Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/suspend.h>
 
 
 
 
  27
  28#include <linux/mmc/card.h>
  29#include <linux/mmc/host.h>
  30#include <linux/mmc/mmc.h>
  31#include <linux/mmc/sd.h>
 
 
 
 
  32
  33#include "core.h"
 
 
  34#include "bus.h"
  35#include "host.h"
  36#include "sdio_bus.h"
 
  37
  38#include "mmc_ops.h"
  39#include "sd_ops.h"
  40#include "sdio_ops.h"
  41
  42static struct workqueue_struct *workqueue;
 
 
 
 
  43
  44/*
  45 * Enabling software CRCs on the data blocks can be a significant (30%)
  46 * performance cost, and for other reasons may not always be desired.
  47 * So we allow it it to be disabled.
  48 */
  49int use_spi_crc = 1;
  50module_param(use_spi_crc, bool, 0);
  51
  52/*
  53 * We normally treat cards as removed during suspend if they are not
  54 * known to be on a non-removable bus, to avoid the risk of writing
  55 * back data to a different card after resume.  Allow this to be
  56 * overridden if necessary.
  57 */
  58#ifdef CONFIG_MMC_UNSAFE_RESUME
  59int mmc_assume_removable;
  60#else
  61int mmc_assume_removable = 1;
  62#endif
  63EXPORT_SYMBOL(mmc_assume_removable);
  64module_param_named(removable, mmc_assume_removable, bool, 0644);
  65MODULE_PARM_DESC(
  66	removable,
  67	"MMC/SD cards are removable and may be removed during suspend");
  68
  69/*
  70 * Internal function. Schedule delayed work in the MMC work queue.
  71 */
  72static int mmc_schedule_delayed_work(struct delayed_work *work,
  73				     unsigned long delay)
  74{
  75	return queue_delayed_work(workqueue, work, delay);
 
 
 
 
 
 
  76}
  77
 
 
  78/*
  79 * Internal function. Flush all scheduled work from the MMC work queue.
 
  80 */
  81static void mmc_flush_scheduled_work(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82{
  83	flush_workqueue(workqueue);
 
 
 
 
 
 
  84}
 
  85
  86/**
  87 *	mmc_request_done - finish processing an MMC request
  88 *	@host: MMC host which completed request
  89 *	@mrq: MMC request which request
  90 *
  91 *	MMC drivers should call this function when they have completed
  92 *	their processing of a request.
  93 */
  94void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
  95{
  96	struct mmc_command *cmd = mrq->cmd;
  97	int err = cmd->error;
  98
 
 
 
 
 
 
 
 
 
  99	if (err && cmd->retries && mmc_host_is_spi(host)) {
 100		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 101			cmd->retries = 0;
 102	}
 103
 104	if (err && cmd->retries) {
 105		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 106			mmc_hostname(host), cmd->opcode, err);
 107
 108		cmd->retries--;
 109		cmd->error = 0;
 110		host->ops->request(host, mrq);
 111	} else {
 112		led_trigger_event(host->led, LED_OFF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113
 114		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 115			mmc_hostname(host), cmd->opcode, err,
 116			cmd->resp[0], cmd->resp[1],
 117			cmd->resp[2], cmd->resp[3]);
 118
 119		if (mrq->data) {
 120			pr_debug("%s:     %d bytes transferred: %d\n",
 121				mmc_hostname(host),
 122				mrq->data->bytes_xfered, mrq->data->error);
 123		}
 124
 125		if (mrq->stop) {
 126			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 127				mmc_hostname(host), mrq->stop->opcode,
 128				mrq->stop->error,
 129				mrq->stop->resp[0], mrq->stop->resp[1],
 130				mrq->stop->resp[2], mrq->stop->resp[3]);
 131		}
 132
 133		if (mrq->done)
 134			mrq->done(mrq);
 135
 136		mmc_host_clk_release(host);
 137	}
 
 
 
 
 
 
 138}
 139
 140EXPORT_SYMBOL(mmc_request_done);
 141
 142static void
 143mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 144{
 145#ifdef CONFIG_MMC_DEBUG
 146	unsigned int i, sz;
 147	struct scatterlist *sg;
 148#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 151		 mmc_hostname(host), mrq->cmd->opcode,
 152		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153
 154	if (mrq->data) {
 155		pr_debug("%s:     blksz %d blocks %d flags %08x "
 156			"tsac %d ms nsac %d\n",
 157			mmc_hostname(host), mrq->data->blksz,
 158			mrq->data->blocks, mrq->data->flags,
 159			mrq->data->timeout_ns / 1000000,
 160			mrq->data->timeout_clks);
 161	}
 162
 163	if (mrq->stop) {
 164		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 165			 mmc_hostname(host), mrq->stop->opcode,
 166			 mrq->stop->arg, mrq->stop->flags);
 167	}
 
 168
 169	WARN_ON(!host->claimed);
 
 
 
 170
 171	mrq->cmd->error = 0;
 172	mrq->cmd->mrq = mrq;
 
 
 
 
 
 
 
 173	if (mrq->data) {
 174		BUG_ON(mrq->data->blksz > host->max_blk_size);
 175		BUG_ON(mrq->data->blocks > host->max_blk_count);
 176		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 177			host->max_req_size);
 178
 179#ifdef CONFIG_MMC_DEBUG
 180		sz = 0;
 181		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 182			sz += sg->length;
 183		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 184#endif
 185
 186		mrq->cmd->data = mrq->data;
 187		mrq->data->error = 0;
 188		mrq->data->mrq = mrq;
 189		if (mrq->stop) {
 190			mrq->data->stop = mrq->stop;
 191			mrq->stop->error = 0;
 192			mrq->stop->mrq = mrq;
 193		}
 194	}
 195	mmc_host_clk_hold(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196	led_trigger_event(host->led, LED_FULL);
 197	host->ops->request(host, mrq);
 
 
 198}
 
 199
 200static void mmc_wait_done(struct mmc_request *mrq)
 201{
 202	complete(&mrq->completion);
 203}
 204
 205static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 
 
 206{
 
 
 
 
 207	init_completion(&mrq->completion);
 208	mrq->done = mmc_wait_done;
 209	mmc_start_request(host, mrq);
 
 
 
 
 
 
 
 
 210}
 211
 212static void mmc_wait_for_req_done(struct mmc_host *host,
 213				  struct mmc_request *mrq)
 214{
 215	wait_for_completion(&mrq->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216}
 
 217
 218/**
 219 *	mmc_pre_req - Prepare for a new request
 220 *	@host: MMC host to prepare command
 221 *	@mrq: MMC request to prepare for
 222 *	@is_first_req: true if there is no previous started request
 223 *                     that may run in parellel to this call, otherwise false
 224 *
 225 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 226 *	host prepare for the new request. Preparation of a request may be
 227 *	performed while another request is running on the host.
 228 */
 229static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 230		 bool is_first_req)
 231{
 232	if (host->ops->pre_req)
 233		host->ops->pre_req(host, mrq, is_first_req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 
 235
 236/**
 237 *	mmc_post_req - Post process a completed request
 238 *	@host: MMC host to post process command
 239 *	@mrq: MMC request to post process for
 240 *	@err: Error, if non zero, clean up any resources made in pre_req
 241 *
 242 *	Let the host post process a completed request. Post processing of
 243 *	a request may be performed while another reuqest is running.
 244 */
 245static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 246			 int err)
 247{
 248	if (host->ops->post_req)
 249		host->ops->post_req(host, mrq, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250}
 
 251
 252/**
 253 *	mmc_start_req - start a non-blocking request
 254 *	@host: MMC host to start command
 255 *	@areq: async request to start
 256 *	@error: out parameter returns 0 for success, otherwise non zero
 
 
 
 
 
 
 
 
 
 
 
 
 
 257 *
 258 *	Start a new MMC custom command request for a host.
 259 *	If there is on ongoing async request wait for completion
 260 *	of that request and start the new one and return.
 261 *	Does not wait for the new request to complete.
 262 *
 263 *      Returns the completed request, NULL in case of none completed.
 264 *	Wait for the an ongoing request (previoulsy started) to complete and
 265 *	return the completed request. If there is no ongoing request, NULL
 266 *	is returned without waiting. NULL is not an error condition.
 267 */
 268struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 269				    struct mmc_async_req *areq, int *error)
 270{
 271	int err = 0;
 272	struct mmc_async_req *data = host->areq;
 273
 274	/* Prepare a new request */
 275	if (areq)
 276		mmc_pre_req(host, areq->mrq, !host->areq);
 277
 278	if (host->areq) {
 279		mmc_wait_for_req_done(host, host->areq->mrq);
 280		err = host->areq->err_check(host->card, host->areq);
 281		if (err) {
 282			mmc_post_req(host, host->areq->mrq, 0);
 283			if (areq)
 284				mmc_post_req(host, areq->mrq, -EINVAL);
 285
 286			host->areq = NULL;
 287			goto out;
 288		}
 289	}
 
 290
 291	if (areq)
 292		__mmc_start_req(host, areq->mrq);
 293
 294	if (host->areq)
 295		mmc_post_req(host, host->areq->mrq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	host->areq = areq;
 298 out:
 299	if (error)
 300		*error = err;
 301	return data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302}
 303EXPORT_SYMBOL(mmc_start_req);
 304
 305/**
 306 *	mmc_wait_for_req - start a request and wait for completion
 307 *	@host: MMC host to start command
 308 *	@mrq: MMC request to start
 309 *
 310 *	Start a new MMC custom command request for a host, and wait
 311 *	for the command to complete. Does not attempt to parse the
 312 *	response.
 
 
 
 313 */
 314void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 315{
 316	__mmc_start_req(host, mrq);
 317	mmc_wait_for_req_done(host, mrq);
 
 
 318}
 319EXPORT_SYMBOL(mmc_wait_for_req);
 320
 321/**
 322 *	mmc_wait_for_cmd - start a command and wait for completion
 323 *	@host: MMC host to start command
 324 *	@cmd: MMC command to start
 325 *	@retries: maximum number of retries
 326 *
 327 *	Start a new MMC command for a host, and wait for the command
 328 *	to complete.  Return any error that occurred while the command
 329 *	was executing.  Do not attempt to parse the response.
 330 */
 331int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 332{
 333	struct mmc_request mrq = {0};
 334
 335	WARN_ON(!host->claimed);
 336
 337	memset(cmd->resp, 0, sizeof(cmd->resp));
 338	cmd->retries = retries;
 339
 340	mrq.cmd = cmd;
 341	cmd->data = NULL;
 342
 343	mmc_wait_for_req(host, &mrq);
 344
 345	return cmd->error;
 346}
 347
 348EXPORT_SYMBOL(mmc_wait_for_cmd);
 349
 350/**
 351 *	mmc_set_data_timeout - set the timeout for a data command
 352 *	@data: data phase for command
 353 *	@card: the MMC card associated with the data transfer
 354 *
 355 *	Computes the data timeout parameters according to the
 356 *	correct algorithm given the card type.
 357 */
 358void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 359{
 360	unsigned int mult;
 361
 362	/*
 363	 * SDIO cards only define an upper 1 s limit on access.
 364	 */
 365	if (mmc_card_sdio(card)) {
 366		data->timeout_ns = 1000000000;
 367		data->timeout_clks = 0;
 368		return;
 369	}
 370
 371	/*
 372	 * SD cards use a 100 multiplier rather than 10
 373	 */
 374	mult = mmc_card_sd(card) ? 100 : 10;
 375
 376	/*
 377	 * Scale up the multiplier (and therefore the timeout) by
 378	 * the r2w factor for writes.
 379	 */
 380	if (data->flags & MMC_DATA_WRITE)
 381		mult <<= card->csd.r2w_factor;
 382
 383	data->timeout_ns = card->csd.tacc_ns * mult;
 384	data->timeout_clks = card->csd.tacc_clks * mult;
 385
 386	/*
 387	 * SD cards also have an upper limit on the timeout.
 388	 */
 389	if (mmc_card_sd(card)) {
 390		unsigned int timeout_us, limit_us;
 391
 392		timeout_us = data->timeout_ns / 1000;
 393		if (mmc_host_clk_rate(card->host))
 394			timeout_us += data->timeout_clks * 1000 /
 395				(mmc_host_clk_rate(card->host) / 1000);
 396
 397		if (data->flags & MMC_DATA_WRITE)
 398			/*
 399			 * The limit is really 250 ms, but that is
 400			 * insufficient for some crappy cards.
 
 
 
 
 401			 */
 402			limit_us = 300000;
 403		else
 404			limit_us = 100000;
 405
 406		/*
 407		 * SDHC cards always use these fixed values.
 408		 */
 409		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 410			data->timeout_ns = limit_us * 1000;
 411			data->timeout_clks = 0;
 412		}
 
 
 
 
 413	}
 
 
 
 
 
 
 
 
 
 
 
 
 414	/*
 415	 * Some cards need very high timeouts if driven in SPI mode.
 416	 * The worst observed timeout was 900ms after writing a
 417	 * continuous stream of data until the internal logic
 418	 * overflowed.
 419	 */
 420	if (mmc_host_is_spi(card->host)) {
 421		if (data->flags & MMC_DATA_WRITE) {
 422			if (data->timeout_ns < 1000000000)
 423				data->timeout_ns = 1000000000;	/* 1s */
 424		} else {
 425			if (data->timeout_ns < 100000000)
 426				data->timeout_ns =  100000000;	/* 100ms */
 427		}
 428	}
 429}
 430EXPORT_SYMBOL(mmc_set_data_timeout);
 431
 432/**
 433 *	mmc_align_data_size - pads a transfer size to a more optimal value
 434 *	@card: the MMC card associated with the data transfer
 435 *	@sz: original transfer size
 436 *
 437 *	Pads the original data size with a number of extra bytes in
 438 *	order to avoid controller bugs and/or performance hits
 439 *	(e.g. some controllers revert to PIO for certain sizes).
 440 *
 441 *	Returns the improved size, which might be unmodified.
 442 *
 443 *	Note that this function is only relevant when issuing a
 444 *	single scatter gather entry.
 445 */
 446unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 
 447{
 448	/*
 449	 * FIXME: We don't have a system for the controller to tell
 450	 * the core about its problems yet, so for now we just 32-bit
 451	 * align the size.
 452	 */
 453	sz = ((sz + 3) / 4) * 4;
 454
 455	return sz;
 456}
 457EXPORT_SYMBOL(mmc_align_data_size);
 458
 459/**
 460 *	mmc_host_enable - enable a host.
 461 *	@host: mmc host to enable
 462 *
 463 *	Hosts that support power saving can use the 'enable' and 'disable'
 464 *	methods to exit and enter power saving states. For more information
 465 *	see comments for struct mmc_host_ops.
 466 */
 467int mmc_host_enable(struct mmc_host *host)
 468{
 469	if (!(host->caps & MMC_CAP_DISABLE))
 470		return 0;
 471
 472	if (host->en_dis_recurs)
 473		return 0;
 474
 475	if (host->nesting_cnt++)
 476		return 0;
 477
 478	cancel_delayed_work_sync(&host->disable);
 479
 480	if (host->enabled)
 481		return 0;
 482
 483	if (host->ops->enable) {
 484		int err;
 485
 486		host->en_dis_recurs = 1;
 487		err = host->ops->enable(host);
 488		host->en_dis_recurs = 0;
 489
 490		if (err) {
 491			pr_debug("%s: enable error %d\n",
 492				 mmc_hostname(host), err);
 493			return err;
 494		}
 495	}
 496	host->enabled = 1;
 497	return 0;
 498}
 499EXPORT_SYMBOL(mmc_host_enable);
 500
 501static int mmc_host_do_disable(struct mmc_host *host, int lazy)
 502{
 503	if (host->ops->disable) {
 504		int err;
 505
 506		host->en_dis_recurs = 1;
 507		err = host->ops->disable(host, lazy);
 508		host->en_dis_recurs = 0;
 509
 510		if (err < 0) {
 511			pr_debug("%s: disable error %d\n",
 512				 mmc_hostname(host), err);
 513			return err;
 514		}
 515		if (err > 0) {
 516			unsigned long delay = msecs_to_jiffies(err);
 517
 518			mmc_schedule_delayed_work(&host->disable, delay);
 519		}
 520	}
 521	host->enabled = 0;
 522	return 0;
 523}
 524
 525/**
 526 *	mmc_host_disable - disable a host.
 527 *	@host: mmc host to disable
 528 *
 529 *	Hosts that support power saving can use the 'enable' and 'disable'
 530 *	methods to exit and enter power saving states. For more information
 531 *	see comments for struct mmc_host_ops.
 532 */
 533int mmc_host_disable(struct mmc_host *host)
 534{
 535	int err;
 536
 537	if (!(host->caps & MMC_CAP_DISABLE))
 538		return 0;
 539
 540	if (host->en_dis_recurs)
 541		return 0;
 542
 543	if (--host->nesting_cnt)
 544		return 0;
 545
 546	if (!host->enabled)
 547		return 0;
 548
 549	err = mmc_host_do_disable(host, 0);
 550	return err;
 551}
 552EXPORT_SYMBOL(mmc_host_disable);
 553
 554/**
 555 *	__mmc_claim_host - exclusively claim a host
 556 *	@host: mmc host to claim
 
 
 557 *	@abort: whether or not the operation should be aborted
 558 *
 559 *	Claim a host for a set of operations.  If @abort is non null and
 560 *	dereference a non-zero value then this will return prematurely with
 561 *	that non-zero value without acquiring the lock.  Returns zero
 562 *	with the lock held otherwise.
 563 */
 564int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
 565{
 
 566	DECLARE_WAITQUEUE(wait, current);
 567	unsigned long flags;
 568	int stop;
 
 569
 570	might_sleep();
 571
 572	add_wait_queue(&host->wq, &wait);
 573	spin_lock_irqsave(&host->lock, flags);
 574	while (1) {
 575		set_current_state(TASK_UNINTERRUPTIBLE);
 576		stop = abort ? atomic_read(abort) : 0;
 577		if (stop || !host->claimed || host->claimer == current)
 578			break;
 579		spin_unlock_irqrestore(&host->lock, flags);
 580		schedule();
 581		spin_lock_irqsave(&host->lock, flags);
 582	}
 583	set_current_state(TASK_RUNNING);
 584	if (!stop) {
 585		host->claimed = 1;
 586		host->claimer = current;
 587		host->claim_cnt += 1;
 
 
 588	} else
 589		wake_up(&host->wq);
 590	spin_unlock_irqrestore(&host->lock, flags);
 591	remove_wait_queue(&host->wq, &wait);
 592	if (!stop)
 593		mmc_host_enable(host);
 594	return stop;
 595}
 596
 597EXPORT_SYMBOL(__mmc_claim_host);
 598
 599/**
 600 *	mmc_try_claim_host - try exclusively to claim a host
 601 *	@host: mmc host to claim
 602 *
 603 *	Returns %1 if the host is claimed, %0 otherwise.
 604 */
 605int mmc_try_claim_host(struct mmc_host *host)
 606{
 607	int claimed_host = 0;
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&host->lock, flags);
 611	if (!host->claimed || host->claimer == current) {
 612		host->claimed = 1;
 613		host->claimer = current;
 614		host->claim_cnt += 1;
 615		claimed_host = 1;
 616	}
 617	spin_unlock_irqrestore(&host->lock, flags);
 618	return claimed_host;
 619}
 620EXPORT_SYMBOL(mmc_try_claim_host);
 621
 622/**
 623 *	mmc_do_release_host - release a claimed host
 624 *	@host: mmc host to release
 625 *
 626 *	If you successfully claimed a host, this function will
 627 *	release it again.
 628 */
 629void mmc_do_release_host(struct mmc_host *host)
 630{
 631	unsigned long flags;
 632
 
 
 633	spin_lock_irqsave(&host->lock, flags);
 634	if (--host->claim_cnt) {
 635		/* Release for nested claim */
 636		spin_unlock_irqrestore(&host->lock, flags);
 637	} else {
 638		host->claimed = 0;
 
 639		host->claimer = NULL;
 640		spin_unlock_irqrestore(&host->lock, flags);
 641		wake_up(&host->wq);
 
 
 
 
 
 642	}
 643}
 644EXPORT_SYMBOL(mmc_do_release_host);
 645
 646void mmc_host_deeper_disable(struct work_struct *work)
 647{
 648	struct mmc_host *host =
 649		container_of(work, struct mmc_host, disable.work);
 650
 651	/* If the host is claimed then we do not want to disable it anymore */
 652	if (!mmc_try_claim_host(host))
 653		return;
 654	mmc_host_do_disable(host, 1);
 655	mmc_do_release_host(host);
 656}
 657
 658/**
 659 *	mmc_host_lazy_disable - lazily disable a host.
 660 *	@host: mmc host to disable
 661 *
 662 *	Hosts that support power saving can use the 'enable' and 'disable'
 663 *	methods to exit and enter power saving states. For more information
 664 *	see comments for struct mmc_host_ops.
 665 */
 666int mmc_host_lazy_disable(struct mmc_host *host)
 667{
 668	if (!(host->caps & MMC_CAP_DISABLE))
 669		return 0;
 670
 671	if (host->en_dis_recurs)
 672		return 0;
 673
 674	if (--host->nesting_cnt)
 675		return 0;
 676
 677	if (!host->enabled)
 678		return 0;
 679
 680	if (host->disable_delay) {
 681		mmc_schedule_delayed_work(&host->disable,
 682				msecs_to_jiffies(host->disable_delay));
 683		return 0;
 684	} else
 685		return mmc_host_do_disable(host, 1);
 686}
 687EXPORT_SYMBOL(mmc_host_lazy_disable);
 688
 689/**
 690 *	mmc_release_host - release a host
 691 *	@host: mmc host to release
 692 *
 693 *	Release a MMC host, allowing others to claim the host
 694 *	for their operations.
 695 */
 696void mmc_release_host(struct mmc_host *host)
 697{
 698	WARN_ON(!host->claimed);
 699
 700	mmc_host_lazy_disable(host);
 701
 702	mmc_do_release_host(host);
 
 
 703}
 704
 705EXPORT_SYMBOL(mmc_release_host);
 706
 707/*
 708 * Internal function that does the actual ios call to the host driver,
 709 * optionally printing some debug output.
 710 */
 711static inline void mmc_set_ios(struct mmc_host *host)
 712{
 713	struct mmc_ios *ios = &host->ios;
 714
 715	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 716		"width %u timing %u\n",
 717		 mmc_hostname(host), ios->clock, ios->bus_mode,
 718		 ios->power_mode, ios->chip_select, ios->vdd,
 719		 ios->bus_width, ios->timing);
 720
 721	if (ios->clock > 0)
 722		mmc_set_ungated(host);
 723	host->ops->set_ios(host, ios);
 724}
 725
 726/*
 727 * Control chip select pin on a host.
 728 */
 729void mmc_set_chip_select(struct mmc_host *host, int mode)
 730{
 731	mmc_host_clk_hold(host);
 732	host->ios.chip_select = mode;
 733	mmc_set_ios(host);
 734	mmc_host_clk_release(host);
 735}
 736
 737/*
 738 * Sets the host clock to the highest possible frequency that
 739 * is below "hz".
 740 */
 741static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 742{
 743	WARN_ON(hz < host->f_min);
 744
 745	if (hz > host->f_max)
 746		hz = host->f_max;
 747
 748	host->ios.clock = hz;
 749	mmc_set_ios(host);
 750}
 751
 752void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 753{
 754	mmc_host_clk_hold(host);
 755	__mmc_set_clock(host, hz);
 756	mmc_host_clk_release(host);
 757}
 758
 759#ifdef CONFIG_MMC_CLKGATE
 760/*
 761 * This gates the clock by setting it to 0 Hz.
 762 */
 763void mmc_gate_clock(struct mmc_host *host)
 764{
 765	unsigned long flags;
 766
 767	spin_lock_irqsave(&host->clk_lock, flags);
 768	host->clk_old = host->ios.clock;
 769	host->ios.clock = 0;
 770	host->clk_gated = true;
 771	spin_unlock_irqrestore(&host->clk_lock, flags);
 772	mmc_set_ios(host);
 773}
 774
 775/*
 776 * This restores the clock from gating by using the cached
 777 * clock value.
 778 */
 779void mmc_ungate_clock(struct mmc_host *host)
 780{
 781	/*
 782	 * We should previously have gated the clock, so the clock shall
 783	 * be 0 here! The clock may however be 0 during initialization,
 784	 * when some request operations are performed before setting
 785	 * the frequency. When ungate is requested in that situation
 786	 * we just ignore the call.
 787	 */
 788	if (host->clk_old) {
 789		BUG_ON(host->ios.clock);
 790		/* This call will also set host->clk_gated to false */
 791		__mmc_set_clock(host, host->clk_old);
 792	}
 793}
 794
 795void mmc_set_ungated(struct mmc_host *host)
 796{
 797	unsigned long flags;
 798
 799	/*
 800	 * We've been given a new frequency while the clock is gated,
 801	 * so make sure we regard this as ungating it.
 802	 */
 803	spin_lock_irqsave(&host->clk_lock, flags);
 804	host->clk_gated = false;
 805	spin_unlock_irqrestore(&host->clk_lock, flags);
 806}
 807
 808#else
 809void mmc_set_ungated(struct mmc_host *host)
 810{
 811}
 812#endif
 813
 814/*
 815 * Change the bus mode (open drain/push-pull) of a host.
 816 */
 817void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 818{
 819	mmc_host_clk_hold(host);
 820	host->ios.bus_mode = mode;
 821	mmc_set_ios(host);
 822	mmc_host_clk_release(host);
 823}
 824
 825/*
 826 * Change data bus width of a host.
 827 */
 828void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 829{
 830	mmc_host_clk_hold(host);
 831	host->ios.bus_width = width;
 832	mmc_set_ios(host);
 833	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834}
 835
 836/**
 837 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 838 * @vdd:	voltage (mV)
 839 * @low_bits:	prefer low bits in boundary cases
 840 *
 841 * This function returns the OCR bit number according to the provided @vdd
 842 * value. If conversion is not possible a negative errno value returned.
 843 *
 844 * Depending on the @low_bits flag the function prefers low or high OCR bits
 845 * on boundary voltages. For example,
 846 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 847 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 848 *
 849 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 850 */
 851static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
 852{
 853	const int max_bit = ilog2(MMC_VDD_35_36);
 854	int bit;
 855
 856	if (vdd < 1650 || vdd > 3600)
 857		return -EINVAL;
 858
 859	if (vdd >= 1650 && vdd <= 1950)
 860		return ilog2(MMC_VDD_165_195);
 861
 862	if (low_bits)
 863		vdd -= 1;
 864
 865	/* Base 2000 mV, step 100 mV, bit's base 8. */
 866	bit = (vdd - 2000) / 100 + 8;
 867	if (bit > max_bit)
 868		return max_bit;
 869	return bit;
 870}
 871
 872/**
 873 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 874 * @vdd_min:	minimum voltage value (mV)
 875 * @vdd_max:	maximum voltage value (mV)
 876 *
 877 * This function returns the OCR mask bits according to the provided @vdd_min
 878 * and @vdd_max values. If conversion is not possible the function returns 0.
 879 *
 880 * Notes wrt boundary cases:
 881 * This function sets the OCR bits for all boundary voltages, for example
 882 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 883 * MMC_VDD_34_35 mask.
 884 */
 885u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
 886{
 887	u32 mask = 0;
 888
 889	if (vdd_max < vdd_min)
 890		return 0;
 891
 892	/* Prefer high bits for the boundary vdd_max values. */
 893	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
 894	if (vdd_max < 0)
 895		return 0;
 896
 897	/* Prefer low bits for the boundary vdd_min values. */
 898	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
 899	if (vdd_min < 0)
 900		return 0;
 901
 902	/* Fill the mask, from max bit to min bit. */
 903	while (vdd_max >= vdd_min)
 904		mask |= 1 << vdd_max--;
 905
 906	return mask;
 907}
 908EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
 909
 910#ifdef CONFIG_REGULATOR
 911
 912/**
 913 * mmc_regulator_get_ocrmask - return mask of supported voltages
 914 * @supply: regulator to use
 915 *
 916 * This returns either a negative errno, or a mask of voltages that
 917 * can be provided to MMC/SD/SDIO devices using the specified voltage
 918 * regulator.  This would normally be called before registering the
 919 * MMC host adapter.
 920 */
 921int mmc_regulator_get_ocrmask(struct regulator *supply)
 922{
 923	int			result = 0;
 924	int			count;
 925	int			i;
 926
 927	count = regulator_count_voltages(supply);
 928	if (count < 0)
 929		return count;
 930
 931	for (i = 0; i < count; i++) {
 932		int		vdd_uV;
 933		int		vdd_mV;
 934
 935		vdd_uV = regulator_list_voltage(supply, i);
 936		if (vdd_uV <= 0)
 937			continue;
 938
 939		vdd_mV = vdd_uV / 1000;
 940		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 941	}
 942
 943	return result;
 944}
 945EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
 946
 947/**
 948 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 949 * @mmc: the host to regulate
 950 * @supply: regulator to use
 951 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 952 *
 953 * Returns zero on success, else negative errno.
 954 *
 955 * MMC host drivers may use this to enable or disable a regulator using
 956 * a particular supply voltage.  This would normally be called from the
 957 * set_ios() method.
 958 */
 959int mmc_regulator_set_ocr(struct mmc_host *mmc,
 960			struct regulator *supply,
 961			unsigned short vdd_bit)
 962{
 963	int			result = 0;
 964	int			min_uV, max_uV;
 965
 966	if (vdd_bit) {
 967		int		tmp;
 968		int		voltage;
 969
 970		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
 971		 * bits this regulator doesn't quite support ... don't
 972		 * be too picky, most cards and regulators are OK with
 973		 * a 0.1V range goof (it's a small error percentage).
 974		 */
 975		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
 976		if (tmp == 0) {
 977			min_uV = 1650 * 1000;
 978			max_uV = 1950 * 1000;
 979		} else {
 980			min_uV = 1900 * 1000 + tmp * 100 * 1000;
 981			max_uV = min_uV + 100 * 1000;
 982		}
 983
 984		/* avoid needless changes to this voltage; the regulator
 985		 * might not allow this operation
 986		 */
 987		voltage = regulator_get_voltage(supply);
 988		if (voltage < 0)
 989			result = voltage;
 990		else if (voltage < min_uV || voltage > max_uV)
 991			result = regulator_set_voltage(supply, min_uV, max_uV);
 992		else
 993			result = 0;
 994
 995		if (result == 0 && !mmc->regulator_enabled) {
 996			result = regulator_enable(supply);
 997			if (!result)
 998				mmc->regulator_enabled = true;
 999		}
1000	} else if (mmc->regulator_enabled) {
1001		result = regulator_disable(supply);
1002		if (result == 0)
1003			mmc->regulator_enabled = false;
1004	}
1005
1006	if (result)
1007		dev_err(mmc_dev(mmc),
1008			"could not set regulator OCR (%d)\n", result);
1009	return result;
1010}
1011EXPORT_SYMBOL(mmc_regulator_set_ocr);
1012
1013#endif /* CONFIG_REGULATOR */
1014
1015/*
1016 * Mask off any voltages we don't support and select
1017 * the lowest voltage
1018 */
1019u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1020{
1021	int bit;
1022
1023	ocr &= host->ocr_avail;
 
 
 
 
 
 
 
 
1024
1025	bit = ffs(ocr);
1026	if (bit) {
1027		bit -= 1;
 
 
1028
 
 
1029		ocr &= 3 << bit;
1030
1031		mmc_host_clk_hold(host);
1032		host->ios.vdd = bit;
1033		mmc_set_ios(host);
1034		mmc_host_clk_release(host);
1035	} else {
1036		pr_warning("%s: host doesn't support card's voltages\n",
1037				mmc_hostname(host));
1038		ocr = 0;
 
1039	}
1040
1041	return ocr;
1042}
1043
1044int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1045{
1046	struct mmc_command cmd = {0};
1047	int err = 0;
 
 
 
 
 
1048
1049	BUG_ON(!host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051	/*
1052	 * Send CMD11 only if the request is to switch the card to
1053	 * 1.8V signalling.
1054	 */
1055	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1056		cmd.opcode = SD_SWITCH_VOLTAGE;
1057		cmd.arg = 0;
1058		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1059
1060		err = mmc_wait_for_cmd(host, &cmd, 0);
1061		if (err)
1062			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1065			return -EIO;
 
 
 
 
 
 
 
 
 
1066	}
1067
1068	host->ios.signal_voltage = signal_voltage;
 
 
 
 
 
 
 
1069
1070	if (host->ops->start_signal_voltage_switch)
1071		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	return err;
1074}
1075
1076/*
1077 * Select timing parameters for host.
1078 */
1079void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.timing = timing;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
1085}
1086
1087/*
1088 * Select appropriate driver type for host.
1089 */
1090void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1091{
1092	mmc_host_clk_hold(host);
1093	host->ios.drv_type = drv_type;
1094	mmc_set_ios(host);
1095	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096}
1097
1098/*
1099 * Apply power to the MMC stack.  This is a two-stage process.
1100 * First, we enable power to the card without the clock running.
1101 * We then wait a bit for the power to stabilise.  Finally,
1102 * enable the bus drivers and clock to the card.
1103 *
1104 * We must _NOT_ enable the clock prior to power stablising.
1105 *
1106 * If a host does all the power sequencing itself, ignore the
1107 * initial MMC_POWER_UP stage.
1108 */
1109static void mmc_power_up(struct mmc_host *host)
1110{
1111	int bit;
1112
1113	mmc_host_clk_hold(host);
1114
1115	/* If ocr is set, we use it */
1116	if (host->ocr)
1117		bit = ffs(host->ocr) - 1;
1118	else
1119		bit = fls(host->ocr_avail) - 1;
1120
1121	host->ios.vdd = bit;
1122	if (mmc_host_is_spi(host)) {
1123		host->ios.chip_select = MMC_CS_HIGH;
1124		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125	} else {
1126		host->ios.chip_select = MMC_CS_DONTCARE;
1127		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1128	}
1129	host->ios.power_mode = MMC_POWER_UP;
1130	host->ios.bus_width = MMC_BUS_WIDTH_1;
1131	host->ios.timing = MMC_TIMING_LEGACY;
1132	mmc_set_ios(host);
 
1133
1134	/*
1135	 * This delay should be sufficient to allow the power supply
1136	 * to reach the minimum voltage.
1137	 */
1138	mmc_delay(10);
 
 
1139
1140	host->ios.clock = host->f_init;
1141
1142	host->ios.power_mode = MMC_POWER_ON;
1143	mmc_set_ios(host);
1144
1145	/*
1146	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1147	 * time required to reach a stable voltage.
1148	 */
1149	mmc_delay(10);
1150
1151	mmc_host_clk_release(host);
1152}
1153
1154static void mmc_power_off(struct mmc_host *host)
1155{
1156	mmc_host_clk_hold(host);
 
 
 
1157
1158	host->ios.clock = 0;
1159	host->ios.vdd = 0;
1160
1161	/*
1162	 * Reset ocr mask to be the highest possible voltage supported for
1163	 * this mmc host. This value will be used at next power up.
1164	 */
1165	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1166
1167	if (!mmc_host_is_spi(host)) {
1168		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1169		host->ios.chip_select = MMC_CS_DONTCARE;
1170	}
1171	host->ios.power_mode = MMC_POWER_OFF;
1172	host->ios.bus_width = MMC_BUS_WIDTH_1;
1173	host->ios.timing = MMC_TIMING_LEGACY;
1174	mmc_set_ios(host);
1175
1176	mmc_host_clk_release(host);
1177}
1178
1179/*
1180 * Cleanup when the last reference to the bus operator is dropped.
1181 */
1182static void __mmc_release_bus(struct mmc_host *host)
1183{
1184	BUG_ON(!host);
1185	BUG_ON(host->bus_refs);
1186	BUG_ON(!host->bus_dead);
1187
1188	host->bus_ops = NULL;
1189}
1190
1191/*
1192 * Increase reference count of bus operator
1193 */
1194static inline void mmc_bus_get(struct mmc_host *host)
1195{
1196	unsigned long flags;
1197
1198	spin_lock_irqsave(&host->lock, flags);
1199	host->bus_refs++;
1200	spin_unlock_irqrestore(&host->lock, flags);
1201}
1202
1203/*
1204 * Decrease reference count of bus operator and free it if
1205 * it is the last reference.
1206 */
1207static inline void mmc_bus_put(struct mmc_host *host)
1208{
1209	unsigned long flags;
1210
1211	spin_lock_irqsave(&host->lock, flags);
1212	host->bus_refs--;
1213	if ((host->bus_refs == 0) && host->bus_ops)
1214		__mmc_release_bus(host);
1215	spin_unlock_irqrestore(&host->lock, flags);
1216}
1217
1218/*
1219 * Assign a mmc bus handler to a host. Only one bus handler may control a
1220 * host at any given time.
1221 */
1222void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1223{
1224	unsigned long flags;
1225
1226	BUG_ON(!host);
1227	BUG_ON(!ops);
1228
1229	WARN_ON(!host->claimed);
1230
1231	spin_lock_irqsave(&host->lock, flags);
1232
1233	BUG_ON(host->bus_ops);
1234	BUG_ON(host->bus_refs);
1235
1236	host->bus_ops = ops;
1237	host->bus_refs = 1;
1238	host->bus_dead = 0;
1239
1240	spin_unlock_irqrestore(&host->lock, flags);
1241}
1242
1243/*
1244 * Remove the current bus handler from a host. Assumes that there are
1245 * no interesting cards left, so the bus is powered down.
1246 */
1247void mmc_detach_bus(struct mmc_host *host)
1248{
1249	unsigned long flags;
1250
1251	BUG_ON(!host);
1252
1253	WARN_ON(!host->claimed);
1254	WARN_ON(!host->bus_ops);
1255
1256	spin_lock_irqsave(&host->lock, flags);
1257
1258	host->bus_dead = 1;
1259
1260	spin_unlock_irqrestore(&host->lock, flags);
1261
1262	mmc_power_off(host);
 
 
 
 
 
 
 
 
1263
1264	mmc_bus_put(host);
 
1265}
1266
1267/**
1268 *	mmc_detect_change - process change of state on a MMC socket
1269 *	@host: host which changed state.
1270 *	@delay: optional delay to wait before detection (jiffies)
1271 *
1272 *	MMC drivers should call this when they detect a card has been
1273 *	inserted or removed. The MMC layer will confirm that any
1274 *	present card is still functional, and initialize any newly
1275 *	inserted.
1276 */
1277void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1278{
1279#ifdef CONFIG_MMC_DEBUG
1280	unsigned long flags;
1281	spin_lock_irqsave(&host->lock, flags);
1282	WARN_ON(host->removed);
1283	spin_unlock_irqrestore(&host->lock, flags);
1284#endif
1285
1286	mmc_schedule_delayed_work(&host->detect, delay);
1287}
1288
1289EXPORT_SYMBOL(mmc_detect_change);
1290
1291void mmc_init_erase(struct mmc_card *card)
1292{
1293	unsigned int sz;
1294
1295	if (is_power_of_2(card->erase_size))
1296		card->erase_shift = ffs(card->erase_size) - 1;
1297	else
1298		card->erase_shift = 0;
1299
1300	/*
1301	 * It is possible to erase an arbitrarily large area of an SD or MMC
1302	 * card.  That is not desirable because it can take a long time
1303	 * (minutes) potentially delaying more important I/O, and also the
1304	 * timeout calculations become increasingly hugely over-estimated.
1305	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1306	 * to that size and alignment.
1307	 *
1308	 * For SD cards that define Allocation Unit size, limit erases to one
1309	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1310	 * Erase Size, whether it is switched on or not, limit to that size.
1311	 * Otherwise just have a stab at a good value.  For modern cards it
1312	 * will end up being 4MiB.  Note that if the value is too small, it
1313	 * can end up taking longer to erase.
1314	 */
1315	if (mmc_card_sd(card) && card->ssr.au) {
1316		card->pref_erase = card->ssr.au;
1317		card->erase_shift = ffs(card->ssr.au) - 1;
1318	} else if (card->ext_csd.hc_erase_size) {
1319		card->pref_erase = card->ext_csd.hc_erase_size;
1320	} else {
1321		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1322		if (sz < 128)
1323			card->pref_erase = 512 * 1024 / 512;
1324		else if (sz < 512)
1325			card->pref_erase = 1024 * 1024 / 512;
1326		else if (sz < 1024)
1327			card->pref_erase = 2 * 1024 * 1024 / 512;
1328		else
1329			card->pref_erase = 4 * 1024 * 1024 / 512;
1330		if (card->pref_erase < card->erase_size)
1331			card->pref_erase = card->erase_size;
1332		else {
1333			sz = card->pref_erase % card->erase_size;
1334			if (sz)
1335				card->pref_erase += card->erase_size - sz;
1336		}
1337	}
 
1338}
1339
1340static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1341				          unsigned int arg, unsigned int qty)
1342{
1343	unsigned int erase_timeout;
1344
1345	if (card->ext_csd.erase_group_def & 1) {
 
 
 
1346		/* High Capacity Erase Group Size uses HC timeouts */
1347		if (arg == MMC_TRIM_ARG)
1348			erase_timeout = card->ext_csd.trim_timeout;
1349		else
1350			erase_timeout = card->ext_csd.hc_erase_timeout;
1351	} else {
1352		/* CSD Erase Group Size uses write timeout */
1353		unsigned int mult = (10 << card->csd.r2w_factor);
1354		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1355		unsigned int timeout_us;
1356
1357		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1358		if (card->csd.tacc_ns < 1000000)
1359			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1360		else
1361			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1362
1363		/*
1364		 * ios.clock is only a target.  The real clock rate might be
1365		 * less but not that much less, so fudge it by multiplying by 2.
1366		 */
1367		timeout_clks <<= 1;
1368		timeout_us += (timeout_clks * 1000) /
1369			      (mmc_host_clk_rate(card->host) / 1000);
1370
1371		erase_timeout = timeout_us / 1000;
1372
1373		/*
1374		 * Theoretically, the calculation could underflow so round up
1375		 * to 1ms in that case.
1376		 */
1377		if (!erase_timeout)
1378			erase_timeout = 1;
1379	}
1380
1381	/* Multiplier for secure operations */
1382	if (arg & MMC_SECURE_ARGS) {
1383		if (arg == MMC_SECURE_ERASE_ARG)
1384			erase_timeout *= card->ext_csd.sec_erase_mult;
1385		else
1386			erase_timeout *= card->ext_csd.sec_trim_mult;
1387	}
1388
1389	erase_timeout *= qty;
1390
1391	/*
1392	 * Ensure at least a 1 second timeout for SPI as per
1393	 * 'mmc_set_data_timeout()'
1394	 */
1395	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1396		erase_timeout = 1000;
1397
1398	return erase_timeout;
1399}
1400
1401static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1402					 unsigned int arg,
1403					 unsigned int qty)
1404{
1405	unsigned int erase_timeout;
1406
 
 
 
 
 
 
1407	if (card->ssr.erase_timeout) {
1408		/* Erase timeout specified in SD Status Register (SSR) */
1409		erase_timeout = card->ssr.erase_timeout * qty +
1410				card->ssr.erase_offset;
1411	} else {
1412		/*
1413		 * Erase timeout not specified in SD Status Register (SSR) so
1414		 * use 250ms per write block.
1415		 */
1416		erase_timeout = 250 * qty;
1417	}
1418
1419	/* Must not be less than 1 second */
1420	if (erase_timeout < 1000)
1421		erase_timeout = 1000;
1422
1423	return erase_timeout;
1424}
1425
1426static unsigned int mmc_erase_timeout(struct mmc_card *card,
1427				      unsigned int arg,
1428				      unsigned int qty)
1429{
1430	if (mmc_card_sd(card))
1431		return mmc_sd_erase_timeout(card, arg, qty);
1432	else
1433		return mmc_mmc_erase_timeout(card, arg, qty);
1434}
1435
1436static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1437			unsigned int to, unsigned int arg)
1438{
1439	struct mmc_command cmd = {0};
1440	unsigned int qty = 0;
 
1441	int err;
1442
 
 
1443	/*
1444	 * qty is used to calculate the erase timeout which depends on how many
1445	 * erase groups (or allocation units in SD terminology) are affected.
1446	 * We count erasing part of an erase group as one erase group.
1447	 * For SD, the allocation units are always a power of 2.  For MMC, the
1448	 * erase group size is almost certainly also power of 2, but it does not
1449	 * seem to insist on that in the JEDEC standard, so we fall back to
1450	 * division in that case.  SD may not specify an allocation unit size,
1451	 * in which case the timeout is based on the number of write blocks.
1452	 *
1453	 * Note that the timeout for secure trim 2 will only be correct if the
1454	 * number of erase groups specified is the same as the total of all
1455	 * preceding secure trim 1 commands.  Since the power may have been
1456	 * lost since the secure trim 1 commands occurred, it is generally
1457	 * impossible to calculate the secure trim 2 timeout correctly.
1458	 */
1459	if (card->erase_shift)
1460		qty += ((to >> card->erase_shift) -
1461			(from >> card->erase_shift)) + 1;
1462	else if (mmc_card_sd(card))
1463		qty += to - from + 1;
1464	else
1465		qty += ((to / card->erase_size) -
1466			(from / card->erase_size)) + 1;
1467
1468	if (!mmc_card_blockaddr(card)) {
1469		from <<= 9;
1470		to <<= 9;
1471	}
1472
1473	if (mmc_card_sd(card))
1474		cmd.opcode = SD_ERASE_WR_BLK_START;
1475	else
1476		cmd.opcode = MMC_ERASE_GROUP_START;
1477	cmd.arg = from;
1478	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1479	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1480	if (err) {
1481		printk(KERN_ERR "mmc_erase: group start error %d, "
1482		       "status %#x\n", err, cmd.resp[0]);
1483		err = -EINVAL;
1484		goto out;
1485	}
1486
1487	memset(&cmd, 0, sizeof(struct mmc_command));
1488	if (mmc_card_sd(card))
1489		cmd.opcode = SD_ERASE_WR_BLK_END;
1490	else
1491		cmd.opcode = MMC_ERASE_GROUP_END;
1492	cmd.arg = to;
1493	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1494	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1495	if (err) {
1496		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1497		       err, cmd.resp[0]);
1498		err = -EINVAL;
1499		goto out;
1500	}
1501
1502	memset(&cmd, 0, sizeof(struct mmc_command));
1503	cmd.opcode = MMC_ERASE;
1504	cmd.arg = arg;
1505	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1506	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
 
1507	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1508	if (err) {
1509		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1510		       err, cmd.resp[0]);
1511		err = -EIO;
1512		goto out;
1513	}
1514
1515	if (mmc_host_is_spi(card->host))
1516		goto out;
1517
1518	do {
1519		memset(&cmd, 0, sizeof(struct mmc_command));
1520		cmd.opcode = MMC_SEND_STATUS;
1521		cmd.arg = card->rca << 16;
1522		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1523		/* Do not retry else we can't see errors */
1524		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1525		if (err || (cmd.resp[0] & 0xFDF92000)) {
1526			printk(KERN_ERR "error %d requesting status %#x\n",
1527				err, cmd.resp[0]);
1528			err = -EIO;
1529			goto out;
1530		}
1531	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1532		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1533out:
 
1534	return err;
1535}
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537/**
1538 * mmc_erase - erase sectors.
1539 * @card: card to erase
1540 * @from: first sector to erase
1541 * @nr: number of sectors to erase
1542 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1543 *
1544 * Caller must claim host before calling this function.
1545 */
1546int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1547	      unsigned int arg)
1548{
1549	unsigned int rem, to = from + nr;
 
1550
1551	if (!(card->host->caps & MMC_CAP_ERASE) ||
1552	    !(card->csd.cmdclass & CCC_ERASE))
1553		return -EOPNOTSUPP;
1554
1555	if (!card->erase_size)
1556		return -EOPNOTSUPP;
1557
1558	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1559		return -EOPNOTSUPP;
1560
1561	if ((arg & MMC_SECURE_ARGS) &&
1562	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1563		return -EOPNOTSUPP;
1564
1565	if ((arg & MMC_TRIM_ARGS) &&
1566	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1567		return -EOPNOTSUPP;
1568
1569	if (arg == MMC_SECURE_ERASE_ARG) {
1570		if (from % card->erase_size || nr % card->erase_size)
1571			return -EINVAL;
1572	}
1573
1574	if (arg == MMC_ERASE_ARG) {
1575		rem = from % card->erase_size;
1576		if (rem) {
1577			rem = card->erase_size - rem;
1578			from += rem;
1579			if (nr > rem)
1580				nr -= rem;
1581			else
1582				return 0;
1583		}
1584		rem = nr % card->erase_size;
1585		if (rem)
1586			nr -= rem;
1587	}
1588
1589	if (nr == 0)
1590		return 0;
1591
1592	to = from + nr;
1593
1594	if (to <= from)
1595		return -EINVAL;
1596
1597	/* 'from' and 'to' are inclusive */
1598	to -= 1;
1599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	return mmc_do_erase(card, from, to, arg);
1601}
1602EXPORT_SYMBOL(mmc_erase);
1603
1604int mmc_can_erase(struct mmc_card *card)
1605{
1606	if ((card->host->caps & MMC_CAP_ERASE) &&
1607	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1608		return 1;
1609	return 0;
1610}
1611EXPORT_SYMBOL(mmc_can_erase);
1612
1613int mmc_can_trim(struct mmc_card *card)
1614{
1615	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
1616		return 1;
1617	return 0;
1618}
1619EXPORT_SYMBOL(mmc_can_trim);
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621int mmc_can_secure_erase_trim(struct mmc_card *card)
1622{
1623	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
1624		return 1;
1625	return 0;
1626}
1627EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1628
1629int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1630			    unsigned int nr)
1631{
1632	if (!card->erase_size)
1633		return 0;
1634	if (from % card->erase_size || nr % card->erase_size)
1635		return 0;
1636	return 1;
1637}
1638EXPORT_SYMBOL(mmc_erase_group_aligned);
1639
1640static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1641					    unsigned int arg)
1642{
1643	struct mmc_host *host = card->host;
1644	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1645	unsigned int last_timeout = 0;
 
 
1646
1647	if (card->erase_shift)
1648		max_qty = UINT_MAX >> card->erase_shift;
1649	else if (mmc_card_sd(card))
 
1650		max_qty = UINT_MAX;
1651	else
 
1652		max_qty = UINT_MAX / card->erase_size;
 
 
1653
1654	/* Find the largest qty with an OK timeout */
 
 
 
 
 
 
 
 
 
 
 
 
1655	do {
1656		y = 0;
1657		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1658			timeout = mmc_erase_timeout(card, arg, qty + x);
1659			if (timeout > host->max_discard_to)
 
1660				break;
 
1661			if (timeout < last_timeout)
1662				break;
1663			last_timeout = timeout;
1664			y = x;
1665		}
1666		qty += y;
1667	} while (y);
1668
1669	if (!qty)
1670		return 0;
1671
 
 
 
 
 
 
 
 
 
 
1672	if (qty == 1)
1673		return 1;
 
 
1674
1675	/* Convert qty to sectors */
1676	if (card->erase_shift)
1677		max_discard = --qty << card->erase_shift;
1678	else if (mmc_card_sd(card))
1679		max_discard = qty;
1680	else
1681		max_discard = --qty * card->erase_size;
1682
1683	return max_discard;
1684}
1685
1686unsigned int mmc_calc_max_discard(struct mmc_card *card)
1687{
1688	struct mmc_host *host = card->host;
1689	unsigned int max_discard, max_trim;
1690
1691	if (!host->max_discard_to)
1692		return UINT_MAX;
1693
1694	/*
1695	 * Without erase_group_def set, MMC erase timeout depends on clock
1696	 * frequence which can change.  In that case, the best choice is
1697	 * just the preferred erase size.
1698	 */
1699	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1700		return card->pref_erase;
1701
1702	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1703	if (mmc_can_trim(card)) {
1704		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1705		if (max_trim < max_discard)
1706			max_discard = max_trim;
1707	} else if (max_discard < card->erase_size) {
1708		max_discard = 0;
1709	}
1710	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1711		 mmc_hostname(host), max_discard, host->max_discard_to);
 
1712	return max_discard;
1713}
1714EXPORT_SYMBOL(mmc_calc_max_discard);
1715
 
 
 
 
 
 
1716int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1717{
1718	struct mmc_command cmd = {0};
1719
1720	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
 
1721		return 0;
1722
1723	cmd.opcode = MMC_SET_BLOCKLEN;
1724	cmd.arg = blocklen;
1725	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1726	return mmc_wait_for_cmd(card->host, &cmd, 5);
1727}
1728EXPORT_SYMBOL(mmc_set_blocklen);
1729
1730static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1731{
1732	host->f_init = freq;
1733
1734#ifdef CONFIG_MMC_DEBUG
1735	pr_info("%s: %s: trying to init card at %u Hz\n",
1736		mmc_hostname(host), __func__, host->f_init);
1737#endif
1738	mmc_power_up(host);
1739
1740	/*
1741	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1742	 * if the card is being re-initialized, just send it.  CMD52
1743	 * should be ignored by SD/eMMC cards.
1744	 */
1745	sdio_reset(host);
1746	mmc_go_idle(host);
1747
1748	mmc_send_if_cond(host, host->ocr_avail);
 
 
 
 
 
 
 
 
 
 
 
 
1749
1750	/* Order's important: probe SDIO, then SD, then MMC */
1751	if (!mmc_attach_sdio(host))
1752		return 0;
1753	if (!mmc_attach_sd(host))
1754		return 0;
1755	if (!mmc_attach_mmc(host))
1756		return 0;
1757
1758	mmc_power_off(host);
1759	return -EIO;
1760}
 
1761
1762void mmc_rescan(struct work_struct *work)
1763{
1764	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1765	struct mmc_host *host =
1766		container_of(work, struct mmc_host, detect.work);
1767	int i;
1768
1769	if (host->rescan_disable)
1770		return;
1771
1772	mmc_bus_get(host);
 
 
 
1773
1774	/*
1775	 * if there is a _removable_ card registered, check whether it is
1776	 * still present
1777	 */
1778	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1779	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1780		host->bus_ops->detect(host);
 
 
 
 
 
1781
1782	/*
1783	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1784	 * the card is no longer present.
1785	 */
1786	mmc_bus_put(host);
1787	mmc_bus_get(host);
1788
1789	/* if there still is a card present, stop here */
1790	if (host->bus_ops != NULL) {
1791		mmc_bus_put(host);
1792		goto out;
1793	}
1794
1795	/*
1796	 * Only we can add a new handler, so it's safe to
1797	 * release the lock here.
 
 
1798	 */
1799	mmc_bus_put(host);
 
1800
1801	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1802		goto out;
1803
1804	mmc_claim_host(host);
1805	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1806		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1807			break;
1808		if (freqs[i] <= host->f_min)
1809			break;
1810	}
1811	mmc_release_host(host);
1812
1813 out:
1814	if (host->caps & MMC_CAP_NEEDS_POLL)
1815		mmc_schedule_delayed_work(&host->detect, HZ);
1816}
 
 
 
 
 
 
 
 
1817
1818void mmc_start_host(struct mmc_host *host)
1819{
1820	mmc_power_off(host);
1821	mmc_detect_change(host, 0);
1822}
1823
1824void mmc_stop_host(struct mmc_host *host)
1825{
1826#ifdef CONFIG_MMC_DEBUG
1827	unsigned long flags;
1828	spin_lock_irqsave(&host->lock, flags);
1829	host->removed = 1;
1830	spin_unlock_irqrestore(&host->lock, flags);
1831#endif
1832
1833	if (host->caps & MMC_CAP_DISABLE)
1834		cancel_delayed_work(&host->disable);
1835	cancel_delayed_work_sync(&host->detect);
1836	mmc_flush_scheduled_work();
1837
1838	/* clear pm flags now and let card drivers set them as needed */
1839	host->pm_flags = 0;
1840
1841	mmc_bus_get(host);
1842	if (host->bus_ops && !host->bus_dead) {
1843		if (host->bus_ops->remove)
1844			host->bus_ops->remove(host);
1845
1846		mmc_claim_host(host);
1847		mmc_detach_bus(host);
1848		mmc_release_host(host);
1849		mmc_bus_put(host);
1850		return;
 
 
 
 
 
1851	}
1852	mmc_bus_put(host);
1853
1854	BUG_ON(host->card);
1855
1856	mmc_power_off(host);
1857}
1858
1859int mmc_power_save_host(struct mmc_host *host)
1860{
1861	int ret = 0;
1862
1863#ifdef CONFIG_MMC_DEBUG
1864	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
1865#endif
1866
1867	mmc_bus_get(host);
1868
1869	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1870		mmc_bus_put(host);
1871		return -EINVAL;
1872	}
1873
1874	if (host->bus_ops->power_save)
1875		ret = host->bus_ops->power_save(host);
1876
1877	mmc_bus_put(host);
1878
1879	mmc_power_off(host);
1880
1881	return ret;
1882}
1883EXPORT_SYMBOL(mmc_power_save_host);
1884
1885int mmc_power_restore_host(struct mmc_host *host)
1886{
 
1887	int ret;
1888
1889#ifdef CONFIG_MMC_DEBUG
1890	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
1891#endif
1892
1893	mmc_bus_get(host);
 
1894
1895	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1896		mmc_bus_put(host);
1897		return -EINVAL;
1898	}
1899
1900	mmc_power_up(host);
1901	ret = host->bus_ops->power_restore(host);
 
 
 
 
 
1902
1903	mmc_bus_put(host);
 
 
 
 
 
 
 
 
 
 
 
1904
1905	return ret;
1906}
1907EXPORT_SYMBOL(mmc_power_restore_host);
1908
1909int mmc_card_awake(struct mmc_host *host)
1910{
1911	int err = -ENOSYS;
1912
1913	mmc_bus_get(host);
1914
1915	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1916		err = host->bus_ops->awake(host);
1917
1918	mmc_bus_put(host);
1919
1920	return err;
1921}
1922EXPORT_SYMBOL(mmc_card_awake);
1923
1924int mmc_card_sleep(struct mmc_host *host)
1925{
1926	int err = -ENOSYS;
 
 
1927
1928	mmc_bus_get(host);
 
1929
1930	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1931		err = host->bus_ops->sleep(host);
 
 
1932
1933	mmc_bus_put(host);
 
 
 
 
 
1934
1935	return err;
1936}
1937EXPORT_SYMBOL(mmc_card_sleep);
1938
1939int mmc_card_can_sleep(struct mmc_host *host)
1940{
1941	struct mmc_card *card = host->card;
1942
1943	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1944		return 1;
1945	return 0;
1946}
1947EXPORT_SYMBOL(mmc_card_can_sleep);
1948
1949#ifdef CONFIG_PM
 
 
 
 
 
 
1950
1951/**
1952 *	mmc_suspend_host - suspend a host
1953 *	@host: mmc host
1954 */
1955int mmc_suspend_host(struct mmc_host *host)
1956{
1957	int err = 0;
1958
1959	if (host->caps & MMC_CAP_DISABLE)
1960		cancel_delayed_work(&host->disable);
1961	cancel_delayed_work(&host->detect);
1962	mmc_flush_scheduled_work();
1963
1964	mmc_bus_get(host);
1965	if (host->bus_ops && !host->bus_dead) {
1966		if (host->bus_ops->suspend)
1967			err = host->bus_ops->suspend(host);
1968		if (err == -ENOSYS || !host->bus_ops->resume) {
1969			/*
1970			 * We simply "remove" the card in this case.
1971			 * It will be redetected on resume.
1972			 */
1973			if (host->bus_ops->remove)
1974				host->bus_ops->remove(host);
1975			mmc_claim_host(host);
1976			mmc_detach_bus(host);
1977			mmc_release_host(host);
1978			host->pm_flags = 0;
1979			err = 0;
1980		}
 
 
 
 
1981	}
1982	mmc_bus_put(host);
1983
1984	if (!err && !mmc_card_keep_power(host))
1985		mmc_power_off(host);
1986
1987	return err;
 
 
1988}
1989
1990EXPORT_SYMBOL(mmc_suspend_host);
1991
1992/**
1993 *	mmc_resume_host - resume a previously suspended host
1994 *	@host: mmc host
1995 */
1996int mmc_resume_host(struct mmc_host *host)
1997{
1998	int err = 0;
 
1999
2000	mmc_bus_get(host);
2001	if (host->bus_ops && !host->bus_dead) {
2002		if (!mmc_card_keep_power(host)) {
2003			mmc_power_up(host);
2004			mmc_select_voltage(host, host->ocr);
2005			/*
2006			 * Tell runtime PM core we just powered up the card,
2007			 * since it still believes the card is powered off.
2008			 * Note that currently runtime PM is only enabled
2009			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2010			 */
2011			if (mmc_card_sdio(host->card) &&
2012			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2013				pm_runtime_disable(&host->card->dev);
2014				pm_runtime_set_active(&host->card->dev);
2015				pm_runtime_enable(&host->card->dev);
2016			}
2017		}
2018		BUG_ON(!host->bus_ops->resume);
2019		err = host->bus_ops->resume(host);
2020		if (err) {
2021			printk(KERN_WARNING "%s: error %d during resume "
2022					    "(card was removed?)\n",
2023					    mmc_hostname(host), err);
2024			err = 0;
2025		}
2026	}
2027	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2028	mmc_bus_put(host);
2029
2030	return err;
 
2031}
2032EXPORT_SYMBOL(mmc_resume_host);
2033
2034/* Do the card removal on suspend if card is assumed removeable
2035 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2036   to sync the card.
2037*/
2038int mmc_pm_notify(struct notifier_block *notify_block,
2039					unsigned long mode, void *unused)
2040{
2041	struct mmc_host *host = container_of(
2042		notify_block, struct mmc_host, pm_notify);
2043	unsigned long flags;
2044
2045
2046	switch (mode) {
2047	case PM_HIBERNATION_PREPARE:
2048	case PM_SUSPEND_PREPARE:
2049
2050		spin_lock_irqsave(&host->lock, flags);
2051		host->rescan_disable = 1;
2052		spin_unlock_irqrestore(&host->lock, flags);
2053		cancel_delayed_work_sync(&host->detect);
2054
2055		if (!host->bus_ops || host->bus_ops->suspend)
2056			break;
2057
 
 
 
2058		mmc_claim_host(host);
2059
2060		if (host->bus_ops->remove)
2061			host->bus_ops->remove(host);
2062
2063		mmc_detach_bus(host);
 
2064		mmc_release_host(host);
2065		host->pm_flags = 0;
2066		break;
2067
2068	case PM_POST_SUSPEND:
2069	case PM_POST_HIBERNATION:
2070	case PM_POST_RESTORE:
2071
2072		spin_lock_irqsave(&host->lock, flags);
2073		host->rescan_disable = 0;
2074		spin_unlock_irqrestore(&host->lock, flags);
2075		mmc_detect_change(host, 0);
2076
2077	}
2078
2079	return 0;
 
 
2080}
2081#endif
2082
2083static int __init mmc_init(void)
2084{
2085	int ret;
2086
2087	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2088	if (!workqueue)
2089		return -ENOMEM;
2090
2091	ret = mmc_register_bus();
2092	if (ret)
2093		goto destroy_workqueue;
2094
2095	ret = mmc_register_host_class();
2096	if (ret)
2097		goto unregister_bus;
2098
2099	ret = sdio_register_bus();
2100	if (ret)
2101		goto unregister_host_class;
2102
2103	return 0;
2104
2105unregister_host_class:
2106	mmc_unregister_host_class();
2107unregister_bus:
2108	mmc_unregister_bus();
2109destroy_workqueue:
2110	destroy_workqueue(workqueue);
2111
2112	return ret;
2113}
2114
2115static void __exit mmc_exit(void)
2116{
2117	sdio_unregister_bus();
2118	mmc_unregister_host_class();
2119	mmc_unregister_bus();
2120	destroy_workqueue(workqueue);
2121}
2122
2123subsys_initcall(mmc_init);
2124module_exit(mmc_exit);
2125
2126MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "crypto.h"
  41#include "bus.h"
  42#include "host.h"
  43#include "sdio_bus.h"
  44#include "pwrseq.h"
  45
  46#include "mmc_ops.h"
  47#include "sd_ops.h"
  48#include "sdio_ops.h"
  49
  50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  52#define SD_DISCARD_TIMEOUT_MS	(250)
  53
  54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  55
  56/*
  57 * Enabling software CRCs on the data blocks can be a significant (30%)
  58 * performance cost, and for other reasons may not always be desired.
  59 * So we allow it it to be disabled.
  60 */
  61bool use_spi_crc = 1;
  62module_param(use_spi_crc, bool, 0);
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64static int mmc_schedule_delayed_work(struct delayed_work *work,
  65				     unsigned long delay)
  66{
  67	/*
  68	 * We use the system_freezable_wq, because of two reasons.
  69	 * First, it allows several works (not the same work item) to be
  70	 * executed simultaneously. Second, the queue becomes frozen when
  71	 * userspace becomes frozen during system PM.
  72	 */
  73	return queue_delayed_work(system_freezable_wq, work, delay);
  74}
  75
  76#ifdef CONFIG_FAIL_MMC_REQUEST
  77
  78/*
  79 * Internal function. Inject random data errors.
  80 * If mmc_data is NULL no errors are injected.
  81 */
  82static void mmc_should_fail_request(struct mmc_host *host,
  83				    struct mmc_request *mrq)
  84{
  85	struct mmc_command *cmd = mrq->cmd;
  86	struct mmc_data *data = mrq->data;
  87	static const int data_errors[] = {
  88		-ETIMEDOUT,
  89		-EILSEQ,
  90		-EIO,
  91	};
  92
  93	if (!data)
  94		return;
  95
  96	if ((cmd && cmd->error) || data->error ||
  97	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  98		return;
  99
 100	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 101	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 102}
 103
 104#else /* CONFIG_FAIL_MMC_REQUEST */
 105
 106static inline void mmc_should_fail_request(struct mmc_host *host,
 107					   struct mmc_request *mrq)
 108{
 109}
 110
 111#endif /* CONFIG_FAIL_MMC_REQUEST */
 112
 113static inline void mmc_complete_cmd(struct mmc_request *mrq)
 114{
 115	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 116		complete_all(&mrq->cmd_completion);
 117}
 118
 119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 120{
 121	if (!mrq->cap_cmd_during_tfr)
 122		return;
 123
 124	mmc_complete_cmd(mrq);
 125
 126	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 127		 mmc_hostname(host), mrq->cmd->opcode);
 128}
 129EXPORT_SYMBOL(mmc_command_done);
 130
 131/**
 132 *	mmc_request_done - finish processing an MMC request
 133 *	@host: MMC host which completed request
 134 *	@mrq: MMC request which request
 135 *
 136 *	MMC drivers should call this function when they have completed
 137 *	their processing of a request.
 138 */
 139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 140{
 141	struct mmc_command *cmd = mrq->cmd;
 142	int err = cmd->error;
 143
 144	/* Flag re-tuning needed on CRC errors */
 145	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 146	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 147	    !host->retune_crc_disable &&
 148	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 149	    (mrq->data && mrq->data->error == -EILSEQ) ||
 150	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 151		mmc_retune_needed(host);
 152
 153	if (err && cmd->retries && mmc_host_is_spi(host)) {
 154		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 155			cmd->retries = 0;
 156	}
 157
 158	if (host->ongoing_mrq == mrq)
 159		host->ongoing_mrq = NULL;
 
 160
 161	mmc_complete_cmd(mrq);
 162
 163	trace_mmc_request_done(host, mrq);
 164
 165	/*
 166	 * We list various conditions for the command to be considered
 167	 * properly done:
 168	 *
 169	 * - There was no error, OK fine then
 170	 * - We are not doing some kind of retry
 171	 * - The card was removed (...so just complete everything no matter
 172	 *   if there are errors or retries)
 173	 */
 174	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 175		mmc_should_fail_request(host, mrq);
 176
 177		if (!host->ongoing_mrq)
 178			led_trigger_event(host->led, LED_OFF);
 179
 180		if (mrq->sbc) {
 181			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 182				mmc_hostname(host), mrq->sbc->opcode,
 183				mrq->sbc->error,
 184				mrq->sbc->resp[0], mrq->sbc->resp[1],
 185				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 186		}
 187
 188		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 189			mmc_hostname(host), cmd->opcode, err,
 190			cmd->resp[0], cmd->resp[1],
 191			cmd->resp[2], cmd->resp[3]);
 192
 193		if (mrq->data) {
 194			pr_debug("%s:     %d bytes transferred: %d\n",
 195				mmc_hostname(host),
 196				mrq->data->bytes_xfered, mrq->data->error);
 197		}
 198
 199		if (mrq->stop) {
 200			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 201				mmc_hostname(host), mrq->stop->opcode,
 202				mrq->stop->error,
 203				mrq->stop->resp[0], mrq->stop->resp[1],
 204				mrq->stop->resp[2], mrq->stop->resp[3]);
 205		}
 
 
 
 
 
 206	}
 207	/*
 208	 * Request starter must handle retries - see
 209	 * mmc_wait_for_req_done().
 210	 */
 211	if (mrq->done)
 212		mrq->done(mrq);
 213}
 214
 215EXPORT_SYMBOL(mmc_request_done);
 216
 217static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 218{
 219	int err;
 220
 221	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 222	err = mmc_retune(host);
 223	if (err) {
 224		mrq->cmd->error = err;
 225		mmc_request_done(host, mrq);
 226		return;
 227	}
 228
 229	/*
 230	 * For sdio rw commands we must wait for card busy otherwise some
 231	 * sdio devices won't work properly.
 232	 * And bypass I/O abort, reset and bus suspend operations.
 233	 */
 234	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 235	    host->ops->card_busy) {
 236		int tries = 500; /* Wait aprox 500ms at maximum */
 237
 238		while (host->ops->card_busy(host) && --tries)
 239			mmc_delay(1);
 240
 241		if (tries == 0) {
 242			mrq->cmd->error = -EBUSY;
 243			mmc_request_done(host, mrq);
 244			return;
 245		}
 246	}
 247
 248	if (mrq->cap_cmd_during_tfr) {
 249		host->ongoing_mrq = mrq;
 250		/*
 251		 * Retry path could come through here without having waiting on
 252		 * cmd_completion, so ensure it is reinitialised.
 253		 */
 254		reinit_completion(&mrq->cmd_completion);
 255	}
 256
 257	trace_mmc_request_start(host, mrq);
 258
 259	if (host->cqe_on)
 260		host->cqe_ops->cqe_off(host);
 261
 262	host->ops->request(host, mrq);
 263}
 264
 265static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 266			     bool cqe)
 267{
 268	if (mrq->sbc) {
 269		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 270			 mmc_hostname(host), mrq->sbc->opcode,
 271			 mrq->sbc->arg, mrq->sbc->flags);
 272	}
 273
 274	if (mrq->cmd) {
 275		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 276			 mmc_hostname(host), cqe ? "CQE direct " : "",
 277			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 278	} else if (cqe) {
 279		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 280			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 281	}
 282
 283	if (mrq->data) {
 284		pr_debug("%s:     blksz %d blocks %d flags %08x "
 285			"tsac %d ms nsac %d\n",
 286			mmc_hostname(host), mrq->data->blksz,
 287			mrq->data->blocks, mrq->data->flags,
 288			mrq->data->timeout_ns / 1000000,
 289			mrq->data->timeout_clks);
 290	}
 291
 292	if (mrq->stop) {
 293		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 294			 mmc_hostname(host), mrq->stop->opcode,
 295			 mrq->stop->arg, mrq->stop->flags);
 296	}
 297}
 298
 299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 300{
 301	unsigned int i, sz = 0;
 302	struct scatterlist *sg;
 303
 304	if (mrq->cmd) {
 305		mrq->cmd->error = 0;
 306		mrq->cmd->mrq = mrq;
 307		mrq->cmd->data = mrq->data;
 308	}
 309	if (mrq->sbc) {
 310		mrq->sbc->error = 0;
 311		mrq->sbc->mrq = mrq;
 312	}
 313	if (mrq->data) {
 314		if (mrq->data->blksz > host->max_blk_size ||
 315		    mrq->data->blocks > host->max_blk_count ||
 316		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 317			return -EINVAL;
 318
 
 
 319		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 320			sz += sg->length;
 321		if (sz != mrq->data->blocks * mrq->data->blksz)
 322			return -EINVAL;
 323
 
 324		mrq->data->error = 0;
 325		mrq->data->mrq = mrq;
 326		if (mrq->stop) {
 327			mrq->data->stop = mrq->stop;
 328			mrq->stop->error = 0;
 329			mrq->stop->mrq = mrq;
 330		}
 331	}
 332
 333	return 0;
 334}
 335
 336int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 337{
 338	int err;
 339
 340	init_completion(&mrq->cmd_completion);
 341
 342	mmc_retune_hold(host);
 343
 344	if (mmc_card_removed(host->card))
 345		return -ENOMEDIUM;
 346
 347	mmc_mrq_pr_debug(host, mrq, false);
 348
 349	WARN_ON(!host->claimed);
 350
 351	err = mmc_mrq_prep(host, mrq);
 352	if (err)
 353		return err;
 354
 355	led_trigger_event(host->led, LED_FULL);
 356	__mmc_start_request(host, mrq);
 357
 358	return 0;
 359}
 360EXPORT_SYMBOL(mmc_start_request);
 361
 362static void mmc_wait_done(struct mmc_request *mrq)
 363{
 364	complete(&mrq->completion);
 365}
 366
 367static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 368{
 369	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 370
 371	/*
 372	 * If there is an ongoing transfer, wait for the command line to become
 373	 * available.
 374	 */
 375	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 376		wait_for_completion(&ongoing_mrq->cmd_completion);
 377}
 378
 379static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 380{
 381	int err;
 382
 383	mmc_wait_ongoing_tfr_cmd(host);
 384
 385	init_completion(&mrq->completion);
 386	mrq->done = mmc_wait_done;
 387
 388	err = mmc_start_request(host, mrq);
 389	if (err) {
 390		mrq->cmd->error = err;
 391		mmc_complete_cmd(mrq);
 392		complete(&mrq->completion);
 393	}
 394
 395	return err;
 396}
 397
 398void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 
 399{
 400	struct mmc_command *cmd;
 401
 402	while (1) {
 403		wait_for_completion(&mrq->completion);
 404
 405		cmd = mrq->cmd;
 406
 407		if (!cmd->error || !cmd->retries ||
 408		    mmc_card_removed(host->card))
 409			break;
 410
 411		mmc_retune_recheck(host);
 412
 413		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 414			 mmc_hostname(host), cmd->opcode, cmd->error);
 415		cmd->retries--;
 416		cmd->error = 0;
 417		__mmc_start_request(host, mrq);
 418	}
 419
 420	mmc_retune_release(host);
 421}
 422EXPORT_SYMBOL(mmc_wait_for_req_done);
 423
 424/*
 425 * mmc_cqe_start_req - Start a CQE request.
 426 * @host: MMC host to start the request
 427 * @mrq: request to start
 428 *
 429 * Start the request, re-tuning if needed and it is possible. Returns an error
 430 * code if the request fails to start or -EBUSY if CQE is busy.
 
 
 
 431 */
 432int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 
 433{
 434	int err;
 435
 436	/*
 437	 * CQE cannot process re-tuning commands. Caller must hold retuning
 438	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 439	 * active requests i.e. this is the first.  Note, re-tuning will call
 440	 * ->cqe_off().
 441	 */
 442	err = mmc_retune(host);
 443	if (err)
 444		goto out_err;
 445
 446	mrq->host = host;
 447
 448	mmc_mrq_pr_debug(host, mrq, true);
 449
 450	err = mmc_mrq_prep(host, mrq);
 451	if (err)
 452		goto out_err;
 453
 454	err = host->cqe_ops->cqe_request(host, mrq);
 455	if (err)
 456		goto out_err;
 457
 458	trace_mmc_request_start(host, mrq);
 459
 460	return 0;
 461
 462out_err:
 463	if (mrq->cmd) {
 464		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 465			 mmc_hostname(host), mrq->cmd->opcode, err);
 466	} else {
 467		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 468			 mmc_hostname(host), mrq->tag, err);
 469	}
 470	return err;
 471}
 472EXPORT_SYMBOL(mmc_cqe_start_req);
 473
 474/**
 475 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 476 *	@host: MMC host which completed request
 477 *	@mrq: MMC request which completed
 
 478 *
 479 *	CQE drivers should call this function when they have completed
 480 *	their processing of a request.
 481 */
 482void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 
 483{
 484	mmc_should_fail_request(host, mrq);
 485
 486	/* Flag re-tuning needed on CRC errors */
 487	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 488	    (mrq->data && mrq->data->error == -EILSEQ))
 489		mmc_retune_needed(host);
 490
 491	trace_mmc_request_done(host, mrq);
 492
 493	if (mrq->cmd) {
 494		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 495			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 496	} else {
 497		pr_debug("%s: CQE transfer done tag %d\n",
 498			 mmc_hostname(host), mrq->tag);
 499	}
 500
 501	if (mrq->data) {
 502		pr_debug("%s:     %d bytes transferred: %d\n",
 503			 mmc_hostname(host),
 504			 mrq->data->bytes_xfered, mrq->data->error);
 505	}
 506
 507	mrq->done(mrq);
 508}
 509EXPORT_SYMBOL(mmc_cqe_request_done);
 510
 511/**
 512 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 513 *	@host: MMC host
 514 *	@mrq: MMC request to be processed
 515 */
 516void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 517{
 518	if (host->cqe_ops->cqe_post_req)
 519		host->cqe_ops->cqe_post_req(host, mrq);
 520}
 521EXPORT_SYMBOL(mmc_cqe_post_req);
 522
 523/* Arbitrary 1 second timeout */
 524#define MMC_CQE_RECOVERY_TIMEOUT	1000
 525
 526/*
 527 * mmc_cqe_recovery - Recover from CQE errors.
 528 * @host: MMC host to recover
 529 *
 530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 531 * in eMMC, and discarding the queue in CQE. CQE must call
 532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 533 * fails to discard its queue.
 
 
 
 
 
 534 */
 535int mmc_cqe_recovery(struct mmc_host *host)
 
 536{
 537	struct mmc_command cmd;
 538	int err;
 539
 540	mmc_retune_hold_now(host);
 
 
 
 
 
 
 
 
 
 
 541
 542	/*
 543	 * Recovery is expected seldom, if at all, but it reduces performance,
 544	 * so make sure it is not completely silent.
 545	 */
 546	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 547
 548	host->cqe_ops->cqe_recovery_start(host);
 
 549
 550	memset(&cmd, 0, sizeof(cmd));
 551	cmd.opcode       = MMC_STOP_TRANSMISSION;
 552	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 553	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 554	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 555	mmc_wait_for_cmd(host, &cmd, 0);
 556
 557	memset(&cmd, 0, sizeof(cmd));
 558	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 559	cmd.arg          = 1; /* Discard entire queue */
 560	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 561	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 562	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
 563	err = mmc_wait_for_cmd(host, &cmd, 0);
 564
 565	host->cqe_ops->cqe_recovery_finish(host);
 566
 567	mmc_retune_release(host);
 568
 569	return err;
 570}
 571EXPORT_SYMBOL(mmc_cqe_recovery);
 572
 573/**
 574 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 575 *	@host: MMC host
 576 *	@mrq: MMC request
 577 *
 578 *	mmc_is_req_done() is used with requests that have
 579 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 580 *	starting a request and before waiting for it to complete. That is,
 581 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 582 *	and before mmc_wait_for_req_done(). If it is called at other times the
 583 *	result is not meaningful.
 584 */
 585bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 586{
 587	return completion_done(&mrq->completion);
 588}
 589EXPORT_SYMBOL(mmc_is_req_done);
 590
 591/**
 592 *	mmc_wait_for_req - start a request and wait for completion
 593 *	@host: MMC host to start command
 594 *	@mrq: MMC request to start
 595 *
 596 *	Start a new MMC custom command request for a host, and wait
 597 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 598 *	requests, the transfer is ongoing and the caller can issue further
 599 *	commands that do not use the data lines, and then wait by calling
 600 *	mmc_wait_for_req_done().
 601 *	Does not attempt to parse the response.
 602 */
 603void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 604{
 605	__mmc_start_req(host, mrq);
 606
 607	if (!mrq->cap_cmd_during_tfr)
 608		mmc_wait_for_req_done(host, mrq);
 609}
 610EXPORT_SYMBOL(mmc_wait_for_req);
 611
 612/**
 613 *	mmc_wait_for_cmd - start a command and wait for completion
 614 *	@host: MMC host to start command
 615 *	@cmd: MMC command to start
 616 *	@retries: maximum number of retries
 617 *
 618 *	Start a new MMC command for a host, and wait for the command
 619 *	to complete.  Return any error that occurred while the command
 620 *	was executing.  Do not attempt to parse the response.
 621 */
 622int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 623{
 624	struct mmc_request mrq = {};
 625
 626	WARN_ON(!host->claimed);
 627
 628	memset(cmd->resp, 0, sizeof(cmd->resp));
 629	cmd->retries = retries;
 630
 631	mrq.cmd = cmd;
 632	cmd->data = NULL;
 633
 634	mmc_wait_for_req(host, &mrq);
 635
 636	return cmd->error;
 637}
 638
 639EXPORT_SYMBOL(mmc_wait_for_cmd);
 640
 641/**
 642 *	mmc_set_data_timeout - set the timeout for a data command
 643 *	@data: data phase for command
 644 *	@card: the MMC card associated with the data transfer
 645 *
 646 *	Computes the data timeout parameters according to the
 647 *	correct algorithm given the card type.
 648 */
 649void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 650{
 651	unsigned int mult;
 652
 653	/*
 654	 * SDIO cards only define an upper 1 s limit on access.
 655	 */
 656	if (mmc_card_sdio(card)) {
 657		data->timeout_ns = 1000000000;
 658		data->timeout_clks = 0;
 659		return;
 660	}
 661
 662	/*
 663	 * SD cards use a 100 multiplier rather than 10
 664	 */
 665	mult = mmc_card_sd(card) ? 100 : 10;
 666
 667	/*
 668	 * Scale up the multiplier (and therefore the timeout) by
 669	 * the r2w factor for writes.
 670	 */
 671	if (data->flags & MMC_DATA_WRITE)
 672		mult <<= card->csd.r2w_factor;
 673
 674	data->timeout_ns = card->csd.taac_ns * mult;
 675	data->timeout_clks = card->csd.taac_clks * mult;
 676
 677	/*
 678	 * SD cards also have an upper limit on the timeout.
 679	 */
 680	if (mmc_card_sd(card)) {
 681		unsigned int timeout_us, limit_us;
 682
 683		timeout_us = data->timeout_ns / 1000;
 684		if (card->host->ios.clock)
 685			timeout_us += data->timeout_clks * 1000 /
 686				(card->host->ios.clock / 1000);
 687
 688		if (data->flags & MMC_DATA_WRITE)
 689			/*
 690			 * The MMC spec "It is strongly recommended
 691			 * for hosts to implement more than 500ms
 692			 * timeout value even if the card indicates
 693			 * the 250ms maximum busy length."  Even the
 694			 * previous value of 300ms is known to be
 695			 * insufficient for some cards.
 696			 */
 697			limit_us = 3000000;
 698		else
 699			limit_us = 100000;
 700
 701		/*
 702		 * SDHC cards always use these fixed values.
 703		 */
 704		if (timeout_us > limit_us) {
 705			data->timeout_ns = limit_us * 1000;
 706			data->timeout_clks = 0;
 707		}
 708
 709		/* assign limit value if invalid */
 710		if (timeout_us == 0)
 711			data->timeout_ns = limit_us * 1000;
 712	}
 713
 714	/*
 715	 * Some cards require longer data read timeout than indicated in CSD.
 716	 * Address this by setting the read timeout to a "reasonably high"
 717	 * value. For the cards tested, 600ms has proven enough. If necessary,
 718	 * this value can be increased if other problematic cards require this.
 719	 */
 720	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 721		data->timeout_ns = 600000000;
 722		data->timeout_clks = 0;
 723	}
 724
 725	/*
 726	 * Some cards need very high timeouts if driven in SPI mode.
 727	 * The worst observed timeout was 900ms after writing a
 728	 * continuous stream of data until the internal logic
 729	 * overflowed.
 730	 */
 731	if (mmc_host_is_spi(card->host)) {
 732		if (data->flags & MMC_DATA_WRITE) {
 733			if (data->timeout_ns < 1000000000)
 734				data->timeout_ns = 1000000000;	/* 1s */
 735		} else {
 736			if (data->timeout_ns < 100000000)
 737				data->timeout_ns =  100000000;	/* 100ms */
 738		}
 739	}
 740}
 741EXPORT_SYMBOL(mmc_set_data_timeout);
 742
 743/*
 744 * Allow claiming an already claimed host if the context is the same or there is
 745 * no context but the task is the same.
 
 
 
 
 
 
 
 
 
 
 746 */
 747static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 748				   struct task_struct *task)
 749{
 750	return host->claimer == ctx ||
 751	       (!ctx && task && host->claimer->task == task);
 
 
 
 
 
 
 752}
 
 753
 754static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 755				       struct mmc_ctx *ctx,
 756				       struct task_struct *task)
 
 
 
 
 
 
 757{
 758	if (!host->claimer) {
 759		if (ctx)
 760			host->claimer = ctx;
 761		else
 762			host->claimer = &host->default_ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	}
 764	if (task)
 765		host->claimer->task = task;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766}
 
 767
 768/**
 769 *	__mmc_claim_host - exclusively claim a host
 770 *	@host: mmc host to claim
 771 *	@ctx: context that claims the host or NULL in which case the default
 772 *	context will be used
 773 *	@abort: whether or not the operation should be aborted
 774 *
 775 *	Claim a host for a set of operations.  If @abort is non null and
 776 *	dereference a non-zero value then this will return prematurely with
 777 *	that non-zero value without acquiring the lock.  Returns zero
 778 *	with the lock held otherwise.
 779 */
 780int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 781		     atomic_t *abort)
 782{
 783	struct task_struct *task = ctx ? NULL : current;
 784	DECLARE_WAITQUEUE(wait, current);
 785	unsigned long flags;
 786	int stop;
 787	bool pm = false;
 788
 789	might_sleep();
 790
 791	add_wait_queue(&host->wq, &wait);
 792	spin_lock_irqsave(&host->lock, flags);
 793	while (1) {
 794		set_current_state(TASK_UNINTERRUPTIBLE);
 795		stop = abort ? atomic_read(abort) : 0;
 796		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 797			break;
 798		spin_unlock_irqrestore(&host->lock, flags);
 799		schedule();
 800		spin_lock_irqsave(&host->lock, flags);
 801	}
 802	set_current_state(TASK_RUNNING);
 803	if (!stop) {
 804		host->claimed = 1;
 805		mmc_ctx_set_claimer(host, ctx, task);
 806		host->claim_cnt += 1;
 807		if (host->claim_cnt == 1)
 808			pm = true;
 809	} else
 810		wake_up(&host->wq);
 811	spin_unlock_irqrestore(&host->lock, flags);
 812	remove_wait_queue(&host->wq, &wait);
 
 
 
 
 
 
 813
 814	if (pm)
 815		pm_runtime_get_sync(mmc_dev(host));
 
 
 
 
 
 
 
 
 816
 817	return stop;
 
 
 
 
 
 
 
 
 818}
 819EXPORT_SYMBOL(__mmc_claim_host);
 820
 821/**
 822 *	mmc_release_host - release a host
 823 *	@host: mmc host to release
 824 *
 825 *	Release a MMC host, allowing others to claim the host
 826 *	for their operations.
 827 */
 828void mmc_release_host(struct mmc_host *host)
 829{
 830	unsigned long flags;
 831
 832	WARN_ON(!host->claimed);
 833
 834	spin_lock_irqsave(&host->lock, flags);
 835	if (--host->claim_cnt) {
 836		/* Release for nested claim */
 837		spin_unlock_irqrestore(&host->lock, flags);
 838	} else {
 839		host->claimed = 0;
 840		host->claimer->task = NULL;
 841		host->claimer = NULL;
 842		spin_unlock_irqrestore(&host->lock, flags);
 843		wake_up(&host->wq);
 844		pm_runtime_mark_last_busy(mmc_dev(host));
 845		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 846			pm_runtime_put_sync_suspend(mmc_dev(host));
 847		else
 848			pm_runtime_put_autosuspend(mmc_dev(host));
 849	}
 850}
 851EXPORT_SYMBOL(mmc_release_host);
 
 
 
 
 
 
 
 
 
 
 
 
 852
 853/*
 854 * This is a helper function, which fetches a runtime pm reference for the
 855 * card device and also claims the host.
 
 
 
 
 856 */
 857void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 858{
 859	pm_runtime_get_sync(&card->dev);
 860	__mmc_claim_host(card->host, ctx, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861}
 862EXPORT_SYMBOL(mmc_get_card);
 863
 864/*
 865 * This is a helper function, which releases the host and drops the runtime
 866 * pm reference for the card device.
 
 
 
 867 */
 868void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 869{
 870	struct mmc_host *host = card->host;
 871
 872	WARN_ON(ctx && host->claimer != ctx);
 873
 874	mmc_release_host(host);
 875	pm_runtime_mark_last_busy(&card->dev);
 876	pm_runtime_put_autosuspend(&card->dev);
 877}
 878EXPORT_SYMBOL(mmc_put_card);
 
 879
 880/*
 881 * Internal function that does the actual ios call to the host driver,
 882 * optionally printing some debug output.
 883 */
 884static inline void mmc_set_ios(struct mmc_host *host)
 885{
 886	struct mmc_ios *ios = &host->ios;
 887
 888	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 889		"width %u timing %u\n",
 890		 mmc_hostname(host), ios->clock, ios->bus_mode,
 891		 ios->power_mode, ios->chip_select, ios->vdd,
 892		 1 << ios->bus_width, ios->timing);
 893
 
 
 894	host->ops->set_ios(host, ios);
 895}
 896
 897/*
 898 * Control chip select pin on a host.
 899 */
 900void mmc_set_chip_select(struct mmc_host *host, int mode)
 901{
 
 902	host->ios.chip_select = mode;
 903	mmc_set_ios(host);
 
 904}
 905
 906/*
 907 * Sets the host clock to the highest possible frequency that
 908 * is below "hz".
 909 */
 910void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 911{
 912	WARN_ON(hz && hz < host->f_min);
 913
 914	if (hz > host->f_max)
 915		hz = host->f_max;
 916
 917	host->ios.clock = hz;
 918	mmc_set_ios(host);
 919}
 920
 921int mmc_execute_tuning(struct mmc_card *card)
 922{
 923	struct mmc_host *host = card->host;
 924	u32 opcode;
 925	int err;
 
 926
 927	if (!host->ops->execute_tuning)
 928		return 0;
 
 
 
 
 
 929
 930	if (host->cqe_on)
 931		host->cqe_ops->cqe_off(host);
 
 
 
 
 
 932
 933	if (mmc_card_mmc(card))
 934		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 935	else
 936		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937
 938	err = host->ops->execute_tuning(host, opcode);
 
 
 939
 940	if (err) {
 941		pr_err("%s: tuning execution failed: %d\n",
 942			mmc_hostname(host), err);
 943	} else {
 944		host->retune_now = 0;
 945		host->need_retune = 0;
 946		mmc_retune_enable(host);
 947	}
 948
 949	return err;
 
 
 950}
 
 951
 952/*
 953 * Change the bus mode (open drain/push-pull) of a host.
 954 */
 955void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 956{
 
 957	host->ios.bus_mode = mode;
 958	mmc_set_ios(host);
 
 959}
 960
 961/*
 962 * Change data bus width of a host.
 963 */
 964void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 965{
 
 966	host->ios.bus_width = width;
 967	mmc_set_ios(host);
 968}
 969
 970/*
 971 * Set initial state after a power cycle or a hw_reset.
 972 */
 973void mmc_set_initial_state(struct mmc_host *host)
 974{
 975	if (host->cqe_on)
 976		host->cqe_ops->cqe_off(host);
 977
 978	mmc_retune_disable(host);
 979
 980	if (mmc_host_is_spi(host))
 981		host->ios.chip_select = MMC_CS_HIGH;
 982	else
 983		host->ios.chip_select = MMC_CS_DONTCARE;
 984	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 985	host->ios.bus_width = MMC_BUS_WIDTH_1;
 986	host->ios.timing = MMC_TIMING_LEGACY;
 987	host->ios.drv_type = 0;
 988	host->ios.enhanced_strobe = false;
 989
 990	/*
 991	 * Make sure we are in non-enhanced strobe mode before we
 992	 * actually enable it in ext_csd.
 993	 */
 994	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 995	     host->ops->hs400_enhanced_strobe)
 996		host->ops->hs400_enhanced_strobe(host, &host->ios);
 997
 998	mmc_set_ios(host);
 999
1000	mmc_crypto_set_initial_state(host);
1001}
1002
1003/**
1004 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1005 * @vdd:	voltage (mV)
1006 * @low_bits:	prefer low bits in boundary cases
1007 *
1008 * This function returns the OCR bit number according to the provided @vdd
1009 * value. If conversion is not possible a negative errno value returned.
1010 *
1011 * Depending on the @low_bits flag the function prefers low or high OCR bits
1012 * on boundary voltages. For example,
1013 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1014 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1015 *
1016 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1017 */
1018static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1019{
1020	const int max_bit = ilog2(MMC_VDD_35_36);
1021	int bit;
1022
1023	if (vdd < 1650 || vdd > 3600)
1024		return -EINVAL;
1025
1026	if (vdd >= 1650 && vdd <= 1950)
1027		return ilog2(MMC_VDD_165_195);
1028
1029	if (low_bits)
1030		vdd -= 1;
1031
1032	/* Base 2000 mV, step 100 mV, bit's base 8. */
1033	bit = (vdd - 2000) / 100 + 8;
1034	if (bit > max_bit)
1035		return max_bit;
1036	return bit;
1037}
1038
1039/**
1040 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1041 * @vdd_min:	minimum voltage value (mV)
1042 * @vdd_max:	maximum voltage value (mV)
1043 *
1044 * This function returns the OCR mask bits according to the provided @vdd_min
1045 * and @vdd_max values. If conversion is not possible the function returns 0.
1046 *
1047 * Notes wrt boundary cases:
1048 * This function sets the OCR bits for all boundary voltages, for example
1049 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1050 * MMC_VDD_34_35 mask.
1051 */
1052u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1053{
1054	u32 mask = 0;
1055
1056	if (vdd_max < vdd_min)
1057		return 0;
1058
1059	/* Prefer high bits for the boundary vdd_max values. */
1060	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1061	if (vdd_max < 0)
1062		return 0;
1063
1064	/* Prefer low bits for the boundary vdd_min values. */
1065	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1066	if (vdd_min < 0)
1067		return 0;
1068
1069	/* Fill the mask, from max bit to min bit. */
1070	while (vdd_max >= vdd_min)
1071		mask |= 1 << vdd_max--;
1072
1073	return mask;
1074}
 
1075
1076static int mmc_of_get_func_num(struct device_node *node)
 
 
 
 
 
 
 
 
 
 
 
1077{
1078	u32 reg;
1079	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081	ret = of_property_read_u32(node, "reg", &reg);
1082	if (ret < 0)
1083		return ret;
1084
1085	return reg;
1086}
 
1087
1088struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1089		unsigned func_num)
1090{
1091	struct device_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092
1093	if (!host->parent || !host->parent->of_node)
1094		return NULL;
 
 
 
 
 
 
 
 
1095
1096	for_each_child_of_node(host->parent->of_node, node) {
1097		if (mmc_of_get_func_num(node) == func_num)
1098			return node;
 
 
 
 
 
 
1099	}
1100
1101	return NULL;
 
 
 
1102}
 
 
 
1103
1104/*
1105 * Mask off any voltages we don't support and select
1106 * the lowest voltage
1107 */
1108u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1109{
1110	int bit;
1111
1112	/*
1113	 * Sanity check the voltages that the card claims to
1114	 * support.
1115	 */
1116	if (ocr & 0x7F) {
1117		dev_warn(mmc_dev(host),
1118		"card claims to support voltages below defined range\n");
1119		ocr &= ~0x7F;
1120	}
1121
1122	ocr &= host->ocr_avail;
1123	if (!ocr) {
1124		dev_warn(mmc_dev(host), "no support for card's volts\n");
1125		return 0;
1126	}
1127
1128	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1129		bit = ffs(ocr) - 1;
1130		ocr &= 3 << bit;
1131		mmc_power_cycle(host, ocr);
 
 
 
 
1132	} else {
1133		bit = fls(ocr) - 1;
1134		ocr &= 3 << bit;
1135		if (bit != host->ios.vdd)
1136			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1137	}
1138
1139	return ocr;
1140}
1141
1142int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1143{
 
1144	int err = 0;
1145	int old_signal_voltage = host->ios.signal_voltage;
1146
1147	host->ios.signal_voltage = signal_voltage;
1148	if (host->ops->start_signal_voltage_switch)
1149		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1150
1151	if (err)
1152		host->ios.signal_voltage = old_signal_voltage;
1153
1154	return err;
1155
1156}
1157
1158void mmc_set_initial_signal_voltage(struct mmc_host *host)
1159{
1160	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1161	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1162		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1163	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1164		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1165	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1166		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1167}
1168
1169int mmc_host_set_uhs_voltage(struct mmc_host *host)
1170{
1171	u32 clock;
1172
1173	/*
1174	 * During a signal voltage level switch, the clock must be gated
1175	 * for 5 ms according to the SD spec
1176	 */
1177	clock = host->ios.clock;
1178	host->ios.clock = 0;
1179	mmc_set_ios(host);
 
1180
1181	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182		return -EAGAIN;
1183
1184	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1185	mmc_delay(10);
1186	host->ios.clock = clock;
1187	mmc_set_ios(host);
1188
1189	return 0;
1190}
1191
1192int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1193{
1194	struct mmc_command cmd = {};
1195	int err = 0;
1196
1197	/*
1198	 * If we cannot switch voltages, return failure so the caller
1199	 * can continue without UHS mode
1200	 */
1201	if (!host->ops->start_signal_voltage_switch)
1202		return -EPERM;
1203	if (!host->ops->card_busy)
1204		pr_warn("%s: cannot verify signal voltage switch\n",
1205			mmc_hostname(host));
1206
1207	cmd.opcode = SD_SWITCH_VOLTAGE;
1208	cmd.arg = 0;
1209	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1210
1211	err = mmc_wait_for_cmd(host, &cmd, 0);
1212	if (err)
1213		goto power_cycle;
1214
1215	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1216		return -EIO;
1217
1218	/*
1219	 * The card should drive cmd and dat[0:3] low immediately
1220	 * after the response of cmd11, but wait 1 ms to be sure
1221	 */
1222	mmc_delay(1);
1223	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1224		err = -EAGAIN;
1225		goto power_cycle;
1226	}
1227
1228	if (mmc_host_set_uhs_voltage(host)) {
1229		/*
1230		 * Voltages may not have been switched, but we've already
1231		 * sent CMD11, so a power cycle is required anyway
1232		 */
1233		err = -EAGAIN;
1234		goto power_cycle;
1235	}
1236
1237	/* Wait for at least 1 ms according to spec */
1238	mmc_delay(1);
1239
1240	/*
1241	 * Failure to switch is indicated by the card holding
1242	 * dat[0:3] low
1243	 */
1244	if (host->ops->card_busy && host->ops->card_busy(host))
1245		err = -EAGAIN;
1246
1247power_cycle:
1248	if (err) {
1249		pr_debug("%s: Signal voltage switch failed, "
1250			"power cycling card\n", mmc_hostname(host));
1251		mmc_power_cycle(host, ocr);
1252	}
1253
1254	return err;
1255}
1256
1257/*
1258 * Select timing parameters for host.
1259 */
1260void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261{
 
1262	host->ios.timing = timing;
1263	mmc_set_ios(host);
 
1264}
1265
1266/*
1267 * Select appropriate driver type for host.
1268 */
1269void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1270{
 
1271	host->ios.drv_type = drv_type;
1272	mmc_set_ios(host);
1273}
1274
1275int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1276			      int card_drv_type, int *drv_type)
1277{
1278	struct mmc_host *host = card->host;
1279	int host_drv_type = SD_DRIVER_TYPE_B;
1280
1281	*drv_type = 0;
1282
1283	if (!host->ops->select_drive_strength)
1284		return 0;
1285
1286	/* Use SD definition of driver strength for hosts */
1287	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1288		host_drv_type |= SD_DRIVER_TYPE_A;
1289
1290	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1291		host_drv_type |= SD_DRIVER_TYPE_C;
1292
1293	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1294		host_drv_type |= SD_DRIVER_TYPE_D;
1295
1296	/*
1297	 * The drive strength that the hardware can support
1298	 * depends on the board design.  Pass the appropriate
1299	 * information and let the hardware specific code
1300	 * return what is possible given the options
1301	 */
1302	return host->ops->select_drive_strength(card, max_dtr,
1303						host_drv_type,
1304						card_drv_type,
1305						drv_type);
1306}
1307
1308/*
1309 * Apply power to the MMC stack.  This is a two-stage process.
1310 * First, we enable power to the card without the clock running.
1311 * We then wait a bit for the power to stabilise.  Finally,
1312 * enable the bus drivers and clock to the card.
1313 *
1314 * We must _NOT_ enable the clock prior to power stablising.
1315 *
1316 * If a host does all the power sequencing itself, ignore the
1317 * initial MMC_POWER_UP stage.
1318 */
1319void mmc_power_up(struct mmc_host *host, u32 ocr)
1320{
1321	if (host->ios.power_mode == MMC_POWER_ON)
1322		return;
 
1323
1324	mmc_pwrseq_pre_power_on(host);
 
 
 
 
1325
1326	host->ios.vdd = fls(ocr) - 1;
 
 
 
 
 
 
 
1327	host->ios.power_mode = MMC_POWER_UP;
1328	/* Set initial state and call mmc_set_ios */
1329	mmc_set_initial_state(host);
1330
1331	mmc_set_initial_signal_voltage(host);
1332
1333	/*
1334	 * This delay should be sufficient to allow the power supply
1335	 * to reach the minimum voltage.
1336	 */
1337	mmc_delay(host->ios.power_delay_ms);
1338
1339	mmc_pwrseq_post_power_on(host);
1340
1341	host->ios.clock = host->f_init;
1342
1343	host->ios.power_mode = MMC_POWER_ON;
1344	mmc_set_ios(host);
1345
1346	/*
1347	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1348	 * time required to reach a stable voltage.
1349	 */
1350	mmc_delay(host->ios.power_delay_ms);
 
 
1351}
1352
1353void mmc_power_off(struct mmc_host *host)
1354{
1355	if (host->ios.power_mode == MMC_POWER_OFF)
1356		return;
1357
1358	mmc_pwrseq_power_off(host);
1359
1360	host->ios.clock = 0;
1361	host->ios.vdd = 0;
1362
 
 
 
 
 
 
 
 
 
 
1363	host->ios.power_mode = MMC_POWER_OFF;
1364	/* Set initial state and call mmc_set_ios */
1365	mmc_set_initial_state(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366
1367	/*
1368	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1369	 * XO-1.5, require a short delay after poweroff before the card
1370	 * can be successfully turned on again.
1371	 */
1372	mmc_delay(1);
 
 
 
 
1373}
1374
1375void mmc_power_cycle(struct mmc_host *host, u32 ocr)
 
 
 
 
1376{
1377	mmc_power_off(host);
1378	/* Wait at least 1 ms according to SD spec */
1379	mmc_delay(1);
1380	mmc_power_up(host, ocr);
 
 
 
1381}
1382
1383/*
1384 * Assign a mmc bus handler to a host. Only one bus handler may control a
1385 * host at any given time.
1386 */
1387void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1388{
 
 
 
 
 
 
 
 
 
 
 
 
1389	host->bus_ops = ops;
 
 
 
 
1390}
1391
1392/*
1393 * Remove the current bus handler from a host.
 
1394 */
1395void mmc_detach_bus(struct mmc_host *host)
1396{
1397	host->bus_ops = NULL;
1398}
 
 
 
 
 
 
 
 
 
 
1399
1400void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1401{
1402	/*
1403	 * Prevent system sleep for 5s to allow user space to consume the
1404	 * corresponding uevent. This is especially useful, when CD irq is used
1405	 * as a system wakeup, but doesn't hurt in other cases.
1406	 */
1407	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1408		__pm_wakeup_event(host->ws, 5000);
1409
1410	host->detect_change = 1;
1411	mmc_schedule_delayed_work(&host->detect, delay);
1412}
1413
1414/**
1415 *	mmc_detect_change - process change of state on a MMC socket
1416 *	@host: host which changed state.
1417 *	@delay: optional delay to wait before detection (jiffies)
1418 *
1419 *	MMC drivers should call this when they detect a card has been
1420 *	inserted or removed. The MMC layer will confirm that any
1421 *	present card is still functional, and initialize any newly
1422 *	inserted.
1423 */
1424void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1425{
1426	_mmc_detect_change(host, delay, true);
 
 
 
 
 
 
 
1427}
 
1428EXPORT_SYMBOL(mmc_detect_change);
1429
1430void mmc_init_erase(struct mmc_card *card)
1431{
1432	unsigned int sz;
1433
1434	if (is_power_of_2(card->erase_size))
1435		card->erase_shift = ffs(card->erase_size) - 1;
1436	else
1437		card->erase_shift = 0;
1438
1439	/*
1440	 * It is possible to erase an arbitrarily large area of an SD or MMC
1441	 * card.  That is not desirable because it can take a long time
1442	 * (minutes) potentially delaying more important I/O, and also the
1443	 * timeout calculations become increasingly hugely over-estimated.
1444	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1445	 * to that size and alignment.
1446	 *
1447	 * For SD cards that define Allocation Unit size, limit erases to one
1448	 * Allocation Unit at a time.
1449	 * For MMC, have a stab at ai good value and for modern cards it will
1450	 * end up being 4MiB. Note that if the value is too small, it can end
1451	 * up taking longer to erase. Also note, erase_size is already set to
1452	 * High Capacity Erase Size if available when this function is called.
1453	 */
1454	if (mmc_card_sd(card) && card->ssr.au) {
1455		card->pref_erase = card->ssr.au;
1456		card->erase_shift = ffs(card->ssr.au) - 1;
1457	} else if (card->erase_size) {
 
 
1458		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1459		if (sz < 128)
1460			card->pref_erase = 512 * 1024 / 512;
1461		else if (sz < 512)
1462			card->pref_erase = 1024 * 1024 / 512;
1463		else if (sz < 1024)
1464			card->pref_erase = 2 * 1024 * 1024 / 512;
1465		else
1466			card->pref_erase = 4 * 1024 * 1024 / 512;
1467		if (card->pref_erase < card->erase_size)
1468			card->pref_erase = card->erase_size;
1469		else {
1470			sz = card->pref_erase % card->erase_size;
1471			if (sz)
1472				card->pref_erase += card->erase_size - sz;
1473		}
1474	} else
1475		card->pref_erase = 0;
1476}
1477
1478static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1479				          unsigned int arg, unsigned int qty)
1480{
1481	unsigned int erase_timeout;
1482
1483	if (arg == MMC_DISCARD_ARG ||
1484	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1485		erase_timeout = card->ext_csd.trim_timeout;
1486	} else if (card->ext_csd.erase_group_def & 1) {
1487		/* High Capacity Erase Group Size uses HC timeouts */
1488		if (arg == MMC_TRIM_ARG)
1489			erase_timeout = card->ext_csd.trim_timeout;
1490		else
1491			erase_timeout = card->ext_csd.hc_erase_timeout;
1492	} else {
1493		/* CSD Erase Group Size uses write timeout */
1494		unsigned int mult = (10 << card->csd.r2w_factor);
1495		unsigned int timeout_clks = card->csd.taac_clks * mult;
1496		unsigned int timeout_us;
1497
1498		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1499		if (card->csd.taac_ns < 1000000)
1500			timeout_us = (card->csd.taac_ns * mult) / 1000;
1501		else
1502			timeout_us = (card->csd.taac_ns / 1000) * mult;
1503
1504		/*
1505		 * ios.clock is only a target.  The real clock rate might be
1506		 * less but not that much less, so fudge it by multiplying by 2.
1507		 */
1508		timeout_clks <<= 1;
1509		timeout_us += (timeout_clks * 1000) /
1510			      (card->host->ios.clock / 1000);
1511
1512		erase_timeout = timeout_us / 1000;
1513
1514		/*
1515		 * Theoretically, the calculation could underflow so round up
1516		 * to 1ms in that case.
1517		 */
1518		if (!erase_timeout)
1519			erase_timeout = 1;
1520	}
1521
1522	/* Multiplier for secure operations */
1523	if (arg & MMC_SECURE_ARGS) {
1524		if (arg == MMC_SECURE_ERASE_ARG)
1525			erase_timeout *= card->ext_csd.sec_erase_mult;
1526		else
1527			erase_timeout *= card->ext_csd.sec_trim_mult;
1528	}
1529
1530	erase_timeout *= qty;
1531
1532	/*
1533	 * Ensure at least a 1 second timeout for SPI as per
1534	 * 'mmc_set_data_timeout()'
1535	 */
1536	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1537		erase_timeout = 1000;
1538
1539	return erase_timeout;
1540}
1541
1542static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1543					 unsigned int arg,
1544					 unsigned int qty)
1545{
1546	unsigned int erase_timeout;
1547
1548	/* for DISCARD none of the below calculation applies.
1549	 * the busy timeout is 250msec per discard command.
1550	 */
1551	if (arg == SD_DISCARD_ARG)
1552		return SD_DISCARD_TIMEOUT_MS;
1553
1554	if (card->ssr.erase_timeout) {
1555		/* Erase timeout specified in SD Status Register (SSR) */
1556		erase_timeout = card->ssr.erase_timeout * qty +
1557				card->ssr.erase_offset;
1558	} else {
1559		/*
1560		 * Erase timeout not specified in SD Status Register (SSR) so
1561		 * use 250ms per write block.
1562		 */
1563		erase_timeout = 250 * qty;
1564	}
1565
1566	/* Must not be less than 1 second */
1567	if (erase_timeout < 1000)
1568		erase_timeout = 1000;
1569
1570	return erase_timeout;
1571}
1572
1573static unsigned int mmc_erase_timeout(struct mmc_card *card,
1574				      unsigned int arg,
1575				      unsigned int qty)
1576{
1577	if (mmc_card_sd(card))
1578		return mmc_sd_erase_timeout(card, arg, qty);
1579	else
1580		return mmc_mmc_erase_timeout(card, arg, qty);
1581}
1582
1583static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1584			unsigned int to, unsigned int arg)
1585{
1586	struct mmc_command cmd = {};
1587	unsigned int qty = 0, busy_timeout = 0;
1588	bool use_r1b_resp;
1589	int err;
1590
1591	mmc_retune_hold(card->host);
1592
1593	/*
1594	 * qty is used to calculate the erase timeout which depends on how many
1595	 * erase groups (or allocation units in SD terminology) are affected.
1596	 * We count erasing part of an erase group as one erase group.
1597	 * For SD, the allocation units are always a power of 2.  For MMC, the
1598	 * erase group size is almost certainly also power of 2, but it does not
1599	 * seem to insist on that in the JEDEC standard, so we fall back to
1600	 * division in that case.  SD may not specify an allocation unit size,
1601	 * in which case the timeout is based on the number of write blocks.
1602	 *
1603	 * Note that the timeout for secure trim 2 will only be correct if the
1604	 * number of erase groups specified is the same as the total of all
1605	 * preceding secure trim 1 commands.  Since the power may have been
1606	 * lost since the secure trim 1 commands occurred, it is generally
1607	 * impossible to calculate the secure trim 2 timeout correctly.
1608	 */
1609	if (card->erase_shift)
1610		qty += ((to >> card->erase_shift) -
1611			(from >> card->erase_shift)) + 1;
1612	else if (mmc_card_sd(card))
1613		qty += to - from + 1;
1614	else
1615		qty += ((to / card->erase_size) -
1616			(from / card->erase_size)) + 1;
1617
1618	if (!mmc_card_blockaddr(card)) {
1619		from <<= 9;
1620		to <<= 9;
1621	}
1622
1623	if (mmc_card_sd(card))
1624		cmd.opcode = SD_ERASE_WR_BLK_START;
1625	else
1626		cmd.opcode = MMC_ERASE_GROUP_START;
1627	cmd.arg = from;
1628	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1629	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1630	if (err) {
1631		pr_err("mmc_erase: group start error %d, "
1632		       "status %#x\n", err, cmd.resp[0]);
1633		err = -EIO;
1634		goto out;
1635	}
1636
1637	memset(&cmd, 0, sizeof(struct mmc_command));
1638	if (mmc_card_sd(card))
1639		cmd.opcode = SD_ERASE_WR_BLK_END;
1640	else
1641		cmd.opcode = MMC_ERASE_GROUP_END;
1642	cmd.arg = to;
1643	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1644	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1645	if (err) {
1646		pr_err("mmc_erase: group end error %d, status %#x\n",
1647		       err, cmd.resp[0]);
1648		err = -EIO;
1649		goto out;
1650	}
1651
1652	memset(&cmd, 0, sizeof(struct mmc_command));
1653	cmd.opcode = MMC_ERASE;
1654	cmd.arg = arg;
1655	busy_timeout = mmc_erase_timeout(card, arg, qty);
1656	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1657
1658	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659	if (err) {
1660		pr_err("mmc_erase: erase error %d, status %#x\n",
1661		       err, cmd.resp[0]);
1662		err = -EIO;
1663		goto out;
1664	}
1665
1666	if (mmc_host_is_spi(card->host))
1667		goto out;
1668
1669	/*
1670	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1671	 * shall be avoided.
1672	 */
1673	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1674		goto out;
1675
1676	/* Let's poll to find out when the erase operation completes. */
1677	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1678
 
 
 
 
 
1679out:
1680	mmc_retune_release(card->host);
1681	return err;
1682}
1683
1684static unsigned int mmc_align_erase_size(struct mmc_card *card,
1685					 unsigned int *from,
1686					 unsigned int *to,
1687					 unsigned int nr)
1688{
1689	unsigned int from_new = *from, nr_new = nr, rem;
1690
1691	/*
1692	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1693	 * to align the erase size efficiently.
1694	 */
1695	if (is_power_of_2(card->erase_size)) {
1696		unsigned int temp = from_new;
1697
1698		from_new = round_up(temp, card->erase_size);
1699		rem = from_new - temp;
1700
1701		if (nr_new > rem)
1702			nr_new -= rem;
1703		else
1704			return 0;
1705
1706		nr_new = round_down(nr_new, card->erase_size);
1707	} else {
1708		rem = from_new % card->erase_size;
1709		if (rem) {
1710			rem = card->erase_size - rem;
1711			from_new += rem;
1712			if (nr_new > rem)
1713				nr_new -= rem;
1714			else
1715				return 0;
1716		}
1717
1718		rem = nr_new % card->erase_size;
1719		if (rem)
1720			nr_new -= rem;
1721	}
1722
1723	if (nr_new == 0)
1724		return 0;
1725
1726	*to = from_new + nr_new;
1727	*from = from_new;
1728
1729	return nr_new;
1730}
1731
1732/**
1733 * mmc_erase - erase sectors.
1734 * @card: card to erase
1735 * @from: first sector to erase
1736 * @nr: number of sectors to erase
1737 * @arg: erase command argument
1738 *
1739 * Caller must claim host before calling this function.
1740 */
1741int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1742	      unsigned int arg)
1743{
1744	unsigned int rem, to = from + nr;
1745	int err;
1746
1747	if (!(card->csd.cmdclass & CCC_ERASE))
 
1748		return -EOPNOTSUPP;
1749
1750	if (!card->erase_size)
1751		return -EOPNOTSUPP;
1752
1753	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1754		return -EOPNOTSUPP;
1755
1756	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1757	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1758		return -EOPNOTSUPP;
1759
1760	if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1761	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1762		return -EOPNOTSUPP;
1763
1764	if (arg == MMC_SECURE_ERASE_ARG) {
1765		if (from % card->erase_size || nr % card->erase_size)
1766			return -EINVAL;
1767	}
1768
1769	if (arg == MMC_ERASE_ARG)
1770		nr = mmc_align_erase_size(card, &from, &to, nr);
 
 
 
 
 
 
 
 
 
 
 
 
1771
1772	if (nr == 0)
1773		return 0;
1774
 
 
1775	if (to <= from)
1776		return -EINVAL;
1777
1778	/* 'from' and 'to' are inclusive */
1779	to -= 1;
1780
1781	/*
1782	 * Special case where only one erase-group fits in the timeout budget:
1783	 * If the region crosses an erase-group boundary on this particular
1784	 * case, we will be trimming more than one erase-group which, does not
1785	 * fit in the timeout budget of the controller, so we need to split it
1786	 * and call mmc_do_erase() twice if necessary. This special case is
1787	 * identified by the card->eg_boundary flag.
1788	 */
1789	rem = card->erase_size - (from % card->erase_size);
1790	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1791		err = mmc_do_erase(card, from, from + rem - 1, arg);
1792		from += rem;
1793		if ((err) || (to <= from))
1794			return err;
1795	}
1796
1797	return mmc_do_erase(card, from, to, arg);
1798}
1799EXPORT_SYMBOL(mmc_erase);
1800
1801int mmc_can_erase(struct mmc_card *card)
1802{
1803	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1804		return 1;
1805	return 0;
1806}
1807EXPORT_SYMBOL(mmc_can_erase);
1808
1809int mmc_can_trim(struct mmc_card *card)
1810{
1811	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1812	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1813		return 1;
1814	return 0;
1815}
1816EXPORT_SYMBOL(mmc_can_trim);
1817
1818int mmc_can_discard(struct mmc_card *card)
1819{
1820	/*
1821	 * As there's no way to detect the discard support bit at v4.5
1822	 * use the s/w feature support filed.
1823	 */
1824	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1825		return 1;
1826	return 0;
1827}
1828EXPORT_SYMBOL(mmc_can_discard);
1829
1830int mmc_can_sanitize(struct mmc_card *card)
1831{
1832	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1833		return 0;
1834	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1835		return 1;
1836	return 0;
1837}
1838
1839int mmc_can_secure_erase_trim(struct mmc_card *card)
1840{
1841	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1842	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1843		return 1;
1844	return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1847
1848int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1849			    unsigned int nr)
1850{
1851	if (!card->erase_size)
1852		return 0;
1853	if (from % card->erase_size || nr % card->erase_size)
1854		return 0;
1855	return 1;
1856}
1857EXPORT_SYMBOL(mmc_erase_group_aligned);
1858
1859static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1860					    unsigned int arg)
1861{
1862	struct mmc_host *host = card->host;
1863	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1864	unsigned int last_timeout = 0;
1865	unsigned int max_busy_timeout = host->max_busy_timeout ?
1866			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1867
1868	if (card->erase_shift) {
1869		max_qty = UINT_MAX >> card->erase_shift;
1870		min_qty = card->pref_erase >> card->erase_shift;
1871	} else if (mmc_card_sd(card)) {
1872		max_qty = UINT_MAX;
1873		min_qty = card->pref_erase;
1874	} else {
1875		max_qty = UINT_MAX / card->erase_size;
1876		min_qty = card->pref_erase / card->erase_size;
1877	}
1878
1879	/*
1880	 * We should not only use 'host->max_busy_timeout' as the limitation
1881	 * when deciding the max discard sectors. We should set a balance value
1882	 * to improve the erase speed, and it can not get too long timeout at
1883	 * the same time.
1884	 *
1885	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1886	 * matter what size of 'host->max_busy_timeout', but if the
1887	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1888	 * then we can continue to increase the max discard sectors until we
1889	 * get a balance value. In cases when the 'host->max_busy_timeout'
1890	 * isn't specified, use the default max erase timeout.
1891	 */
1892	do {
1893		y = 0;
1894		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895			timeout = mmc_erase_timeout(card, arg, qty + x);
1896
1897			if (qty + x > min_qty && timeout > max_busy_timeout)
1898				break;
1899
1900			if (timeout < last_timeout)
1901				break;
1902			last_timeout = timeout;
1903			y = x;
1904		}
1905		qty += y;
1906	} while (y);
1907
1908	if (!qty)
1909		return 0;
1910
1911	/*
1912	 * When specifying a sector range to trim, chances are we might cross
1913	 * an erase-group boundary even if the amount of sectors is less than
1914	 * one erase-group.
1915	 * If we can only fit one erase-group in the controller timeout budget,
1916	 * we have to care that erase-group boundaries are not crossed by a
1917	 * single trim operation. We flag that special case with "eg_boundary".
1918	 * In all other cases we can just decrement qty and pretend that we
1919	 * always touch (qty + 1) erase-groups as a simple optimization.
1920	 */
1921	if (qty == 1)
1922		card->eg_boundary = 1;
1923	else
1924		qty--;
1925
1926	/* Convert qty to sectors */
1927	if (card->erase_shift)
1928		max_discard = qty << card->erase_shift;
1929	else if (mmc_card_sd(card))
1930		max_discard = qty + 1;
1931	else
1932		max_discard = qty * card->erase_size;
1933
1934	return max_discard;
1935}
1936
1937unsigned int mmc_calc_max_discard(struct mmc_card *card)
1938{
1939	struct mmc_host *host = card->host;
1940	unsigned int max_discard, max_trim;
1941
 
 
 
1942	/*
1943	 * Without erase_group_def set, MMC erase timeout depends on clock
1944	 * frequence which can change.  In that case, the best choice is
1945	 * just the preferred erase size.
1946	 */
1947	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1948		return card->pref_erase;
1949
1950	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1951	if (mmc_can_trim(card)) {
1952		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1953		if (max_trim < max_discard || max_discard == 0)
1954			max_discard = max_trim;
1955	} else if (max_discard < card->erase_size) {
1956		max_discard = 0;
1957	}
1958	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1959		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1960		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1961	return max_discard;
1962}
1963EXPORT_SYMBOL(mmc_calc_max_discard);
1964
1965bool mmc_card_is_blockaddr(struct mmc_card *card)
1966{
1967	return card ? mmc_card_blockaddr(card) : false;
1968}
1969EXPORT_SYMBOL(mmc_card_is_blockaddr);
1970
1971int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1972{
1973	struct mmc_command cmd = {};
1974
1975	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1976	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1977		return 0;
1978
1979	cmd.opcode = MMC_SET_BLOCKLEN;
1980	cmd.arg = blocklen;
1981	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1982	return mmc_wait_for_cmd(card->host, &cmd, 5);
1983}
1984EXPORT_SYMBOL(mmc_set_blocklen);
1985
1986static void mmc_hw_reset_for_init(struct mmc_host *host)
1987{
1988	mmc_pwrseq_reset(host);
 
 
 
 
 
 
1989
1990	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1991		return;
1992	host->ops->hw_reset(host);
1993}
 
 
 
1994
1995/**
1996 * mmc_hw_reset - reset the card in hardware
1997 * @host: MMC host to which the card is attached
1998 *
1999 * Hard reset the card. This function is only for upper layers, like the
2000 * block layer or card drivers. You cannot use it in host drivers (struct
2001 * mmc_card might be gone then).
2002 *
2003 * Return: 0 on success, -errno on failure
2004 */
2005int mmc_hw_reset(struct mmc_host *host)
2006{
2007	int ret;
2008
2009	ret = host->bus_ops->hw_reset(host);
2010	if (ret < 0)
2011		pr_warn("%s: tried to HW reset card, got error %d\n",
2012			mmc_hostname(host), ret);
 
 
 
2013
2014	return ret;
 
2015}
2016EXPORT_SYMBOL(mmc_hw_reset);
2017
2018int mmc_sw_reset(struct mmc_host *host)
2019{
2020	int ret;
 
 
 
2021
2022	if (!host->bus_ops->sw_reset)
2023		return -EOPNOTSUPP;
2024
2025	ret = host->bus_ops->sw_reset(host);
2026	if (ret)
2027		pr_warn("%s: tried to SW reset card, got error %d\n",
2028			mmc_hostname(host), ret);
2029
2030	return ret;
2031}
2032EXPORT_SYMBOL(mmc_sw_reset);
2033
2034static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2035{
2036	host->f_init = freq;
2037
2038	pr_debug("%s: %s: trying to init card at %u Hz\n",
2039		mmc_hostname(host), __func__, host->f_init);
2040
2041	mmc_power_up(host, host->ocr_avail);
2042
2043	/*
2044	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045	 * do a hardware reset if possible.
2046	 */
2047	mmc_hw_reset_for_init(host);
 
 
 
 
 
 
 
2048
2049	/*
2050	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2051	 * if the card is being re-initialized, just send it.  CMD52
2052	 * should be ignored by SD/eMMC cards.
2053	 * Skip it if we already know that we do not support SDIO commands
2054	 */
2055	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2056		sdio_reset(host);
2057
2058	mmc_go_idle(host);
 
2059
2060	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2061		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2062			goto out;
2063		if (mmc_card_sd_express(host))
2064			return 0;
 
2065	}
 
2066
2067	/* Order's important: probe SDIO, then SD, then MMC */
2068	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2069		if (!mmc_attach_sdio(host))
2070			return 0;
2071
2072	if (!(host->caps2 & MMC_CAP2_NO_SD))
2073		if (!mmc_attach_sd(host))
2074			return 0;
2075
2076	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2077		if (!mmc_attach_mmc(host))
2078			return 0;
2079
2080out:
 
2081	mmc_power_off(host);
2082	return -EIO;
2083}
2084
2085int _mmc_detect_card_removed(struct mmc_host *host)
2086{
2087	int ret;
 
 
 
 
 
 
 
 
 
 
2088
2089	if (!host->card || mmc_card_removed(host->card))
2090		return 1;
2091
2092	ret = host->bus_ops->alive(host);
 
 
 
2093
2094	/*
2095	 * Card detect status and alive check may be out of sync if card is
2096	 * removed slowly, when card detect switch changes while card/slot
2097	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2098	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2099	 * detect work 200ms later for this case.
2100	 */
2101	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2102		mmc_detect_change(host, msecs_to_jiffies(200));
2103		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2104	}
 
 
 
 
 
 
2105
2106	if (ret) {
2107		mmc_card_set_removed(host->card);
2108		pr_debug("%s: card remove detected\n", mmc_hostname(host));
 
 
 
 
 
 
 
 
 
 
2109	}
2110
 
 
 
 
 
 
 
2111	return ret;
2112}
 
2113
2114int mmc_detect_card_removed(struct mmc_host *host)
2115{
2116	struct mmc_card *card = host->card;
2117	int ret;
2118
2119	WARN_ON(!host->claimed);
 
 
2120
2121	if (!card)
2122		return 1;
2123
2124	if (!mmc_card_is_removable(host))
2125		return 0;
 
 
2126
2127	ret = mmc_card_removed(card);
2128	/*
2129	 * The card will be considered unchanged unless we have been asked to
2130	 * detect a change or host requires polling to provide card detection.
2131	 */
2132	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2133		return ret;
2134
2135	host->detect_change = 0;
2136	if (!ret) {
2137		ret = _mmc_detect_card_removed(host);
2138		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2139			/*
2140			 * Schedule a detect work as soon as possible to let a
2141			 * rescan handle the card removal.
2142			 */
2143			cancel_delayed_work(&host->detect);
2144			_mmc_detect_change(host, 0, false);
2145		}
2146	}
2147
2148	return ret;
2149}
2150EXPORT_SYMBOL(mmc_detect_card_removed);
 
 
 
 
 
 
 
 
 
 
 
2151
2152void mmc_rescan(struct work_struct *work)
 
 
 
 
2153{
2154	struct mmc_host *host =
2155		container_of(work, struct mmc_host, detect.work);
2156	int i;
2157
2158	if (host->rescan_disable)
2159		return;
2160
2161	/* If there is a non-removable card registered, only scan once */
2162	if (!mmc_card_is_removable(host) && host->rescan_entered)
2163		return;
2164	host->rescan_entered = 1;
2165
2166	if (host->trigger_card_event && host->ops->card_event) {
2167		mmc_claim_host(host);
2168		host->ops->card_event(host);
2169		mmc_release_host(host);
2170		host->trigger_card_event = false;
2171	}
2172
2173	/* Verify a registered card to be functional, else remove it. */
2174	if (host->bus_ops)
2175		host->bus_ops->detect(host);
2176
2177	host->detect_change = 0;
 
 
2178
2179	/* if there still is a card present, stop here */
2180	if (host->bus_ops != NULL)
2181		goto out;
 
 
2182
2183	mmc_claim_host(host);
2184	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2185			host->ops->get_cd(host) == 0) {
2186		mmc_power_off(host);
2187		mmc_release_host(host);
2188		goto out;
2189	}
2190
2191	/* If an SD express card is present, then leave it as is. */
2192	if (mmc_card_sd_express(host)) {
2193		mmc_release_host(host);
2194		goto out;
2195	}
 
 
2196
2197	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2198		unsigned int freq = freqs[i];
2199		if (freq > host->f_max) {
2200			if (i + 1 < ARRAY_SIZE(freqs))
2201				continue;
2202			freq = host->f_max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203		}
2204		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2205			break;
2206		if (freqs[i] <= host->f_min)
2207			break;
2208	}
2209	mmc_release_host(host);
 
 
 
2210
2211 out:
2212	if (host->caps & MMC_CAP_NEEDS_POLL)
2213		mmc_schedule_delayed_work(&host->detect, HZ);
2214}
2215
2216void mmc_start_host(struct mmc_host *host)
 
 
 
 
 
 
2217{
2218	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2219	host->rescan_disable = 0;
2220
2221	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2222		mmc_claim_host(host);
2223		mmc_power_up(host, host->ocr_avail);
2224		mmc_release_host(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225	}
 
 
2226
2227	mmc_gpiod_request_cd_irq(host);
2228	_mmc_detect_change(host, 0, false);
2229}
 
2230
2231void mmc_stop_host(struct mmc_host *host)
 
 
 
 
 
2232{
2233	if (host->slot.cd_irq >= 0) {
2234		mmc_gpio_set_cd_wake(host, false);
2235		disable_irq(host->slot.cd_irq);
2236	}
 
 
 
 
2237
2238	host->rescan_disable = 1;
2239	cancel_delayed_work_sync(&host->detect);
 
 
2240
2241	/* clear pm flags now and let card drivers set them as needed */
2242	host->pm_flags = 0;
2243
2244	if (host->bus_ops) {
2245		/* Calling bus_ops->remove() with a claimed host can deadlock */
2246		host->bus_ops->remove(host);
2247		mmc_claim_host(host);
 
 
 
 
2248		mmc_detach_bus(host);
2249		mmc_power_off(host);
2250		mmc_release_host(host);
2251		return;
 
 
 
 
 
 
 
 
 
 
 
2252	}
2253
2254	mmc_claim_host(host);
2255	mmc_power_off(host);
2256	mmc_release_host(host);
2257}
 
2258
2259static int __init mmc_init(void)
2260{
2261	int ret;
2262
 
 
 
 
2263	ret = mmc_register_bus();
2264	if (ret)
2265		return ret;
2266
2267	ret = mmc_register_host_class();
2268	if (ret)
2269		goto unregister_bus;
2270
2271	ret = sdio_register_bus();
2272	if (ret)
2273		goto unregister_host_class;
2274
2275	return 0;
2276
2277unregister_host_class:
2278	mmc_unregister_host_class();
2279unregister_bus:
2280	mmc_unregister_bus();
 
 
 
2281	return ret;
2282}
2283
2284static void __exit mmc_exit(void)
2285{
2286	sdio_unregister_bus();
2287	mmc_unregister_host_class();
2288	mmc_unregister_bus();
 
2289}
2290
2291subsys_initcall(mmc_init);
2292module_exit(mmc_exit);
2293
2294MODULE_LICENSE("GPL");