Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v3.1
  1/*
  2 * acpi-cpufreq.c - ACPI Processor P-States Driver
  3 *
  4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License as published by
 13 *  the Free Software Foundation; either version 2 of the License, or (at
 14 *  your option) any later version.
 15 *
 16 *  This program is distributed in the hope that it will be useful, but
 17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 *  General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License along
 22 *  with this program; if not, write to the Free Software Foundation, Inc.,
 23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 24 *
 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 26 */
 27
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/init.h>
 31#include <linux/smp.h>
 32#include <linux/sched.h>
 33#include <linux/cpufreq.h>
 34#include <linux/compiler.h>
 35#include <linux/dmi.h>
 36#include <linux/slab.h>
 37
 38#include <linux/acpi.h>
 39#include <linux/io.h>
 40#include <linux/delay.h>
 41#include <linux/uaccess.h>
 42
 43#include <acpi/processor.h>
 44
 45#include <asm/msr.h>
 46#include <asm/processor.h>
 47#include <asm/cpufeature.h>
 48#include "mperf.h"
 49
 50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 52MODULE_LICENSE("GPL");
 53
 
 
 54enum {
 55	UNDEFINED_CAPABLE = 0,
 56	SYSTEM_INTEL_MSR_CAPABLE,
 
 57	SYSTEM_IO_CAPABLE,
 58};
 59
 60#define INTEL_MSR_RANGE		(0xffff)
 
 
 
 61
 62struct acpi_cpufreq_data {
 63	struct acpi_processor_performance *acpi_data;
 64	struct cpufreq_frequency_table *freq_table;
 65	unsigned int resume;
 66	unsigned int cpu_feature;
 
 
 
 
 67};
 68
 69static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
 70
 71/* acpi_perf_data is a pointer to percpu data. */
 72static struct acpi_processor_performance __percpu *acpi_perf_data;
 73
 
 
 
 
 
 74static struct cpufreq_driver acpi_cpufreq_driver;
 75
 76static unsigned int acpi_pstate_strict;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77
 78static int check_est_cpu(unsigned int cpuid)
 79{
 80	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 81
 82	return cpu_has(cpu, X86_FEATURE_EST);
 83}
 84
 
 
 
 
 
 
 
 85static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
 86{
 87	struct acpi_processor_performance *perf;
 88	int i;
 89
 90	perf = data->acpi_data;
 91
 92	for (i = 0; i < perf->state_count; i++) {
 93		if (value == perf->states[i].status)
 94			return data->freq_table[i].frequency;
 95	}
 96	return 0;
 97}
 98
 99static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100{
101	int i;
102	struct acpi_processor_performance *perf;
103
104	msr &= INTEL_MSR_RANGE;
105	perf = data->acpi_data;
 
 
106
107	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108		if (msr == perf->states[data->freq_table[i].index].status)
109			return data->freq_table[i].frequency;
110	}
 
111	return data->freq_table[0].frequency;
112}
113
114static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115{
116	switch (data->cpu_feature) {
117	case SYSTEM_INTEL_MSR_CAPABLE:
 
118		return extract_msr(val, data);
119	case SYSTEM_IO_CAPABLE:
120		return extract_io(val, data);
121	default:
122		return 0;
123	}
124}
125
126struct msr_addr {
127	u32 reg;
128};
129
130struct io_addr {
131	u16 port;
132	u8 bit_width;
133};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
135struct drv_cmd {
136	unsigned int type;
137	const struct cpumask *mask;
138	union {
139		struct msr_addr msr;
140		struct io_addr io;
141	} addr;
142	u32 val;
 
 
 
 
143};
144
145/* Called via smp_call_function_single(), on the target CPU */
146static void do_drv_read(void *_cmd)
147{
148	struct drv_cmd *cmd = _cmd;
149	u32 h;
150
151	switch (cmd->type) {
152	case SYSTEM_INTEL_MSR_CAPABLE:
153		rdmsr(cmd->addr.msr.reg, cmd->val, h);
154		break;
155	case SYSTEM_IO_CAPABLE:
156		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157				&cmd->val,
158				(u32)cmd->addr.io.bit_width);
159		break;
160	default:
161		break;
162	}
163}
164
165/* Called via smp_call_function_many(), on the target CPUs */
166static void do_drv_write(void *_cmd)
167{
168	struct drv_cmd *cmd = _cmd;
169	u32 lo, hi;
 
 
 
 
170
171	switch (cmd->type) {
172	case SYSTEM_INTEL_MSR_CAPABLE:
173		rdmsr(cmd->addr.msr.reg, lo, hi);
174		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175		wrmsr(cmd->addr.msr.reg, lo, hi);
176		break;
177	case SYSTEM_IO_CAPABLE:
178		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179				cmd->val,
180				(u32)cmd->addr.io.bit_width);
181		break;
182	default:
183		break;
184	}
185}
186
187static void drv_read(struct drv_cmd *cmd)
 
188{
189	int err;
190	cmd->val = 0;
191
192	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
194}
195
196static void drv_write(struct drv_cmd *cmd)
 
197{
 
 
 
 
 
 
198	int this_cpu;
199
200	this_cpu = get_cpu();
201	if (cpumask_test_cpu(this_cpu, cmd->mask))
202		do_drv_write(cmd);
203	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
 
204	put_cpu();
205}
206
207static u32 get_cur_val(const struct cpumask *mask)
208{
209	struct acpi_processor_performance *perf;
210	struct drv_cmd cmd;
211
212	if (unlikely(cpumask_empty(mask)))
213		return 0;
214
215	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216	case SYSTEM_INTEL_MSR_CAPABLE:
217		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218		cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219		break;
220	case SYSTEM_IO_CAPABLE:
221		cmd.type = SYSTEM_IO_CAPABLE;
222		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223		cmd.addr.io.port = perf->control_register.address;
224		cmd.addr.io.bit_width = perf->control_register.bit_width;
225		break;
226	default:
227		return 0;
228	}
229
230	cmd.mask = mask;
231	drv_read(&cmd);
232
233	pr_debug("get_cur_val = %u\n", cmd.val);
234
235	return cmd.val;
236}
237
238static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239{
240	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
 
241	unsigned int freq;
242	unsigned int cached_freq;
243
244	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245
246	if (unlikely(data == NULL ||
247		     data->acpi_data == NULL || data->freq_table == NULL)) {
 
 
 
 
248		return 0;
249	}
250
251	cached_freq = data->freq_table[data->acpi_data->state].frequency;
252	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253	if (freq != cached_freq) {
254		/*
255		 * The dreaded BIOS frequency change behind our back.
256		 * Force set the frequency on next target call.
257		 */
258		data->resume = 1;
259	}
260
261	pr_debug("cur freq = %u\n", freq);
262
263	return freq;
264}
265
266static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267				struct acpi_cpufreq_data *data)
268{
269	unsigned int cur_freq;
270	unsigned int i;
271
272	for (i = 0; i < 100; i++) {
273		cur_freq = extract_freq(get_cur_val(mask), data);
274		if (cur_freq == freq)
275			return 1;
276		udelay(10);
277	}
278	return 0;
279}
280
281static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282			       unsigned int target_freq, unsigned int relation)
283{
284	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285	struct acpi_processor_performance *perf;
286	struct cpufreq_freqs freqs;
287	struct drv_cmd cmd;
288	unsigned int next_state = 0; /* Index into freq_table */
289	unsigned int next_perf_state = 0; /* Index into perf table */
290	unsigned int i;
291	int result = 0;
292
293	pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294
295	if (unlikely(data == NULL ||
296	     data->acpi_data == NULL || data->freq_table == NULL)) {
297		return -ENODEV;
298	}
299
300	perf = data->acpi_data;
301	result = cpufreq_frequency_table_target(policy,
302						data->freq_table,
303						target_freq,
304						relation, &next_state);
305	if (unlikely(result)) {
306		result = -ENODEV;
307		goto out;
308	}
309
310	next_perf_state = data->freq_table[next_state].index;
311	if (perf->state == next_perf_state) {
312		if (unlikely(data->resume)) {
313			pr_debug("Called after resume, resetting to P%d\n",
314				next_perf_state);
315			data->resume = 0;
316		} else {
317			pr_debug("Already at target state (P%d)\n",
318				next_perf_state);
319			goto out;
320		}
321	}
322
323	switch (data->cpu_feature) {
324	case SYSTEM_INTEL_MSR_CAPABLE:
325		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327		cmd.val = (u32) perf->states[next_perf_state].control;
328		break;
329	case SYSTEM_IO_CAPABLE:
330		cmd.type = SYSTEM_IO_CAPABLE;
331		cmd.addr.io.port = perf->control_register.address;
332		cmd.addr.io.bit_width = perf->control_register.bit_width;
333		cmd.val = (u32) perf->states[next_perf_state].control;
334		break;
335	default:
336		result = -ENODEV;
337		goto out;
338	}
339
340	/* cpufreq holds the hotplug lock, so we are safe from here on */
341	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342		cmd.mask = policy->cpus;
343	else
344		cmd.mask = cpumask_of(policy->cpu);
345
346	freqs.old = perf->states[perf->state].core_frequency * 1000;
347	freqs.new = data->freq_table[next_state].frequency;
348	for_each_cpu(i, policy->cpus) {
349		freqs.cpu = i;
350		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351	}
352
353	drv_write(&cmd);
354
355	if (acpi_pstate_strict) {
356		if (!check_freqs(cmd.mask, freqs.new, data)) {
 
357			pr_debug("acpi_cpufreq_target failed (%d)\n",
358				policy->cpu);
359			result = -EAGAIN;
360			goto out;
361		}
362	}
363
364	for_each_cpu(i, policy->cpus) {
365		freqs.cpu = i;
366		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367	}
368	perf->state = next_perf_state;
369
370out:
371	return result;
372}
373
374static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
375{
376	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
377
378	pr_debug("acpi_cpufreq_verify\n");
379
380	return cpufreq_frequency_table_verify(policy, data->freq_table);
381}
382
383static unsigned long
384acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385{
386	struct acpi_processor_performance *perf = data->acpi_data;
387
 
388	if (cpu_khz) {
389		/* search the closest match to cpu_khz */
390		unsigned int i;
391		unsigned long freq;
392		unsigned long freqn = perf->states[0].core_frequency * 1000;
393
394		for (i = 0; i < (perf->state_count-1); i++) {
395			freq = freqn;
396			freqn = perf->states[i+1].core_frequency * 1000;
397			if ((2 * cpu_khz) > (freqn + freq)) {
398				perf->state = i;
399				return freq;
400			}
401		}
402		perf->state = perf->state_count-1;
403		return freqn;
404	} else {
405		/* assume CPU is at P0... */
406		perf->state = 0;
407		return perf->states[0].core_frequency * 1000;
408	}
409}
410
411static void free_acpi_perf_data(void)
412{
413	unsigned int i;
414
415	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416	for_each_possible_cpu(i)
417		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418				 ->shared_cpu_map);
419	free_percpu(acpi_perf_data);
420}
421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422/*
423 * acpi_cpufreq_early_init - initialize ACPI P-States library
424 *
425 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426 * in order to determine correct frequency and voltage pairings. We can
427 * do _PDC and _PSD and find out the processor dependency for the
428 * actual init that will happen later...
429 */
430static int __init acpi_cpufreq_early_init(void)
431{
432	unsigned int i;
433	pr_debug("acpi_cpufreq_early_init\n");
434
435	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436	if (!acpi_perf_data) {
437		pr_debug("Memory allocation error for acpi_perf_data.\n");
438		return -ENOMEM;
439	}
440	for_each_possible_cpu(i) {
441		if (!zalloc_cpumask_var_node(
442			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443			GFP_KERNEL, cpu_to_node(i))) {
444
445			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446			free_acpi_perf_data();
447			return -ENOMEM;
448		}
449	}
450
451	/* Do initialization in ACPI core */
452	acpi_processor_preregister_performance(acpi_perf_data);
453	return 0;
454}
455
456#ifdef CONFIG_SMP
457/*
458 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459 * or do it in BIOS firmware and won't inform about it to OS. If not
460 * detected, this has a side effect of making CPU run at a different speed
461 * than OS intended it to run at. Detect it and handle it cleanly.
462 */
463static int bios_with_sw_any_bug;
464
465static int sw_any_bug_found(const struct dmi_system_id *d)
466{
467	bios_with_sw_any_bug = 1;
468	return 0;
469}
470
471static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472	{
473		.callback = sw_any_bug_found,
474		.ident = "Supermicro Server X6DLP",
475		.matches = {
476			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479		},
480	},
481	{ }
482};
483
484static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485{
486	/* Intel Xeon Processor 7100 Series Specification Update
487	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488	 * AL30: A Machine Check Exception (MCE) Occurring during an
489	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490	 * Both Processor Cores to Lock Up. */
491	if (c->x86_vendor == X86_VENDOR_INTEL) {
492		if ((c->x86 == 15) &&
493		    (c->x86_model == 6) &&
494		    (c->x86_mask == 8)) {
495			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496			    "Xeon(R) 7100 Errata AL30, processors may "
497			    "lock up on frequency changes: disabling "
498			    "acpi-cpufreq.\n");
499			return -ENODEV;
500		    }
501		}
502	return 0;
503}
504#endif
505
506static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507{
508	unsigned int i;
509	unsigned int valid_states = 0;
510	unsigned int cpu = policy->cpu;
511	struct acpi_cpufreq_data *data;
512	unsigned int result = 0;
513	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514	struct acpi_processor_performance *perf;
515#ifdef CONFIG_SMP
516	static int blacklisted;
517#endif
518
519	pr_debug("acpi_cpufreq_cpu_init\n");
520
521#ifdef CONFIG_SMP
522	if (blacklisted)
523		return blacklisted;
524	blacklisted = acpi_cpufreq_blacklist(c);
525	if (blacklisted)
526		return blacklisted;
527#endif
528
529	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530	if (!data)
531		return -ENOMEM;
532
533	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534	per_cpu(acfreq_data, cpu) = data;
 
 
 
 
 
 
535
536	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538
539	result = acpi_processor_register_performance(data->acpi_data, cpu);
540	if (result)
541		goto err_free;
542
543	perf = data->acpi_data;
544	policy->shared_type = perf->shared_type;
545
546	/*
547	 * Will let policy->cpus know about dependency only when software
548	 * coordination is required.
549	 */
550	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552		cpumask_copy(policy->cpus, perf->shared_cpu_map);
553	}
554	cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555
556#ifdef CONFIG_SMP
557	dmi_check_system(sw_any_bug_dmi_table);
558	if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
 
 
 
 
 
 
 
 
 
561	}
562#endif
563
564	/* capability check */
565	if (perf->state_count <= 1) {
566		pr_debug("No P-States\n");
567		result = -ENODEV;
568		goto err_unreg;
569	}
570
571	if (perf->control_register.space_id != perf->status_register.space_id) {
572		result = -ENODEV;
573		goto err_unreg;
574	}
575
576	switch (perf->control_register.space_id) {
577	case ACPI_ADR_SPACE_SYSTEM_IO:
 
 
 
 
 
 
578		pr_debug("SYSTEM IO addr space\n");
579		data->cpu_feature = SYSTEM_IO_CAPABLE;
 
 
580		break;
581	case ACPI_ADR_SPACE_FIXED_HARDWARE:
582		pr_debug("HARDWARE addr space\n");
583		if (!check_est_cpu(cpu)) {
584			result = -ENODEV;
585			goto err_unreg;
 
 
586		}
587		data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588		break;
 
 
 
 
 
 
589	default:
590		pr_debug("Unknown addr space %d\n",
591			(u32) (perf->control_register.space_id));
592		result = -ENODEV;
593		goto err_unreg;
594	}
595
596	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597		    (perf->state_count+1), GFP_KERNEL);
598	if (!data->freq_table) {
599		result = -ENOMEM;
600		goto err_unreg;
601	}
602
603	/* detect transition latency */
604	policy->cpuinfo.transition_latency = 0;
605	for (i = 0; i < perf->state_count; i++) {
606		if ((perf->states[i].transition_latency * 1000) >
607		    policy->cpuinfo.transition_latency)
608			policy->cpuinfo.transition_latency =
609			    perf->states[i].transition_latency * 1000;
610	}
611
612	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614	    policy->cpuinfo.transition_latency > 20 * 1000) {
615		policy->cpuinfo.transition_latency = 20 * 1000;
616		printk_once(KERN_INFO
617			    "P-state transition latency capped at 20 uS\n");
618	}
619
620	/* table init */
621	for (i = 0; i < perf->state_count; i++) {
622		if (i > 0 && perf->states[i].core_frequency >=
623		    data->freq_table[valid_states-1].frequency / 1000)
624			continue;
625
626		data->freq_table[valid_states].index = i;
627		data->freq_table[valid_states].frequency =
628		    perf->states[i].core_frequency * 1000;
629		valid_states++;
630	}
631	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632	perf->state = 0;
633
634	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635	if (result)
636		goto err_freqfree;
637
638	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
640
641	switch (perf->control_register.space_id) {
642	case ACPI_ADR_SPACE_SYSTEM_IO:
643		/* Current speed is unknown and not detectable by IO port */
 
 
 
 
 
644		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645		break;
646	case ACPI_ADR_SPACE_FIXED_HARDWARE:
647		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648		policy->cur = get_cur_freq_on_cpu(cpu);
649		break;
650	default:
651		break;
652	}
653
654	/* notify BIOS that we exist */
655	acpi_processor_notify_smm(THIS_MODULE);
656
657	/* Check for APERF/MPERF support in hardware */
658	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
659		acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660
661	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662	for (i = 0; i < perf->state_count; i++)
663		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
664			(i == perf->state ? '*' : ' '), i,
665			(u32) perf->states[i].core_frequency,
666			(u32) perf->states[i].power,
667			(u32) perf->states[i].transition_latency);
668
669	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670
671	/*
672	 * the first call to ->target() should result in us actually
673	 * writing something to the appropriate registers.
674	 */
675	data->resume = 1;
676
677	return result;
678
679err_freqfree:
680	kfree(data->freq_table);
681err_unreg:
682	acpi_processor_unregister_performance(perf, cpu);
 
 
683err_free:
684	kfree(data);
685	per_cpu(acfreq_data, cpu) = NULL;
686
687	return result;
688}
689
690static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691{
692	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693
694	pr_debug("acpi_cpufreq_cpu_exit\n");
695
696	if (data) {
697		cpufreq_frequency_table_put_attr(policy->cpu);
698		per_cpu(acfreq_data, policy->cpu) = NULL;
699		acpi_processor_unregister_performance(data->acpi_data,
700						      policy->cpu);
701		kfree(data->freq_table);
702		kfree(data);
703	}
704
705	return 0;
706}
707
708static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709{
710	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711
712	pr_debug("acpi_cpufreq_resume\n");
713
714	data->resume = 1;
715
716	return 0;
717}
718
719static struct freq_attr *acpi_cpufreq_attr[] = {
720	&cpufreq_freq_attr_scaling_available_freqs,
 
 
 
 
721	NULL,
722};
723
724static struct cpufreq_driver acpi_cpufreq_driver = {
725	.verify		= acpi_cpufreq_verify,
726	.target		= acpi_cpufreq_target,
727	.bios_limit	= acpi_processor_get_bios_limit,
728	.init		= acpi_cpufreq_cpu_init,
729	.exit		= acpi_cpufreq_cpu_exit,
730	.resume		= acpi_cpufreq_resume,
731	.name		= "acpi-cpufreq",
732	.owner		= THIS_MODULE,
733	.attr		= acpi_cpufreq_attr,
734};
735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736static int __init acpi_cpufreq_init(void)
737{
738	int ret;
739
740	if (acpi_disabled)
741		return 0;
 
 
 
 
742
743	pr_debug("acpi_cpufreq_init\n");
744
745	ret = acpi_cpufreq_early_init();
746	if (ret)
747		return ret;
748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750	if (ret)
751		free_acpi_perf_data();
752
 
753	return ret;
754}
755
756static void __exit acpi_cpufreq_exit(void)
757{
758	pr_debug("acpi_cpufreq_exit\n");
759
 
 
760	cpufreq_unregister_driver(&acpi_cpufreq_driver);
761
762	free_acpi_perf_data();
763}
764
765module_param(acpi_pstate_strict, uint, 0644);
766MODULE_PARM_DESC(acpi_pstate_strict,
767	"value 0 or non-zero. non-zero -> strict ACPI checks are "
768	"performed during frequency changes.");
769
770late_initcall(acpi_cpufreq_init);
771module_exit(acpi_cpufreq_exit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772
773MODULE_ALIAS("acpi");
v4.6
  1/*
  2 * acpi-cpufreq.c - ACPI Processor P-States Driver
  3 *
  4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 *
 11 *  This program is free software; you can redistribute it and/or modify
 12 *  it under the terms of the GNU General Public License as published by
 13 *  the Free Software Foundation; either version 2 of the License, or (at
 14 *  your option) any later version.
 15 *
 16 *  This program is distributed in the hope that it will be useful, but
 17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 *  General Public License for more details.
 20 *
 21 *  You should have received a copy of the GNU General Public License along
 22 *  with this program; if not, write to the Free Software Foundation, Inc.,
 23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 24 *
 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 26 */
 27
 28#include <linux/kernel.h>
 29#include <linux/module.h>
 30#include <linux/init.h>
 31#include <linux/smp.h>
 32#include <linux/sched.h>
 33#include <linux/cpufreq.h>
 34#include <linux/compiler.h>
 35#include <linux/dmi.h>
 36#include <linux/slab.h>
 37
 38#include <linux/acpi.h>
 39#include <linux/io.h>
 40#include <linux/delay.h>
 41#include <linux/uaccess.h>
 42
 43#include <acpi/processor.h>
 44
 45#include <asm/msr.h>
 46#include <asm/processor.h>
 47#include <asm/cpufeature.h>
 
 48
 49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 51MODULE_LICENSE("GPL");
 52
 53#define PFX "acpi-cpufreq: "
 54
 55enum {
 56	UNDEFINED_CAPABLE = 0,
 57	SYSTEM_INTEL_MSR_CAPABLE,
 58	SYSTEM_AMD_MSR_CAPABLE,
 59	SYSTEM_IO_CAPABLE,
 60};
 61
 62#define INTEL_MSR_RANGE		(0xffff)
 63#define AMD_MSR_RANGE		(0x7)
 64
 65#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
 66
 67struct acpi_cpufreq_data {
 
 68	struct cpufreq_frequency_table *freq_table;
 69	unsigned int resume;
 70	unsigned int cpu_feature;
 71	unsigned int acpi_perf_cpu;
 72	cpumask_var_t freqdomain_cpus;
 73	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
 74	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
 75};
 76
 
 
 77/* acpi_perf_data is a pointer to percpu data. */
 78static struct acpi_processor_performance __percpu *acpi_perf_data;
 79
 80static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
 81{
 82	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
 83}
 84
 85static struct cpufreq_driver acpi_cpufreq_driver;
 86
 87static unsigned int acpi_pstate_strict;
 88static struct msr __percpu *msrs;
 89
 90static bool boost_state(unsigned int cpu)
 91{
 92	u32 lo, hi;
 93	u64 msr;
 94
 95	switch (boot_cpu_data.x86_vendor) {
 96	case X86_VENDOR_INTEL:
 97		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
 98		msr = lo | ((u64)hi << 32);
 99		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
100	case X86_VENDOR_AMD:
101		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102		msr = lo | ((u64)hi << 32);
103		return !(msr & MSR_K7_HWCR_CPB_DIS);
104	}
105	return false;
106}
107
108static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109{
110	u32 cpu;
111	u32 msr_addr;
112	u64 msr_mask;
113
114	switch (boot_cpu_data.x86_vendor) {
115	case X86_VENDOR_INTEL:
116		msr_addr = MSR_IA32_MISC_ENABLE;
117		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118		break;
119	case X86_VENDOR_AMD:
120		msr_addr = MSR_K7_HWCR;
121		msr_mask = MSR_K7_HWCR_CPB_DIS;
122		break;
123	default:
124		return;
125	}
126
127	rdmsr_on_cpus(cpumask, msr_addr, msrs);
128
129	for_each_cpu(cpu, cpumask) {
130		struct msr *reg = per_cpu_ptr(msrs, cpu);
131		if (enable)
132			reg->q &= ~msr_mask;
133		else
134			reg->q |= msr_mask;
135	}
136
137	wrmsr_on_cpus(cpumask, msr_addr, msrs);
138}
139
140static int set_boost(int val)
141{
142	get_online_cpus();
143	boost_set_msrs(val, cpu_online_mask);
144	put_online_cpus();
145	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146
147	return 0;
148}
149
150static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151{
152	struct acpi_cpufreq_data *data = policy->driver_data;
153
154	if (unlikely(!data))
155		return -ENODEV;
156
157	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158}
159
160cpufreq_freq_attr_ro(freqdomain_cpus);
161
162#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164			 size_t count)
165{
166	int ret;
167	unsigned int val = 0;
168
169	if (!acpi_cpufreq_driver.set_boost)
170		return -EINVAL;
171
172	ret = kstrtouint(buf, 10, &val);
173	if (ret || val > 1)
174		return -EINVAL;
175
176	set_boost(val);
177
178	return count;
179}
180
181static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182{
183	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184}
185
186cpufreq_freq_attr_rw(cpb);
187#endif
188
189static int check_est_cpu(unsigned int cpuid)
190{
191	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193	return cpu_has(cpu, X86_FEATURE_EST);
194}
195
196static int check_amd_hwpstate_cpu(unsigned int cpuid)
197{
198	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199
200	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201}
202
203static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204{
205	struct acpi_processor_performance *perf;
206	int i;
207
208	perf = to_perf_data(data);
209
210	for (i = 0; i < perf->state_count; i++) {
211		if (value == perf->states[i].status)
212			return data->freq_table[i].frequency;
213	}
214	return 0;
215}
216
217static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218{
219	struct cpufreq_frequency_table *pos;
220	struct acpi_processor_performance *perf;
221
222	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223		msr &= AMD_MSR_RANGE;
224	else
225		msr &= INTEL_MSR_RANGE;
226
227	perf = to_perf_data(data);
228
229	cpufreq_for_each_entry(pos, data->freq_table)
230		if (msr == perf->states[pos->driver_data].status)
231			return pos->frequency;
232	return data->freq_table[0].frequency;
233}
234
235static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236{
237	switch (data->cpu_feature) {
238	case SYSTEM_INTEL_MSR_CAPABLE:
239	case SYSTEM_AMD_MSR_CAPABLE:
240		return extract_msr(val, data);
241	case SYSTEM_IO_CAPABLE:
242		return extract_io(val, data);
243	default:
244		return 0;
245	}
246}
247
248static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249{
250	u32 val, dummy;
251
252	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253	return val;
254}
255
256static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257{
258	u32 lo, hi;
259
260	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263}
264
265static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266{
267	u32 val, dummy;
268
269	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270	return val;
271}
272
273static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274{
275	wrmsr(MSR_AMD_PERF_CTL, val, 0);
276}
277
278static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279{
280	u32 val;
281
282	acpi_os_read_port(reg->address, &val, reg->bit_width);
283	return val;
284}
285
286static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287{
288	acpi_os_write_port(reg->address, val, reg->bit_width);
289}
290
291struct drv_cmd {
292	struct acpi_pct_register *reg;
 
 
 
 
 
293	u32 val;
294	union {
295		void (*write)(struct acpi_pct_register *reg, u32 val);
296		u32 (*read)(struct acpi_pct_register *reg);
297	} func;
298};
299
300/* Called via smp_call_function_single(), on the target CPU */
301static void do_drv_read(void *_cmd)
302{
303	struct drv_cmd *cmd = _cmd;
 
304
305	cmd->val = cmd->func.read(cmd->reg);
 
 
 
 
 
 
 
 
 
 
 
306}
307
308static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 
309{
310	struct acpi_processor_performance *perf = to_perf_data(data);
311	struct drv_cmd cmd = {
312		.reg = &perf->control_register,
313		.func.read = data->cpu_freq_read,
314	};
315	int err;
316
317	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
319	return cmd.val;
 
 
 
 
 
 
 
 
 
 
 
320}
321
322/* Called via smp_call_function_many(), on the target CPUs */
323static void do_drv_write(void *_cmd)
324{
325	struct drv_cmd *cmd = _cmd;
 
326
327	cmd->func.write(cmd->reg, cmd->val);
 
328}
329
330static void drv_write(struct acpi_cpufreq_data *data,
331		      const struct cpumask *mask, u32 val)
332{
333	struct acpi_processor_performance *perf = to_perf_data(data);
334	struct drv_cmd cmd = {
335		.reg = &perf->control_register,
336		.val = val,
337		.func.write = data->cpu_freq_write,
338	};
339	int this_cpu;
340
341	this_cpu = get_cpu();
342	if (cpumask_test_cpu(this_cpu, mask))
343		do_drv_write(&cmd);
344
345	smp_call_function_many(mask, do_drv_write, &cmd, 1);
346	put_cpu();
347}
348
349static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350{
351	u32 val;
 
352
353	if (unlikely(cpumask_empty(mask)))
354		return 0;
355
356	val = drv_read(data, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
358	pr_debug("get_cur_val = %u\n", val);
359
360	return val;
361}
362
363static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364{
365	struct acpi_cpufreq_data *data;
366	struct cpufreq_policy *policy;
367	unsigned int freq;
368	unsigned int cached_freq;
369
370	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371
372	policy = cpufreq_cpu_get_raw(cpu);
373	if (unlikely(!policy))
374		return 0;
375
376	data = policy->driver_data;
377	if (unlikely(!data || !data->freq_table))
378		return 0;
 
379
380	cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381	freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382	if (freq != cached_freq) {
383		/*
384		 * The dreaded BIOS frequency change behind our back.
385		 * Force set the frequency on next target call.
386		 */
387		data->resume = 1;
388	}
389
390	pr_debug("cur freq = %u\n", freq);
391
392	return freq;
393}
394
395static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396				struct acpi_cpufreq_data *data)
397{
398	unsigned int cur_freq;
399	unsigned int i;
400
401	for (i = 0; i < 100; i++) {
402		cur_freq = extract_freq(get_cur_val(mask, data), data);
403		if (cur_freq == freq)
404			return 1;
405		udelay(10);
406	}
407	return 0;
408}
409
410static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411			       unsigned int index)
412{
413	struct acpi_cpufreq_data *data = policy->driver_data;
414	struct acpi_processor_performance *perf;
415	const struct cpumask *mask;
 
 
416	unsigned int next_perf_state = 0; /* Index into perf table */
 
417	int result = 0;
418
419	if (unlikely(data == NULL || data->freq_table == NULL)) {
 
 
 
420		return -ENODEV;
421	}
422
423	perf = to_perf_data(data);
424	next_perf_state = data->freq_table[index].driver_data;
 
 
 
 
 
 
 
 
 
425	if (perf->state == next_perf_state) {
426		if (unlikely(data->resume)) {
427			pr_debug("Called after resume, resetting to P%d\n",
428				next_perf_state);
429			data->resume = 0;
430		} else {
431			pr_debug("Already at target state (P%d)\n",
432				next_perf_state);
433			return 0;
434		}
435	}
436
437	/*
438	 * The core won't allow CPUs to go away until the governor has been
439	 * stopped, so we can rely on the stability of policy->cpus.
440	 */
441	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442		cpumask_of(policy->cpu) : policy->cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443
444	drv_write(data, mask, perf->states[next_perf_state].control);
445
446	if (acpi_pstate_strict) {
447		if (!check_freqs(mask, data->freq_table[index].frequency,
448					data)) {
449			pr_debug("acpi_cpufreq_target failed (%d)\n",
450				policy->cpu);
451			result = -EAGAIN;
 
452		}
453	}
454
455	if (!result)
456		perf->state = next_perf_state;
 
 
 
457
 
458	return result;
459}
460
 
 
 
 
 
 
 
 
 
461static unsigned long
462acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
463{
464	struct acpi_processor_performance *perf;
465
466	perf = to_perf_data(data);
467	if (cpu_khz) {
468		/* search the closest match to cpu_khz */
469		unsigned int i;
470		unsigned long freq;
471		unsigned long freqn = perf->states[0].core_frequency * 1000;
472
473		for (i = 0; i < (perf->state_count-1); i++) {
474			freq = freqn;
475			freqn = perf->states[i+1].core_frequency * 1000;
476			if ((2 * cpu_khz) > (freqn + freq)) {
477				perf->state = i;
478				return freq;
479			}
480		}
481		perf->state = perf->state_count-1;
482		return freqn;
483	} else {
484		/* assume CPU is at P0... */
485		perf->state = 0;
486		return perf->states[0].core_frequency * 1000;
487	}
488}
489
490static void free_acpi_perf_data(void)
491{
492	unsigned int i;
493
494	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
495	for_each_possible_cpu(i)
496		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
497				 ->shared_cpu_map);
498	free_percpu(acpi_perf_data);
499}
500
501static int boost_notify(struct notifier_block *nb, unsigned long action,
502		      void *hcpu)
503{
504	unsigned cpu = (long)hcpu;
505	const struct cpumask *cpumask;
506
507	cpumask = get_cpu_mask(cpu);
508
509	/*
510	 * Clear the boost-disable bit on the CPU_DOWN path so that
511	 * this cpu cannot block the remaining ones from boosting. On
512	 * the CPU_UP path we simply keep the boost-disable flag in
513	 * sync with the current global state.
514	 */
515
516	switch (action) {
517	case CPU_DOWN_FAILED:
518	case CPU_DOWN_FAILED_FROZEN:
519	case CPU_ONLINE:
520	case CPU_ONLINE_FROZEN:
521		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
522		break;
523
524	case CPU_DOWN_PREPARE:
525	case CPU_DOWN_PREPARE_FROZEN:
526		boost_set_msrs(1, cpumask);
527		break;
528
529	default:
530		break;
531	}
532
533	return NOTIFY_OK;
534}
535
536
537static struct notifier_block boost_nb = {
538	.notifier_call          = boost_notify,
539};
540
541/*
542 * acpi_cpufreq_early_init - initialize ACPI P-States library
543 *
544 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
545 * in order to determine correct frequency and voltage pairings. We can
546 * do _PDC and _PSD and find out the processor dependency for the
547 * actual init that will happen later...
548 */
549static int __init acpi_cpufreq_early_init(void)
550{
551	unsigned int i;
552	pr_debug("acpi_cpufreq_early_init\n");
553
554	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
555	if (!acpi_perf_data) {
556		pr_debug("Memory allocation error for acpi_perf_data.\n");
557		return -ENOMEM;
558	}
559	for_each_possible_cpu(i) {
560		if (!zalloc_cpumask_var_node(
561			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
562			GFP_KERNEL, cpu_to_node(i))) {
563
564			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
565			free_acpi_perf_data();
566			return -ENOMEM;
567		}
568	}
569
570	/* Do initialization in ACPI core */
571	acpi_processor_preregister_performance(acpi_perf_data);
572	return 0;
573}
574
575#ifdef CONFIG_SMP
576/*
577 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
578 * or do it in BIOS firmware and won't inform about it to OS. If not
579 * detected, this has a side effect of making CPU run at a different speed
580 * than OS intended it to run at. Detect it and handle it cleanly.
581 */
582static int bios_with_sw_any_bug;
583
584static int sw_any_bug_found(const struct dmi_system_id *d)
585{
586	bios_with_sw_any_bug = 1;
587	return 0;
588}
589
590static const struct dmi_system_id sw_any_bug_dmi_table[] = {
591	{
592		.callback = sw_any_bug_found,
593		.ident = "Supermicro Server X6DLP",
594		.matches = {
595			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
596			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
597			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
598		},
599	},
600	{ }
601};
602
603static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
604{
605	/* Intel Xeon Processor 7100 Series Specification Update
606	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
607	 * AL30: A Machine Check Exception (MCE) Occurring during an
608	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
609	 * Both Processor Cores to Lock Up. */
610	if (c->x86_vendor == X86_VENDOR_INTEL) {
611		if ((c->x86 == 15) &&
612		    (c->x86_model == 6) &&
613		    (c->x86_mask == 8)) {
614			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
615			    "Xeon(R) 7100 Errata AL30, processors may "
616			    "lock up on frequency changes: disabling "
617			    "acpi-cpufreq.\n");
618			return -ENODEV;
619		    }
620		}
621	return 0;
622}
623#endif
624
625static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
626{
627	unsigned int i;
628	unsigned int valid_states = 0;
629	unsigned int cpu = policy->cpu;
630	struct acpi_cpufreq_data *data;
631	unsigned int result = 0;
632	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
633	struct acpi_processor_performance *perf;
634#ifdef CONFIG_SMP
635	static int blacklisted;
636#endif
637
638	pr_debug("acpi_cpufreq_cpu_init\n");
639
640#ifdef CONFIG_SMP
641	if (blacklisted)
642		return blacklisted;
643	blacklisted = acpi_cpufreq_blacklist(c);
644	if (blacklisted)
645		return blacklisted;
646#endif
647
648	data = kzalloc(sizeof(*data), GFP_KERNEL);
649	if (!data)
650		return -ENOMEM;
651
652	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
653		result = -ENOMEM;
654		goto err_free;
655	}
656
657	perf = per_cpu_ptr(acpi_perf_data, cpu);
658	data->acpi_perf_cpu = cpu;
659	policy->driver_data = data;
660
661	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
662		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
663
664	result = acpi_processor_register_performance(perf, cpu);
665	if (result)
666		goto err_free_mask;
667
 
668	policy->shared_type = perf->shared_type;
669
670	/*
671	 * Will let policy->cpus know about dependency only when software
672	 * coordination is required.
673	 */
674	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
675	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
676		cpumask_copy(policy->cpus, perf->shared_cpu_map);
677	}
678	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
679
680#ifdef CONFIG_SMP
681	dmi_check_system(sw_any_bug_dmi_table);
682	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
683		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
684		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
685	}
686
687	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
688		cpumask_clear(policy->cpus);
689		cpumask_set_cpu(cpu, policy->cpus);
690		cpumask_copy(data->freqdomain_cpus,
691			     topology_sibling_cpumask(cpu));
692		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
693		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
694	}
695#endif
696
697	/* capability check */
698	if (perf->state_count <= 1) {
699		pr_debug("No P-States\n");
700		result = -ENODEV;
701		goto err_unreg;
702	}
703
704	if (perf->control_register.space_id != perf->status_register.space_id) {
705		result = -ENODEV;
706		goto err_unreg;
707	}
708
709	switch (perf->control_register.space_id) {
710	case ACPI_ADR_SPACE_SYSTEM_IO:
711		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
712		    boot_cpu_data.x86 == 0xf) {
713			pr_debug("AMD K8 systems must use native drivers.\n");
714			result = -ENODEV;
715			goto err_unreg;
716		}
717		pr_debug("SYSTEM IO addr space\n");
718		data->cpu_feature = SYSTEM_IO_CAPABLE;
719		data->cpu_freq_read = cpu_freq_read_io;
720		data->cpu_freq_write = cpu_freq_write_io;
721		break;
722	case ACPI_ADR_SPACE_FIXED_HARDWARE:
723		pr_debug("HARDWARE addr space\n");
724		if (check_est_cpu(cpu)) {
725			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
726			data->cpu_freq_read = cpu_freq_read_intel;
727			data->cpu_freq_write = cpu_freq_write_intel;
728			break;
729		}
730		if (check_amd_hwpstate_cpu(cpu)) {
731			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
732			data->cpu_freq_read = cpu_freq_read_amd;
733			data->cpu_freq_write = cpu_freq_write_amd;
734			break;
735		}
736		result = -ENODEV;
737		goto err_unreg;
738	default:
739		pr_debug("Unknown addr space %d\n",
740			(u32) (perf->control_register.space_id));
741		result = -ENODEV;
742		goto err_unreg;
743	}
744
745	data->freq_table = kzalloc(sizeof(*data->freq_table) *
746		    (perf->state_count+1), GFP_KERNEL);
747	if (!data->freq_table) {
748		result = -ENOMEM;
749		goto err_unreg;
750	}
751
752	/* detect transition latency */
753	policy->cpuinfo.transition_latency = 0;
754	for (i = 0; i < perf->state_count; i++) {
755		if ((perf->states[i].transition_latency * 1000) >
756		    policy->cpuinfo.transition_latency)
757			policy->cpuinfo.transition_latency =
758			    perf->states[i].transition_latency * 1000;
759	}
760
761	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
762	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
763	    policy->cpuinfo.transition_latency > 20 * 1000) {
764		policy->cpuinfo.transition_latency = 20 * 1000;
765		printk_once(KERN_INFO
766			    "P-state transition latency capped at 20 uS\n");
767	}
768
769	/* table init */
770	for (i = 0; i < perf->state_count; i++) {
771		if (i > 0 && perf->states[i].core_frequency >=
772		    data->freq_table[valid_states-1].frequency / 1000)
773			continue;
774
775		data->freq_table[valid_states].driver_data = i;
776		data->freq_table[valid_states].frequency =
777		    perf->states[i].core_frequency * 1000;
778		valid_states++;
779	}
780	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
781	perf->state = 0;
782
783	result = cpufreq_table_validate_and_show(policy, data->freq_table);
784	if (result)
785		goto err_freqfree;
786
787	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
788		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
789
790	switch (perf->control_register.space_id) {
791	case ACPI_ADR_SPACE_SYSTEM_IO:
792		/*
793		 * The core will not set policy->cur, because
794		 * cpufreq_driver->get is NULL, so we need to set it here.
795		 * However, we have to guess it, because the current speed is
796		 * unknown and not detectable via IO ports.
797		 */
798		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
799		break;
800	case ACPI_ADR_SPACE_FIXED_HARDWARE:
801		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 
802		break;
803	default:
804		break;
805	}
806
807	/* notify BIOS that we exist */
808	acpi_processor_notify_smm(THIS_MODULE);
809
 
 
 
 
810	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
811	for (i = 0; i < perf->state_count; i++)
812		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
813			(i == perf->state ? '*' : ' '), i,
814			(u32) perf->states[i].core_frequency,
815			(u32) perf->states[i].power,
816			(u32) perf->states[i].transition_latency);
817
 
 
818	/*
819	 * the first call to ->target() should result in us actually
820	 * writing something to the appropriate registers.
821	 */
822	data->resume = 1;
823
824	return result;
825
826err_freqfree:
827	kfree(data->freq_table);
828err_unreg:
829	acpi_processor_unregister_performance(cpu);
830err_free_mask:
831	free_cpumask_var(data->freqdomain_cpus);
832err_free:
833	kfree(data);
834	policy->driver_data = NULL;
835
836	return result;
837}
838
839static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
840{
841	struct acpi_cpufreq_data *data = policy->driver_data;
842
843	pr_debug("acpi_cpufreq_cpu_exit\n");
844
845	if (data) {
846		policy->driver_data = NULL;
847		acpi_processor_unregister_performance(data->acpi_perf_cpu);
848		free_cpumask_var(data->freqdomain_cpus);
 
849		kfree(data->freq_table);
850		kfree(data);
851	}
852
853	return 0;
854}
855
856static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
857{
858	struct acpi_cpufreq_data *data = policy->driver_data;
859
860	pr_debug("acpi_cpufreq_resume\n");
861
862	data->resume = 1;
863
864	return 0;
865}
866
867static struct freq_attr *acpi_cpufreq_attr[] = {
868	&cpufreq_freq_attr_scaling_available_freqs,
869	&freqdomain_cpus,
870#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
871	&cpb,
872#endif
873	NULL,
874};
875
876static struct cpufreq_driver acpi_cpufreq_driver = {
877	.verify		= cpufreq_generic_frequency_table_verify,
878	.target_index	= acpi_cpufreq_target,
879	.bios_limit	= acpi_processor_get_bios_limit,
880	.init		= acpi_cpufreq_cpu_init,
881	.exit		= acpi_cpufreq_cpu_exit,
882	.resume		= acpi_cpufreq_resume,
883	.name		= "acpi-cpufreq",
 
884	.attr		= acpi_cpufreq_attr,
885};
886
887static void __init acpi_cpufreq_boost_init(void)
888{
889	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
890		msrs = msrs_alloc();
891
892		if (!msrs)
893			return;
894
895		acpi_cpufreq_driver.set_boost = set_boost;
896		acpi_cpufreq_driver.boost_enabled = boost_state(0);
897
898		cpu_notifier_register_begin();
899
900		/* Force all MSRs to the same value */
901		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
902			       cpu_online_mask);
903
904		__register_cpu_notifier(&boost_nb);
905
906		cpu_notifier_register_done();
907	}
908}
909
910static void acpi_cpufreq_boost_exit(void)
911{
912	if (msrs) {
913		unregister_cpu_notifier(&boost_nb);
914
915		msrs_free(msrs);
916		msrs = NULL;
917	}
918}
919
920static int __init acpi_cpufreq_init(void)
921{
922	int ret;
923
924	if (acpi_disabled)
925		return -ENODEV;
926
927	/* don't keep reloading if cpufreq_driver exists */
928	if (cpufreq_get_current_driver())
929		return -EEXIST;
930
931	pr_debug("acpi_cpufreq_init\n");
932
933	ret = acpi_cpufreq_early_init();
934	if (ret)
935		return ret;
936
937#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
938	/* this is a sysfs file with a strange name and an even stranger
939	 * semantic - per CPU instantiation, but system global effect.
940	 * Lets enable it only on AMD CPUs for compatibility reasons and
941	 * only if configured. This is considered legacy code, which
942	 * will probably be removed at some point in the future.
943	 */
944	if (!check_amd_hwpstate_cpu(0)) {
945		struct freq_attr **attr;
946
947		pr_debug("CPB unsupported, do not expose it\n");
948
949		for (attr = acpi_cpufreq_attr; *attr; attr++)
950			if (*attr == &cpb) {
951				*attr = NULL;
952				break;
953			}
954	}
955#endif
956	acpi_cpufreq_boost_init();
957
958	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
959	if (ret) {
960		free_acpi_perf_data();
961		acpi_cpufreq_boost_exit();
962	}
963	return ret;
964}
965
966static void __exit acpi_cpufreq_exit(void)
967{
968	pr_debug("acpi_cpufreq_exit\n");
969
970	acpi_cpufreq_boost_exit();
971
972	cpufreq_unregister_driver(&acpi_cpufreq_driver);
973
974	free_acpi_perf_data();
975}
976
977module_param(acpi_pstate_strict, uint, 0644);
978MODULE_PARM_DESC(acpi_pstate_strict,
979	"value 0 or non-zero. non-zero -> strict ACPI checks are "
980	"performed during frequency changes.");
981
982late_initcall(acpi_cpufreq_init);
983module_exit(acpi_cpufreq_exit);
984
985static const struct x86_cpu_id acpi_cpufreq_ids[] = {
986	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
987	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
988	{}
989};
990MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
991
992static const struct acpi_device_id processor_device_ids[] = {
993	{ACPI_PROCESSOR_OBJECT_HID, },
994	{ACPI_PROCESSOR_DEVICE_HID, },
995	{},
996};
997MODULE_DEVICE_TABLE(acpi, processor_device_ids);
998
999MODULE_ALIAS("acpi");