Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * acpi-cpufreq.c - ACPI Processor P-States Driver
  3 *
  4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License as published by
 13 *  the Free Software Foundation; either version 2 of the License, or (at
 14 *  your option) any later version.
 15 *
 16 *  This program is distributed in the hope that it will be useful, but
 17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 *  General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License along
 22 *  with this program; if not, write to the Free Software Foundation, Inc.,
 23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 24 *
 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 26 */
 27
 
 
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/init.h>
 31#include <linux/smp.h>
 32#include <linux/sched.h>
 33#include <linux/cpufreq.h>
 34#include <linux/compiler.h>
 35#include <linux/dmi.h>
 36#include <linux/slab.h>
 
 
 37
 38#include <linux/acpi.h>
 39#include <linux/io.h>
 40#include <linux/delay.h>
 41#include <linux/uaccess.h>
 42
 43#include <acpi/processor.h>
 
 44
 45#include <asm/msr.h>
 46#include <asm/processor.h>
 47#include <asm/cpufeature.h>
 48#include "mperf.h"
 49
 50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 52MODULE_LICENSE("GPL");
 53
 54enum {
 55	UNDEFINED_CAPABLE = 0,
 56	SYSTEM_INTEL_MSR_CAPABLE,
 
 57	SYSTEM_IO_CAPABLE,
 58};
 59
 60#define INTEL_MSR_RANGE		(0xffff)
 
 
 61
 62struct acpi_cpufreq_data {
 63	struct acpi_processor_performance *acpi_data;
 64	struct cpufreq_frequency_table *freq_table;
 65	unsigned int resume;
 66	unsigned int cpu_feature;
 
 
 
 
 67};
 68
 69static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
 70
 71/* acpi_perf_data is a pointer to percpu data. */
 72static struct acpi_processor_performance __percpu *acpi_perf_data;
 73
 
 
 
 
 
 74static struct cpufreq_driver acpi_cpufreq_driver;
 75
 76static unsigned int acpi_pstate_strict;
 77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78static int check_est_cpu(unsigned int cpuid)
 79{
 80	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 81
 82	return cpu_has(cpu, X86_FEATURE_EST);
 83}
 84
 85static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
 86{
 
 
 
 
 
 
 
 
 87	struct acpi_processor_performance *perf;
 88	int i;
 89
 90	perf = data->acpi_data;
 91
 92	for (i = 0; i < perf->state_count; i++) {
 93		if (value == perf->states[i].status)
 94			return data->freq_table[i].frequency;
 95	}
 96	return 0;
 97}
 98
 99static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100{
101	int i;
 
102	struct acpi_processor_performance *perf;
103
104	msr &= INTEL_MSR_RANGE;
105	perf = data->acpi_data;
 
 
 
 
106
107	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108		if (msr == perf->states[data->freq_table[i].index].status)
109			return data->freq_table[i].frequency;
110	}
111	return data->freq_table[0].frequency;
 
112}
113
114static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115{
 
 
116	switch (data->cpu_feature) {
117	case SYSTEM_INTEL_MSR_CAPABLE:
118		return extract_msr(val, data);
 
119	case SYSTEM_IO_CAPABLE:
120		return extract_io(val, data);
121	default:
122		return 0;
123	}
124}
125
126struct msr_addr {
127	u32 reg;
128};
129
130struct io_addr {
131	u16 port;
132	u8 bit_width;
133};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
135struct drv_cmd {
136	unsigned int type;
137	const struct cpumask *mask;
138	union {
139		struct msr_addr msr;
140		struct io_addr io;
141	} addr;
142	u32 val;
 
 
 
 
143};
144
145/* Called via smp_call_function_single(), on the target CPU */
146static void do_drv_read(void *_cmd)
147{
148	struct drv_cmd *cmd = _cmd;
149	u32 h;
150
151	switch (cmd->type) {
152	case SYSTEM_INTEL_MSR_CAPABLE:
153		rdmsr(cmd->addr.msr.reg, cmd->val, h);
154		break;
155	case SYSTEM_IO_CAPABLE:
156		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157				&cmd->val,
158				(u32)cmd->addr.io.bit_width);
159		break;
160	default:
161		break;
162	}
163}
164
165/* Called via smp_call_function_many(), on the target CPUs */
166static void do_drv_write(void *_cmd)
167{
168	struct drv_cmd *cmd = _cmd;
169	u32 lo, hi;
 
 
 
 
170
171	switch (cmd->type) {
172	case SYSTEM_INTEL_MSR_CAPABLE:
173		rdmsr(cmd->addr.msr.reg, lo, hi);
174		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175		wrmsr(cmd->addr.msr.reg, lo, hi);
176		break;
177	case SYSTEM_IO_CAPABLE:
178		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179				cmd->val,
180				(u32)cmd->addr.io.bit_width);
181		break;
182	default:
183		break;
184	}
185}
186
187static void drv_read(struct drv_cmd *cmd)
 
188{
189	int err;
190	cmd->val = 0;
191
192	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
194}
195
196static void drv_write(struct drv_cmd *cmd)
 
197{
 
 
 
 
 
 
198	int this_cpu;
199
200	this_cpu = get_cpu();
201	if (cpumask_test_cpu(this_cpu, cmd->mask))
202		do_drv_write(cmd);
203	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
 
204	put_cpu();
205}
206
207static u32 get_cur_val(const struct cpumask *mask)
208{
209	struct acpi_processor_performance *perf;
210	struct drv_cmd cmd;
211
212	if (unlikely(cpumask_empty(mask)))
213		return 0;
214
215	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216	case SYSTEM_INTEL_MSR_CAPABLE:
217		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218		cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219		break;
220	case SYSTEM_IO_CAPABLE:
221		cmd.type = SYSTEM_IO_CAPABLE;
222		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223		cmd.addr.io.port = perf->control_register.address;
224		cmd.addr.io.bit_width = perf->control_register.bit_width;
225		break;
226	default:
227		return 0;
228	}
229
230	cmd.mask = mask;
231	drv_read(&cmd);
232
233	pr_debug("get_cur_val = %u\n", cmd.val);
234
235	return cmd.val;
236}
237
238static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239{
240	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
 
241	unsigned int freq;
242	unsigned int cached_freq;
243
244	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245
246	if (unlikely(data == NULL ||
247		     data->acpi_data == NULL || data->freq_table == NULL)) {
 
 
 
 
248		return 0;
249	}
250
251	cached_freq = data->freq_table[data->acpi_data->state].frequency;
252	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253	if (freq != cached_freq) {
254		/*
255		 * The dreaded BIOS frequency change behind our back.
256		 * Force set the frequency on next target call.
257		 */
258		data->resume = 1;
259	}
260
261	pr_debug("cur freq = %u\n", freq);
262
263	return freq;
264}
265
266static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267				struct acpi_cpufreq_data *data)
268{
 
269	unsigned int cur_freq;
270	unsigned int i;
271
272	for (i = 0; i < 100; i++) {
273		cur_freq = extract_freq(get_cur_val(mask), data);
274		if (cur_freq == freq)
275			return 1;
276		udelay(10);
277	}
278	return 0;
279}
280
281static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282			       unsigned int target_freq, unsigned int relation)
283{
284	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285	struct acpi_processor_performance *perf;
286	struct cpufreq_freqs freqs;
287	struct drv_cmd cmd;
288	unsigned int next_state = 0; /* Index into freq_table */
289	unsigned int next_perf_state = 0; /* Index into perf table */
290	unsigned int i;
291	int result = 0;
292
293	pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294
295	if (unlikely(data == NULL ||
296	     data->acpi_data == NULL || data->freq_table == NULL)) {
297		return -ENODEV;
298	}
299
300	perf = data->acpi_data;
301	result = cpufreq_frequency_table_target(policy,
302						data->freq_table,
303						target_freq,
304						relation, &next_state);
305	if (unlikely(result)) {
306		result = -ENODEV;
307		goto out;
308	}
309
310	next_perf_state = data->freq_table[next_state].index;
311	if (perf->state == next_perf_state) {
312		if (unlikely(data->resume)) {
313			pr_debug("Called after resume, resetting to P%d\n",
314				next_perf_state);
315			data->resume = 0;
316		} else {
317			pr_debug("Already at target state (P%d)\n",
318				next_perf_state);
319			goto out;
320		}
321	}
322
323	switch (data->cpu_feature) {
324	case SYSTEM_INTEL_MSR_CAPABLE:
325		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327		cmd.val = (u32) perf->states[next_perf_state].control;
328		break;
329	case SYSTEM_IO_CAPABLE:
330		cmd.type = SYSTEM_IO_CAPABLE;
331		cmd.addr.io.port = perf->control_register.address;
332		cmd.addr.io.bit_width = perf->control_register.bit_width;
333		cmd.val = (u32) perf->states[next_perf_state].control;
334		break;
335	default:
336		result = -ENODEV;
337		goto out;
338	}
339
340	/* cpufreq holds the hotplug lock, so we are safe from here on */
341	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342		cmd.mask = policy->cpus;
343	else
344		cmd.mask = cpumask_of(policy->cpu);
345
346	freqs.old = perf->states[perf->state].core_frequency * 1000;
347	freqs.new = data->freq_table[next_state].frequency;
348	for_each_cpu(i, policy->cpus) {
349		freqs.cpu = i;
350		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351	}
352
353	drv_write(&cmd);
354
355	if (acpi_pstate_strict) {
356		if (!check_freqs(cmd.mask, freqs.new, data)) {
357			pr_debug("acpi_cpufreq_target failed (%d)\n",
358				policy->cpu);
359			result = -EAGAIN;
360			goto out;
361		}
362	}
363
364	for_each_cpu(i, policy->cpus) {
365		freqs.cpu = i;
366		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367	}
368	perf->state = next_perf_state;
369
370out:
371	return result;
372}
373
374static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
 
375{
376	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
377
378	pr_debug("acpi_cpufreq_verify\n");
 
 
379
380	return cpufreq_frequency_table_verify(policy, data->freq_table);
 
 
 
 
 
 
 
 
 
 
 
381}
382
383static unsigned long
384acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385{
386	struct acpi_processor_performance *perf = data->acpi_data;
387
 
388	if (cpu_khz) {
389		/* search the closest match to cpu_khz */
390		unsigned int i;
391		unsigned long freq;
392		unsigned long freqn = perf->states[0].core_frequency * 1000;
393
394		for (i = 0; i < (perf->state_count-1); i++) {
395			freq = freqn;
396			freqn = perf->states[i+1].core_frequency * 1000;
397			if ((2 * cpu_khz) > (freqn + freq)) {
398				perf->state = i;
399				return freq;
400			}
401		}
402		perf->state = perf->state_count-1;
403		return freqn;
404	} else {
405		/* assume CPU is at P0... */
406		perf->state = 0;
407		return perf->states[0].core_frequency * 1000;
408	}
409}
410
411static void free_acpi_perf_data(void)
412{
413	unsigned int i;
414
415	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416	for_each_possible_cpu(i)
417		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418				 ->shared_cpu_map);
419	free_percpu(acpi_perf_data);
420}
421
 
 
 
 
 
 
 
 
 
422/*
423 * acpi_cpufreq_early_init - initialize ACPI P-States library
424 *
425 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426 * in order to determine correct frequency and voltage pairings. We can
427 * do _PDC and _PSD and find out the processor dependency for the
428 * actual init that will happen later...
429 */
430static int __init acpi_cpufreq_early_init(void)
431{
432	unsigned int i;
433	pr_debug("acpi_cpufreq_early_init\n");
434
435	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436	if (!acpi_perf_data) {
437		pr_debug("Memory allocation error for acpi_perf_data.\n");
438		return -ENOMEM;
439	}
440	for_each_possible_cpu(i) {
441		if (!zalloc_cpumask_var_node(
442			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443			GFP_KERNEL, cpu_to_node(i))) {
444
445			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446			free_acpi_perf_data();
447			return -ENOMEM;
448		}
449	}
450
451	/* Do initialization in ACPI core */
452	acpi_processor_preregister_performance(acpi_perf_data);
453	return 0;
454}
455
456#ifdef CONFIG_SMP
457/*
458 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459 * or do it in BIOS firmware and won't inform about it to OS. If not
460 * detected, this has a side effect of making CPU run at a different speed
461 * than OS intended it to run at. Detect it and handle it cleanly.
462 */
463static int bios_with_sw_any_bug;
464
465static int sw_any_bug_found(const struct dmi_system_id *d)
466{
467	bios_with_sw_any_bug = 1;
468	return 0;
469}
470
471static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472	{
473		.callback = sw_any_bug_found,
474		.ident = "Supermicro Server X6DLP",
475		.matches = {
476			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479		},
480	},
481	{ }
482};
483
484static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485{
486	/* Intel Xeon Processor 7100 Series Specification Update
487	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488	 * AL30: A Machine Check Exception (MCE) Occurring during an
489	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490	 * Both Processor Cores to Lock Up. */
491	if (c->x86_vendor == X86_VENDOR_INTEL) {
492		if ((c->x86 == 15) &&
493		    (c->x86_model == 6) &&
494		    (c->x86_mask == 8)) {
495			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496			    "Xeon(R) 7100 Errata AL30, processors may "
497			    "lock up on frequency changes: disabling "
498			    "acpi-cpufreq.\n");
499			return -ENODEV;
500		    }
501		}
502	return 0;
503}
504#endif
505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507{
508	unsigned int i;
509	unsigned int valid_states = 0;
510	unsigned int cpu = policy->cpu;
511	struct acpi_cpufreq_data *data;
 
 
 
 
512	unsigned int result = 0;
513	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514	struct acpi_processor_performance *perf;
515#ifdef CONFIG_SMP
516	static int blacklisted;
517#endif
518
519	pr_debug("acpi_cpufreq_cpu_init\n");
520
521#ifdef CONFIG_SMP
522	if (blacklisted)
523		return blacklisted;
524	blacklisted = acpi_cpufreq_blacklist(c);
525	if (blacklisted)
526		return blacklisted;
527#endif
528
529	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530	if (!data)
531		return -ENOMEM;
532
533	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534	per_cpu(acfreq_data, cpu) = data;
 
 
 
 
 
 
535
536	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538
539	result = acpi_processor_register_performance(data->acpi_data, cpu);
540	if (result)
541		goto err_free;
542
543	perf = data->acpi_data;
544	policy->shared_type = perf->shared_type;
545
546	/*
547	 * Will let policy->cpus know about dependency only when software
548	 * coordination is required.
549	 */
550	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552		cpumask_copy(policy->cpus, perf->shared_cpu_map);
553	}
554	cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555
556#ifdef CONFIG_SMP
557	dmi_check_system(sw_any_bug_dmi_table);
558	if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
 
 
 
 
 
 
 
 
 
 
561	}
562#endif
563
564	/* capability check */
565	if (perf->state_count <= 1) {
566		pr_debug("No P-States\n");
567		result = -ENODEV;
568		goto err_unreg;
569	}
570
571	if (perf->control_register.space_id != perf->status_register.space_id) {
572		result = -ENODEV;
573		goto err_unreg;
574	}
575
576	switch (perf->control_register.space_id) {
577	case ACPI_ADR_SPACE_SYSTEM_IO:
 
 
 
 
 
 
578		pr_debug("SYSTEM IO addr space\n");
579		data->cpu_feature = SYSTEM_IO_CAPABLE;
 
 
580		break;
581	case ACPI_ADR_SPACE_FIXED_HARDWARE:
582		pr_debug("HARDWARE addr space\n");
583		if (!check_est_cpu(cpu)) {
584			result = -ENODEV;
585			goto err_unreg;
 
 
586		}
587		data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588		break;
 
 
 
 
 
 
589	default:
590		pr_debug("Unknown addr space %d\n",
591			(u32) (perf->control_register.space_id));
592		result = -ENODEV;
593		goto err_unreg;
594	}
595
596	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597		    (perf->state_count+1), GFP_KERNEL);
598	if (!data->freq_table) {
599		result = -ENOMEM;
600		goto err_unreg;
601	}
602
603	/* detect transition latency */
604	policy->cpuinfo.transition_latency = 0;
605	for (i = 0; i < perf->state_count; i++) {
606		if ((perf->states[i].transition_latency * 1000) >
607		    policy->cpuinfo.transition_latency)
608			policy->cpuinfo.transition_latency =
609			    perf->states[i].transition_latency * 1000;
610	}
611
612	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614	    policy->cpuinfo.transition_latency > 20 * 1000) {
615		policy->cpuinfo.transition_latency = 20 * 1000;
616		printk_once(KERN_INFO
617			    "P-state transition latency capped at 20 uS\n");
618	}
619
620	/* table init */
621	for (i = 0; i < perf->state_count; i++) {
622		if (i > 0 && perf->states[i].core_frequency >=
623		    data->freq_table[valid_states-1].frequency / 1000)
624			continue;
625
626		data->freq_table[valid_states].index = i;
627		data->freq_table[valid_states].frequency =
628		    perf->states[i].core_frequency * 1000;
629		valid_states++;
630	}
631	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632	perf->state = 0;
633
634	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635	if (result)
636		goto err_freqfree;
637
638	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640
641	switch (perf->control_register.space_id) {
642	case ACPI_ADR_SPACE_SYSTEM_IO:
643		/* Current speed is unknown and not detectable by IO port */
 
 
 
 
 
644		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645		break;
646	case ACPI_ADR_SPACE_FIXED_HARDWARE:
647		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648		policy->cur = get_cur_freq_on_cpu(cpu);
649		break;
650	default:
651		break;
652	}
653
654	/* notify BIOS that we exist */
655	acpi_processor_notify_smm(THIS_MODULE);
656
657	/* Check for APERF/MPERF support in hardware */
658	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
659		acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660
661	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662	for (i = 0; i < perf->state_count; i++)
663		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
664			(i == perf->state ? '*' : ' '), i,
665			(u32) perf->states[i].core_frequency,
666			(u32) perf->states[i].power,
667			(u32) perf->states[i].transition_latency);
668
669	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670
671	/*
672	 * the first call to ->target() should result in us actually
673	 * writing something to the appropriate registers.
674	 */
675	data->resume = 1;
676
 
 
 
 
 
 
 
 
 
 
 
677	return result;
678
679err_freqfree:
680	kfree(data->freq_table);
681err_unreg:
682	acpi_processor_unregister_performance(perf, cpu);
 
 
683err_free:
684	kfree(data);
685	per_cpu(acfreq_data, cpu) = NULL;
686
687	return result;
688}
689
690static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691{
692	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693
694	pr_debug("acpi_cpufreq_cpu_exit\n");
695
696	if (data) {
697		cpufreq_frequency_table_put_attr(policy->cpu);
698		per_cpu(acfreq_data, policy->cpu) = NULL;
699		acpi_processor_unregister_performance(data->acpi_data,
700						      policy->cpu);
701		kfree(data->freq_table);
702		kfree(data);
703	}
704
705	return 0;
 
 
 
 
 
 
706}
707
708static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709{
710	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711
712	pr_debug("acpi_cpufreq_resume\n");
713
714	data->resume = 1;
715
716	return 0;
717}
718
719static struct freq_attr *acpi_cpufreq_attr[] = {
720	&cpufreq_freq_attr_scaling_available_freqs,
 
 
 
 
721	NULL,
722};
723
724static struct cpufreq_driver acpi_cpufreq_driver = {
725	.verify		= acpi_cpufreq_verify,
726	.target		= acpi_cpufreq_target,
 
727	.bios_limit	= acpi_processor_get_bios_limit,
728	.init		= acpi_cpufreq_cpu_init,
729	.exit		= acpi_cpufreq_cpu_exit,
730	.resume		= acpi_cpufreq_resume,
731	.name		= "acpi-cpufreq",
732	.owner		= THIS_MODULE,
733	.attr		= acpi_cpufreq_attr,
734};
735
736static int __init acpi_cpufreq_init(void)
 
 
 
 
 
 
 
 
 
 
 
737{
738	int ret;
739
740	if (acpi_disabled)
741		return 0;
742
743	pr_debug("acpi_cpufreq_init\n");
 
 
 
 
744
745	ret = acpi_cpufreq_early_init();
746	if (ret)
747		return ret;
748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750	if (ret)
751		free_acpi_perf_data();
752
753	return ret;
754}
755
756static void __exit acpi_cpufreq_exit(void)
757{
758	pr_debug("acpi_cpufreq_exit\n");
759
760	cpufreq_unregister_driver(&acpi_cpufreq_driver);
761
762	free_acpi_perf_data();
763}
764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765module_param(acpi_pstate_strict, uint, 0644);
766MODULE_PARM_DESC(acpi_pstate_strict,
767	"value 0 or non-zero. non-zero -> strict ACPI checks are "
768	"performed during frequency changes.");
769
770late_initcall(acpi_cpufreq_init);
771module_exit(acpi_cpufreq_exit);
772
773MODULE_ALIAS("acpi");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acpi-cpufreq.c - ACPI Processor P-States Driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/sched.h>
  18#include <linux/cpufreq.h>
  19#include <linux/compiler.h>
  20#include <linux/dmi.h>
  21#include <linux/slab.h>
  22#include <linux/string_helpers.h>
  23#include <linux/platform_device.h>
  24
  25#include <linux/acpi.h>
  26#include <linux/io.h>
  27#include <linux/delay.h>
  28#include <linux/uaccess.h>
  29
  30#include <acpi/processor.h>
  31#include <acpi/cppc_acpi.h>
  32
  33#include <asm/msr.h>
  34#include <asm/processor.h>
  35#include <asm/cpufeature.h>
  36#include <asm/cpu_device_id.h>
  37
  38MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  39MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  40MODULE_LICENSE("GPL");
  41
  42enum {
  43	UNDEFINED_CAPABLE = 0,
  44	SYSTEM_INTEL_MSR_CAPABLE,
  45	SYSTEM_AMD_MSR_CAPABLE,
  46	SYSTEM_IO_CAPABLE,
  47};
  48
  49#define INTEL_MSR_RANGE		(0xffff)
  50#define AMD_MSR_RANGE		(0x7)
  51#define HYGON_MSR_RANGE		(0x7)
  52
  53struct acpi_cpufreq_data {
 
 
  54	unsigned int resume;
  55	unsigned int cpu_feature;
  56	unsigned int acpi_perf_cpu;
  57	cpumask_var_t freqdomain_cpus;
  58	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
  59	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
  60};
  61
 
 
  62/* acpi_perf_data is a pointer to percpu data. */
  63static struct acpi_processor_performance __percpu *acpi_perf_data;
  64
  65static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
  66{
  67	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
  68}
  69
  70static struct cpufreq_driver acpi_cpufreq_driver;
  71
  72static unsigned int acpi_pstate_strict;
  73
  74static bool boost_state(unsigned int cpu)
  75{
  76	u64 msr;
  77
  78	switch (boot_cpu_data.x86_vendor) {
  79	case X86_VENDOR_INTEL:
  80	case X86_VENDOR_CENTAUR:
  81	case X86_VENDOR_ZHAOXIN:
  82		rdmsrl_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr);
  83		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
  84	case X86_VENDOR_HYGON:
  85	case X86_VENDOR_AMD:
  86		rdmsrl_on_cpu(cpu, MSR_K7_HWCR, &msr);
  87		return !(msr & MSR_K7_HWCR_CPB_DIS);
  88	}
  89	return false;
  90}
  91
  92static int boost_set_msr(bool enable)
  93{
  94	u32 msr_addr;
  95	u64 msr_mask, val;
  96
  97	switch (boot_cpu_data.x86_vendor) {
  98	case X86_VENDOR_INTEL:
  99	case X86_VENDOR_CENTAUR:
 100	case X86_VENDOR_ZHAOXIN:
 101		msr_addr = MSR_IA32_MISC_ENABLE;
 102		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 103		break;
 104	case X86_VENDOR_HYGON:
 105	case X86_VENDOR_AMD:
 106		msr_addr = MSR_K7_HWCR;
 107		msr_mask = MSR_K7_HWCR_CPB_DIS;
 108		break;
 109	default:
 110		return -EINVAL;
 111	}
 112
 113	rdmsrl(msr_addr, val);
 114
 115	if (enable)
 116		val &= ~msr_mask;
 117	else
 118		val |= msr_mask;
 119
 120	wrmsrl(msr_addr, val);
 121	return 0;
 122}
 123
 124static void boost_set_msr_each(void *p_en)
 125{
 126	bool enable = (bool) p_en;
 127
 128	boost_set_msr(enable);
 129}
 130
 131static int set_boost(struct cpufreq_policy *policy, int val)
 132{
 133	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
 134			 (void *)(long)val, 1);
 135	pr_debug("CPU %*pbl: Core Boosting %s.\n",
 136		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
 137
 138	return 0;
 139}
 140
 141static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 142{
 143	struct acpi_cpufreq_data *data = policy->driver_data;
 144
 145	if (unlikely(!data))
 146		return -ENODEV;
 147
 148	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 149}
 150
 151cpufreq_freq_attr_ro(freqdomain_cpus);
 152
 153#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 154static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 155			 size_t count)
 156{
 157	int ret;
 158	unsigned int val = 0;
 159
 160	if (!acpi_cpufreq_driver.set_boost)
 161		return -EINVAL;
 162
 163	ret = kstrtouint(buf, 10, &val);
 164	if (ret || val > 1)
 165		return -EINVAL;
 166
 167	cpus_read_lock();
 168	set_boost(policy, val);
 169	cpus_read_unlock();
 170
 171	return count;
 172}
 173
 174static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 175{
 176	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 177}
 178
 179cpufreq_freq_attr_rw(cpb);
 180#endif
 181
 182static int check_est_cpu(unsigned int cpuid)
 183{
 184	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 185
 186	return cpu_has(cpu, X86_FEATURE_EST);
 187}
 188
 189static int check_amd_hwpstate_cpu(unsigned int cpuid)
 190{
 191	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 192
 193	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 194}
 195
 196static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
 197{
 198	struct acpi_cpufreq_data *data = policy->driver_data;
 199	struct acpi_processor_performance *perf;
 200	int i;
 201
 202	perf = to_perf_data(data);
 203
 204	for (i = 0; i < perf->state_count; i++) {
 205		if (value == perf->states[i].status)
 206			return policy->freq_table[i].frequency;
 207	}
 208	return 0;
 209}
 210
 211static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
 212{
 213	struct acpi_cpufreq_data *data = policy->driver_data;
 214	struct cpufreq_frequency_table *pos;
 215	struct acpi_processor_performance *perf;
 216
 217	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 218		msr &= AMD_MSR_RANGE;
 219	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
 220		msr &= HYGON_MSR_RANGE;
 221	else
 222		msr &= INTEL_MSR_RANGE;
 223
 224	perf = to_perf_data(data);
 225
 226	cpufreq_for_each_entry(pos, policy->freq_table)
 227		if (msr == perf->states[pos->driver_data].status)
 228			return pos->frequency;
 229	return policy->freq_table[0].frequency;
 230}
 231
 232static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
 233{
 234	struct acpi_cpufreq_data *data = policy->driver_data;
 235
 236	switch (data->cpu_feature) {
 237	case SYSTEM_INTEL_MSR_CAPABLE:
 238	case SYSTEM_AMD_MSR_CAPABLE:
 239		return extract_msr(policy, val);
 240	case SYSTEM_IO_CAPABLE:
 241		return extract_io(policy, val);
 242	default:
 243		return 0;
 244	}
 245}
 246
 247static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
 248{
 249	u32 val, dummy __always_unused;
 250
 251	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
 252	return val;
 253}
 254
 255static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
 256{
 257	u32 lo, hi;
 258
 259	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
 260	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
 261	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
 262}
 263
 264static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
 265{
 266	u32 val, dummy __always_unused;
 267
 268	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
 269	return val;
 270}
 271
 272static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
 273{
 274	wrmsr(MSR_AMD_PERF_CTL, val, 0);
 275}
 276
 277static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
 278{
 279	u32 val;
 280
 281	acpi_os_read_port(reg->address, &val, reg->bit_width);
 282	return val;
 283}
 284
 285static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
 286{
 287	acpi_os_write_port(reg->address, val, reg->bit_width);
 288}
 289
 290struct drv_cmd {
 291	struct acpi_pct_register *reg;
 
 
 
 
 
 292	u32 val;
 293	union {
 294		void (*write)(struct acpi_pct_register *reg, u32 val);
 295		u32 (*read)(struct acpi_pct_register *reg);
 296	} func;
 297};
 298
 299/* Called via smp_call_function_single(), on the target CPU */
 300static void do_drv_read(void *_cmd)
 301{
 302	struct drv_cmd *cmd = _cmd;
 
 303
 304	cmd->val = cmd->func.read(cmd->reg);
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 
 308{
 309	struct acpi_processor_performance *perf = to_perf_data(data);
 310	struct drv_cmd cmd = {
 311		.reg = &perf->control_register,
 312		.func.read = data->cpu_freq_read,
 313	};
 314	int err;
 315
 316	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
 317	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 318	return cmd.val;
 
 
 
 
 
 
 
 
 
 
 
 319}
 320
 321/* Called via smp_call_function_many(), on the target CPUs */
 322static void do_drv_write(void *_cmd)
 323{
 324	struct drv_cmd *cmd = _cmd;
 
 325
 326	cmd->func.write(cmd->reg, cmd->val);
 
 327}
 328
 329static void drv_write(struct acpi_cpufreq_data *data,
 330		      const struct cpumask *mask, u32 val)
 331{
 332	struct acpi_processor_performance *perf = to_perf_data(data);
 333	struct drv_cmd cmd = {
 334		.reg = &perf->control_register,
 335		.val = val,
 336		.func.write = data->cpu_freq_write,
 337	};
 338	int this_cpu;
 339
 340	this_cpu = get_cpu();
 341	if (cpumask_test_cpu(this_cpu, mask))
 342		do_drv_write(&cmd);
 343
 344	smp_call_function_many(mask, do_drv_write, &cmd, 1);
 345	put_cpu();
 346}
 347
 348static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
 349{
 350	u32 val;
 
 351
 352	if (unlikely(cpumask_empty(mask)))
 353		return 0;
 354
 355	val = drv_read(data, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357	pr_debug("%s = %u\n", __func__, val);
 358
 359	return val;
 360}
 361
 362static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 363{
 364	struct acpi_cpufreq_data *data;
 365	struct cpufreq_policy *policy;
 366	unsigned int freq;
 367	unsigned int cached_freq;
 368
 369	pr_debug("%s (%d)\n", __func__, cpu);
 370
 371	policy = cpufreq_cpu_get_raw(cpu);
 372	if (unlikely(!policy))
 373		return 0;
 374
 375	data = policy->driver_data;
 376	if (unlikely(!data || !policy->freq_table))
 377		return 0;
 
 378
 379	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
 380	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
 381	if (freq != cached_freq) {
 382		/*
 383		 * The dreaded BIOS frequency change behind our back.
 384		 * Force set the frequency on next target call.
 385		 */
 386		data->resume = 1;
 387	}
 388
 389	pr_debug("cur freq = %u\n", freq);
 390
 391	return freq;
 392}
 393
 394static unsigned int check_freqs(struct cpufreq_policy *policy,
 395				const struct cpumask *mask, unsigned int freq)
 396{
 397	struct acpi_cpufreq_data *data = policy->driver_data;
 398	unsigned int cur_freq;
 399	unsigned int i;
 400
 401	for (i = 0; i < 100; i++) {
 402		cur_freq = extract_freq(policy, get_cur_val(mask, data));
 403		if (cur_freq == freq)
 404			return 1;
 405		udelay(10);
 406	}
 407	return 0;
 408}
 409
 410static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 411			       unsigned int index)
 412{
 413	struct acpi_cpufreq_data *data = policy->driver_data;
 414	struct acpi_processor_performance *perf;
 415	const struct cpumask *mask;
 
 
 416	unsigned int next_perf_state = 0; /* Index into perf table */
 
 417	int result = 0;
 418
 419	if (unlikely(!data)) {
 
 
 
 420		return -ENODEV;
 421	}
 422
 423	perf = to_perf_data(data);
 424	next_perf_state = policy->freq_table[index].driver_data;
 
 
 
 
 
 
 
 
 
 425	if (perf->state == next_perf_state) {
 426		if (unlikely(data->resume)) {
 427			pr_debug("Called after resume, resetting to P%d\n",
 428				next_perf_state);
 429			data->resume = 0;
 430		} else {
 431			pr_debug("Already at target state (P%d)\n",
 432				next_perf_state);
 433			return 0;
 434		}
 435	}
 436
 437	/*
 438	 * The core won't allow CPUs to go away until the governor has been
 439	 * stopped, so we can rely on the stability of policy->cpus.
 440	 */
 441	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
 442		cpumask_of(policy->cpu) : policy->cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444	drv_write(data, mask, perf->states[next_perf_state].control);
 445
 446	if (acpi_pstate_strict) {
 447		if (!check_freqs(policy, mask,
 448				 policy->freq_table[index].frequency)) {
 449			pr_debug("%s (%d)\n", __func__, policy->cpu);
 450			result = -EAGAIN;
 
 451		}
 452	}
 453
 454	if (!result)
 455		perf->state = next_perf_state;
 
 
 
 456
 
 457	return result;
 458}
 459
 460static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
 461					     unsigned int target_freq)
 462{
 463	struct acpi_cpufreq_data *data = policy->driver_data;
 464	struct acpi_processor_performance *perf;
 465	struct cpufreq_frequency_table *entry;
 466	unsigned int next_perf_state, next_freq, index;
 467
 468	/*
 469	 * Find the closest frequency above target_freq.
 470	 */
 471	if (policy->cached_target_freq == target_freq)
 472		index = policy->cached_resolved_idx;
 473	else
 474		index = cpufreq_table_find_index_dl(policy, target_freq,
 475						    false);
 476
 477	entry = &policy->freq_table[index];
 478	next_freq = entry->frequency;
 479	next_perf_state = entry->driver_data;
 480
 481	perf = to_perf_data(data);
 482	if (perf->state == next_perf_state) {
 483		if (unlikely(data->resume))
 484			data->resume = 0;
 485		else
 486			return next_freq;
 487	}
 488
 489	data->cpu_freq_write(&perf->control_register,
 490			     perf->states[next_perf_state].control);
 491	perf->state = next_perf_state;
 492	return next_freq;
 493}
 494
 495static unsigned long
 496acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 497{
 498	struct acpi_processor_performance *perf;
 499
 500	perf = to_perf_data(data);
 501	if (cpu_khz) {
 502		/* search the closest match to cpu_khz */
 503		unsigned int i;
 504		unsigned long freq;
 505		unsigned long freqn = perf->states[0].core_frequency * 1000;
 506
 507		for (i = 0; i < (perf->state_count-1); i++) {
 508			freq = freqn;
 509			freqn = perf->states[i+1].core_frequency * 1000;
 510			if ((2 * cpu_khz) > (freqn + freq)) {
 511				perf->state = i;
 512				return freq;
 513			}
 514		}
 515		perf->state = perf->state_count-1;
 516		return freqn;
 517	} else {
 518		/* assume CPU is at P0... */
 519		perf->state = 0;
 520		return perf->states[0].core_frequency * 1000;
 521	}
 522}
 523
 524static void free_acpi_perf_data(void)
 525{
 526	unsigned int i;
 527
 528	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 529	for_each_possible_cpu(i)
 530		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 531				 ->shared_cpu_map);
 532	free_percpu(acpi_perf_data);
 533}
 534
 535static int cpufreq_boost_down_prep(unsigned int cpu)
 536{
 537	/*
 538	 * Clear the boost-disable bit on the CPU_DOWN path so that
 539	 * this cpu cannot block the remaining ones from boosting.
 540	 */
 541	return boost_set_msr(1);
 542}
 543
 544/*
 545 * acpi_cpufreq_early_init - initialize ACPI P-States library
 546 *
 547 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 548 * in order to determine correct frequency and voltage pairings. We can
 549 * do _PDC and _PSD and find out the processor dependency for the
 550 * actual init that will happen later...
 551 */
 552static int __init acpi_cpufreq_early_init(void)
 553{
 554	unsigned int i;
 555	pr_debug("%s\n", __func__);
 556
 557	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 558	if (!acpi_perf_data) {
 559		pr_debug("Memory allocation error for acpi_perf_data.\n");
 560		return -ENOMEM;
 561	}
 562	for_each_possible_cpu(i) {
 563		if (!zalloc_cpumask_var_node(
 564			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 565			GFP_KERNEL, cpu_to_node(i))) {
 566
 567			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 568			free_acpi_perf_data();
 569			return -ENOMEM;
 570		}
 571	}
 572
 573	/* Do initialization in ACPI core */
 574	acpi_processor_preregister_performance(acpi_perf_data);
 575	return 0;
 576}
 577
 578#ifdef CONFIG_SMP
 579/*
 580 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 581 * or do it in BIOS firmware and won't inform about it to OS. If not
 582 * detected, this has a side effect of making CPU run at a different speed
 583 * than OS intended it to run at. Detect it and handle it cleanly.
 584 */
 585static int bios_with_sw_any_bug;
 586
 587static int sw_any_bug_found(const struct dmi_system_id *d)
 588{
 589	bios_with_sw_any_bug = 1;
 590	return 0;
 591}
 592
 593static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 594	{
 595		.callback = sw_any_bug_found,
 596		.ident = "Supermicro Server X6DLP",
 597		.matches = {
 598			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 599			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 600			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 601		},
 602	},
 603	{ }
 604};
 605
 606static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 607{
 608	/* Intel Xeon Processor 7100 Series Specification Update
 609	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
 610	 * AL30: A Machine Check Exception (MCE) Occurring during an
 611	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 612	 * Both Processor Cores to Lock Up. */
 613	if (c->x86_vendor == X86_VENDOR_INTEL) {
 614		if ((c->x86 == 15) &&
 615		    (c->x86_model == 6) &&
 616		    (c->x86_stepping == 8)) {
 617			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
 
 
 
 618			return -ENODEV;
 619		    }
 620		}
 621	return 0;
 622}
 623#endif
 624
 625#ifdef CONFIG_ACPI_CPPC_LIB
 626/*
 627 * get_max_boost_ratio: Computes the max_boost_ratio as the ratio
 628 * between the highest_perf and the nominal_perf.
 629 *
 630 * Returns the max_boost_ratio for @cpu. Returns the CPPC nominal
 631 * frequency via @nominal_freq if it is non-NULL pointer.
 632 */
 633static u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
 634{
 635	struct cppc_perf_caps perf_caps;
 636	u64 highest_perf, nominal_perf;
 637	int ret;
 638
 639	if (acpi_pstate_strict)
 640		return 0;
 641
 642	ret = cppc_get_perf_caps(cpu, &perf_caps);
 643	if (ret) {
 644		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
 645			 cpu, ret);
 646		return 0;
 647	}
 648
 649	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
 650		ret = amd_get_boost_ratio_numerator(cpu, &highest_perf);
 651		if (ret) {
 652			pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n",
 653				 cpu, ret);
 654			return 0;
 655		}
 656	} else {
 657		highest_perf = perf_caps.highest_perf;
 658	}
 659
 660	nominal_perf = perf_caps.nominal_perf;
 661
 662	if (nominal_freq)
 663		*nominal_freq = perf_caps.nominal_freq;
 664
 665	if (!highest_perf || !nominal_perf) {
 666		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
 667		return 0;
 668	}
 669
 670	if (highest_perf < nominal_perf) {
 671		pr_debug("CPU%d: nominal performance above highest\n", cpu);
 672		return 0;
 673	}
 674
 675	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
 676}
 677
 678#else
 679static inline u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
 680{
 681	return 0;
 682}
 683#endif
 684
 685static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 686{
 687	struct cpufreq_frequency_table *freq_table;
 688	struct acpi_processor_performance *perf;
 
 689	struct acpi_cpufreq_data *data;
 690	unsigned int cpu = policy->cpu;
 691	struct cpuinfo_x86 *c = &cpu_data(cpu);
 692	u64 max_boost_ratio, nominal_freq = 0;
 693	unsigned int valid_states = 0;
 694	unsigned int result = 0;
 695	unsigned int i;
 
 696#ifdef CONFIG_SMP
 697	static int blacklisted;
 698#endif
 699
 700	pr_debug("%s\n", __func__);
 701
 702#ifdef CONFIG_SMP
 703	if (blacklisted)
 704		return blacklisted;
 705	blacklisted = acpi_cpufreq_blacklist(c);
 706	if (blacklisted)
 707		return blacklisted;
 708#endif
 709
 710	data = kzalloc(sizeof(*data), GFP_KERNEL);
 711	if (!data)
 712		return -ENOMEM;
 713
 714	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 715		result = -ENOMEM;
 716		goto err_free;
 717	}
 718
 719	perf = per_cpu_ptr(acpi_perf_data, cpu);
 720	data->acpi_perf_cpu = cpu;
 721	policy->driver_data = data;
 722
 723	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 724		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 725
 726	result = acpi_processor_register_performance(perf, cpu);
 727	if (result)
 728		goto err_free_mask;
 729
 
 730	policy->shared_type = perf->shared_type;
 731
 732	/*
 733	 * Will let policy->cpus know about dependency only when software
 734	 * coordination is required.
 735	 */
 736	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 737	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 738		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 739	}
 740	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 741
 742#ifdef CONFIG_SMP
 743	dmi_check_system(sw_any_bug_dmi_table);
 744	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 745		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 746		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
 747	}
 748
 749	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
 750	    !acpi_pstate_strict) {
 751		cpumask_clear(policy->cpus);
 752		cpumask_set_cpu(cpu, policy->cpus);
 753		cpumask_copy(data->freqdomain_cpus,
 754			     topology_sibling_cpumask(cpu));
 755		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 756		pr_info_once("overriding BIOS provided _PSD data\n");
 757	}
 758#endif
 759
 760	/* capability check */
 761	if (perf->state_count <= 1) {
 762		pr_debug("No P-States\n");
 763		result = -ENODEV;
 764		goto err_unreg;
 765	}
 766
 767	if (perf->control_register.space_id != perf->status_register.space_id) {
 768		result = -ENODEV;
 769		goto err_unreg;
 770	}
 771
 772	switch (perf->control_register.space_id) {
 773	case ACPI_ADR_SPACE_SYSTEM_IO:
 774		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 775		    boot_cpu_data.x86 == 0xf) {
 776			pr_debug("AMD K8 systems must use native drivers.\n");
 777			result = -ENODEV;
 778			goto err_unreg;
 779		}
 780		pr_debug("SYSTEM IO addr space\n");
 781		data->cpu_feature = SYSTEM_IO_CAPABLE;
 782		data->cpu_freq_read = cpu_freq_read_io;
 783		data->cpu_freq_write = cpu_freq_write_io;
 784		break;
 785	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 786		pr_debug("HARDWARE addr space\n");
 787		if (check_est_cpu(cpu)) {
 788			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 789			data->cpu_freq_read = cpu_freq_read_intel;
 790			data->cpu_freq_write = cpu_freq_write_intel;
 791			break;
 792		}
 793		if (check_amd_hwpstate_cpu(cpu)) {
 794			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 795			data->cpu_freq_read = cpu_freq_read_amd;
 796			data->cpu_freq_write = cpu_freq_write_amd;
 797			break;
 798		}
 799		result = -ENODEV;
 800		goto err_unreg;
 801	default:
 802		pr_debug("Unknown addr space %d\n",
 803			(u32) (perf->control_register.space_id));
 804		result = -ENODEV;
 805		goto err_unreg;
 806	}
 807
 808	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
 809			     GFP_KERNEL);
 810	if (!freq_table) {
 811		result = -ENOMEM;
 812		goto err_unreg;
 813	}
 814
 815	/* detect transition latency */
 816	policy->cpuinfo.transition_latency = 0;
 817	for (i = 0; i < perf->state_count; i++) {
 818		if ((perf->states[i].transition_latency * 1000) >
 819		    policy->cpuinfo.transition_latency)
 820			policy->cpuinfo.transition_latency =
 821			    perf->states[i].transition_latency * 1000;
 822	}
 823
 824	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 825	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 826	    policy->cpuinfo.transition_latency > 20 * 1000) {
 827		policy->cpuinfo.transition_latency = 20 * 1000;
 828		pr_info_once("P-state transition latency capped at 20 uS\n");
 
 829	}
 830
 831	/* table init */
 832	for (i = 0; i < perf->state_count; i++) {
 833		if (i > 0 && perf->states[i].core_frequency >=
 834		    freq_table[valid_states-1].frequency / 1000)
 835			continue;
 836
 837		freq_table[valid_states].driver_data = i;
 838		freq_table[valid_states].frequency =
 839		    perf->states[i].core_frequency * 1000;
 840		valid_states++;
 841	}
 842	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 
 843
 844	max_boost_ratio = get_max_boost_ratio(cpu, &nominal_freq);
 845	if (max_boost_ratio) {
 846		unsigned int freq = nominal_freq;
 847
 848		/*
 849		 * The loop above sorts the freq_table entries in the
 850		 * descending order. If ACPI CPPC has not advertised
 851		 * the nominal frequency (this is possible in CPPC
 852		 * revisions prior to 3), then use the first entry in
 853		 * the pstate table as a proxy for nominal frequency.
 854		 */
 855		if (!freq)
 856			freq = freq_table[0].frequency;
 857
 858		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
 859	} else {
 860		/*
 861		 * If the maximum "boost" frequency is unknown, ask the arch
 862		 * scale-invariance code to use the "nominal" performance for
 863		 * CPU utilization scaling so as to prevent the schedutil
 864		 * governor from selecting inadequate CPU frequencies.
 865		 */
 866		arch_set_max_freq_ratio(true);
 867	}
 868
 869	policy->freq_table = freq_table;
 870	perf->state = 0;
 871
 872	switch (perf->control_register.space_id) {
 873	case ACPI_ADR_SPACE_SYSTEM_IO:
 874		/*
 875		 * The core will not set policy->cur, because
 876		 * cpufreq_driver->get is NULL, so we need to set it here.
 877		 * However, we have to guess it, because the current speed is
 878		 * unknown and not detectable via IO ports.
 879		 */
 880		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 881		break;
 882	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 883		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 
 884		break;
 885	default:
 886		break;
 887	}
 888
 889	/* notify BIOS that we exist */
 890	acpi_processor_notify_smm(THIS_MODULE);
 891
 
 
 
 
 892	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 893	for (i = 0; i < perf->state_count; i++)
 894		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 895			(i == perf->state ? '*' : ' '), i,
 896			(u32) perf->states[i].core_frequency,
 897			(u32) perf->states[i].power,
 898			(u32) perf->states[i].transition_latency);
 899
 
 
 900	/*
 901	 * the first call to ->target() should result in us actually
 902	 * writing something to the appropriate registers.
 903	 */
 904	data->resume = 1;
 905
 906	policy->fast_switch_possible = !acpi_pstate_strict &&
 907		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
 908
 909	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
 910		pr_warn(FW_WARN "P-state 0 is not max freq\n");
 911
 912	if (acpi_cpufreq_driver.set_boost) {
 913		set_boost(policy, acpi_cpufreq_driver.boost_enabled);
 914		policy->boost_enabled = acpi_cpufreq_driver.boost_enabled;
 915	}
 916
 917	return result;
 918
 
 
 919err_unreg:
 920	acpi_processor_unregister_performance(cpu);
 921err_free_mask:
 922	free_cpumask_var(data->freqdomain_cpus);
 923err_free:
 924	kfree(data);
 925	policy->driver_data = NULL;
 926
 927	return result;
 928}
 929
 930static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 931{
 932	struct acpi_cpufreq_data *data = policy->driver_data;
 933
 934	pr_debug("%s\n", __func__);
 
 
 
 
 
 
 
 
 
 935
 936	cpufreq_boost_down_prep(policy->cpu);
 937	policy->fast_switch_possible = false;
 938	policy->driver_data = NULL;
 939	acpi_processor_unregister_performance(data->acpi_perf_cpu);
 940	free_cpumask_var(data->freqdomain_cpus);
 941	kfree(policy->freq_table);
 942	kfree(data);
 943}
 944
 945static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 946{
 947	struct acpi_cpufreq_data *data = policy->driver_data;
 948
 949	pr_debug("%s\n", __func__);
 950
 951	data->resume = 1;
 952
 953	return 0;
 954}
 955
 956static struct freq_attr *acpi_cpufreq_attr[] = {
 957	&cpufreq_freq_attr_scaling_available_freqs,
 958	&freqdomain_cpus,
 959#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 960	&cpb,
 961#endif
 962	NULL,
 963};
 964
 965static struct cpufreq_driver acpi_cpufreq_driver = {
 966	.verify		= cpufreq_generic_frequency_table_verify,
 967	.target_index	= acpi_cpufreq_target,
 968	.fast_switch	= acpi_cpufreq_fast_switch,
 969	.bios_limit	= acpi_processor_get_bios_limit,
 970	.init		= acpi_cpufreq_cpu_init,
 971	.exit		= acpi_cpufreq_cpu_exit,
 972	.resume		= acpi_cpufreq_resume,
 973	.name		= "acpi-cpufreq",
 
 974	.attr		= acpi_cpufreq_attr,
 975};
 976
 977static void __init acpi_cpufreq_boost_init(void)
 978{
 979	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
 980		pr_debug("Boost capabilities not present in the processor\n");
 981		return;
 982	}
 983
 984	acpi_cpufreq_driver.set_boost = set_boost;
 985	acpi_cpufreq_driver.boost_enabled = boost_state(0);
 986}
 987
 988static int __init acpi_cpufreq_probe(struct platform_device *pdev)
 989{
 990	int ret;
 991
 992	if (acpi_disabled)
 993		return -ENODEV;
 994
 995	/* don't keep reloading if cpufreq_driver exists */
 996	if (cpufreq_get_current_driver())
 997		return -ENODEV;
 998
 999	pr_debug("%s\n", __func__);
1000
1001	ret = acpi_cpufreq_early_init();
1002	if (ret)
1003		return ret;
1004
1005#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1006	/* this is a sysfs file with a strange name and an even stranger
1007	 * semantic - per CPU instantiation, but system global effect.
1008	 * Lets enable it only on AMD CPUs for compatibility reasons and
1009	 * only if configured. This is considered legacy code, which
1010	 * will probably be removed at some point in the future.
1011	 */
1012	if (!check_amd_hwpstate_cpu(0)) {
1013		struct freq_attr **attr;
1014
1015		pr_debug("CPB unsupported, do not expose it\n");
1016
1017		for (attr = acpi_cpufreq_attr; *attr; attr++)
1018			if (*attr == &cpb) {
1019				*attr = NULL;
1020				break;
1021			}
1022	}
1023#endif
1024	acpi_cpufreq_boost_init();
1025
1026	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1027	if (ret) {
1028		free_acpi_perf_data();
1029	}
1030	return ret;
1031}
1032
1033static void acpi_cpufreq_remove(struct platform_device *pdev)
1034{
1035	pr_debug("%s\n", __func__);
1036
1037	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1038
1039	free_acpi_perf_data();
1040}
1041
1042static struct platform_driver acpi_cpufreq_platdrv = {
1043	.driver = {
1044		.name	= "acpi-cpufreq",
1045	},
1046	.remove = acpi_cpufreq_remove,
1047};
1048
1049static int __init acpi_cpufreq_init(void)
1050{
1051	return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1052}
1053
1054static void __exit acpi_cpufreq_exit(void)
1055{
1056	platform_driver_unregister(&acpi_cpufreq_platdrv);
1057}
1058
1059module_param(acpi_pstate_strict, uint, 0644);
1060MODULE_PARM_DESC(acpi_pstate_strict,
1061	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1062	"performed during frequency changes.");
1063
1064late_initcall(acpi_cpufreq_init);
1065module_exit(acpi_cpufreq_exit);
1066
1067MODULE_ALIAS("platform:acpi-cpufreq");