_release_host(host);
2450 goto out;
2451 }
2452
2453 mmc_claim_host(host);
2454 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456 break;
2457 if (freqs[i] <= host->f_min)
2458 break;
2459 }
2460 mmc_release_host(host);
2461
2462 out:
2463 if (host->caps & MMC_CAP_NEEDS_POLL)
2464 mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469 host->f_init = max(freqs[0], host->f_min);
2470 host->rescan_disable = 0;
2471 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472 mmc_power_off(host);
2473 else
2474 mmc_power_up(host, host->ocr_avail);
2475 mmc_gpiod_request_cd_irq(host);
2476 _mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482 unsigned long flags;
2483 spin_lock_irqsave(&host->lock, flags);
2484 host->removed = 1;
2485 spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487 if (host->slot.cd_irq >= 0)
2488 disable_irq(host->slot.cd_irq);
2489
2490 host->rescan_disable = 1;
2491 cancel_delayed_work_sync(&host->detect);
2492 mmc_flush_scheduled_work();
2493
2494 /* clear pm flags now and let card drivers set them as needed */
2495 host->pm_flags = 0;
2496
2497 mmc_bus_get(host);
2498 if (host->bus_ops && !host->bus_dead) {
2499 /* Calling bus_ops->remove() with a claimed host can deadlock */
2500 host->bus_ops->remove(host);
2501 mmc_claim_host(host);
2502 mmc_detach_bus(host);
2503 mmc_power_off(host);
2504 mmc_release_host(host);
2505 mmc_bus_put(host);
2506 return;
2507 }
2508 mmc_bus_put(host);
2509
2510 BUG_ON(host->card);
2511
2512 mmc_power_off(host);
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517 int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523 mmc_bus_get(host);
2524
2525 if (!host->bus_ops || host->bus_dead) {
2526 mmc_bus_put(host);
2527 return -EINVAL;
2528 }
2529
2530 if (host->bus_ops->power_save)
2531 ret = host->bus_ops->power_save(host);
2532
2533 mmc_bus_put(host);
2534
2535 mmc_power_off(host);
2536
2537 return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543 int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549 mmc_bus_get(host);
2550
2551 if (!host->bus_ops || host->bus_dead) {
2552 mmc_bus_put(host);
2553 return -EINVAL;
2554 }
2555
2556 mmc_power_up(host, host->card->ocr);
2557 ret = host->bus_ops->power_restore(host);
2558
2559 mmc_bus_put(host);
2560
2561 return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570 int err = 0;
2571
2572 if (mmc_card_mmc(card) &&
2573 (card->ext_csd.cache_size > 0) &&
2574 (card->ext_csd.cache_ctrl & 1)) {
2575 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576 EXT_CSD_FLUSH_CACHE, 1, 0);
2577 if (err)
2578 pr_err("%s: cache flush error %d\n",
2579 mmc_hostname(card->host), err);
2580 }
2581
2582 return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590 to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593 unsigned long mode, void *unused)
2594{
2595 struct mmc_host *host = container_of(
2596 notify_block, struct mmc_host, pm_notify);
2597 unsigned long flags;
2598 int err = 0;
2599
2600 switch (mode) {
2601 case PM_HIBERNATION_PREPARE:
2602 case PM_SUSPEND_PREPARE:
2603 spin_lock_irqsave(&host->lock, flags);
2604 host->rescan_disable = 1;
2605 spin_unlock_irqrestore(&host->lock, flags);
2606 cancel_delayed_work_sync(&host->detect);
2607
2608 if (!host->bus_ops)
2609 break;
2610
2611 /* Validate prerequisites for suspend */
2612 if (host->bus_ops->pre_suspend)
2613 err = host->bus_ops->pre_suspend(host);
2614 if (!err)
2615 break;
2616
2617 /* Calling bus_ops->remove() with a claimed host can deadlock */
2618 host->bus_ops->remove(host);
2619 mmc_claim_host(host);
2620 mmc_detach_bus(host);
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 host->pm_flags = 0;
2624 break;
2625
2626 case PM_POST_SUSPEND:
2627 case PM_POST_HIBERNATION:
2628 case PM_POST_RESTORE:
2629
2630 spin_lock_irqsave(&host->lock, flags);
2631 host->rescan_disable = 0;
2632 spin_unlock_irqrestore(&host->lock, flags);
2633 _mmc_detect_change(host, 0, false);
2634
2635 }
2636
2637 return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651 spin_lock_init(&host->context_info.lock);
2652 host->context_info.is_new_req = false;
2653 host->context_info.is_done_rcv = false;
2654 host->context_info.is_waiting_last_req = false;
2655 init_waitqueue_head(&host->context_info.wait);
2656}
2657
2658static int __init mmc_init(void)
2659{
2660 int ret;
2661
2662 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663 if (!workqueue)
2664 return -ENOMEM;
2665
2666 ret = mmc_register_bus();
2667 if (ret)
2668 goto destroy_workqueue;
2669
2670 ret = mmc_register_host_class();
2671 if (ret)
2672 goto unregister_bus;
2673
2674 ret = sdio_register_bus();
2675 if (ret)
2676 goto unregister_host_class;
2677
2678 return 0;
2679
2680unregister_host_class:
2681 mmc_unregister_host_class();
2682unregister_bus:
2683 mmc_unregister_bus();
2684destroy_workqueue:
2685 destroy_workqueue(workqueue);
2686
2687 return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692 sdio_unregister_bus();
2693 mmc_unregister_host_class();
2694 mmc_unregister_bus();
2695 destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");