Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
 
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/utsname.h>
  16#include <linux/initrd.h>
  17#include <linux/console.h>
  18#include <linux/bootmem.h>
  19#include <linux/seq_file.h>
  20#include <linux/screen_info.h>
 
  21#include <linux/init.h>
  22#include <linux/kexec.h>
 
  23#include <linux/of_fdt.h>
  24#include <linux/crash_dump.h>
  25#include <linux/root_dev.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/fs.h>
  30#include <linux/proc_fs.h>
  31#include <linux/memblock.h>
 
 
 
 
  32
  33#include <asm/unified.h>
 
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
 
  36#include <asm/elf.h>
 
 
  37#include <asm/procinfo.h>
 
  38#include <asm/sections.h>
  39#include <asm/setup.h>
  40#include <asm/smp_plat.h>
  41#include <asm/mach-types.h>
  42#include <asm/cacheflush.h>
  43#include <asm/cachetype.h>
  44#include <asm/tlbflush.h>
 
  45
  46#include <asm/prom.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mach/irq.h>
  49#include <asm/mach/time.h>
 
 
  50#include <asm/traps.h>
  51#include <asm/unwind.h>
 
 
 
  52
  53#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
  54#include "compat.h"
  55#endif
  56#include "atags.h"
  57#include "tcm.h"
  58
  59#ifndef MEM_SIZE
  60#define MEM_SIZE	(16*1024*1024)
  61#endif
  62
  63#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  64char fpe_type[8];
  65
  66static int __init fpe_setup(char *line)
  67{
  68	memcpy(fpe_type, line, 8);
  69	return 1;
  70}
  71
  72__setup("fpe=", fpe_setup);
  73#endif
  74
  75extern void paging_init(struct machine_desc *desc);
  76extern void sanity_check_meminfo(void);
  77extern void reboot_setup(char *str);
 
 
 
  78
  79unsigned int processor_id;
  80EXPORT_SYMBOL(processor_id);
  81unsigned int __machine_arch_type __read_mostly;
  82EXPORT_SYMBOL(__machine_arch_type);
  83unsigned int cacheid __read_mostly;
  84EXPORT_SYMBOL(cacheid);
  85
  86unsigned int __atags_pointer __initdata;
  87
  88unsigned int system_rev;
  89EXPORT_SYMBOL(system_rev);
  90
 
 
 
  91unsigned int system_serial_low;
  92EXPORT_SYMBOL(system_serial_low);
  93
  94unsigned int system_serial_high;
  95EXPORT_SYMBOL(system_serial_high);
  96
  97unsigned int elf_hwcap __read_mostly;
  98EXPORT_SYMBOL(elf_hwcap);
  99
 
 
 
 100
 101#ifdef MULTI_CPU
 102struct processor processor __read_mostly;
 
 
 
 
 
 103#endif
 104#ifdef MULTI_TLB
 105struct cpu_tlb_fns cpu_tlb __read_mostly;
 106#endif
 107#ifdef MULTI_USER
 108struct cpu_user_fns cpu_user __read_mostly;
 109#endif
 110#ifdef MULTI_CACHE
 111struct cpu_cache_fns cpu_cache __read_mostly;
 112#endif
 113#ifdef CONFIG_OUTER_CACHE
 114struct outer_cache_fns outer_cache __read_mostly;
 115EXPORT_SYMBOL(outer_cache);
 116#endif
 117
 
 
 
 
 
 
 
 118struct stack {
 119	u32 irq[3];
 120	u32 abt[3];
 121	u32 und[3];
 
 122} ____cacheline_aligned;
 123
 
 124static struct stack stacks[NR_CPUS];
 
 125
 126char elf_platform[ELF_PLATFORM_SIZE];
 127EXPORT_SYMBOL(elf_platform);
 128
 129static const char *cpu_name;
 130static const char *machine_name;
 131static char __initdata cmd_line[COMMAND_LINE_SIZE];
 132struct machine_desc *machine_desc __initdata;
 133
 134static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
 135static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 136#define ENDIANNESS ((char)endian_test.l)
 137
 138DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 139
 140/*
 141 * Standard memory resources
 142 */
 143static struct resource mem_res[] = {
 144	{
 145		.name = "Video RAM",
 146		.start = 0,
 147		.end = 0,
 148		.flags = IORESOURCE_MEM
 149	},
 150	{
 151		.name = "Kernel text",
 152		.start = 0,
 153		.end = 0,
 154		.flags = IORESOURCE_MEM
 155	},
 156	{
 157		.name = "Kernel data",
 158		.start = 0,
 159		.end = 0,
 160		.flags = IORESOURCE_MEM
 161	}
 162};
 163
 164#define video_ram   mem_res[0]
 165#define kernel_code mem_res[1]
 166#define kernel_data mem_res[2]
 167
 168static struct resource io_res[] = {
 169	{
 170		.name = "reserved",
 171		.start = 0x3bc,
 172		.end = 0x3be,
 173		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 174	},
 175	{
 176		.name = "reserved",
 177		.start = 0x378,
 178		.end = 0x37f,
 179		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 180	},
 181	{
 182		.name = "reserved",
 183		.start = 0x278,
 184		.end = 0x27f,
 185		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 186	}
 187};
 188
 189#define lp0 io_res[0]
 190#define lp1 io_res[1]
 191#define lp2 io_res[2]
 192
 193static const char *proc_arch[] = {
 194	"undefined/unknown",
 195	"3",
 196	"4",
 197	"4T",
 198	"5",
 199	"5T",
 200	"5TE",
 201	"5TEJ",
 202	"6TEJ",
 203	"7",
 204	"?(11)",
 205	"?(12)",
 206	"?(13)",
 207	"?(14)",
 208	"?(15)",
 209	"?(16)",
 210	"?(17)",
 211};
 212
 213int cpu_architecture(void)
 
 
 
 
 
 
 214{
 215	int cpu_arch;
 216
 217	if ((read_cpuid_id() & 0x0008f000) == 0) {
 218		cpu_arch = CPU_ARCH_UNKNOWN;
 219	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 220		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 221	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 222		cpu_arch = (read_cpuid_id() >> 16) & 7;
 223		if (cpu_arch)
 224			cpu_arch += CPU_ARCH_ARMv3;
 225	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 226		unsigned int mmfr0;
 227
 228		/* Revised CPUID format. Read the Memory Model Feature
 229		 * Register 0 and check for VMSAv7 or PMSAv7 */
 230		asm("mrc	p15, 0, %0, c0, c1, 4"
 231		    : "=r" (mmfr0));
 232		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 233		    (mmfr0 & 0x000000f0) >= 0x00000030)
 234			cpu_arch = CPU_ARCH_ARMv7;
 235		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 236			 (mmfr0 & 0x000000f0) == 0x00000020)
 237			cpu_arch = CPU_ARCH_ARMv6;
 238		else
 239			cpu_arch = CPU_ARCH_UNKNOWN;
 240	} else
 241		cpu_arch = CPU_ARCH_UNKNOWN;
 242
 243	return cpu_arch;
 244}
 
 
 
 
 
 
 
 
 245
 246static int cpu_has_aliasing_icache(unsigned int arch)
 247{
 248	int aliasing_icache;
 249	unsigned int id_reg, num_sets, line_size;
 250
 
 
 
 
 251	/* arch specifies the register format */
 252	switch (arch) {
 253	case CPU_ARCH_ARMv7:
 254		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
 255		    : /* No output operands */
 256		    : "r" (1));
 257		isb();
 258		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
 259		    : "=r" (id_reg));
 260		line_size = 4 << ((id_reg & 0x7) + 2);
 261		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 262		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 263		break;
 264	case CPU_ARCH_ARMv6:
 265		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 266		break;
 267	default:
 268		/* I-cache aliases will be handled by D-cache aliasing code */
 269		aliasing_icache = 0;
 270	}
 271
 272	return aliasing_icache;
 273}
 274
 275static void __init cacheid_init(void)
 276{
 277	unsigned int cachetype = read_cpuid_cachetype();
 278	unsigned int arch = cpu_architecture();
 279
 280	if (arch >= CPU_ARCH_ARMv6) {
 281		if ((cachetype & (7 << 29)) == 4 << 29) {
 
 
 
 
 282			/* ARMv7 register format */
 283			arch = CPU_ARCH_ARMv7;
 284			cacheid = CACHEID_VIPT_NONALIASING;
 285			if ((cachetype & (3 << 14)) == 1 << 14)
 
 286				cacheid |= CACHEID_ASID_TAGGED;
 
 
 
 
 
 287		} else {
 288			arch = CPU_ARCH_ARMv6;
 289			if (cachetype & (1 << 23))
 290				cacheid = CACHEID_VIPT_ALIASING;
 291			else
 292				cacheid = CACHEID_VIPT_NONALIASING;
 293		}
 294		if (cpu_has_aliasing_icache(arch))
 295			cacheid |= CACHEID_VIPT_I_ALIASING;
 296	} else {
 297		cacheid = CACHEID_VIVT;
 298	}
 299
 300	printk("CPU: %s data cache, %s instruction cache\n",
 301		cache_is_vivt() ? "VIVT" :
 302		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 303		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
 304		cache_is_vivt() ? "VIVT" :
 305		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 306		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 
 307		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 308}
 309
 310/*
 311 * These functions re-use the assembly code in head.S, which
 312 * already provide the required functionality.
 313 */
 314extern struct proc_info_list *lookup_processor_type(unsigned int);
 315
 316void __init early_print(const char *str, ...)
 317{
 318	extern void printascii(const char *);
 319	char buf[256];
 320	va_list ap;
 321
 322	va_start(ap, str);
 323	vsnprintf(buf, sizeof(buf), str, ap);
 324	va_end(ap);
 325
 326#ifdef CONFIG_DEBUG_LL
 327	printascii(buf);
 328#endif
 329	printk("%s", buf);
 330}
 331
 332static void __init feat_v6_fixup(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333{
 334	int id = read_cpuid_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336	if ((id & 0xff0f0000) != 0x41070000)
 
 
 
 
 
 
 
 
 
 
 
 337		return;
 338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339	/*
 340	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 341	 * see also kuser_get_tls_init.
 342	 */
 343	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
 
 344		elf_hwcap &= ~HWCAP_TLS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347/*
 348 * cpu_init - initialise one CPU.
 349 *
 350 * cpu_init sets up the per-CPU stacks.
 351 */
 352void cpu_init(void)
 353{
 
 354	unsigned int cpu = smp_processor_id();
 355	struct stack *stk = &stacks[cpu];
 356
 357	if (cpu >= NR_CPUS) {
 358		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
 359		BUG();
 360	}
 361
 
 
 
 
 
 
 362	cpu_proc_init();
 363
 364	/*
 365	 * Define the placement constraint for the inline asm directive below.
 366	 * In Thumb-2, msr with an immediate value is not allowed.
 367	 */
 368#ifdef CONFIG_THUMB2_KERNEL
 369#define PLC	"r"
 
 370#else
 371#define PLC	"I"
 
 372#endif
 373
 374	/*
 375	 * setup stacks for re-entrant exception handlers
 376	 */
 377	__asm__ (
 378	"msr	cpsr_c, %1\n\t"
 379	"add	r14, %0, %2\n\t"
 380	"mov	sp, r14\n\t"
 381	"msr	cpsr_c, %3\n\t"
 382	"add	r14, %0, %4\n\t"
 383	"mov	sp, r14\n\t"
 384	"msr	cpsr_c, %5\n\t"
 385	"add	r14, %0, %6\n\t"
 386	"mov	sp, r14\n\t"
 387	"msr	cpsr_c, %7"
 
 
 
 388	    :
 389	    : "r" (stk),
 390	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 391	      "I" (offsetof(struct stack, irq[0])),
 392	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 393	      "I" (offsetof(struct stack, abt[0])),
 394	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 395	      "I" (offsetof(struct stack, und[0])),
 396	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 
 
 397	    : "r14");
 
 398}
 399
 400static void __init setup_processor(void)
 
 
 401{
 402	struct proc_info_list *list;
 
 
 
 
 
 
 403
 404	/*
 405	 * locate processor in the list of supported processor
 406	 * types.  The linker builds this table for us from the
 407	 * entries in arch/arm/mm/proc-*.S
 408	 */
 409	list = lookup_processor_type(read_cpuid_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410	if (!list) {
 411		printk("CPU configuration botched (ID %08x), unable "
 412		       "to continue.\n", read_cpuid_id());
 413		while (1);
 
 414	}
 415
 
 
 
 
 
 
 
 
 416	cpu_name = list->cpu_name;
 
 417
 418#ifdef MULTI_CPU
 419	processor = *list->proc;
 420#endif
 421#ifdef MULTI_TLB
 422	cpu_tlb = *list->tlb;
 423#endif
 424#ifdef MULTI_USER
 425	cpu_user = *list->user;
 426#endif
 427#ifdef MULTI_CACHE
 428	cpu_cache = *list->cache;
 429#endif
 430
 431	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 432	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 433	       proc_arch[cpu_architecture()], cr_alignment);
 434
 435	sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
 436	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
 
 
 437	elf_hwcap = list->elf_hwcap;
 
 
 
 
 438#ifndef CONFIG_ARM_THUMB
 439	elf_hwcap &= ~HWCAP_THUMB;
 
 
 
 440#endif
 
 441
 442	feat_v6_fixup();
 443
 444	cacheid_init();
 445	cpu_init();
 446}
 447
 448void __init dump_machine_table(void)
 449{
 450	struct machine_desc *p;
 451
 452	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 453	for_each_machine_desc(p)
 454		early_print("%08x\t%s\n", p->nr, p->name);
 455
 456	early_print("\nPlease check your kernel config and/or bootloader.\n");
 457
 458	while (true)
 459		/* can't use cpu_relax() here as it may require MMU setup */;
 460}
 461
 462int __init arm_add_memory(phys_addr_t start, unsigned long size)
 463{
 464	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
 465
 466	if (meminfo.nr_banks >= NR_BANKS) {
 467		printk(KERN_CRIT "NR_BANKS too low, "
 468			"ignoring memory at 0x%08llx\n", (long long)start);
 469		return -EINVAL;
 470	}
 471
 472	/*
 473	 * Ensure that start/size are aligned to a page boundary.
 474	 * Size is appropriately rounded down, start is rounded up.
 475	 */
 476	size -= start & ~PAGE_MASK;
 477	bank->start = PAGE_ALIGN(start);
 478	bank->size  = size & PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	/*
 481	 * Check whether this memory region has non-zero size or
 482	 * invalid node number.
 483	 */
 484	if (bank->size == 0)
 485		return -EINVAL;
 486
 487	meminfo.nr_banks++;
 488	return 0;
 489}
 490
 491/*
 492 * Pick out the memory size.  We look for mem=size@start,
 493 * where start and size are "size[KkMm]"
 494 */
 
 495static int __init early_mem(char *p)
 496{
 497	static int usermem __initdata = 0;
 498	unsigned long size;
 499	phys_addr_t start;
 500	char *endp;
 501
 502	/*
 503	 * If the user specifies memory size, we
 504	 * blow away any automatically generated
 505	 * size.
 506	 */
 507	if (usermem == 0) {
 508		usermem = 1;
 509		meminfo.nr_banks = 0;
 
 510	}
 511
 512	start = PHYS_OFFSET;
 513	size  = memparse(p, &endp);
 514	if (*endp == '@')
 515		start = memparse(endp + 1, NULL);
 516
 517	arm_add_memory(start, size);
 518
 519	return 0;
 520}
 521early_param("mem", early_mem);
 522
 523static void __init
 524setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
 525{
 526#ifdef CONFIG_BLK_DEV_RAM
 527	extern int rd_size, rd_image_start, rd_prompt, rd_doload;
 528
 529	rd_image_start = image_start;
 530	rd_prompt = prompt;
 531	rd_doload = doload;
 532
 533	if (rd_sz)
 534		rd_size = rd_sz;
 535#endif
 536}
 537
 538static void __init request_standard_resources(struct machine_desc *mdesc)
 539{
 540	struct memblock_region *region;
 541	struct resource *res;
 
 542
 543	kernel_code.start   = virt_to_phys(_text);
 544	kernel_code.end     = virt_to_phys(_etext - 1);
 545	kernel_data.start   = virt_to_phys(_sdata);
 546	kernel_data.end     = virt_to_phys(_end - 1);
 547
 548	for_each_memblock(memory, region) {
 549		res = alloc_bootmem_low(sizeof(*res));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550		res->name  = "System RAM";
 551		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 552		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 553		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 554
 555		request_resource(&iomem_resource, res);
 556
 557		if (kernel_code.start >= res->start &&
 558		    kernel_code.end <= res->end)
 559			request_resource(res, &kernel_code);
 560		if (kernel_data.start >= res->start &&
 561		    kernel_data.end <= res->end)
 562			request_resource(res, &kernel_data);
 563	}
 564
 565	if (mdesc->video_start) {
 566		video_ram.start = mdesc->video_start;
 567		video_ram.end   = mdesc->video_end;
 568		request_resource(&iomem_resource, &video_ram);
 569	}
 570
 571	/*
 572	 * Some machines don't have the possibility of ever
 573	 * possessing lp0, lp1 or lp2
 574	 */
 575	if (mdesc->reserve_lp0)
 576		request_resource(&ioport_resource, &lp0);
 577	if (mdesc->reserve_lp1)
 578		request_resource(&ioport_resource, &lp1);
 579	if (mdesc->reserve_lp2)
 580		request_resource(&ioport_resource, &lp2);
 581}
 582
 583/*
 584 *  Tag parsing.
 585 *
 586 * This is the new way of passing data to the kernel at boot time.  Rather
 587 * than passing a fixed inflexible structure to the kernel, we pass a list
 588 * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
 589 * tag for the list to be recognised (to distinguish the tagged list from
 590 * a param_struct).  The list is terminated with a zero-length tag (this tag
 591 * is not parsed in any way).
 592 */
 593static int __init parse_tag_core(const struct tag *tag)
 594{
 595	if (tag->hdr.size > 2) {
 596		if ((tag->u.core.flags & 1) == 0)
 597			root_mountflags &= ~MS_RDONLY;
 598		ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
 599	}
 600	return 0;
 601}
 602
 603__tagtable(ATAG_CORE, parse_tag_core);
 604
 605static int __init parse_tag_mem32(const struct tag *tag)
 606{
 607	return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
 608}
 609
 610__tagtable(ATAG_MEM, parse_tag_mem32);
 611
 612#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
 613struct screen_info screen_info = {
 614 .orig_video_lines	= 30,
 615 .orig_video_cols	= 80,
 616 .orig_video_mode	= 0,
 617 .orig_video_ega_bx	= 0,
 618 .orig_video_isVGA	= 1,
 619 .orig_video_points	= 8
 620};
 621
 622static int __init parse_tag_videotext(const struct tag *tag)
 623{
 624	screen_info.orig_x            = tag->u.videotext.x;
 625	screen_info.orig_y            = tag->u.videotext.y;
 626	screen_info.orig_video_page   = tag->u.videotext.video_page;
 627	screen_info.orig_video_mode   = tag->u.videotext.video_mode;
 628	screen_info.orig_video_cols   = tag->u.videotext.video_cols;
 629	screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
 630	screen_info.orig_video_lines  = tag->u.videotext.video_lines;
 631	screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
 632	screen_info.orig_video_points = tag->u.videotext.video_points;
 633	return 0;
 634}
 635
 636__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
 637#endif
 638
 639static int __init parse_tag_ramdisk(const struct tag *tag)
 640{
 641	setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
 642		      (tag->u.ramdisk.flags & 2) == 0,
 643		      tag->u.ramdisk.start, tag->u.ramdisk.size);
 644	return 0;
 645}
 646
 647__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
 648
 649static int __init parse_tag_serialnr(const struct tag *tag)
 650{
 651	system_serial_low = tag->u.serialnr.low;
 652	system_serial_high = tag->u.serialnr.high;
 653	return 0;
 654}
 655
 656__tagtable(ATAG_SERIAL, parse_tag_serialnr);
 
 
 657
 658static int __init parse_tag_revision(const struct tag *tag)
 659{
 660	system_rev = tag->u.revision.rev;
 661	return 0;
 662}
 
 663
 664__tagtable(ATAG_REVISION, parse_tag_revision);
 665
 666static int __init parse_tag_cmdline(const struct tag *tag)
 667{
 668#if defined(CONFIG_CMDLINE_EXTEND)
 669	strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
 670	strlcat(default_command_line, tag->u.cmdline.cmdline,
 671		COMMAND_LINE_SIZE);
 672#elif defined(CONFIG_CMDLINE_FORCE)
 673	pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
 674#else
 675	strlcpy(default_command_line, tag->u.cmdline.cmdline,
 676		COMMAND_LINE_SIZE);
 677#endif
 678	return 0;
 679}
 680
 681__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
 
 682
 683/*
 684 * Scan the tag table for this tag, and call its parse function.
 685 * The tag table is built by the linker from all the __tagtable
 686 * declarations.
 687 */
 688static int __init parse_tag(const struct tag *tag)
 689{
 690	extern struct tagtable __tagtable_begin, __tagtable_end;
 691	struct tagtable *t;
 692
 693	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
 694		if (tag->hdr.tag == t->tag) {
 695			t->parse(tag);
 696			break;
 697		}
 698
 699	return t < &__tagtable_end;
 700}
 
 
 701
 702/*
 703 * Parse all tags in the list, checking both the global and architecture
 704 * specific tag tables.
 705 */
 706static void __init parse_tags(const struct tag *t)
 707{
 708	for (; t->hdr.size; t = tag_next(t))
 709		if (!parse_tag(t))
 710			printk(KERN_WARNING
 711				"Ignoring unrecognised tag 0x%08x\n",
 712				t->hdr.tag);
 713}
 
 714
 
 715/*
 716 * This holds our defaults.
 
 717 */
 718static struct init_tags {
 719	struct tag_header hdr1;
 720	struct tag_core   core;
 721	struct tag_header hdr2;
 722	struct tag_mem32  mem;
 723	struct tag_header hdr3;
 724} init_tags __initdata = {
 725	{ tag_size(tag_core), ATAG_CORE },
 726	{ 1, PAGE_SIZE, 0xff },
 727	{ tag_size(tag_mem32), ATAG_MEM },
 728	{ MEM_SIZE },
 729	{ 0, ATAG_NONE }
 730};
 731
 732static int __init customize_machine(void)
 733{
 734	/* customizes platform devices, or adds new ones */
 735	if (machine_desc->init_machine)
 736		machine_desc->init_machine();
 737	return 0;
 738}
 739arch_initcall(customize_machine);
 740
 741#ifdef CONFIG_KEXEC
 742static inline unsigned long long get_total_mem(void)
 743{
 744	unsigned long total;
 745
 746	total = max_low_pfn - min_low_pfn;
 747	return total << PAGE_SHIFT;
 748}
 749
 750/**
 751 * reserve_crashkernel() - reserves memory are for crash kernel
 752 *
 753 * This function reserves memory area given in "crashkernel=" kernel command
 754 * line parameter. The memory reserved is used by a dump capture kernel when
 755 * primary kernel is crashing.
 756 */
 757static void __init reserve_crashkernel(void)
 758{
 759	unsigned long long crash_size, crash_base;
 760	unsigned long long total_mem;
 761	int ret;
 762
 763	total_mem = get_total_mem();
 764	ret = parse_crashkernel(boot_command_line, total_mem,
 765				&crash_size, &crash_base);
 766	if (ret)
 
 767		return;
 768
 769	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
 770	if (ret < 0) {
 771		printk(KERN_WARNING "crashkernel reservation failed - "
 772		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
 773		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774	}
 775
 776	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 777	       "for crashkernel (System RAM: %ldMB)\n",
 778	       (unsigned long)(crash_size >> 20),
 779	       (unsigned long)(crash_base >> 20),
 780	       (unsigned long)(total_mem >> 20));
 781
 
 782	crashk_res.start = crash_base;
 783	crashk_res.end = crash_base + crash_size - 1;
 784	insert_resource(&iomem_resource, &crashk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785}
 786#else
 787static inline void reserve_crashkernel(void) {}
 788#endif /* CONFIG_KEXEC */
 789
 790static void __init squash_mem_tags(struct tag *tag)
 791{
 792	for (; tag->hdr.size; tag = tag_next(tag))
 793		if (tag->hdr.tag == ATAG_MEM)
 794			tag->hdr.tag = ATAG_NONE;
 795}
 796
 797static struct machine_desc * __init setup_machine_tags(unsigned int nr)
 798{
 799	struct tag *tags = (struct tag *)&init_tags;
 800	struct machine_desc *mdesc = NULL, *p;
 801	char *from = default_command_line;
 802
 803	init_tags.mem.start = PHYS_OFFSET;
 804
 805	/*
 806	 * locate machine in the list of supported machines.
 807	 */
 808	for_each_machine_desc(p)
 809		if (nr == p->nr) {
 810			printk("Machine: %s\n", p->name);
 811			mdesc = p;
 812			break;
 813		}
 814
 815	if (!mdesc) {
 816		early_print("\nError: unrecognized/unsupported machine ID"
 817			" (r1 = 0x%08x).\n\n", nr);
 818		dump_machine_table(); /* does not return */
 819	}
 820
 821	if (__atags_pointer)
 822		tags = phys_to_virt(__atags_pointer);
 823	else if (mdesc->boot_params) {
 824#ifdef CONFIG_MMU
 825		/*
 826		 * We still are executing with a minimal MMU mapping created
 827		 * with the presumption that the machine default for this
 828		 * is located in the first MB of RAM.  Anything else will
 829		 * fault and silently hang the kernel at this point.
 830		 */
 831		if (mdesc->boot_params < PHYS_OFFSET ||
 832		    mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
 833			printk(KERN_WARNING
 834			       "Default boot params at physical 0x%08lx out of reach\n",
 835			       mdesc->boot_params);
 836		} else
 837#endif
 838		{
 839			tags = phys_to_virt(mdesc->boot_params);
 840		}
 841	}
 842
 843#if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
 844	/*
 845	 * If we have the old style parameters, convert them to
 846	 * a tag list.
 847	 */
 848	if (tags->hdr.tag != ATAG_CORE)
 849		convert_to_tag_list(tags);
 850#endif
 851
 852	if (tags->hdr.tag != ATAG_CORE) {
 853#if defined(CONFIG_OF)
 854		/*
 855		 * If CONFIG_OF is set, then assume this is a reasonably
 856		 * modern system that should pass boot parameters
 857		 */
 858		early_print("Warning: Neither atags nor dtb found\n");
 859#endif
 860		tags = (struct tag *)&init_tags;
 861	}
 862
 863	if (mdesc->fixup)
 864		mdesc->fixup(mdesc, tags, &from, &meminfo);
 865
 866	if (tags->hdr.tag == ATAG_CORE) {
 867		if (meminfo.nr_banks != 0)
 868			squash_mem_tags(tags);
 869		save_atags(tags);
 870		parse_tags(tags);
 871	}
 872
 873	/* parse_early_param needs a boot_command_line */
 874	strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
 875
 876	return mdesc;
 
 
 
 
 877}
 878
 
 
 
 
 879
 880void __init setup_arch(char **cmdline_p)
 881{
 882	struct machine_desc *mdesc;
 
 883
 884	unwind_init();
 
 885
 886	setup_processor();
 887	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
 888	if (!mdesc)
 889		mdesc = setup_machine_tags(machine_arch_type);
 
 
 
 
 
 
 
 
 
 890	machine_desc = mdesc;
 891	machine_name = mdesc->name;
 
 892
 893	if (mdesc->soft_reboot)
 894		reboot_setup("s");
 895
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code   = (unsigned long) _etext;
 898	init_mm.end_data   = (unsigned long) _edata;
 899	init_mm.brk	   = (unsigned long) _end;
 900
 901	/* populate cmd_line too for later use, preserving boot_command_line */
 902	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
 903	*cmdline_p = cmd_line;
 904
 
 
 
 905	parse_early_param();
 906
 907	sanity_check_meminfo();
 908	arm_memblock_init(&meminfo, mdesc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	paging_init(mdesc);
 
 911	request_standard_resources(mdesc);
 912
 
 
 
 
 
 913	unflatten_device_tree();
 914
 
 
 915#ifdef CONFIG_SMP
 916	if (is_smp())
 
 
 
 
 
 
 917		smp_init_cpus();
 
 
 918#endif
 919	reserve_crashkernel();
 920
 921	tcm_init();
 
 922
 923#ifdef CONFIG_ZONE_DMA
 924	if (mdesc->dma_zone_size) {
 925		extern unsigned long arm_dma_zone_size;
 926		arm_dma_zone_size = mdesc->dma_zone_size;
 927	}
 928#endif
 929#ifdef CONFIG_MULTI_IRQ_HANDLER
 930	handle_arch_irq = mdesc->handle_irq;
 931#endif
 932
 933#ifdef CONFIG_VT
 934#if defined(CONFIG_VGA_CONSOLE)
 935	conswitchp = &vga_con;
 936#elif defined(CONFIG_DUMMY_CONSOLE)
 937	conswitchp = &dummy_con;
 938#endif
 939#endif
 940	early_trap_init();
 941
 942	if (mdesc->init_early)
 943		mdesc->init_early();
 944}
 945
 946
 947static int __init topology_init(void)
 948{
 949	int cpu;
 950
 951	for_each_possible_cpu(cpu) {
 952		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
 953		cpuinfo->cpu.hotpluggable = 1;
 954		register_cpu(&cpuinfo->cpu, cpu);
 955	}
 956
 957	return 0;
 958}
 959subsys_initcall(topology_init);
 960
 961#ifdef CONFIG_HAVE_PROC_CPU
 962static int __init proc_cpu_init(void)
 963{
 964	struct proc_dir_entry *res;
 965
 966	res = proc_mkdir("cpu", NULL);
 967	if (!res)
 968		return -ENOMEM;
 969	return 0;
 970}
 971fs_initcall(proc_cpu_init);
 972#endif
 973
 974static const char *hwcap_str[] = {
 975	"swp",
 976	"half",
 977	"thumb",
 978	"26bit",
 979	"fastmult",
 980	"fpa",
 981	"vfp",
 982	"edsp",
 983	"java",
 984	"iwmmxt",
 985	"crunch",
 986	"thumbee",
 987	"neon",
 988	"vfpv3",
 989	"vfpv3d16",
 990	"tls",
 991	"vfpv4",
 992	"idiva",
 993	"idivt",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994	NULL
 995};
 996
 997static int c_show(struct seq_file *m, void *v)
 998{
 999	int i;
1000
1001	seq_printf(m, "Processor\t: %s rev %d (%s)\n",
1002		   cpu_name, read_cpuid_id() & 15, elf_platform);
1003
1004#if defined(CONFIG_SMP)
1005	for_each_online_cpu(i) {
1006		/*
1007		 * glibc reads /proc/cpuinfo to determine the number of
1008		 * online processors, looking for lines beginning with
1009		 * "processor".  Give glibc what it expects.
1010		 */
1011		seq_printf(m, "processor\t: %d\n", i);
1012		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
 
 
 
 
 
1013			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1014			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1015	}
1016#else /* CONFIG_SMP */
1017	seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1018		   loops_per_jiffy / (500000/HZ),
1019		   (loops_per_jiffy / (5000/HZ)) % 100);
1020#endif
1021
1022	/* dump out the processor features */
1023	seq_puts(m, "Features\t: ");
1024
1025	for (i = 0; hwcap_str[i]; i++)
1026		if (elf_hwcap & (1 << i))
1027			seq_printf(m, "%s ", hwcap_str[i]);
1028
1029	seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1030	seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1031
1032	if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1033		/* pre-ARM7 */
1034		seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1035	} else {
1036		if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1037			/* ARM7 */
1038			seq_printf(m, "CPU variant\t: 0x%02x\n",
1039				   (read_cpuid_id() >> 16) & 127);
1040		} else {
1041			/* post-ARM7 */
1042			seq_printf(m, "CPU variant\t: 0x%x\n",
1043				   (read_cpuid_id() >> 20) & 15);
 
 
 
 
 
 
 
 
1044		}
1045		seq_printf(m, "CPU part\t: 0x%03x\n",
1046			   (read_cpuid_id() >> 4) & 0xfff);
1047	}
1048	seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1049
1050	seq_puts(m, "\n");
1051
1052	seq_printf(m, "Hardware\t: %s\n", machine_name);
1053	seq_printf(m, "Revision\t: %04x\n", system_rev);
1054	seq_printf(m, "Serial\t\t: %08x%08x\n",
1055		   system_serial_high, system_serial_low);
1056
1057	return 0;
1058}
1059
1060static void *c_start(struct seq_file *m, loff_t *pos)
1061{
1062	return *pos < 1 ? (void *)1 : NULL;
1063}
1064
1065static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1066{
1067	++*pos;
1068	return NULL;
1069}
1070
1071static void c_stop(struct seq_file *m, void *v)
1072{
1073}
1074
1075const struct seq_operations cpuinfo_op = {
1076	.start	= c_start,
1077	.next	= c_next,
1078	.stop	= c_stop,
1079	.show	= c_show
1080};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/of_platform.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/libfdt.h>
  22#include <linux/of_fdt.h>
 
 
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
 
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
 
 
 
  64#include "atags.h"
 
  65
 
 
 
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
  79extern void init_default_cache_policy(unsigned long);
  80extern void paging_init(const struct machine_desc *desc);
  81extern void early_mm_init(const struct machine_desc *);
  82extern void adjust_lowmem_bounds(void);
  83extern enum reboot_mode reboot_mode;
  84extern void setup_dma_zone(const struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
  98const char *system_serial;
  99EXPORT_SYMBOL(system_serial);
 100
 101unsigned int system_serial_low;
 102EXPORT_SYMBOL(system_serial_low);
 103
 104unsigned int system_serial_high;
 105EXPORT_SYMBOL(system_serial_high);
 106
 107unsigned int elf_hwcap __read_mostly;
 108EXPORT_SYMBOL(elf_hwcap);
 109
 110unsigned int elf_hwcap2 __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap2);
 112
 113
 114#ifdef MULTI_CPU
 115struct processor processor __ro_after_init;
 116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 117struct processor *cpu_vtable[NR_CPUS] = {
 118	[0] = &processor,
 119};
 120#endif
 121#endif
 122#ifdef MULTI_TLB
 123struct cpu_tlb_fns cpu_tlb __ro_after_init;
 124#endif
 125#ifdef MULTI_USER
 126struct cpu_user_fns cpu_user __ro_after_init;
 127#endif
 128#ifdef MULTI_CACHE
 129struct cpu_cache_fns cpu_cache __ro_after_init;
 130#endif
 131#ifdef CONFIG_OUTER_CACHE
 132struct outer_cache_fns outer_cache __ro_after_init;
 133EXPORT_SYMBOL(outer_cache);
 134#endif
 135
 136/*
 137 * Cached cpu_architecture() result for use by assembler code.
 138 * C code should use the cpu_architecture() function instead of accessing this
 139 * variable directly.
 140 */
 141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 142
 143struct stack {
 144	u32 irq[4];
 145	u32 abt[4];
 146	u32 und[4];
 147	u32 fiq[4];
 148} ____cacheline_aligned;
 149
 150#ifndef CONFIG_CPU_V7M
 151static struct stack stacks[NR_CPUS];
 152#endif
 153
 154char elf_platform[ELF_PLATFORM_SIZE];
 155EXPORT_SYMBOL(elf_platform);
 156
 157static const char *cpu_name;
 158static const char *machine_name;
 159static char __initdata cmd_line[COMMAND_LINE_SIZE];
 160const struct machine_desc *machine_desc __initdata;
 161
 
 162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 163#define ENDIANNESS ((char)endian_test.l)
 164
 165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 166
 167/*
 168 * Standard memory resources
 169 */
 170static struct resource mem_res[] = {
 171	{
 172		.name = "Video RAM",
 173		.start = 0,
 174		.end = 0,
 175		.flags = IORESOURCE_MEM
 176	},
 177	{
 178		.name = "Kernel code",
 179		.start = 0,
 180		.end = 0,
 181		.flags = IORESOURCE_SYSTEM_RAM
 182	},
 183	{
 184		.name = "Kernel data",
 185		.start = 0,
 186		.end = 0,
 187		.flags = IORESOURCE_SYSTEM_RAM
 188	}
 189};
 190
 191#define video_ram   mem_res[0]
 192#define kernel_code mem_res[1]
 193#define kernel_data mem_res[2]
 194
 195static struct resource io_res[] = {
 196	{
 197		.name = "reserved",
 198		.start = 0x3bc,
 199		.end = 0x3be,
 200		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 201	},
 202	{
 203		.name = "reserved",
 204		.start = 0x378,
 205		.end = 0x37f,
 206		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 207	},
 208	{
 209		.name = "reserved",
 210		.start = 0x278,
 211		.end = 0x27f,
 212		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 213	}
 214};
 215
 216#define lp0 io_res[0]
 217#define lp1 io_res[1]
 218#define lp2 io_res[2]
 219
 220static const char *proc_arch[] = {
 221	"undefined/unknown",
 222	"3",
 223	"4",
 224	"4T",
 225	"5",
 226	"5T",
 227	"5TE",
 228	"5TEJ",
 229	"6TEJ",
 230	"7",
 231	"7M",
 232	"?(12)",
 233	"?(13)",
 234	"?(14)",
 235	"?(15)",
 236	"?(16)",
 237	"?(17)",
 238};
 239
 240#ifdef CONFIG_CPU_V7M
 241static int __get_cpu_architecture(void)
 242{
 243	return CPU_ARCH_ARMv7M;
 244}
 245#else
 246static int __get_cpu_architecture(void)
 247{
 248	int cpu_arch;
 249
 250	if ((read_cpuid_id() & 0x0008f000) == 0) {
 251		cpu_arch = CPU_ARCH_UNKNOWN;
 252	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 253		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 254	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 255		cpu_arch = (read_cpuid_id() >> 16) & 7;
 256		if (cpu_arch)
 257			cpu_arch += CPU_ARCH_ARMv3;
 258	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 
 
 259		/* Revised CPUID format. Read the Memory Model Feature
 260		 * Register 0 and check for VMSAv7 or PMSAv7 */
 261		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 
 262		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 263		    (mmfr0 & 0x000000f0) >= 0x00000030)
 264			cpu_arch = CPU_ARCH_ARMv7;
 265		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 266			 (mmfr0 & 0x000000f0) == 0x00000020)
 267			cpu_arch = CPU_ARCH_ARMv6;
 268		else
 269			cpu_arch = CPU_ARCH_UNKNOWN;
 270	} else
 271		cpu_arch = CPU_ARCH_UNKNOWN;
 272
 273	return cpu_arch;
 274}
 275#endif
 276
 277int __pure cpu_architecture(void)
 278{
 279	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 280
 281	return __cpu_architecture;
 282}
 283
 284static int cpu_has_aliasing_icache(unsigned int arch)
 285{
 286	int aliasing_icache;
 287	unsigned int id_reg, num_sets, line_size;
 288
 289	/* PIPT caches never alias. */
 290	if (icache_is_pipt())
 291		return 0;
 292
 293	/* arch specifies the register format */
 294	switch (arch) {
 295	case CPU_ARCH_ARMv7:
 296		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 
 
 297		isb();
 298		id_reg = read_ccsidr();
 
 299		line_size = 4 << ((id_reg & 0x7) + 2);
 300		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 301		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 302		break;
 303	case CPU_ARCH_ARMv6:
 304		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 305		break;
 306	default:
 307		/* I-cache aliases will be handled by D-cache aliasing code */
 308		aliasing_icache = 0;
 309	}
 310
 311	return aliasing_icache;
 312}
 313
 314static void __init cacheid_init(void)
 315{
 
 316	unsigned int arch = cpu_architecture();
 317
 318	if (arch >= CPU_ARCH_ARMv6) {
 319		unsigned int cachetype = read_cpuid_cachetype();
 320
 321		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 322			cacheid = 0;
 323		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453	u32 isar6;
 454	u32 pfr2;
 455
 456	if (cpu_architecture() < CPU_ARCH_ARMv7)
 457		return;
 458
 459	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 460	if (block >= 2)
 461		elf_hwcap |= HWCAP_IDIVA;
 462	if (block >= 1)
 463		elf_hwcap |= HWCAP_IDIVT;
 464
 465	/* LPAE implies atomic ldrd/strd instructions */
 466	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 467	if (block >= 5)
 468		elf_hwcap |= HWCAP_LPAE;
 469
 470	/* check for supported v8 Crypto instructions */
 471	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 472
 473	block = cpuid_feature_extract_field(isar5, 4);
 474	if (block >= 2)
 475		elf_hwcap2 |= HWCAP2_PMULL;
 476	if (block >= 1)
 477		elf_hwcap2 |= HWCAP2_AES;
 478
 479	block = cpuid_feature_extract_field(isar5, 8);
 480	if (block >= 1)
 481		elf_hwcap2 |= HWCAP2_SHA1;
 482
 483	block = cpuid_feature_extract_field(isar5, 12);
 484	if (block >= 1)
 485		elf_hwcap2 |= HWCAP2_SHA2;
 486
 487	block = cpuid_feature_extract_field(isar5, 16);
 488	if (block >= 1)
 489		elf_hwcap2 |= HWCAP2_CRC32;
 490
 491	/* Check for Speculation barrier instruction */
 492	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 493	block = cpuid_feature_extract_field(isar6, 12);
 494	if (block >= 1)
 495		elf_hwcap2 |= HWCAP2_SB;
 496
 497	/* Check for Speculative Store Bypassing control */
 498	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 499	block = cpuid_feature_extract_field(pfr2, 4);
 500	if (block >= 1)
 501		elf_hwcap2 |= HWCAP2_SSBS;
 502}
 503
 504static void __init elf_hwcap_fixup(void)
 505{
 506	unsigned id = read_cpuid_id();
 507
 508	/*
 509	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 510	 * see also kuser_get_tls_init.
 511	 */
 512	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 513	    ((id >> 20) & 3) == 0) {
 514		elf_hwcap &= ~HWCAP_TLS;
 515		return;
 516	}
 517
 518	/* Verify if CPUID scheme is implemented */
 519	if ((id & 0x000f0000) != 0x000f0000)
 520		return;
 521
 522	/*
 523	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 524	 * avoid advertising SWP; it may not be atomic with
 525	 * multiprocessing cores.
 526	 */
 527	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 528	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 529	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 530		elf_hwcap &= ~HWCAP_SWP;
 531}
 532
 533/*
 534 * cpu_init - initialise one CPU.
 535 *
 536 * cpu_init sets up the per-CPU stacks.
 537 */
 538void notrace cpu_init(void)
 539{
 540#ifndef CONFIG_CPU_V7M
 541	unsigned int cpu = smp_processor_id();
 542	struct stack *stk = &stacks[cpu];
 543
 544	if (cpu >= NR_CPUS) {
 545		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 546		BUG();
 547	}
 548
 549	/*
 550	 * This only works on resume and secondary cores. For booting on the
 551	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 552	 */
 553	set_my_cpu_offset(per_cpu_offset(cpu));
 554
 555	cpu_proc_init();
 556
 557	/*
 558	 * Define the placement constraint for the inline asm directive below.
 559	 * In Thumb-2, msr with an immediate value is not allowed.
 560	 */
 561#ifdef CONFIG_THUMB2_KERNEL
 562#define PLC_l	"l"
 563#define PLC_r	"r"
 564#else
 565#define PLC_l	"I"
 566#define PLC_r	"I"
 567#endif
 568
 569	/*
 570	 * setup stacks for re-entrant exception handlers
 571	 */
 572	__asm__ (
 573	"msr	cpsr_c, %1\n\t"
 574	"add	r14, %0, %2\n\t"
 575	"mov	sp, r14\n\t"
 576	"msr	cpsr_c, %3\n\t"
 577	"add	r14, %0, %4\n\t"
 578	"mov	sp, r14\n\t"
 579	"msr	cpsr_c, %5\n\t"
 580	"add	r14, %0, %6\n\t"
 581	"mov	sp, r14\n\t"
 582	"msr	cpsr_c, %7\n\t"
 583	"add	r14, %0, %8\n\t"
 584	"mov	sp, r14\n\t"
 585	"msr	cpsr_c, %9"
 586	    :
 587	    : "r" (stk),
 588	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 589	      "I" (offsetof(struct stack, irq[0])),
 590	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 591	      "I" (offsetof(struct stack, abt[0])),
 592	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 593	      "I" (offsetof(struct stack, und[0])),
 594	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 595	      "I" (offsetof(struct stack, fiq[0])),
 596	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 597	    : "r14");
 598#endif
 599}
 600
 601u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 602
 603void __init smp_setup_processor_id(void)
 604{
 605	int i;
 606	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 607	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 608
 609	cpu_logical_map(0) = cpu;
 610	for (i = 1; i < nr_cpu_ids; ++i)
 611		cpu_logical_map(i) = i == cpu ? 0 : i;
 612
 613	/*
 614	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 615	 * using percpu variable early, for example, lockdep will
 616	 * access percpu variable inside lock_release
 617	 */
 618	set_my_cpu_offset(0);
 619
 620	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 621}
 622
 623struct mpidr_hash mpidr_hash;
 624#ifdef CONFIG_SMP
 625/**
 626 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 627 *			  level in order to build a linear index from an
 628 *			  MPIDR value. Resulting algorithm is a collision
 629 *			  free hash carried out through shifting and ORing
 630 */
 631static void __init smp_build_mpidr_hash(void)
 632{
 633	u32 i, affinity;
 634	u32 fs[3], bits[3], ls, mask = 0;
 635	/*
 636	 * Pre-scan the list of MPIDRS and filter out bits that do
 637	 * not contribute to affinity levels, ie they never toggle.
 638	 */
 639	for_each_possible_cpu(i)
 640		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 641	pr_debug("mask of set bits 0x%x\n", mask);
 642	/*
 643	 * Find and stash the last and first bit set at all affinity levels to
 644	 * check how many bits are required to represent them.
 645	 */
 646	for (i = 0; i < 3; i++) {
 647		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 648		/*
 649		 * Find the MSB bit and LSB bits position
 650		 * to determine how many bits are required
 651		 * to express the affinity level.
 652		 */
 653		ls = fls(affinity);
 654		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 655		bits[i] = ls - fs[i];
 656	}
 657	/*
 658	 * An index can be created from the MPIDR by isolating the
 659	 * significant bits at each affinity level and by shifting
 660	 * them in order to compress the 24 bits values space to a
 661	 * compressed set of values. This is equivalent to hashing
 662	 * the MPIDR through shifting and ORing. It is a collision free
 663	 * hash though not minimal since some levels might contain a number
 664	 * of CPUs that is not an exact power of 2 and their bit
 665	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 666	 */
 667	mpidr_hash.shift_aff[0] = fs[0];
 668	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 669	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 670						(bits[1] + bits[0]);
 671	mpidr_hash.mask = mask;
 672	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 673	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 674				mpidr_hash.shift_aff[0],
 675				mpidr_hash.shift_aff[1],
 676				mpidr_hash.shift_aff[2],
 677				mpidr_hash.mask,
 678				mpidr_hash.bits);
 679	/*
 680	 * 4x is an arbitrary value used to warn on a hash table much bigger
 681	 * than expected on most systems.
 682	 */
 683	if (mpidr_hash_size() > 4 * num_possible_cpus())
 684		pr_warn("Large number of MPIDR hash buckets detected\n");
 685	sync_cache_w(&mpidr_hash);
 686}
 687#endif
 688
 689/*
 690 * locate processor in the list of supported processor types.  The linker
 691 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 692 */
 693struct proc_info_list *lookup_processor(u32 midr)
 694{
 695	struct proc_info_list *list = lookup_processor_type(midr);
 696
 697	if (!list) {
 698		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 699		       smp_processor_id(), midr);
 700		while (1)
 701		/* can't use cpu_relax() here as it may require MMU setup */;
 702	}
 703
 704	return list;
 705}
 706
 707static void __init setup_processor(void)
 708{
 709	unsigned int midr = read_cpuid_id();
 710	struct proc_info_list *list = lookup_processor(midr);
 711
 712	cpu_name = list->cpu_name;
 713	__cpu_architecture = __get_cpu_architecture();
 714
 715	init_proc_vtable(list->proc);
 
 
 716#ifdef MULTI_TLB
 717	cpu_tlb = *list->tlb;
 718#endif
 719#ifdef MULTI_USER
 720	cpu_user = *list->user;
 721#endif
 722#ifdef MULTI_CACHE
 723	cpu_cache = *list->cache;
 724#endif
 725
 726	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 727		list->cpu_name, midr, midr & 15,
 728		proc_arch[cpu_architecture()], get_cr());
 729
 730	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 731		 list->arch_name, ENDIANNESS);
 732	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 733		 list->elf_name, ENDIANNESS);
 734	elf_hwcap = list->elf_hwcap;
 735
 736	cpuid_init_hwcaps();
 737	patch_aeabi_idiv();
 738
 739#ifndef CONFIG_ARM_THUMB
 740	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 741#endif
 742#ifdef CONFIG_MMU
 743	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 744#endif
 745	erratum_a15_798181_init();
 746
 747	elf_hwcap_fixup();
 748
 749	cacheid_init();
 750	cpu_init();
 751}
 752
 753void __init dump_machine_table(void)
 754{
 755	const struct machine_desc *p;
 756
 757	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 758	for_each_machine_desc(p)
 759		early_print("%08x\t%s\n", p->nr, p->name);
 760
 761	early_print("\nPlease check your kernel config and/or bootloader.\n");
 762
 763	while (true)
 764		/* can't use cpu_relax() here as it may require MMU setup */;
 765}
 766
 767int __init arm_add_memory(u64 start, u64 size)
 768{
 769	u64 aligned_start;
 
 
 
 
 
 
 770
 771	/*
 772	 * Ensure that start/size are aligned to a page boundary.
 773	 * Size is rounded down, start is rounded up.
 774	 */
 775	aligned_start = PAGE_ALIGN(start);
 776	if (aligned_start > start + size)
 777		size = 0;
 778	else
 779		size -= aligned_start - start;
 780
 781#ifndef CONFIG_PHYS_ADDR_T_64BIT
 782	if (aligned_start > ULONG_MAX) {
 783		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 784			start);
 785		return -EINVAL;
 786	}
 787
 788	if (aligned_start + size > ULONG_MAX) {
 789		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 790			(long long)start);
 791		/*
 792		 * To ensure bank->start + bank->size is representable in
 793		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 794		 * This means we lose a page after masking.
 795		 */
 796		size = ULONG_MAX - aligned_start;
 797	}
 798#endif
 799
 800	if (aligned_start < PHYS_OFFSET) {
 801		if (aligned_start + size <= PHYS_OFFSET) {
 802			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 803				aligned_start, aligned_start + size);
 804			return -EINVAL;
 805		}
 806
 807		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 808			aligned_start, (u64)PHYS_OFFSET);
 809
 810		size -= PHYS_OFFSET - aligned_start;
 811		aligned_start = PHYS_OFFSET;
 812	}
 813
 814	start = aligned_start;
 815	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 816
 817	/*
 818	 * Check whether this memory region has non-zero size or
 819	 * invalid node number.
 820	 */
 821	if (size == 0)
 822		return -EINVAL;
 823
 824	memblock_add(start, size);
 825	return 0;
 826}
 827
 828/*
 829 * Pick out the memory size.  We look for mem=size@start,
 830 * where start and size are "size[KkMm]"
 831 */
 832
 833static int __init early_mem(char *p)
 834{
 835	static int usermem __initdata = 0;
 836	u64 size;
 837	u64 start;
 838	char *endp;
 839
 840	/*
 841	 * If the user specifies memory size, we
 842	 * blow away any automatically generated
 843	 * size.
 844	 */
 845	if (usermem == 0) {
 846		usermem = 1;
 847		memblock_remove(memblock_start_of_DRAM(),
 848			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 849	}
 850
 851	start = PHYS_OFFSET;
 852	size  = memparse(p, &endp);
 853	if (*endp == '@')
 854		start = memparse(endp + 1, NULL);
 855
 856	arm_add_memory(start, size);
 857
 858	return 0;
 859}
 860early_param("mem", early_mem);
 861
 862static void __init request_standard_resources(const struct machine_desc *mdesc)
 
 863{
 864	phys_addr_t start, end, res_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	struct resource *res;
 866	u64 i;
 867
 868	kernel_code.start   = virt_to_phys(_text);
 869	kernel_code.end     = virt_to_phys(__init_begin - 1);
 870	kernel_data.start   = virt_to_phys(_sdata);
 871	kernel_data.end     = virt_to_phys(_end - 1);
 872
 873	for_each_mem_range(i, &start, &end) {
 874		unsigned long boot_alias_start;
 875
 876		/*
 877		 * In memblock, end points to the first byte after the
 878		 * range while in resourses, end points to the last byte in
 879		 * the range.
 880		 */
 881		res_end = end - 1;
 882
 883		/*
 884		 * Some systems have a special memory alias which is only
 885		 * used for booting.  We need to advertise this region to
 886		 * kexec-tools so they know where bootable RAM is located.
 887		 */
 888		boot_alias_start = phys_to_idmap(start);
 889		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 890			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 891			if (!res)
 892				panic("%s: Failed to allocate %zu bytes\n",
 893				      __func__, sizeof(*res));
 894			res->name = "System RAM (boot alias)";
 895			res->start = boot_alias_start;
 896			res->end = phys_to_idmap(res_end);
 897			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 898			request_resource(&iomem_resource, res);
 899		}
 900
 901		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 902		if (!res)
 903			panic("%s: Failed to allocate %zu bytes\n", __func__,
 904			      sizeof(*res));
 905		res->name  = "System RAM";
 906		res->start = start;
 907		res->end = res_end;
 908		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 909
 910		request_resource(&iomem_resource, res);
 911
 912		if (kernel_code.start >= res->start &&
 913		    kernel_code.end <= res->end)
 914			request_resource(res, &kernel_code);
 915		if (kernel_data.start >= res->start &&
 916		    kernel_data.end <= res->end)
 917			request_resource(res, &kernel_data);
 918	}
 919
 920	if (mdesc->video_start) {
 921		video_ram.start = mdesc->video_start;
 922		video_ram.end   = mdesc->video_end;
 923		request_resource(&iomem_resource, &video_ram);
 924	}
 925
 926	/*
 927	 * Some machines don't have the possibility of ever
 928	 * possessing lp0, lp1 or lp2
 929	 */
 930	if (mdesc->reserve_lp0)
 931		request_resource(&ioport_resource, &lp0);
 932	if (mdesc->reserve_lp1)
 933		request_resource(&ioport_resource, &lp1);
 934	if (mdesc->reserve_lp2)
 935		request_resource(&ioport_resource, &lp2);
 936}
 937
 938#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 939    defined(CONFIG_EFI)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940struct screen_info screen_info = {
 941 .orig_video_lines	= 30,
 942 .orig_video_cols	= 80,
 943 .orig_video_mode	= 0,
 944 .orig_video_ega_bx	= 0,
 945 .orig_video_isVGA	= 1,
 946 .orig_video_points	= 8
 947};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948#endif
 949
 950static int __init customize_machine(void)
 
 
 
 
 
 
 
 
 
 
 951{
 952	/*
 953	 * customizes platform devices, or adds new ones
 954	 * On DT based machines, we fall back to populating the
 955	 * machine from the device tree, if no callback is provided,
 956	 * otherwise we would always need an init_machine callback.
 957	 */
 958	if (machine_desc->init_machine)
 959		machine_desc->init_machine();
 960
 
 
 
 961	return 0;
 962}
 963arch_initcall(customize_machine);
 964
 965static int __init init_machine_late(void)
 
 
 966{
 967	struct device_node *root;
 968	int ret;
 
 
 
 
 
 
 
 
 
 
 969
 970	if (machine_desc->init_late)
 971		machine_desc->init_late();
 972
 973	root = of_find_node_by_path("/");
 974	if (root) {
 975		ret = of_property_read_string(root, "serial-number",
 976					      &system_serial);
 977		if (ret)
 978			system_serial = NULL;
 979	}
 
 
 
 
 
 
 
 
 980
 981	if (!system_serial)
 982		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 983					  system_serial_high,
 984					  system_serial_low);
 985
 986	return 0;
 
 
 
 
 
 
 
 
 
 
 987}
 988late_initcall(init_machine_late);
 989
 990#ifdef CONFIG_KEXEC
 991/*
 992 * The crash region must be aligned to 128MB to avoid
 993 * zImage relocating below the reserved region.
 994 */
 995#define CRASH_ALIGN	(128 << 20)
 
 
 
 
 
 
 
 
 
 
 
 
 996
 
 
 
 
 
 
 
 
 
 
 997static inline unsigned long long get_total_mem(void)
 998{
 999	unsigned long total;
1000
1001	total = max_low_pfn - min_low_pfn;
1002	return total << PAGE_SHIFT;
1003}
1004
1005/**
1006 * reserve_crashkernel() - reserves memory are for crash kernel
1007 *
1008 * This function reserves memory area given in "crashkernel=" kernel command
1009 * line parameter. The memory reserved is used by a dump capture kernel when
1010 * primary kernel is crashing.
1011 */
1012static void __init reserve_crashkernel(void)
1013{
1014	unsigned long long crash_size, crash_base;
1015	unsigned long long total_mem;
1016	int ret;
1017
1018	total_mem = get_total_mem();
1019	ret = parse_crashkernel(boot_command_line, total_mem,
1020				&crash_size, &crash_base);
1021	/* invalid value specified or crashkernel=0 */
1022	if (ret || !crash_size)
1023		return;
1024
1025	if (crash_base <= 0) {
1026		unsigned long long crash_max = idmap_to_phys((u32)~0);
1027		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1028		if (crash_max > lowmem_max)
1029			crash_max = lowmem_max;
1030
1031		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1032						       CRASH_ALIGN, crash_max);
1033		if (!crash_base) {
1034			pr_err("crashkernel reservation failed - No suitable area found.\n");
1035			return;
1036		}
1037	} else {
1038		unsigned long long crash_max = crash_base + crash_size;
1039		unsigned long long start;
1040
1041		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1042						  crash_base, crash_max);
1043		if (!start) {
1044			pr_err("crashkernel reservation failed - memory is in use.\n");
1045			return;
1046		}
1047	}
1048
1049	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1050		(unsigned long)(crash_size >> 20),
1051		(unsigned long)(crash_base >> 20),
1052		(unsigned long)(total_mem >> 20));
 
1053
1054	/* The crashk resource must always be located in normal mem */
1055	crashk_res.start = crash_base;
1056	crashk_res.end = crash_base + crash_size - 1;
1057	insert_resource(&iomem_resource, &crashk_res);
1058
1059	if (arm_has_idmap_alias()) {
1060		/*
1061		 * If we have a special RAM alias for use at boot, we
1062		 * need to advertise to kexec tools where the alias is.
1063		 */
1064		static struct resource crashk_boot_res = {
1065			.name = "Crash kernel (boot alias)",
1066			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1067		};
1068
1069		crashk_boot_res.start = phys_to_idmap(crash_base);
1070		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1071		insert_resource(&iomem_resource, &crashk_boot_res);
1072	}
1073}
1074#else
1075static inline void reserve_crashkernel(void) {}
1076#endif /* CONFIG_KEXEC */
1077
1078void __init hyp_mode_check(void)
 
 
 
 
 
 
 
1079{
1080#ifdef CONFIG_ARM_VIRT_EXT
1081	sync_boot_mode();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083	if (is_hyp_mode_available()) {
1084		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1085		pr_info("CPU: Virtualization extensions available.\n");
1086	} else if (is_hyp_mode_mismatched()) {
1087		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1088			__boot_cpu_mode & MODE_MASK);
1089		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1090	} else
1091		pr_info("CPU: All CPU(s) started in SVC mode.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092#endif
1093}
 
 
 
 
 
 
 
 
 
 
 
1094
1095static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 
1096
1097static int arm_restart(struct notifier_block *nb, unsigned long action,
1098		       void *data)
1099{
1100	__arm_pm_restart(action, data);
1101	return NOTIFY_DONE;
1102}
1103
1104static struct notifier_block arm_restart_nb = {
1105	.notifier_call = arm_restart,
1106	.priority = 128,
1107};
1108
1109void __init setup_arch(char **cmdline_p)
1110{
1111	const struct machine_desc *mdesc = NULL;
1112	void *atags_vaddr = NULL;
1113
1114	if (__atags_pointer)
1115		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1116
1117	setup_processor();
1118	if (atags_vaddr) {
1119		mdesc = setup_machine_fdt(atags_vaddr);
1120		if (mdesc)
1121			memblock_reserve(__atags_pointer,
1122					 fdt_totalsize(atags_vaddr));
1123	}
1124	if (!mdesc)
1125		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1126	if (!mdesc) {
1127		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1128		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1129			    __atags_pointer);
1130		if (__atags_pointer)
1131			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
1132		dump_machine_table();
1133	}
1134
1135	machine_desc = mdesc;
1136	machine_name = mdesc->name;
1137	dump_stack_set_arch_desc("%s", mdesc->name);
1138
1139	if (mdesc->reboot_mode != REBOOT_HARD)
1140		reboot_mode = mdesc->reboot_mode;
1141
1142	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1143
1144	/* populate cmd_line too for later use, preserving boot_command_line */
1145	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1146	*cmdline_p = cmd_line;
1147
1148	early_fixmap_init();
1149	early_ioremap_init();
1150
1151	parse_early_param();
1152
1153#ifdef CONFIG_MMU
1154	early_mm_init(mdesc);
1155#endif
1156	setup_dma_zone(mdesc);
1157	xen_early_init();
1158	arm_efi_init();
1159	/*
1160	 * Make sure the calculation for lowmem/highmem is set appropriately
1161	 * before reserving/allocating any memory
1162	 */
1163	adjust_lowmem_bounds();
1164	arm_memblock_init(mdesc);
1165	/* Memory may have been removed so recalculate the bounds. */
1166	adjust_lowmem_bounds();
1167
1168	early_ioremap_reset();
1169
1170	paging_init(mdesc);
1171	kasan_init();
1172	request_standard_resources(mdesc);
1173
1174	if (mdesc->restart) {
1175		__arm_pm_restart = mdesc->restart;
1176		register_restart_handler(&arm_restart_nb);
1177	}
1178
1179	unflatten_device_tree();
1180
1181	arm_dt_init_cpu_maps();
1182	psci_dt_init();
1183#ifdef CONFIG_SMP
1184	if (is_smp()) {
1185		if (!mdesc->smp_init || !mdesc->smp_init()) {
1186			if (psci_smp_available())
1187				smp_set_ops(&psci_smp_ops);
1188			else if (mdesc->smp)
1189				smp_set_ops(mdesc->smp);
1190		}
1191		smp_init_cpus();
1192		smp_build_mpidr_hash();
1193	}
1194#endif
 
1195
1196	if (!is_smp())
1197		hyp_mode_check();
1198
1199	reserve_crashkernel();
1200
1201#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
 
 
 
 
1202	handle_arch_irq = mdesc->handle_irq;
1203#endif
1204
1205#ifdef CONFIG_VT
1206#if defined(CONFIG_VGA_CONSOLE)
1207	conswitchp = &vga_con;
 
 
1208#endif
1209#endif
 
1210
1211	if (mdesc->init_early)
1212		mdesc->init_early();
1213}
1214
1215
1216static int __init topology_init(void)
1217{
1218	int cpu;
1219
1220	for_each_possible_cpu(cpu) {
1221		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1222		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1223		register_cpu(&cpuinfo->cpu, cpu);
1224	}
1225
1226	return 0;
1227}
1228subsys_initcall(topology_init);
1229
1230#ifdef CONFIG_HAVE_PROC_CPU
1231static int __init proc_cpu_init(void)
1232{
1233	struct proc_dir_entry *res;
1234
1235	res = proc_mkdir("cpu", NULL);
1236	if (!res)
1237		return -ENOMEM;
1238	return 0;
1239}
1240fs_initcall(proc_cpu_init);
1241#endif
1242
1243static const char *hwcap_str[] = {
1244	"swp",
1245	"half",
1246	"thumb",
1247	"26bit",
1248	"fastmult",
1249	"fpa",
1250	"vfp",
1251	"edsp",
1252	"java",
1253	"iwmmxt",
1254	"crunch",
1255	"thumbee",
1256	"neon",
1257	"vfpv3",
1258	"vfpv3d16",
1259	"tls",
1260	"vfpv4",
1261	"idiva",
1262	"idivt",
1263	"vfpd32",
1264	"lpae",
1265	"evtstrm",
1266	"fphp",
1267	"asimdhp",
1268	"asimddp",
1269	"asimdfhm",
1270	"asimdbf16",
1271	"i8mm",
1272	NULL
1273};
1274
1275static const char *hwcap2_str[] = {
1276	"aes",
1277	"pmull",
1278	"sha1",
1279	"sha2",
1280	"crc32",
1281	"sb",
1282	"ssbs",
1283	NULL
1284};
1285
1286static int c_show(struct seq_file *m, void *v)
1287{
1288	int i, j;
1289	u32 cpuid;
 
 
1290
 
1291	for_each_online_cpu(i) {
1292		/*
1293		 * glibc reads /proc/cpuinfo to determine the number of
1294		 * online processors, looking for lines beginning with
1295		 * "processor".  Give glibc what it expects.
1296		 */
1297		seq_printf(m, "processor\t: %d\n", i);
1298		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1299		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1300			   cpu_name, cpuid & 15, elf_platform);
1301
1302#if defined(CONFIG_SMP)
1303		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1304			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1305			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1306#else
1307		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1308			   loops_per_jiffy / (500000/HZ),
1309			   (loops_per_jiffy / (5000/HZ)) % 100);
1310#endif
1311		/* dump out the processor features */
1312		seq_puts(m, "Features\t: ");
1313
1314		for (j = 0; hwcap_str[j]; j++)
1315			if (elf_hwcap & (1 << j))
1316				seq_printf(m, "%s ", hwcap_str[j]);
1317
1318		for (j = 0; hwcap2_str[j]; j++)
1319			if (elf_hwcap2 & (1 << j))
1320				seq_printf(m, "%s ", hwcap2_str[j]);
1321
1322		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1323		seq_printf(m, "CPU architecture: %s\n",
1324			   proc_arch[cpu_architecture()]);
1325
1326		if ((cpuid & 0x0008f000) == 0x00000000) {
1327			/* pre-ARM7 */
1328			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
 
 
1329		} else {
1330			if ((cpuid & 0x0008f000) == 0x00007000) {
1331				/* ARM7 */
1332				seq_printf(m, "CPU variant\t: 0x%02x\n",
1333					   (cpuid >> 16) & 127);
1334			} else {
1335				/* post-ARM7 */
1336				seq_printf(m, "CPU variant\t: 0x%x\n",
1337					   (cpuid >> 20) & 15);
1338			}
1339			seq_printf(m, "CPU part\t: 0x%03x\n",
1340				   (cpuid >> 4) & 0xfff);
1341		}
1342		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
 
1343	}
 
 
 
1344
1345	seq_printf(m, "Hardware\t: %s\n", machine_name);
1346	seq_printf(m, "Revision\t: %04x\n", system_rev);
1347	seq_printf(m, "Serial\t\t: %s\n", system_serial);
 
1348
1349	return 0;
1350}
1351
1352static void *c_start(struct seq_file *m, loff_t *pos)
1353{
1354	return *pos < 1 ? (void *)1 : NULL;
1355}
1356
1357static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1358{
1359	++*pos;
1360	return NULL;
1361}
1362
1363static void c_stop(struct seq_file *m, void *v)
1364{
1365}
1366
1367const struct seq_operations cpuinfo_op = {
1368	.start	= c_start,
1369	.next	= c_next,
1370	.stop	= c_stop,
1371	.show	= c_show
1372};