Loading...
1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36#include <linux/slab.h>
37
38#include <linux/acpi.h>
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
43#include <acpi/processor.h>
44
45#include <asm/msr.h>
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
48#include "mperf.h"
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
61
62struct acpi_cpufreq_data {
63 struct acpi_processor_performance *acpi_data;
64 struct cpufreq_frequency_table *freq_table;
65 unsigned int resume;
66 unsigned int cpu_feature;
67};
68
69static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
70
71/* acpi_perf_data is a pointer to percpu data. */
72static struct acpi_processor_performance __percpu *acpi_perf_data;
73
74static struct cpufreq_driver acpi_cpufreq_driver;
75
76static unsigned int acpi_pstate_strict;
77
78static int check_est_cpu(unsigned int cpuid)
79{
80 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
81
82 return cpu_has(cpu, X86_FEATURE_EST);
83}
84
85static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
86{
87 struct acpi_processor_performance *perf;
88 int i;
89
90 perf = data->acpi_data;
91
92 for (i = 0; i < perf->state_count; i++) {
93 if (value == perf->states[i].status)
94 return data->freq_table[i].frequency;
95 }
96 return 0;
97}
98
99static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100{
101 int i;
102 struct acpi_processor_performance *perf;
103
104 msr &= INTEL_MSR_RANGE;
105 perf = data->acpi_data;
106
107 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108 if (msr == perf->states[data->freq_table[i].index].status)
109 return data->freq_table[i].frequency;
110 }
111 return data->freq_table[0].frequency;
112}
113
114static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115{
116 switch (data->cpu_feature) {
117 case SYSTEM_INTEL_MSR_CAPABLE:
118 return extract_msr(val, data);
119 case SYSTEM_IO_CAPABLE:
120 return extract_io(val, data);
121 default:
122 return 0;
123 }
124}
125
126struct msr_addr {
127 u32 reg;
128};
129
130struct io_addr {
131 u16 port;
132 u8 bit_width;
133};
134
135struct drv_cmd {
136 unsigned int type;
137 const struct cpumask *mask;
138 union {
139 struct msr_addr msr;
140 struct io_addr io;
141 } addr;
142 u32 val;
143};
144
145/* Called via smp_call_function_single(), on the target CPU */
146static void do_drv_read(void *_cmd)
147{
148 struct drv_cmd *cmd = _cmd;
149 u32 h;
150
151 switch (cmd->type) {
152 case SYSTEM_INTEL_MSR_CAPABLE:
153 rdmsr(cmd->addr.msr.reg, cmd->val, h);
154 break;
155 case SYSTEM_IO_CAPABLE:
156 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157 &cmd->val,
158 (u32)cmd->addr.io.bit_width);
159 break;
160 default:
161 break;
162 }
163}
164
165/* Called via smp_call_function_many(), on the target CPUs */
166static void do_drv_write(void *_cmd)
167{
168 struct drv_cmd *cmd = _cmd;
169 u32 lo, hi;
170
171 switch (cmd->type) {
172 case SYSTEM_INTEL_MSR_CAPABLE:
173 rdmsr(cmd->addr.msr.reg, lo, hi);
174 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175 wrmsr(cmd->addr.msr.reg, lo, hi);
176 break;
177 case SYSTEM_IO_CAPABLE:
178 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179 cmd->val,
180 (u32)cmd->addr.io.bit_width);
181 break;
182 default:
183 break;
184 }
185}
186
187static void drv_read(struct drv_cmd *cmd)
188{
189 int err;
190 cmd->val = 0;
191
192 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
194}
195
196static void drv_write(struct drv_cmd *cmd)
197{
198 int this_cpu;
199
200 this_cpu = get_cpu();
201 if (cpumask_test_cpu(this_cpu, cmd->mask))
202 do_drv_write(cmd);
203 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
204 put_cpu();
205}
206
207static u32 get_cur_val(const struct cpumask *mask)
208{
209 struct acpi_processor_performance *perf;
210 struct drv_cmd cmd;
211
212 if (unlikely(cpumask_empty(mask)))
213 return 0;
214
215 switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216 case SYSTEM_INTEL_MSR_CAPABLE:
217 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219 break;
220 case SYSTEM_IO_CAPABLE:
221 cmd.type = SYSTEM_IO_CAPABLE;
222 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223 cmd.addr.io.port = perf->control_register.address;
224 cmd.addr.io.bit_width = perf->control_register.bit_width;
225 break;
226 default:
227 return 0;
228 }
229
230 cmd.mask = mask;
231 drv_read(&cmd);
232
233 pr_debug("get_cur_val = %u\n", cmd.val);
234
235 return cmd.val;
236}
237
238static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239{
240 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
241 unsigned int freq;
242 unsigned int cached_freq;
243
244 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245
246 if (unlikely(data == NULL ||
247 data->acpi_data == NULL || data->freq_table == NULL)) {
248 return 0;
249 }
250
251 cached_freq = data->freq_table[data->acpi_data->state].frequency;
252 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253 if (freq != cached_freq) {
254 /*
255 * The dreaded BIOS frequency change behind our back.
256 * Force set the frequency on next target call.
257 */
258 data->resume = 1;
259 }
260
261 pr_debug("cur freq = %u\n", freq);
262
263 return freq;
264}
265
266static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267 struct acpi_cpufreq_data *data)
268{
269 unsigned int cur_freq;
270 unsigned int i;
271
272 for (i = 0; i < 100; i++) {
273 cur_freq = extract_freq(get_cur_val(mask), data);
274 if (cur_freq == freq)
275 return 1;
276 udelay(10);
277 }
278 return 0;
279}
280
281static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282 unsigned int target_freq, unsigned int relation)
283{
284 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285 struct acpi_processor_performance *perf;
286 struct cpufreq_freqs freqs;
287 struct drv_cmd cmd;
288 unsigned int next_state = 0; /* Index into freq_table */
289 unsigned int next_perf_state = 0; /* Index into perf table */
290 unsigned int i;
291 int result = 0;
292
293 pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294
295 if (unlikely(data == NULL ||
296 data->acpi_data == NULL || data->freq_table == NULL)) {
297 return -ENODEV;
298 }
299
300 perf = data->acpi_data;
301 result = cpufreq_frequency_table_target(policy,
302 data->freq_table,
303 target_freq,
304 relation, &next_state);
305 if (unlikely(result)) {
306 result = -ENODEV;
307 goto out;
308 }
309
310 next_perf_state = data->freq_table[next_state].index;
311 if (perf->state == next_perf_state) {
312 if (unlikely(data->resume)) {
313 pr_debug("Called after resume, resetting to P%d\n",
314 next_perf_state);
315 data->resume = 0;
316 } else {
317 pr_debug("Already at target state (P%d)\n",
318 next_perf_state);
319 goto out;
320 }
321 }
322
323 switch (data->cpu_feature) {
324 case SYSTEM_INTEL_MSR_CAPABLE:
325 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327 cmd.val = (u32) perf->states[next_perf_state].control;
328 break;
329 case SYSTEM_IO_CAPABLE:
330 cmd.type = SYSTEM_IO_CAPABLE;
331 cmd.addr.io.port = perf->control_register.address;
332 cmd.addr.io.bit_width = perf->control_register.bit_width;
333 cmd.val = (u32) perf->states[next_perf_state].control;
334 break;
335 default:
336 result = -ENODEV;
337 goto out;
338 }
339
340 /* cpufreq holds the hotplug lock, so we are safe from here on */
341 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342 cmd.mask = policy->cpus;
343 else
344 cmd.mask = cpumask_of(policy->cpu);
345
346 freqs.old = perf->states[perf->state].core_frequency * 1000;
347 freqs.new = data->freq_table[next_state].frequency;
348 for_each_cpu(i, policy->cpus) {
349 freqs.cpu = i;
350 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351 }
352
353 drv_write(&cmd);
354
355 if (acpi_pstate_strict) {
356 if (!check_freqs(cmd.mask, freqs.new, data)) {
357 pr_debug("acpi_cpufreq_target failed (%d)\n",
358 policy->cpu);
359 result = -EAGAIN;
360 goto out;
361 }
362 }
363
364 for_each_cpu(i, policy->cpus) {
365 freqs.cpu = i;
366 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367 }
368 perf->state = next_perf_state;
369
370out:
371 return result;
372}
373
374static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
375{
376 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
377
378 pr_debug("acpi_cpufreq_verify\n");
379
380 return cpufreq_frequency_table_verify(policy, data->freq_table);
381}
382
383static unsigned long
384acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385{
386 struct acpi_processor_performance *perf = data->acpi_data;
387
388 if (cpu_khz) {
389 /* search the closest match to cpu_khz */
390 unsigned int i;
391 unsigned long freq;
392 unsigned long freqn = perf->states[0].core_frequency * 1000;
393
394 for (i = 0; i < (perf->state_count-1); i++) {
395 freq = freqn;
396 freqn = perf->states[i+1].core_frequency * 1000;
397 if ((2 * cpu_khz) > (freqn + freq)) {
398 perf->state = i;
399 return freq;
400 }
401 }
402 perf->state = perf->state_count-1;
403 return freqn;
404 } else {
405 /* assume CPU is at P0... */
406 perf->state = 0;
407 return perf->states[0].core_frequency * 1000;
408 }
409}
410
411static void free_acpi_perf_data(void)
412{
413 unsigned int i;
414
415 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416 for_each_possible_cpu(i)
417 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418 ->shared_cpu_map);
419 free_percpu(acpi_perf_data);
420}
421
422/*
423 * acpi_cpufreq_early_init - initialize ACPI P-States library
424 *
425 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426 * in order to determine correct frequency and voltage pairings. We can
427 * do _PDC and _PSD and find out the processor dependency for the
428 * actual init that will happen later...
429 */
430static int __init acpi_cpufreq_early_init(void)
431{
432 unsigned int i;
433 pr_debug("acpi_cpufreq_early_init\n");
434
435 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436 if (!acpi_perf_data) {
437 pr_debug("Memory allocation error for acpi_perf_data.\n");
438 return -ENOMEM;
439 }
440 for_each_possible_cpu(i) {
441 if (!zalloc_cpumask_var_node(
442 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443 GFP_KERNEL, cpu_to_node(i))) {
444
445 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446 free_acpi_perf_data();
447 return -ENOMEM;
448 }
449 }
450
451 /* Do initialization in ACPI core */
452 acpi_processor_preregister_performance(acpi_perf_data);
453 return 0;
454}
455
456#ifdef CONFIG_SMP
457/*
458 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459 * or do it in BIOS firmware and won't inform about it to OS. If not
460 * detected, this has a side effect of making CPU run at a different speed
461 * than OS intended it to run at. Detect it and handle it cleanly.
462 */
463static int bios_with_sw_any_bug;
464
465static int sw_any_bug_found(const struct dmi_system_id *d)
466{
467 bios_with_sw_any_bug = 1;
468 return 0;
469}
470
471static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472 {
473 .callback = sw_any_bug_found,
474 .ident = "Supermicro Server X6DLP",
475 .matches = {
476 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479 },
480 },
481 { }
482};
483
484static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485{
486 /* Intel Xeon Processor 7100 Series Specification Update
487 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488 * AL30: A Machine Check Exception (MCE) Occurring during an
489 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490 * Both Processor Cores to Lock Up. */
491 if (c->x86_vendor == X86_VENDOR_INTEL) {
492 if ((c->x86 == 15) &&
493 (c->x86_model == 6) &&
494 (c->x86_mask == 8)) {
495 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496 "Xeon(R) 7100 Errata AL30, processors may "
497 "lock up on frequency changes: disabling "
498 "acpi-cpufreq.\n");
499 return -ENODEV;
500 }
501 }
502 return 0;
503}
504#endif
505
506static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507{
508 unsigned int i;
509 unsigned int valid_states = 0;
510 unsigned int cpu = policy->cpu;
511 struct acpi_cpufreq_data *data;
512 unsigned int result = 0;
513 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514 struct acpi_processor_performance *perf;
515#ifdef CONFIG_SMP
516 static int blacklisted;
517#endif
518
519 pr_debug("acpi_cpufreq_cpu_init\n");
520
521#ifdef CONFIG_SMP
522 if (blacklisted)
523 return blacklisted;
524 blacklisted = acpi_cpufreq_blacklist(c);
525 if (blacklisted)
526 return blacklisted;
527#endif
528
529 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530 if (!data)
531 return -ENOMEM;
532
533 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534 per_cpu(acfreq_data, cpu) = data;
535
536 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538
539 result = acpi_processor_register_performance(data->acpi_data, cpu);
540 if (result)
541 goto err_free;
542
543 perf = data->acpi_data;
544 policy->shared_type = perf->shared_type;
545
546 /*
547 * Will let policy->cpus know about dependency only when software
548 * coordination is required.
549 */
550 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552 cpumask_copy(policy->cpus, perf->shared_cpu_map);
553 }
554 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555
556#ifdef CONFIG_SMP
557 dmi_check_system(sw_any_bug_dmi_table);
558 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
561 }
562#endif
563
564 /* capability check */
565 if (perf->state_count <= 1) {
566 pr_debug("No P-States\n");
567 result = -ENODEV;
568 goto err_unreg;
569 }
570
571 if (perf->control_register.space_id != perf->status_register.space_id) {
572 result = -ENODEV;
573 goto err_unreg;
574 }
575
576 switch (perf->control_register.space_id) {
577 case ACPI_ADR_SPACE_SYSTEM_IO:
578 pr_debug("SYSTEM IO addr space\n");
579 data->cpu_feature = SYSTEM_IO_CAPABLE;
580 break;
581 case ACPI_ADR_SPACE_FIXED_HARDWARE:
582 pr_debug("HARDWARE addr space\n");
583 if (!check_est_cpu(cpu)) {
584 result = -ENODEV;
585 goto err_unreg;
586 }
587 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588 break;
589 default:
590 pr_debug("Unknown addr space %d\n",
591 (u32) (perf->control_register.space_id));
592 result = -ENODEV;
593 goto err_unreg;
594 }
595
596 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597 (perf->state_count+1), GFP_KERNEL);
598 if (!data->freq_table) {
599 result = -ENOMEM;
600 goto err_unreg;
601 }
602
603 /* detect transition latency */
604 policy->cpuinfo.transition_latency = 0;
605 for (i = 0; i < perf->state_count; i++) {
606 if ((perf->states[i].transition_latency * 1000) >
607 policy->cpuinfo.transition_latency)
608 policy->cpuinfo.transition_latency =
609 perf->states[i].transition_latency * 1000;
610 }
611
612 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614 policy->cpuinfo.transition_latency > 20 * 1000) {
615 policy->cpuinfo.transition_latency = 20 * 1000;
616 printk_once(KERN_INFO
617 "P-state transition latency capped at 20 uS\n");
618 }
619
620 /* table init */
621 for (i = 0; i < perf->state_count; i++) {
622 if (i > 0 && perf->states[i].core_frequency >=
623 data->freq_table[valid_states-1].frequency / 1000)
624 continue;
625
626 data->freq_table[valid_states].index = i;
627 data->freq_table[valid_states].frequency =
628 perf->states[i].core_frequency * 1000;
629 valid_states++;
630 }
631 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632 perf->state = 0;
633
634 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635 if (result)
636 goto err_freqfree;
637
638 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
640
641 switch (perf->control_register.space_id) {
642 case ACPI_ADR_SPACE_SYSTEM_IO:
643 /* Current speed is unknown and not detectable by IO port */
644 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645 break;
646 case ACPI_ADR_SPACE_FIXED_HARDWARE:
647 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648 policy->cur = get_cur_freq_on_cpu(cpu);
649 break;
650 default:
651 break;
652 }
653
654 /* notify BIOS that we exist */
655 acpi_processor_notify_smm(THIS_MODULE);
656
657 /* Check for APERF/MPERF support in hardware */
658 if (boot_cpu_has(X86_FEATURE_APERFMPERF))
659 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660
661 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662 for (i = 0; i < perf->state_count; i++)
663 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
664 (i == perf->state ? '*' : ' '), i,
665 (u32) perf->states[i].core_frequency,
666 (u32) perf->states[i].power,
667 (u32) perf->states[i].transition_latency);
668
669 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670
671 /*
672 * the first call to ->target() should result in us actually
673 * writing something to the appropriate registers.
674 */
675 data->resume = 1;
676
677 return result;
678
679err_freqfree:
680 kfree(data->freq_table);
681err_unreg:
682 acpi_processor_unregister_performance(perf, cpu);
683err_free:
684 kfree(data);
685 per_cpu(acfreq_data, cpu) = NULL;
686
687 return result;
688}
689
690static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691{
692 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693
694 pr_debug("acpi_cpufreq_cpu_exit\n");
695
696 if (data) {
697 cpufreq_frequency_table_put_attr(policy->cpu);
698 per_cpu(acfreq_data, policy->cpu) = NULL;
699 acpi_processor_unregister_performance(data->acpi_data,
700 policy->cpu);
701 kfree(data->freq_table);
702 kfree(data);
703 }
704
705 return 0;
706}
707
708static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709{
710 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711
712 pr_debug("acpi_cpufreq_resume\n");
713
714 data->resume = 1;
715
716 return 0;
717}
718
719static struct freq_attr *acpi_cpufreq_attr[] = {
720 &cpufreq_freq_attr_scaling_available_freqs,
721 NULL,
722};
723
724static struct cpufreq_driver acpi_cpufreq_driver = {
725 .verify = acpi_cpufreq_verify,
726 .target = acpi_cpufreq_target,
727 .bios_limit = acpi_processor_get_bios_limit,
728 .init = acpi_cpufreq_cpu_init,
729 .exit = acpi_cpufreq_cpu_exit,
730 .resume = acpi_cpufreq_resume,
731 .name = "acpi-cpufreq",
732 .owner = THIS_MODULE,
733 .attr = acpi_cpufreq_attr,
734};
735
736static int __init acpi_cpufreq_init(void)
737{
738 int ret;
739
740 if (acpi_disabled)
741 return 0;
742
743 pr_debug("acpi_cpufreq_init\n");
744
745 ret = acpi_cpufreq_early_init();
746 if (ret)
747 return ret;
748
749 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750 if (ret)
751 free_acpi_perf_data();
752
753 return ret;
754}
755
756static void __exit acpi_cpufreq_exit(void)
757{
758 pr_debug("acpi_cpufreq_exit\n");
759
760 cpufreq_unregister_driver(&acpi_cpufreq_driver);
761
762 free_acpi_perf_data();
763}
764
765module_param(acpi_pstate_strict, uint, 0644);
766MODULE_PARM_DESC(acpi_pstate_strict,
767 "value 0 or non-zero. non-zero -> strict ACPI checks are "
768 "performed during frequency changes.");
769
770late_initcall(acpi_cpufreq_init);
771module_exit(acpi_cpufreq_exit);
772
773MODULE_ALIAS("acpi");
1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/smp.h>
32#include <linux/sched.h>
33#include <linux/cpufreq.h>
34#include <linux/compiler.h>
35#include <linux/dmi.h>
36#include <linux/slab.h>
37
38#include <linux/acpi.h>
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
43#include <acpi/processor.h>
44
45#include <asm/msr.h>
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
48
49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51MODULE_LICENSE("GPL");
52
53#define PFX "acpi-cpufreq: "
54
55enum {
56 UNDEFINED_CAPABLE = 0,
57 SYSTEM_INTEL_MSR_CAPABLE,
58 SYSTEM_AMD_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
60};
61
62#define INTEL_MSR_RANGE (0xffff)
63#define AMD_MSR_RANGE (0x7)
64
65#define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
66
67struct acpi_cpufreq_data {
68 struct cpufreq_frequency_table *freq_table;
69 unsigned int resume;
70 unsigned int cpu_feature;
71 unsigned int acpi_perf_cpu;
72 cpumask_var_t freqdomain_cpus;
73 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75};
76
77/* acpi_perf_data is a pointer to percpu data. */
78static struct acpi_processor_performance __percpu *acpi_perf_data;
79
80static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81{
82 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83}
84
85static struct cpufreq_driver acpi_cpufreq_driver;
86
87static unsigned int acpi_pstate_strict;
88static struct msr __percpu *msrs;
89
90static bool boost_state(unsigned int cpu)
91{
92 u32 lo, hi;
93 u64 msr;
94
95 switch (boot_cpu_data.x86_vendor) {
96 case X86_VENDOR_INTEL:
97 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
98 msr = lo | ((u64)hi << 32);
99 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
100 case X86_VENDOR_AMD:
101 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102 msr = lo | ((u64)hi << 32);
103 return !(msr & MSR_K7_HWCR_CPB_DIS);
104 }
105 return false;
106}
107
108static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109{
110 u32 cpu;
111 u32 msr_addr;
112 u64 msr_mask;
113
114 switch (boot_cpu_data.x86_vendor) {
115 case X86_VENDOR_INTEL:
116 msr_addr = MSR_IA32_MISC_ENABLE;
117 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118 break;
119 case X86_VENDOR_AMD:
120 msr_addr = MSR_K7_HWCR;
121 msr_mask = MSR_K7_HWCR_CPB_DIS;
122 break;
123 default:
124 return;
125 }
126
127 rdmsr_on_cpus(cpumask, msr_addr, msrs);
128
129 for_each_cpu(cpu, cpumask) {
130 struct msr *reg = per_cpu_ptr(msrs, cpu);
131 if (enable)
132 reg->q &= ~msr_mask;
133 else
134 reg->q |= msr_mask;
135 }
136
137 wrmsr_on_cpus(cpumask, msr_addr, msrs);
138}
139
140static int set_boost(int val)
141{
142 get_online_cpus();
143 boost_set_msrs(val, cpu_online_mask);
144 put_online_cpus();
145 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146
147 return 0;
148}
149
150static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151{
152 struct acpi_cpufreq_data *data = policy->driver_data;
153
154 if (unlikely(!data))
155 return -ENODEV;
156
157 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158}
159
160cpufreq_freq_attr_ro(freqdomain_cpus);
161
162#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164 size_t count)
165{
166 int ret;
167 unsigned int val = 0;
168
169 if (!acpi_cpufreq_driver.set_boost)
170 return -EINVAL;
171
172 ret = kstrtouint(buf, 10, &val);
173 if (ret || val > 1)
174 return -EINVAL;
175
176 set_boost(val);
177
178 return count;
179}
180
181static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182{
183 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184}
185
186cpufreq_freq_attr_rw(cpb);
187#endif
188
189static int check_est_cpu(unsigned int cpuid)
190{
191 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193 return cpu_has(cpu, X86_FEATURE_EST);
194}
195
196static int check_amd_hwpstate_cpu(unsigned int cpuid)
197{
198 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199
200 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201}
202
203static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204{
205 struct acpi_processor_performance *perf;
206 int i;
207
208 perf = to_perf_data(data);
209
210 for (i = 0; i < perf->state_count; i++) {
211 if (value == perf->states[i].status)
212 return data->freq_table[i].frequency;
213 }
214 return 0;
215}
216
217static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218{
219 struct cpufreq_frequency_table *pos;
220 struct acpi_processor_performance *perf;
221
222 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223 msr &= AMD_MSR_RANGE;
224 else
225 msr &= INTEL_MSR_RANGE;
226
227 perf = to_perf_data(data);
228
229 cpufreq_for_each_entry(pos, data->freq_table)
230 if (msr == perf->states[pos->driver_data].status)
231 return pos->frequency;
232 return data->freq_table[0].frequency;
233}
234
235static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236{
237 switch (data->cpu_feature) {
238 case SYSTEM_INTEL_MSR_CAPABLE:
239 case SYSTEM_AMD_MSR_CAPABLE:
240 return extract_msr(val, data);
241 case SYSTEM_IO_CAPABLE:
242 return extract_io(val, data);
243 default:
244 return 0;
245 }
246}
247
248static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249{
250 u32 val, dummy;
251
252 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253 return val;
254}
255
256static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257{
258 u32 lo, hi;
259
260 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263}
264
265static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266{
267 u32 val, dummy;
268
269 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270 return val;
271}
272
273static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274{
275 wrmsr(MSR_AMD_PERF_CTL, val, 0);
276}
277
278static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279{
280 u32 val;
281
282 acpi_os_read_port(reg->address, &val, reg->bit_width);
283 return val;
284}
285
286static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287{
288 acpi_os_write_port(reg->address, val, reg->bit_width);
289}
290
291struct drv_cmd {
292 struct acpi_pct_register *reg;
293 u32 val;
294 union {
295 void (*write)(struct acpi_pct_register *reg, u32 val);
296 u32 (*read)(struct acpi_pct_register *reg);
297 } func;
298};
299
300/* Called via smp_call_function_single(), on the target CPU */
301static void do_drv_read(void *_cmd)
302{
303 struct drv_cmd *cmd = _cmd;
304
305 cmd->val = cmd->func.read(cmd->reg);
306}
307
308static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
309{
310 struct acpi_processor_performance *perf = to_perf_data(data);
311 struct drv_cmd cmd = {
312 .reg = &perf->control_register,
313 .func.read = data->cpu_freq_read,
314 };
315 int err;
316
317 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
319 return cmd.val;
320}
321
322/* Called via smp_call_function_many(), on the target CPUs */
323static void do_drv_write(void *_cmd)
324{
325 struct drv_cmd *cmd = _cmd;
326
327 cmd->func.write(cmd->reg, cmd->val);
328}
329
330static void drv_write(struct acpi_cpufreq_data *data,
331 const struct cpumask *mask, u32 val)
332{
333 struct acpi_processor_performance *perf = to_perf_data(data);
334 struct drv_cmd cmd = {
335 .reg = &perf->control_register,
336 .val = val,
337 .func.write = data->cpu_freq_write,
338 };
339 int this_cpu;
340
341 this_cpu = get_cpu();
342 if (cpumask_test_cpu(this_cpu, mask))
343 do_drv_write(&cmd);
344
345 smp_call_function_many(mask, do_drv_write, &cmd, 1);
346 put_cpu();
347}
348
349static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350{
351 u32 val;
352
353 if (unlikely(cpumask_empty(mask)))
354 return 0;
355
356 val = drv_read(data, mask);
357
358 pr_debug("get_cur_val = %u\n", val);
359
360 return val;
361}
362
363static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364{
365 struct acpi_cpufreq_data *data;
366 struct cpufreq_policy *policy;
367 unsigned int freq;
368 unsigned int cached_freq;
369
370 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371
372 policy = cpufreq_cpu_get_raw(cpu);
373 if (unlikely(!policy))
374 return 0;
375
376 data = policy->driver_data;
377 if (unlikely(!data || !data->freq_table))
378 return 0;
379
380 cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381 freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382 if (freq != cached_freq) {
383 /*
384 * The dreaded BIOS frequency change behind our back.
385 * Force set the frequency on next target call.
386 */
387 data->resume = 1;
388 }
389
390 pr_debug("cur freq = %u\n", freq);
391
392 return freq;
393}
394
395static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396 struct acpi_cpufreq_data *data)
397{
398 unsigned int cur_freq;
399 unsigned int i;
400
401 for (i = 0; i < 100; i++) {
402 cur_freq = extract_freq(get_cur_val(mask, data), data);
403 if (cur_freq == freq)
404 return 1;
405 udelay(10);
406 }
407 return 0;
408}
409
410static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411 unsigned int index)
412{
413 struct acpi_cpufreq_data *data = policy->driver_data;
414 struct acpi_processor_performance *perf;
415 const struct cpumask *mask;
416 unsigned int next_perf_state = 0; /* Index into perf table */
417 int result = 0;
418
419 if (unlikely(data == NULL || data->freq_table == NULL)) {
420 return -ENODEV;
421 }
422
423 perf = to_perf_data(data);
424 next_perf_state = data->freq_table[index].driver_data;
425 if (perf->state == next_perf_state) {
426 if (unlikely(data->resume)) {
427 pr_debug("Called after resume, resetting to P%d\n",
428 next_perf_state);
429 data->resume = 0;
430 } else {
431 pr_debug("Already at target state (P%d)\n",
432 next_perf_state);
433 return 0;
434 }
435 }
436
437 /*
438 * The core won't allow CPUs to go away until the governor has been
439 * stopped, so we can rely on the stability of policy->cpus.
440 */
441 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442 cpumask_of(policy->cpu) : policy->cpus;
443
444 drv_write(data, mask, perf->states[next_perf_state].control);
445
446 if (acpi_pstate_strict) {
447 if (!check_freqs(mask, data->freq_table[index].frequency,
448 data)) {
449 pr_debug("acpi_cpufreq_target failed (%d)\n",
450 policy->cpu);
451 result = -EAGAIN;
452 }
453 }
454
455 if (!result)
456 perf->state = next_perf_state;
457
458 return result;
459}
460
461static unsigned long
462acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
463{
464 struct acpi_processor_performance *perf;
465
466 perf = to_perf_data(data);
467 if (cpu_khz) {
468 /* search the closest match to cpu_khz */
469 unsigned int i;
470 unsigned long freq;
471 unsigned long freqn = perf->states[0].core_frequency * 1000;
472
473 for (i = 0; i < (perf->state_count-1); i++) {
474 freq = freqn;
475 freqn = perf->states[i+1].core_frequency * 1000;
476 if ((2 * cpu_khz) > (freqn + freq)) {
477 perf->state = i;
478 return freq;
479 }
480 }
481 perf->state = perf->state_count-1;
482 return freqn;
483 } else {
484 /* assume CPU is at P0... */
485 perf->state = 0;
486 return perf->states[0].core_frequency * 1000;
487 }
488}
489
490static void free_acpi_perf_data(void)
491{
492 unsigned int i;
493
494 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
495 for_each_possible_cpu(i)
496 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
497 ->shared_cpu_map);
498 free_percpu(acpi_perf_data);
499}
500
501static int boost_notify(struct notifier_block *nb, unsigned long action,
502 void *hcpu)
503{
504 unsigned cpu = (long)hcpu;
505 const struct cpumask *cpumask;
506
507 cpumask = get_cpu_mask(cpu);
508
509 /*
510 * Clear the boost-disable bit on the CPU_DOWN path so that
511 * this cpu cannot block the remaining ones from boosting. On
512 * the CPU_UP path we simply keep the boost-disable flag in
513 * sync with the current global state.
514 */
515
516 switch (action) {
517 case CPU_DOWN_FAILED:
518 case CPU_DOWN_FAILED_FROZEN:
519 case CPU_ONLINE:
520 case CPU_ONLINE_FROZEN:
521 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
522 break;
523
524 case CPU_DOWN_PREPARE:
525 case CPU_DOWN_PREPARE_FROZEN:
526 boost_set_msrs(1, cpumask);
527 break;
528
529 default:
530 break;
531 }
532
533 return NOTIFY_OK;
534}
535
536
537static struct notifier_block boost_nb = {
538 .notifier_call = boost_notify,
539};
540
541/*
542 * acpi_cpufreq_early_init - initialize ACPI P-States library
543 *
544 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
545 * in order to determine correct frequency and voltage pairings. We can
546 * do _PDC and _PSD and find out the processor dependency for the
547 * actual init that will happen later...
548 */
549static int __init acpi_cpufreq_early_init(void)
550{
551 unsigned int i;
552 pr_debug("acpi_cpufreq_early_init\n");
553
554 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
555 if (!acpi_perf_data) {
556 pr_debug("Memory allocation error for acpi_perf_data.\n");
557 return -ENOMEM;
558 }
559 for_each_possible_cpu(i) {
560 if (!zalloc_cpumask_var_node(
561 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
562 GFP_KERNEL, cpu_to_node(i))) {
563
564 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
565 free_acpi_perf_data();
566 return -ENOMEM;
567 }
568 }
569
570 /* Do initialization in ACPI core */
571 acpi_processor_preregister_performance(acpi_perf_data);
572 return 0;
573}
574
575#ifdef CONFIG_SMP
576/*
577 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
578 * or do it in BIOS firmware and won't inform about it to OS. If not
579 * detected, this has a side effect of making CPU run at a different speed
580 * than OS intended it to run at. Detect it and handle it cleanly.
581 */
582static int bios_with_sw_any_bug;
583
584static int sw_any_bug_found(const struct dmi_system_id *d)
585{
586 bios_with_sw_any_bug = 1;
587 return 0;
588}
589
590static const struct dmi_system_id sw_any_bug_dmi_table[] = {
591 {
592 .callback = sw_any_bug_found,
593 .ident = "Supermicro Server X6DLP",
594 .matches = {
595 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
596 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
597 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
598 },
599 },
600 { }
601};
602
603static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
604{
605 /* Intel Xeon Processor 7100 Series Specification Update
606 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
607 * AL30: A Machine Check Exception (MCE) Occurring during an
608 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
609 * Both Processor Cores to Lock Up. */
610 if (c->x86_vendor == X86_VENDOR_INTEL) {
611 if ((c->x86 == 15) &&
612 (c->x86_model == 6) &&
613 (c->x86_mask == 8)) {
614 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
615 "Xeon(R) 7100 Errata AL30, processors may "
616 "lock up on frequency changes: disabling "
617 "acpi-cpufreq.\n");
618 return -ENODEV;
619 }
620 }
621 return 0;
622}
623#endif
624
625static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
626{
627 unsigned int i;
628 unsigned int valid_states = 0;
629 unsigned int cpu = policy->cpu;
630 struct acpi_cpufreq_data *data;
631 unsigned int result = 0;
632 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
633 struct acpi_processor_performance *perf;
634#ifdef CONFIG_SMP
635 static int blacklisted;
636#endif
637
638 pr_debug("acpi_cpufreq_cpu_init\n");
639
640#ifdef CONFIG_SMP
641 if (blacklisted)
642 return blacklisted;
643 blacklisted = acpi_cpufreq_blacklist(c);
644 if (blacklisted)
645 return blacklisted;
646#endif
647
648 data = kzalloc(sizeof(*data), GFP_KERNEL);
649 if (!data)
650 return -ENOMEM;
651
652 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
653 result = -ENOMEM;
654 goto err_free;
655 }
656
657 perf = per_cpu_ptr(acpi_perf_data, cpu);
658 data->acpi_perf_cpu = cpu;
659 policy->driver_data = data;
660
661 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
662 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
663
664 result = acpi_processor_register_performance(perf, cpu);
665 if (result)
666 goto err_free_mask;
667
668 policy->shared_type = perf->shared_type;
669
670 /*
671 * Will let policy->cpus know about dependency only when software
672 * coordination is required.
673 */
674 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
675 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
676 cpumask_copy(policy->cpus, perf->shared_cpu_map);
677 }
678 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
679
680#ifdef CONFIG_SMP
681 dmi_check_system(sw_any_bug_dmi_table);
682 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
683 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
684 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
685 }
686
687 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
688 cpumask_clear(policy->cpus);
689 cpumask_set_cpu(cpu, policy->cpus);
690 cpumask_copy(data->freqdomain_cpus,
691 topology_sibling_cpumask(cpu));
692 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
693 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
694 }
695#endif
696
697 /* capability check */
698 if (perf->state_count <= 1) {
699 pr_debug("No P-States\n");
700 result = -ENODEV;
701 goto err_unreg;
702 }
703
704 if (perf->control_register.space_id != perf->status_register.space_id) {
705 result = -ENODEV;
706 goto err_unreg;
707 }
708
709 switch (perf->control_register.space_id) {
710 case ACPI_ADR_SPACE_SYSTEM_IO:
711 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
712 boot_cpu_data.x86 == 0xf) {
713 pr_debug("AMD K8 systems must use native drivers.\n");
714 result = -ENODEV;
715 goto err_unreg;
716 }
717 pr_debug("SYSTEM IO addr space\n");
718 data->cpu_feature = SYSTEM_IO_CAPABLE;
719 data->cpu_freq_read = cpu_freq_read_io;
720 data->cpu_freq_write = cpu_freq_write_io;
721 break;
722 case ACPI_ADR_SPACE_FIXED_HARDWARE:
723 pr_debug("HARDWARE addr space\n");
724 if (check_est_cpu(cpu)) {
725 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
726 data->cpu_freq_read = cpu_freq_read_intel;
727 data->cpu_freq_write = cpu_freq_write_intel;
728 break;
729 }
730 if (check_amd_hwpstate_cpu(cpu)) {
731 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
732 data->cpu_freq_read = cpu_freq_read_amd;
733 data->cpu_freq_write = cpu_freq_write_amd;
734 break;
735 }
736 result = -ENODEV;
737 goto err_unreg;
738 default:
739 pr_debug("Unknown addr space %d\n",
740 (u32) (perf->control_register.space_id));
741 result = -ENODEV;
742 goto err_unreg;
743 }
744
745 data->freq_table = kzalloc(sizeof(*data->freq_table) *
746 (perf->state_count+1), GFP_KERNEL);
747 if (!data->freq_table) {
748 result = -ENOMEM;
749 goto err_unreg;
750 }
751
752 /* detect transition latency */
753 policy->cpuinfo.transition_latency = 0;
754 for (i = 0; i < perf->state_count; i++) {
755 if ((perf->states[i].transition_latency * 1000) >
756 policy->cpuinfo.transition_latency)
757 policy->cpuinfo.transition_latency =
758 perf->states[i].transition_latency * 1000;
759 }
760
761 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
762 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
763 policy->cpuinfo.transition_latency > 20 * 1000) {
764 policy->cpuinfo.transition_latency = 20 * 1000;
765 printk_once(KERN_INFO
766 "P-state transition latency capped at 20 uS\n");
767 }
768
769 /* table init */
770 for (i = 0; i < perf->state_count; i++) {
771 if (i > 0 && perf->states[i].core_frequency >=
772 data->freq_table[valid_states-1].frequency / 1000)
773 continue;
774
775 data->freq_table[valid_states].driver_data = i;
776 data->freq_table[valid_states].frequency =
777 perf->states[i].core_frequency * 1000;
778 valid_states++;
779 }
780 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
781 perf->state = 0;
782
783 result = cpufreq_table_validate_and_show(policy, data->freq_table);
784 if (result)
785 goto err_freqfree;
786
787 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
788 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
789
790 switch (perf->control_register.space_id) {
791 case ACPI_ADR_SPACE_SYSTEM_IO:
792 /*
793 * The core will not set policy->cur, because
794 * cpufreq_driver->get is NULL, so we need to set it here.
795 * However, we have to guess it, because the current speed is
796 * unknown and not detectable via IO ports.
797 */
798 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
799 break;
800 case ACPI_ADR_SPACE_FIXED_HARDWARE:
801 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
802 break;
803 default:
804 break;
805 }
806
807 /* notify BIOS that we exist */
808 acpi_processor_notify_smm(THIS_MODULE);
809
810 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
811 for (i = 0; i < perf->state_count; i++)
812 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
813 (i == perf->state ? '*' : ' '), i,
814 (u32) perf->states[i].core_frequency,
815 (u32) perf->states[i].power,
816 (u32) perf->states[i].transition_latency);
817
818 /*
819 * the first call to ->target() should result in us actually
820 * writing something to the appropriate registers.
821 */
822 data->resume = 1;
823
824 return result;
825
826err_freqfree:
827 kfree(data->freq_table);
828err_unreg:
829 acpi_processor_unregister_performance(cpu);
830err_free_mask:
831 free_cpumask_var(data->freqdomain_cpus);
832err_free:
833 kfree(data);
834 policy->driver_data = NULL;
835
836 return result;
837}
838
839static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
840{
841 struct acpi_cpufreq_data *data = policy->driver_data;
842
843 pr_debug("acpi_cpufreq_cpu_exit\n");
844
845 if (data) {
846 policy->driver_data = NULL;
847 acpi_processor_unregister_performance(data->acpi_perf_cpu);
848 free_cpumask_var(data->freqdomain_cpus);
849 kfree(data->freq_table);
850 kfree(data);
851 }
852
853 return 0;
854}
855
856static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
857{
858 struct acpi_cpufreq_data *data = policy->driver_data;
859
860 pr_debug("acpi_cpufreq_resume\n");
861
862 data->resume = 1;
863
864 return 0;
865}
866
867static struct freq_attr *acpi_cpufreq_attr[] = {
868 &cpufreq_freq_attr_scaling_available_freqs,
869 &freqdomain_cpus,
870#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
871 &cpb,
872#endif
873 NULL,
874};
875
876static struct cpufreq_driver acpi_cpufreq_driver = {
877 .verify = cpufreq_generic_frequency_table_verify,
878 .target_index = acpi_cpufreq_target,
879 .bios_limit = acpi_processor_get_bios_limit,
880 .init = acpi_cpufreq_cpu_init,
881 .exit = acpi_cpufreq_cpu_exit,
882 .resume = acpi_cpufreq_resume,
883 .name = "acpi-cpufreq",
884 .attr = acpi_cpufreq_attr,
885};
886
887static void __init acpi_cpufreq_boost_init(void)
888{
889 if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
890 msrs = msrs_alloc();
891
892 if (!msrs)
893 return;
894
895 acpi_cpufreq_driver.set_boost = set_boost;
896 acpi_cpufreq_driver.boost_enabled = boost_state(0);
897
898 cpu_notifier_register_begin();
899
900 /* Force all MSRs to the same value */
901 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
902 cpu_online_mask);
903
904 __register_cpu_notifier(&boost_nb);
905
906 cpu_notifier_register_done();
907 }
908}
909
910static void acpi_cpufreq_boost_exit(void)
911{
912 if (msrs) {
913 unregister_cpu_notifier(&boost_nb);
914
915 msrs_free(msrs);
916 msrs = NULL;
917 }
918}
919
920static int __init acpi_cpufreq_init(void)
921{
922 int ret;
923
924 if (acpi_disabled)
925 return -ENODEV;
926
927 /* don't keep reloading if cpufreq_driver exists */
928 if (cpufreq_get_current_driver())
929 return -EEXIST;
930
931 pr_debug("acpi_cpufreq_init\n");
932
933 ret = acpi_cpufreq_early_init();
934 if (ret)
935 return ret;
936
937#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
938 /* this is a sysfs file with a strange name and an even stranger
939 * semantic - per CPU instantiation, but system global effect.
940 * Lets enable it only on AMD CPUs for compatibility reasons and
941 * only if configured. This is considered legacy code, which
942 * will probably be removed at some point in the future.
943 */
944 if (!check_amd_hwpstate_cpu(0)) {
945 struct freq_attr **attr;
946
947 pr_debug("CPB unsupported, do not expose it\n");
948
949 for (attr = acpi_cpufreq_attr; *attr; attr++)
950 if (*attr == &cpb) {
951 *attr = NULL;
952 break;
953 }
954 }
955#endif
956 acpi_cpufreq_boost_init();
957
958 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
959 if (ret) {
960 free_acpi_perf_data();
961 acpi_cpufreq_boost_exit();
962 }
963 return ret;
964}
965
966static void __exit acpi_cpufreq_exit(void)
967{
968 pr_debug("acpi_cpufreq_exit\n");
969
970 acpi_cpufreq_boost_exit();
971
972 cpufreq_unregister_driver(&acpi_cpufreq_driver);
973
974 free_acpi_perf_data();
975}
976
977module_param(acpi_pstate_strict, uint, 0644);
978MODULE_PARM_DESC(acpi_pstate_strict,
979 "value 0 or non-zero. non-zero -> strict ACPI checks are "
980 "performed during frequency changes.");
981
982late_initcall(acpi_cpufreq_init);
983module_exit(acpi_cpufreq_exit);
984
985static const struct x86_cpu_id acpi_cpufreq_ids[] = {
986 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
987 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
988 {}
989};
990MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
991
992static const struct acpi_device_id processor_device_ids[] = {
993 {ACPI_PROCESSOR_OBJECT_HID, },
994 {ACPI_PROCESSOR_DEVICE_HID, },
995 {},
996};
997MODULE_DEVICE_TABLE(acpi, processor_device_ids);
998
999MODULE_ALIAS("acpi");