Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
 
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
  21#include <linux/init.h>
  22#include <linux/kexec.h>
 
 
  23#include <linux/of_fdt.h>
  24#include <linux/crash_dump.h>
  25#include <linux/root_dev.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/fs.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
 
 
 
 
  32
  33#include <asm/unified.h>
 
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
 
  36#include <asm/elf.h>
 
 
  37#include <asm/procinfo.h>
 
  38#include <asm/sections.h>
  39#include <asm/setup.h>
  40#include <asm/smp_plat.h>
  41#include <asm/mach-types.h>
  42#include <asm/cacheflush.h>
  43#include <asm/cachetype.h>
  44#include <asm/tlbflush.h>
 
  45
  46#include <asm/prom.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mach/irq.h>
  49#include <asm/mach/time.h>
 
 
  50#include <asm/traps.h>
  51#include <asm/unwind.h>
 
 
 
  52
  53#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  54#include "compat.h"
  55#endif
  56#include "atags.h"
  57#include "tcm.h"
  58
  59#ifndef MEM_SIZE
  60#define MEM_SIZE	(16*1024*1024)
  61#endif
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(struct machine_desc *desc);
  76extern void sanity_check_meminfo(void);
  77extern void reboot_setup(char *str);
  78
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
 
 
 
  91unsigned int system_serial_low;
  92EXPORT_SYMBOL(system_serial_low);
  93
  94unsigned int system_serial_high;
  95EXPORT_SYMBOL(system_serial_high);
  96
  97unsigned int elf_hwcap __read_mostly;
  98EXPORT_SYMBOL(elf_hwcap);
  99
 
 
 
 100
 101#ifdef MULTI_CPU
 102struct processor processor __read_mostly;
 
 
 
 
 
 103#endif
 104#ifdef MULTI_TLB
 105struct cpu_tlb_fns cpu_tlb __read_mostly;
 106#endif
 107#ifdef MULTI_USER
 108struct cpu_user_fns cpu_user __read_mostly;
 109#endif
 110#ifdef MULTI_CACHE
 111struct cpu_cache_fns cpu_cache __read_mostly;
 112#endif
 113#ifdef CONFIG_OUTER_CACHE
 114struct outer_cache_fns outer_cache __read_mostly;
 115EXPORT_SYMBOL(outer_cache);
 116#endif
 117
 
 
 
 
 
 
 
 118struct stack {
 119	u32 irq[3];
 120	u32 abt[3];
 121	u32 und[3];
 
 122} ____cacheline_aligned;
 123
 
 124static struct stack stacks[NR_CPUS];
 
 125
 126char elf_platform[ELF_PLATFORM_SIZE];
 127EXPORT_SYMBOL(elf_platform);
 128
 129static const char *cpu_name;
 130static const char *machine_name;
 131static char __initdata cmd_line[COMMAND_LINE_SIZE];
 132struct machine_desc *machine_desc __initdata;
 133
 134static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 135static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 136#define ENDIANNESS ((char)endian_test.l)
 137
 138DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 139
 140/*
 141 * Standard memory resources
 142 */
 143static struct resource mem_res[] = {
 144	{
 145		.name = "Video RAM",
 146		.start = 0,
 147		.end = 0,
 148		.flags = IORESOURCE_MEM
 149	},
 150	{
 151		.name = "Kernel text",
 152		.start = 0,
 153		.end = 0,
 154		.flags = IORESOURCE_MEM
 155	},
 156	{
 157		.name = "Kernel data",
 158		.start = 0,
 159		.end = 0,
 160		.flags = IORESOURCE_MEM
 161	}
 162};
 163
 164#define video_ram   mem_res[0]
 165#define kernel_code mem_res[1]
 166#define kernel_data mem_res[2]
 167
 168static struct resource io_res[] = {
 169	{
 170		.name = "reserved",
 171		.start = 0x3bc,
 172		.end = 0x3be,
 173		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 174	},
 175	{
 176		.name = "reserved",
 177		.start = 0x378,
 178		.end = 0x37f,
 179		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 180	},
 181	{
 182		.name = "reserved",
 183		.start = 0x278,
 184		.end = 0x27f,
 185		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 186	}
 187};
 188
 189#define lp0 io_res[0]
 190#define lp1 io_res[1]
 191#define lp2 io_res[2]
 192
 193static const char *proc_arch[] = {
 194	"undefined/unknown",
 195	"3",
 196	"4",
 197	"4T",
 198	"5",
 199	"5T",
 200	"5TE",
 201	"5TEJ",
 202	"6TEJ",
 203	"7",
 204	"?(11)",
 205	"?(12)",
 206	"?(13)",
 207	"?(14)",
 208	"?(15)",
 209	"?(16)",
 210	"?(17)",
 211};
 212
 213int cpu_architecture(void)
 
 
 
 
 
 
 214{
 215	int cpu_arch;
 216
 217	if ((read_cpuid_id() & 0x0008f000) == 0) {
 218		cpu_arch = CPU_ARCH_UNKNOWN;
 219	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 220		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 221	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 222		cpu_arch = (read_cpuid_id() >> 16) & 7;
 223		if (cpu_arch)
 224			cpu_arch += CPU_ARCH_ARMv3;
 225	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 226		unsigned int mmfr0;
 227
 228		/* Revised CPUID format. Read the Memory Model Feature
 229		 * Register 0 and check for VMSAv7 or PMSAv7 */
 230		asm("mrc	p15, 0, %0, c0, c1, 4"
 231		    : "=r" (mmfr0));
 232		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 233		    (mmfr0 & 0x000000f0) >= 0x00000030)
 234			cpu_arch = CPU_ARCH_ARMv7;
 235		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 236			 (mmfr0 & 0x000000f0) == 0x00000020)
 237			cpu_arch = CPU_ARCH_ARMv6;
 238		else
 239			cpu_arch = CPU_ARCH_UNKNOWN;
 240	} else
 241		cpu_arch = CPU_ARCH_UNKNOWN;
 242
 243	return cpu_arch;
 244}
 
 
 
 
 
 
 
 
 245
 246static int cpu_has_aliasing_icache(unsigned int arch)
 247{
 248	int aliasing_icache;
 249	unsigned int id_reg, num_sets, line_size;
 250
 
 
 
 
 251	/* arch specifies the register format */
 252	switch (arch) {
 253	case CPU_ARCH_ARMv7:
 254		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 255		    : /* No output operands */
 256		    : "r" (1));
 257		isb();
 258		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 259		    : "=r" (id_reg));
 260		line_size = 4 << ((id_reg & 0x7) + 2);
 261		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 262		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 263		break;
 264	case CPU_ARCH_ARMv6:
 265		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 266		break;
 267	default:
 268		/* I-cache aliases will be handled by D-cache aliasing code */
 269		aliasing_icache = 0;
 270	}
 271
 272	return aliasing_icache;
 273}
 274
 275static void __init cacheid_init(void)
 276{
 277	unsigned int cachetype = read_cpuid_cachetype();
 278	unsigned int arch = cpu_architecture();
 279
 280	if (arch >= CPU_ARCH_ARMv6) {
 281		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 
 282			/* ARMv7 register format */
 283			arch = CPU_ARCH_ARMv7;
 284			cacheid = CACHEID_VIPT_NONALIASING;
 285			if ((cachetype & (3 << 14)) == 1 << 14)
 
 286				cacheid |= CACHEID_ASID_TAGGED;
 
 
 
 
 
 287		} else {
 288			arch = CPU_ARCH_ARMv6;
 289			if (cachetype & (1 << 23))
 290				cacheid = CACHEID_VIPT_ALIASING;
 291			else
 292				cacheid = CACHEID_VIPT_NONALIASING;
 293		}
 294		if (cpu_has_aliasing_icache(arch))
 295			cacheid |= CACHEID_VIPT_I_ALIASING;
 296	} else {
 297		cacheid = CACHEID_VIVT;
 298	}
 299
 300	printk("CPU: %s data cache, %s instruction cache\n",
 301		cache_is_vivt() ? "VIVT" :
 302		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 303		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
 304		cache_is_vivt() ? "VIVT" :
 305		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 306		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 
 307		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 308}
 309
 310/*
 311 * These functions re-use the assembly code in head.S, which
 312 * already provide the required functionality.
 313 */
 314extern struct proc_info_list *lookup_processor_type(unsigned int);
 315
 316void __init early_print(const char *str, ...)
 317{
 318	extern void printascii(const char *);
 319	char buf[256];
 320	va_list ap;
 321
 322	va_start(ap, str);
 323	vsnprintf(buf, sizeof(buf), str, ap);
 324	va_end(ap);
 325
 326#ifdef CONFIG_DEBUG_LL
 327	printascii(buf);
 328#endif
 329	printk("%s", buf);
 330}
 331
 332static void __init feat_v6_fixup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333{
 334	int id = read_cpuid_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336	if ((id & 0xff0f0000) != 0x41070000)
 
 
 
 
 
 
 
 
 
 
 
 337		return;
 338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339	/*
 340	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 341	 * see also kuser_get_tls_init.
 342	 */
 343	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 344		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347/*
 348 * cpu_init - initialise one CPU.
 349 *
 350 * cpu_init sets up the per-CPU stacks.
 351 */
 352void cpu_init(void)
 353{
 
 354	unsigned int cpu = smp_processor_id();
 355	struct stack *stk = &stacks[cpu];
 356
 357	if (cpu >= NR_CPUS) {
 358		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 359		BUG();
 360	}
 361
 
 
 
 
 
 
 362	cpu_proc_init();
 363
 364	/*
 365	 * Define the placement constraint for the inline asm directive below.
 366	 * In Thumb-2, msr with an immediate value is not allowed.
 367	 */
 368#ifdef CONFIG_THUMB2_KERNEL
 369#define PLC	"r"
 
 370#else
 371#define PLC	"I"
 
 372#endif
 373
 374	/*
 375	 * setup stacks for re-entrant exception handlers
 376	 */
 377	__asm__ (
 378	"msr	cpsr_c, %1\n\t"
 379	"add	r14, %0, %2\n\t"
 380	"mov	sp, r14\n\t"
 381	"msr	cpsr_c, %3\n\t"
 382	"add	r14, %0, %4\n\t"
 383	"mov	sp, r14\n\t"
 384	"msr	cpsr_c, %5\n\t"
 385	"add	r14, %0, %6\n\t"
 386	"mov	sp, r14\n\t"
 387	"msr	cpsr_c, %7"
 
 
 
 388	    :
 389	    : "r" (stk),
 390	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 391	      "I" (offsetof(struct stack, irq[0])),
 392	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 393	      "I" (offsetof(struct stack, abt[0])),
 394	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 395	      "I" (offsetof(struct stack, und[0])),
 396	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 
 
 397	    : "r14");
 
 398}
 399
 400static void __init setup_processor(void)
 
 
 401{
 402	struct proc_info_list *list;
 
 
 
 
 
 
 403
 404	/*
 405	 * locate processor in the list of supported processor
 406	 * types.  The linker builds this table for us from the
 407	 * entries in arch/arm/mm/proc-*.S
 408	 */
 409	list = lookup_processor_type(read_cpuid_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410	if (!list) {
 411		printk("CPU configuration botched (ID %08x), unable "
 412		       "to continue.\n", read_cpuid_id());
 413		while (1);
 
 414	}
 415
 
 
 
 
 
 
 
 
 416	cpu_name = list->cpu_name;
 
 417
 418#ifdef MULTI_CPU
 419	processor = *list->proc;
 420#endif
 421#ifdef MULTI_TLB
 422	cpu_tlb = *list->tlb;
 423#endif
 424#ifdef MULTI_USER
 425	cpu_user = *list->user;
 426#endif
 427#ifdef MULTI_CACHE
 428	cpu_cache = *list->cache;
 429#endif
 430
 431	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 432	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 433	       proc_arch[cpu_architecture()], cr_alignment);
 434
 435	sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
 436	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
 
 
 437	elf_hwcap = list->elf_hwcap;
 
 
 
 
 438#ifndef CONFIG_ARM_THUMB
 439	elf_hwcap &= ~HWCAP_THUMB;
 440#endif
 
 
 
 
 441
 442	feat_v6_fixup();
 443
 444	cacheid_init();
 445	cpu_init();
 446}
 447
 448void __init dump_machine_table(void)
 449{
 450	struct machine_desc *p;
 451
 452	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 453	for_each_machine_desc(p)
 454		early_print("%08x\t%s\n", p->nr, p->name);
 455
 456	early_print("\nPlease check your kernel config and/or bootloader.\n");
 457
 458	while (true)
 459		/* can't use cpu_relax() here as it may require MMU setup */;
 460}
 461
 462int __init arm_add_memory(phys_addr_t start, unsigned long size)
 463{
 464	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 465
 466	if (meminfo.nr_banks >= NR_BANKS) {
 467		printk(KERN_CRIT "NR_BANKS too low, "
 468			"ignoring memory at 0x%08llx\n", (long long)start);
 469		return -EINVAL;
 470	}
 471
 472	/*
 473	 * Ensure that start/size are aligned to a page boundary.
 474	 * Size is appropriately rounded down, start is rounded up.
 475	 */
 476	size -= start & ~PAGE_MASK;
 477	bank->start = PAGE_ALIGN(start);
 478	bank->size  = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	/*
 481	 * Check whether this memory region has non-zero size or
 482	 * invalid node number.
 483	 */
 484	if (bank->size == 0)
 485		return -EINVAL;
 486
 487	meminfo.nr_banks++;
 488	return 0;
 489}
 490
 491/*
 492 * Pick out the memory size.  We look for mem=size@start,
 493 * where start and size are "size[KkMm]"
 494 */
 
 495static int __init early_mem(char *p)
 496{
 497	static int usermem __initdata = 0;
 498	unsigned long size;
 499	phys_addr_t start;
 500	char *endp;
 501
 502	/*
 503	 * If the user specifies memory size, we
 504	 * blow away any automatically generated
 505	 * size.
 506	 */
 507	if (usermem == 0) {
 508		usermem = 1;
 509		meminfo.nr_banks = 0;
 
 510	}
 511
 512	start = PHYS_OFFSET;
 513	size  = memparse(p, &endp);
 514	if (*endp == '@')
 515		start = memparse(endp + 1, NULL);
 516
 517	arm_add_memory(start, size);
 518
 519	return 0;
 520}
 521early_param("mem", early_mem);
 522
 523static void __init
 524setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 525{
 526#ifdef CONFIG_BLK_DEV_RAM
 527	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 528
 529	rd_image_start = image_start;
 530	rd_prompt = prompt;
 531	rd_doload = doload;
 532
 533	if (rd_sz)
 534		rd_size = rd_sz;
 535#endif
 536}
 537
 538static void __init request_standard_resources(struct machine_desc *mdesc)
 539{
 540	struct memblock_region *region;
 541	struct resource *res;
 
 542
 543	kernel_code.start   = virt_to_phys(_text);
 544	kernel_code.end     = virt_to_phys(_etext - 1);
 545	kernel_data.start   = virt_to_phys(_sdata);
 546	kernel_data.end     = virt_to_phys(_end - 1);
 547
 548	for_each_memblock(memory, region) {
 549		res = alloc_bootmem_low(sizeof(*res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550		res->name  = "System RAM";
 551		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 552		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 553		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 554
 555		request_resource(&iomem_resource, res);
 556
 557		if (kernel_code.start >= res->start &&
 558		    kernel_code.end <= res->end)
 559			request_resource(res, &kernel_code);
 560		if (kernel_data.start >= res->start &&
 561		    kernel_data.end <= res->end)
 562			request_resource(res, &kernel_data);
 563	}
 564
 565	if (mdesc->video_start) {
 566		video_ram.start = mdesc->video_start;
 567		video_ram.end   = mdesc->video_end;
 568		request_resource(&iomem_resource, &video_ram);
 569	}
 570
 571	/*
 572	 * Some machines don't have the possibility of ever
 573	 * possessing lp0, lp1 or lp2
 574	 */
 575	if (mdesc->reserve_lp0)
 576		request_resource(&ioport_resource, &lp0);
 577	if (mdesc->reserve_lp1)
 578		request_resource(&ioport_resource, &lp1);
 579	if (mdesc->reserve_lp2)
 580		request_resource(&ioport_resource, &lp2);
 581}
 582
 583/*
 584 *  Tag parsing.
 585 *
 586 * This is the new way of passing data to the kernel at boot time.  Rather
 587 * than passing a fixed inflexible structure to the kernel, we pass a list
 588 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 589 * tag for the list to be recognised (to distinguish the tagged list from
 590 * a param_struct).  The list is terminated with a zero-length tag (this tag
 591 * is not parsed in any way).
 592 */
 593static int __init parse_tag_core(const struct tag *tag)
 594{
 595	if (tag->hdr.size > 2) {
 596		if ((tag->u.core.flags & 1) == 0)
 597			root_mountflags &= ~MS_RDONLY;
 598		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 599	}
 600	return 0;
 601}
 602
 603__tagtable(ATAG_CORE, parse_tag_core);
 604
 605static int __init parse_tag_mem32(const struct tag *tag)
 606{
 607	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 608}
 609
 610__tagtable(ATAG_MEM, parse_tag_mem32);
 611
 612#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 613struct screen_info screen_info = {
 614 .orig_video_lines	= 30,
 615 .orig_video_cols	= 80,
 616 .orig_video_mode	= 0,
 617 .orig_video_ega_bx	= 0,
 618 .orig_video_isVGA	= 1,
 619 .orig_video_points	= 8
 620};
 621
 622static int __init parse_tag_videotext(const struct tag *tag)
 623{
 624	screen_info.orig_x            = tag->u.videotext.x;
 625	screen_info.orig_y            = tag->u.videotext.y;
 626	screen_info.orig_video_page   = tag->u.videotext.video_page;
 627	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 628	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 629	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 630	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 631	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 632	screen_info.orig_video_points = tag->u.videotext.video_points;
 633	return 0;
 634}
 635
 636__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 637#endif
 638
 639static int __init parse_tag_ramdisk(const struct tag *tag)
 640{
 641	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 642		      (tag->u.ramdisk.flags & 2) == 0,
 643		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 644	return 0;
 645}
 646
 647__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 648
 649static int __init parse_tag_serialnr(const struct tag *tag)
 650{
 651	system_serial_low = tag->u.serialnr.low;
 652	system_serial_high = tag->u.serialnr.high;
 653	return 0;
 654}
 655
 656__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 
 
 657
 658static int __init parse_tag_revision(const struct tag *tag)
 659{
 660	system_rev = tag->u.revision.rev;
 661	return 0;
 662}
 
 663
 664__tagtable(ATAG_REVISION, parse_tag_revision);
 665
 666static int __init parse_tag_cmdline(const struct tag *tag)
 667{
 668#if defined(CONFIG_CMDLINE_EXTEND)
 669	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 670	strlcat(default_command_line, tag->u.cmdline.cmdline,
 671		COMMAND_LINE_SIZE);
 672#elif defined(CONFIG_CMDLINE_FORCE)
 673	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 674#else
 675	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 676		COMMAND_LINE_SIZE);
 677#endif
 678	return 0;
 679}
 680
 681__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 682
 683/*
 684 * Scan the tag table for this tag, and call its parse function.
 685 * The tag table is built by the linker from all the __tagtable
 686 * declarations.
 687 */
 688static int __init parse_tag(const struct tag *tag)
 689{
 690	extern struct tagtable __tagtable_begin, __tagtable_end;
 691	struct tagtable *t;
 692
 693	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 694		if (tag->hdr.tag == t->tag) {
 695			t->parse(tag);
 696			break;
 697		}
 
 
 698
 699	return t < &__tagtable_end;
 700}
 
 
 701
 702/*
 703 * Parse all tags in the list, checking both the global and architecture
 704 * specific tag tables.
 705 */
 706static void __init parse_tags(const struct tag *t)
 707{
 708	for (; t->hdr.size; t = tag_next(t))
 709		if (!parse_tag(t))
 710			printk(KERN_WARNING
 711				"Ignoring unrecognised tag 0x%08x\n",
 712				t->hdr.tag);
 713}
 
 714
 
 715/*
 716 * This holds our defaults.
 
 717 */
 718static struct init_tags {
 719	struct tag_header hdr1;
 720	struct tag_core   core;
 721	struct tag_header hdr2;
 722	struct tag_mem32  mem;
 723	struct tag_header hdr3;
 724} init_tags __initdata = {
 725	{ tag_size(tag_core), ATAG_CORE },
 726	{ 1, PAGE_SIZE, 0xff },
 727	{ tag_size(tag_mem32), ATAG_MEM },
 728	{ MEM_SIZE },
 729	{ 0, ATAG_NONE }
 730};
 731
 732static int __init customize_machine(void)
 733{
 734	/* customizes platform devices, or adds new ones */
 735	if (machine_desc->init_machine)
 736		machine_desc->init_machine();
 737	return 0;
 738}
 739arch_initcall(customize_machine);
 740
 741#ifdef CONFIG_KEXEC
 742static inline unsigned long long get_total_mem(void)
 743{
 744	unsigned long total;
 745
 746	total = max_low_pfn - min_low_pfn;
 747	return total << PAGE_SHIFT;
 748}
 749
 750/**
 751 * reserve_crashkernel() - reserves memory are for crash kernel
 752 *
 753 * This function reserves memory area given in "crashkernel=" kernel command
 754 * line parameter. The memory reserved is used by a dump capture kernel when
 755 * primary kernel is crashing.
 756 */
 757static void __init reserve_crashkernel(void)
 758{
 759	unsigned long long crash_size, crash_base;
 760	unsigned long long total_mem;
 761	int ret;
 762
 763	total_mem = get_total_mem();
 764	ret = parse_crashkernel(boot_command_line, total_mem,
 765				&crash_size, &crash_base);
 766	if (ret)
 
 
 767		return;
 768
 769	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 770	if (ret < 0) {
 771		printk(KERN_WARNING "crashkernel reservation failed - "
 772		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 773		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774	}
 775
 776	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 777	       "for crashkernel (System RAM: %ldMB)\n",
 778	       (unsigned long)(crash_size >> 20),
 779	       (unsigned long)(crash_base >> 20),
 780	       (unsigned long)(total_mem >> 20));
 781
 
 782	crashk_res.start = crash_base;
 783	crashk_res.end = crash_base + crash_size - 1;
 784	insert_resource(&iomem_resource, &crashk_res);
 785}
 786#else
 787static inline void reserve_crashkernel(void) {}
 788#endif /* CONFIG_KEXEC */
 789
 790static void __init squash_mem_tags(struct tag *tag)
 791{
 792	for (; tag->hdr.size; tag = tag_next(tag))
 793		if (tag->hdr.tag == ATAG_MEM)
 794			tag->hdr.tag = ATAG_NONE;
 795}
 796
 797static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 798{
 799	struct tag *tags = (struct tag *)&init_tags;
 800	struct machine_desc *mdesc = NULL, *p;
 801	char *from = default_command_line;
 802
 803	init_tags.mem.start = PHYS_OFFSET;
 804
 805	/*
 806	 * locate machine in the list of supported machines.
 807	 */
 808	for_each_machine_desc(p)
 809		if (nr == p->nr) {
 810			printk("Machine: %s\n", p->name);
 811			mdesc = p;
 812			break;
 813		}
 814
 815	if (!mdesc) {
 816		early_print("\nError: unrecognized/unsupported machine ID"
 817			" (r1 = 0x%08x).\n\n", nr);
 818		dump_machine_table(); /* does not return */
 819	}
 820
 821	if (__atags_pointer)
 822		tags = phys_to_virt(__atags_pointer);
 823	else if (mdesc->boot_params) {
 824#ifdef CONFIG_MMU
 825		/*
 826		 * We still are executing with a minimal MMU mapping created
 827		 * with the presumption that the machine default for this
 828		 * is located in the first MB of RAM.  Anything else will
 829		 * fault and silently hang the kernel at this point.
 830		 */
 831		if (mdesc->boot_params < PHYS_OFFSET ||
 832		    mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
 833			printk(KERN_WARNING
 834			       "Default boot params at physical 0x%08lx out of reach\n",
 835			       mdesc->boot_params);
 836		} else
 837#endif
 838		{
 839			tags = phys_to_virt(mdesc->boot_params);
 840		}
 841	}
 
 
 
 
 842
 843#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 844	/*
 845	 * If we have the old style parameters, convert them to
 846	 * a tag list.
 847	 */
 848	if (tags->hdr.tag != ATAG_CORE)
 849		convert_to_tag_list(tags);
 850#endif
 851
 852	if (tags->hdr.tag != ATAG_CORE) {
 853#if defined(CONFIG_OF)
 854		/*
 855		 * If CONFIG_OF is set, then assume this is a reasonably
 856		 * modern system that should pass boot parameters
 857		 */
 858		early_print("Warning: Neither atags nor dtb found\n");
 
 
 859#endif
 860		tags = (struct tag *)&init_tags;
 861	}
 862
 863	if (mdesc->fixup)
 864		mdesc->fixup(mdesc, tags, &from, &meminfo);
 865
 866	if (tags->hdr.tag == ATAG_CORE) {
 867		if (meminfo.nr_banks != 0)
 868			squash_mem_tags(tags);
 869		save_atags(tags);
 870		parse_tags(tags);
 871	}
 872
 873	/* parse_early_param needs a boot_command_line */
 874	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 875
 876	return mdesc;
 
 
 
 
 877}
 878
 
 
 
 
 879
 880void __init setup_arch(char **cmdline_p)
 881{
 882	struct machine_desc *mdesc;
 
 883
 884	unwind_init();
 
 885
 886	setup_processor();
 887	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
 888	if (!mdesc)
 889		mdesc = setup_machine_tags(machine_arch_type);
 
 
 
 
 
 
 
 
 
 890	machine_desc = mdesc;
 891	machine_name = mdesc->name;
 
 892
 893	if (mdesc->soft_reboot)
 894		reboot_setup("s");
 895
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code   = (unsigned long) _etext;
 898	init_mm.end_data   = (unsigned long) _edata;
 899	init_mm.brk	   = (unsigned long) _end;
 900
 901	/* populate cmd_line too for later use, preserving boot_command_line */
 902	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 903	*cmdline_p = cmd_line;
 904
 
 
 
 905	parse_early_param();
 906
 907	sanity_check_meminfo();
 908	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	paging_init(mdesc);
 
 911	request_standard_resources(mdesc);
 912
 
 
 
 
 
 913	unflatten_device_tree();
 914
 
 
 915#ifdef CONFIG_SMP
 916	if (is_smp())
 
 
 
 
 
 
 917		smp_init_cpus();
 
 
 918#endif
 919	reserve_crashkernel();
 920
 921	tcm_init();
 
 922
 923#ifdef CONFIG_ZONE_DMA
 924	if (mdesc->dma_zone_size) {
 925		extern unsigned long arm_dma_zone_size;
 926		arm_dma_zone_size = mdesc->dma_zone_size;
 927	}
 928#endif
 929#ifdef CONFIG_MULTI_IRQ_HANDLER
 930	handle_arch_irq = mdesc->handle_irq;
 931#endif
 932
 933#ifdef CONFIG_VT
 934#if defined(CONFIG_VGA_CONSOLE)
 935	conswitchp = &vga_con;
 936#elif defined(CONFIG_DUMMY_CONSOLE)
 937	conswitchp = &dummy_con;
 938#endif
 939#endif
 940	early_trap_init();
 941
 942	if (mdesc->init_early)
 943		mdesc->init_early();
 944}
 945
 946
 947static int __init topology_init(void)
 948{
 949	int cpu;
 950
 951	for_each_possible_cpu(cpu) {
 952		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 953		cpuinfo->cpu.hotpluggable = 1;
 954		register_cpu(&cpuinfo->cpu, cpu);
 955	}
 956
 957	return 0;
 958}
 959subsys_initcall(topology_init);
 960
 961#ifdef CONFIG_HAVE_PROC_CPU
 962static int __init proc_cpu_init(void)
 963{
 964	struct proc_dir_entry *res;
 965
 966	res = proc_mkdir("cpu", NULL);
 967	if (!res)
 968		return -ENOMEM;
 969	return 0;
 970}
 971fs_initcall(proc_cpu_init);
 972#endif
 973
 974static const char *hwcap_str[] = {
 975	"swp",
 976	"half",
 977	"thumb",
 978	"26bit",
 979	"fastmult",
 980	"fpa",
 981	"vfp",
 982	"edsp",
 983	"java",
 984	"iwmmxt",
 985	"crunch",
 986	"thumbee",
 987	"neon",
 988	"vfpv3",
 989	"vfpv3d16",
 990	"tls",
 991	"vfpv4",
 992	"idiva",
 993	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	NULL
 995};
 996
 997static int c_show(struct seq_file *m, void *v)
 998{
 999	int i;
1000
1001	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1002		   cpu_name, read_cpuid_id() & 15, elf_platform);
1003
1004#if defined(CONFIG_SMP)
1005	for_each_online_cpu(i) {
1006		/*
1007		 * glibc reads /proc/cpuinfo to determine the number of
1008		 * online processors, looking for lines beginning with
1009		 * "processor".  Give glibc what it expects.
1010		 */
1011		seq_printf(m, "processor\t: %d\n", i);
1012		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1013			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1014			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1015	}
1016#else /* CONFIG_SMP */
1017	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1018		   loops_per_jiffy / (500000/HZ),
1019		   (loops_per_jiffy / (5000/HZ)) % 100);
1020#endif
1021
1022	/* dump out the processor features */
1023	seq_puts(m, "Features\t: ");
1024
1025	for (i = 0; hwcap_str[i]; i++)
1026		if (elf_hwcap & (1 << i))
1027			seq_printf(m, "%s ", hwcap_str[i]);
1028
1029	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1030	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1031
1032	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1033		/* pre-ARM7 */
1034		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1035	} else {
1036		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1037			/* ARM7 */
1038			seq_printf(m, "CPU variant\t: 0x%02x\n",
1039				   (read_cpuid_id() >> 16) & 127);
1040		} else {
1041			/* post-ARM7 */
1042			seq_printf(m, "CPU variant\t: 0x%x\n",
1043				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1044		}
1045		seq_printf(m, "CPU part\t: 0x%03x\n",
1046			   (read_cpuid_id() >> 4) & 0xfff);
1047	}
1048	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1049
1050	seq_puts(m, "\n");
1051
1052	seq_printf(m, "Hardware\t: %s\n", machine_name);
1053	seq_printf(m, "Revision\t: %04x\n", system_rev);
1054	seq_printf(m, "Serial\t\t: %08x%08x\n",
1055		   system_serial_high, system_serial_low);
1056
1057	return 0;
1058}
1059
1060static void *c_start(struct seq_file *m, loff_t *pos)
1061{
1062	return *pos < 1 ? (void *)1 : NULL;
1063}
1064
1065static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1066{
1067	++*pos;
1068	return NULL;
1069}
1070
1071static void c_stop(struct seq_file *m, void *v)
1072{
1073}
1074
1075const struct seq_operations cpuinfo_op = {
1076	.start	= c_start,
1077	.next	= c_next,
1078	.stop	= c_stop,
1079	.show	= c_show
1080};
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/init.h>
  19#include <linux/kexec.h>
  20#include <linux/libfdt.h>
  21#include <linux/of.h>
  22#include <linux/of_fdt.h>
 
 
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
 
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
 
 
 
  64#include "atags.h"
 
  65
 
 
 
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
 
 
 
 
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
  91const char *system_serial;
  92EXPORT_SYMBOL(system_serial);
  93
  94unsigned int system_serial_low;
  95EXPORT_SYMBOL(system_serial_low);
  96
  97unsigned int system_serial_high;
  98EXPORT_SYMBOL(system_serial_high);
  99
 100unsigned int elf_hwcap __read_mostly;
 101EXPORT_SYMBOL(elf_hwcap);
 102
 103unsigned int elf_hwcap2 __read_mostly;
 104EXPORT_SYMBOL(elf_hwcap2);
 105
 106
 107#ifdef MULTI_CPU
 108struct processor processor __ro_after_init;
 109#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 110struct processor *cpu_vtable[NR_CPUS] = {
 111	[0] = &processor,
 112};
 113#endif
 114#endif
 115#ifdef MULTI_TLB
 116struct cpu_tlb_fns cpu_tlb __ro_after_init;
 117#endif
 118#ifdef MULTI_USER
 119struct cpu_user_fns cpu_user __ro_after_init;
 120#endif
 121#ifdef MULTI_CACHE
 122struct cpu_cache_fns cpu_cache __ro_after_init;
 123#endif
 124#ifdef CONFIG_OUTER_CACHE
 125struct outer_cache_fns outer_cache __ro_after_init;
 126EXPORT_SYMBOL(outer_cache);
 127#endif
 128
 129/*
 130 * Cached cpu_architecture() result for use by assembler code.
 131 * C code should use the cpu_architecture() function instead of accessing this
 132 * variable directly.
 133 */
 134int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 135
 136struct stack {
 137	u32 irq[4];
 138	u32 abt[4];
 139	u32 und[4];
 140	u32 fiq[4];
 141} ____cacheline_aligned;
 142
 143#ifndef CONFIG_CPU_V7M
 144static struct stack stacks[NR_CPUS];
 145#endif
 146
 147char elf_platform[ELF_PLATFORM_SIZE];
 148EXPORT_SYMBOL(elf_platform);
 149
 150static const char *cpu_name;
 151static const char *machine_name;
 152static char __initdata cmd_line[COMMAND_LINE_SIZE];
 153const struct machine_desc *machine_desc __initdata;
 154
 
 155static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 156#define ENDIANNESS ((char)endian_test.l)
 157
 158DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 159
 160/*
 161 * Standard memory resources
 162 */
 163static struct resource mem_res[] = {
 164	{
 165		.name = "Video RAM",
 166		.start = 0,
 167		.end = 0,
 168		.flags = IORESOURCE_MEM
 169	},
 170	{
 171		.name = "Kernel code",
 172		.start = 0,
 173		.end = 0,
 174		.flags = IORESOURCE_SYSTEM_RAM
 175	},
 176	{
 177		.name = "Kernel data",
 178		.start = 0,
 179		.end = 0,
 180		.flags = IORESOURCE_SYSTEM_RAM
 181	}
 182};
 183
 184#define video_ram   mem_res[0]
 185#define kernel_code mem_res[1]
 186#define kernel_data mem_res[2]
 187
 188static struct resource io_res[] = {
 189	{
 190		.name = "reserved",
 191		.start = 0x3bc,
 192		.end = 0x3be,
 193		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 194	},
 195	{
 196		.name = "reserved",
 197		.start = 0x378,
 198		.end = 0x37f,
 199		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 200	},
 201	{
 202		.name = "reserved",
 203		.start = 0x278,
 204		.end = 0x27f,
 205		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 206	}
 207};
 208
 209#define lp0 io_res[0]
 210#define lp1 io_res[1]
 211#define lp2 io_res[2]
 212
 213static const char *proc_arch[] = {
 214	"undefined/unknown",
 215	"3",
 216	"4",
 217	"4T",
 218	"5",
 219	"5T",
 220	"5TE",
 221	"5TEJ",
 222	"6TEJ",
 223	"7",
 224	"7M",
 225	"?(12)",
 226	"?(13)",
 227	"?(14)",
 228	"?(15)",
 229	"?(16)",
 230	"?(17)",
 231};
 232
 233#ifdef CONFIG_CPU_V7M
 234static int __get_cpu_architecture(void)
 235{
 236	return CPU_ARCH_ARMv7M;
 237}
 238#else
 239static int __get_cpu_architecture(void)
 240{
 241	int cpu_arch;
 242
 243	if ((read_cpuid_id() & 0x0008f000) == 0) {
 244		cpu_arch = CPU_ARCH_UNKNOWN;
 245	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 246		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 247	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 248		cpu_arch = (read_cpuid_id() >> 16) & 7;
 249		if (cpu_arch)
 250			cpu_arch += CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 252		/* Revised CPUID format. Read the Memory Model Feature
 253		 * Register 0 and check for VMSAv7 or PMSAv7 */
 254		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 255		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 256		    (mmfr0 & 0x000000f0) >= 0x00000030)
 257			cpu_arch = CPU_ARCH_ARMv7;
 258		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 259			 (mmfr0 & 0x000000f0) == 0x00000020)
 260			cpu_arch = CPU_ARCH_ARMv6;
 261		else
 262			cpu_arch = CPU_ARCH_UNKNOWN;
 263	} else
 264		cpu_arch = CPU_ARCH_UNKNOWN;
 265
 266	return cpu_arch;
 267}
 268#endif
 269
 270int __pure cpu_architecture(void)
 271{
 272	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 273
 274	return __cpu_architecture;
 275}
 276
 277static int cpu_has_aliasing_icache(unsigned int arch)
 278{
 279	int aliasing_icache;
 280	unsigned int id_reg, num_sets, line_size;
 281
 282	/* PIPT caches never alias. */
 283	if (icache_is_pipt())
 284		return 0;
 285
 286	/* arch specifies the register format */
 287	switch (arch) {
 288	case CPU_ARCH_ARMv7:
 289		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 290		isb();
 291		id_reg = read_ccsidr();
 
 292		line_size = 4 << ((id_reg & 0x7) + 2);
 293		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 294		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 295		break;
 296	case CPU_ARCH_ARMv6:
 297		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 298		break;
 299	default:
 300		/* I-cache aliases will be handled by D-cache aliasing code */
 301		aliasing_icache = 0;
 302	}
 303
 304	return aliasing_icache;
 305}
 306
 307static void __init cacheid_init(void)
 308{
 
 309	unsigned int arch = cpu_architecture();
 310
 311	if (arch >= CPU_ARCH_ARMv6) {
 312		unsigned int cachetype = read_cpuid_cachetype();
 313
 314		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 315			cacheid = 0;
 316		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 317			/* ARMv7 register format */
 318			arch = CPU_ARCH_ARMv7;
 319			cacheid = CACHEID_VIPT_NONALIASING;
 320			switch (cachetype & (3 << 14)) {
 321			case (1 << 14):
 322				cacheid |= CACHEID_ASID_TAGGED;
 323				break;
 324			case (3 << 14):
 325				cacheid |= CACHEID_PIPT;
 326				break;
 327			}
 328		} else {
 329			arch = CPU_ARCH_ARMv6;
 330			if (cachetype & (1 << 23))
 331				cacheid = CACHEID_VIPT_ALIASING;
 332			else
 333				cacheid = CACHEID_VIPT_NONALIASING;
 334		}
 335		if (cpu_has_aliasing_icache(arch))
 336			cacheid |= CACHEID_VIPT_I_ALIASING;
 337	} else {
 338		cacheid = CACHEID_VIVT;
 339	}
 340
 341	pr_info("CPU: %s data cache, %s instruction cache\n",
 342		cache_is_vivt() ? "VIVT" :
 343		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 344		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 345		cache_is_vivt() ? "VIVT" :
 346		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 347		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		icache_is_pipt() ? "PIPT" :
 349		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 350}
 351
 352/*
 353 * These functions re-use the assembly code in head.S, which
 354 * already provide the required functionality.
 355 */
 356extern struct proc_info_list *lookup_processor_type(unsigned int);
 357
 358void __init early_print(const char *str, ...)
 359{
 360	extern void printascii(const char *);
 361	char buf[256];
 362	va_list ap;
 363
 364	va_start(ap, str);
 365	vsnprintf(buf, sizeof(buf), str, ap);
 366	va_end(ap);
 367
 368#ifdef CONFIG_DEBUG_LL
 369	printascii(buf);
 370#endif
 371	printk("%s", buf);
 372}
 373
 374#ifdef CONFIG_ARM_PATCH_IDIV
 375
 376static inline u32 __attribute_const__ sdiv_instruction(void)
 377{
 378	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 379		/* "sdiv r0, r0, r1" */
 380		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 381		return __opcode_to_mem_thumb32(insn);
 382	}
 383
 384	/* "sdiv r0, r0, r1" */
 385	return __opcode_to_mem_arm(0xe710f110);
 386}
 387
 388static inline u32 __attribute_const__ udiv_instruction(void)
 389{
 390	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 391		/* "udiv r0, r0, r1" */
 392		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 393		return __opcode_to_mem_thumb32(insn);
 394	}
 395
 396	/* "udiv r0, r0, r1" */
 397	return __opcode_to_mem_arm(0xe730f110);
 398}
 399
 400static inline u32 __attribute_const__ bx_lr_instruction(void)
 401{
 402	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 403		/* "bx lr; nop" */
 404		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 405		return __opcode_to_mem_thumb32(insn);
 406	}
 407
 408	/* "bx lr" */
 409	return __opcode_to_mem_arm(0xe12fff1e);
 410}
 411
 412static void __init patch_aeabi_idiv(void)
 413{
 414	extern void __aeabi_uidiv(void);
 415	extern void __aeabi_idiv(void);
 416	uintptr_t fn_addr;
 417	unsigned int mask;
 418
 419	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 420	if (!(elf_hwcap & mask))
 421		return;
 422
 423	pr_info("CPU: div instructions available: patching division code\n");
 424
 425	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 426	asm ("" : "+g" (fn_addr));
 427	((u32 *)fn_addr)[0] = udiv_instruction();
 428	((u32 *)fn_addr)[1] = bx_lr_instruction();
 429	flush_icache_range(fn_addr, fn_addr + 8);
 430
 431	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 432	asm ("" : "+g" (fn_addr));
 433	((u32 *)fn_addr)[0] = sdiv_instruction();
 434	((u32 *)fn_addr)[1] = bx_lr_instruction();
 435	flush_icache_range(fn_addr, fn_addr + 8);
 436}
 437
 438#else
 439static inline void patch_aeabi_idiv(void) { }
 440#endif
 441
 442static void __init cpuid_init_hwcaps(void)
 443{
 444	int block;
 445	u32 isar5;
 446	u32 isar6;
 447	u32 pfr2;
 448
 449	if (cpu_architecture() < CPU_ARCH_ARMv7)
 450		return;
 451
 452	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 453	if (block >= 2)
 454		elf_hwcap |= HWCAP_IDIVA;
 455	if (block >= 1)
 456		elf_hwcap |= HWCAP_IDIVT;
 457
 458	/* LPAE implies atomic ldrd/strd instructions */
 459	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 460	if (block >= 5)
 461		elf_hwcap |= HWCAP_LPAE;
 462
 463	/* check for supported v8 Crypto instructions */
 464	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 465
 466	block = cpuid_feature_extract_field(isar5, 4);
 467	if (block >= 2)
 468		elf_hwcap2 |= HWCAP2_PMULL;
 469	if (block >= 1)
 470		elf_hwcap2 |= HWCAP2_AES;
 471
 472	block = cpuid_feature_extract_field(isar5, 8);
 473	if (block >= 1)
 474		elf_hwcap2 |= HWCAP2_SHA1;
 475
 476	block = cpuid_feature_extract_field(isar5, 12);
 477	if (block >= 1)
 478		elf_hwcap2 |= HWCAP2_SHA2;
 479
 480	block = cpuid_feature_extract_field(isar5, 16);
 481	if (block >= 1)
 482		elf_hwcap2 |= HWCAP2_CRC32;
 483
 484	/* Check for Speculation barrier instruction */
 485	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 486	block = cpuid_feature_extract_field(isar6, 12);
 487	if (block >= 1)
 488		elf_hwcap2 |= HWCAP2_SB;
 489
 490	/* Check for Speculative Store Bypassing control */
 491	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 492	block = cpuid_feature_extract_field(pfr2, 4);
 493	if (block >= 1)
 494		elf_hwcap2 |= HWCAP2_SSBS;
 495}
 496
 497static void __init elf_hwcap_fixup(void)
 498{
 499	unsigned id = read_cpuid_id();
 500
 501	/*
 502	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 503	 * see also kuser_get_tls_init.
 504	 */
 505	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 506	    ((id >> 20) & 3) == 0) {
 507		elf_hwcap &= ~HWCAP_TLS;
 508		return;
 509	}
 510
 511	/* Verify if CPUID scheme is implemented */
 512	if ((id & 0x000f0000) != 0x000f0000)
 513		return;
 514
 515	/*
 516	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 517	 * avoid advertising SWP; it may not be atomic with
 518	 * multiprocessing cores.
 519	 */
 520	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 521	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 522	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 523		elf_hwcap &= ~HWCAP_SWP;
 524}
 525
 526/*
 527 * cpu_init - initialise one CPU.
 528 *
 529 * cpu_init sets up the per-CPU stacks.
 530 */
 531void notrace cpu_init(void)
 532{
 533#ifndef CONFIG_CPU_V7M
 534	unsigned int cpu = smp_processor_id();
 535	struct stack *stk = &stacks[cpu];
 536
 537	if (cpu >= NR_CPUS) {
 538		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 539		BUG();
 540	}
 541
 542	/*
 543	 * This only works on resume and secondary cores. For booting on the
 544	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 545	 */
 546	set_my_cpu_offset(per_cpu_offset(cpu));
 547
 548	cpu_proc_init();
 549
 550	/*
 551	 * Define the placement constraint for the inline asm directive below.
 552	 * In Thumb-2, msr with an immediate value is not allowed.
 553	 */
 554#ifdef CONFIG_THUMB2_KERNEL
 555#define PLC_l	"l"
 556#define PLC_r	"r"
 557#else
 558#define PLC_l	"I"
 559#define PLC_r	"I"
 560#endif
 561
 562	/*
 563	 * setup stacks for re-entrant exception handlers
 564	 */
 565	__asm__ (
 566	"msr	cpsr_c, %1\n\t"
 567	"add	r14, %0, %2\n\t"
 568	"mov	sp, r14\n\t"
 569	"msr	cpsr_c, %3\n\t"
 570	"add	r14, %0, %4\n\t"
 571	"mov	sp, r14\n\t"
 572	"msr	cpsr_c, %5\n\t"
 573	"add	r14, %0, %6\n\t"
 574	"mov	sp, r14\n\t"
 575	"msr	cpsr_c, %7\n\t"
 576	"add	r14, %0, %8\n\t"
 577	"mov	sp, r14\n\t"
 578	"msr	cpsr_c, %9"
 579	    :
 580	    : "r" (stk),
 581	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 582	      "I" (offsetof(struct stack, irq[0])),
 583	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 584	      "I" (offsetof(struct stack, abt[0])),
 585	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 586	      "I" (offsetof(struct stack, und[0])),
 587	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 588	      "I" (offsetof(struct stack, fiq[0])),
 589	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 590	    : "r14");
 591#endif
 592}
 593
 594u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 595
 596void __init smp_setup_processor_id(void)
 597{
 598	int i;
 599	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 600	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 601
 602	cpu_logical_map(0) = cpu;
 603	for (i = 1; i < nr_cpu_ids; ++i)
 604		cpu_logical_map(i) = i == cpu ? 0 : i;
 605
 606	/*
 607	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 608	 * using percpu variable early, for example, lockdep will
 609	 * access percpu variable inside lock_release
 610	 */
 611	set_my_cpu_offset(0);
 612
 613	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 614}
 615
 616struct mpidr_hash mpidr_hash;
 617#ifdef CONFIG_SMP
 618/**
 619 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 620 *			  level in order to build a linear index from an
 621 *			  MPIDR value. Resulting algorithm is a collision
 622 *			  free hash carried out through shifting and ORing
 623 */
 624static void __init smp_build_mpidr_hash(void)
 625{
 626	u32 i, affinity;
 627	u32 fs[3], bits[3], ls, mask = 0;
 628	/*
 629	 * Pre-scan the list of MPIDRS and filter out bits that do
 630	 * not contribute to affinity levels, ie they never toggle.
 631	 */
 632	for_each_possible_cpu(i)
 633		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 634	pr_debug("mask of set bits 0x%x\n", mask);
 635	/*
 636	 * Find and stash the last and first bit set at all affinity levels to
 637	 * check how many bits are required to represent them.
 638	 */
 639	for (i = 0; i < 3; i++) {
 640		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 641		/*
 642		 * Find the MSB bit and LSB bits position
 643		 * to determine how many bits are required
 644		 * to express the affinity level.
 645		 */
 646		ls = fls(affinity);
 647		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 648		bits[i] = ls - fs[i];
 649	}
 650	/*
 651	 * An index can be created from the MPIDR by isolating the
 652	 * significant bits at each affinity level and by shifting
 653	 * them in order to compress the 24 bits values space to a
 654	 * compressed set of values. This is equivalent to hashing
 655	 * the MPIDR through shifting and ORing. It is a collision free
 656	 * hash though not minimal since some levels might contain a number
 657	 * of CPUs that is not an exact power of 2 and their bit
 658	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 659	 */
 660	mpidr_hash.shift_aff[0] = fs[0];
 661	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 662	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 663						(bits[1] + bits[0]);
 664	mpidr_hash.mask = mask;
 665	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 666	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 667				mpidr_hash.shift_aff[0],
 668				mpidr_hash.shift_aff[1],
 669				mpidr_hash.shift_aff[2],
 670				mpidr_hash.mask,
 671				mpidr_hash.bits);
 672	/*
 673	 * 4x is an arbitrary value used to warn on a hash table much bigger
 674	 * than expected on most systems.
 675	 */
 676	if (mpidr_hash_size() > 4 * num_possible_cpus())
 677		pr_warn("Large number of MPIDR hash buckets detected\n");
 678	sync_cache_w(&mpidr_hash);
 679}
 680#endif
 681
 682/*
 683 * locate processor in the list of supported processor types.  The linker
 684 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 685 */
 686struct proc_info_list *lookup_processor(u32 midr)
 687{
 688	struct proc_info_list *list = lookup_processor_type(midr);
 689
 690	if (!list) {
 691		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 692		       smp_processor_id(), midr);
 693		while (1)
 694		/* can't use cpu_relax() here as it may require MMU setup */;
 695	}
 696
 697	return list;
 698}
 699
 700static void __init setup_processor(void)
 701{
 702	unsigned int midr = read_cpuid_id();
 703	struct proc_info_list *list = lookup_processor(midr);
 704
 705	cpu_name = list->cpu_name;
 706	__cpu_architecture = __get_cpu_architecture();
 707
 708	init_proc_vtable(list->proc);
 
 
 709#ifdef MULTI_TLB
 710	cpu_tlb = *list->tlb;
 711#endif
 712#ifdef MULTI_USER
 713	cpu_user = *list->user;
 714#endif
 715#ifdef MULTI_CACHE
 716	cpu_cache = *list->cache;
 717#endif
 718
 719	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 720		list->cpu_name, midr, midr & 15,
 721		proc_arch[cpu_architecture()], get_cr());
 722
 723	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 724		 list->arch_name, ENDIANNESS);
 725	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 726		 list->elf_name, ENDIANNESS);
 727	elf_hwcap = list->elf_hwcap;
 728
 729	cpuid_init_hwcaps();
 730	patch_aeabi_idiv();
 731
 732#ifndef CONFIG_ARM_THUMB
 733	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 734#endif
 735#ifdef CONFIG_MMU
 736	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 737#endif
 738	erratum_a15_798181_init();
 739
 740	elf_hwcap_fixup();
 741
 742	cacheid_init();
 743	cpu_init();
 744}
 745
 746void __init dump_machine_table(void)
 747{
 748	const struct machine_desc *p;
 749
 750	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 751	for_each_machine_desc(p)
 752		early_print("%08x\t%s\n", p->nr, p->name);
 753
 754	early_print("\nPlease check your kernel config and/or bootloader.\n");
 755
 756	while (true)
 757		/* can't use cpu_relax() here as it may require MMU setup */;
 758}
 759
 760int __init arm_add_memory(u64 start, u64 size)
 761{
 762	u64 aligned_start;
 
 
 
 
 
 
 763
 764	/*
 765	 * Ensure that start/size are aligned to a page boundary.
 766	 * Size is rounded down, start is rounded up.
 767	 */
 768	aligned_start = PAGE_ALIGN(start);
 769	if (aligned_start > start + size)
 770		size = 0;
 771	else
 772		size -= aligned_start - start;
 773
 774#ifndef CONFIG_PHYS_ADDR_T_64BIT
 775	if (aligned_start > ULONG_MAX) {
 776		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 777			start);
 778		return -EINVAL;
 779	}
 780
 781	if (aligned_start + size > ULONG_MAX) {
 782		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 783			(long long)start);
 784		/*
 785		 * To ensure bank->start + bank->size is representable in
 786		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 787		 * This means we lose a page after masking.
 788		 */
 789		size = ULONG_MAX - aligned_start;
 790	}
 791#endif
 792
 793	if (aligned_start < PHYS_OFFSET) {
 794		if (aligned_start + size <= PHYS_OFFSET) {
 795			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 796				aligned_start, aligned_start + size);
 797			return -EINVAL;
 798		}
 799
 800		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 801			aligned_start, (u64)PHYS_OFFSET);
 802
 803		size -= PHYS_OFFSET - aligned_start;
 804		aligned_start = PHYS_OFFSET;
 805	}
 806
 807	start = aligned_start;
 808	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 809
 810	/*
 811	 * Check whether this memory region has non-zero size or
 812	 * invalid node number.
 813	 */
 814	if (size == 0)
 815		return -EINVAL;
 816
 817	memblock_add(start, size);
 818	return 0;
 819}
 820
 821/*
 822 * Pick out the memory size.  We look for mem=size@start,
 823 * where start and size are "size[KkMm]"
 824 */
 825
 826static int __init early_mem(char *p)
 827{
 828	static int usermem __initdata = 0;
 829	u64 size;
 830	u64 start;
 831	char *endp;
 832
 833	/*
 834	 * If the user specifies memory size, we
 835	 * blow away any automatically generated
 836	 * size.
 837	 */
 838	if (usermem == 0) {
 839		usermem = 1;
 840		memblock_remove(memblock_start_of_DRAM(),
 841			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 842	}
 843
 844	start = PHYS_OFFSET;
 845	size  = memparse(p, &endp);
 846	if (*endp == '@')
 847		start = memparse(endp + 1, NULL);
 848
 849	arm_add_memory(start, size);
 850
 851	return 0;
 852}
 853early_param("mem", early_mem);
 854
 855static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 856{
 857	phys_addr_t start, end, res_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858	struct resource *res;
 859	u64 i;
 860
 861	kernel_code.start   = virt_to_phys(_text);
 862	kernel_code.end     = virt_to_phys(__init_begin - 1);
 863	kernel_data.start   = virt_to_phys(_sdata);
 864	kernel_data.end     = virt_to_phys(_end - 1);
 865
 866	for_each_mem_range(i, &start, &end) {
 867		unsigned long boot_alias_start;
 868
 869		/*
 870		 * In memblock, end points to the first byte after the
 871		 * range while in resourses, end points to the last byte in
 872		 * the range.
 873		 */
 874		res_end = end - 1;
 875
 876		/*
 877		 * Some systems have a special memory alias which is only
 878		 * used for booting.  We need to advertise this region to
 879		 * kexec-tools so they know where bootable RAM is located.
 880		 */
 881		boot_alias_start = phys_to_idmap(start);
 882		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 883			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 884			if (!res)
 885				panic("%s: Failed to allocate %zu bytes\n",
 886				      __func__, sizeof(*res));
 887			res->name = "System RAM (boot alias)";
 888			res->start = boot_alias_start;
 889			res->end = phys_to_idmap(res_end);
 890			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 891			request_resource(&iomem_resource, res);
 892		}
 893
 894		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 895		if (!res)
 896			panic("%s: Failed to allocate %zu bytes\n", __func__,
 897			      sizeof(*res));
 898		res->name  = "System RAM";
 899		res->start = start;
 900		res->end = res_end;
 901		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 902
 903		request_resource(&iomem_resource, res);
 904
 905		if (kernel_code.start >= res->start &&
 906		    kernel_code.end <= res->end)
 907			request_resource(res, &kernel_code);
 908		if (kernel_data.start >= res->start &&
 909		    kernel_data.end <= res->end)
 910			request_resource(res, &kernel_data);
 911	}
 912
 913	if (mdesc->video_start) {
 914		video_ram.start = mdesc->video_start;
 915		video_ram.end   = mdesc->video_end;
 916		request_resource(&iomem_resource, &video_ram);
 917	}
 918
 919	/*
 920	 * Some machines don't have the possibility of ever
 921	 * possessing lp0, lp1 or lp2
 922	 */
 923	if (mdesc->reserve_lp0)
 924		request_resource(&ioport_resource, &lp0);
 925	if (mdesc->reserve_lp1)
 926		request_resource(&ioport_resource, &lp1);
 927	if (mdesc->reserve_lp2)
 928		request_resource(&ioport_resource, &lp2);
 929}
 930
 931#if defined(CONFIG_VGA_CONSOLE)
 932struct screen_info vgacon_screen_info = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933 .orig_video_lines	= 30,
 934 .orig_video_cols	= 80,
 935 .orig_video_mode	= 0,
 936 .orig_video_ega_bx	= 0,
 937 .orig_video_isVGA	= 1,
 938 .orig_video_points	= 8
 939};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940#endif
 941
 942static int __init customize_machine(void)
 
 
 
 
 
 
 
 
 
 
 943{
 944	/*
 945	 * customizes platform devices, or adds new ones
 946	 * On DT based machines, we fall back to populating the
 947	 * machine from the device tree, if no callback is provided,
 948	 * otherwise we would always need an init_machine callback.
 949	 */
 950	if (machine_desc->init_machine)
 951		machine_desc->init_machine();
 952
 
 
 
 953	return 0;
 954}
 955arch_initcall(customize_machine);
 956
 957static int __init init_machine_late(void)
 
 
 958{
 959	struct device_node *root;
 960	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 961
 962	if (machine_desc->init_late)
 963		machine_desc->init_late();
 
 
 
 
 
 
 
 964
 965	root = of_find_node_by_path("/");
 966	if (root) {
 967		ret = of_property_read_string(root, "serial-number",
 968					      &system_serial);
 969		if (ret)
 970			system_serial = NULL;
 971	}
 972
 973	if (!system_serial)
 974		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 975					  system_serial_high,
 976					  system_serial_low);
 977
 978	return 0;
 
 
 
 
 
 
 
 
 
 
 979}
 980late_initcall(init_machine_late);
 981
 982#ifdef CONFIG_CRASH_RESERVE
 983/*
 984 * The crash region must be aligned to 128MB to avoid
 985 * zImage relocating below the reserved region.
 986 */
 987#define CRASH_ALIGN	(128 << 20)
 
 
 
 
 
 
 
 
 
 
 
 
 988
 
 
 
 
 
 
 
 
 
 
 989static inline unsigned long long get_total_mem(void)
 990{
 991	unsigned long total;
 992
 993	total = max_low_pfn - min_low_pfn;
 994	return total << PAGE_SHIFT;
 995}
 996
 997/**
 998 * reserve_crashkernel() - reserves memory are for crash kernel
 999 *
1000 * This function reserves memory area given in "crashkernel=" kernel command
1001 * line parameter. The memory reserved is used by a dump capture kernel when
1002 * primary kernel is crashing.
1003 */
1004static void __init reserve_crashkernel(void)
1005{
1006	unsigned long long crash_size, crash_base;
1007	unsigned long long total_mem;
1008	int ret;
1009
1010	total_mem = get_total_mem();
1011	ret = parse_crashkernel(boot_command_line, total_mem,
1012				&crash_size, &crash_base,
1013				NULL, NULL);
1014	/* invalid value specified or crashkernel=0 */
1015	if (ret || !crash_size)
1016		return;
1017
1018	if (crash_base <= 0) {
1019		unsigned long long crash_max = idmap_to_phys((u32)~0);
1020		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1021		if (crash_max > lowmem_max)
1022			crash_max = lowmem_max;
1023
1024		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1025						       CRASH_ALIGN, crash_max);
1026		if (!crash_base) {
1027			pr_err("crashkernel reservation failed - No suitable area found.\n");
1028			return;
1029		}
1030	} else {
1031		unsigned long long crash_max = crash_base + crash_size;
1032		unsigned long long start;
1033
1034		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1035						  crash_base, crash_max);
1036		if (!start) {
1037			pr_err("crashkernel reservation failed - memory is in use.\n");
1038			return;
1039		}
1040	}
1041
1042	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1043		(unsigned long)(crash_size >> 20),
1044		(unsigned long)(crash_base >> 20),
1045		(unsigned long)(total_mem >> 20));
 
1046
1047	/* The crashk resource must always be located in normal mem */
1048	crashk_res.start = crash_base;
1049	crashk_res.end = crash_base + crash_size - 1;
1050	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051
1052	if (arm_has_idmap_alias()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053		/*
1054		 * If we have a special RAM alias for use at boot, we
1055		 * need to advertise to kexec tools where the alias is.
 
 
1056		 */
1057		static struct resource crashk_boot_res = {
1058			.name = "Crash kernel (boot alias)",
1059			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1060		};
1061
1062		crashk_boot_res.start = phys_to_idmap(crash_base);
1063		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1064		insert_resource(&iomem_resource, &crashk_boot_res);
 
 
1065	}
1066}
1067#else
1068static inline void reserve_crashkernel(void) {}
1069#endif /* CONFIG_CRASH_RESERVE*/
1070
1071void __init hyp_mode_check(void)
1072{
1073#ifdef CONFIG_ARM_VIRT_EXT
1074	sync_boot_mode();
 
 
 
 
1075
1076	if (is_hyp_mode_available()) {
1077		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1078		pr_info("CPU: Virtualization extensions available.\n");
1079	} else if (is_hyp_mode_mismatched()) {
1080		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1081			__boot_cpu_mode & MODE_MASK);
1082		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1083	} else
1084		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1085#endif
1086}
 
 
 
 
 
 
 
 
 
 
 
1087
1088static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 
1089
1090static int arm_restart(struct notifier_block *nb, unsigned long action,
1091		       void *data)
1092{
1093	__arm_pm_restart(action, data);
1094	return NOTIFY_DONE;
1095}
1096
1097static struct notifier_block arm_restart_nb = {
1098	.notifier_call = arm_restart,
1099	.priority = 128,
1100};
1101
1102void __init setup_arch(char **cmdline_p)
1103{
1104	const struct machine_desc *mdesc = NULL;
1105	void *atags_vaddr = NULL;
1106
1107	if (__atags_pointer)
1108		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1109
1110	setup_processor();
1111	if (atags_vaddr) {
1112		mdesc = setup_machine_fdt(atags_vaddr);
1113		if (mdesc)
1114			memblock_reserve(__atags_pointer,
1115					 fdt_totalsize(atags_vaddr));
1116	}
1117	if (!mdesc)
1118		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1119	if (!mdesc) {
1120		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1121		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1122			    __atags_pointer);
1123		if (__atags_pointer)
1124			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1125		dump_machine_table();
1126	}
1127
1128	machine_desc = mdesc;
1129	machine_name = mdesc->name;
1130	dump_stack_set_arch_desc("%s", mdesc->name);
1131
1132	if (mdesc->reboot_mode != REBOOT_HARD)
1133		reboot_mode = mdesc->reboot_mode;
1134
1135	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1136
1137	/* populate cmd_line too for later use, preserving boot_command_line */
1138	strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1139	*cmdline_p = cmd_line;
1140
1141	early_fixmap_init();
1142	early_ioremap_init();
1143
1144	parse_early_param();
1145
1146#ifdef CONFIG_MMU
1147	early_mm_init(mdesc);
1148#endif
1149	setup_dma_zone(mdesc);
1150	xen_early_init();
1151	arm_efi_init();
1152	/*
1153	 * Make sure the calculation for lowmem/highmem is set appropriately
1154	 * before reserving/allocating any memory
1155	 */
1156	adjust_lowmem_bounds();
1157	arm_memblock_init(mdesc);
1158	/* Memory may have been removed so recalculate the bounds. */
1159	adjust_lowmem_bounds();
1160
1161	early_ioremap_reset();
1162
1163	paging_init(mdesc);
1164	kasan_init();
1165	request_standard_resources(mdesc);
1166
1167	if (mdesc->restart) {
1168		__arm_pm_restart = mdesc->restart;
1169		register_restart_handler(&arm_restart_nb);
1170	}
1171
1172	unflatten_device_tree();
1173
1174	arm_dt_init_cpu_maps();
1175	psci_dt_init();
1176#ifdef CONFIG_SMP
1177	if (is_smp()) {
1178		if (!mdesc->smp_init || !mdesc->smp_init()) {
1179			if (psci_smp_available())
1180				smp_set_ops(&psci_smp_ops);
1181			else if (mdesc->smp)
1182				smp_set_ops(mdesc->smp);
1183		}
1184		smp_init_cpus();
1185		smp_build_mpidr_hash();
1186	}
1187#endif
 
1188
1189	if (!is_smp())
1190		hyp_mode_check();
1191
1192	reserve_crashkernel();
 
 
 
 
 
 
 
 
1193
1194#ifdef CONFIG_VT
1195#if defined(CONFIG_VGA_CONSOLE)
1196	vgacon_register_screen(&vgacon_screen_info);
 
 
1197#endif
1198#endif
 
1199
1200	if (mdesc->init_early)
1201		mdesc->init_early();
1202}
1203
1204bool arch_cpu_is_hotpluggable(int num)
 
1205{
1206	return platform_can_hotplug_cpu(num);
 
 
 
 
 
 
 
 
1207}
 
1208
1209#ifdef CONFIG_HAVE_PROC_CPU
1210static int __init proc_cpu_init(void)
1211{
1212	struct proc_dir_entry *res;
1213
1214	res = proc_mkdir("cpu", NULL);
1215	if (!res)
1216		return -ENOMEM;
1217	return 0;
1218}
1219fs_initcall(proc_cpu_init);
1220#endif
1221
1222static const char *hwcap_str[] = {
1223	"swp",
1224	"half",
1225	"thumb",
1226	"26bit",
1227	"fastmult",
1228	"fpa",
1229	"vfp",
1230	"edsp",
1231	"java",
1232	"iwmmxt",
1233	"crunch",
1234	"thumbee",
1235	"neon",
1236	"vfpv3",
1237	"vfpv3d16",
1238	"tls",
1239	"vfpv4",
1240	"idiva",
1241	"idivt",
1242	"vfpd32",
1243	"lpae",
1244	"evtstrm",
1245	"fphp",
1246	"asimdhp",
1247	"asimddp",
1248	"asimdfhm",
1249	"asimdbf16",
1250	"i8mm",
1251	NULL
1252};
1253
1254static const char *hwcap2_str[] = {
1255	"aes",
1256	"pmull",
1257	"sha1",
1258	"sha2",
1259	"crc32",
1260	"sb",
1261	"ssbs",
1262	NULL
1263};
1264
1265static int c_show(struct seq_file *m, void *v)
1266{
1267	int i, j;
1268	u32 cpuid;
 
 
1269
 
1270	for_each_online_cpu(i) {
1271		/*
1272		 * glibc reads /proc/cpuinfo to determine the number of
1273		 * online processors, looking for lines beginning with
1274		 * "processor".  Give glibc what it expects.
1275		 */
1276		seq_printf(m, "processor\t: %d\n", i);
1277		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1278		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1279			   cpu_name, cpuid & 15, elf_platform);
1280
1281#if defined(CONFIG_SMP)
1282		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1283			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1284			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1285#else
1286		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1287			   loops_per_jiffy / (500000/HZ),
1288			   (loops_per_jiffy / (5000/HZ)) % 100);
1289#endif
1290		/* dump out the processor features */
1291		seq_puts(m, "Features\t: ");
1292
1293		for (j = 0; hwcap_str[j]; j++)
1294			if (elf_hwcap & (1 << j))
1295				seq_printf(m, "%s ", hwcap_str[j]);
1296
1297		for (j = 0; hwcap2_str[j]; j++)
1298			if (elf_hwcap2 & (1 << j))
1299				seq_printf(m, "%s ", hwcap2_str[j]);
1300
1301		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1302		seq_printf(m, "CPU architecture: %s\n",
1303			   proc_arch[cpu_architecture()]);
1304
1305		if ((cpuid & 0x0008f000) == 0x00000000) {
1306			/* pre-ARM7 */
1307			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1308		} else {
1309			if ((cpuid & 0x0008f000) == 0x00007000) {
1310				/* ARM7 */
1311				seq_printf(m, "CPU variant\t: 0x%02x\n",
1312					   (cpuid >> 16) & 127);
1313			} else {
1314				/* post-ARM7 */
1315				seq_printf(m, "CPU variant\t: 0x%x\n",
1316					   (cpuid >> 20) & 15);
1317			}
1318			seq_printf(m, "CPU part\t: 0x%03x\n",
1319				   (cpuid >> 4) & 0xfff);
1320		}
1321		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1322	}
 
 
 
1323
1324	seq_printf(m, "Hardware\t: %s\n", machine_name);
1325	seq_printf(m, "Revision\t: %04x\n", system_rev);
1326	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1327
1328	return 0;
1329}
1330
1331static void *c_start(struct seq_file *m, loff_t *pos)
1332{
1333	return *pos < 1 ? (void *)1 : NULL;
1334}
1335
1336static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1337{
1338	++*pos;
1339	return NULL;
1340}
1341
1342static void c_stop(struct seq_file *m, void *v)
1343{
1344}
1345
1346const struct seq_operations cpuinfo_op = {
1347	.start	= c_start,
1348	.next	= c_next,
1349	.stop	= c_stop,
1350	.show	= c_show
1351};