Loading...
1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36#include <linux/slab.h>
37
38#include <linux/acpi.h>
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
43#include <acpi/processor.h>
44
45#include <asm/msr.h>
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
48#include "mperf.h"
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
61
62struct acpi_cpufreq_data {
63 struct acpi_processor_performance *acpi_data;
64 struct cpufreq_frequency_table *freq_table;
65 unsigned int resume;
66 unsigned int cpu_feature;
67};
68
69static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
70
71/* acpi_perf_data is a pointer to percpu data. */
72static struct acpi_processor_performance __percpu *acpi_perf_data;
73
74static struct cpufreq_driver acpi_cpufreq_driver;
75
76static unsigned int acpi_pstate_strict;
77
78static int check_est_cpu(unsigned int cpuid)
79{
80 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
81
82 return cpu_has(cpu, X86_FEATURE_EST);
83}
84
85static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
86{
87 struct acpi_processor_performance *perf;
88 int i;
89
90 perf = data->acpi_data;
91
92 for (i = 0; i < perf->state_count; i++) {
93 if (value == perf->states[i].status)
94 return data->freq_table[i].frequency;
95 }
96 return 0;
97}
98
99static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100{
101 int i;
102 struct acpi_processor_performance *perf;
103
104 msr &= INTEL_MSR_RANGE;
105 perf = data->acpi_data;
106
107 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108 if (msr == perf->states[data->freq_table[i].index].status)
109 return data->freq_table[i].frequency;
110 }
111 return data->freq_table[0].frequency;
112}
113
114static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115{
116 switch (data->cpu_feature) {
117 case SYSTEM_INTEL_MSR_CAPABLE:
118 return extract_msr(val, data);
119 case SYSTEM_IO_CAPABLE:
120 return extract_io(val, data);
121 default:
122 return 0;
123 }
124}
125
126struct msr_addr {
127 u32 reg;
128};
129
130struct io_addr {
131 u16 port;
132 u8 bit_width;
133};
134
135struct drv_cmd {
136 unsigned int type;
137 const struct cpumask *mask;
138 union {
139 struct msr_addr msr;
140 struct io_addr io;
141 } addr;
142 u32 val;
143};
144
145/* Called via smp_call_function_single(), on the target CPU */
146static void do_drv_read(void *_cmd)
147{
148 struct drv_cmd *cmd = _cmd;
149 u32 h;
150
151 switch (cmd->type) {
152 case SYSTEM_INTEL_MSR_CAPABLE:
153 rdmsr(cmd->addr.msr.reg, cmd->val, h);
154 break;
155 case SYSTEM_IO_CAPABLE:
156 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157 &cmd->val,
158 (u32)cmd->addr.io.bit_width);
159 break;
160 default:
161 break;
162 }
163}
164
165/* Called via smp_call_function_many(), on the target CPUs */
166static void do_drv_write(void *_cmd)
167{
168 struct drv_cmd *cmd = _cmd;
169 u32 lo, hi;
170
171 switch (cmd->type) {
172 case SYSTEM_INTEL_MSR_CAPABLE:
173 rdmsr(cmd->addr.msr.reg, lo, hi);
174 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175 wrmsr(cmd->addr.msr.reg, lo, hi);
176 break;
177 case SYSTEM_IO_CAPABLE:
178 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179 cmd->val,
180 (u32)cmd->addr.io.bit_width);
181 break;
182 default:
183 break;
184 }
185}
186
187static void drv_read(struct drv_cmd *cmd)
188{
189 int err;
190 cmd->val = 0;
191
192 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
194}
195
196static void drv_write(struct drv_cmd *cmd)
197{
198 int this_cpu;
199
200 this_cpu = get_cpu();
201 if (cpumask_test_cpu(this_cpu, cmd->mask))
202 do_drv_write(cmd);
203 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
204 put_cpu();
205}
206
207static u32 get_cur_val(const struct cpumask *mask)
208{
209 struct acpi_processor_performance *perf;
210 struct drv_cmd cmd;
211
212 if (unlikely(cpumask_empty(mask)))
213 return 0;
214
215 switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216 case SYSTEM_INTEL_MSR_CAPABLE:
217 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219 break;
220 case SYSTEM_IO_CAPABLE:
221 cmd.type = SYSTEM_IO_CAPABLE;
222 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223 cmd.addr.io.port = perf->control_register.address;
224 cmd.addr.io.bit_width = perf->control_register.bit_width;
225 break;
226 default:
227 return 0;
228 }
229
230 cmd.mask = mask;
231 drv_read(&cmd);
232
233 pr_debug("get_cur_val = %u\n", cmd.val);
234
235 return cmd.val;
236}
237
238static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239{
240 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
241 unsigned int freq;
242 unsigned int cached_freq;
243
244 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245
246 if (unlikely(data == NULL ||
247 data->acpi_data == NULL || data->freq_table == NULL)) {
248 return 0;
249 }
250
251 cached_freq = data->freq_table[data->acpi_data->state].frequency;
252 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253 if (freq != cached_freq) {
254 /*
255 * The dreaded BIOS frequency change behind our back.
256 * Force set the frequency on next target call.
257 */
258 data->resume = 1;
259 }
260
261 pr_debug("cur freq = %u\n", freq);
262
263 return freq;
264}
265
266static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267 struct acpi_cpufreq_data *data)
268{
269 unsigned int cur_freq;
270 unsigned int i;
271
272 for (i = 0; i < 100; i++) {
273 cur_freq = extract_freq(get_cur_val(mask), data);
274 if (cur_freq == freq)
275 return 1;
276 udelay(10);
277 }
278 return 0;
279}
280
281static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282 unsigned int target_freq, unsigned int relation)
283{
284 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285 struct acpi_processor_performance *perf;
286 struct cpufreq_freqs freqs;
287 struct drv_cmd cmd;
288 unsigned int next_state = 0; /* Index into freq_table */
289 unsigned int next_perf_state = 0; /* Index into perf table */
290 unsigned int i;
291 int result = 0;
292
293 pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294
295 if (unlikely(data == NULL ||
296 data->acpi_data == NULL || data->freq_table == NULL)) {
297 return -ENODEV;
298 }
299
300 perf = data->acpi_data;
301 result = cpufreq_frequency_table_target(policy,
302 data->freq_table,
303 target_freq,
304 relation, &next_state);
305 if (unlikely(result)) {
306 result = -ENODEV;
307 goto out;
308 }
309
310 next_perf_state = data->freq_table[next_state].index;
311 if (perf->state == next_perf_state) {
312 if (unlikely(data->resume)) {
313 pr_debug("Called after resume, resetting to P%d\n",
314 next_perf_state);
315 data->resume = 0;
316 } else {
317 pr_debug("Already at target state (P%d)\n",
318 next_perf_state);
319 goto out;
320 }
321 }
322
323 switch (data->cpu_feature) {
324 case SYSTEM_INTEL_MSR_CAPABLE:
325 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327 cmd.val = (u32) perf->states[next_perf_state].control;
328 break;
329 case SYSTEM_IO_CAPABLE:
330 cmd.type = SYSTEM_IO_CAPABLE;
331 cmd.addr.io.port = perf->control_register.address;
332 cmd.addr.io.bit_width = perf->control_register.bit_width;
333 cmd.val = (u32) perf->states[next_perf_state].control;
334 break;
335 default:
336 result = -ENODEV;
337 goto out;
338 }
339
340 /* cpufreq holds the hotplug lock, so we are safe from here on */
341 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342 cmd.mask = policy->cpus;
343 else
344 cmd.mask = cpumask_of(policy->cpu);
345
346 freqs.old = perf->states[perf->state].core_frequency * 1000;
347 freqs.new = data->freq_table[next_state].frequency;
348 for_each_cpu(i, policy->cpus) {
349 freqs.cpu = i;
350 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351 }
352
353 drv_write(&cmd);
354
355 if (acpi_pstate_strict) {
356 if (!check_freqs(cmd.mask, freqs.new, data)) {
357 pr_debug("acpi_cpufreq_target failed (%d)\n",
358 policy->cpu);
359 result = -EAGAIN;
360 goto out;
361 }
362 }
363
364 for_each_cpu(i, policy->cpus) {
365 freqs.cpu = i;
366 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367 }
368 perf->state = next_perf_state;
369
370out:
371 return result;
372}
373
374static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
375{
376 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
377
378 pr_debug("acpi_cpufreq_verify\n");
379
380 return cpufreq_frequency_table_verify(policy, data->freq_table);
381}
382
383static unsigned long
384acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385{
386 struct acpi_processor_performance *perf = data->acpi_data;
387
388 if (cpu_khz) {
389 /* search the closest match to cpu_khz */
390 unsigned int i;
391 unsigned long freq;
392 unsigned long freqn = perf->states[0].core_frequency * 1000;
393
394 for (i = 0; i < (perf->state_count-1); i++) {
395 freq = freqn;
396 freqn = perf->states[i+1].core_frequency * 1000;
397 if ((2 * cpu_khz) > (freqn + freq)) {
398 perf->state = i;
399 return freq;
400 }
401 }
402 perf->state = perf->state_count-1;
403 return freqn;
404 } else {
405 /* assume CPU is at P0... */
406 perf->state = 0;
407 return perf->states[0].core_frequency * 1000;
408 }
409}
410
411static void free_acpi_perf_data(void)
412{
413 unsigned int i;
414
415 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416 for_each_possible_cpu(i)
417 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418 ->shared_cpu_map);
419 free_percpu(acpi_perf_data);
420}
421
422/*
423 * acpi_cpufreq_early_init - initialize ACPI P-States library
424 *
425 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426 * in order to determine correct frequency and voltage pairings. We can
427 * do _PDC and _PSD and find out the processor dependency for the
428 * actual init that will happen later...
429 */
430static int __init acpi_cpufreq_early_init(void)
431{
432 unsigned int i;
433 pr_debug("acpi_cpufreq_early_init\n");
434
435 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436 if (!acpi_perf_data) {
437 pr_debug("Memory allocation error for acpi_perf_data.\n");
438 return -ENOMEM;
439 }
440 for_each_possible_cpu(i) {
441 if (!zalloc_cpumask_var_node(
442 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443 GFP_KERNEL, cpu_to_node(i))) {
444
445 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446 free_acpi_perf_data();
447 return -ENOMEM;
448 }
449 }
450
451 /* Do initialization in ACPI core */
452 acpi_processor_preregister_performance(acpi_perf_data);
453 return 0;
454}
455
456#ifdef CONFIG_SMP
457/*
458 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459 * or do it in BIOS firmware and won't inform about it to OS. If not
460 * detected, this has a side effect of making CPU run at a different speed
461 * than OS intended it to run at. Detect it and handle it cleanly.
462 */
463static int bios_with_sw_any_bug;
464
465static int sw_any_bug_found(const struct dmi_system_id *d)
466{
467 bios_with_sw_any_bug = 1;
468 return 0;
469}
470
471static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472 {
473 .callback = sw_any_bug_found,
474 .ident = "Supermicro Server X6DLP",
475 .matches = {
476 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479 },
480 },
481 { }
482};
483
484static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485{
486 /* Intel Xeon Processor 7100 Series Specification Update
487 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488 * AL30: A Machine Check Exception (MCE) Occurring during an
489 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490 * Both Processor Cores to Lock Up. */
491 if (c->x86_vendor == X86_VENDOR_INTEL) {
492 if ((c->x86 == 15) &&
493 (c->x86_model == 6) &&
494 (c->x86_mask == 8)) {
495 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496 "Xeon(R) 7100 Errata AL30, processors may "
497 "lock up on frequency changes: disabling "
498 "acpi-cpufreq.\n");
499 return -ENODEV;
500 }
501 }
502 return 0;
503}
504#endif
505
506static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507{
508 unsigned int i;
509 unsigned int valid_states = 0;
510 unsigned int cpu = policy->cpu;
511 struct acpi_cpufreq_data *data;
512 unsigned int result = 0;
513 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514 struct acpi_processor_performance *perf;
515#ifdef CONFIG_SMP
516 static int blacklisted;
517#endif
518
519 pr_debug("acpi_cpufreq_cpu_init\n");
520
521#ifdef CONFIG_SMP
522 if (blacklisted)
523 return blacklisted;
524 blacklisted = acpi_cpufreq_blacklist(c);
525 if (blacklisted)
526 return blacklisted;
527#endif
528
529 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530 if (!data)
531 return -ENOMEM;
532
533 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534 per_cpu(acfreq_data, cpu) = data;
535
536 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538
539 result = acpi_processor_register_performance(data->acpi_data, cpu);
540 if (result)
541 goto err_free;
542
543 perf = data->acpi_data;
544 policy->shared_type = perf->shared_type;
545
546 /*
547 * Will let policy->cpus know about dependency only when software
548 * coordination is required.
549 */
550 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552 cpumask_copy(policy->cpus, perf->shared_cpu_map);
553 }
554 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555
556#ifdef CONFIG_SMP
557 dmi_check_system(sw_any_bug_dmi_table);
558 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
561 }
562#endif
563
564 /* capability check */
565 if (perf->state_count <= 1) {
566 pr_debug("No P-States\n");
567 result = -ENODEV;
568 goto err_unreg;
569 }
570
571 if (perf->control_register.space_id != perf->status_register.space_id) {
572 result = -ENODEV;
573 goto err_unreg;
574 }
575
576 switch (perf->control_register.space_id) {
577 case ACPI_ADR_SPACE_SYSTEM_IO:
578 pr_debug("SYSTEM IO addr space\n");
579 data->cpu_feature = SYSTEM_IO_CAPABLE;
580 break;
581 case ACPI_ADR_SPACE_FIXED_HARDWARE:
582 pr_debug("HARDWARE addr space\n");
583 if (!check_est_cpu(cpu)) {
584 result = -ENODEV;
585 goto err_unreg;
586 }
587 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588 break;
589 default:
590 pr_debug("Unknown addr space %d\n",
591 (u32) (perf->control_register.space_id));
592 result = -ENODEV;
593 goto err_unreg;
594 }
595
596 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597 (perf->state_count+1), GFP_KERNEL);
598 if (!data->freq_table) {
599 result = -ENOMEM;
600 goto err_unreg;
601 }
602
603 /* detect transition latency */
604 policy->cpuinfo.transition_latency = 0;
605 for (i = 0; i < perf->state_count; i++) {
606 if ((perf->states[i].transition_latency * 1000) >
607 policy->cpuinfo.transition_latency)
608 policy->cpuinfo.transition_latency =
609 perf->states[i].transition_latency * 1000;
610 }
611
612 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614 policy->cpuinfo.transition_latency > 20 * 1000) {
615 policy->cpuinfo.transition_latency = 20 * 1000;
616 printk_once(KERN_INFO
617 "P-state transition latency capped at 20 uS\n");
618 }
619
620 /* table init */
621 for (i = 0; i < perf->state_count; i++) {
622 if (i > 0 && perf->states[i].core_frequency >=
623 data->freq_table[valid_states-1].frequency / 1000)
624 continue;
625
626 data->freq_table[valid_states].index = i;
627 data->freq_table[valid_states].frequency =
628 perf->states[i].core_frequency * 1000;
629 valid_states++;
630 }
631 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632 perf->state = 0;
633
634 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635 if (result)
636 goto err_freqfree;
637
638 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
640
641 switch (perf->control_register.space_id) {
642 case ACPI_ADR_SPACE_SYSTEM_IO:
643 /* Current speed is unknown and not detectable by IO port */
644 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645 break;
646 case ACPI_ADR_SPACE_FIXED_HARDWARE:
647 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648 policy->cur = get_cur_freq_on_cpu(cpu);
649 break;
650 default:
651 break;
652 }
653
654 /* notify BIOS that we exist */
655 acpi_processor_notify_smm(THIS_MODULE);
656
657 /* Check for APERF/MPERF support in hardware */
658 if (boot_cpu_has(X86_FEATURE_APERFMPERF))
659 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660
661 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662 for (i = 0; i < perf->state_count; i++)
663 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
664 (i == perf->state ? '*' : ' '), i,
665 (u32) perf->states[i].core_frequency,
666 (u32) perf->states[i].power,
667 (u32) perf->states[i].transition_latency);
668
669 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670
671 /*
672 * the first call to ->target() should result in us actually
673 * writing something to the appropriate registers.
674 */
675 data->resume = 1;
676
677 return result;
678
679err_freqfree:
680 kfree(data->freq_table);
681err_unreg:
682 acpi_processor_unregister_performance(perf, cpu);
683err_free:
684 kfree(data);
685 per_cpu(acfreq_data, cpu) = NULL;
686
687 return result;
688}
689
690static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691{
692 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693
694 pr_debug("acpi_cpufreq_cpu_exit\n");
695
696 if (data) {
697 cpufreq_frequency_table_put_attr(policy->cpu);
698 per_cpu(acfreq_data, policy->cpu) = NULL;
699 acpi_processor_unregister_performance(data->acpi_data,
700 policy->cpu);
701 kfree(data->freq_table);
702 kfree(data);
703 }
704
705 return 0;
706}
707
708static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709{
710 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711
712 pr_debug("acpi_cpufreq_resume\n");
713
714 data->resume = 1;
715
716 return 0;
717}
718
719static struct freq_attr *acpi_cpufreq_attr[] = {
720 &cpufreq_freq_attr_scaling_available_freqs,
721 NULL,
722};
723
724static struct cpufreq_driver acpi_cpufreq_driver = {
725 .verify = acpi_cpufreq_verify,
726 .target = acpi_cpufreq_target,
727 .bios_limit = acpi_processor_get_bios_limit,
728 .init = acpi_cpufreq_cpu_init,
729 .exit = acpi_cpufreq_cpu_exit,
730 .resume = acpi_cpufreq_resume,
731 .name = "acpi-cpufreq",
732 .owner = THIS_MODULE,
733 .attr = acpi_cpufreq_attr,
734};
735
736static int __init acpi_cpufreq_init(void)
737{
738 int ret;
739
740 if (acpi_disabled)
741 return 0;
742
743 pr_debug("acpi_cpufreq_init\n");
744
745 ret = acpi_cpufreq_early_init();
746 if (ret)
747 return ret;
748
749 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750 if (ret)
751 free_acpi_perf_data();
752
753 return ret;
754}
755
756static void __exit acpi_cpufreq_exit(void)
757{
758 pr_debug("acpi_cpufreq_exit\n");
759
760 cpufreq_unregister_driver(&acpi_cpufreq_driver);
761
762 free_acpi_perf_data();
763}
764
765module_param(acpi_pstate_strict, uint, 0644);
766MODULE_PARM_DESC(acpi_pstate_strict,
767 "value 0 or non-zero. non-zero -> strict ACPI checks are "
768 "performed during frequency changes.");
769
770late_initcall(acpi_cpufreq_init);
771module_exit(acpi_cpufreq_exit);
772
773MODULE_ALIAS("acpi");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/smp.h>
17#include <linux/sched.h>
18#include <linux/cpufreq.h>
19#include <linux/compiler.h>
20#include <linux/dmi.h>
21#include <linux/slab.h>
22#include <linux/string_helpers.h>
23
24#include <linux/acpi.h>
25#include <linux/io.h>
26#include <linux/delay.h>
27#include <linux/uaccess.h>
28
29#include <acpi/processor.h>
30#include <acpi/cppc_acpi.h>
31
32#include <asm/msr.h>
33#include <asm/processor.h>
34#include <asm/cpufeature.h>
35#include <asm/cpu_device_id.h>
36
37MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
38MODULE_DESCRIPTION("ACPI Processor P-States Driver");
39MODULE_LICENSE("GPL");
40
41enum {
42 UNDEFINED_CAPABLE = 0,
43 SYSTEM_INTEL_MSR_CAPABLE,
44 SYSTEM_AMD_MSR_CAPABLE,
45 SYSTEM_IO_CAPABLE,
46};
47
48#define INTEL_MSR_RANGE (0xffff)
49#define AMD_MSR_RANGE (0x7)
50#define HYGON_MSR_RANGE (0x7)
51
52#define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
53
54struct acpi_cpufreq_data {
55 unsigned int resume;
56 unsigned int cpu_feature;
57 unsigned int acpi_perf_cpu;
58 cpumask_var_t freqdomain_cpus;
59 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
60 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
61};
62
63/* acpi_perf_data is a pointer to percpu data. */
64static struct acpi_processor_performance __percpu *acpi_perf_data;
65
66static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
67{
68 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
69}
70
71static struct cpufreq_driver acpi_cpufreq_driver;
72
73static unsigned int acpi_pstate_strict;
74
75static bool boost_state(unsigned int cpu)
76{
77 u32 lo, hi;
78 u64 msr;
79
80 switch (boot_cpu_data.x86_vendor) {
81 case X86_VENDOR_INTEL:
82 case X86_VENDOR_CENTAUR:
83 case X86_VENDOR_ZHAOXIN:
84 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
85 msr = lo | ((u64)hi << 32);
86 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
87 case X86_VENDOR_HYGON:
88 case X86_VENDOR_AMD:
89 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
90 msr = lo | ((u64)hi << 32);
91 return !(msr & MSR_K7_HWCR_CPB_DIS);
92 }
93 return false;
94}
95
96static int boost_set_msr(bool enable)
97{
98 u32 msr_addr;
99 u64 msr_mask, val;
100
101 switch (boot_cpu_data.x86_vendor) {
102 case X86_VENDOR_INTEL:
103 case X86_VENDOR_CENTAUR:
104 case X86_VENDOR_ZHAOXIN:
105 msr_addr = MSR_IA32_MISC_ENABLE;
106 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
107 break;
108 case X86_VENDOR_HYGON:
109 case X86_VENDOR_AMD:
110 msr_addr = MSR_K7_HWCR;
111 msr_mask = MSR_K7_HWCR_CPB_DIS;
112 break;
113 default:
114 return -EINVAL;
115 }
116
117 rdmsrl(msr_addr, val);
118
119 if (enable)
120 val &= ~msr_mask;
121 else
122 val |= msr_mask;
123
124 wrmsrl(msr_addr, val);
125 return 0;
126}
127
128static void boost_set_msr_each(void *p_en)
129{
130 bool enable = (bool) p_en;
131
132 boost_set_msr(enable);
133}
134
135static int set_boost(struct cpufreq_policy *policy, int val)
136{
137 on_each_cpu_mask(policy->cpus, boost_set_msr_each,
138 (void *)(long)val, 1);
139 pr_debug("CPU %*pbl: Core Boosting %s.\n",
140 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
141
142 return 0;
143}
144
145static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
146{
147 struct acpi_cpufreq_data *data = policy->driver_data;
148
149 if (unlikely(!data))
150 return -ENODEV;
151
152 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
153}
154
155cpufreq_freq_attr_ro(freqdomain_cpus);
156
157#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
159 size_t count)
160{
161 int ret;
162 unsigned int val = 0;
163
164 if (!acpi_cpufreq_driver.set_boost)
165 return -EINVAL;
166
167 ret = kstrtouint(buf, 10, &val);
168 if (ret || val > 1)
169 return -EINVAL;
170
171 cpus_read_lock();
172 set_boost(policy, val);
173 cpus_read_unlock();
174
175 return count;
176}
177
178static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
179{
180 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
181}
182
183cpufreq_freq_attr_rw(cpb);
184#endif
185
186static int check_est_cpu(unsigned int cpuid)
187{
188 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
189
190 return cpu_has(cpu, X86_FEATURE_EST);
191}
192
193static int check_amd_hwpstate_cpu(unsigned int cpuid)
194{
195 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
196
197 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
198}
199
200static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
201{
202 struct acpi_cpufreq_data *data = policy->driver_data;
203 struct acpi_processor_performance *perf;
204 int i;
205
206 perf = to_perf_data(data);
207
208 for (i = 0; i < perf->state_count; i++) {
209 if (value == perf->states[i].status)
210 return policy->freq_table[i].frequency;
211 }
212 return 0;
213}
214
215static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
216{
217 struct acpi_cpufreq_data *data = policy->driver_data;
218 struct cpufreq_frequency_table *pos;
219 struct acpi_processor_performance *perf;
220
221 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
222 msr &= AMD_MSR_RANGE;
223 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
224 msr &= HYGON_MSR_RANGE;
225 else
226 msr &= INTEL_MSR_RANGE;
227
228 perf = to_perf_data(data);
229
230 cpufreq_for_each_entry(pos, policy->freq_table)
231 if (msr == perf->states[pos->driver_data].status)
232 return pos->frequency;
233 return policy->freq_table[0].frequency;
234}
235
236static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
237{
238 struct acpi_cpufreq_data *data = policy->driver_data;
239
240 switch (data->cpu_feature) {
241 case SYSTEM_INTEL_MSR_CAPABLE:
242 case SYSTEM_AMD_MSR_CAPABLE:
243 return extract_msr(policy, val);
244 case SYSTEM_IO_CAPABLE:
245 return extract_io(policy, val);
246 default:
247 return 0;
248 }
249}
250
251static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
252{
253 u32 val, dummy __always_unused;
254
255 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
256 return val;
257}
258
259static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
260{
261 u32 lo, hi;
262
263 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
266}
267
268static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
269{
270 u32 val, dummy __always_unused;
271
272 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
273 return val;
274}
275
276static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
277{
278 wrmsr(MSR_AMD_PERF_CTL, val, 0);
279}
280
281static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
282{
283 u32 val;
284
285 acpi_os_read_port(reg->address, &val, reg->bit_width);
286 return val;
287}
288
289static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
290{
291 acpi_os_write_port(reg->address, val, reg->bit_width);
292}
293
294struct drv_cmd {
295 struct acpi_pct_register *reg;
296 u32 val;
297 union {
298 void (*write)(struct acpi_pct_register *reg, u32 val);
299 u32 (*read)(struct acpi_pct_register *reg);
300 } func;
301};
302
303/* Called via smp_call_function_single(), on the target CPU */
304static void do_drv_read(void *_cmd)
305{
306 struct drv_cmd *cmd = _cmd;
307
308 cmd->val = cmd->func.read(cmd->reg);
309}
310
311static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
312{
313 struct acpi_processor_performance *perf = to_perf_data(data);
314 struct drv_cmd cmd = {
315 .reg = &perf->control_register,
316 .func.read = data->cpu_freq_read,
317 };
318 int err;
319
320 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
322 return cmd.val;
323}
324
325/* Called via smp_call_function_many(), on the target CPUs */
326static void do_drv_write(void *_cmd)
327{
328 struct drv_cmd *cmd = _cmd;
329
330 cmd->func.write(cmd->reg, cmd->val);
331}
332
333static void drv_write(struct acpi_cpufreq_data *data,
334 const struct cpumask *mask, u32 val)
335{
336 struct acpi_processor_performance *perf = to_perf_data(data);
337 struct drv_cmd cmd = {
338 .reg = &perf->control_register,
339 .val = val,
340 .func.write = data->cpu_freq_write,
341 };
342 int this_cpu;
343
344 this_cpu = get_cpu();
345 if (cpumask_test_cpu(this_cpu, mask))
346 do_drv_write(&cmd);
347
348 smp_call_function_many(mask, do_drv_write, &cmd, 1);
349 put_cpu();
350}
351
352static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
353{
354 u32 val;
355
356 if (unlikely(cpumask_empty(mask)))
357 return 0;
358
359 val = drv_read(data, mask);
360
361 pr_debug("%s = %u\n", __func__, val);
362
363 return val;
364}
365
366static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
367{
368 struct acpi_cpufreq_data *data;
369 struct cpufreq_policy *policy;
370 unsigned int freq;
371 unsigned int cached_freq;
372
373 pr_debug("%s (%d)\n", __func__, cpu);
374
375 policy = cpufreq_cpu_get_raw(cpu);
376 if (unlikely(!policy))
377 return 0;
378
379 data = policy->driver_data;
380 if (unlikely(!data || !policy->freq_table))
381 return 0;
382
383 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385 if (freq != cached_freq) {
386 /*
387 * The dreaded BIOS frequency change behind our back.
388 * Force set the frequency on next target call.
389 */
390 data->resume = 1;
391 }
392
393 pr_debug("cur freq = %u\n", freq);
394
395 return freq;
396}
397
398static unsigned int check_freqs(struct cpufreq_policy *policy,
399 const struct cpumask *mask, unsigned int freq)
400{
401 struct acpi_cpufreq_data *data = policy->driver_data;
402 unsigned int cur_freq;
403 unsigned int i;
404
405 for (i = 0; i < 100; i++) {
406 cur_freq = extract_freq(policy, get_cur_val(mask, data));
407 if (cur_freq == freq)
408 return 1;
409 udelay(10);
410 }
411 return 0;
412}
413
414static int acpi_cpufreq_target(struct cpufreq_policy *policy,
415 unsigned int index)
416{
417 struct acpi_cpufreq_data *data = policy->driver_data;
418 struct acpi_processor_performance *perf;
419 const struct cpumask *mask;
420 unsigned int next_perf_state = 0; /* Index into perf table */
421 int result = 0;
422
423 if (unlikely(!data)) {
424 return -ENODEV;
425 }
426
427 perf = to_perf_data(data);
428 next_perf_state = policy->freq_table[index].driver_data;
429 if (perf->state == next_perf_state) {
430 if (unlikely(data->resume)) {
431 pr_debug("Called after resume, resetting to P%d\n",
432 next_perf_state);
433 data->resume = 0;
434 } else {
435 pr_debug("Already at target state (P%d)\n",
436 next_perf_state);
437 return 0;
438 }
439 }
440
441 /*
442 * The core won't allow CPUs to go away until the governor has been
443 * stopped, so we can rely on the stability of policy->cpus.
444 */
445 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446 cpumask_of(policy->cpu) : policy->cpus;
447
448 drv_write(data, mask, perf->states[next_perf_state].control);
449
450 if (acpi_pstate_strict) {
451 if (!check_freqs(policy, mask,
452 policy->freq_table[index].frequency)) {
453 pr_debug("%s (%d)\n", __func__, policy->cpu);
454 result = -EAGAIN;
455 }
456 }
457
458 if (!result)
459 perf->state = next_perf_state;
460
461 return result;
462}
463
464static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
465 unsigned int target_freq)
466{
467 struct acpi_cpufreq_data *data = policy->driver_data;
468 struct acpi_processor_performance *perf;
469 struct cpufreq_frequency_table *entry;
470 unsigned int next_perf_state, next_freq, index;
471
472 /*
473 * Find the closest frequency above target_freq.
474 */
475 if (policy->cached_target_freq == target_freq)
476 index = policy->cached_resolved_idx;
477 else
478 index = cpufreq_table_find_index_dl(policy, target_freq,
479 false);
480
481 entry = &policy->freq_table[index];
482 next_freq = entry->frequency;
483 next_perf_state = entry->driver_data;
484
485 perf = to_perf_data(data);
486 if (perf->state == next_perf_state) {
487 if (unlikely(data->resume))
488 data->resume = 0;
489 else
490 return next_freq;
491 }
492
493 data->cpu_freq_write(&perf->control_register,
494 perf->states[next_perf_state].control);
495 perf->state = next_perf_state;
496 return next_freq;
497}
498
499static unsigned long
500acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501{
502 struct acpi_processor_performance *perf;
503
504 perf = to_perf_data(data);
505 if (cpu_khz) {
506 /* search the closest match to cpu_khz */
507 unsigned int i;
508 unsigned long freq;
509 unsigned long freqn = perf->states[0].core_frequency * 1000;
510
511 for (i = 0; i < (perf->state_count-1); i++) {
512 freq = freqn;
513 freqn = perf->states[i+1].core_frequency * 1000;
514 if ((2 * cpu_khz) > (freqn + freq)) {
515 perf->state = i;
516 return freq;
517 }
518 }
519 perf->state = perf->state_count-1;
520 return freqn;
521 } else {
522 /* assume CPU is at P0... */
523 perf->state = 0;
524 return perf->states[0].core_frequency * 1000;
525 }
526}
527
528static void free_acpi_perf_data(void)
529{
530 unsigned int i;
531
532 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533 for_each_possible_cpu(i)
534 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
535 ->shared_cpu_map);
536 free_percpu(acpi_perf_data);
537}
538
539static int cpufreq_boost_down_prep(unsigned int cpu)
540{
541 /*
542 * Clear the boost-disable bit on the CPU_DOWN path so that
543 * this cpu cannot block the remaining ones from boosting.
544 */
545 return boost_set_msr(1);
546}
547
548/*
549 * acpi_cpufreq_early_init - initialize ACPI P-States library
550 *
551 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
552 * in order to determine correct frequency and voltage pairings. We can
553 * do _PDC and _PSD and find out the processor dependency for the
554 * actual init that will happen later...
555 */
556static int __init acpi_cpufreq_early_init(void)
557{
558 unsigned int i;
559 pr_debug("%s\n", __func__);
560
561 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
562 if (!acpi_perf_data) {
563 pr_debug("Memory allocation error for acpi_perf_data.\n");
564 return -ENOMEM;
565 }
566 for_each_possible_cpu(i) {
567 if (!zalloc_cpumask_var_node(
568 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
569 GFP_KERNEL, cpu_to_node(i))) {
570
571 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
572 free_acpi_perf_data();
573 return -ENOMEM;
574 }
575 }
576
577 /* Do initialization in ACPI core */
578 acpi_processor_preregister_performance(acpi_perf_data);
579 return 0;
580}
581
582#ifdef CONFIG_SMP
583/*
584 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
585 * or do it in BIOS firmware and won't inform about it to OS. If not
586 * detected, this has a side effect of making CPU run at a different speed
587 * than OS intended it to run at. Detect it and handle it cleanly.
588 */
589static int bios_with_sw_any_bug;
590
591static int sw_any_bug_found(const struct dmi_system_id *d)
592{
593 bios_with_sw_any_bug = 1;
594 return 0;
595}
596
597static const struct dmi_system_id sw_any_bug_dmi_table[] = {
598 {
599 .callback = sw_any_bug_found,
600 .ident = "Supermicro Server X6DLP",
601 .matches = {
602 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
603 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
604 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
605 },
606 },
607 { }
608};
609
610static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
611{
612 /* Intel Xeon Processor 7100 Series Specification Update
613 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
614 * AL30: A Machine Check Exception (MCE) Occurring during an
615 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
616 * Both Processor Cores to Lock Up. */
617 if (c->x86_vendor == X86_VENDOR_INTEL) {
618 if ((c->x86 == 15) &&
619 (c->x86_model == 6) &&
620 (c->x86_stepping == 8)) {
621 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
622 return -ENODEV;
623 }
624 }
625 return 0;
626}
627#endif
628
629#ifdef CONFIG_ACPI_CPPC_LIB
630static u64 get_max_boost_ratio(unsigned int cpu)
631{
632 struct cppc_perf_caps perf_caps;
633 u64 highest_perf, nominal_perf;
634 int ret;
635
636 if (acpi_pstate_strict)
637 return 0;
638
639 ret = cppc_get_perf_caps(cpu, &perf_caps);
640 if (ret) {
641 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
642 cpu, ret);
643 return 0;
644 }
645
646 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
647 highest_perf = amd_get_highest_perf();
648 else
649 highest_perf = perf_caps.highest_perf;
650
651 nominal_perf = perf_caps.nominal_perf;
652
653 if (!highest_perf || !nominal_perf) {
654 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
655 return 0;
656 }
657
658 if (highest_perf < nominal_perf) {
659 pr_debug("CPU%d: nominal performance above highest\n", cpu);
660 return 0;
661 }
662
663 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
664}
665#else
666static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
667#endif
668
669static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
670{
671 struct cpufreq_frequency_table *freq_table;
672 struct acpi_processor_performance *perf;
673 struct acpi_cpufreq_data *data;
674 unsigned int cpu = policy->cpu;
675 struct cpuinfo_x86 *c = &cpu_data(cpu);
676 unsigned int valid_states = 0;
677 unsigned int result = 0;
678 u64 max_boost_ratio;
679 unsigned int i;
680#ifdef CONFIG_SMP
681 static int blacklisted;
682#endif
683
684 pr_debug("%s\n", __func__);
685
686#ifdef CONFIG_SMP
687 if (blacklisted)
688 return blacklisted;
689 blacklisted = acpi_cpufreq_blacklist(c);
690 if (blacklisted)
691 return blacklisted;
692#endif
693
694 data = kzalloc(sizeof(*data), GFP_KERNEL);
695 if (!data)
696 return -ENOMEM;
697
698 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
699 result = -ENOMEM;
700 goto err_free;
701 }
702
703 perf = per_cpu_ptr(acpi_perf_data, cpu);
704 data->acpi_perf_cpu = cpu;
705 policy->driver_data = data;
706
707 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
708 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
709
710 result = acpi_processor_register_performance(perf, cpu);
711 if (result)
712 goto err_free_mask;
713
714 policy->shared_type = perf->shared_type;
715
716 /*
717 * Will let policy->cpus know about dependency only when software
718 * coordination is required.
719 */
720 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
721 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
722 cpumask_copy(policy->cpus, perf->shared_cpu_map);
723 }
724 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
725
726#ifdef CONFIG_SMP
727 dmi_check_system(sw_any_bug_dmi_table);
728 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
729 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
730 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
731 }
732
733 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
734 !acpi_pstate_strict) {
735 cpumask_clear(policy->cpus);
736 cpumask_set_cpu(cpu, policy->cpus);
737 cpumask_copy(data->freqdomain_cpus,
738 topology_sibling_cpumask(cpu));
739 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
740 pr_info_once("overriding BIOS provided _PSD data\n");
741 }
742#endif
743
744 /* capability check */
745 if (perf->state_count <= 1) {
746 pr_debug("No P-States\n");
747 result = -ENODEV;
748 goto err_unreg;
749 }
750
751 if (perf->control_register.space_id != perf->status_register.space_id) {
752 result = -ENODEV;
753 goto err_unreg;
754 }
755
756 switch (perf->control_register.space_id) {
757 case ACPI_ADR_SPACE_SYSTEM_IO:
758 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
759 boot_cpu_data.x86 == 0xf) {
760 pr_debug("AMD K8 systems must use native drivers.\n");
761 result = -ENODEV;
762 goto err_unreg;
763 }
764 pr_debug("SYSTEM IO addr space\n");
765 data->cpu_feature = SYSTEM_IO_CAPABLE;
766 data->cpu_freq_read = cpu_freq_read_io;
767 data->cpu_freq_write = cpu_freq_write_io;
768 break;
769 case ACPI_ADR_SPACE_FIXED_HARDWARE:
770 pr_debug("HARDWARE addr space\n");
771 if (check_est_cpu(cpu)) {
772 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
773 data->cpu_freq_read = cpu_freq_read_intel;
774 data->cpu_freq_write = cpu_freq_write_intel;
775 break;
776 }
777 if (check_amd_hwpstate_cpu(cpu)) {
778 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
779 data->cpu_freq_read = cpu_freq_read_amd;
780 data->cpu_freq_write = cpu_freq_write_amd;
781 break;
782 }
783 result = -ENODEV;
784 goto err_unreg;
785 default:
786 pr_debug("Unknown addr space %d\n",
787 (u32) (perf->control_register.space_id));
788 result = -ENODEV;
789 goto err_unreg;
790 }
791
792 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
793 GFP_KERNEL);
794 if (!freq_table) {
795 result = -ENOMEM;
796 goto err_unreg;
797 }
798
799 /* detect transition latency */
800 policy->cpuinfo.transition_latency = 0;
801 for (i = 0; i < perf->state_count; i++) {
802 if ((perf->states[i].transition_latency * 1000) >
803 policy->cpuinfo.transition_latency)
804 policy->cpuinfo.transition_latency =
805 perf->states[i].transition_latency * 1000;
806 }
807
808 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
809 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
810 policy->cpuinfo.transition_latency > 20 * 1000) {
811 policy->cpuinfo.transition_latency = 20 * 1000;
812 pr_info_once("P-state transition latency capped at 20 uS\n");
813 }
814
815 /* table init */
816 for (i = 0; i < perf->state_count; i++) {
817 if (i > 0 && perf->states[i].core_frequency >=
818 freq_table[valid_states-1].frequency / 1000)
819 continue;
820
821 freq_table[valid_states].driver_data = i;
822 freq_table[valid_states].frequency =
823 perf->states[i].core_frequency * 1000;
824 valid_states++;
825 }
826 freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
827
828 max_boost_ratio = get_max_boost_ratio(cpu);
829 if (max_boost_ratio) {
830 unsigned int freq = freq_table[0].frequency;
831
832 /*
833 * Because the loop above sorts the freq_table entries in the
834 * descending order, freq is the maximum frequency in the table.
835 * Assume that it corresponds to the CPPC nominal frequency and
836 * use it to set cpuinfo.max_freq.
837 */
838 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
839 } else {
840 /*
841 * If the maximum "boost" frequency is unknown, ask the arch
842 * scale-invariance code to use the "nominal" performance for
843 * CPU utilization scaling so as to prevent the schedutil
844 * governor from selecting inadequate CPU frequencies.
845 */
846 arch_set_max_freq_ratio(true);
847 }
848
849 policy->freq_table = freq_table;
850 perf->state = 0;
851
852 switch (perf->control_register.space_id) {
853 case ACPI_ADR_SPACE_SYSTEM_IO:
854 /*
855 * The core will not set policy->cur, because
856 * cpufreq_driver->get is NULL, so we need to set it here.
857 * However, we have to guess it, because the current speed is
858 * unknown and not detectable via IO ports.
859 */
860 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
861 break;
862 case ACPI_ADR_SPACE_FIXED_HARDWARE:
863 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
864 break;
865 default:
866 break;
867 }
868
869 /* notify BIOS that we exist */
870 acpi_processor_notify_smm(THIS_MODULE);
871
872 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
873 for (i = 0; i < perf->state_count; i++)
874 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
875 (i == perf->state ? '*' : ' '), i,
876 (u32) perf->states[i].core_frequency,
877 (u32) perf->states[i].power,
878 (u32) perf->states[i].transition_latency);
879
880 /*
881 * the first call to ->target() should result in us actually
882 * writing something to the appropriate registers.
883 */
884 data->resume = 1;
885
886 policy->fast_switch_possible = !acpi_pstate_strict &&
887 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
888
889 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
890 pr_warn(FW_WARN "P-state 0 is not max freq\n");
891
892 if (acpi_cpufreq_driver.set_boost)
893 set_boost(policy, acpi_cpufreq_driver.boost_enabled);
894
895 return result;
896
897err_unreg:
898 acpi_processor_unregister_performance(cpu);
899err_free_mask:
900 free_cpumask_var(data->freqdomain_cpus);
901err_free:
902 kfree(data);
903 policy->driver_data = NULL;
904
905 return result;
906}
907
908static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
909{
910 struct acpi_cpufreq_data *data = policy->driver_data;
911
912 pr_debug("%s\n", __func__);
913
914 cpufreq_boost_down_prep(policy->cpu);
915 policy->fast_switch_possible = false;
916 policy->driver_data = NULL;
917 acpi_processor_unregister_performance(data->acpi_perf_cpu);
918 free_cpumask_var(data->freqdomain_cpus);
919 kfree(policy->freq_table);
920 kfree(data);
921
922 return 0;
923}
924
925static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
926{
927 struct acpi_cpufreq_data *data = policy->driver_data;
928
929 pr_debug("%s\n", __func__);
930
931 data->resume = 1;
932
933 return 0;
934}
935
936static struct freq_attr *acpi_cpufreq_attr[] = {
937 &cpufreq_freq_attr_scaling_available_freqs,
938 &freqdomain_cpus,
939#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
940 &cpb,
941#endif
942 NULL,
943};
944
945static struct cpufreq_driver acpi_cpufreq_driver = {
946 .verify = cpufreq_generic_frequency_table_verify,
947 .target_index = acpi_cpufreq_target,
948 .fast_switch = acpi_cpufreq_fast_switch,
949 .bios_limit = acpi_processor_get_bios_limit,
950 .init = acpi_cpufreq_cpu_init,
951 .exit = acpi_cpufreq_cpu_exit,
952 .resume = acpi_cpufreq_resume,
953 .name = "acpi-cpufreq",
954 .attr = acpi_cpufreq_attr,
955};
956
957static void __init acpi_cpufreq_boost_init(void)
958{
959 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
960 pr_debug("Boost capabilities not present in the processor\n");
961 return;
962 }
963
964 acpi_cpufreq_driver.set_boost = set_boost;
965 acpi_cpufreq_driver.boost_enabled = boost_state(0);
966}
967
968static int __init acpi_cpufreq_init(void)
969{
970 int ret;
971
972 if (acpi_disabled)
973 return -ENODEV;
974
975 /* don't keep reloading if cpufreq_driver exists */
976 if (cpufreq_get_current_driver())
977 return -EEXIST;
978
979 pr_debug("%s\n", __func__);
980
981 ret = acpi_cpufreq_early_init();
982 if (ret)
983 return ret;
984
985#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
986 /* this is a sysfs file with a strange name and an even stranger
987 * semantic - per CPU instantiation, but system global effect.
988 * Lets enable it only on AMD CPUs for compatibility reasons and
989 * only if configured. This is considered legacy code, which
990 * will probably be removed at some point in the future.
991 */
992 if (!check_amd_hwpstate_cpu(0)) {
993 struct freq_attr **attr;
994
995 pr_debug("CPB unsupported, do not expose it\n");
996
997 for (attr = acpi_cpufreq_attr; *attr; attr++)
998 if (*attr == &cpb) {
999 *attr = NULL;
1000 break;
1001 }
1002 }
1003#endif
1004 acpi_cpufreq_boost_init();
1005
1006 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1007 if (ret) {
1008 free_acpi_perf_data();
1009 }
1010 return ret;
1011}
1012
1013static void __exit acpi_cpufreq_exit(void)
1014{
1015 pr_debug("%s\n", __func__);
1016
1017 cpufreq_unregister_driver(&acpi_cpufreq_driver);
1018
1019 free_acpi_perf_data();
1020}
1021
1022module_param(acpi_pstate_strict, uint, 0644);
1023MODULE_PARM_DESC(acpi_pstate_strict,
1024 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1025 "performed during frequency changes.");
1026
1027late_initcall(acpi_cpufreq_init);
1028module_exit(acpi_cpufreq_exit);
1029
1030static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1031 X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1032 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1033 {}
1034};
1035MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1036
1037static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1038 {ACPI_PROCESSOR_OBJECT_HID, },
1039 {ACPI_PROCESSOR_DEVICE_HID, },
1040 {},
1041};
1042MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1043
1044MODULE_ALIAS("acpi");