Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author:	Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 15#include <linux/compiler.h>
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 
 18
 19#include <asm/addrspace.h>
 
 
 20#include <asm/byteorder.h>
 21#include <asm/cpu.h>
 22#include <asm/cpu-features.h>
 23#include <asm-generic/iomap.h>
 24#include <asm/page.h>
 25#include <asm/pgtable-bits.h>
 26#include <asm/processor.h>
 27#include <asm/string.h>
 28
 29#include <ioremap.h>
 30#include <mangle-port.h>
 31
 32/*
 33 * Slowdown I/O port space accesses for antique hardware.
 34 */
 35#undef CONF_SLOWDOWN_IO
 36
 37/*
 38 * Raw operations are never swapped in software.  OTOH values that raw
 39 * operations are working on may or may not have been swapped by the bus
 40 * hardware.  An example use would be for flash memory that's used for
 41 * execute in place.
 42 */
 43# define __raw_ioswabb(a, x)	(x)
 44# define __raw_ioswabw(a, x)	(x)
 45# define __raw_ioswabl(a, x)	(x)
 46# define __raw_ioswabq(a, x)	(x)
 47# define ____raw_ioswabq(a, x)	(x)
 48
 49/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 
 
 
 
 
 
 
 
 50
 51#define IO_SPACE_LIMIT 0xffff
 52
 53/*
 54 * On MIPS I/O ports are memory mapped, so we access them using normal
 55 * load/store instructions. mips_io_port_base is the virtual address to
 56 * which all ports are being mapped.  For sake of efficiency some code
 57 * assumes that this is an address that can be loaded with a single lui
 58 * instruction, so the lower 16 bits must be zero.  Should be true on
 59 * on any sane architecture; generic code does not use this assumption.
 60 */
 61extern const unsigned long mips_io_port_base;
 62
 63/*
 64 * Gcc will generate code to load the value of mips_io_port_base after each
 65 * function call which may be fairly wasteful in some cases.  So we don't
 66 * play quite by the book.  We tell gcc mips_io_port_base is a long variable
 67 * which solves the code generation issue.  Now we need to violate the
 68 * aliasing rules a little to make initialization possible and finally we
 69 * will need the barrier() to fight side effects of the aliasing chat.
 70 * This trickery will eventually collapse under gcc's optimizer.  Oh well.
 71 */
 72static inline void set_io_port_base(unsigned long base)
 73{
 74	* (unsigned long *) &mips_io_port_base = base;
 75	barrier();
 76}
 77
 78/*
 79 * Thanks to James van Artsdalen for a better timing-fix than
 80 * the two short jumps: using outb's to a nonexistent port seems
 81 * to guarantee better timings even on fast machines.
 82 *
 83 * On the other hand, I'd like to be sure of a non-existent port:
 84 * I feel a bit unsafe about using 0x80 (should be safe, though)
 85 *
 86 *		Linus
 87 *
 88 */
 89
 90#define __SLOW_DOWN_IO \
 91	__asm__ __volatile__( \
 92		"sb\t$0,0x80(%0)" \
 93		: : "r" (mips_io_port_base));
 94
 95#ifdef CONF_SLOWDOWN_IO
 96#ifdef REALLY_SLOW_IO
 97#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
 98#else
 99#define SLOW_DOWN_IO __SLOW_DOWN_IO
100#endif
101#else
102#define SLOW_DOWN_IO
103#endif
 
104
105/*
106 *     virt_to_phys    -       map virtual addresses to physical
107 *     @address: address to remap
108 *
109 *     The returned physical address is the physical (CPU) mapping for
110 *     the memory address given. It is only valid to use this function on
111 *     addresses directly mapped or allocated via kmalloc.
112 *
113 *     This function does not give bus mappings for DMA transfers. In
114 *     almost all conceivable cases a device driver should not be using
115 *     this function
116 */
117static inline unsigned long virt_to_phys(volatile const void *address)
118{
119	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
120}
121
122/*
123 *     phys_to_virt    -       map physical address to virtual
124 *     @address: address to remap
125 *
126 *     The returned virtual address is a current CPU mapping for
127 *     the memory address given. It is only valid to use this function on
128 *     addresses that have a kernel mapping
129 *
130 *     This function does not handle bus mappings for DMA transfers. In
131 *     almost all conceivable cases a device driver should not be using
132 *     this function
133 */
134static inline void * phys_to_virt(unsigned long address)
135{
136	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
137}
138
139/*
140 * ISA I/O bus memory addresses are 1:1 with the physical address.
141 */
142static inline unsigned long isa_virt_to_bus(volatile void * address)
143{
144	return (unsigned long)address - PAGE_OFFSET;
145}
146
147static inline void * isa_bus_to_virt(unsigned long address)
148{
149	return (void *)(address + PAGE_OFFSET);
150}
151
152#define isa_page_to_bus page_to_phys
153
154/*
155 * However PCI ones are not necessarily 1:1 and therefore these interfaces
156 * are forbidden in portable PCI drivers.
157 *
158 * Allow them for x86 for legacy drivers, though.
159 */
160#define virt_to_bus virt_to_phys
161#define bus_to_virt phys_to_virt
162
163/*
164 * Change "struct page" to physical address.
165 */
166#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
167
168extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
169extern void __iounmap(const volatile void __iomem *addr);
170
171static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
172	unsigned long flags)
173{
174	void __iomem *addr = plat_ioremap(offset, size, flags);
175
176	if (addr)
177		return addr;
178
179#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
180
181	if (cpu_has_64bit_addresses) {
182		u64 base = UNCAC_BASE;
183
184		/*
185		 * R10000 supports a 2 bit uncached attribute therefore
186		 * UNCAC_BASE may not equal IO_BASE.
187		 */
188		if (flags == _CACHE_UNCACHED)
189			base = (u64) IO_BASE;
190		return (void __iomem *) (unsigned long) (base + offset);
191	} else if (__builtin_constant_p(offset) &&
192		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
193		phys_t phys_addr, last_addr;
194
195		phys_addr = fixup_bigphys_addr(offset, size);
196
197		/* Don't allow wraparound or zero size. */
198		last_addr = phys_addr + size - 1;
199		if (!size || last_addr < phys_addr)
200			return NULL;
201
202		/*
203		 * Map uncached objects in the low 512MB of address
204		 * space using KSEG1.
205		 */
206		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
207		    flags == _CACHE_UNCACHED)
208			return (void __iomem *)
209				(unsigned long)CKSEG1ADDR(phys_addr);
210	}
211
212	return __ioremap(offset, size, flags);
213
214#undef __IS_LOW512
215}
216
217/*
218 * ioremap     -   map bus memory into CPU space
219 * @offset:    bus address of the memory
220 * @size:      size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228#define ioremap(offset, size)						\
229	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231/*
232 * ioremap_nocache     -   map bus memory into CPU space
233 * @offset:    bus address of the memory
234 * @size:      size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250#define ioremap_nocache(offset, size)					\
251	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
252
253/*
254 * ioremap_cachable -   map bus memory into CPU space
255 * @offset:         bus address of the memory
256 * @size:           size of the resource to map
257 *
258 * ioremap_nocache performs a platform specific sequence of operations to
259 * make bus memory CPU accessible via the readb/readw/readl/writeb/
260 * writew/writel functions and the other mmio helpers. The returned
261 * address is not guaranteed to be usable directly as a virtual
262 * address.
263 *
264 * This version of ioremap ensures that the memory is marked cachable by
265 * the CPU.  Also enables full write-combining.  Useful for some
266 * memory-like regions on I/O busses.
 
 
 
267 */
268#define ioremap_cachable(offset, size)					\
269	__ioremap_mode((offset), (size), _page_cachable_default)
270
271/*
272 * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
273 * requests a cachable mapping, ioremap_uncached_accelerated requests a
274 * mapping using the uncached accelerated mode which isn't supported on
275 * all processors.
276 */
277#define ioremap_cacheable_cow(offset, size)				\
278	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
279#define ioremap_uncached_accelerated(offset, size)			\
280	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
281
282static inline void iounmap(const volatile void __iomem *addr)
283{
284	if (plat_iounmap(addr))
285		return;
286
287#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
288
289	if (cpu_has_64bit_addresses ||
290	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
291		return;
292
293	__iounmap(addr);
294
295#undef __IS_KSEG1
296}
297
298#ifdef CONFIG_CPU_CAVIUM_OCTEON
299#define war_octeon_io_reorder_wmb()  		wmb()
300#else
301#define war_octeon_io_reorder_wmb()		do { } while (0)
302#endif
303
304#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
305									\
306static inline void pfx##write##bwlq(type val,				\
307				    volatile void __iomem *mem)		\
308{									\
309	volatile type *__mem;						\
310	type __val;							\
311									\
312	war_octeon_io_reorder_wmb();					\
 
 
 
313									\
314	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
315									\
316	__val = pfx##ioswab##bwlq(__mem, val);				\
317									\
318	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
319		*__mem = __val;						\
320	else if (cpu_has_64bits) {					\
321		unsigned long __flags;					\
322		type __tmp;						\
323									\
324		if (irq)						\
325			local_irq_save(__flags);			\
326		__asm__ __volatile__(					\
327			".set	mips3"		"\t\t# __writeq""\n\t"	\
328			"dsll32	%L0, %L0, 0"			"\n\t"	\
329			"dsrl32	%L0, %L0, 0"			"\n\t"	\
330			"dsll32	%M0, %M0, 0"			"\n\t"	\
 
331			"or	%L0, %L0, %M0"			"\n\t"	\
332			".set	push"				"\n\t"	\
333			".set	noreorder"			"\n\t"	\
334			".set	nomacro"			"\n\t"	\
335			"sd	%L0, %2"			"\n\t"	\
336			".set	pop"				"\n\t"	\
337			".set	mips0"				"\n"	\
338			: "=r" (__tmp)					\
339			: "0" (__val), "R" (*__mem));			\
340		if (irq)						\
341			local_irq_restore(__flags);			\
342	} else								\
343		BUG();							\
344}									\
345									\
346static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
347{									\
348	volatile type *__mem;						\
349	type __val;							\
350									\
351	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
352									\
353	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
 
 
 
354		__val = *__mem;						\
355	else if (cpu_has_64bits) {					\
356		unsigned long __flags;					\
357									\
358		if (irq)						\
359			local_irq_save(__flags);			\
360		__asm__ __volatile__(					\
361			".set	mips3"		"\t\t# __readq"	"\n\t"	\
362			".set	push"				"\n\t"	\
363			".set	noreorder"			"\n\t"	\
364			".set	nomacro"			"\n\t"	\
365			"ld	%L0, %1"			"\n\t"	\
366			".set	pop"				"\n\t"	\
367			"dsra32	%M0, %L0, 0"			"\n\t"	\
368			"sll	%L0, %L0, 0"			"\n\t"	\
369			".set	mips0"				"\n"	\
370			: "=r" (__val)					\
371			: "R" (*__mem));				\
372		if (irq)						\
373			local_irq_restore(__flags);			\
374	} else {							\
375		__val = 0;						\
376		BUG();							\
377	}								\
378									\
 
 
 
379	return pfx##ioswab##bwlq(__mem, __val);				\
380}
381
382#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
383									\
384static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
385{									\
386	volatile type *__addr;						\
387	type __val;							\
388									\
389	war_octeon_io_reorder_wmb();					\
 
 
 
390									\
391	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
392									\
393	__val = pfx##ioswab##bwlq(__addr, val);				\
394									\
395	/* Really, we want this to be atomic */				\
396	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
397									\
398	*__addr = __val;						\
399	slow;								\
400}									\
401									\
402static inline type pfx##in##bwlq##p(unsigned long port)			\
403{									\
404	volatile type *__addr;						\
405	type __val;							\
406									\
407	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
408									\
409	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
410									\
 
 
 
411	__val = *__addr;						\
412	slow;								\
413									\
 
 
 
414	return pfx##ioswab##bwlq(__addr, __val);			\
415}
416
417#define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
418									\
419__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
420
421#define BUILDIO_MEM(bwlq, type)						\
422									\
423__BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
424__BUILD_MEMORY_PFX(, bwlq, type)					\
425__BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
 
426
427BUILDIO_MEM(b, u8)
428BUILDIO_MEM(w, u16)
429BUILDIO_MEM(l, u32)
 
430BUILDIO_MEM(q, u64)
 
 
 
 
431
432#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
433	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
434	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
435
436#define BUILDIO_IOPORT(bwlq, type)					\
437	__BUILD_IOPORT_PFX(, bwlq, type)				\
438	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
439
440BUILDIO_IOPORT(b, u8)
441BUILDIO_IOPORT(w, u16)
442BUILDIO_IOPORT(l, u32)
443#ifdef CONFIG_64BIT
444BUILDIO_IOPORT(q, u64)
445#endif
446
447#define __BUILDIO(bwlq, type)						\
448									\
449__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
450
451__BUILDIO(q, u64)
452
453#define readb_relaxed			readb
454#define readw_relaxed			readw
455#define readl_relaxed			readl
456#define readq_relaxed			readq
 
 
 
 
 
 
 
 
 
457
458#define readb_be(addr)							\
459	__raw_readb((__force unsigned *)(addr))
460#define readw_be(addr)							\
461	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
462#define readl_be(addr)							\
463	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
464#define readq_be(addr)							\
465	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
466
467#define writeb_be(val, addr)						\
468	__raw_writeb((val), (__force unsigned *)(addr))
469#define writew_be(val, addr)						\
470	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
471#define writel_be(val, addr)						\
472	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
473#define writeq_be(val, addr)						\
474	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
475
476/*
477 * Some code tests for these symbols
478 */
479#define readq				readq
480#define writeq				writeq
481
482#define __BUILD_MEMORY_STRING(bwlq, type)				\
483									\
484static inline void writes##bwlq(volatile void __iomem *mem,		\
485				const void *addr, unsigned int count)	\
486{									\
487	const volatile type *__addr = addr;				\
488									\
489	while (count--) {						\
490		__mem_write##bwlq(*__addr, mem);			\
491		__addr++;						\
492	}								\
493}									\
494									\
495static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
496			       unsigned int count)			\
497{									\
498	volatile type *__addr = addr;					\
499									\
500	while (count--) {						\
501		*__addr = __mem_read##bwlq(mem);			\
502		__addr++;						\
503	}								\
504}
505
506#define __BUILD_IOPORT_STRING(bwlq, type)				\
507									\
508static inline void outs##bwlq(unsigned long port, const void *addr,	\
509			      unsigned int count)			\
510{									\
511	const volatile type *__addr = addr;				\
512									\
513	while (count--) {						\
514		__mem_out##bwlq(*__addr, port);				\
515		__addr++;						\
516	}								\
517}									\
518									\
519static inline void ins##bwlq(unsigned long port, void *addr,		\
520			     unsigned int count)			\
521{									\
522	volatile type *__addr = addr;					\
523									\
524	while (count--) {						\
525		*__addr = __mem_in##bwlq(port);				\
526		__addr++;						\
527	}								\
528}
529
530#define BUILDSTRING(bwlq, type)						\
531									\
532__BUILD_MEMORY_STRING(bwlq, type)					\
533__BUILD_IOPORT_STRING(bwlq, type)
534
535BUILDSTRING(b, u8)
536BUILDSTRING(w, u16)
537BUILDSTRING(l, u32)
538#ifdef CONFIG_64BIT
539BUILDSTRING(q, u64)
540#endif
541
542
543#ifdef CONFIG_CPU_CAVIUM_OCTEON
544#define mmiowb() wmb()
545#else
546/* Depends on MIPS II instruction set */
547#define mmiowb() asm volatile ("sync" ::: "memory")
548#endif
549
550static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
551{
552	memset((void __force *) addr, val, count);
553}
554static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
555{
556	memcpy(dst, (void __force *) src, count);
557}
558static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
559{
560	memcpy((void __force *) dst, src, count);
561}
562
563/*
564 * The caches on some architectures aren't dma-coherent and have need to
565 * handle this in software.  There are three types of operations that
566 * can be applied to dma buffers.
567 *
568 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
569 *    writing the content of the caches back to memory, if necessary.
570 *    The function also invalidates the affected part of the caches as
571 *    necessary before DMA transfers from outside to memory.
572 *  - dma_cache_wback(start, size) makes caches and coherent by
573 *    writing the content of the caches back to memory, if necessary.
574 *    The function also invalidates the affected part of the caches as
575 *    necessary before DMA transfers from outside to memory.
576 *  - dma_cache_inv(start, size) invalidates the affected parts of the
577 *    caches.  Dirty lines of the caches may be written back or simply
578 *    be discarded.  This operation is necessary before dma operations
579 *    to the memory.
580 *
581 * This API used to be exported; it now is for arch code internal use only.
582 */
583#ifdef CONFIG_DMA_NONCOHERENT
584
585extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
586extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
587extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
588
589#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
590#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
591#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
592
593#else /* Sane hardware */
594
595#define dma_cache_wback_inv(start,size)	\
596	do { (void) (start); (void) (size); } while (0)
597#define dma_cache_wback(start,size)	\
598	do { (void) (start); (void) (size); } while (0)
599#define dma_cache_inv(start,size)	\
600	do { (void) (start); (void) (size); } while (0)
601
602#endif /* CONFIG_DMA_NONCOHERENT */
603
604/*
605 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
606 * Avoid interrupt mucking, just adjust the address for 4-byte access.
607 * Assume the addresses are 8-byte aligned.
608 */
609#ifdef __MIPSEB__
610#define __CSR_32_ADJUST 4
611#else
612#define __CSR_32_ADJUST 0
613#endif
614
615#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
616#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
617
618/*
619 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
620 * access
621 */
622#define xlate_dev_mem_ptr(p)	__va(p)
 
 
 
 
 
 
 
623
624/*
625 * Convert a virtual cached pointer to an uncached pointer
626 */
627#define xlate_dev_kmem_ptr(p)	p
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628
629#endif /* _ASM_IO_H */
v6.13.7
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author: Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 15#include <linux/compiler.h>
 
 16#include <linux/types.h>
 17#include <linux/irqflags.h>
 18
 19#include <asm/addrspace.h>
 20#include <asm/barrier.h>
 21#include <asm/bug.h>
 22#include <asm/byteorder.h>
 23#include <asm/cpu.h>
 24#include <asm/cpu-features.h>
 
 25#include <asm/page.h>
 26#include <asm/pgtable-bits.h>
 
 27#include <asm/string.h>
 
 
 28#include <mangle-port.h>
 29
 30/*
 
 
 
 
 
 31 * Raw operations are never swapped in software.  OTOH values that raw
 32 * operations are working on may or may not have been swapped by the bus
 33 * hardware.  An example use would be for flash memory that's used for
 34 * execute in place.
 35 */
 36# define __raw_ioswabb(a, x)	(x)
 37# define __raw_ioswabw(a, x)	(x)
 38# define __raw_ioswabl(a, x)	(x)
 39# define __raw_ioswabq(a, x)	(x)
 40# define ____raw_ioswabq(a, x)	(x)
 41
 42# define _ioswabb ioswabb
 43# define _ioswabw ioswabw
 44# define _ioswabl ioswabl
 45# define _ioswabq ioswabq
 46
 47# define __relaxed_ioswabb ioswabb
 48# define __relaxed_ioswabw ioswabw
 49# define __relaxed_ioswabl ioswabl
 50# define __relaxed_ioswabq ioswabq
 51
 52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 53
 54/*
 55 * On MIPS I/O ports are memory mapped, so we access them using normal
 56 * load/store instructions. mips_io_port_base is the virtual address to
 57 * which all ports are being mapped.  For sake of efficiency some code
 58 * assumes that this is an address that can be loaded with a single lui
 59 * instruction, so the lower 16 bits must be zero.  Should be true on
 60 * any sane architecture; generic code does not use this assumption.
 61 */
 62extern unsigned long mips_io_port_base;
 63
 
 
 
 
 
 
 
 
 
 64static inline void set_io_port_base(unsigned long base)
 65{
 66	mips_io_port_base = base;
 
 67}
 68
 69/*
 70 * Provide the necessary definitions for generic iomap. We make use of
 71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
 72 * use with I/O ports.
 
 
 
 
 
 
 73 */
 74
 75#define HAVE_ARCH_PIO_SIZE
 76#define PIO_OFFSET	mips_io_port_base
 77#define PIO_MASK	IO_SPACE_LIMIT
 78#define PIO_RESERVED	0x0UL
 79
 80/*
 81 * Enforce in-order execution of data I/O.  In the MIPS architecture
 82 * these are equivalent to corresponding platform-specific memory
 83 * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
 84 * with sync additionally defined.
 85 */
 86#define iobarrier_rw() mb()
 87#define iobarrier_r() rmb()
 88#define iobarrier_w() wmb()
 89#define iobarrier_sync() iob()
 90
 91/*
 92 *     virt_to_phys    -       map virtual addresses to physical
 93 *     @address: address to remap
 94 *
 95 *     The returned physical address is the physical (CPU) mapping for
 96 *     the memory address given. It is only valid to use this function on
 97 *     addresses directly mapped or allocated via kmalloc.
 98 *
 99 *     This function does not give bus mappings for DMA transfers. In
100 *     almost all conceivable cases a device driver should not be using
101 *     this function
102 */
103static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104{
105	return __pa(address);
106}
107
108#ifdef CONFIG_DEBUG_VIRTUAL
109extern phys_addr_t __virt_to_phys(volatile const void *x);
110#else
111#define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
112#endif
113
114#define virt_to_phys virt_to_phys
115static inline phys_addr_t virt_to_phys(const volatile void *x)
 
 
 
 
 
116{
117	return __virt_to_phys(x);
118}
119
120/*
121 * ISA I/O bus memory addresses are 1:1 with the physical address.
122 */
123static inline unsigned long isa_virt_to_bus(volatile void *address)
 
 
 
 
 
124{
125	return virt_to_phys(address);
126}
127
128void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
129		unsigned long prot_val);
130void iounmap(const volatile void __iomem *addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132/*
133 * ioremap     -   map bus memory into CPU space
134 * @offset:    bus address of the memory
135 * @size:      size of the resource to map
136 *
137 * ioremap performs a platform specific sequence of operations to
138 * make bus memory CPU accessible via the readb/readw/readl/writeb/
139 * writew/writel functions and the other mmio helpers. The returned
140 * address is not guaranteed to be usable directly as a virtual
141 * address.
142 */
143#define ioremap(offset, size)						\
144	ioremap_prot((offset), (size), _CACHE_UNCACHED)
145
146/*
147 * ioremap_cache -	map bus memory into CPU space
148 * @offset:	    bus address of the memory
149 * @size:	    size of the resource to map
150 *
151 * ioremap_cache performs a platform specific sequence of operations to
152 * make bus memory CPU accessible via the readb/readw/readl/writeb/
153 * writew/writel functions and the other mmio helpers. The returned
154 * address is not guaranteed to be usable directly as a virtual
155 * address.
156 *
157 * This version of ioremap ensures that the memory is marked cacheable by
158 * the CPU.  Also enables full write-combining.	 Useful for some
159 * memory-like regions on I/O busses.
 
 
 
 
160 */
161#define ioremap_cache(offset, size)					\
162	ioremap_prot((offset), (size), _page_cachable_default)
163
164/*
165 * ioremap_wc     -   map bus memory into CPU space
166 * @offset:    bus address of the memory
167 * @size:      size of the resource to map
168 *
169 * ioremap_wc performs a platform specific sequence of operations to
170 * make bus memory CPU accessible via the readb/readw/readl/writeb/
171 * writew/writel functions and the other mmio helpers. The returned
172 * address is not guaranteed to be usable directly as a virtual
173 * address.
174 *
175 * This version of ioremap ensures that the memory is marked uncacheable
176 * but accelerated by means of write-combining feature. It is specifically
177 * useful for PCIe prefetchable windows, which may vastly improve a
178 * communications performance. If it was determined on boot stage, what
179 * CPU CCA doesn't support UCA, the method shall fall-back to the
180 * _CACHE_UNCACHED option (see cpu_probe() method).
181 */
182#define ioremap_wc(offset, size)					\
183	ioremap_prot((offset), (size), boot_cpu_data.writecombine)
184
185#if defined(CONFIG_CPU_CAVIUM_OCTEON)
186#define war_io_reorder_wmb()		wmb()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187#else
188#define war_io_reorder_wmb()		barrier()
189#endif
190
191#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
192									\
193static inline void pfx##write##bwlq(type val,				\
194				    volatile void __iomem *mem)		\
195{									\
196	volatile type *__mem;						\
197	type __val;							\
198									\
199	if (barrier)							\
200		iobarrier_rw();						\
201	else								\
202		war_io_reorder_wmb();					\
203									\
204	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
205									\
206	__val = pfx##ioswab##bwlq(__mem, val);				\
207									\
208	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
209		*__mem = __val;						\
210	else if (cpu_has_64bits) {					\
211		unsigned long __flags;					\
212		type __tmp;						\
213									\
214		if (irq)						\
215			local_irq_save(__flags);			\
216		__asm__ __volatile__(					\
217			".set	push"		"\t\t# __writeq""\n\t"	\
218			".set	arch=r4000"			"\n\t"	\
219			"dsll32 %L0, %L0, 0"			"\n\t"	\
220			"dsrl32 %L0, %L0, 0"			"\n\t"	\
221			"dsll32 %M0, %M0, 0"			"\n\t"	\
222			"or	%L0, %L0, %M0"			"\n\t"	\
 
 
 
223			"sd	%L0, %2"			"\n\t"	\
224			".set	pop"				"\n"	\
 
225			: "=r" (__tmp)					\
226			: "0" (__val), "m" (*__mem));			\
227		if (irq)						\
228			local_irq_restore(__flags);			\
229	} else								\
230		BUG();							\
231}									\
232									\
233static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
234{									\
235	volatile type *__mem;						\
236	type __val;							\
237									\
238	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
239									\
240	if (barrier)							\
241		iobarrier_rw();						\
242									\
243	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
244		__val = *__mem;						\
245	else if (cpu_has_64bits) {					\
246		unsigned long __flags;					\
247									\
248		if (irq)						\
249			local_irq_save(__flags);			\
250		__asm__ __volatile__(					\
251			".set	push"		"\t\t# __readq" "\n\t"	\
252			".set	arch=r4000"			"\n\t"	\
 
 
253			"ld	%L0, %1"			"\n\t"	\
254			"dsra32 %M0, %L0, 0"			"\n\t"	\
 
255			"sll	%L0, %L0, 0"			"\n\t"	\
256			".set	pop"				"\n"	\
257			: "=r" (__val)					\
258			: "m" (*__mem));				\
259		if (irq)						\
260			local_irq_restore(__flags);			\
261	} else {							\
262		__val = 0;						\
263		BUG();							\
264	}								\
265									\
266	/* prevent prefetching of coherent DMA data prematurely */	\
267	if (!relax)							\
268		rmb();							\
269	return pfx##ioswab##bwlq(__mem, __val);				\
270}
271
272#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax)		\
273									\
274static inline void pfx##out##bwlq(type val, unsigned long port)		\
275{									\
276	volatile type *__addr;						\
277	type __val;							\
278									\
279	if (barrier)							\
280		iobarrier_rw();						\
281	else								\
282		war_io_reorder_wmb();					\
283									\
284	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
285									\
286	__val = pfx##ioswab##bwlq(__addr, val);				\
287									\
288	/* Really, we want this to be atomic */				\
289	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
290									\
291	*__addr = __val;						\
 
292}									\
293									\
294static inline type pfx##in##bwlq(unsigned long port)			\
295{									\
296	volatile type *__addr;						\
297	type __val;							\
298									\
299	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
300									\
301	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
302									\
303	if (barrier)							\
304		iobarrier_rw();						\
305									\
306	__val = *__addr;						\
 
307									\
308	/* prevent prefetching of coherent DMA data prematurely */	\
309	if (!relax)							\
310		rmb();							\
311	return pfx##ioswab##bwlq(__addr, __val);			\
312}
313
314#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
315									\
316__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
317
318#define BUILDIO_MEM(bwlq, type)						\
319									\
320__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
321__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
322__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
323__BUILD_MEMORY_PFX(, bwlq, type, 0)
324
325BUILDIO_MEM(b, u8)
326BUILDIO_MEM(w, u16)
327BUILDIO_MEM(l, u32)
328#ifdef CONFIG_64BIT
329BUILDIO_MEM(q, u64)
330#else
331__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
332__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
333#endif
334
335#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
336	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0)
 
337
338#define BUILDIO_IOPORT(bwlq, type)					\
339	__BUILD_IOPORT_PFX(_, bwlq, type)				\
340	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
341
342BUILDIO_IOPORT(b, u8)
343BUILDIO_IOPORT(w, u16)
344BUILDIO_IOPORT(l, u32)
345#ifdef CONFIG_64BIT
346BUILDIO_IOPORT(q, u64)
347#endif
348
349#define __BUILDIO(bwlq, type)						\
350									\
351__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
352
353__BUILDIO(q, u64)
354
355#define readb_relaxed			__relaxed_readb
356#define readw_relaxed			__relaxed_readw
357#define readl_relaxed			__relaxed_readl
358#ifdef CONFIG_64BIT
359#define readq_relaxed			__relaxed_readq
360#endif
361
362#define writeb_relaxed			__relaxed_writeb
363#define writew_relaxed			__relaxed_writew
364#define writel_relaxed			__relaxed_writel
365#ifdef CONFIG_64BIT
366#define writeq_relaxed			__relaxed_writeq
367#endif
368
369#define readb_be(addr)							\
370	__raw_readb((__force unsigned *)(addr))
371#define readw_be(addr)							\
372	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
373#define readl_be(addr)							\
374	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
375#define readq_be(addr)							\
376	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
377
378#define writeb_be(val, addr)						\
379	__raw_writeb((val), (__force unsigned *)(addr))
380#define writew_be(val, addr)						\
381	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
382#define writel_be(val, addr)						\
383	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
384#define writeq_be(val, addr)						\
385	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
386
 
 
 
 
 
 
387#define __BUILD_MEMORY_STRING(bwlq, type)				\
388									\
389static inline void writes##bwlq(volatile void __iomem *mem,		\
390				const void *addr, unsigned int count)	\
391{									\
392	const volatile type *__addr = addr;				\
393									\
394	while (count--) {						\
395		__mem_write##bwlq(*__addr, mem);			\
396		__addr++;						\
397	}								\
398}									\
399									\
400static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
401			       unsigned int count)			\
402{									\
403	volatile type *__addr = addr;					\
404									\
405	while (count--) {						\
406		*__addr = __mem_read##bwlq(mem);			\
407		__addr++;						\
408	}								\
409}
410
411#define __BUILD_IOPORT_STRING(bwlq, type)				\
412									\
413static inline void outs##bwlq(unsigned long port, const void *addr,	\
414			      unsigned int count)			\
415{									\
416	const volatile type *__addr = addr;				\
417									\
418	while (count--) {						\
419		__mem_out##bwlq(*__addr, port);				\
420		__addr++;						\
421	}								\
422}									\
423									\
424static inline void ins##bwlq(unsigned long port, void *addr,		\
425			     unsigned int count)			\
426{									\
427	volatile type *__addr = addr;					\
428									\
429	while (count--) {						\
430		*__addr = __mem_in##bwlq(port);				\
431		__addr++;						\
432	}								\
433}
434
435#define BUILDSTRING(bwlq, type)						\
436									\
437__BUILD_MEMORY_STRING(bwlq, type)					\
438__BUILD_IOPORT_STRING(bwlq, type)
439
440BUILDSTRING(b, u8)
441BUILDSTRING(w, u16)
442BUILDSTRING(l, u32)
443#ifdef CONFIG_64BIT
444BUILDSTRING(q, u64)
445#endif
446
447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448/*
449 * The caches on some architectures aren't dma-coherent and have need to
450 * handle this in software.  There are three types of operations that
451 * can be applied to dma buffers.
452 *
453 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
454 *    writing the content of the caches back to memory, if necessary.
455 *    The function also invalidates the affected part of the caches as
456 *    necessary before DMA transfers from outside to memory.
457 *  - dma_cache_wback(start, size) makes caches and coherent by
458 *    writing the content of the caches back to memory, if necessary.
459 *    The function also invalidates the affected part of the caches as
460 *    necessary before DMA transfers from outside to memory.
461 *  - dma_cache_inv(start, size) invalidates the affected parts of the
462 *    caches.  Dirty lines of the caches may be written back or simply
463 *    be discarded.  This operation is necessary before dma operations
464 *    to the memory.
465 *
466 * This API used to be exported; it now is for arch code internal use only.
467 */
468#ifdef CONFIG_DMA_NONCOHERENT
469
470extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
471extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
472extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
473
474#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
475#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
476#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
477
478#else /* Sane hardware */
479
480#define dma_cache_wback_inv(start,size) \
481	do { (void) (start); (void) (size); } while (0)
482#define dma_cache_wback(start,size)	\
483	do { (void) (start); (void) (size); } while (0)
484#define dma_cache_inv(start,size)	\
485	do { (void) (start); (void) (size); } while (0)
486
487#endif /* CONFIG_DMA_NONCOHERENT */
488
489/*
490 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
491 * Avoid interrupt mucking, just adjust the address for 4-byte access.
492 * Assume the addresses are 8-byte aligned.
493 */
494#ifdef __MIPSEB__
495#define __CSR_32_ADJUST 4
496#else
497#define __CSR_32_ADJUST 0
498#endif
499
500#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
501#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
502
503#define __raw_readb __raw_readb
504#define __raw_readw __raw_readw
505#define __raw_readl __raw_readl
506#ifdef CONFIG_64BIT
507#define __raw_readq __raw_readq
508#endif
509#define __raw_writeb __raw_writeb
510#define __raw_writew __raw_writew
511#define __raw_writel __raw_writel
512#ifdef CONFIG_64BIT
513#define __raw_writeq __raw_writeq
514#endif
515
516#define readb readb
517#define readw readw
518#define readl readl
519#ifdef CONFIG_64BIT
520#define readq readq
521#endif
522#define writeb writeb
523#define writew writew
524#define writel writel
525#ifdef CONFIG_64BIT
526#define writeq writeq
527#endif
528
529#define readsb readsb
530#define readsw readsw
531#define readsl readsl
532#ifdef CONFIG_64BIT
533#define readsq readsq
534#endif
535#define writesb writesb
536#define writesw writesw
537#define writesl writesl
538#ifdef CONFIG_64BIT
539#define writesq writesq
540#endif
541
542#define _inb _inb
543#define _inw _inw
544#define _inl _inl
545#define insb insb
546#define insw insw
547#define insl insl
548
549#define _outb _outb
550#define _outw _outw
551#define _outl _outl
552#define outsb outsb
553#define outsw outsw
554#define outsl outsl
555
556void __ioread64_copy(void *to, const void __iomem *from, size_t count);
557
558#include <asm-generic/io.h>
559
560static inline void *isa_bus_to_virt(unsigned long address)
561{
562	return phys_to_virt(address);
563}
564
565#endif /* _ASM_IO_H */