Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27
28#include <linux/mmc/card.h>
29#include <linux/mmc/host.h>
30#include <linux/mmc/mmc.h>
31#include <linux/mmc/sd.h>
32
33#include "core.h"
34#include "bus.h"
35#include "host.h"
36#include "sdio_bus.h"
37
38#include "mmc_ops.h"
39#include "sd_ops.h"
40#include "sdio_ops.h"
41
42static struct workqueue_struct *workqueue;
43
44/*
45 * Enabling software CRCs on the data blocks can be a significant (30%)
46 * performance cost, and for other reasons may not always be desired.
47 * So we allow it it to be disabled.
48 */
49int use_spi_crc = 1;
50module_param(use_spi_crc, bool, 0);
51
52/*
53 * We normally treat cards as removed during suspend if they are not
54 * known to be on a non-removable bus, to avoid the risk of writing
55 * back data to a different card after resume. Allow this to be
56 * overridden if necessary.
57 */
58#ifdef CONFIG_MMC_UNSAFE_RESUME
59int mmc_assume_removable;
60#else
61int mmc_assume_removable = 1;
62#endif
63EXPORT_SYMBOL(mmc_assume_removable);
64module_param_named(removable, mmc_assume_removable, bool, 0644);
65MODULE_PARM_DESC(
66 removable,
67 "MMC/SD cards are removable and may be removed during suspend");
68
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
86/**
87 * mmc_request_done - finish processing an MMC request
88 * @host: MMC host which completed request
89 * @mrq: MMC request which request
90 *
91 * MMC drivers should call this function when they have completed
92 * their processing of a request.
93 */
94void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95{
96 struct mmc_command *cmd = mrq->cmd;
97 int err = cmd->error;
98
99 if (err && cmd->retries && mmc_host_is_spi(host)) {
100 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
101 cmd->retries = 0;
102 }
103
104 if (err && cmd->retries) {
105 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
106 mmc_hostname(host), cmd->opcode, err);
107
108 cmd->retries--;
109 cmd->error = 0;
110 host->ops->request(host, mrq);
111 } else {
112 led_trigger_event(host->led, LED_OFF);
113
114 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
115 mmc_hostname(host), cmd->opcode, err,
116 cmd->resp[0], cmd->resp[1],
117 cmd->resp[2], cmd->resp[3]);
118
119 if (mrq->data) {
120 pr_debug("%s: %d bytes transferred: %d\n",
121 mmc_hostname(host),
122 mrq->data->bytes_xfered, mrq->data->error);
123 }
124
125 if (mrq->stop) {
126 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
127 mmc_hostname(host), mrq->stop->opcode,
128 mrq->stop->error,
129 mrq->stop->resp[0], mrq->stop->resp[1],
130 mrq->stop->resp[2], mrq->stop->resp[3]);
131 }
132
133 if (mrq->done)
134 mrq->done(mrq);
135
136 mmc_host_clk_release(host);
137 }
138}
139
140EXPORT_SYMBOL(mmc_request_done);
141
142static void
143mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144{
145#ifdef CONFIG_MMC_DEBUG
146 unsigned int i, sz;
147 struct scatterlist *sg;
148#endif
149
150 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
151 mmc_hostname(host), mrq->cmd->opcode,
152 mrq->cmd->arg, mrq->cmd->flags);
153
154 if (mrq->data) {
155 pr_debug("%s: blksz %d blocks %d flags %08x "
156 "tsac %d ms nsac %d\n",
157 mmc_hostname(host), mrq->data->blksz,
158 mrq->data->blocks, mrq->data->flags,
159 mrq->data->timeout_ns / 1000000,
160 mrq->data->timeout_clks);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: CMD%u arg %08x flags %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->arg, mrq->stop->flags);
167 }
168
169 WARN_ON(!host->claimed);
170
171 mrq->cmd->error = 0;
172 mrq->cmd->mrq = mrq;
173 if (mrq->data) {
174 BUG_ON(mrq->data->blksz > host->max_blk_size);
175 BUG_ON(mrq->data->blocks > host->max_blk_count);
176 BUG_ON(mrq->data->blocks * mrq->data->blksz >
177 host->max_req_size);
178
179#ifdef CONFIG_MMC_DEBUG
180 sz = 0;
181 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
182 sz += sg->length;
183 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
184#endif
185
186 mrq->cmd->data = mrq->data;
187 mrq->data->error = 0;
188 mrq->data->mrq = mrq;
189 if (mrq->stop) {
190 mrq->data->stop = mrq->stop;
191 mrq->stop->error = 0;
192 mrq->stop->mrq = mrq;
193 }
194 }
195 mmc_host_clk_hold(host);
196 led_trigger_event(host->led, LED_FULL);
197 host->ops->request(host, mrq);
198}
199
200static void mmc_wait_done(struct mmc_request *mrq)
201{
202 complete(&mrq->completion);
203}
204
205static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
206{
207 init_completion(&mrq->completion);
208 mrq->done = mmc_wait_done;
209 mmc_start_request(host, mrq);
210}
211
212static void mmc_wait_for_req_done(struct mmc_host *host,
213 struct mmc_request *mrq)
214{
215 wait_for_completion(&mrq->completion);
216}
217
218/**
219 * mmc_pre_req - Prepare for a new request
220 * @host: MMC host to prepare command
221 * @mrq: MMC request to prepare for
222 * @is_first_req: true if there is no previous started request
223 * that may run in parellel to this call, otherwise false
224 *
225 * mmc_pre_req() is called in prior to mmc_start_req() to let
226 * host prepare for the new request. Preparation of a request may be
227 * performed while another request is running on the host.
228 */
229static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
230 bool is_first_req)
231{
232 if (host->ops->pre_req)
233 host->ops->pre_req(host, mrq, is_first_req);
234}
235
236/**
237 * mmc_post_req - Post process a completed request
238 * @host: MMC host to post process command
239 * @mrq: MMC request to post process for
240 * @err: Error, if non zero, clean up any resources made in pre_req
241 *
242 * Let the host post process a completed request. Post processing of
243 * a request may be performed while another reuqest is running.
244 */
245static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
246 int err)
247{
248 if (host->ops->post_req)
249 host->ops->post_req(host, mrq, err);
250}
251
252/**
253 * mmc_start_req - start a non-blocking request
254 * @host: MMC host to start command
255 * @areq: async request to start
256 * @error: out parameter returns 0 for success, otherwise non zero
257 *
258 * Start a new MMC custom command request for a host.
259 * If there is on ongoing async request wait for completion
260 * of that request and start the new one and return.
261 * Does not wait for the new request to complete.
262 *
263 * Returns the completed request, NULL in case of none completed.
264 * Wait for the an ongoing request (previoulsy started) to complete and
265 * return the completed request. If there is no ongoing request, NULL
266 * is returned without waiting. NULL is not an error condition.
267 */
268struct mmc_async_req *mmc_start_req(struct mmc_host *host,
269 struct mmc_async_req *areq, int *error)
270{
271 int err = 0;
272 struct mmc_async_req *data = host->areq;
273
274 /* Prepare a new request */
275 if (areq)
276 mmc_pre_req(host, areq->mrq, !host->areq);
277
278 if (host->areq) {
279 mmc_wait_for_req_done(host, host->areq->mrq);
280 err = host->areq->err_check(host->card, host->areq);
281 if (err) {
282 mmc_post_req(host, host->areq->mrq, 0);
283 if (areq)
284 mmc_post_req(host, areq->mrq, -EINVAL);
285
286 host->areq = NULL;
287 goto out;
288 }
289 }
290
291 if (areq)
292 __mmc_start_req(host, areq->mrq);
293
294 if (host->areq)
295 mmc_post_req(host, host->areq->mrq, 0);
296
297 host->areq = areq;
298 out:
299 if (error)
300 *error = err;
301 return data;
302}
303EXPORT_SYMBOL(mmc_start_req);
304
305/**
306 * mmc_wait_for_req - start a request and wait for completion
307 * @host: MMC host to start command
308 * @mrq: MMC request to start
309 *
310 * Start a new MMC custom command request for a host, and wait
311 * for the command to complete. Does not attempt to parse the
312 * response.
313 */
314void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
315{
316 __mmc_start_req(host, mrq);
317 mmc_wait_for_req_done(host, mrq);
318}
319EXPORT_SYMBOL(mmc_wait_for_req);
320
321/**
322 * mmc_wait_for_cmd - start a command and wait for completion
323 * @host: MMC host to start command
324 * @cmd: MMC command to start
325 * @retries: maximum number of retries
326 *
327 * Start a new MMC command for a host, and wait for the command
328 * to complete. Return any error that occurred while the command
329 * was executing. Do not attempt to parse the response.
330 */
331int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
332{
333 struct mmc_request mrq = {0};
334
335 WARN_ON(!host->claimed);
336
337 memset(cmd->resp, 0, sizeof(cmd->resp));
338 cmd->retries = retries;
339
340 mrq.cmd = cmd;
341 cmd->data = NULL;
342
343 mmc_wait_for_req(host, &mrq);
344
345 return cmd->error;
346}
347
348EXPORT_SYMBOL(mmc_wait_for_cmd);
349
350/**
351 * mmc_set_data_timeout - set the timeout for a data command
352 * @data: data phase for command
353 * @card: the MMC card associated with the data transfer
354 *
355 * Computes the data timeout parameters according to the
356 * correct algorithm given the card type.
357 */
358void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
359{
360 unsigned int mult;
361
362 /*
363 * SDIO cards only define an upper 1 s limit on access.
364 */
365 if (mmc_card_sdio(card)) {
366 data->timeout_ns = 1000000000;
367 data->timeout_clks = 0;
368 return;
369 }
370
371 /*
372 * SD cards use a 100 multiplier rather than 10
373 */
374 mult = mmc_card_sd(card) ? 100 : 10;
375
376 /*
377 * Scale up the multiplier (and therefore the timeout) by
378 * the r2w factor for writes.
379 */
380 if (data->flags & MMC_DATA_WRITE)
381 mult <<= card->csd.r2w_factor;
382
383 data->timeout_ns = card->csd.tacc_ns * mult;
384 data->timeout_clks = card->csd.tacc_clks * mult;
385
386 /*
387 * SD cards also have an upper limit on the timeout.
388 */
389 if (mmc_card_sd(card)) {
390 unsigned int timeout_us, limit_us;
391
392 timeout_us = data->timeout_ns / 1000;
393 if (mmc_host_clk_rate(card->host))
394 timeout_us += data->timeout_clks * 1000 /
395 (mmc_host_clk_rate(card->host) / 1000);
396
397 if (data->flags & MMC_DATA_WRITE)
398 /*
399 * The limit is really 250 ms, but that is
400 * insufficient for some crappy cards.
401 */
402 limit_us = 300000;
403 else
404 limit_us = 100000;
405
406 /*
407 * SDHC cards always use these fixed values.
408 */
409 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
410 data->timeout_ns = limit_us * 1000;
411 data->timeout_clks = 0;
412 }
413 }
414 /*
415 * Some cards need very high timeouts if driven in SPI mode.
416 * The worst observed timeout was 900ms after writing a
417 * continuous stream of data until the internal logic
418 * overflowed.
419 */
420 if (mmc_host_is_spi(card->host)) {
421 if (data->flags & MMC_DATA_WRITE) {
422 if (data->timeout_ns < 1000000000)
423 data->timeout_ns = 1000000000; /* 1s */
424 } else {
425 if (data->timeout_ns < 100000000)
426 data->timeout_ns = 100000000; /* 100ms */
427 }
428 }
429}
430EXPORT_SYMBOL(mmc_set_data_timeout);
431
432/**
433 * mmc_align_data_size - pads a transfer size to a more optimal value
434 * @card: the MMC card associated with the data transfer
435 * @sz: original transfer size
436 *
437 * Pads the original data size with a number of extra bytes in
438 * order to avoid controller bugs and/or performance hits
439 * (e.g. some controllers revert to PIO for certain sizes).
440 *
441 * Returns the improved size, which might be unmodified.
442 *
443 * Note that this function is only relevant when issuing a
444 * single scatter gather entry.
445 */
446unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
447{
448 /*
449 * FIXME: We don't have a system for the controller to tell
450 * the core about its problems yet, so for now we just 32-bit
451 * align the size.
452 */
453 sz = ((sz + 3) / 4) * 4;
454
455 return sz;
456}
457EXPORT_SYMBOL(mmc_align_data_size);
458
459/**
460 * mmc_host_enable - enable a host.
461 * @host: mmc host to enable
462 *
463 * Hosts that support power saving can use the 'enable' and 'disable'
464 * methods to exit and enter power saving states. For more information
465 * see comments for struct mmc_host_ops.
466 */
467int mmc_host_enable(struct mmc_host *host)
468{
469 if (!(host->caps & MMC_CAP_DISABLE))
470 return 0;
471
472 if (host->en_dis_recurs)
473 return 0;
474
475 if (host->nesting_cnt++)
476 return 0;
477
478 cancel_delayed_work_sync(&host->disable);
479
480 if (host->enabled)
481 return 0;
482
483 if (host->ops->enable) {
484 int err;
485
486 host->en_dis_recurs = 1;
487 err = host->ops->enable(host);
488 host->en_dis_recurs = 0;
489
490 if (err) {
491 pr_debug("%s: enable error %d\n",
492 mmc_hostname(host), err);
493 return err;
494 }
495 }
496 host->enabled = 1;
497 return 0;
498}
499EXPORT_SYMBOL(mmc_host_enable);
500
501static int mmc_host_do_disable(struct mmc_host *host, int lazy)
502{
503 if (host->ops->disable) {
504 int err;
505
506 host->en_dis_recurs = 1;
507 err = host->ops->disable(host, lazy);
508 host->en_dis_recurs = 0;
509
510 if (err < 0) {
511 pr_debug("%s: disable error %d\n",
512 mmc_hostname(host), err);
513 return err;
514 }
515 if (err > 0) {
516 unsigned long delay = msecs_to_jiffies(err);
517
518 mmc_schedule_delayed_work(&host->disable, delay);
519 }
520 }
521 host->enabled = 0;
522 return 0;
523}
524
525/**
526 * mmc_host_disable - disable a host.
527 * @host: mmc host to disable
528 *
529 * Hosts that support power saving can use the 'enable' and 'disable'
530 * methods to exit and enter power saving states. For more information
531 * see comments for struct mmc_host_ops.
532 */
533int mmc_host_disable(struct mmc_host *host)
534{
535 int err;
536
537 if (!(host->caps & MMC_CAP_DISABLE))
538 return 0;
539
540 if (host->en_dis_recurs)
541 return 0;
542
543 if (--host->nesting_cnt)
544 return 0;
545
546 if (!host->enabled)
547 return 0;
548
549 err = mmc_host_do_disable(host, 0);
550 return err;
551}
552EXPORT_SYMBOL(mmc_host_disable);
553
554/**
555 * __mmc_claim_host - exclusively claim a host
556 * @host: mmc host to claim
557 * @abort: whether or not the operation should be aborted
558 *
559 * Claim a host for a set of operations. If @abort is non null and
560 * dereference a non-zero value then this will return prematurely with
561 * that non-zero value without acquiring the lock. Returns zero
562 * with the lock held otherwise.
563 */
564int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
565{
566 DECLARE_WAITQUEUE(wait, current);
567 unsigned long flags;
568 int stop;
569
570 might_sleep();
571
572 add_wait_queue(&host->wq, &wait);
573 spin_lock_irqsave(&host->lock, flags);
574 while (1) {
575 set_current_state(TASK_UNINTERRUPTIBLE);
576 stop = abort ? atomic_read(abort) : 0;
577 if (stop || !host->claimed || host->claimer == current)
578 break;
579 spin_unlock_irqrestore(&host->lock, flags);
580 schedule();
581 spin_lock_irqsave(&host->lock, flags);
582 }
583 set_current_state(TASK_RUNNING);
584 if (!stop) {
585 host->claimed = 1;
586 host->claimer = current;
587 host->claim_cnt += 1;
588 } else
589 wake_up(&host->wq);
590 spin_unlock_irqrestore(&host->lock, flags);
591 remove_wait_queue(&host->wq, &wait);
592 if (!stop)
593 mmc_host_enable(host);
594 return stop;
595}
596
597EXPORT_SYMBOL(__mmc_claim_host);
598
599/**
600 * mmc_try_claim_host - try exclusively to claim a host
601 * @host: mmc host to claim
602 *
603 * Returns %1 if the host is claimed, %0 otherwise.
604 */
605int mmc_try_claim_host(struct mmc_host *host)
606{
607 int claimed_host = 0;
608 unsigned long flags;
609
610 spin_lock_irqsave(&host->lock, flags);
611 if (!host->claimed || host->claimer == current) {
612 host->claimed = 1;
613 host->claimer = current;
614 host->claim_cnt += 1;
615 claimed_host = 1;
616 }
617 spin_unlock_irqrestore(&host->lock, flags);
618 return claimed_host;
619}
620EXPORT_SYMBOL(mmc_try_claim_host);
621
622/**
623 * mmc_do_release_host - release a claimed host
624 * @host: mmc host to release
625 *
626 * If you successfully claimed a host, this function will
627 * release it again.
628 */
629void mmc_do_release_host(struct mmc_host *host)
630{
631 unsigned long flags;
632
633 spin_lock_irqsave(&host->lock, flags);
634 if (--host->claim_cnt) {
635 /* Release for nested claim */
636 spin_unlock_irqrestore(&host->lock, flags);
637 } else {
638 host->claimed = 0;
639 host->claimer = NULL;
640 spin_unlock_irqrestore(&host->lock, flags);
641 wake_up(&host->wq);
642 }
643}
644EXPORT_SYMBOL(mmc_do_release_host);
645
646void mmc_host_deeper_disable(struct work_struct *work)
647{
648 struct mmc_host *host =
649 container_of(work, struct mmc_host, disable.work);
650
651 /* If the host is claimed then we do not want to disable it anymore */
652 if (!mmc_try_claim_host(host))
653 return;
654 mmc_host_do_disable(host, 1);
655 mmc_do_release_host(host);
656}
657
658/**
659 * mmc_host_lazy_disable - lazily disable a host.
660 * @host: mmc host to disable
661 *
662 * Hosts that support power saving can use the 'enable' and 'disable'
663 * methods to exit and enter power saving states. For more information
664 * see comments for struct mmc_host_ops.
665 */
666int mmc_host_lazy_disable(struct mmc_host *host)
667{
668 if (!(host->caps & MMC_CAP_DISABLE))
669 return 0;
670
671 if (host->en_dis_recurs)
672 return 0;
673
674 if (--host->nesting_cnt)
675 return 0;
676
677 if (!host->enabled)
678 return 0;
679
680 if (host->disable_delay) {
681 mmc_schedule_delayed_work(&host->disable,
682 msecs_to_jiffies(host->disable_delay));
683 return 0;
684 } else
685 return mmc_host_do_disable(host, 1);
686}
687EXPORT_SYMBOL(mmc_host_lazy_disable);
688
689/**
690 * mmc_release_host - release a host
691 * @host: mmc host to release
692 *
693 * Release a MMC host, allowing others to claim the host
694 * for their operations.
695 */
696void mmc_release_host(struct mmc_host *host)
697{
698 WARN_ON(!host->claimed);
699
700 mmc_host_lazy_disable(host);
701
702 mmc_do_release_host(host);
703}
704
705EXPORT_SYMBOL(mmc_release_host);
706
707/*
708 * Internal function that does the actual ios call to the host driver,
709 * optionally printing some debug output.
710 */
711static inline void mmc_set_ios(struct mmc_host *host)
712{
713 struct mmc_ios *ios = &host->ios;
714
715 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
716 "width %u timing %u\n",
717 mmc_hostname(host), ios->clock, ios->bus_mode,
718 ios->power_mode, ios->chip_select, ios->vdd,
719 ios->bus_width, ios->timing);
720
721 if (ios->clock > 0)
722 mmc_set_ungated(host);
723 host->ops->set_ios(host, ios);
724}
725
726/*
727 * Control chip select pin on a host.
728 */
729void mmc_set_chip_select(struct mmc_host *host, int mode)
730{
731 mmc_host_clk_hold(host);
732 host->ios.chip_select = mode;
733 mmc_set_ios(host);
734 mmc_host_clk_release(host);
735}
736
737/*
738 * Sets the host clock to the highest possible frequency that
739 * is below "hz".
740 */
741static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
742{
743 WARN_ON(hz < host->f_min);
744
745 if (hz > host->f_max)
746 hz = host->f_max;
747
748 host->ios.clock = hz;
749 mmc_set_ios(host);
750}
751
752void mmc_set_clock(struct mmc_host *host, unsigned int hz)
753{
754 mmc_host_clk_hold(host);
755 __mmc_set_clock(host, hz);
756 mmc_host_clk_release(host);
757}
758
759#ifdef CONFIG_MMC_CLKGATE
760/*
761 * This gates the clock by setting it to 0 Hz.
762 */
763void mmc_gate_clock(struct mmc_host *host)
764{
765 unsigned long flags;
766
767 spin_lock_irqsave(&host->clk_lock, flags);
768 host->clk_old = host->ios.clock;
769 host->ios.clock = 0;
770 host->clk_gated = true;
771 spin_unlock_irqrestore(&host->clk_lock, flags);
772 mmc_set_ios(host);
773}
774
775/*
776 * This restores the clock from gating by using the cached
777 * clock value.
778 */
779void mmc_ungate_clock(struct mmc_host *host)
780{
781 /*
782 * We should previously have gated the clock, so the clock shall
783 * be 0 here! The clock may however be 0 during initialization,
784 * when some request operations are performed before setting
785 * the frequency. When ungate is requested in that situation
786 * we just ignore the call.
787 */
788 if (host->clk_old) {
789 BUG_ON(host->ios.clock);
790 /* This call will also set host->clk_gated to false */
791 __mmc_set_clock(host, host->clk_old);
792 }
793}
794
795void mmc_set_ungated(struct mmc_host *host)
796{
797 unsigned long flags;
798
799 /*
800 * We've been given a new frequency while the clock is gated,
801 * so make sure we regard this as ungating it.
802 */
803 spin_lock_irqsave(&host->clk_lock, flags);
804 host->clk_gated = false;
805 spin_unlock_irqrestore(&host->clk_lock, flags);
806}
807
808#else
809void mmc_set_ungated(struct mmc_host *host)
810{
811}
812#endif
813
814/*
815 * Change the bus mode (open drain/push-pull) of a host.
816 */
817void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
818{
819 mmc_host_clk_hold(host);
820 host->ios.bus_mode = mode;
821 mmc_set_ios(host);
822 mmc_host_clk_release(host);
823}
824
825/*
826 * Change data bus width of a host.
827 */
828void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
829{
830 mmc_host_clk_hold(host);
831 host->ios.bus_width = width;
832 mmc_set_ios(host);
833 mmc_host_clk_release(host);
834}
835
836/**
837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
838 * @vdd: voltage (mV)
839 * @low_bits: prefer low bits in boundary cases
840 *
841 * This function returns the OCR bit number according to the provided @vdd
842 * value. If conversion is not possible a negative errno value returned.
843 *
844 * Depending on the @low_bits flag the function prefers low or high OCR bits
845 * on boundary voltages. For example,
846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
848 *
849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
850 */
851static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
852{
853 const int max_bit = ilog2(MMC_VDD_35_36);
854 int bit;
855
856 if (vdd < 1650 || vdd > 3600)
857 return -EINVAL;
858
859 if (vdd >= 1650 && vdd <= 1950)
860 return ilog2(MMC_VDD_165_195);
861
862 if (low_bits)
863 vdd -= 1;
864
865 /* Base 2000 mV, step 100 mV, bit's base 8. */
866 bit = (vdd - 2000) / 100 + 8;
867 if (bit > max_bit)
868 return max_bit;
869 return bit;
870}
871
872/**
873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
874 * @vdd_min: minimum voltage value (mV)
875 * @vdd_max: maximum voltage value (mV)
876 *
877 * This function returns the OCR mask bits according to the provided @vdd_min
878 * and @vdd_max values. If conversion is not possible the function returns 0.
879 *
880 * Notes wrt boundary cases:
881 * This function sets the OCR bits for all boundary voltages, for example
882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
883 * MMC_VDD_34_35 mask.
884 */
885u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
886{
887 u32 mask = 0;
888
889 if (vdd_max < vdd_min)
890 return 0;
891
892 /* Prefer high bits for the boundary vdd_max values. */
893 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
894 if (vdd_max < 0)
895 return 0;
896
897 /* Prefer low bits for the boundary vdd_min values. */
898 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
899 if (vdd_min < 0)
900 return 0;
901
902 /* Fill the mask, from max bit to min bit. */
903 while (vdd_max >= vdd_min)
904 mask |= 1 << vdd_max--;
905
906 return mask;
907}
908EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
909
910#ifdef CONFIG_REGULATOR
911
912/**
913 * mmc_regulator_get_ocrmask - return mask of supported voltages
914 * @supply: regulator to use
915 *
916 * This returns either a negative errno, or a mask of voltages that
917 * can be provided to MMC/SD/SDIO devices using the specified voltage
918 * regulator. This would normally be called before registering the
919 * MMC host adapter.
920 */
921int mmc_regulator_get_ocrmask(struct regulator *supply)
922{
923 int result = 0;
924 int count;
925 int i;
926
927 count = regulator_count_voltages(supply);
928 if (count < 0)
929 return count;
930
931 for (i = 0; i < count; i++) {
932 int vdd_uV;
933 int vdd_mV;
934
935 vdd_uV = regulator_list_voltage(supply, i);
936 if (vdd_uV <= 0)
937 continue;
938
939 vdd_mV = vdd_uV / 1000;
940 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
941 }
942
943 return result;
944}
945EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
946
947/**
948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
949 * @mmc: the host to regulate
950 * @supply: regulator to use
951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
952 *
953 * Returns zero on success, else negative errno.
954 *
955 * MMC host drivers may use this to enable or disable a regulator using
956 * a particular supply voltage. This would normally be called from the
957 * set_ios() method.
958 */
959int mmc_regulator_set_ocr(struct mmc_host *mmc,
960 struct regulator *supply,
961 unsigned short vdd_bit)
962{
963 int result = 0;
964 int min_uV, max_uV;
965
966 if (vdd_bit) {
967 int tmp;
968 int voltage;
969
970 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
971 * bits this regulator doesn't quite support ... don't
972 * be too picky, most cards and regulators are OK with
973 * a 0.1V range goof (it's a small error percentage).
974 */
975 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
976 if (tmp == 0) {
977 min_uV = 1650 * 1000;
978 max_uV = 1950 * 1000;
979 } else {
980 min_uV = 1900 * 1000 + tmp * 100 * 1000;
981 max_uV = min_uV + 100 * 1000;
982 }
983
984 /* avoid needless changes to this voltage; the regulator
985 * might not allow this operation
986 */
987 voltage = regulator_get_voltage(supply);
988 if (voltage < 0)
989 result = voltage;
990 else if (voltage < min_uV || voltage > max_uV)
991 result = regulator_set_voltage(supply, min_uV, max_uV);
992 else
993 result = 0;
994
995 if (result == 0 && !mmc->regulator_enabled) {
996 result = regulator_enable(supply);
997 if (!result)
998 mmc->regulator_enabled = true;
999 }
1000 } else if (mmc->regulator_enabled) {
1001 result = regulator_disable(supply);
1002 if (result == 0)
1003 mmc->regulator_enabled = false;
1004 }
1005
1006 if (result)
1007 dev_err(mmc_dev(mmc),
1008 "could not set regulator OCR (%d)\n", result);
1009 return result;
1010}
1011EXPORT_SYMBOL(mmc_regulator_set_ocr);
1012
1013#endif /* CONFIG_REGULATOR */
1014
1015/*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020{
1021 int bit;
1022
1023 ocr &= host->ocr_avail;
1024
1025 bit = ffs(ocr);
1026 if (bit) {
1027 bit -= 1;
1028
1029 ocr &= 3 << bit;
1030
1031 mmc_host_clk_hold(host);
1032 host->ios.vdd = bit;
1033 mmc_set_ios(host);
1034 mmc_host_clk_release(host);
1035 } else {
1036 pr_warning("%s: host doesn't support card's voltages\n",
1037 mmc_hostname(host));
1038 ocr = 0;
1039 }
1040
1041 return ocr;
1042}
1043
1044int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045{
1046 struct mmc_command cmd = {0};
1047 int err = 0;
1048
1049 BUG_ON(!host);
1050
1051 /*
1052 * Send CMD11 only if the request is to switch the card to
1053 * 1.8V signalling.
1054 */
1055 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056 cmd.opcode = SD_SWITCH_VOLTAGE;
1057 cmd.arg = 0;
1058 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060 err = mmc_wait_for_cmd(host, &cmd, 0);
1061 if (err)
1062 return err;
1063
1064 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065 return -EIO;
1066 }
1067
1068 host->ios.signal_voltage = signal_voltage;
1069
1070 if (host->ops->start_signal_voltage_switch)
1071 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1072
1073 return err;
1074}
1075
1076/*
1077 * Select timing parameters for host.
1078 */
1079void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080{
1081 mmc_host_clk_hold(host);
1082 host->ios.timing = timing;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085}
1086
1087/*
1088 * Select appropriate driver type for host.
1089 */
1090void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091{
1092 mmc_host_clk_hold(host);
1093 host->ios.drv_type = drv_type;
1094 mmc_set_ios(host);
1095 mmc_host_clk_release(host);
1096}
1097
1098/*
1099 * Apply power to the MMC stack. This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise. Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109static void mmc_power_up(struct mmc_host *host)
1110{
1111 int bit;
1112
1113 mmc_host_clk_hold(host);
1114
1115 /* If ocr is set, we use it */
1116 if (host->ocr)
1117 bit = ffs(host->ocr) - 1;
1118 else
1119 bit = fls(host->ocr_avail) - 1;
1120
1121 host->ios.vdd = bit;
1122 if (mmc_host_is_spi(host)) {
1123 host->ios.chip_select = MMC_CS_HIGH;
1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 } else {
1126 host->ios.chip_select = MMC_CS_DONTCARE;
1127 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128 }
1129 host->ios.power_mode = MMC_POWER_UP;
1130 host->ios.bus_width = MMC_BUS_WIDTH_1;
1131 host->ios.timing = MMC_TIMING_LEGACY;
1132 mmc_set_ios(host);
1133
1134 /*
1135 * This delay should be sufficient to allow the power supply
1136 * to reach the minimum voltage.
1137 */
1138 mmc_delay(10);
1139
1140 host->ios.clock = host->f_init;
1141
1142 host->ios.power_mode = MMC_POWER_ON;
1143 mmc_set_ios(host);
1144
1145 /*
1146 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147 * time required to reach a stable voltage.
1148 */
1149 mmc_delay(10);
1150
1151 mmc_host_clk_release(host);
1152}
1153
1154static void mmc_power_off(struct mmc_host *host)
1155{
1156 mmc_host_clk_hold(host);
1157
1158 host->ios.clock = 0;
1159 host->ios.vdd = 0;
1160
1161 /*
1162 * Reset ocr mask to be the highest possible voltage supported for
1163 * this mmc host. This value will be used at next power up.
1164 */
1165 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167 if (!mmc_host_is_spi(host)) {
1168 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169 host->ios.chip_select = MMC_CS_DONTCARE;
1170 }
1171 host->ios.power_mode = MMC_POWER_OFF;
1172 host->ios.bus_width = MMC_BUS_WIDTH_1;
1173 host->ios.timing = MMC_TIMING_LEGACY;
1174 mmc_set_ios(host);
1175
1176 mmc_host_clk_release(host);
1177}
1178
1179/*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182static void __mmc_release_bus(struct mmc_host *host)
1183{
1184 BUG_ON(!host);
1185 BUG_ON(host->bus_refs);
1186 BUG_ON(!host->bus_dead);
1187
1188 host->bus_ops = NULL;
1189}
1190
1191/*
1192 * Increase reference count of bus operator
1193 */
1194static inline void mmc_bus_get(struct mmc_host *host)
1195{
1196 unsigned long flags;
1197
1198 spin_lock_irqsave(&host->lock, flags);
1199 host->bus_refs++;
1200 spin_unlock_irqrestore(&host->lock, flags);
1201}
1202
1203/*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207static inline void mmc_bus_put(struct mmc_host *host)
1208{
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&host->lock, flags);
1212 host->bus_refs--;
1213 if ((host->bus_refs == 0) && host->bus_ops)
1214 __mmc_release_bus(host);
1215 spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218/*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223{
1224 unsigned long flags;
1225
1226 BUG_ON(!host);
1227 BUG_ON(!ops);
1228
1229 WARN_ON(!host->claimed);
1230
1231 spin_lock_irqsave(&host->lock, flags);
1232
1233 BUG_ON(host->bus_ops);
1234 BUG_ON(host->bus_refs);
1235
1236 host->bus_ops = ops;
1237 host->bus_refs = 1;
1238 host->bus_dead = 0;
1239
1240 spin_unlock_irqrestore(&host->lock, flags);
1241}
1242
1243/*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247void mmc_detach_bus(struct mmc_host *host)
1248{
1249 unsigned long flags;
1250
1251 BUG_ON(!host);
1252
1253 WARN_ON(!host->claimed);
1254 WARN_ON(!host->bus_ops);
1255
1256 spin_lock_irqsave(&host->lock, flags);
1257
1258 host->bus_dead = 1;
1259
1260 spin_unlock_irqrestore(&host->lock, flags);
1261
1262 mmc_power_off(host);
1263
1264 mmc_bus_put(host);
1265}
1266
1267/**
1268 * mmc_detect_change - process change of state on a MMC socket
1269 * @host: host which changed state.
1270 * @delay: optional delay to wait before detection (jiffies)
1271 *
1272 * MMC drivers should call this when they detect a card has been
1273 * inserted or removed. The MMC layer will confirm that any
1274 * present card is still functional, and initialize any newly
1275 * inserted.
1276 */
1277void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278{
1279#ifdef CONFIG_MMC_DEBUG
1280 unsigned long flags;
1281 spin_lock_irqsave(&host->lock, flags);
1282 WARN_ON(host->removed);
1283 spin_unlock_irqrestore(&host->lock, flags);
1284#endif
1285
1286 mmc_schedule_delayed_work(&host->detect, delay);
1287}
1288
1289EXPORT_SYMBOL(mmc_detect_change);
1290
1291void mmc_init_erase(struct mmc_card *card)
1292{
1293 unsigned int sz;
1294
1295 if (is_power_of_2(card->erase_size))
1296 card->erase_shift = ffs(card->erase_size) - 1;
1297 else
1298 card->erase_shift = 0;
1299
1300 /*
1301 * It is possible to erase an arbitrarily large area of an SD or MMC
1302 * card. That is not desirable because it can take a long time
1303 * (minutes) potentially delaying more important I/O, and also the
1304 * timeout calculations become increasingly hugely over-estimated.
1305 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306 * to that size and alignment.
1307 *
1308 * For SD cards that define Allocation Unit size, limit erases to one
1309 * Allocation Unit at a time. For MMC cards that define High Capacity
1310 * Erase Size, whether it is switched on or not, limit to that size.
1311 * Otherwise just have a stab at a good value. For modern cards it
1312 * will end up being 4MiB. Note that if the value is too small, it
1313 * can end up taking longer to erase.
1314 */
1315 if (mmc_card_sd(card) && card->ssr.au) {
1316 card->pref_erase = card->ssr.au;
1317 card->erase_shift = ffs(card->ssr.au) - 1;
1318 } else if (card->ext_csd.hc_erase_size) {
1319 card->pref_erase = card->ext_csd.hc_erase_size;
1320 } else {
1321 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322 if (sz < 128)
1323 card->pref_erase = 512 * 1024 / 512;
1324 else if (sz < 512)
1325 card->pref_erase = 1024 * 1024 / 512;
1326 else if (sz < 1024)
1327 card->pref_erase = 2 * 1024 * 1024 / 512;
1328 else
1329 card->pref_erase = 4 * 1024 * 1024 / 512;
1330 if (card->pref_erase < card->erase_size)
1331 card->pref_erase = card->erase_size;
1332 else {
1333 sz = card->pref_erase % card->erase_size;
1334 if (sz)
1335 card->pref_erase += card->erase_size - sz;
1336 }
1337 }
1338}
1339
1340static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341 unsigned int arg, unsigned int qty)
1342{
1343 unsigned int erase_timeout;
1344
1345 if (card->ext_csd.erase_group_def & 1) {
1346 /* High Capacity Erase Group Size uses HC timeouts */
1347 if (arg == MMC_TRIM_ARG)
1348 erase_timeout = card->ext_csd.trim_timeout;
1349 else
1350 erase_timeout = card->ext_csd.hc_erase_timeout;
1351 } else {
1352 /* CSD Erase Group Size uses write timeout */
1353 unsigned int mult = (10 << card->csd.r2w_factor);
1354 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355 unsigned int timeout_us;
1356
1357 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358 if (card->csd.tacc_ns < 1000000)
1359 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360 else
1361 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363 /*
1364 * ios.clock is only a target. The real clock rate might be
1365 * less but not that much less, so fudge it by multiplying by 2.
1366 */
1367 timeout_clks <<= 1;
1368 timeout_us += (timeout_clks * 1000) /
1369 (mmc_host_clk_rate(card->host) / 1000);
1370
1371 erase_timeout = timeout_us / 1000;
1372
1373 /*
1374 * Theoretically, the calculation could underflow so round up
1375 * to 1ms in that case.
1376 */
1377 if (!erase_timeout)
1378 erase_timeout = 1;
1379 }
1380
1381 /* Multiplier for secure operations */
1382 if (arg & MMC_SECURE_ARGS) {
1383 if (arg == MMC_SECURE_ERASE_ARG)
1384 erase_timeout *= card->ext_csd.sec_erase_mult;
1385 else
1386 erase_timeout *= card->ext_csd.sec_trim_mult;
1387 }
1388
1389 erase_timeout *= qty;
1390
1391 /*
1392 * Ensure at least a 1 second timeout for SPI as per
1393 * 'mmc_set_data_timeout()'
1394 */
1395 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396 erase_timeout = 1000;
1397
1398 return erase_timeout;
1399}
1400
1401static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402 unsigned int arg,
1403 unsigned int qty)
1404{
1405 unsigned int erase_timeout;
1406
1407 if (card->ssr.erase_timeout) {
1408 /* Erase timeout specified in SD Status Register (SSR) */
1409 erase_timeout = card->ssr.erase_timeout * qty +
1410 card->ssr.erase_offset;
1411 } else {
1412 /*
1413 * Erase timeout not specified in SD Status Register (SSR) so
1414 * use 250ms per write block.
1415 */
1416 erase_timeout = 250 * qty;
1417 }
1418
1419 /* Must not be less than 1 second */
1420 if (erase_timeout < 1000)
1421 erase_timeout = 1000;
1422
1423 return erase_timeout;
1424}
1425
1426static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427 unsigned int arg,
1428 unsigned int qty)
1429{
1430 if (mmc_card_sd(card))
1431 return mmc_sd_erase_timeout(card, arg, qty);
1432 else
1433 return mmc_mmc_erase_timeout(card, arg, qty);
1434}
1435
1436static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437 unsigned int to, unsigned int arg)
1438{
1439 struct mmc_command cmd = {0};
1440 unsigned int qty = 0;
1441 int err;
1442
1443 /*
1444 * qty is used to calculate the erase timeout which depends on how many
1445 * erase groups (or allocation units in SD terminology) are affected.
1446 * We count erasing part of an erase group as one erase group.
1447 * For SD, the allocation units are always a power of 2. For MMC, the
1448 * erase group size is almost certainly also power of 2, but it does not
1449 * seem to insist on that in the JEDEC standard, so we fall back to
1450 * division in that case. SD may not specify an allocation unit size,
1451 * in which case the timeout is based on the number of write blocks.
1452 *
1453 * Note that the timeout for secure trim 2 will only be correct if the
1454 * number of erase groups specified is the same as the total of all
1455 * preceding secure trim 1 commands. Since the power may have been
1456 * lost since the secure trim 1 commands occurred, it is generally
1457 * impossible to calculate the secure trim 2 timeout correctly.
1458 */
1459 if (card->erase_shift)
1460 qty += ((to >> card->erase_shift) -
1461 (from >> card->erase_shift)) + 1;
1462 else if (mmc_card_sd(card))
1463 qty += to - from + 1;
1464 else
1465 qty += ((to / card->erase_size) -
1466 (from / card->erase_size)) + 1;
1467
1468 if (!mmc_card_blockaddr(card)) {
1469 from <<= 9;
1470 to <<= 9;
1471 }
1472
1473 if (mmc_card_sd(card))
1474 cmd.opcode = SD_ERASE_WR_BLK_START;
1475 else
1476 cmd.opcode = MMC_ERASE_GROUP_START;
1477 cmd.arg = from;
1478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480 if (err) {
1481 printk(KERN_ERR "mmc_erase: group start error %d, "
1482 "status %#x\n", err, cmd.resp[0]);
1483 err = -EINVAL;
1484 goto out;
1485 }
1486
1487 memset(&cmd, 0, sizeof(struct mmc_command));
1488 if (mmc_card_sd(card))
1489 cmd.opcode = SD_ERASE_WR_BLK_END;
1490 else
1491 cmd.opcode = MMC_ERASE_GROUP_END;
1492 cmd.arg = to;
1493 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495 if (err) {
1496 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497 err, cmd.resp[0]);
1498 err = -EINVAL;
1499 goto out;
1500 }
1501
1502 memset(&cmd, 0, sizeof(struct mmc_command));
1503 cmd.opcode = MMC_ERASE;
1504 cmd.arg = arg;
1505 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1507 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508 if (err) {
1509 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510 err, cmd.resp[0]);
1511 err = -EIO;
1512 goto out;
1513 }
1514
1515 if (mmc_host_is_spi(card->host))
1516 goto out;
1517
1518 do {
1519 memset(&cmd, 0, sizeof(struct mmc_command));
1520 cmd.opcode = MMC_SEND_STATUS;
1521 cmd.arg = card->rca << 16;
1522 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523 /* Do not retry else we can't see errors */
1524 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525 if (err || (cmd.resp[0] & 0xFDF92000)) {
1526 printk(KERN_ERR "error %d requesting status %#x\n",
1527 err, cmd.resp[0]);
1528 err = -EIO;
1529 goto out;
1530 }
1531 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533out:
1534 return err;
1535}
1536
1537/**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547 unsigned int arg)
1548{
1549 unsigned int rem, to = from + nr;
1550
1551 if (!(card->host->caps & MMC_CAP_ERASE) ||
1552 !(card->csd.cmdclass & CCC_ERASE))
1553 return -EOPNOTSUPP;
1554
1555 if (!card->erase_size)
1556 return -EOPNOTSUPP;
1557
1558 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559 return -EOPNOTSUPP;
1560
1561 if ((arg & MMC_SECURE_ARGS) &&
1562 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563 return -EOPNOTSUPP;
1564
1565 if ((arg & MMC_TRIM_ARGS) &&
1566 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567 return -EOPNOTSUPP;
1568
1569 if (arg == MMC_SECURE_ERASE_ARG) {
1570 if (from % card->erase_size || nr % card->erase_size)
1571 return -EINVAL;
1572 }
1573
1574 if (arg == MMC_ERASE_ARG) {
1575 rem = from % card->erase_size;
1576 if (rem) {
1577 rem = card->erase_size - rem;
1578 from += rem;
1579 if (nr > rem)
1580 nr -= rem;
1581 else
1582 return 0;
1583 }
1584 rem = nr % card->erase_size;
1585 if (rem)
1586 nr -= rem;
1587 }
1588
1589 if (nr == 0)
1590 return 0;
1591
1592 to = from + nr;
1593
1594 if (to <= from)
1595 return -EINVAL;
1596
1597 /* 'from' and 'to' are inclusive */
1598 to -= 1;
1599
1600 return mmc_do_erase(card, from, to, arg);
1601}
1602EXPORT_SYMBOL(mmc_erase);
1603
1604int mmc_can_erase(struct mmc_card *card)
1605{
1606 if ((card->host->caps & MMC_CAP_ERASE) &&
1607 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608 return 1;
1609 return 0;
1610}
1611EXPORT_SYMBOL(mmc_can_erase);
1612
1613int mmc_can_trim(struct mmc_card *card)
1614{
1615 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1616 return 1;
1617 return 0;
1618}
1619EXPORT_SYMBOL(mmc_can_trim);
1620
1621int mmc_can_secure_erase_trim(struct mmc_card *card)
1622{
1623 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1624 return 1;
1625 return 0;
1626}
1627EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630 unsigned int nr)
1631{
1632 if (!card->erase_size)
1633 return 0;
1634 if (from % card->erase_size || nr % card->erase_size)
1635 return 0;
1636 return 1;
1637}
1638EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641 unsigned int arg)
1642{
1643 struct mmc_host *host = card->host;
1644 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645 unsigned int last_timeout = 0;
1646
1647 if (card->erase_shift)
1648 max_qty = UINT_MAX >> card->erase_shift;
1649 else if (mmc_card_sd(card))
1650 max_qty = UINT_MAX;
1651 else
1652 max_qty = UINT_MAX / card->erase_size;
1653
1654 /* Find the largest qty with an OK timeout */
1655 do {
1656 y = 0;
1657 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658 timeout = mmc_erase_timeout(card, arg, qty + x);
1659 if (timeout > host->max_discard_to)
1660 break;
1661 if (timeout < last_timeout)
1662 break;
1663 last_timeout = timeout;
1664 y = x;
1665 }
1666 qty += y;
1667 } while (y);
1668
1669 if (!qty)
1670 return 0;
1671
1672 if (qty == 1)
1673 return 1;
1674
1675 /* Convert qty to sectors */
1676 if (card->erase_shift)
1677 max_discard = --qty << card->erase_shift;
1678 else if (mmc_card_sd(card))
1679 max_discard = qty;
1680 else
1681 max_discard = --qty * card->erase_size;
1682
1683 return max_discard;
1684}
1685
1686unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687{
1688 struct mmc_host *host = card->host;
1689 unsigned int max_discard, max_trim;
1690
1691 if (!host->max_discard_to)
1692 return UINT_MAX;
1693
1694 /*
1695 * Without erase_group_def set, MMC erase timeout depends on clock
1696 * frequence which can change. In that case, the best choice is
1697 * just the preferred erase size.
1698 */
1699 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700 return card->pref_erase;
1701
1702 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703 if (mmc_can_trim(card)) {
1704 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705 if (max_trim < max_discard)
1706 max_discard = max_trim;
1707 } else if (max_discard < card->erase_size) {
1708 max_discard = 0;
1709 }
1710 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711 mmc_hostname(host), max_discard, host->max_discard_to);
1712 return max_discard;
1713}
1714EXPORT_SYMBOL(mmc_calc_max_discard);
1715
1716int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717{
1718 struct mmc_command cmd = {0};
1719
1720 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1721 return 0;
1722
1723 cmd.opcode = MMC_SET_BLOCKLEN;
1724 cmd.arg = blocklen;
1725 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726 return mmc_wait_for_cmd(card->host, &cmd, 5);
1727}
1728EXPORT_SYMBOL(mmc_set_blocklen);
1729
1730static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1731{
1732 host->f_init = freq;
1733
1734#ifdef CONFIG_MMC_DEBUG
1735 pr_info("%s: %s: trying to init card at %u Hz\n",
1736 mmc_hostname(host), __func__, host->f_init);
1737#endif
1738 mmc_power_up(host);
1739
1740 /*
1741 * sdio_reset sends CMD52 to reset card. Since we do not know
1742 * if the card is being re-initialized, just send it. CMD52
1743 * should be ignored by SD/eMMC cards.
1744 */
1745 sdio_reset(host);
1746 mmc_go_idle(host);
1747
1748 mmc_send_if_cond(host, host->ocr_avail);
1749
1750 /* Order's important: probe SDIO, then SD, then MMC */
1751 if (!mmc_attach_sdio(host))
1752 return 0;
1753 if (!mmc_attach_sd(host))
1754 return 0;
1755 if (!mmc_attach_mmc(host))
1756 return 0;
1757
1758 mmc_power_off(host);
1759 return -EIO;
1760}
1761
1762void mmc_rescan(struct work_struct *work)
1763{
1764 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765 struct mmc_host *host =
1766 container_of(work, struct mmc_host, detect.work);
1767 int i;
1768
1769 if (host->rescan_disable)
1770 return;
1771
1772 mmc_bus_get(host);
1773
1774 /*
1775 * if there is a _removable_ card registered, check whether it is
1776 * still present
1777 */
1778 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779 && !(host->caps & MMC_CAP_NONREMOVABLE))
1780 host->bus_ops->detect(host);
1781
1782 /*
1783 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784 * the card is no longer present.
1785 */
1786 mmc_bus_put(host);
1787 mmc_bus_get(host);
1788
1789 /* if there still is a card present, stop here */
1790 if (host->bus_ops != NULL) {
1791 mmc_bus_put(host);
1792 goto out;
1793 }
1794
1795 /*
1796 * Only we can add a new handler, so it's safe to
1797 * release the lock here.
1798 */
1799 mmc_bus_put(host);
1800
1801 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1802 goto out;
1803
1804 mmc_claim_host(host);
1805 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807 break;
1808 if (freqs[i] <= host->f_min)
1809 break;
1810 }
1811 mmc_release_host(host);
1812
1813 out:
1814 if (host->caps & MMC_CAP_NEEDS_POLL)
1815 mmc_schedule_delayed_work(&host->detect, HZ);
1816}
1817
1818void mmc_start_host(struct mmc_host *host)
1819{
1820 mmc_power_off(host);
1821 mmc_detect_change(host, 0);
1822}
1823
1824void mmc_stop_host(struct mmc_host *host)
1825{
1826#ifdef CONFIG_MMC_DEBUG
1827 unsigned long flags;
1828 spin_lock_irqsave(&host->lock, flags);
1829 host->removed = 1;
1830 spin_unlock_irqrestore(&host->lock, flags);
1831#endif
1832
1833 if (host->caps & MMC_CAP_DISABLE)
1834 cancel_delayed_work(&host->disable);
1835 cancel_delayed_work_sync(&host->detect);
1836 mmc_flush_scheduled_work();
1837
1838 /* clear pm flags now and let card drivers set them as needed */
1839 host->pm_flags = 0;
1840
1841 mmc_bus_get(host);
1842 if (host->bus_ops && !host->bus_dead) {
1843 if (host->bus_ops->remove)
1844 host->bus_ops->remove(host);
1845
1846 mmc_claim_host(host);
1847 mmc_detach_bus(host);
1848 mmc_release_host(host);
1849 mmc_bus_put(host);
1850 return;
1851 }
1852 mmc_bus_put(host);
1853
1854 BUG_ON(host->card);
1855
1856 mmc_power_off(host);
1857}
1858
1859int mmc_power_save_host(struct mmc_host *host)
1860{
1861 int ret = 0;
1862
1863#ifdef CONFIG_MMC_DEBUG
1864 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865#endif
1866
1867 mmc_bus_get(host);
1868
1869 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870 mmc_bus_put(host);
1871 return -EINVAL;
1872 }
1873
1874 if (host->bus_ops->power_save)
1875 ret = host->bus_ops->power_save(host);
1876
1877 mmc_bus_put(host);
1878
1879 mmc_power_off(host);
1880
1881 return ret;
1882}
1883EXPORT_SYMBOL(mmc_power_save_host);
1884
1885int mmc_power_restore_host(struct mmc_host *host)
1886{
1887 int ret;
1888
1889#ifdef CONFIG_MMC_DEBUG
1890 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891#endif
1892
1893 mmc_bus_get(host);
1894
1895 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896 mmc_bus_put(host);
1897 return -EINVAL;
1898 }
1899
1900 mmc_power_up(host);
1901 ret = host->bus_ops->power_restore(host);
1902
1903 mmc_bus_put(host);
1904
1905 return ret;
1906}
1907EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909int mmc_card_awake(struct mmc_host *host)
1910{
1911 int err = -ENOSYS;
1912
1913 mmc_bus_get(host);
1914
1915 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916 err = host->bus_ops->awake(host);
1917
1918 mmc_bus_put(host);
1919
1920 return err;
1921}
1922EXPORT_SYMBOL(mmc_card_awake);
1923
1924int mmc_card_sleep(struct mmc_host *host)
1925{
1926 int err = -ENOSYS;
1927
1928 mmc_bus_get(host);
1929
1930 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931 err = host->bus_ops->sleep(host);
1932
1933 mmc_bus_put(host);
1934
1935 return err;
1936}
1937EXPORT_SYMBOL(mmc_card_sleep);
1938
1939int mmc_card_can_sleep(struct mmc_host *host)
1940{
1941 struct mmc_card *card = host->card;
1942
1943 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944 return 1;
1945 return 0;
1946}
1947EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949#ifdef CONFIG_PM
1950
1951/**
1952 * mmc_suspend_host - suspend a host
1953 * @host: mmc host
1954 */
1955int mmc_suspend_host(struct mmc_host *host)
1956{
1957 int err = 0;
1958
1959 if (host->caps & MMC_CAP_DISABLE)
1960 cancel_delayed_work(&host->disable);
1961 cancel_delayed_work(&host->detect);
1962 mmc_flush_scheduled_work();
1963
1964 mmc_bus_get(host);
1965 if (host->bus_ops && !host->bus_dead) {
1966 if (host->bus_ops->suspend)
1967 err = host->bus_ops->suspend(host);
1968 if (err == -ENOSYS || !host->bus_ops->resume) {
1969 /*
1970 * We simply "remove" the card in this case.
1971 * It will be redetected on resume.
1972 */
1973 if (host->bus_ops->remove)
1974 host->bus_ops->remove(host);
1975 mmc_claim_host(host);
1976 mmc_detach_bus(host);
1977 mmc_release_host(host);
1978 host->pm_flags = 0;
1979 err = 0;
1980 }
1981 }
1982 mmc_bus_put(host);
1983
1984 if (!err && !mmc_card_keep_power(host))
1985 mmc_power_off(host);
1986
1987 return err;
1988}
1989
1990EXPORT_SYMBOL(mmc_suspend_host);
1991
1992/**
1993 * mmc_resume_host - resume a previously suspended host
1994 * @host: mmc host
1995 */
1996int mmc_resume_host(struct mmc_host *host)
1997{
1998 int err = 0;
1999
2000 mmc_bus_get(host);
2001 if (host->bus_ops && !host->bus_dead) {
2002 if (!mmc_card_keep_power(host)) {
2003 mmc_power_up(host);
2004 mmc_select_voltage(host, host->ocr);
2005 /*
2006 * Tell runtime PM core we just powered up the card,
2007 * since it still believes the card is powered off.
2008 * Note that currently runtime PM is only enabled
2009 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010 */
2011 if (mmc_card_sdio(host->card) &&
2012 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013 pm_runtime_disable(&host->card->dev);
2014 pm_runtime_set_active(&host->card->dev);
2015 pm_runtime_enable(&host->card->dev);
2016 }
2017 }
2018 BUG_ON(!host->bus_ops->resume);
2019 err = host->bus_ops->resume(host);
2020 if (err) {
2021 printk(KERN_WARNING "%s: error %d during resume "
2022 "(card was removed?)\n",
2023 mmc_hostname(host), err);
2024 err = 0;
2025 }
2026 }
2027 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028 mmc_bus_put(host);
2029
2030 return err;
2031}
2032EXPORT_SYMBOL(mmc_resume_host);
2033
2034/* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036 to sync the card.
2037*/
2038int mmc_pm_notify(struct notifier_block *notify_block,
2039 unsigned long mode, void *unused)
2040{
2041 struct mmc_host *host = container_of(
2042 notify_block, struct mmc_host, pm_notify);
2043 unsigned long flags;
2044
2045
2046 switch (mode) {
2047 case PM_HIBERNATION_PREPARE:
2048 case PM_SUSPEND_PREPARE:
2049
2050 spin_lock_irqsave(&host->lock, flags);
2051 host->rescan_disable = 1;
2052 spin_unlock_irqrestore(&host->lock, flags);
2053 cancel_delayed_work_sync(&host->detect);
2054
2055 if (!host->bus_ops || host->bus_ops->suspend)
2056 break;
2057
2058 mmc_claim_host(host);
2059
2060 if (host->bus_ops->remove)
2061 host->bus_ops->remove(host);
2062
2063 mmc_detach_bus(host);
2064 mmc_release_host(host);
2065 host->pm_flags = 0;
2066 break;
2067
2068 case PM_POST_SUSPEND:
2069 case PM_POST_HIBERNATION:
2070 case PM_POST_RESTORE:
2071
2072 spin_lock_irqsave(&host->lock, flags);
2073 host->rescan_disable = 0;
2074 spin_unlock_irqrestore(&host->lock, flags);
2075 mmc_detect_change(host, 0);
2076
2077 }
2078
2079 return 0;
2080}
2081#endif
2082
2083static int __init mmc_init(void)
2084{
2085 int ret;
2086
2087 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088 if (!workqueue)
2089 return -ENOMEM;
2090
2091 ret = mmc_register_bus();
2092 if (ret)
2093 goto destroy_workqueue;
2094
2095 ret = mmc_register_host_class();
2096 if (ret)
2097 goto unregister_bus;
2098
2099 ret = sdio_register_bus();
2100 if (ret)
2101 goto unregister_host_class;
2102
2103 return 0;
2104
2105unregister_host_class:
2106 mmc_unregister_host_class();
2107unregister_bus:
2108 mmc_unregister_bus();
2109destroy_workqueue:
2110 destroy_workqueue(workqueue);
2111
2112 return ret;
2113}
2114
2115static void __exit mmc_exit(void)
2116{
2117 sdio_unregister_bus();
2118 mmc_unregister_host_class();
2119 mmc_unregister_bus();
2120 destroy_workqueue(workqueue);
2121}
2122
2123subsys_initcall(mmc_init);
2124module_exit(mmc_exit);
2125
2126MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
152
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
163 trace_mmc_request_done(host, mrq);
164
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
176
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
179
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
206 }
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
213}
214
215EXPORT_SYMBOL(mmc_request_done);
216
217static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218{
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
233 */
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
257 trace_mmc_request_start(host, mrq);
258
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
262 host->ops->request(host, mrq);
263}
264
265static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
267{
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
274 if (mrq->cmd) {
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297}
298
299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300{
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334}
335
336int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337{
338 int err;
339
340 init_completion(&mrq->cmd_completion);
341
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
347 mmc_mrq_pr_debug(host, mrq, false);
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
357
358 return 0;
359}
360EXPORT_SYMBOL(mmc_start_request);
361
362static void mmc_wait_done(struct mmc_request *mrq)
363{
364 complete(&mrq->completion);
365}
366
367static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368{
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377}
378
379static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380{
381 int err;
382
383 mmc_wait_ongoing_tfr_cmd(host);
384
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
393 }
394
395 return err;
396}
397
398void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399{
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
406
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
409 break;
410
411 mmc_retune_recheck(host);
412
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 __mmc_start_request(host, mrq);
418 }
419
420 mmc_retune_release(host);
421}
422EXPORT_SYMBOL(mmc_wait_for_req_done);
423
424/*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
432int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433{
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471}
472EXPORT_SYMBOL(mmc_cqe_start_req);
473
474/**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
482void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483{
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508}
509EXPORT_SYMBOL(mmc_cqe_request_done);
510
511/**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
516void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517{
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520}
521EXPORT_SYMBOL(mmc_cqe_post_req);
522
523/* Arbitrary 1 second timeout */
524#define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526/*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
535int mmc_cqe_recovery(struct mmc_host *host)
536{
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, 0);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_CMDQ_TASK_MGMT;
559 cmd.arg = 1; /* Discard entire queue */
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 err = mmc_wait_for_cmd(host, &cmd, 0);
564
565 host->cqe_ops->cqe_recovery_finish(host);
566
567 mmc_retune_release(host);
568
569 return err;
570}
571EXPORT_SYMBOL(mmc_cqe_recovery);
572
573/**
574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575 * @host: MMC host
576 * @mrq: MMC request
577 *
578 * mmc_is_req_done() is used with requests that have
579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580 * starting a request and before waiting for it to complete. That is,
581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582 * and before mmc_wait_for_req_done(). If it is called at other times the
583 * result is not meaningful.
584 */
585bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586{
587 return completion_done(&mrq->completion);
588}
589EXPORT_SYMBOL(mmc_is_req_done);
590
591/**
592 * mmc_wait_for_req - start a request and wait for completion
593 * @host: MMC host to start command
594 * @mrq: MMC request to start
595 *
596 * Start a new MMC custom command request for a host, and wait
597 * for the command to complete. In the case of 'cap_cmd_during_tfr'
598 * requests, the transfer is ongoing and the caller can issue further
599 * commands that do not use the data lines, and then wait by calling
600 * mmc_wait_for_req_done().
601 * Does not attempt to parse the response.
602 */
603void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604{
605 __mmc_start_req(host, mrq);
606
607 if (!mrq->cap_cmd_during_tfr)
608 mmc_wait_for_req_done(host, mrq);
609}
610EXPORT_SYMBOL(mmc_wait_for_req);
611
612/**
613 * mmc_wait_for_cmd - start a command and wait for completion
614 * @host: MMC host to start command
615 * @cmd: MMC command to start
616 * @retries: maximum number of retries
617 *
618 * Start a new MMC command for a host, and wait for the command
619 * to complete. Return any error that occurred while the command
620 * was executing. Do not attempt to parse the response.
621 */
622int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623{
624 struct mmc_request mrq = {};
625
626 WARN_ON(!host->claimed);
627
628 memset(cmd->resp, 0, sizeof(cmd->resp));
629 cmd->retries = retries;
630
631 mrq.cmd = cmd;
632 cmd->data = NULL;
633
634 mmc_wait_for_req(host, &mrq);
635
636 return cmd->error;
637}
638
639EXPORT_SYMBOL(mmc_wait_for_cmd);
640
641/**
642 * mmc_set_data_timeout - set the timeout for a data command
643 * @data: data phase for command
644 * @card: the MMC card associated with the data transfer
645 *
646 * Computes the data timeout parameters according to the
647 * correct algorithm given the card type.
648 */
649void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650{
651 unsigned int mult;
652
653 /*
654 * SDIO cards only define an upper 1 s limit on access.
655 */
656 if (mmc_card_sdio(card)) {
657 data->timeout_ns = 1000000000;
658 data->timeout_clks = 0;
659 return;
660 }
661
662 /*
663 * SD cards use a 100 multiplier rather than 10
664 */
665 mult = mmc_card_sd(card) ? 100 : 10;
666
667 /*
668 * Scale up the multiplier (and therefore the timeout) by
669 * the r2w factor for writes.
670 */
671 if (data->flags & MMC_DATA_WRITE)
672 mult <<= card->csd.r2w_factor;
673
674 data->timeout_ns = card->csd.taac_ns * mult;
675 data->timeout_clks = card->csd.taac_clks * mult;
676
677 /*
678 * SD cards also have an upper limit on the timeout.
679 */
680 if (mmc_card_sd(card)) {
681 unsigned int timeout_us, limit_us;
682
683 timeout_us = data->timeout_ns / 1000;
684 if (card->host->ios.clock)
685 timeout_us += data->timeout_clks * 1000 /
686 (card->host->ios.clock / 1000);
687
688 if (data->flags & MMC_DATA_WRITE)
689 /*
690 * The MMC spec "It is strongly recommended
691 * for hosts to implement more than 500ms
692 * timeout value even if the card indicates
693 * the 250ms maximum busy length." Even the
694 * previous value of 300ms is known to be
695 * insufficient for some cards.
696 */
697 limit_us = 3000000;
698 else
699 limit_us = 100000;
700
701 /*
702 * SDHC cards always use these fixed values.
703 */
704 if (timeout_us > limit_us) {
705 data->timeout_ns = limit_us * 1000;
706 data->timeout_clks = 0;
707 }
708
709 /* assign limit value if invalid */
710 if (timeout_us == 0)
711 data->timeout_ns = limit_us * 1000;
712 }
713
714 /*
715 * Some cards require longer data read timeout than indicated in CSD.
716 * Address this by setting the read timeout to a "reasonably high"
717 * value. For the cards tested, 600ms has proven enough. If necessary,
718 * this value can be increased if other problematic cards require this.
719 */
720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721 data->timeout_ns = 600000000;
722 data->timeout_clks = 0;
723 }
724
725 /*
726 * Some cards need very high timeouts if driven in SPI mode.
727 * The worst observed timeout was 900ms after writing a
728 * continuous stream of data until the internal logic
729 * overflowed.
730 */
731 if (mmc_host_is_spi(card->host)) {
732 if (data->flags & MMC_DATA_WRITE) {
733 if (data->timeout_ns < 1000000000)
734 data->timeout_ns = 1000000000; /* 1s */
735 } else {
736 if (data->timeout_ns < 100000000)
737 data->timeout_ns = 100000000; /* 100ms */
738 }
739 }
740}
741EXPORT_SYMBOL(mmc_set_data_timeout);
742
743/*
744 * Allow claiming an already claimed host if the context is the same or there is
745 * no context but the task is the same.
746 */
747static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 struct task_struct *task)
749{
750 return host->claimer == ctx ||
751 (!ctx && task && host->claimer->task == task);
752}
753
754static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755 struct mmc_ctx *ctx,
756 struct task_struct *task)
757{
758 if (!host->claimer) {
759 if (ctx)
760 host->claimer = ctx;
761 else
762 host->claimer = &host->default_ctx;
763 }
764 if (task)
765 host->claimer->task = task;
766}
767
768/**
769 * __mmc_claim_host - exclusively claim a host
770 * @host: mmc host to claim
771 * @ctx: context that claims the host or NULL in which case the default
772 * context will be used
773 * @abort: whether or not the operation should be aborted
774 *
775 * Claim a host for a set of operations. If @abort is non null and
776 * dereference a non-zero value then this will return prematurely with
777 * that non-zero value without acquiring the lock. Returns zero
778 * with the lock held otherwise.
779 */
780int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781 atomic_t *abort)
782{
783 struct task_struct *task = ctx ? NULL : current;
784 DECLARE_WAITQUEUE(wait, current);
785 unsigned long flags;
786 int stop;
787 bool pm = false;
788
789 might_sleep();
790
791 add_wait_queue(&host->wq, &wait);
792 spin_lock_irqsave(&host->lock, flags);
793 while (1) {
794 set_current_state(TASK_UNINTERRUPTIBLE);
795 stop = abort ? atomic_read(abort) : 0;
796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
797 break;
798 spin_unlock_irqrestore(&host->lock, flags);
799 schedule();
800 spin_lock_irqsave(&host->lock, flags);
801 }
802 set_current_state(TASK_RUNNING);
803 if (!stop) {
804 host->claimed = 1;
805 mmc_ctx_set_claimer(host, ctx, task);
806 host->claim_cnt += 1;
807 if (host->claim_cnt == 1)
808 pm = true;
809 } else
810 wake_up(&host->wq);
811 spin_unlock_irqrestore(&host->lock, flags);
812 remove_wait_queue(&host->wq, &wait);
813
814 if (pm)
815 pm_runtime_get_sync(mmc_dev(host));
816
817 return stop;
818}
819EXPORT_SYMBOL(__mmc_claim_host);
820
821/**
822 * mmc_release_host - release a host
823 * @host: mmc host to release
824 *
825 * Release a MMC host, allowing others to claim the host
826 * for their operations.
827 */
828void mmc_release_host(struct mmc_host *host)
829{
830 unsigned long flags;
831
832 WARN_ON(!host->claimed);
833
834 spin_lock_irqsave(&host->lock, flags);
835 if (--host->claim_cnt) {
836 /* Release for nested claim */
837 spin_unlock_irqrestore(&host->lock, flags);
838 } else {
839 host->claimed = 0;
840 host->claimer->task = NULL;
841 host->claimer = NULL;
842 spin_unlock_irqrestore(&host->lock, flags);
843 wake_up(&host->wq);
844 pm_runtime_mark_last_busy(mmc_dev(host));
845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 pm_runtime_put_sync_suspend(mmc_dev(host));
847 else
848 pm_runtime_put_autosuspend(mmc_dev(host));
849 }
850}
851EXPORT_SYMBOL(mmc_release_host);
852
853/*
854 * This is a helper function, which fetches a runtime pm reference for the
855 * card device and also claims the host.
856 */
857void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858{
859 pm_runtime_get_sync(&card->dev);
860 __mmc_claim_host(card->host, ctx, NULL);
861}
862EXPORT_SYMBOL(mmc_get_card);
863
864/*
865 * This is a helper function, which releases the host and drops the runtime
866 * pm reference for the card device.
867 */
868void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869{
870 struct mmc_host *host = card->host;
871
872 WARN_ON(ctx && host->claimer != ctx);
873
874 mmc_release_host(host);
875 pm_runtime_mark_last_busy(&card->dev);
876 pm_runtime_put_autosuspend(&card->dev);
877}
878EXPORT_SYMBOL(mmc_put_card);
879
880/*
881 * Internal function that does the actual ios call to the host driver,
882 * optionally printing some debug output.
883 */
884static inline void mmc_set_ios(struct mmc_host *host)
885{
886 struct mmc_ios *ios = &host->ios;
887
888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 "width %u timing %u\n",
890 mmc_hostname(host), ios->clock, ios->bus_mode,
891 ios->power_mode, ios->chip_select, ios->vdd,
892 1 << ios->bus_width, ios->timing);
893
894 host->ops->set_ios(host, ios);
895}
896
897/*
898 * Control chip select pin on a host.
899 */
900void mmc_set_chip_select(struct mmc_host *host, int mode)
901{
902 host->ios.chip_select = mode;
903 mmc_set_ios(host);
904}
905
906/*
907 * Sets the host clock to the highest possible frequency that
908 * is below "hz".
909 */
910void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911{
912 WARN_ON(hz && hz < host->f_min);
913
914 if (hz > host->f_max)
915 hz = host->f_max;
916
917 host->ios.clock = hz;
918 mmc_set_ios(host);
919}
920
921int mmc_execute_tuning(struct mmc_card *card)
922{
923 struct mmc_host *host = card->host;
924 u32 opcode;
925 int err;
926
927 if (!host->ops->execute_tuning)
928 return 0;
929
930 if (host->cqe_on)
931 host->cqe_ops->cqe_off(host);
932
933 if (mmc_card_mmc(card))
934 opcode = MMC_SEND_TUNING_BLOCK_HS200;
935 else
936 opcode = MMC_SEND_TUNING_BLOCK;
937
938 err = host->ops->execute_tuning(host, opcode);
939
940 if (err) {
941 pr_err("%s: tuning execution failed: %d\n",
942 mmc_hostname(host), err);
943 } else {
944 host->retune_now = 0;
945 host->need_retune = 0;
946 mmc_retune_enable(host);
947 }
948
949 return err;
950}
951
952/*
953 * Change the bus mode (open drain/push-pull) of a host.
954 */
955void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
956{
957 host->ios.bus_mode = mode;
958 mmc_set_ios(host);
959}
960
961/*
962 * Change data bus width of a host.
963 */
964void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
965{
966 host->ios.bus_width = width;
967 mmc_set_ios(host);
968}
969
970/*
971 * Set initial state after a power cycle or a hw_reset.
972 */
973void mmc_set_initial_state(struct mmc_host *host)
974{
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 mmc_retune_disable(host);
979
980 if (mmc_host_is_spi(host))
981 host->ios.chip_select = MMC_CS_HIGH;
982 else
983 host->ios.chip_select = MMC_CS_DONTCARE;
984 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
985 host->ios.bus_width = MMC_BUS_WIDTH_1;
986 host->ios.timing = MMC_TIMING_LEGACY;
987 host->ios.drv_type = 0;
988 host->ios.enhanced_strobe = false;
989
990 /*
991 * Make sure we are in non-enhanced strobe mode before we
992 * actually enable it in ext_csd.
993 */
994 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
995 host->ops->hs400_enhanced_strobe)
996 host->ops->hs400_enhanced_strobe(host, &host->ios);
997
998 mmc_set_ios(host);
999
1000 mmc_crypto_set_initial_state(host);
1001}
1002
1003/**
1004 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1005 * @vdd: voltage (mV)
1006 * @low_bits: prefer low bits in boundary cases
1007 *
1008 * This function returns the OCR bit number according to the provided @vdd
1009 * value. If conversion is not possible a negative errno value returned.
1010 *
1011 * Depending on the @low_bits flag the function prefers low or high OCR bits
1012 * on boundary voltages. For example,
1013 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1014 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1015 *
1016 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1017 */
1018static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1019{
1020 const int max_bit = ilog2(MMC_VDD_35_36);
1021 int bit;
1022
1023 if (vdd < 1650 || vdd > 3600)
1024 return -EINVAL;
1025
1026 if (vdd >= 1650 && vdd <= 1950)
1027 return ilog2(MMC_VDD_165_195);
1028
1029 if (low_bits)
1030 vdd -= 1;
1031
1032 /* Base 2000 mV, step 100 mV, bit's base 8. */
1033 bit = (vdd - 2000) / 100 + 8;
1034 if (bit > max_bit)
1035 return max_bit;
1036 return bit;
1037}
1038
1039/**
1040 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1041 * @vdd_min: minimum voltage value (mV)
1042 * @vdd_max: maximum voltage value (mV)
1043 *
1044 * This function returns the OCR mask bits according to the provided @vdd_min
1045 * and @vdd_max values. If conversion is not possible the function returns 0.
1046 *
1047 * Notes wrt boundary cases:
1048 * This function sets the OCR bits for all boundary voltages, for example
1049 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1050 * MMC_VDD_34_35 mask.
1051 */
1052u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1053{
1054 u32 mask = 0;
1055
1056 if (vdd_max < vdd_min)
1057 return 0;
1058
1059 /* Prefer high bits for the boundary vdd_max values. */
1060 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1061 if (vdd_max < 0)
1062 return 0;
1063
1064 /* Prefer low bits for the boundary vdd_min values. */
1065 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1066 if (vdd_min < 0)
1067 return 0;
1068
1069 /* Fill the mask, from max bit to min bit. */
1070 while (vdd_max >= vdd_min)
1071 mask |= 1 << vdd_max--;
1072
1073 return mask;
1074}
1075
1076static int mmc_of_get_func_num(struct device_node *node)
1077{
1078 u32 reg;
1079 int ret;
1080
1081 ret = of_property_read_u32(node, "reg", ®);
1082 if (ret < 0)
1083 return ret;
1084
1085 return reg;
1086}
1087
1088struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1089 unsigned func_num)
1090{
1091 struct device_node *node;
1092
1093 if (!host->parent || !host->parent->of_node)
1094 return NULL;
1095
1096 for_each_child_of_node(host->parent->of_node, node) {
1097 if (mmc_of_get_func_num(node) == func_num)
1098 return node;
1099 }
1100
1101 return NULL;
1102}
1103
1104/*
1105 * Mask off any voltages we don't support and select
1106 * the lowest voltage
1107 */
1108u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1109{
1110 int bit;
1111
1112 /*
1113 * Sanity check the voltages that the card claims to
1114 * support.
1115 */
1116 if (ocr & 0x7F) {
1117 dev_warn(mmc_dev(host),
1118 "card claims to support voltages below defined range\n");
1119 ocr &= ~0x7F;
1120 }
1121
1122 ocr &= host->ocr_avail;
1123 if (!ocr) {
1124 dev_warn(mmc_dev(host), "no support for card's volts\n");
1125 return 0;
1126 }
1127
1128 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1129 bit = ffs(ocr) - 1;
1130 ocr &= 3 << bit;
1131 mmc_power_cycle(host, ocr);
1132 } else {
1133 bit = fls(ocr) - 1;
1134 ocr &= 3 << bit;
1135 if (bit != host->ios.vdd)
1136 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1137 }
1138
1139 return ocr;
1140}
1141
1142int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1143{
1144 int err = 0;
1145 int old_signal_voltage = host->ios.signal_voltage;
1146
1147 host->ios.signal_voltage = signal_voltage;
1148 if (host->ops->start_signal_voltage_switch)
1149 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1150
1151 if (err)
1152 host->ios.signal_voltage = old_signal_voltage;
1153
1154 return err;
1155
1156}
1157
1158void mmc_set_initial_signal_voltage(struct mmc_host *host)
1159{
1160 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1161 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1162 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1163 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1164 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1165 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1166 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1167}
1168
1169int mmc_host_set_uhs_voltage(struct mmc_host *host)
1170{
1171 u32 clock;
1172
1173 /*
1174 * During a signal voltage level switch, the clock must be gated
1175 * for 5 ms according to the SD spec
1176 */
1177 clock = host->ios.clock;
1178 host->ios.clock = 0;
1179 mmc_set_ios(host);
1180
1181 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 return -EAGAIN;
1183
1184 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1185 mmc_delay(10);
1186 host->ios.clock = clock;
1187 mmc_set_ios(host);
1188
1189 return 0;
1190}
1191
1192int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1193{
1194 struct mmc_command cmd = {};
1195 int err = 0;
1196
1197 /*
1198 * If we cannot switch voltages, return failure so the caller
1199 * can continue without UHS mode
1200 */
1201 if (!host->ops->start_signal_voltage_switch)
1202 return -EPERM;
1203 if (!host->ops->card_busy)
1204 pr_warn("%s: cannot verify signal voltage switch\n",
1205 mmc_hostname(host));
1206
1207 cmd.opcode = SD_SWITCH_VOLTAGE;
1208 cmd.arg = 0;
1209 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1210
1211 err = mmc_wait_for_cmd(host, &cmd, 0);
1212 if (err)
1213 goto power_cycle;
1214
1215 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1216 return -EIO;
1217
1218 /*
1219 * The card should drive cmd and dat[0:3] low immediately
1220 * after the response of cmd11, but wait 1 ms to be sure
1221 */
1222 mmc_delay(1);
1223 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1224 err = -EAGAIN;
1225 goto power_cycle;
1226 }
1227
1228 if (mmc_host_set_uhs_voltage(host)) {
1229 /*
1230 * Voltages may not have been switched, but we've already
1231 * sent CMD11, so a power cycle is required anyway
1232 */
1233 err = -EAGAIN;
1234 goto power_cycle;
1235 }
1236
1237 /* Wait for at least 1 ms according to spec */
1238 mmc_delay(1);
1239
1240 /*
1241 * Failure to switch is indicated by the card holding
1242 * dat[0:3] low
1243 */
1244 if (host->ops->card_busy && host->ops->card_busy(host))
1245 err = -EAGAIN;
1246
1247power_cycle:
1248 if (err) {
1249 pr_debug("%s: Signal voltage switch failed, "
1250 "power cycling card\n", mmc_hostname(host));
1251 mmc_power_cycle(host, ocr);
1252 }
1253
1254 return err;
1255}
1256
1257/*
1258 * Select timing parameters for host.
1259 */
1260void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261{
1262 host->ios.timing = timing;
1263 mmc_set_ios(host);
1264}
1265
1266/*
1267 * Select appropriate driver type for host.
1268 */
1269void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1270{
1271 host->ios.drv_type = drv_type;
1272 mmc_set_ios(host);
1273}
1274
1275int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1276 int card_drv_type, int *drv_type)
1277{
1278 struct mmc_host *host = card->host;
1279 int host_drv_type = SD_DRIVER_TYPE_B;
1280
1281 *drv_type = 0;
1282
1283 if (!host->ops->select_drive_strength)
1284 return 0;
1285
1286 /* Use SD definition of driver strength for hosts */
1287 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1288 host_drv_type |= SD_DRIVER_TYPE_A;
1289
1290 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1291 host_drv_type |= SD_DRIVER_TYPE_C;
1292
1293 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1294 host_drv_type |= SD_DRIVER_TYPE_D;
1295
1296 /*
1297 * The drive strength that the hardware can support
1298 * depends on the board design. Pass the appropriate
1299 * information and let the hardware specific code
1300 * return what is possible given the options
1301 */
1302 return host->ops->select_drive_strength(card, max_dtr,
1303 host_drv_type,
1304 card_drv_type,
1305 drv_type);
1306}
1307
1308/*
1309 * Apply power to the MMC stack. This is a two-stage process.
1310 * First, we enable power to the card without the clock running.
1311 * We then wait a bit for the power to stabilise. Finally,
1312 * enable the bus drivers and clock to the card.
1313 *
1314 * We must _NOT_ enable the clock prior to power stablising.
1315 *
1316 * If a host does all the power sequencing itself, ignore the
1317 * initial MMC_POWER_UP stage.
1318 */
1319void mmc_power_up(struct mmc_host *host, u32 ocr)
1320{
1321 if (host->ios.power_mode == MMC_POWER_ON)
1322 return;
1323
1324 mmc_pwrseq_pre_power_on(host);
1325
1326 host->ios.vdd = fls(ocr) - 1;
1327 host->ios.power_mode = MMC_POWER_UP;
1328 /* Set initial state and call mmc_set_ios */
1329 mmc_set_initial_state(host);
1330
1331 mmc_set_initial_signal_voltage(host);
1332
1333 /*
1334 * This delay should be sufficient to allow the power supply
1335 * to reach the minimum voltage.
1336 */
1337 mmc_delay(host->ios.power_delay_ms);
1338
1339 mmc_pwrseq_post_power_on(host);
1340
1341 host->ios.clock = host->f_init;
1342
1343 host->ios.power_mode = MMC_POWER_ON;
1344 mmc_set_ios(host);
1345
1346 /*
1347 * This delay must be at least 74 clock sizes, or 1 ms, or the
1348 * time required to reach a stable voltage.
1349 */
1350 mmc_delay(host->ios.power_delay_ms);
1351}
1352
1353void mmc_power_off(struct mmc_host *host)
1354{
1355 if (host->ios.power_mode == MMC_POWER_OFF)
1356 return;
1357
1358 mmc_pwrseq_power_off(host);
1359
1360 host->ios.clock = 0;
1361 host->ios.vdd = 0;
1362
1363 host->ios.power_mode = MMC_POWER_OFF;
1364 /* Set initial state and call mmc_set_ios */
1365 mmc_set_initial_state(host);
1366
1367 /*
1368 * Some configurations, such as the 802.11 SDIO card in the OLPC
1369 * XO-1.5, require a short delay after poweroff before the card
1370 * can be successfully turned on again.
1371 */
1372 mmc_delay(1);
1373}
1374
1375void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1376{
1377 mmc_power_off(host);
1378 /* Wait at least 1 ms according to SD spec */
1379 mmc_delay(1);
1380 mmc_power_up(host, ocr);
1381}
1382
1383/*
1384 * Assign a mmc bus handler to a host. Only one bus handler may control a
1385 * host at any given time.
1386 */
1387void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1388{
1389 host->bus_ops = ops;
1390}
1391
1392/*
1393 * Remove the current bus handler from a host.
1394 */
1395void mmc_detach_bus(struct mmc_host *host)
1396{
1397 host->bus_ops = NULL;
1398}
1399
1400void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1401{
1402 /*
1403 * Prevent system sleep for 5s to allow user space to consume the
1404 * corresponding uevent. This is especially useful, when CD irq is used
1405 * as a system wakeup, but doesn't hurt in other cases.
1406 */
1407 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1408 __pm_wakeup_event(host->ws, 5000);
1409
1410 host->detect_change = 1;
1411 mmc_schedule_delayed_work(&host->detect, delay);
1412}
1413
1414/**
1415 * mmc_detect_change - process change of state on a MMC socket
1416 * @host: host which changed state.
1417 * @delay: optional delay to wait before detection (jiffies)
1418 *
1419 * MMC drivers should call this when they detect a card has been
1420 * inserted or removed. The MMC layer will confirm that any
1421 * present card is still functional, and initialize any newly
1422 * inserted.
1423 */
1424void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1425{
1426 _mmc_detect_change(host, delay, true);
1427}
1428EXPORT_SYMBOL(mmc_detect_change);
1429
1430void mmc_init_erase(struct mmc_card *card)
1431{
1432 unsigned int sz;
1433
1434 if (is_power_of_2(card->erase_size))
1435 card->erase_shift = ffs(card->erase_size) - 1;
1436 else
1437 card->erase_shift = 0;
1438
1439 /*
1440 * It is possible to erase an arbitrarily large area of an SD or MMC
1441 * card. That is not desirable because it can take a long time
1442 * (minutes) potentially delaying more important I/O, and also the
1443 * timeout calculations become increasingly hugely over-estimated.
1444 * Consequently, 'pref_erase' is defined as a guide to limit erases
1445 * to that size and alignment.
1446 *
1447 * For SD cards that define Allocation Unit size, limit erases to one
1448 * Allocation Unit at a time.
1449 * For MMC, have a stab at ai good value and for modern cards it will
1450 * end up being 4MiB. Note that if the value is too small, it can end
1451 * up taking longer to erase. Also note, erase_size is already set to
1452 * High Capacity Erase Size if available when this function is called.
1453 */
1454 if (mmc_card_sd(card) && card->ssr.au) {
1455 card->pref_erase = card->ssr.au;
1456 card->erase_shift = ffs(card->ssr.au) - 1;
1457 } else if (card->erase_size) {
1458 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1459 if (sz < 128)
1460 card->pref_erase = 512 * 1024 / 512;
1461 else if (sz < 512)
1462 card->pref_erase = 1024 * 1024 / 512;
1463 else if (sz < 1024)
1464 card->pref_erase = 2 * 1024 * 1024 / 512;
1465 else
1466 card->pref_erase = 4 * 1024 * 1024 / 512;
1467 if (card->pref_erase < card->erase_size)
1468 card->pref_erase = card->erase_size;
1469 else {
1470 sz = card->pref_erase % card->erase_size;
1471 if (sz)
1472 card->pref_erase += card->erase_size - sz;
1473 }
1474 } else
1475 card->pref_erase = 0;
1476}
1477
1478static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1479 unsigned int arg, unsigned int qty)
1480{
1481 unsigned int erase_timeout;
1482
1483 if (arg == MMC_DISCARD_ARG ||
1484 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1485 erase_timeout = card->ext_csd.trim_timeout;
1486 } else if (card->ext_csd.erase_group_def & 1) {
1487 /* High Capacity Erase Group Size uses HC timeouts */
1488 if (arg == MMC_TRIM_ARG)
1489 erase_timeout = card->ext_csd.trim_timeout;
1490 else
1491 erase_timeout = card->ext_csd.hc_erase_timeout;
1492 } else {
1493 /* CSD Erase Group Size uses write timeout */
1494 unsigned int mult = (10 << card->csd.r2w_factor);
1495 unsigned int timeout_clks = card->csd.taac_clks * mult;
1496 unsigned int timeout_us;
1497
1498 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1499 if (card->csd.taac_ns < 1000000)
1500 timeout_us = (card->csd.taac_ns * mult) / 1000;
1501 else
1502 timeout_us = (card->csd.taac_ns / 1000) * mult;
1503
1504 /*
1505 * ios.clock is only a target. The real clock rate might be
1506 * less but not that much less, so fudge it by multiplying by 2.
1507 */
1508 timeout_clks <<= 1;
1509 timeout_us += (timeout_clks * 1000) /
1510 (card->host->ios.clock / 1000);
1511
1512 erase_timeout = timeout_us / 1000;
1513
1514 /*
1515 * Theoretically, the calculation could underflow so round up
1516 * to 1ms in that case.
1517 */
1518 if (!erase_timeout)
1519 erase_timeout = 1;
1520 }
1521
1522 /* Multiplier for secure operations */
1523 if (arg & MMC_SECURE_ARGS) {
1524 if (arg == MMC_SECURE_ERASE_ARG)
1525 erase_timeout *= card->ext_csd.sec_erase_mult;
1526 else
1527 erase_timeout *= card->ext_csd.sec_trim_mult;
1528 }
1529
1530 erase_timeout *= qty;
1531
1532 /*
1533 * Ensure at least a 1 second timeout for SPI as per
1534 * 'mmc_set_data_timeout()'
1535 */
1536 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1537 erase_timeout = 1000;
1538
1539 return erase_timeout;
1540}
1541
1542static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1543 unsigned int arg,
1544 unsigned int qty)
1545{
1546 unsigned int erase_timeout;
1547
1548 /* for DISCARD none of the below calculation applies.
1549 * the busy timeout is 250msec per discard command.
1550 */
1551 if (arg == SD_DISCARD_ARG)
1552 return SD_DISCARD_TIMEOUT_MS;
1553
1554 if (card->ssr.erase_timeout) {
1555 /* Erase timeout specified in SD Status Register (SSR) */
1556 erase_timeout = card->ssr.erase_timeout * qty +
1557 card->ssr.erase_offset;
1558 } else {
1559 /*
1560 * Erase timeout not specified in SD Status Register (SSR) so
1561 * use 250ms per write block.
1562 */
1563 erase_timeout = 250 * qty;
1564 }
1565
1566 /* Must not be less than 1 second */
1567 if (erase_timeout < 1000)
1568 erase_timeout = 1000;
1569
1570 return erase_timeout;
1571}
1572
1573static unsigned int mmc_erase_timeout(struct mmc_card *card,
1574 unsigned int arg,
1575 unsigned int qty)
1576{
1577 if (mmc_card_sd(card))
1578 return mmc_sd_erase_timeout(card, arg, qty);
1579 else
1580 return mmc_mmc_erase_timeout(card, arg, qty);
1581}
1582
1583static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1584 unsigned int to, unsigned int arg)
1585{
1586 struct mmc_command cmd = {};
1587 unsigned int qty = 0, busy_timeout = 0;
1588 bool use_r1b_resp;
1589 int err;
1590
1591 mmc_retune_hold(card->host);
1592
1593 /*
1594 * qty is used to calculate the erase timeout which depends on how many
1595 * erase groups (or allocation units in SD terminology) are affected.
1596 * We count erasing part of an erase group as one erase group.
1597 * For SD, the allocation units are always a power of 2. For MMC, the
1598 * erase group size is almost certainly also power of 2, but it does not
1599 * seem to insist on that in the JEDEC standard, so we fall back to
1600 * division in that case. SD may not specify an allocation unit size,
1601 * in which case the timeout is based on the number of write blocks.
1602 *
1603 * Note that the timeout for secure trim 2 will only be correct if the
1604 * number of erase groups specified is the same as the total of all
1605 * preceding secure trim 1 commands. Since the power may have been
1606 * lost since the secure trim 1 commands occurred, it is generally
1607 * impossible to calculate the secure trim 2 timeout correctly.
1608 */
1609 if (card->erase_shift)
1610 qty += ((to >> card->erase_shift) -
1611 (from >> card->erase_shift)) + 1;
1612 else if (mmc_card_sd(card))
1613 qty += to - from + 1;
1614 else
1615 qty += ((to / card->erase_size) -
1616 (from / card->erase_size)) + 1;
1617
1618 if (!mmc_card_blockaddr(card)) {
1619 from <<= 9;
1620 to <<= 9;
1621 }
1622
1623 if (mmc_card_sd(card))
1624 cmd.opcode = SD_ERASE_WR_BLK_START;
1625 else
1626 cmd.opcode = MMC_ERASE_GROUP_START;
1627 cmd.arg = from;
1628 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1629 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1630 if (err) {
1631 pr_err("mmc_erase: group start error %d, "
1632 "status %#x\n", err, cmd.resp[0]);
1633 err = -EIO;
1634 goto out;
1635 }
1636
1637 memset(&cmd, 0, sizeof(struct mmc_command));
1638 if (mmc_card_sd(card))
1639 cmd.opcode = SD_ERASE_WR_BLK_END;
1640 else
1641 cmd.opcode = MMC_ERASE_GROUP_END;
1642 cmd.arg = to;
1643 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1644 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1645 if (err) {
1646 pr_err("mmc_erase: group end error %d, status %#x\n",
1647 err, cmd.resp[0]);
1648 err = -EIO;
1649 goto out;
1650 }
1651
1652 memset(&cmd, 0, sizeof(struct mmc_command));
1653 cmd.opcode = MMC_ERASE;
1654 cmd.arg = arg;
1655 busy_timeout = mmc_erase_timeout(card, arg, qty);
1656 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1657
1658 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659 if (err) {
1660 pr_err("mmc_erase: erase error %d, status %#x\n",
1661 err, cmd.resp[0]);
1662 err = -EIO;
1663 goto out;
1664 }
1665
1666 if (mmc_host_is_spi(card->host))
1667 goto out;
1668
1669 /*
1670 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1671 * shall be avoided.
1672 */
1673 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1674 goto out;
1675
1676 /* Let's poll to find out when the erase operation completes. */
1677 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1678
1679out:
1680 mmc_retune_release(card->host);
1681 return err;
1682}
1683
1684static unsigned int mmc_align_erase_size(struct mmc_card *card,
1685 unsigned int *from,
1686 unsigned int *to,
1687 unsigned int nr)
1688{
1689 unsigned int from_new = *from, nr_new = nr, rem;
1690
1691 /*
1692 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1693 * to align the erase size efficiently.
1694 */
1695 if (is_power_of_2(card->erase_size)) {
1696 unsigned int temp = from_new;
1697
1698 from_new = round_up(temp, card->erase_size);
1699 rem = from_new - temp;
1700
1701 if (nr_new > rem)
1702 nr_new -= rem;
1703 else
1704 return 0;
1705
1706 nr_new = round_down(nr_new, card->erase_size);
1707 } else {
1708 rem = from_new % card->erase_size;
1709 if (rem) {
1710 rem = card->erase_size - rem;
1711 from_new += rem;
1712 if (nr_new > rem)
1713 nr_new -= rem;
1714 else
1715 return 0;
1716 }
1717
1718 rem = nr_new % card->erase_size;
1719 if (rem)
1720 nr_new -= rem;
1721 }
1722
1723 if (nr_new == 0)
1724 return 0;
1725
1726 *to = from_new + nr_new;
1727 *from = from_new;
1728
1729 return nr_new;
1730}
1731
1732/**
1733 * mmc_erase - erase sectors.
1734 * @card: card to erase
1735 * @from: first sector to erase
1736 * @nr: number of sectors to erase
1737 * @arg: erase command argument
1738 *
1739 * Caller must claim host before calling this function.
1740 */
1741int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1742 unsigned int arg)
1743{
1744 unsigned int rem, to = from + nr;
1745 int err;
1746
1747 if (!(card->csd.cmdclass & CCC_ERASE))
1748 return -EOPNOTSUPP;
1749
1750 if (!card->erase_size)
1751 return -EOPNOTSUPP;
1752
1753 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1754 return -EOPNOTSUPP;
1755
1756 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1757 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1758 return -EOPNOTSUPP;
1759
1760 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1761 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1762 return -EOPNOTSUPP;
1763
1764 if (arg == MMC_SECURE_ERASE_ARG) {
1765 if (from % card->erase_size || nr % card->erase_size)
1766 return -EINVAL;
1767 }
1768
1769 if (arg == MMC_ERASE_ARG)
1770 nr = mmc_align_erase_size(card, &from, &to, nr);
1771
1772 if (nr == 0)
1773 return 0;
1774
1775 if (to <= from)
1776 return -EINVAL;
1777
1778 /* 'from' and 'to' are inclusive */
1779 to -= 1;
1780
1781 /*
1782 * Special case where only one erase-group fits in the timeout budget:
1783 * If the region crosses an erase-group boundary on this particular
1784 * case, we will be trimming more than one erase-group which, does not
1785 * fit in the timeout budget of the controller, so we need to split it
1786 * and call mmc_do_erase() twice if necessary. This special case is
1787 * identified by the card->eg_boundary flag.
1788 */
1789 rem = card->erase_size - (from % card->erase_size);
1790 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1791 err = mmc_do_erase(card, from, from + rem - 1, arg);
1792 from += rem;
1793 if ((err) || (to <= from))
1794 return err;
1795 }
1796
1797 return mmc_do_erase(card, from, to, arg);
1798}
1799EXPORT_SYMBOL(mmc_erase);
1800
1801int mmc_can_erase(struct mmc_card *card)
1802{
1803 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1804 return 1;
1805 return 0;
1806}
1807EXPORT_SYMBOL(mmc_can_erase);
1808
1809int mmc_can_trim(struct mmc_card *card)
1810{
1811 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1812 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1813 return 1;
1814 return 0;
1815}
1816EXPORT_SYMBOL(mmc_can_trim);
1817
1818int mmc_can_discard(struct mmc_card *card)
1819{
1820 /*
1821 * As there's no way to detect the discard support bit at v4.5
1822 * use the s/w feature support filed.
1823 */
1824 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1825 return 1;
1826 return 0;
1827}
1828EXPORT_SYMBOL(mmc_can_discard);
1829
1830int mmc_can_sanitize(struct mmc_card *card)
1831{
1832 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1833 return 0;
1834 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1835 return 1;
1836 return 0;
1837}
1838
1839int mmc_can_secure_erase_trim(struct mmc_card *card)
1840{
1841 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1842 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1843 return 1;
1844 return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1847
1848int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1849 unsigned int nr)
1850{
1851 if (!card->erase_size)
1852 return 0;
1853 if (from % card->erase_size || nr % card->erase_size)
1854 return 0;
1855 return 1;
1856}
1857EXPORT_SYMBOL(mmc_erase_group_aligned);
1858
1859static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1860 unsigned int arg)
1861{
1862 struct mmc_host *host = card->host;
1863 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1864 unsigned int last_timeout = 0;
1865 unsigned int max_busy_timeout = host->max_busy_timeout ?
1866 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1867
1868 if (card->erase_shift) {
1869 max_qty = UINT_MAX >> card->erase_shift;
1870 min_qty = card->pref_erase >> card->erase_shift;
1871 } else if (mmc_card_sd(card)) {
1872 max_qty = UINT_MAX;
1873 min_qty = card->pref_erase;
1874 } else {
1875 max_qty = UINT_MAX / card->erase_size;
1876 min_qty = card->pref_erase / card->erase_size;
1877 }
1878
1879 /*
1880 * We should not only use 'host->max_busy_timeout' as the limitation
1881 * when deciding the max discard sectors. We should set a balance value
1882 * to improve the erase speed, and it can not get too long timeout at
1883 * the same time.
1884 *
1885 * Here we set 'card->pref_erase' as the minimal discard sectors no
1886 * matter what size of 'host->max_busy_timeout', but if the
1887 * 'host->max_busy_timeout' is large enough for more discard sectors,
1888 * then we can continue to increase the max discard sectors until we
1889 * get a balance value. In cases when the 'host->max_busy_timeout'
1890 * isn't specified, use the default max erase timeout.
1891 */
1892 do {
1893 y = 0;
1894 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895 timeout = mmc_erase_timeout(card, arg, qty + x);
1896
1897 if (qty + x > min_qty && timeout > max_busy_timeout)
1898 break;
1899
1900 if (timeout < last_timeout)
1901 break;
1902 last_timeout = timeout;
1903 y = x;
1904 }
1905 qty += y;
1906 } while (y);
1907
1908 if (!qty)
1909 return 0;
1910
1911 /*
1912 * When specifying a sector range to trim, chances are we might cross
1913 * an erase-group boundary even if the amount of sectors is less than
1914 * one erase-group.
1915 * If we can only fit one erase-group in the controller timeout budget,
1916 * we have to care that erase-group boundaries are not crossed by a
1917 * single trim operation. We flag that special case with "eg_boundary".
1918 * In all other cases we can just decrement qty and pretend that we
1919 * always touch (qty + 1) erase-groups as a simple optimization.
1920 */
1921 if (qty == 1)
1922 card->eg_boundary = 1;
1923 else
1924 qty--;
1925
1926 /* Convert qty to sectors */
1927 if (card->erase_shift)
1928 max_discard = qty << card->erase_shift;
1929 else if (mmc_card_sd(card))
1930 max_discard = qty + 1;
1931 else
1932 max_discard = qty * card->erase_size;
1933
1934 return max_discard;
1935}
1936
1937unsigned int mmc_calc_max_discard(struct mmc_card *card)
1938{
1939 struct mmc_host *host = card->host;
1940 unsigned int max_discard, max_trim;
1941
1942 /*
1943 * Without erase_group_def set, MMC erase timeout depends on clock
1944 * frequence which can change. In that case, the best choice is
1945 * just the preferred erase size.
1946 */
1947 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1948 return card->pref_erase;
1949
1950 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1951 if (mmc_can_trim(card)) {
1952 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1953 if (max_trim < max_discard || max_discard == 0)
1954 max_discard = max_trim;
1955 } else if (max_discard < card->erase_size) {
1956 max_discard = 0;
1957 }
1958 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1959 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1960 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1961 return max_discard;
1962}
1963EXPORT_SYMBOL(mmc_calc_max_discard);
1964
1965bool mmc_card_is_blockaddr(struct mmc_card *card)
1966{
1967 return card ? mmc_card_blockaddr(card) : false;
1968}
1969EXPORT_SYMBOL(mmc_card_is_blockaddr);
1970
1971int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1972{
1973 struct mmc_command cmd = {};
1974
1975 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1976 mmc_card_hs400(card) || mmc_card_hs400es(card))
1977 return 0;
1978
1979 cmd.opcode = MMC_SET_BLOCKLEN;
1980 cmd.arg = blocklen;
1981 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1982 return mmc_wait_for_cmd(card->host, &cmd, 5);
1983}
1984EXPORT_SYMBOL(mmc_set_blocklen);
1985
1986static void mmc_hw_reset_for_init(struct mmc_host *host)
1987{
1988 mmc_pwrseq_reset(host);
1989
1990 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1991 return;
1992 host->ops->hw_reset(host);
1993}
1994
1995/**
1996 * mmc_hw_reset - reset the card in hardware
1997 * @host: MMC host to which the card is attached
1998 *
1999 * Hard reset the card. This function is only for upper layers, like the
2000 * block layer or card drivers. You cannot use it in host drivers (struct
2001 * mmc_card might be gone then).
2002 *
2003 * Return: 0 on success, -errno on failure
2004 */
2005int mmc_hw_reset(struct mmc_host *host)
2006{
2007 int ret;
2008
2009 ret = host->bus_ops->hw_reset(host);
2010 if (ret < 0)
2011 pr_warn("%s: tried to HW reset card, got error %d\n",
2012 mmc_hostname(host), ret);
2013
2014 return ret;
2015}
2016EXPORT_SYMBOL(mmc_hw_reset);
2017
2018int mmc_sw_reset(struct mmc_host *host)
2019{
2020 int ret;
2021
2022 if (!host->bus_ops->sw_reset)
2023 return -EOPNOTSUPP;
2024
2025 ret = host->bus_ops->sw_reset(host);
2026 if (ret)
2027 pr_warn("%s: tried to SW reset card, got error %d\n",
2028 mmc_hostname(host), ret);
2029
2030 return ret;
2031}
2032EXPORT_SYMBOL(mmc_sw_reset);
2033
2034static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2035{
2036 host->f_init = freq;
2037
2038 pr_debug("%s: %s: trying to init card at %u Hz\n",
2039 mmc_hostname(host), __func__, host->f_init);
2040
2041 mmc_power_up(host, host->ocr_avail);
2042
2043 /*
2044 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045 * do a hardware reset if possible.
2046 */
2047 mmc_hw_reset_for_init(host);
2048
2049 /*
2050 * sdio_reset sends CMD52 to reset card. Since we do not know
2051 * if the card is being re-initialized, just send it. CMD52
2052 * should be ignored by SD/eMMC cards.
2053 * Skip it if we already know that we do not support SDIO commands
2054 */
2055 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2056 sdio_reset(host);
2057
2058 mmc_go_idle(host);
2059
2060 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2061 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2062 goto out;
2063 if (mmc_card_sd_express(host))
2064 return 0;
2065 }
2066
2067 /* Order's important: probe SDIO, then SD, then MMC */
2068 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2069 if (!mmc_attach_sdio(host))
2070 return 0;
2071
2072 if (!(host->caps2 & MMC_CAP2_NO_SD))
2073 if (!mmc_attach_sd(host))
2074 return 0;
2075
2076 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2077 if (!mmc_attach_mmc(host))
2078 return 0;
2079
2080out:
2081 mmc_power_off(host);
2082 return -EIO;
2083}
2084
2085int _mmc_detect_card_removed(struct mmc_host *host)
2086{
2087 int ret;
2088
2089 if (!host->card || mmc_card_removed(host->card))
2090 return 1;
2091
2092 ret = host->bus_ops->alive(host);
2093
2094 /*
2095 * Card detect status and alive check may be out of sync if card is
2096 * removed slowly, when card detect switch changes while card/slot
2097 * pads are still contacted in hardware (refer to "SD Card Mechanical
2098 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2099 * detect work 200ms later for this case.
2100 */
2101 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2102 mmc_detect_change(host, msecs_to_jiffies(200));
2103 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2104 }
2105
2106 if (ret) {
2107 mmc_card_set_removed(host->card);
2108 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2109 }
2110
2111 return ret;
2112}
2113
2114int mmc_detect_card_removed(struct mmc_host *host)
2115{
2116 struct mmc_card *card = host->card;
2117 int ret;
2118
2119 WARN_ON(!host->claimed);
2120
2121 if (!card)
2122 return 1;
2123
2124 if (!mmc_card_is_removable(host))
2125 return 0;
2126
2127 ret = mmc_card_removed(card);
2128 /*
2129 * The card will be considered unchanged unless we have been asked to
2130 * detect a change or host requires polling to provide card detection.
2131 */
2132 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2133 return ret;
2134
2135 host->detect_change = 0;
2136 if (!ret) {
2137 ret = _mmc_detect_card_removed(host);
2138 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2139 /*
2140 * Schedule a detect work as soon as possible to let a
2141 * rescan handle the card removal.
2142 */
2143 cancel_delayed_work(&host->detect);
2144 _mmc_detect_change(host, 0, false);
2145 }
2146 }
2147
2148 return ret;
2149}
2150EXPORT_SYMBOL(mmc_detect_card_removed);
2151
2152void mmc_rescan(struct work_struct *work)
2153{
2154 struct mmc_host *host =
2155 container_of(work, struct mmc_host, detect.work);
2156 int i;
2157
2158 if (host->rescan_disable)
2159 return;
2160
2161 /* If there is a non-removable card registered, only scan once */
2162 if (!mmc_card_is_removable(host) && host->rescan_entered)
2163 return;
2164 host->rescan_entered = 1;
2165
2166 if (host->trigger_card_event && host->ops->card_event) {
2167 mmc_claim_host(host);
2168 host->ops->card_event(host);
2169 mmc_release_host(host);
2170 host->trigger_card_event = false;
2171 }
2172
2173 /* Verify a registered card to be functional, else remove it. */
2174 if (host->bus_ops)
2175 host->bus_ops->detect(host);
2176
2177 host->detect_change = 0;
2178
2179 /* if there still is a card present, stop here */
2180 if (host->bus_ops != NULL)
2181 goto out;
2182
2183 mmc_claim_host(host);
2184 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2185 host->ops->get_cd(host) == 0) {
2186 mmc_power_off(host);
2187 mmc_release_host(host);
2188 goto out;
2189 }
2190
2191 /* If an SD express card is present, then leave it as is. */
2192 if (mmc_card_sd_express(host)) {
2193 mmc_release_host(host);
2194 goto out;
2195 }
2196
2197 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2198 unsigned int freq = freqs[i];
2199 if (freq > host->f_max) {
2200 if (i + 1 < ARRAY_SIZE(freqs))
2201 continue;
2202 freq = host->f_max;
2203 }
2204 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2205 break;
2206 if (freqs[i] <= host->f_min)
2207 break;
2208 }
2209 mmc_release_host(host);
2210
2211 out:
2212 if (host->caps & MMC_CAP_NEEDS_POLL)
2213 mmc_schedule_delayed_work(&host->detect, HZ);
2214}
2215
2216void mmc_start_host(struct mmc_host *host)
2217{
2218 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2219 host->rescan_disable = 0;
2220
2221 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2222 mmc_claim_host(host);
2223 mmc_power_up(host, host->ocr_avail);
2224 mmc_release_host(host);
2225 }
2226
2227 mmc_gpiod_request_cd_irq(host);
2228 _mmc_detect_change(host, 0, false);
2229}
2230
2231void mmc_stop_host(struct mmc_host *host)
2232{
2233 if (host->slot.cd_irq >= 0) {
2234 mmc_gpio_set_cd_wake(host, false);
2235 disable_irq(host->slot.cd_irq);
2236 }
2237
2238 host->rescan_disable = 1;
2239 cancel_delayed_work_sync(&host->detect);
2240
2241 /* clear pm flags now and let card drivers set them as needed */
2242 host->pm_flags = 0;
2243
2244 if (host->bus_ops) {
2245 /* Calling bus_ops->remove() with a claimed host can deadlock */
2246 host->bus_ops->remove(host);
2247 mmc_claim_host(host);
2248 mmc_detach_bus(host);
2249 mmc_power_off(host);
2250 mmc_release_host(host);
2251 return;
2252 }
2253
2254 mmc_claim_host(host);
2255 mmc_power_off(host);
2256 mmc_release_host(host);
2257}
2258
2259static int __init mmc_init(void)
2260{
2261 int ret;
2262
2263 ret = mmc_register_bus();
2264 if (ret)
2265 return ret;
2266
2267 ret = mmc_register_host_class();
2268 if (ret)
2269 goto unregister_bus;
2270
2271 ret = sdio_register_bus();
2272 if (ret)
2273 goto unregister_host_class;
2274
2275 return 0;
2276
2277unregister_host_class:
2278 mmc_unregister_host_class();
2279unregister_bus:
2280 mmc_unregister_bus();
2281 return ret;
2282}
2283
2284static void __exit mmc_exit(void)
2285{
2286 sdio_unregister_bus();
2287 mmc_unregister_host_class();
2288 mmc_unregister_bus();
2289}
2290
2291subsys_initcall(mmc_init);
2292module_exit(mmc_exit);
2293
2294MODULE_LICENSE("GPL");