Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
 
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
 
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
 
  44#include <linux/oom.h>
 
  45#include <linux/prefetch.h>
 
 
 
 
 
 
 
 
 
 
 
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
 
 
  51
  52#include "internal.h"
 
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/vmscan.h>
  56
  57/*
  58 * reclaim_mode determines how the inactive list is shrunk
  59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  60 * RECLAIM_MODE_ASYNC:  Do not block
  61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  63 *			page from the LRU and reclaim all pages within a
  64 *			naturally aligned range
  65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  66 *			order-0 pages and then compact the zone
  67 */
  68typedef unsigned __bitwise__ reclaim_mode_t;
  69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
  70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
  71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
  72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
  73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
  74
  75struct scan_control {
  76	/* Incremented by the number of inactive pages that were scanned */
  77	unsigned long nr_scanned;
  78
  79	/* Number of pages freed so far during a call to shrink_zones() */
  80	unsigned long nr_reclaimed;
  81
  82	/* How many pages shrink_list() should reclaim */
  83	unsigned long nr_to_reclaim;
  84
  85	unsigned long hibernation_mode;
 
 
 
 
  86
  87	/* This context's GFP mask */
  88	gfp_t gfp_mask;
 
 
 
  89
  90	int may_writepage;
 
 
 
 
  91
  92	/* Can mapped pages be reclaimed? */
  93	int may_unmap;
 
 
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	int may_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98	int order;
 
  99
 100	/*
 101	 * Intend to reclaim enough continuous memory rather than reclaim
 102	 * enough amount of memory. i.e, mode for high order allocation.
 103	 */
 104	reclaim_mode_t reclaim_mode;
 105
 106	/* Which cgroup do we reclaim from */
 107	struct mem_cgroup *mem_cgroup;
 108
 109	/*
 110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 111	 * are scanned.
 
 
 
 
 112	 */
 113	nodemask_t	*nodemask;
 114};
 115
 116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 
 117
 118#ifdef ARCH_HAS_PREFETCH
 119#define prefetch_prev_lru_page(_page, _base, _field)			\
 120	do {								\
 121		if ((_page)->lru.prev != _base) {			\
 122			struct page *prev;				\
 123									\
 124			prev = lru_to_page(&(_page->lru));		\
 125			prefetch(&prev->_field);			\
 126		}							\
 127	} while (0)
 128#else
 129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 130#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131
 132#ifdef ARCH_HAS_PREFETCHW
 133#define prefetchw_prev_lru_page(_page, _base, _field)			\
 134	do {								\
 135		if ((_page)->lru.prev != _base) {			\
 136			struct page *prev;				\
 137									\
 138			prev = lru_to_page(&(_page->lru));		\
 139			prefetchw(&prev->_field);			\
 140		}							\
 141	} while (0)
 142#else
 143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 144#endif
 145
 146/*
 147 * From 0 .. 100.  Higher means more swappy.
 148 */
 149int vm_swappiness = 60;
 150long vm_total_pages;	/* The total number of pages which the VM controls */
 151
 152static LIST_HEAD(shrinker_list);
 153static DECLARE_RWSEM(shrinker_rwsem);
 154
 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
 157#else
 158#define scanning_global_lru(sc)	(1)
 159#endif
 160
 161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 162						  struct scan_control *sc)
 163{
 164	if (!scanning_global_lru(sc))
 165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 166
 167	return &zone->reclaim_stat;
 
 
 
 
 
 
 168}
 169
 170static unsigned long zone_nr_lru_pages(struct zone *zone,
 171				struct scan_control *sc, enum lru_list lru)
 
 
 
 
 
 
 
 
 
 
 
 
 172{
 173	if (!scanning_global_lru(sc))
 174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
 175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
 
 
 
 
 
 176
 177	return zone_page_state(zone, NR_LRU_BASE + lru);
 
 
 
 
 
 
 
 
 
 178}
 179
 
 
 
 
 180
 181/*
 182 * Add a shrinker callback to be called from the vm
 183 */
 184void register_shrinker(struct shrinker *shrinker)
 185{
 186	shrinker->nr = 0;
 187	down_write(&shrinker_rwsem);
 188	list_add_tail(&shrinker->list, &shrinker_list);
 189	up_write(&shrinker_rwsem);
 190}
 191EXPORT_SYMBOL(register_shrinker);
 192
 193/*
 194 * Remove one
 195 */
 196void unregister_shrinker(struct shrinker *shrinker)
 197{
 198	down_write(&shrinker_rwsem);
 199	list_del(&shrinker->list);
 200	up_write(&shrinker_rwsem);
 201}
 202EXPORT_SYMBOL(unregister_shrinker);
 203
 204static inline int do_shrinker_shrink(struct shrinker *shrinker,
 205				     struct shrink_control *sc,
 206				     unsigned long nr_to_scan)
 207{
 208	sc->nr_to_scan = nr_to_scan;
 209	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 210}
 211
 212#define SHRINK_BATCH 128
 213/*
 214 * Call the shrink functions to age shrinkable caches
 215 *
 216 * Here we assume it costs one seek to replace a lru page and that it also
 217 * takes a seek to recreate a cache object.  With this in mind we age equal
 218 * percentages of the lru and ageable caches.  This should balance the seeks
 219 * generated by these structures.
 220 *
 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
 222 * slab to avoid swapping.
 223 *
 224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 225 *
 226 * `lru_pages' represents the number of on-LRU pages in all the zones which
 227 * are eligible for the caller's allocation attempt.  It is used for balancing
 228 * slab reclaim versus page reclaim.
 229 *
 230 * Returns the number of slab objects which we shrunk.
 231 */
 232unsigned long shrink_slab(struct shrink_control *shrink,
 233			  unsigned long nr_pages_scanned,
 234			  unsigned long lru_pages)
 235{
 236	struct shrinker *shrinker;
 237	unsigned long ret = 0;
 238
 239	if (nr_pages_scanned == 0)
 240		nr_pages_scanned = SWAP_CLUSTER_MAX;
 241
 242	if (!down_read_trylock(&shrinker_rwsem)) {
 243		/* Assume we'll be able to shrink next time */
 244		ret = 1;
 245		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246	}
 
 247
 248	list_for_each_entry(shrinker, &shrinker_list, list) {
 249		unsigned long long delta;
 250		unsigned long total_scan;
 251		unsigned long max_pass;
 252		int shrink_ret = 0;
 253		long nr;
 254		long new_nr;
 255		long batch_size = shrinker->batch ? shrinker->batch
 256						  : SHRINK_BATCH;
 257
 258		/*
 259		 * copy the current shrinker scan count into a local variable
 260		 * and zero it so that other concurrent shrinker invocations
 261		 * don't also do this scanning work.
 262		 */
 263		do {
 264			nr = shrinker->nr;
 265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
 266
 267		total_scan = nr;
 268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 270		delta *= max_pass;
 271		do_div(delta, lru_pages + 1);
 272		total_scan += delta;
 273		if (total_scan < 0) {
 274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 275			       "delete nr=%ld\n",
 276			       shrinker->shrink, total_scan);
 277			total_scan = max_pass;
 278		}
 279
 
 
 
 
 
 280		/*
 281		 * We need to avoid excessive windup on filesystem shrinkers
 282		 * due to large numbers of GFP_NOFS allocations causing the
 283		 * shrinkers to return -1 all the time. This results in a large
 284		 * nr being built up so when a shrink that can do some work
 285		 * comes along it empties the entire cache due to nr >>>
 286		 * max_pass.  This is bad for sustaining a working set in
 287		 * memory.
 288		 *
 289		 * Hence only allow the shrinker to scan the entire cache when
 290		 * a large delta change is calculated directly.
 291		 */
 292		if (delta < max_pass / 4)
 293			total_scan = min(total_scan, max_pass / 2);
 
 
 
 
 
 294
 295		/*
 296		 * Avoid risking looping forever due to too large nr value:
 297		 * never try to free more than twice the estimate number of
 298		 * freeable entries.
 299		 */
 300		if (total_scan > max_pass * 2)
 301			total_scan = max_pass * 2;
 302
 303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 304					nr_pages_scanned, lru_pages,
 305					max_pass, delta, total_scan);
 
 
 
 
 
 306
 307		while (total_scan >= batch_size) {
 308			int nr_before;
 
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 312							batch_size);
 313			if (shrink_ret == -1)
 314				break;
 315			if (shrink_ret < nr_before)
 316				ret += nr_before - shrink_ret;
 317			count_vm_events(SLABS_SCANNED, batch_size);
 318			total_scan -= batch_size;
 
 
 319
 320			cond_resched();
 321		}
 322
 323		/*
 324		 * move the unused scan count back into the shrinker in a
 325		 * manner that handles concurrent updates. If we exhausted the
 326		 * scan, there is no need to do an update.
 327		 */
 328		do {
 329			nr = shrinker->nr;
 330			new_nr = total_scan + nr;
 331			if (total_scan <= 0)
 332				break;
 333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
 334
 335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 
 
 
 336	}
 337	up_read(&shrinker_rwsem);
 338out:
 339	cond_resched();
 340	return ret;
 341}
 342
 343static void set_reclaim_mode(int priority, struct scan_control *sc,
 344				   bool sync)
 345{
 346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 
 347
 348	/*
 349	 * Initially assume we are entering either lumpy reclaim or
 350	 * reclaim/compaction.Depending on the order, we will either set the
 351	 * sync mode or just reclaim order-0 pages later.
 352	 */
 353	if (COMPACTION_BUILD)
 354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 355	else
 356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 357
 358	/*
 359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
 360	 * restricting when its set to either costly allocations or when
 361	 * under memory pressure
 362	 */
 363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 364		sc->reclaim_mode |= syncmode;
 365	else if (sc->order && priority < DEF_PRIORITY - 2)
 366		sc->reclaim_mode |= syncmode;
 367	else
 368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 369}
 370
 371static void reset_reclaim_mode(struct scan_control *sc)
 372{
 373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374}
 375
 376static inline int is_page_cache_freeable(struct page *page)
 377{
 378	/*
 379	 * A freeable page cache page is referenced only by the caller
 380	 * that isolated the page, the page cache radix tree and
 381	 * optional buffer heads at page->private.
 382	 */
 383	return page_count(page) - page_has_private(page) == 2;
 384}
 385
 386static int may_write_to_queue(struct backing_dev_info *bdi,
 387			      struct scan_control *sc)
 388{
 389	if (current->flags & PF_SWAPWRITE)
 390		return 1;
 391	if (!bdi_write_congested(bdi))
 392		return 1;
 393	if (bdi == current->backing_dev_info)
 394		return 1;
 395
 396	/* lumpy reclaim for hugepage often need a lot of write */
 397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 398		return 1;
 399	return 0;
 400}
 401
 402/*
 403 * We detected a synchronous write error writing a page out.  Probably
 404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 405 * fsync(), msync() or close().
 406 *
 407 * The tricky part is that after writepage we cannot touch the mapping: nothing
 408 * prevents it from being freed up.  But we have a ref on the page and once
 409 * that page is locked, the mapping is pinned.
 410 *
 411 * We're allowed to run sleeping lock_page() here because we know the caller has
 412 * __GFP_FS.
 413 */
 414static void handle_write_error(struct address_space *mapping,
 415				struct page *page, int error)
 416{
 417	lock_page(page);
 418	if (page_mapping(page) == mapping)
 419		mapping_set_error(mapping, error);
 420	unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421}
 422
 423/* possible outcome of pageout() */
 424typedef enum {
 425	/* failed to write page out, page is locked */
 426	PAGE_KEEP,
 427	/* move page to the active list, page is locked */
 428	PAGE_ACTIVATE,
 429	/* page has been sent to the disk successfully, page is unlocked */
 430	PAGE_SUCCESS,
 431	/* page is clean and locked */
 432	PAGE_CLEAN,
 433} pageout_t;
 434
 435/*
 436 * pageout is called by shrink_page_list() for each dirty page.
 437 * Calls ->writepage().
 438 */
 439static pageout_t pageout(struct page *page, struct address_space *mapping,
 440			 struct scan_control *sc)
 441{
 442	/*
 443	 * If the page is dirty, only perform writeback if that write
 444	 * will be non-blocking.  To prevent this allocation from being
 445	 * stalled by pagecache activity.  But note that there may be
 446	 * stalls if we need to run get_block().  We could test
 447	 * PagePrivate for that.
 448	 *
 449	 * If this process is currently in __generic_file_aio_write() against
 450	 * this page's queue, we can perform writeback even if that
 451	 * will block.
 452	 *
 453	 * If the page is swapcache, write it back even if that would
 454	 * block, for some throttling. This happens by accident, because
 455	 * swap_backing_dev_info is bust: it doesn't reflect the
 456	 * congestion state of the swapdevs.  Easy to fix, if needed.
 457	 */
 458	if (!is_page_cache_freeable(page))
 459		return PAGE_KEEP;
 460	if (!mapping) {
 461		/*
 462		 * Some data journaling orphaned pages can have
 463		 * page->mapping == NULL while being dirty with clean buffers.
 464		 */
 465		if (page_has_private(page)) {
 466			if (try_to_free_buffers(page)) {
 467				ClearPageDirty(page);
 468				printk("%s: orphaned page\n", __func__);
 469				return PAGE_CLEAN;
 470			}
 471		}
 472		return PAGE_KEEP;
 473	}
 474	if (mapping->a_ops->writepage == NULL)
 475		return PAGE_ACTIVATE;
 476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 477		return PAGE_KEEP;
 478
 479	if (clear_page_dirty_for_io(page)) {
 480		int res;
 481		struct writeback_control wbc = {
 482			.sync_mode = WB_SYNC_NONE,
 483			.nr_to_write = SWAP_CLUSTER_MAX,
 484			.range_start = 0,
 485			.range_end = LLONG_MAX,
 486			.for_reclaim = 1,
 
 487		};
 488
 489		SetPageReclaim(page);
 490		res = mapping->a_ops->writepage(page, &wbc);
 
 
 
 
 
 
 
 
 491		if (res < 0)
 492			handle_write_error(mapping, page, res);
 493		if (res == AOP_WRITEPAGE_ACTIVATE) {
 494			ClearPageReclaim(page);
 495			return PAGE_ACTIVATE;
 496		}
 497
 498		/*
 499		 * Wait on writeback if requested to. This happens when
 500		 * direct reclaiming a large contiguous area and the
 501		 * first attempt to free a range of pages fails.
 502		 */
 503		if (PageWriteback(page) &&
 504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
 505			wait_on_page_writeback(page);
 506
 507		if (!PageWriteback(page)) {
 508			/* synchronous write or broken a_ops? */
 509			ClearPageReclaim(page);
 510		}
 511		trace_mm_vmscan_writepage(page,
 512			trace_reclaim_flags(page, sc->reclaim_mode));
 513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 514		return PAGE_SUCCESS;
 515	}
 516
 517	return PAGE_CLEAN;
 518}
 519
 520/*
 521 * Same as remove_mapping, but if the page is removed from the mapping, it
 522 * gets returned with a refcount of 0.
 523 */
 524static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 525{
 526	BUG_ON(!PageLocked(page));
 527	BUG_ON(mapping != page_mapping(page));
 528
 529	spin_lock_irq(&mapping->tree_lock);
 
 
 
 
 
 530	/*
 531	 * The non racy check for a busy page.
 532	 *
 533	 * Must be careful with the order of the tests. When someone has
 534	 * a ref to the page, it may be possible that they dirty it then
 535	 * drop the reference. So if PageDirty is tested before page_count
 536	 * here, then the following race may occur:
 537	 *
 538	 * get_user_pages(&page);
 539	 * [user mapping goes away]
 540	 * write_to(page);
 541	 *				!PageDirty(page)    [good]
 542	 * SetPageDirty(page);
 543	 * put_page(page);
 544	 *				!page_count(page)   [good, discard it]
 545	 *
 546	 * [oops, our write_to data is lost]
 547	 *
 548	 * Reversing the order of the tests ensures such a situation cannot
 549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 550	 * load is not satisfied before that of page->_count.
 551	 *
 552	 * Note that if SetPageDirty is always performed via set_page_dirty,
 553	 * and thus under tree_lock, then this ordering is not required.
 554	 */
 555	if (!page_freeze_refs(page, 2))
 
 556		goto cannot_free;
 557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 558	if (unlikely(PageDirty(page))) {
 559		page_unfreeze_refs(page, 2);
 560		goto cannot_free;
 561	}
 562
 563	if (PageSwapCache(page)) {
 564		swp_entry_t swap = { .val = page_private(page) };
 565		__delete_from_swap_cache(page);
 566		spin_unlock_irq(&mapping->tree_lock);
 567		swapcache_free(swap, page);
 568	} else {
 569		void (*freepage)(struct page *);
 570
 571		freepage = mapping->a_ops->freepage;
 
 
 
 
 
 
 
 572
 573		__delete_from_page_cache(page);
 574		spin_unlock_irq(&mapping->tree_lock);
 575		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577		if (freepage != NULL)
 578			freepage(page);
 579	}
 580
 581	return 1;
 582
 583cannot_free:
 584	spin_unlock_irq(&mapping->tree_lock);
 
 
 585	return 0;
 586}
 587
 588/*
 589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 590 * someone else has a ref on the page, abort and return 0.  If it was
 591 * successfully detached, return 1.  Assumes the caller has a single ref on
 592 * this page.
 
 
 
 
 
 
 593 */
 594int remove_mapping(struct address_space *mapping, struct page *page)
 595{
 596	if (__remove_mapping(mapping, page)) {
 597		/*
 598		 * Unfreezing the refcount with 1 rather than 2 effectively
 599		 * drops the pagecache ref for us without requiring another
 600		 * atomic operation.
 601		 */
 602		page_unfreeze_refs(page, 1);
 603		return 1;
 604	}
 605	return 0;
 606}
 607
 608/**
 609 * putback_lru_page - put previously isolated page onto appropriate LRU list
 610 * @page: page to be put back to appropriate lru list
 611 *
 612 * Add previously isolated @page to appropriate LRU list.
 613 * Page may still be unevictable for other reasons.
 614 *
 615 * lru_lock must not be held, interrupts must be enabled.
 616 */
 617void putback_lru_page(struct page *page)
 618{
 619	int lru;
 620	int active = !!TestClearPageActive(page);
 621	int was_unevictable = PageUnevictable(page);
 622
 623	VM_BUG_ON(PageLRU(page));
 624
 625redo:
 626	ClearPageUnevictable(page);
 627
 628	if (page_evictable(page, NULL)) {
 629		/*
 630		 * For evictable pages, we can use the cache.
 631		 * In event of a race, worst case is we end up with an
 632		 * unevictable page on [in]active list.
 633		 * We know how to handle that.
 634		 */
 635		lru = active + page_lru_base_type(page);
 636		lru_cache_add_lru(page, lru);
 637	} else {
 638		/*
 639		 * Put unevictable pages directly on zone's unevictable
 640		 * list.
 641		 */
 642		lru = LRU_UNEVICTABLE;
 643		add_page_to_unevictable_list(page);
 644		/*
 645		 * When racing with an mlock clearing (page is
 646		 * unlocked), make sure that if the other thread does
 647		 * not observe our setting of PG_lru and fails
 648		 * isolation, we see PG_mlocked cleared below and move
 649		 * the page back to the evictable list.
 650		 *
 651		 * The other side is TestClearPageMlocked().
 652		 */
 653		smp_mb();
 654	}
 655
 656	/*
 657	 * page's status can change while we move it among lru. If an evictable
 658	 * page is on unevictable list, it never be freed. To avoid that,
 659	 * check after we added it to the list, again.
 660	 */
 661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 662		if (!isolate_lru_page(page)) {
 663			put_page(page);
 664			goto redo;
 665		}
 666		/* This means someone else dropped this page from LRU
 667		 * So, it will be freed or putback to LRU again. There is
 668		 * nothing to do here.
 669		 */
 670	}
 671
 672	if (was_unevictable && lru != LRU_UNEVICTABLE)
 673		count_vm_event(UNEVICTABLE_PGRESCUED);
 674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 675		count_vm_event(UNEVICTABLE_PGCULLED);
 676
 677	put_page(page);		/* drop ref from isolate */
 678}
 679
 680enum page_references {
 681	PAGEREF_RECLAIM,
 682	PAGEREF_RECLAIM_CLEAN,
 683	PAGEREF_KEEP,
 684	PAGEREF_ACTIVATE,
 685};
 686
 687static enum page_references page_check_references(struct page *page,
 688						  struct scan_control *sc)
 689{
 690	int referenced_ptes, referenced_page;
 691	unsigned long vm_flags;
 692
 693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 694	referenced_page = TestClearPageReferenced(page);
 695
 696	/* Lumpy reclaim - ignore references */
 697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 698		return PAGEREF_RECLAIM;
 699
 700	/*
 701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 702	 * move the page to the unevictable list.
 703	 */
 704	if (vm_flags & VM_LOCKED)
 705		return PAGEREF_RECLAIM;
 
 
 
 
 
 
 
 
 
 706
 707	if (referenced_ptes) {
 708		if (PageAnon(page))
 709			return PAGEREF_ACTIVATE;
 710		/*
 711		 * All mapped pages start out with page table
 712		 * references from the instantiating fault, so we need
 713		 * to look twice if a mapped file page is used more
 714		 * than once.
 715		 *
 716		 * Mark it and spare it for another trip around the
 717		 * inactive list.  Another page table reference will
 718		 * lead to its activation.
 719		 *
 720		 * Note: the mark is set for activated pages as well
 721		 * so that recently deactivated but used pages are
 722		 * quickly recovered.
 723		 */
 724		SetPageReferenced(page);
 
 
 
 725
 726		if (referenced_page)
 727			return PAGEREF_ACTIVATE;
 
 
 
 728
 729		return PAGEREF_KEEP;
 730	}
 731
 732	/* Reclaim if clean, defer dirty pages to writeback */
 733	if (referenced_page && !PageSwapBacked(page))
 734		return PAGEREF_RECLAIM_CLEAN;
 735
 736	return PAGEREF_RECLAIM;
 737}
 738
 739static noinline_for_stack void free_page_list(struct list_head *free_pages)
 
 
 740{
 741	struct pagevec freed_pvec;
 742	struct page *page, *tmp;
 743
 744	pagevec_init(&freed_pvec, 1);
 745
 746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
 747		list_del(&page->lru);
 748		if (!pagevec_add(&freed_pvec, page)) {
 749			__pagevec_free(&freed_pvec);
 750			pagevec_reinit(&freed_pvec);
 751		}
 
 
 
 
 752	}
 753
 754	pagevec_free(&freed_pvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755}
 756
 757/*
 758 * shrink_page_list() returns the number of reclaimed pages
 
 759 */
 760static unsigned long shrink_page_list(struct list_head *page_list,
 761				      struct zone *zone,
 762				      struct scan_control *sc)
 763{
 764	LIST_HEAD(ret_pages);
 765	LIST_HEAD(free_pages);
 766	int pgactivate = 0;
 767	unsigned long nr_dirty = 0;
 768	unsigned long nr_congested = 0;
 769	unsigned long nr_reclaimed = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771	cond_resched();
 
 772
 773	while (!list_empty(page_list)) {
 774		enum page_references references;
 775		struct address_space *mapping;
 776		struct page *page;
 777		int may_enter_fs;
 
 
 778
 779		cond_resched();
 780
 781		page = lru_to_page(page_list);
 782		list_del(&page->lru);
 783
 784		if (!trylock_page(page))
 785			goto keep;
 786
 787		VM_BUG_ON(PageActive(page));
 788		VM_BUG_ON(page_zone(page) != zone);
 
 789
 790		sc->nr_scanned++;
 
 791
 792		if (unlikely(!page_evictable(page, NULL)))
 793			goto cull_mlocked;
 794
 795		if (!sc->may_unmap && page_mapped(page))
 796			goto keep_locked;
 797
 798		/* Double the slab pressure for mapped and swapcache pages */
 799		if (page_mapped(page) || PageSwapCache(page))
 800			sc->nr_scanned++;
 
 801
 802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 
 
 
 
 
 
 804
 805		if (PageWriteback(page)) {
 806			/*
 807			 * Synchronous reclaim is performed in two passes,
 808			 * first an asynchronous pass over the list to
 809			 * start parallel writeback, and a second synchronous
 810			 * pass to wait for the IO to complete.  Wait here
 811			 * for any page for which writeback has already
 812			 * started.
 813			 */
 814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 815			    may_enter_fs)
 816				wait_on_page_writeback(page);
 817			else {
 818				unlock_page(page);
 819				goto keep_lumpy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820			}
 821		}
 822
 823		references = page_check_references(page, sc);
 
 
 824		switch (references) {
 825		case PAGEREF_ACTIVATE:
 826			goto activate_locked;
 827		case PAGEREF_KEEP:
 
 828			goto keep_locked;
 829		case PAGEREF_RECLAIM:
 830		case PAGEREF_RECLAIM_CLEAN:
 831			; /* try to reclaim the page below */
 
 
 
 
 
 
 
 
 
 
 
 832		}
 833
 834		/*
 835		 * Anonymous process memory has backing store?
 836		 * Try to allocate it some swap space here.
 
 837		 */
 838		if (PageAnon(page) && !PageSwapCache(page)) {
 839			if (!(sc->gfp_mask & __GFP_IO))
 840				goto keep_locked;
 841			if (!add_to_swap(page))
 842				goto activate_locked;
 843			may_enter_fs = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844		}
 845
 846		mapping = page_mapping(page);
 
 
 
 
 
 
 
 
 847
 848		/*
 849		 * The page is mapped into the page tables of one or more
 850		 * processes. Try to unmap it here.
 851		 */
 852		if (page_mapped(page) && mapping) {
 853			switch (try_to_unmap(page, TTU_UNMAP)) {
 854			case SWAP_FAIL:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855				goto activate_locked;
 856			case SWAP_AGAIN:
 857				goto keep_locked;
 858			case SWAP_MLOCK:
 859				goto cull_mlocked;
 860			case SWAP_SUCCESS:
 861				; /* try to free the page below */
 862			}
 863		}
 864
 865		if (PageDirty(page)) {
 866			nr_dirty++;
 
 
 
 
 
 
 
 867
 868			if (references == PAGEREF_RECLAIM_CLEAN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869				goto keep_locked;
 870			if (!may_enter_fs)
 871				goto keep_locked;
 872			if (!sc->may_writepage)
 873				goto keep_locked;
 874
 875			/* Page is dirty, try to write it out here */
 876			switch (pageout(page, mapping, sc)) {
 
 
 
 
 
 877			case PAGE_KEEP:
 878				nr_congested++;
 879				goto keep_locked;
 880			case PAGE_ACTIVATE:
 
 
 
 
 
 
 
 
 
 881				goto activate_locked;
 882			case PAGE_SUCCESS:
 883				if (PageWriteback(page))
 884					goto keep_lumpy;
 885				if (PageDirty(page))
 
 
 
 
 
 
 886					goto keep;
 887
 888				/*
 889				 * A synchronous write - probably a ramdisk.  Go
 890				 * ahead and try to reclaim the page.
 891				 */
 892				if (!trylock_page(page))
 893					goto keep;
 894				if (PageDirty(page) || PageWriteback(page))
 
 895					goto keep_locked;
 896				mapping = page_mapping(page);
 
 897			case PAGE_CLEAN:
 898				; /* try to free the page below */
 899			}
 900		}
 901
 902		/*
 903		 * If the page has buffers, try to free the buffer mappings
 904		 * associated with this page. If we succeed we try to free
 905		 * the page as well.
 906		 *
 907		 * We do this even if the page is PageDirty().
 908		 * try_to_release_page() does not perform I/O, but it is
 909		 * possible for a page to have PageDirty set, but it is actually
 910		 * clean (all its buffers are clean).  This happens if the
 911		 * buffers were written out directly, with submit_bh(). ext3
 912		 * will do this, as well as the blockdev mapping.
 913		 * try_to_release_page() will discover that cleanness and will
 914		 * drop the buffers and mark the page clean - it can be freed.
 
 915		 *
 916		 * Rarely, pages can have buffers and no ->mapping.  These are
 917		 * the pages which were not successfully invalidated in
 918		 * truncate_complete_page().  We try to drop those buffers here
 919		 * and if that worked, and the page is no longer mapped into
 920		 * process address space (page_count == 1) it can be freed.
 921		 * Otherwise, leave the page on the LRU so it is swappable.
 
 922		 */
 923		if (page_has_private(page)) {
 924			if (!try_to_release_page(page, sc->gfp_mask))
 925				goto activate_locked;
 926			if (!mapping && page_count(page) == 1) {
 927				unlock_page(page);
 928				if (put_page_testzero(page))
 929					goto free_it;
 930				else {
 931					/*
 932					 * rare race with speculative reference.
 933					 * the speculative reference will free
 934					 * this page shortly, so we may
 935					 * increment nr_reclaimed here (and
 936					 * leave it off the LRU).
 937					 */
 938					nr_reclaimed++;
 939					continue;
 940				}
 941			}
 942		}
 943
 944		if (!mapping || !__remove_mapping(mapping, page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945			goto keep_locked;
 946
 947		/*
 948		 * At this point, we have no other references and there is
 949		 * no way to pick any more up (removed from LRU, removed
 950		 * from pagecache). Can use non-atomic bitops now (and
 951		 * we obviously don't have to worry about waking up a process
 952		 * waiting on the page lock, because there are no references.
 953		 */
 954		__clear_page_locked(page);
 955free_it:
 956		nr_reclaimed++;
 957
 958		/*
 959		 * Is there need to periodically free_page_list? It would
 960		 * appear not as the counts should be low
 961		 */
 962		list_add(&page->lru, &free_pages);
 963		continue;
 964
 965cull_mlocked:
 966		if (PageSwapCache(page))
 967			try_to_free_swap(page);
 968		unlock_page(page);
 969		putback_lru_page(page);
 970		reset_reclaim_mode(sc);
 971		continue;
 972
 
 
 
 
 
 
 
 
 
 973activate_locked:
 974		/* Not a candidate for swapping, so reclaim swap space. */
 975		if (PageSwapCache(page) && vm_swap_full())
 976			try_to_free_swap(page);
 977		VM_BUG_ON(PageActive(page));
 978		SetPageActive(page);
 979		pgactivate++;
 
 
 
 
 
 980keep_locked:
 981		unlock_page(page);
 982keep:
 983		reset_reclaim_mode(sc);
 984keep_lumpy:
 985		list_add(&page->lru, &ret_pages);
 986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987	}
 988
 989	/*
 990	 * Tag a zone as congested if all the dirty pages encountered were
 991	 * backed by a congested BDI. In this case, reclaimers should just
 992	 * back off and wait for congestion to clear because further reclaim
 993	 * will encounter the same problem
 994	 */
 995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
 996		zone_set_flag(zone, ZONE_CONGESTED);
 997
 998	free_page_list(&free_pages);
 
 
 999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
 
 
 
1002	return nr_reclaimed;
1003}
1004
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, int mode, int file)
1016{
1017	int ret = -EINVAL;
1018
1019	/* Only take pages on the LRU. */
1020	if (!PageLRU(page))
1021		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	/*
1024	 * When checking the active state, we need to be sure we are
1025	 * dealing with comparible boolean values.  Take the logical not
1026	 * of each.
 
1027	 */
1028	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1029		return ret;
1030
1031	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1032		return ret;
1033
 
 
1034	/*
1035	 * When this function is being called for lumpy reclaim, we
1036	 * initially look into all LRU pages, active, inactive and
1037	 * unevictable; only give shrink_page_list evictable pages.
 
1038	 */
1039	if (PageUnevictable(page))
1040		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1041
1042	ret = -EBUSY;
 
 
1043
1044	if (likely(get_page_unless_zero(page))) {
1045		/*
1046		 * Be careful not to clear PageLRU until after we're
1047		 * sure the page is not being freed elsewhere -- the
1048		 * page release code relies on it.
1049		 */
1050		ClearPageLRU(page);
1051		ret = 0;
1052	}
1053
1054	return ret;
1055}
1056
1057/*
1058 * zone->lru_lock is heavily contended.  Some of the functions that
 
 
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1061 *
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1064 *
1065 * Appropriate locks must be held before calling this function.
1066 *
1067 * @nr_to_scan:	The number of pages to look through on the list.
1068 * @src:	The LRU list to pull pages off.
1069 * @dst:	The temp list to put pages on to.
1070 * @scanned:	The number of pages that were scanned.
1071 * @order:	The caller's attempted allocation order
1072 * @mode:	One of the LRU isolation modes
1073 * @file:	True [1] if isolating file [!anon] pages
1074 *
1075 * returns how many pages were moved onto *@dst.
1076 */
1077static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1078		struct list_head *src, struct list_head *dst,
1079		unsigned long *scanned, int order, int mode, int file)
 
1080{
 
1081	unsigned long nr_taken = 0;
1082	unsigned long nr_lumpy_taken = 0;
1083	unsigned long nr_lumpy_dirty = 0;
1084	unsigned long nr_lumpy_failed = 0;
1085	unsigned long scan;
 
1086
1087	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1088		struct page *page;
1089		unsigned long pfn;
1090		unsigned long end_pfn;
1091		unsigned long page_pfn;
1092		int zone_id;
1093
1094		page = lru_to_page(src);
1095		prefetchw_prev_lru_page(page, src, flags);
1096
1097		VM_BUG_ON(!PageLRU(page));
1098
1099		switch (__isolate_lru_page(page, mode, file)) {
1100		case 0:
1101			list_move(&page->lru, dst);
1102			mem_cgroup_del_lru(page);
1103			nr_taken += hpage_nr_pages(page);
1104			break;
1105
1106		case -EBUSY:
1107			/* else it is being freed elsewhere */
1108			list_move(&page->lru, src);
1109			mem_cgroup_rotate_lru_list(page, page_lru(page));
1110			continue;
1111
1112		default:
1113			BUG();
1114		}
1115
1116		if (!order)
1117			continue;
1118
1119		/*
1120		 * Attempt to take all pages in the order aligned region
1121		 * surrounding the tag page.  Only take those pages of
1122		 * the same active state as that tag page.  We may safely
1123		 * round the target page pfn down to the requested order
1124		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125		 * where that page is in a different zone we will detect
1126		 * it from its zone id and abort this block scan.
1127		 */
1128		zone_id = page_zone_id(page);
1129		page_pfn = page_to_pfn(page);
1130		pfn = page_pfn & ~((1 << order) - 1);
1131		end_pfn = pfn + (1 << order);
1132		for (; pfn < end_pfn; pfn++) {
1133			struct page *cursor_page;
1134
1135			/* The target page is in the block, ignore it. */
1136			if (unlikely(pfn == page_pfn))
1137				continue;
 
 
1138
1139			/* Avoid holes within the zone. */
1140			if (unlikely(!pfn_valid_within(pfn)))
1141				break;
 
 
 
 
 
1142
1143			cursor_page = pfn_to_page(pfn);
 
 
 
1144
1145			/* Check that we have not crossed a zone boundary. */
1146			if (unlikely(page_zone_id(cursor_page) != zone_id))
1147				break;
1148
1149			/*
1150			 * If we don't have enough swap space, reclaiming of
1151			 * anon page which don't already have a swap slot is
1152			 * pointless.
1153			 */
1154			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1155			    !PageSwapCache(cursor_page))
1156				break;
1157
1158			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1159				list_move(&cursor_page->lru, dst);
1160				mem_cgroup_del_lru(cursor_page);
1161				nr_taken += hpage_nr_pages(page);
1162				nr_lumpy_taken++;
1163				if (PageDirty(cursor_page))
1164					nr_lumpy_dirty++;
1165				scan++;
1166			} else {
1167				/*
1168				 * Check if the page is freed already.
1169				 *
1170				 * We can't use page_count() as that
1171				 * requires compound_head and we don't
1172				 * have a pin on the page here. If a
1173				 * page is tail, we may or may not
1174				 * have isolated the head, so assume
1175				 * it's not free, it'd be tricky to
1176				 * track the head status without a
1177				 * page pin.
1178				 */
1179				if (!PageTail(cursor_page) &&
1180				    !atomic_read(&cursor_page->_count))
1181					continue;
1182				break;
1183			}
1184		}
1185
1186		/* If we break out of the loop above, lumpy reclaim failed */
1187		if (pfn < end_pfn)
1188			nr_lumpy_failed++;
 
 
1189	}
1190
1191	*scanned = scan;
1192
1193	trace_mm_vmscan_lru_isolate(order,
1194			nr_to_scan, scan,
1195			nr_taken,
1196			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1197			mode);
1198	return nr_taken;
1199}
1200
1201static unsigned long isolate_pages_global(unsigned long nr,
1202					struct list_head *dst,
1203					unsigned long *scanned, int order,
1204					int mode, struct zone *z,
1205					int active, int file)
1206{
1207	int lru = LRU_BASE;
1208	if (active)
1209		lru += LRU_ACTIVE;
1210	if (file)
1211		lru += LRU_FILE;
1212	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1213								mode, file);
1214}
1215
1216/*
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1219 */
1220static unsigned long clear_active_flags(struct list_head *page_list,
1221					unsigned int *count)
1222{
1223	int nr_active = 0;
1224	int lru;
1225	struct page *page;
1226
1227	list_for_each_entry(page, page_list, lru) {
1228		int numpages = hpage_nr_pages(page);
1229		lru = page_lru_base_type(page);
1230		if (PageActive(page)) {
1231			lru += LRU_ACTIVE;
1232			ClearPageActive(page);
1233			nr_active += numpages;
1234		}
1235		if (count)
1236			count[lru] += numpages;
1237	}
1238
1239	return nr_active;
 
 
 
1240}
1241
1242/**
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1245 *
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1248 *
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1251 *
1252 * The returned page will have PageLRU() cleared.  If it was found on
1253 * the active list, it will have PageActive set.  If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1256 *
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1259 *
1260 * Restrictions:
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 *     fundamentnal difference from isolate_lru_pages (which is called
1263 *     without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
 
 
 
1266 */
1267int isolate_lru_page(struct page *page)
1268{
1269	int ret = -EBUSY;
1270
1271	VM_BUG_ON(!page_count(page));
1272
1273	if (PageLRU(page)) {
1274		struct zone *zone = page_zone(page);
1275
1276		spin_lock_irq(&zone->lru_lock);
1277		if (PageLRU(page)) {
1278			int lru = page_lru(page);
1279			ret = 0;
1280			get_page(page);
1281			ClearPageLRU(page);
1282
1283			del_page_from_lru_list(zone, page, lru);
1284		}
1285		spin_unlock_irq(&zone->lru_lock);
 
 
1286	}
 
1287	return ret;
1288}
1289
1290/*
1291 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1292 */
1293static int too_many_isolated(struct zone *zone, int file,
1294		struct scan_control *sc)
1295{
1296	unsigned long inactive, isolated;
 
1297
1298	if (current_is_kswapd())
1299		return 0;
1300
1301	if (!scanning_global_lru(sc))
1302		return 0;
1303
1304	if (file) {
1305		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1306		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1307	} else {
1308		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1309		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1310	}
1311
1312	return isolated > inactive;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313}
1314
1315/*
1316 * TODO: Try merging with migrations version of putback_lru_pages
 
 
1317 */
1318static noinline_for_stack void
1319putback_lru_pages(struct zone *zone, struct scan_control *sc,
1320				unsigned long nr_anon, unsigned long nr_file,
1321				struct list_head *page_list)
1322{
1323	struct page *page;
1324	struct pagevec pvec;
1325	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1326
1327	pagevec_init(&pvec, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328
1329	/*
1330	 * Put back any unfreeable pages.
 
 
 
 
 
 
 
 
1331	 */
1332	spin_lock(&zone->lru_lock);
1333	while (!list_empty(page_list)) {
1334		int lru;
1335		page = lru_to_page(page_list);
1336		VM_BUG_ON(PageLRU(page));
1337		list_del(&page->lru);
1338		if (unlikely(!page_evictable(page, NULL))) {
1339			spin_unlock_irq(&zone->lru_lock);
1340			putback_lru_page(page);
1341			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342			continue;
1343		}
1344		SetPageLRU(page);
1345		lru = page_lru(page);
1346		add_page_to_lru_list(zone, page, lru);
1347		if (is_active_lru(lru)) {
1348			int file = is_file_lru(lru);
1349			int numpages = hpage_nr_pages(page);
1350			reclaim_stat->recent_rotated[file] += numpages;
1351		}
1352		if (!pagevec_add(&pvec, page)) {
1353			spin_unlock_irq(&zone->lru_lock);
1354			__pagevec_release(&pvec);
1355			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356		}
 
 
 
 
1357	}
1358	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1359	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1360
1361	spin_unlock_irq(&zone->lru_lock);
1362	pagevec_release(&pvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363}
1364
1365static noinline_for_stack void update_isolated_counts(struct zone *zone,
1366					struct scan_control *sc,
1367					unsigned long *nr_anon,
1368					unsigned long *nr_file,
1369					struct list_head *isolated_list)
1370{
1371	unsigned long nr_active;
1372	unsigned int count[NR_LRU_LISTS] = { 0, };
1373	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
 
 
 
 
 
 
 
1374
1375	nr_active = clear_active_flags(isolated_list, count);
1376	__count_vm_events(PGDEACTIVATE, nr_active);
 
 
 
 
 
1377
1378	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1379			      -count[LRU_ACTIVE_FILE]);
1380	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1381			      -count[LRU_INACTIVE_FILE]);
1382	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1383			      -count[LRU_ACTIVE_ANON]);
1384	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1385			      -count[LRU_INACTIVE_ANON]);
1386
1387	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1388	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1389	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1390	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392	reclaim_stat->recent_scanned[0] += *nr_anon;
1393	reclaim_stat->recent_scanned[1] += *nr_file;
1394}
1395
1396/*
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
 
1398 *
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1403 */
1404static inline bool should_reclaim_stall(unsigned long nr_taken,
1405					unsigned long nr_freed,
1406					int priority,
1407					struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408{
1409	int lumpy_stall_priority;
 
1410
1411	/* kswapd should not stall on sync IO */
1412	if (current_is_kswapd())
1413		return false;
1414
1415	/* Only stall on lumpy reclaim */
1416	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1417		return false;
1418
1419	/* If we have relaimed everything on the isolated list, no stall */
1420	if (nr_freed == nr_taken)
1421		return false;
 
 
 
1422
1423	/*
1424	 * For high-order allocations, there are two stall thresholds.
1425	 * High-cost allocations stall immediately where as lower
1426	 * order allocations such as stacks require the scanning
1427	 * priority to be much higher before stalling.
1428	 */
1429	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1430		lumpy_stall_priority = DEF_PRIORITY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431	else
1432		lumpy_stall_priority = DEF_PRIORITY / 3;
1433
1434	return priority <= lumpy_stall_priority;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435}
1436
1437/*
1438 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1439 * of reclaimed pages
 
 
 
1440 */
1441static noinline_for_stack unsigned long
1442shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1443			struct scan_control *sc, int priority, int file)
1444{
1445	LIST_HEAD(page_list);
1446	unsigned long nr_scanned;
1447	unsigned long nr_reclaimed = 0;
1448	unsigned long nr_taken;
1449	unsigned long nr_anon;
1450	unsigned long nr_file;
 
 
 
1451
1452	while (unlikely(too_many_isolated(zone, file, sc))) {
1453		congestion_wait(BLK_RW_ASYNC, HZ/10);
 
 
 
1454
1455		/* We are about to die and free our memory. Return now. */
1456		if (fatal_signal_pending(current))
1457			return SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
1458	}
1459
1460	set_reclaim_mode(priority, sc, false);
1461	lru_add_drain();
1462	spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463
1464	if (scanning_global_lru(sc)) {
1465		nr_taken = isolate_pages_global(nr_to_scan,
1466			&page_list, &nr_scanned, sc->order,
1467			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1468					ISOLATE_BOTH : ISOLATE_INACTIVE,
1469			zone, 0, file);
1470		zone->pages_scanned += nr_scanned;
1471		if (current_is_kswapd())
1472			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1473					       nr_scanned);
1474		else
1475			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1476					       nr_scanned);
1477	} else {
1478		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1479			&page_list, &nr_scanned, sc->order,
1480			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1481					ISOLATE_BOTH : ISOLATE_INACTIVE,
1482			zone, sc->mem_cgroup,
1483			0, file);
1484		/*
1485		 * mem_cgroup_isolate_pages() keeps track of
1486		 * scanned pages on its own.
1487		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488	}
 
1489
1490	if (nr_taken == 0) {
1491		spin_unlock_irq(&zone->lru_lock);
1492		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493	}
1494
1495	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
 
 
 
 
 
 
1496
1497	spin_unlock_irq(&zone->lru_lock);
 
 
1498
1499	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
 
 
1500
1501	/* Check if we should syncronously wait for writeback */
1502	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1503		set_reclaim_mode(priority, sc, true);
1504		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
 
1505	}
 
 
1506
1507	local_irq_disable();
1508	if (current_is_kswapd())
1509		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1510	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1511
1512	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
 
 
 
1513
1514	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1515		zone_idx(zone),
1516		nr_scanned, nr_reclaimed,
1517		priority,
1518		trace_shrink_flags(file, sc->reclaim_mode));
1519	return nr_reclaimed;
 
 
1520}
1521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522/*
1523 * This moves pages from the active list to the inactive list.
 
 
 
1524 *
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
 
 
 
 
 
1527 *
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation.  But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page.  It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1535 *
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
1538 */
 
1539
1540static void move_active_pages_to_lru(struct zone *zone,
1541				     struct list_head *list,
1542				     enum lru_list lru)
1543{
1544	unsigned long pgmoved = 0;
1545	struct pagevec pvec;
1546	struct page *page;
1547
1548	pagevec_init(&pvec, 1);
 
 
1549
1550	while (!list_empty(list)) {
1551		page = lru_to_page(list);
1552
1553		VM_BUG_ON(PageLRU(page));
1554		SetPageLRU(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555
1556		list_move(&page->lru, &zone->lru[lru].list);
1557		mem_cgroup_add_lru_list(page, lru);
1558		pgmoved += hpage_nr_pages(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1561			spin_unlock_irq(&zone->lru_lock);
1562			if (buffer_heads_over_limit)
1563				pagevec_strip(&pvec);
1564			__pagevec_release(&pvec);
1565			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1567	}
1568	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569	if (!is_active_lru(lru))
1570		__count_vm_events(PGDEACTIVATE, pgmoved);
 
1571}
1572
1573static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1574			struct scan_control *sc, int priority, int file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575{
1576	unsigned long nr_taken;
1577	unsigned long pgscanned;
1578	unsigned long vm_flags;
1579	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1580	LIST_HEAD(l_active);
1581	LIST_HEAD(l_inactive);
1582	struct page *page;
1583	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1584	unsigned long nr_rotated = 0;
1585
1586	lru_add_drain();
1587	spin_lock_irq(&zone->lru_lock);
1588	if (scanning_global_lru(sc)) {
1589		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1590						&pgscanned, sc->order,
1591						ISOLATE_ACTIVE, zone,
1592						1, file);
1593		zone->pages_scanned += pgscanned;
1594	} else {
1595		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1596						&pgscanned, sc->order,
1597						ISOLATE_ACTIVE, zone,
1598						sc->mem_cgroup, 1, file);
1599		/*
1600		 * mem_cgroup_isolate_pages() keeps track of
1601		 * scanned pages on its own.
1602		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603	}
 
1604
1605	reclaim_stat->recent_scanned[file] += nr_taken;
 
 
 
 
 
 
 
 
 
1606
1607	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1608	if (file)
1609		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1610	else
1611		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1612	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1613	spin_unlock_irq(&zone->lru_lock);
1614
1615	while (!list_empty(&l_hold)) {
1616		cond_resched();
1617		page = lru_to_page(&l_hold);
1618		list_del(&page->lru);
 
 
1619
1620		if (unlikely(!page_evictable(page, NULL))) {
1621			putback_lru_page(page);
 
 
 
1622			continue;
1623		}
1624
1625		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1626			nr_rotated += hpage_nr_pages(page);
1627			/*
1628			 * Identify referenced, file-backed active pages and
1629			 * give them one more trip around the active list. So
1630			 * that executable code get better chances to stay in
1631			 * memory under moderate memory pressure.  Anon pages
1632			 * are not likely to be evicted by use-once streaming
1633			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634			 * so we ignore them here.
1635			 */
1636			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1637				list_add(&page->lru, &l_active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1641
1642		ClearPageActive(page);	/* we are de-activating */
1643		list_add(&page->lru, &l_inactive);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644	}
1645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646	/*
1647	 * Move pages back to the lru list.
 
 
1648	 */
1649	spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
1650	/*
1651	 * Count referenced pages from currently used mappings as rotated,
1652	 * even though only some of them are actually re-activated.  This
1653	 * helps balance scan pressure between file and anonymous pages in
1654	 * get_scan_ratio.
1655	 */
1656	reclaim_stat->recent_rotated[file] += nr_rotated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657
1658	move_active_pages_to_lru(zone, &l_active,
1659						LRU_ACTIVE + file * LRU_FILE);
1660	move_active_pages_to_lru(zone, &l_inactive,
1661						LRU_BASE   + file * LRU_FILE);
1662	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1663	spin_unlock_irq(&zone->lru_lock);
1664}
1665
1666#ifdef CONFIG_SWAP
1667static int inactive_anon_is_low_global(struct zone *zone)
1668{
1669	unsigned long active, inactive;
 
 
 
1670
1671	active = zone_page_state(zone, NR_ACTIVE_ANON);
1672	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1673
1674	if (inactive * zone->inactive_ratio < active)
1675		return 1;
1676
1677	return 0;
 
 
 
 
1678}
1679
1680/**
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc:   scan control of this context
1684 *
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1687 */
1688static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1689{
1690	int low;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692	/*
1693	 * If we don't have swap space, anonymous page deactivation
1694	 * is pointless.
 
1695	 */
1696	if (!total_swap_pages)
1697		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698
1699	if (scanning_global_lru(sc))
1700		low = inactive_anon_is_low_global(zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701	else
1702		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1703	return low;
 
 
 
 
 
 
 
1704}
1705#else
1706static inline int inactive_anon_is_low(struct zone *zone,
1707					struct scan_control *sc)
 
1708{
1709	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710}
1711#endif
1712
1713static int inactive_file_is_low_global(struct zone *zone)
1714{
1715	unsigned long active, inactive;
1716
1717	active = zone_page_state(zone, NR_ACTIVE_FILE);
1718	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720	return (active > inactive);
 
1721}
1722
1723/**
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc:   scan control of this context
1727 *
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1731 *
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1734 *
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1737 */
1738static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1739{
1740	int low;
 
1741
1742	if (scanning_global_lru(sc))
1743		low = inactive_file_is_low_global(zone);
1744	else
1745		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1746	return low;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747}
1748
1749static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1750				int file)
1751{
1752	if (file)
1753		return inactive_file_is_low(zone, sc);
1754	else
1755		return inactive_anon_is_low(zone, sc);
 
1756}
1757
1758static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1759	struct zone *zone, struct scan_control *sc, int priority)
 
 
 
 
 
 
1760{
1761	int file = is_file_lru(lru);
 
 
 
 
 
 
 
 
1762
1763	if (is_active_lru(lru)) {
1764		if (inactive_list_is_low(zone, sc, file))
1765		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767	}
1768
1769	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770}
1771
1772static int vmscan_swappiness(struct scan_control *sc)
1773{
1774	if (scanning_global_lru(sc))
1775		return vm_swappiness;
1776	return mem_cgroup_swappiness(sc->mem_cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
1777}
1778
1779/*
1780 * Determine how aggressively the anon and file LRU lists should be
1781 * scanned.  The relative value of each set of LRU lists is determined
1782 * by looking at the fraction of the pages scanned we did rotate back
1783 * onto the active list instead of evict.
1784 *
1785 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1786 */
1787static void get_scan_count(struct zone *zone, struct scan_control *sc,
1788					unsigned long *nr, int priority)
1789{
1790	unsigned long anon, file, free;
1791	unsigned long anon_prio, file_prio;
1792	unsigned long ap, fp;
1793	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1794	u64 fraction[2], denominator;
1795	enum lru_list l;
1796	int noswap = 0;
1797	bool force_scan = false;
1798	unsigned long nr_force_scan[2];
1799
1800	/* kswapd does zone balancing and needs to scan this zone */
1801	if (scanning_global_lru(sc) && current_is_kswapd())
1802		force_scan = true;
1803	/* memcg may have small limit and need to avoid priority drop */
1804	if (!scanning_global_lru(sc))
1805		force_scan = true;
1806
1807	/* If we have no swap space, do not bother scanning anon pages. */
1808	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1809		noswap = 1;
1810		fraction[0] = 0;
1811		fraction[1] = 1;
1812		denominator = 1;
1813		nr_force_scan[0] = 0;
1814		nr_force_scan[1] = SWAP_CLUSTER_MAX;
1815		goto out;
1816	}
1817
1818	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1819		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1820	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1821		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1822
1823	if (scanning_global_lru(sc)) {
1824		free  = zone_page_state(zone, NR_FREE_PAGES);
1825		/* If we have very few page cache pages,
1826		   force-scan anon pages. */
1827		if (unlikely(file + free <= high_wmark_pages(zone))) {
1828			fraction[0] = 1;
1829			fraction[1] = 0;
1830			denominator = 1;
1831			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1832			nr_force_scan[1] = 0;
1833			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834		}
1835	}
1836
 
 
1837	/*
1838	 * With swappiness at 100, anonymous and file have the same priority.
1839	 * This scanning priority is essentially the inverse of IO cost.
 
1840	 */
1841	anon_prio = vmscan_swappiness(sc);
1842	file_prio = 200 - vmscan_swappiness(sc);
1843
1844	/*
1845	 * OK, so we have swap space and a fair amount of page cache
1846	 * pages.  We use the recently rotated / recently scanned
1847	 * ratios to determine how valuable each cache is.
1848	 *
1849	 * Because workloads change over time (and to avoid overflow)
1850	 * we keep these statistics as a floating average, which ends
1851	 * up weighing recent references more than old ones.
1852	 *
1853	 * anon in [0], file in [1]
1854	 */
1855	spin_lock_irq(&zone->lru_lock);
1856	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1857		reclaim_stat->recent_scanned[0] /= 2;
1858		reclaim_stat->recent_rotated[0] /= 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	}
1860
1861	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1862		reclaim_stat->recent_scanned[1] /= 2;
1863		reclaim_stat->recent_rotated[1] /= 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864	}
1865
1866	/*
1867	 * The amount of pressure on anon vs file pages is inversely
1868	 * proportional to the fraction of recently scanned pages on
1869	 * each list that were recently referenced and in active use.
1870	 */
1871	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1872	ap /= reclaim_stat->recent_rotated[0] + 1;
1873
1874	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1875	fp /= reclaim_stat->recent_rotated[1] + 1;
1876	spin_unlock_irq(&zone->lru_lock);
1877
1878	fraction[0] = ap;
1879	fraction[1] = fp;
1880	denominator = ap + fp + 1;
1881	if (force_scan) {
1882		unsigned long scan = SWAP_CLUSTER_MAX;
1883		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1884		nr_force_scan[1] = div64_u64(scan * fp, denominator);
 
 
 
 
 
 
 
 
 
 
 
1885	}
1886out:
1887	for_each_evictable_lru(l) {
1888		int file = is_file_lru(l);
1889		unsigned long scan;
1890
1891		scan = zone_nr_lru_pages(zone, sc, l);
1892		if (priority || noswap) {
1893			scan >>= priority;
1894			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897		/*
1898		 * If zone is small or memcg is small, nr[l] can be 0.
1899		 * This results no-scan on this priority and priority drop down.
1900		 * For global direct reclaim, it can visit next zone and tend
1901		 * not to have problems. For global kswapd, it's for zone
1902		 * balancing and it need to scan a small amounts. When using
1903		 * memcg, priority drop can cause big latency. So, it's better
1904		 * to scan small amount. See may_noscan above.
 
 
 
 
 
 
 
1905		 */
1906		if (!scan && force_scan)
1907			scan = nr_force_scan[file];
1908		nr[l] = scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910}
1911
1912/*
1913 * Reclaim/compaction depends on a number of pages being freed. To avoid
1914 * disruption to the system, a small number of order-0 pages continue to be
1915 * rotated and reclaimed in the normal fashion. However, by the time we get
1916 * back to the allocator and call try_to_compact_zone(), we ensure that
1917 * there are enough free pages for it to be likely successful
1918 */
1919static inline bool should_continue_reclaim(struct zone *zone,
1920					unsigned long nr_reclaimed,
1921					unsigned long nr_scanned,
1922					struct scan_control *sc)
1923{
1924	unsigned long pages_for_compaction;
1925	unsigned long inactive_lru_pages;
 
1926
1927	/* If not in reclaim/compaction mode, stop */
1928	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1929		return false;
1930
1931	/* Consider stopping depending on scan and reclaim activity */
1932	if (sc->gfp_mask & __GFP_REPEAT) {
1933		/*
1934		 * For __GFP_REPEAT allocations, stop reclaiming if the
1935		 * full LRU list has been scanned and we are still failing
1936		 * to reclaim pages. This full LRU scan is potentially
1937		 * expensive but a __GFP_REPEAT caller really wants to succeed
1938		 */
1939		if (!nr_reclaimed && !nr_scanned)
 
 
 
 
 
 
 
 
 
 
 
 
 
1940			return false;
1941	} else {
1942		/*
1943		 * For non-__GFP_REPEAT allocations which can presumably
1944		 * fail without consequence, stop if we failed to reclaim
1945		 * any pages from the last SWAP_CLUSTER_MAX number of
1946		 * pages that were scanned. This will return to the
1947		 * caller faster at the risk reclaim/compaction and
1948		 * the resulting allocation attempt fails
1949		 */
1950		if (!nr_reclaimed)
1951			return false;
1952	}
1953
1954	/*
1955	 * If we have not reclaimed enough pages for compaction and the
1956	 * inactive lists are large enough, continue reclaiming
1957	 */
1958	pages_for_compaction = (2UL << sc->order);
1959	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1960				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1961	if (sc->nr_reclaimed < pages_for_compaction &&
1962			inactive_lru_pages > pages_for_compaction)
1963		return true;
1964
1965	/* If compaction would go ahead or the allocation would succeed, stop */
1966	switch (compaction_suitable(zone, sc->order)) {
1967	case COMPACT_PARTIAL:
1968	case COMPACT_CONTINUE:
1969		return false;
1970	default:
1971		return true;
1972	}
1973}
1974
1975/*
1976 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1977 */
1978static void shrink_zone(int priority, struct zone *zone,
1979				struct scan_control *sc)
1980{
1981	unsigned long nr[NR_LRU_LISTS];
1982	unsigned long nr_to_scan;
1983	enum lru_list l;
1984	unsigned long nr_reclaimed, nr_scanned;
1985	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
 
1986
1987restart:
1988	nr_reclaimed = 0;
1989	nr_scanned = sc->nr_scanned;
1990	get_scan_count(zone, sc, nr, priority);
 
 
 
 
 
 
 
1991
1992	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1993					nr[LRU_INACTIVE_FILE]) {
1994		for_each_evictable_lru(l) {
1995			if (nr[l]) {
1996				nr_to_scan = min_t(unsigned long,
1997						   nr[l], SWAP_CLUSTER_MAX);
1998				nr[l] -= nr_to_scan;
1999
2000				nr_reclaimed += shrink_list(l, nr_to_scan,
2001							    zone, sc, priority);
2002			}
2003		}
2004		/*
2005		 * On large memory systems, scan >> priority can become
2006		 * really large. This is fine for the starting priority;
2007		 * we want to put equal scanning pressure on each zone.
2008		 * However, if the VM has a harder time of freeing pages,
2009		 * with multiple processes reclaiming pages, the total
2010		 * freeing target can get unreasonably large.
2011		 */
2012		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	}
2015	sc->nr_reclaimed += nr_reclaimed;
2016
2017	/*
2018	 * Even if we did not try to evict anon pages at all, we want to
2019	 * rebalance the anon lru active/inactive ratio.
 
 
 
2020	 */
2021	if (inactive_anon_is_low(zone, sc))
2022		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
 
2023
2024	/* reclaim/compaction might need reclaim to continue */
2025	if (should_continue_reclaim(zone, nr_reclaimed,
2026					sc->nr_scanned - nr_scanned, sc))
2027		goto restart;
 
 
 
 
 
 
 
 
 
 
 
2028
2029	throttle_vm_writeout(sc->gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030}
2031
2032/*
2033 * This is the direct reclaim path, for page-allocating processes.  We only
2034 * try to reclaim pages from zones which will satisfy the caller's allocation
2035 * request.
2036 *
2037 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2038 * Because:
2039 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2040 *    allocation or
2041 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2042 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2043 *    zone defense algorithm.
2044 *
2045 * If a zone is deemed to be full of pinned pages then just give it a light
2046 * scan then give up on it.
2047 */
2048static void shrink_zones(int priority, struct zonelist *zonelist,
2049					struct scan_control *sc)
2050{
2051	struct zoneref *z;
2052	struct zone *zone;
2053	unsigned long nr_soft_reclaimed;
2054	unsigned long nr_soft_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057					gfp_zone(sc->gfp_mask), sc->nodemask) {
2058		if (!populated_zone(zone))
2059			continue;
2060		/*
2061		 * Take care memory controller reclaiming has small influence
2062		 * to global LRU.
2063		 */
2064		if (scanning_global_lru(sc)) {
2065			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066				continue;
2067			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2068				continue;	/* Let kswapd poll it */
2069			/*
2070			 * This steals pages from memory cgroups over softlimit
2071			 * and returns the number of reclaimed pages and
2072			 * scanned pages. This works for global memory pressure
2073			 * and balancing, not for a memcg's limit.
2074			 */
2075			nr_soft_scanned = 0;
2076			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2077						sc->order, sc->gfp_mask,
2078						&nr_soft_scanned);
2079			sc->nr_reclaimed += nr_soft_reclaimed;
2080			sc->nr_scanned += nr_soft_scanned;
2081			/* need some check for avoid more shrink_zone() */
2082		}
2083
2084		shrink_zone(priority, zone, sc);
 
 
 
 
 
 
 
2085	}
2086}
2087
2088static bool zone_reclaimable(struct zone *zone)
2089{
2090	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 
 
 
 
 
2091}
2092
2093/* All zones in zonelist are unreclaimable? */
2094static bool all_unreclaimable(struct zonelist *zonelist,
2095		struct scan_control *sc)
2096{
2097	struct zoneref *z;
2098	struct zone *zone;
2099
2100	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2101			gfp_zone(sc->gfp_mask), sc->nodemask) {
2102		if (!populated_zone(zone))
2103			continue;
2104		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105			continue;
2106		if (!zone->all_unreclaimable)
2107			return false;
2108	}
2109
2110	return true;
 
 
 
 
2111}
2112
2113/*
2114 * This is the main entry point to direct page reclaim.
2115 *
2116 * If a full scan of the inactive list fails to free enough memory then we
2117 * are "out of memory" and something needs to be killed.
2118 *
2119 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2120 * high - the zone may be full of dirty or under-writeback pages, which this
2121 * caller can't do much about.  We kick the writeback threads and take explicit
2122 * naps in the hope that some of these pages can be written.  But if the
2123 * allocating task holds filesystem locks which prevent writeout this might not
2124 * work, and the allocation attempt will fail.
2125 *
2126 * returns:	0, if no pages reclaimed
2127 * 		else, the number of pages reclaimed
2128 */
2129static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2130					struct scan_control *sc,
2131					struct shrink_control *shrink)
2132{
2133	int priority;
2134	unsigned long total_scanned = 0;
2135	struct reclaim_state *reclaim_state = current->reclaim_state;
2136	struct zoneref *z;
2137	struct zone *zone;
2138	unsigned long writeback_threshold;
2139
2140	get_mems_allowed();
2141	delayacct_freepages_start();
2142
2143	if (scanning_global_lru(sc))
2144		count_vm_event(ALLOCSTALL);
2145
2146	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 
 
 
2147		sc->nr_scanned = 0;
2148		if (!priority)
2149			disable_swap_token(sc->mem_cgroup);
2150		shrink_zones(priority, zonelist, sc);
2151		/*
2152		 * Don't shrink slabs when reclaiming memory from
2153		 * over limit cgroups
2154		 */
2155		if (scanning_global_lru(sc)) {
2156			unsigned long lru_pages = 0;
2157			for_each_zone_zonelist(zone, z, zonelist,
2158					gfp_zone(sc->gfp_mask)) {
2159				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2160					continue;
2161
2162				lru_pages += zone_reclaimable_pages(zone);
2163			}
2164
2165			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2166			if (reclaim_state) {
2167				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2168				reclaim_state->reclaimed_slab = 0;
2169			}
2170		}
2171		total_scanned += sc->nr_scanned;
2172		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2173			goto out;
 
 
 
2174
2175		/*
2176		 * Try to write back as many pages as we just scanned.  This
2177		 * tends to cause slow streaming writers to write data to the
2178		 * disk smoothly, at the dirtying rate, which is nice.   But
2179		 * that's undesirable in laptop mode, where we *want* lumpy
2180		 * writeout.  So in laptop mode, write out the whole world.
2181		 */
2182		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2183		if (total_scanned > writeback_threshold) {
2184			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2185			sc->may_writepage = 1;
2186		}
 
 
 
 
 
 
 
 
 
2187
2188		/* Take a nap, wait for some writeback to complete */
2189		if (!sc->hibernation_mode && sc->nr_scanned &&
2190		    priority < DEF_PRIORITY - 2) {
2191			struct zone *preferred_zone;
2192
2193			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2194						&cpuset_current_mems_allowed,
2195						&preferred_zone);
2196			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2197		}
2198	}
2199
2200out:
2201	delayacct_freepages_end();
2202	put_mems_allowed();
2203
2204	if (sc->nr_reclaimed)
2205		return sc->nr_reclaimed;
2206
 
 
 
 
2207	/*
2208	 * As hibernation is going on, kswapd is freezed so that it can't mark
2209	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2210	 * check.
 
 
 
 
2211	 */
2212	if (oom_killer_disabled)
2213		return 0;
 
 
 
2214
2215	/* top priority shrink_zones still had more to do? don't OOM, then */
2216	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2217		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218
2219	return 0;
2220}
2221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2223				gfp_t gfp_mask, nodemask_t *nodemask)
2224{
2225	unsigned long nr_reclaimed;
2226	struct scan_control sc = {
2227		.gfp_mask = gfp_mask,
2228		.may_writepage = !laptop_mode,
2229		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2230		.may_unmap = 1,
2231		.may_swap = 1,
2232		.order = order,
2233		.mem_cgroup = NULL,
2234		.nodemask = nodemask,
 
 
 
 
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
2239
2240	trace_mm_vmscan_direct_reclaim_begin(order,
2241				sc.may_writepage,
2242				gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
2243
2244	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 
 
 
2245
2246	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
 
2247
2248	return nr_reclaimed;
2249}
2250
2251#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2252
2253unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
 
2254						gfp_t gfp_mask, bool noswap,
2255						struct zone *zone,
2256						unsigned long *nr_scanned)
2257{
 
2258	struct scan_control sc = {
2259		.nr_scanned = 0,
2260		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2261		.may_writepage = !laptop_mode,
2262		.may_unmap = 1,
 
2263		.may_swap = !noswap,
2264		.order = 0,
2265		.mem_cgroup = mem,
2266	};
2267
 
 
2268	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2269			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2270
2271	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2272						      sc.may_writepage,
2273						      sc.gfp_mask);
2274
2275	/*
2276	 * NOTE: Although we can get the priority field, using it
2277	 * here is not a good idea, since it limits the pages we can scan.
2278	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2279	 * will pick up pages from other mem cgroup's as well. We hack
2280	 * the priority and make it zero.
2281	 */
2282	shrink_zone(0, zone, &sc);
2283
2284	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2285
2286	*nr_scanned = sc.nr_scanned;
 
2287	return sc.nr_reclaimed;
2288}
2289
2290unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
 
2291					   gfp_t gfp_mask,
2292					   bool noswap)
 
2293{
2294	struct zonelist *zonelist;
2295	unsigned long nr_reclaimed;
2296	int nid;
2297	struct scan_control sc = {
 
 
 
 
 
 
 
2298		.may_writepage = !laptop_mode,
2299		.may_unmap = 1,
2300		.may_swap = !noswap,
2301		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2302		.order = 0,
2303		.mem_cgroup = mem_cont,
2304		.nodemask = NULL, /* we don't care the placement */
2305		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307	};
2308	struct shrink_control shrink = {
2309		.gfp_mask = sc.gfp_mask,
2310	};
2311
2312	/*
2313	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314	 * take care of from where we get pages. So the node where we start the
2315	 * scan does not need to be the current node.
2316	 */
2317	nid = mem_cgroup_select_victim_node(mem_cont);
2318
2319	zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321	trace_mm_vmscan_memcg_reclaim_begin(0,
2322					    sc.may_writepage,
2323					    sc.gfp_mask);
2324
2325	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2326
 
2327	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
 
2328
2329	return nr_reclaimed;
2330}
2331#endif
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * pgdat_balanced is used when checking if a node is balanced for high-order
2335 * allocations. Only zones that meet watermarks and are in a zone allowed
2336 * by the callers classzone_idx are added to balanced_pages. The total of
2337 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2338 * for the node to be considered balanced. Forcing all zones to be balanced
2339 * for high orders can cause excessive reclaim when there are imbalanced zones.
2340 * The choice of 25% is due to
2341 *   o a 16M DMA zone that is balanced will not balance a zone on any
2342 *     reasonable sized machine
2343 *   o On all other machines, the top zone must be at least a reasonable
2344 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2345 *     would need to be at least 256M for it to be balance a whole node.
2346 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2347 *     to balance a node on its own. These seemed like reasonable ratios.
2348 */
2349static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2350						int classzone_idx)
2351{
2352	unsigned long present_pages = 0;
2353	int i;
 
 
2354
2355	for (i = 0; i <= classzone_idx; i++)
2356		present_pages += pgdat->node_zones[i].present_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357
2358	/* A special case here: if zone has no page, we think it's balanced */
2359	return balanced_pages >= (present_pages >> 2);
 
 
 
 
 
 
 
2360}
2361
2362/* is kswapd sleeping prematurely? */
2363static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2364					int classzone_idx)
2365{
2366	int i;
2367	unsigned long balanced = 0;
2368	bool all_zones_ok = true;
2369
2370	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2371	if (remaining)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372		return true;
2373
2374	/* Check the watermark levels */
2375	for (i = 0; i <= classzone_idx; i++) {
2376		struct zone *zone = pgdat->node_zones + i;
 
2377
2378		if (!populated_zone(zone))
2379			continue;
2380
2381		/*
2382		 * balance_pgdat() skips over all_unreclaimable after
2383		 * DEF_PRIORITY. Effectively, it considers them balanced so
2384		 * they must be considered balanced here as well if kswapd
2385		 * is to sleep
2386		 */
2387		if (zone->all_unreclaimable) {
2388			balanced += zone->present_pages;
 
 
 
 
 
 
 
 
 
 
 
 
2389			continue;
2390		}
2391
2392		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2393							i, 0))
2394			all_zones_ok = false;
2395		else
2396			balanced += zone->present_pages;
2397	}
2398
2399	/*
2400	 * For high-order requests, the balanced zones must contain at least
2401	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2402	 * must be balanced
2403	 */
2404	if (order)
2405		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2406	else
2407		return !all_zones_ok;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408}
2409
2410/*
2411 * For kswapd, balance_pgdat() will work across all this node's zones until
2412 * they are all at high_wmark_pages(zone).
2413 *
2414 * Returns the final order kswapd was reclaiming at
2415 *
2416 * There is special handling here for zones which are full of pinned pages.
2417 * This can happen if the pages are all mlocked, or if they are all used by
2418 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2419 * What we do is to detect the case where all pages in the zone have been
2420 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2421 * dead and from now on, only perform a short scan.  Basically we're polling
2422 * the zone for when the problem goes away.
2423 *
2424 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2425 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2426 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2427 * lower zones regardless of the number of free pages in the lower zones. This
2428 * interoperates with the page allocator fallback scheme to ensure that aging
2429 * of pages is balanced across the zones.
2430 */
2431static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2432							int *classzone_idx)
2433{
2434	int all_zones_ok;
2435	unsigned long balanced;
2436	int priority;
2437	int i;
2438	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2439	unsigned long total_scanned;
2440	struct reclaim_state *reclaim_state = current->reclaim_state;
2441	unsigned long nr_soft_reclaimed;
2442	unsigned long nr_soft_scanned;
 
 
 
 
 
2443	struct scan_control sc = {
2444		.gfp_mask = GFP_KERNEL,
2445		.may_unmap = 1,
2446		.may_swap = 1,
2447		/*
2448		 * kswapd doesn't want to be bailed out while reclaim. because
2449		 * we want to put equal scanning pressure on each zone.
2450		 */
2451		.nr_to_reclaim = ULONG_MAX,
2452		.order = order,
2453		.mem_cgroup = NULL,
2454	};
2455	struct shrink_control shrink = {
2456		.gfp_mask = sc.gfp_mask,
2457	};
2458loop_again:
2459	total_scanned = 0;
2460	sc.nr_reclaimed = 0;
2461	sc.may_writepage = !laptop_mode;
2462	count_vm_event(PAGEOUTRUN);
2463
2464	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2465		unsigned long lru_pages = 0;
2466		int has_under_min_watermark_zone = 0;
2467
2468		/* The swap token gets in the way of swapout... */
2469		if (!priority)
2470			disable_swap_token(NULL);
2471
2472		all_zones_ok = 1;
2473		balanced = 0;
2474
2475		/*
2476		 * Scan in the highmem->dma direction for the highest
2477		 * zone which needs scanning
2478		 */
2479		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2480			struct zone *zone = pgdat->node_zones + i;
 
 
 
 
2481
2482			if (!populated_zone(zone))
2483				continue;
 
 
2484
2485			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2486				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488			/*
2489			 * Do some background aging of the anon list, to give
2490			 * pages a chance to be referenced before reclaiming.
2491			 */
2492			if (inactive_anon_is_low(zone, &sc))
2493				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2494							&sc, priority, 0);
2495
2496			if (!zone_watermark_ok_safe(zone, order,
2497					high_wmark_pages(zone), 0, 0)) {
2498				end_zone = i;
2499				break;
2500			} else {
2501				/* If balanced, clear the congested flag */
2502				zone_clear_flag(zone, ZONE_CONGESTED);
2503			}
2504		}
2505		if (i < 0)
2506			goto out;
2507
2508		for (i = 0; i <= end_zone; i++) {
2509			struct zone *zone = pgdat->node_zones + i;
2510
2511			lru_pages += zone_reclaimable_pages(zone);
 
 
 
 
 
 
 
 
 
 
2512		}
2513
2514		/*
2515		 * Now scan the zone in the dma->highmem direction, stopping
2516		 * at the last zone which needs scanning.
2517		 *
2518		 * We do this because the page allocator works in the opposite
2519		 * direction.  This prevents the page allocator from allocating
2520		 * pages behind kswapd's direction of progress, which would
2521		 * cause too much scanning of the lower zones.
2522		 */
2523		for (i = 0; i <= end_zone; i++) {
2524			struct zone *zone = pgdat->node_zones + i;
2525			int nr_slab;
2526			unsigned long balance_gap;
2527
2528			if (!populated_zone(zone))
2529				continue;
2530
2531			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2532				continue;
2533
2534			sc.nr_scanned = 0;
2535
2536			nr_soft_scanned = 0;
2537			/*
2538			 * Call soft limit reclaim before calling shrink_zone.
2539			 */
2540			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2541							order, sc.gfp_mask,
2542							&nr_soft_scanned);
2543			sc.nr_reclaimed += nr_soft_reclaimed;
2544			total_scanned += nr_soft_scanned;
2545
2546			/*
2547			 * We put equal pressure on every zone, unless
2548			 * one zone has way too many pages free
2549			 * already. The "too many pages" is defined
2550			 * as the high wmark plus a "gap" where the
2551			 * gap is either the low watermark or 1%
2552			 * of the zone, whichever is smaller.
2553			 */
2554			balance_gap = min(low_wmark_pages(zone),
2555				(zone->present_pages +
2556					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2557				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2558			if (!zone_watermark_ok_safe(zone, order,
2559					high_wmark_pages(zone) + balance_gap,
2560					end_zone, 0)) {
2561				shrink_zone(priority, zone, &sc);
2562
2563				reclaim_state->reclaimed_slab = 0;
2564				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2565				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2566				total_scanned += sc.nr_scanned;
2567
2568				if (nr_slab == 0 && !zone_reclaimable(zone))
2569					zone->all_unreclaimable = 1;
2570			}
 
 
 
2571
2572			/*
2573			 * If we've done a decent amount of scanning and
2574			 * the reclaim ratio is low, start doing writepage
2575			 * even in laptop mode
2576			 */
2577			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2578			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2579				sc.may_writepage = 1;
2580
2581			if (zone->all_unreclaimable) {
2582				if (end_zone && end_zone == i)
2583					end_zone--;
2584				continue;
2585			}
2586
2587			if (!zone_watermark_ok_safe(zone, order,
2588					high_wmark_pages(zone), end_zone, 0)) {
2589				all_zones_ok = 0;
2590				/*
2591				 * We are still under min water mark.  This
2592				 * means that we have a GFP_ATOMIC allocation
2593				 * failure risk. Hurry up!
2594				 */
2595				if (!zone_watermark_ok_safe(zone, order,
2596					    min_wmark_pages(zone), end_zone, 0))
2597					has_under_min_watermark_zone = 1;
2598			} else {
2599				/*
2600				 * If a zone reaches its high watermark,
2601				 * consider it to be no longer congested. It's
2602				 * possible there are dirty pages backed by
2603				 * congested BDIs but as pressure is relieved,
2604				 * spectulatively avoid congestion waits
2605				 */
2606				zone_clear_flag(zone, ZONE_CONGESTED);
2607				if (i <= *classzone_idx)
2608					balanced += zone->present_pages;
2609			}
2610
2611		}
2612		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2613			break;		/* kswapd: all done */
2614		/*
2615		 * OK, kswapd is getting into trouble.  Take a nap, then take
2616		 * another pass across the zones.
 
2617		 */
2618		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2619			if (has_under_min_watermark_zone)
2620				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2621			else
2622				congestion_wait(BLK_RW_ASYNC, HZ/10);
2623		}
2624
2625		/*
2626		 * We do this so kswapd doesn't build up large priorities for
2627		 * example when it is freeing in parallel with allocators. It
2628		 * matches the direct reclaim path behaviour in terms of impact
2629		 * on zone->*_priority.
2630		 */
2631		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2632			break;
2633	}
2634out:
2635
2636	/*
2637	 * order-0: All zones must meet high watermark for a balanced node
2638	 * high-order: Balanced zones must make up at least 25% of the node
2639	 *             for the node to be balanced
2640	 */
2641	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2642		cond_resched();
2643
2644		try_to_freeze();
 
 
 
 
 
2645
2646		/*
2647		 * Fragmentation may mean that the system cannot be
2648		 * rebalanced for high-order allocations in all zones.
2649		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2650		 * it means the zones have been fully scanned and are still
2651		 * not balanced. For high-order allocations, there is
2652		 * little point trying all over again as kswapd may
2653		 * infinite loop.
2654		 *
2655		 * Instead, recheck all watermarks at order-0 as they
2656		 * are the most important. If watermarks are ok, kswapd will go
2657		 * back to sleep. High-order users can still perform direct
2658		 * reclaim if they wish.
2659		 */
2660		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2661			order = sc.order = 0;
2662
2663		goto loop_again;
2664	}
 
2665
2666	/*
2667	 * If kswapd was reclaiming at a higher order, it has the option of
2668	 * sleeping without all zones being balanced. Before it does, it must
2669	 * ensure that the watermarks for order-0 on *all* zones are met and
2670	 * that the congestion flags are cleared. The congestion flag must
2671	 * be cleared as kswapd is the only mechanism that clears the flag
2672	 * and it is potentially going to sleep here.
2673	 */
2674	if (order) {
2675		for (i = 0; i <= end_zone; i++) {
2676			struct zone *zone = pgdat->node_zones + i;
 
 
2677
2678			if (!populated_zone(zone))
2679				continue;
2680
2681			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2682				continue;
2683
2684			/* Confirm the zone is balanced for order-0 */
2685			if (!zone_watermark_ok(zone, 0,
2686					high_wmark_pages(zone), 0, 0)) {
2687				order = sc.order = 0;
2688				goto loop_again;
2689			}
2690
2691			/* If balanced, clear the congested flag */
2692			zone_clear_flag(zone, ZONE_CONGESTED);
 
 
 
 
 
 
 
2693		}
 
 
 
 
 
 
2694	}
2695
 
 
 
 
 
2696	/*
2697	 * Return the order we were reclaiming at so sleeping_prematurely()
2698	 * makes a decision on the order we were last reclaiming at. However,
2699	 * if another caller entered the allocator slow path while kswapd
2700	 * was awake, order will remain at the higher level
2701	 */
2702	*classzone_idx = end_zone;
2703	return order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704}
2705
2706static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
2707{
2708	long remaining = 0;
2709	DEFINE_WAIT(wait);
2710
2711	if (freezing(current) || kthread_should_stop())
2712		return;
2713
2714	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2715
2716	/* Try to sleep for a short interval */
2717	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719		finish_wait(&pgdat->kswapd_wait, &wait);
2720		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721	}
2722
2723	/*
2724	 * After a short sleep, check if it was a premature sleep. If not, then
2725	 * go fully to sleep until explicitly woken up.
2726	 */
2727	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2728		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2729
2730		/*
2731		 * vmstat counters are not perfectly accurate and the estimated
2732		 * value for counters such as NR_FREE_PAGES can deviate from the
2733		 * true value by nr_online_cpus * threshold. To avoid the zone
2734		 * watermarks being breached while under pressure, we reduce the
2735		 * per-cpu vmstat threshold while kswapd is awake and restore
2736		 * them before going back to sleep.
2737		 */
2738		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2739		schedule();
 
 
 
2740		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2741	} else {
2742		if (remaining)
2743			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2744		else
2745			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2746	}
2747	finish_wait(&pgdat->kswapd_wait, &wait);
2748}
2749
2750/*
2751 * The background pageout daemon, started as a kernel thread
2752 * from the init process.
2753 *
2754 * This basically trickles out pages so that we have _some_
2755 * free memory available even if there is no other activity
2756 * that frees anything up. This is needed for things like routing
2757 * etc, where we otherwise might have all activity going on in
2758 * asynchronous contexts that cannot page things out.
2759 *
2760 * If there are applications that are active memory-allocators
2761 * (most normal use), this basically shouldn't matter.
2762 */
2763static int kswapd(void *p)
2764{
2765	unsigned long order, new_order;
2766	int classzone_idx, new_classzone_idx;
2767	pg_data_t *pgdat = (pg_data_t*)p;
2768	struct task_struct *tsk = current;
2769
2770	struct reclaim_state reclaim_state = {
2771		.reclaimed_slab = 0,
2772	};
2773	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2774
2775	lockdep_set_current_reclaim_state(GFP_KERNEL);
2776
2777	if (!cpumask_empty(cpumask))
2778		set_cpus_allowed_ptr(tsk, cpumask);
2779	current->reclaim_state = &reclaim_state;
2780
2781	/*
2782	 * Tell the memory management that we're a "memory allocator",
2783	 * and that if we need more memory we should get access to it
2784	 * regardless (see "__alloc_pages()"). "kswapd" should
2785	 * never get caught in the normal page freeing logic.
2786	 *
2787	 * (Kswapd normally doesn't need memory anyway, but sometimes
2788	 * you need a small amount of memory in order to be able to
2789	 * page out something else, and this flag essentially protects
2790	 * us from recursively trying to free more memory as we're
2791	 * trying to free the first piece of memory in the first place).
2792	 */
2793	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2794	set_freezable();
2795
2796	order = new_order = 0;
2797	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
 
2798	for ( ; ; ) {
2799		int ret;
2800
2801		/*
2802		 * If the last balance_pgdat was unsuccessful it's unlikely a
2803		 * new request of a similar or harder type will succeed soon
2804		 * so consider going to sleep on the basis we reclaimed at
2805		 */
2806		if (classzone_idx >= new_classzone_idx && order == new_order) {
2807			new_order = pgdat->kswapd_max_order;
2808			new_classzone_idx = pgdat->classzone_idx;
2809			pgdat->kswapd_max_order =  0;
2810			pgdat->classzone_idx = pgdat->nr_zones - 1;
2811		}
2812
2813		if (order < new_order || classzone_idx > new_classzone_idx) {
2814			/*
2815			 * Don't sleep if someone wants a larger 'order'
2816			 * allocation or has tigher zone constraints
2817			 */
2818			order = new_order;
2819			classzone_idx = new_classzone_idx;
2820		} else {
2821			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2822			order = pgdat->kswapd_max_order;
2823			classzone_idx = pgdat->classzone_idx;
2824			pgdat->kswapd_max_order = 0;
2825			pgdat->classzone_idx = pgdat->nr_zones - 1;
2826		}
2827
2828		ret = try_to_freeze();
2829		if (kthread_should_stop())
2830			break;
2831
2832		/*
2833		 * We can speed up thawing tasks if we don't call balance_pgdat
2834		 * after returning from the refrigerator
2835		 */
2836		if (!ret) {
2837			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2838			order = balance_pgdat(pgdat, order, &classzone_idx);
2839		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2840	}
 
 
 
2841	return 0;
2842}
2843
2844/*
2845 * A zone is low on free memory, so wake its kswapd task to service it.
 
 
 
 
2846 */
2847void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
 
2848{
2849	pg_data_t *pgdat;
 
2850
2851	if (!populated_zone(zone))
2852		return;
2853
2854	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2855		return;
2856	pgdat = zone->zone_pgdat;
2857	if (pgdat->kswapd_max_order < order) {
2858		pgdat->kswapd_max_order = order;
2859		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2860	}
2861	if (!waitqueue_active(&pgdat->kswapd_wait))
2862		return;
2863	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2864		return;
2865
2866	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2867	wake_up_interruptible(&pgdat->kswapd_wait);
2868}
2869
2870/*
2871 * The reclaimable count would be mostly accurate.
2872 * The less reclaimable pages may be
2873 * - mlocked pages, which will be moved to unevictable list when encountered
2874 * - mapped pages, which may require several travels to be reclaimed
2875 * - dirty pages, which is not "instantly" reclaimable
2876 */
2877unsigned long global_reclaimable_pages(void)
2878{
2879	int nr;
2880
2881	nr = global_page_state(NR_ACTIVE_FILE) +
2882	     global_page_state(NR_INACTIVE_FILE);
2883
2884	if (nr_swap_pages > 0)
2885		nr += global_page_state(NR_ACTIVE_ANON) +
2886		      global_page_state(NR_INACTIVE_ANON);
2887
2888	return nr;
2889}
2890
2891unsigned long zone_reclaimable_pages(struct zone *zone)
2892{
2893	int nr;
2894
2895	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2896	     zone_page_state(zone, NR_INACTIVE_FILE);
2897
2898	if (nr_swap_pages > 0)
2899		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2900		      zone_page_state(zone, NR_INACTIVE_ANON);
 
 
 
 
 
 
 
 
 
 
 
 
2901
2902	return nr;
 
 
2903}
2904
2905#ifdef CONFIG_HIBERNATION
2906/*
2907 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2908 * freed pages.
2909 *
2910 * Rather than trying to age LRUs the aim is to preserve the overall
2911 * LRU order by reclaiming preferentially
2912 * inactive > active > active referenced > active mapped
2913 */
2914unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2915{
2916	struct reclaim_state reclaim_state;
2917	struct scan_control sc = {
 
2918		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2919		.may_swap = 1,
2920		.may_unmap = 1,
2921		.may_writepage = 1,
2922		.nr_to_reclaim = nr_to_reclaim,
 
2923		.hibernation_mode = 1,
2924		.order = 0,
2925	};
2926	struct shrink_control shrink = {
2927		.gfp_mask = sc.gfp_mask,
2928	};
2929	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2930	struct task_struct *p = current;
2931	unsigned long nr_reclaimed;
 
2932
2933	p->flags |= PF_MEMALLOC;
2934	lockdep_set_current_reclaim_state(sc.gfp_mask);
2935	reclaim_state.reclaimed_slab = 0;
2936	p->reclaim_state = &reclaim_state;
2937
2938	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2939
2940	p->reclaim_state = NULL;
2941	lockdep_clear_current_reclaim_state();
2942	p->flags &= ~PF_MEMALLOC;
2943
2944	return nr_reclaimed;
2945}
2946#endif /* CONFIG_HIBERNATION */
2947
2948/* It's optimal to keep kswapds on the same CPUs as their memory, but
2949   not required for correctness.  So if the last cpu in a node goes
2950   away, we get changed to run anywhere: as the first one comes back,
2951   restore their cpu bindings. */
2952static int __devinit cpu_callback(struct notifier_block *nfb,
2953				  unsigned long action, void *hcpu)
2954{
2955	int nid;
2956
2957	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2958		for_each_node_state(nid, N_HIGH_MEMORY) {
2959			pg_data_t *pgdat = NODE_DATA(nid);
2960			const struct cpumask *mask;
2961
2962			mask = cpumask_of_node(pgdat->node_id);
2963
2964			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2965				/* One of our CPUs online: restore mask */
2966				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2967		}
2968	}
2969	return NOTIFY_OK;
2970}
 
2971
2972/*
2973 * This kswapd start function will be called by init and node-hot-add.
2974 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2975 */
2976int kswapd_run(int nid)
2977{
2978	pg_data_t *pgdat = NODE_DATA(nid);
2979	int ret = 0;
2980
2981	if (pgdat->kswapd)
2982		return 0;
2983
2984	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2985	if (IS_ERR(pgdat->kswapd)) {
2986		/* failure at boot is fatal */
2987		BUG_ON(system_state == SYSTEM_BOOTING);
2988		printk("Failed to start kswapd on node %d\n",nid);
2989		ret = -1;
 
 
 
 
2990	}
2991	return ret;
2992}
2993
2994/*
2995 * Called by memory hotplug when all memory in a node is offlined.
 
2996 */
2997void kswapd_stop(int nid)
2998{
2999	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
 
3000
3001	if (kswapd)
 
 
3002		kthread_stop(kswapd);
 
 
 
3003}
3004
3005static int __init kswapd_init(void)
3006{
3007	int nid;
3008
3009	swap_setup();
3010	for_each_node_state(nid, N_HIGH_MEMORY)
3011 		kswapd_run(nid);
3012	hotcpu_notifier(cpu_callback, 0);
3013	return 0;
3014}
3015
3016module_init(kswapd_init)
3017
3018#ifdef CONFIG_NUMA
3019/*
3020 * Zone reclaim mode
3021 *
3022 * If non-zero call zone_reclaim when the number of free pages falls below
3023 * the watermarks.
3024 */
3025int zone_reclaim_mode __read_mostly;
3026
3027#define RECLAIM_OFF 0
3028#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3029#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3030#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3031
3032/*
3033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3035 * a zone.
3036 */
3037#define ZONE_RECLAIM_PRIORITY 4
3038
3039/*
3040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3041 * occur.
3042 */
3043int sysctl_min_unmapped_ratio = 1;
3044
3045/*
3046 * If the number of slab pages in a zone grows beyond this percentage then
3047 * slab reclaim needs to occur.
3048 */
3049int sysctl_min_slab_ratio = 5;
3050
3051static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3052{
3053	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3054	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3055		zone_page_state(zone, NR_ACTIVE_FILE);
3056
3057	/*
3058	 * It's possible for there to be more file mapped pages than
3059	 * accounted for by the pages on the file LRU lists because
3060	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3061	 */
3062	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3063}
3064
3065/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3066static long zone_pagecache_reclaimable(struct zone *zone)
3067{
3068	long nr_pagecache_reclaimable;
3069	long delta = 0;
3070
3071	/*
3072	 * If RECLAIM_SWAP is set, then all file pages are considered
3073	 * potentially reclaimable. Otherwise, we have to worry about
3074	 * pages like swapcache and zone_unmapped_file_pages() provides
3075	 * a better estimate
3076	 */
3077	if (zone_reclaim_mode & RECLAIM_SWAP)
3078		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3079	else
3080		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3081
3082	/* If we can't clean pages, remove dirty pages from consideration */
3083	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3084		delta += zone_page_state(zone, NR_FILE_DIRTY);
3085
3086	/* Watch for any possible underflows due to delta */
3087	if (unlikely(delta > nr_pagecache_reclaimable))
3088		delta = nr_pagecache_reclaimable;
3089
3090	return nr_pagecache_reclaimable - delta;
3091}
3092
3093/*
3094 * Try to free up some pages from this zone through reclaim.
3095 */
3096static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3097{
3098	/* Minimum pages needed in order to stay on node */
3099	const unsigned long nr_pages = 1 << order;
3100	struct task_struct *p = current;
3101	struct reclaim_state reclaim_state;
3102	int priority;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
 
 
 
 
 
3111	};
3112	struct shrink_control shrink = {
3113		.gfp_mask = sc.gfp_mask,
3114	};
3115	unsigned long nr_slab_pages0, nr_slab_pages1;
3116
3117	cond_resched();
 
 
 
3118	/*
3119	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3120	 * and we also need to be able to write out pages for RECLAIM_WRITE
3121	 * and RECLAIM_SWAP.
3122	 */
3123	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3124	lockdep_set_current_reclaim_state(gfp_mask);
3125	reclaim_state.reclaimed_slab = 0;
3126	p->reclaim_state = &reclaim_state;
3127
3128	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
 
3129		/*
3130		 * Free memory by calling shrink zone with increasing
3131		 * priorities until we have enough memory freed.
3132		 */
3133		priority = ZONE_RECLAIM_PRIORITY;
3134		do {
3135			shrink_zone(priority, zone, &sc);
3136			priority--;
3137		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3138	}
3139
3140	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3141	if (nr_slab_pages0 > zone->min_slab_pages) {
3142		/*
3143		 * shrink_slab() does not currently allow us to determine how
3144		 * many pages were freed in this zone. So we take the current
3145		 * number of slab pages and shake the slab until it is reduced
3146		 * by the same nr_pages that we used for reclaiming unmapped
3147		 * pages.
3148		 *
3149		 * Note that shrink_slab will free memory on all zones and may
3150		 * take a long time.
3151		 */
3152		for (;;) {
3153			unsigned long lru_pages = zone_reclaimable_pages(zone);
3154
3155			/* No reclaimable slab or very low memory pressure */
3156			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3157				break;
3158
3159			/* Freed enough memory */
3160			nr_slab_pages1 = zone_page_state(zone,
3161							NR_SLAB_RECLAIMABLE);
3162			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3163				break;
3164		}
3165
3166		/*
3167		 * Update nr_reclaimed by the number of slab pages we
3168		 * reclaimed from this zone.
3169		 */
3170		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3171		if (nr_slab_pages1 < nr_slab_pages0)
3172			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3173	}
3174
3175	p->reclaim_state = NULL;
3176	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3177	lockdep_clear_current_reclaim_state();
3178	return sc.nr_reclaimed >= nr_pages;
3179}
3180
3181int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3182{
3183	int node_id;
3184	int ret;
3185
3186	/*
3187	 * Zone reclaim reclaims unmapped file backed pages and
3188	 * slab pages if we are over the defined limits.
3189	 *
3190	 * A small portion of unmapped file backed pages is needed for
3191	 * file I/O otherwise pages read by file I/O will be immediately
3192	 * thrown out if the zone is overallocated. So we do not reclaim
3193	 * if less than a specified percentage of the zone is used by
3194	 * unmapped file backed pages.
3195	 */
3196	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3197	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3198		return ZONE_RECLAIM_FULL;
3199
3200	if (zone->all_unreclaimable)
3201		return ZONE_RECLAIM_FULL;
3202
3203	/*
3204	 * Do not scan if the allocation should not be delayed.
3205	 */
3206	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3207		return ZONE_RECLAIM_NOSCAN;
3208
3209	/*
3210	 * Only run zone reclaim on the local zone or on zones that do not
3211	 * have associated processors. This will favor the local processor
3212	 * over remote processors and spread off node memory allocations
3213	 * as wide as possible.
3214	 */
3215	node_id = zone_to_nid(zone);
3216	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3217		return ZONE_RECLAIM_NOSCAN;
3218
3219	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3220		return ZONE_RECLAIM_NOSCAN;
3221
3222	ret = __zone_reclaim(zone, gfp_mask, order);
3223	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3224
3225	if (!ret)
 
 
3226		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3227
3228	return ret;
3229}
3230#endif
3231
3232/*
3233 * page_evictable - test whether a page is evictable
3234 * @page: the page to test
3235 * @vma: the VMA in which the page is or will be mapped, may be NULL
3236 *
3237 * Test whether page is evictable--i.e., should be placed on active/inactive
3238 * lists vs unevictable list.  The vma argument is !NULL when called from the
3239 * fault path to determine how to instantate a new page.
3240 *
3241 * Reasons page might not be evictable:
3242 * (1) page's mapping marked unevictable
3243 * (2) page is part of an mlocked VMA
3244 *
3245 */
3246int page_evictable(struct page *page, struct vm_area_struct *vma)
3247{
3248
3249	if (mapping_unevictable(page_mapping(page)))
3250		return 0;
3251
3252	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3253		return 0;
3254
3255	return 1;
3256}
3257
3258/**
3259 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3260 * @page: page to check evictability and move to appropriate lru list
3261 * @zone: zone page is in
3262 *
3263 * Checks a page for evictability and moves the page to the appropriate
3264 * zone lru list.
3265 *
3266 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3267 * have PageUnevictable set.
3268 */
3269static void check_move_unevictable_page(struct page *page, struct zone *zone)
3270{
3271	VM_BUG_ON(PageActive(page));
3272
3273retry:
3274	ClearPageUnevictable(page);
3275	if (page_evictable(page, NULL)) {
3276		enum lru_list l = page_lru_base_type(page);
3277
3278		__dec_zone_state(zone, NR_UNEVICTABLE);
3279		list_move(&page->lru, &zone->lru[l].list);
3280		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3281		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3282		__count_vm_event(UNEVICTABLE_PGRESCUED);
3283	} else {
3284		/*
3285		 * rotate unevictable list
3286		 */
3287		SetPageUnevictable(page);
3288		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3289		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3290		if (page_evictable(page, NULL))
3291			goto retry;
3292	}
3293}
3294
3295/**
3296 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3297 * @mapping: struct address_space to scan for evictable pages
3298 *
3299 * Scan all pages in mapping.  Check unevictable pages for
3300 * evictability and move them to the appropriate zone lru list.
3301 */
3302void scan_mapping_unevictable_pages(struct address_space *mapping)
3303{
3304	pgoff_t next = 0;
3305	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3306			 PAGE_CACHE_SHIFT;
3307	struct zone *zone;
3308	struct pagevec pvec;
3309
3310	if (mapping->nrpages == 0)
3311		return;
3312
3313	pagevec_init(&pvec, 0);
3314	while (next < end &&
3315		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3316		int i;
3317		int pg_scanned = 0;
3318
3319		zone = NULL;
3320
3321		for (i = 0; i < pagevec_count(&pvec); i++) {
3322			struct page *page = pvec.pages[i];
3323			pgoff_t page_index = page->index;
3324			struct zone *pagezone = page_zone(page);
3325
3326			pg_scanned++;
3327			if (page_index > next)
3328				next = page_index;
3329			next++;
3330
3331			if (pagezone != zone) {
3332				if (zone)
3333					spin_unlock_irq(&zone->lru_lock);
3334				zone = pagezone;
3335				spin_lock_irq(&zone->lru_lock);
3336			}
3337
3338			if (PageLRU(page) && PageUnevictable(page))
3339				check_move_unevictable_page(page, zone);
3340		}
3341		if (zone)
3342			spin_unlock_irq(&zone->lru_lock);
3343		pagevec_release(&pvec);
3344
3345		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3346	}
3347
3348}
3349
3350/**
3351 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3352 * @zone - zone of which to scan the unevictable list
3353 *
3354 * Scan @zone's unevictable LRU lists to check for pages that have become
3355 * evictable.  Move those that have to @zone's inactive list where they
3356 * become candidates for reclaim, unless shrink_inactive_zone() decides
3357 * to reactivate them.  Pages that are still unevictable are rotated
3358 * back onto @zone's unevictable list.
3359 */
3360#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3361static void scan_zone_unevictable_pages(struct zone *zone)
3362{
3363	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3364	unsigned long scan;
3365	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3366
3367	while (nr_to_scan > 0) {
3368		unsigned long batch_size = min(nr_to_scan,
3369						SCAN_UNEVICTABLE_BATCH_SIZE);
3370
3371		spin_lock_irq(&zone->lru_lock);
3372		for (scan = 0;  scan < batch_size; scan++) {
3373			struct page *page = lru_to_page(l_unevictable);
3374
3375			if (!trylock_page(page))
3376				continue;
 
3377
3378			prefetchw_prev_lru_page(page, l_unevictable, flags);
3379
3380			if (likely(PageLRU(page) && PageUnevictable(page)))
3381				check_move_unevictable_page(page, zone);
 
3382
3383			unlock_page(page);
 
 
 
 
 
3384		}
3385		spin_unlock_irq(&zone->lru_lock);
3386
3387		nr_to_scan -= batch_size;
3388	}
3389}
3390
3391
3392/**
3393 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3394 *
3395 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3396 * pages that have become evictable.  Move those back to the zones'
3397 * inactive list where they become candidates for reclaim.
3398 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3399 * and we add swap to the system.  As such, it runs in the context of a task
3400 * that has possibly/probably made some previously unevictable pages
3401 * evictable.
3402 */
3403static void scan_all_zones_unevictable_pages(void)
3404{
3405	struct zone *zone;
3406
3407	for_each_zone(zone) {
3408		scan_zone_unevictable_pages(zone);
3409	}
3410}
3411
3412/*
3413 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3414 * all nodes' unevictable lists for evictable pages
3415 */
3416unsigned long scan_unevictable_pages;
3417
3418int scan_unevictable_handler(struct ctl_table *table, int write,
3419			   void __user *buffer,
3420			   size_t *length, loff_t *ppos)
3421{
3422	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3423
3424	if (write && *(unsigned long *)table->data)
3425		scan_all_zones_unevictable_pages();
3426
3427	scan_unevictable_pages = 0;
3428	return 0;
3429}
3430
3431#ifdef CONFIG_NUMA
3432/*
3433 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3434 * a specified node's per zone unevictable lists for evictable pages.
3435 */
3436
3437static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3438					  struct sysdev_attribute *attr,
3439					  char *buf)
3440{
3441	return sprintf(buf, "0\n");	/* always zero; should fit... */
3442}
3443
3444static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3445					   struct sysdev_attribute *attr,
3446					const char *buf, size_t count)
3447{
3448	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3449	struct zone *zone;
3450	unsigned long res;
3451	unsigned long req = strict_strtoul(buf, 10, &res);
3452
3453	if (!req)
3454		return 1;	/* zero is no-op */
3455
3456	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3457		if (!populated_zone(zone))
3458			continue;
3459		scan_zone_unevictable_pages(zone);
3460	}
3461	return 1;
3462}
3463
3464
3465static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3466			read_scan_unevictable_node,
3467			write_scan_unevictable_node);
3468
3469int scan_unevictable_register_node(struct node *node)
3470{
3471	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3472}
3473
3474void scan_unevictable_unregister_node(struct node *node)
3475{
3476	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3477}
3478#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   4 *
   5 *  Swap reorganised 29.12.95, Stephen Tweedie.
   6 *  kswapd added: 7.1.96  sct
   7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
   9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  10 *  Multiqueue VM started 5.8.00, Rik van Riel.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/mm.h>
  16#include <linux/sched/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
 
  30#include <linux/mm_inline.h>
 
  31#include <linux/backing-dev.h>
  32#include <linux/rmap.h>
  33#include <linux/topology.h>
  34#include <linux/cpu.h>
  35#include <linux/cpuset.h>
  36#include <linux/compaction.h>
  37#include <linux/notifier.h>
 
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/migrate.h>
  43#include <linux/delayacct.h>
  44#include <linux/sysctl.h>
  45#include <linux/memory-tiers.h>
  46#include <linux/oom.h>
  47#include <linux/pagevec.h>
  48#include <linux/prefetch.h>
  49#include <linux/printk.h>
  50#include <linux/dax.h>
  51#include <linux/psi.h>
  52#include <linux/pagewalk.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/ctype.h>
  55#include <linux/debugfs.h>
  56#include <linux/khugepaged.h>
  57#include <linux/rculist_nulls.h>
  58#include <linux/random.h>
  59#include <linux/mmu_notifier.h>
  60
  61#include <asm/tlbflush.h>
  62#include <asm/div64.h>
  63
  64#include <linux/swapops.h>
  65#include <linux/balloon_compaction.h>
  66#include <linux/sched/sysctl.h>
  67
  68#include "internal.h"
  69#include "swap.h"
  70
  71#define CREATE_TRACE_POINTS
  72#include <trace/events/vmscan.h>
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74struct scan_control {
 
 
 
 
 
 
  75	/* How many pages shrink_list() should reclaim */
  76	unsigned long nr_to_reclaim;
  77
  78	/*
  79	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  80	 * are scanned.
  81	 */
  82	nodemask_t	*nodemask;
  83
  84	/*
  85	 * The memory cgroup that hit its limit and as a result is the
  86	 * primary target of this reclaim invocation.
  87	 */
  88	struct mem_cgroup *target_mem_cgroup;
  89
  90	/*
  91	 * Scan pressure balancing between anon and file LRUs
  92	 */
  93	unsigned long	anon_cost;
  94	unsigned long	file_cost;
  95
  96#ifdef CONFIG_MEMCG
  97	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
  98	int *proactive_swappiness;
  99#endif
 100
 101	/* Can active folios be deactivated as part of reclaim? */
 102#define DEACTIVATE_ANON 1
 103#define DEACTIVATE_FILE 2
 104	unsigned int may_deactivate:2;
 105	unsigned int force_deactivate:1;
 106	unsigned int skipped_deactivate:1;
 107
 108	/* Writepage batching in laptop mode; RECLAIM_WRITE */
 109	unsigned int may_writepage:1;
 110
 111	/* Can mapped folios be reclaimed? */
 112	unsigned int may_unmap:1;
 113
 114	/* Can folios be swapped as part of reclaim? */
 115	unsigned int may_swap:1;
 116
 117	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
 118	unsigned int no_cache_trim_mode:1;
 119
 120	/* Has cache_trim_mode failed at least once? */
 121	unsigned int cache_trim_mode_failed:1;
 
 
 
 122
 123	/* Proactive reclaim invoked by userspace through memory.reclaim */
 124	unsigned int proactive:1;
 125
 126	/*
 127	 * Cgroup memory below memory.low is protected as long as we
 128	 * don't threaten to OOM. If any cgroup is reclaimed at
 129	 * reduced force or passed over entirely due to its memory.low
 130	 * setting (memcg_low_skipped), and nothing is reclaimed as a
 131	 * result, then go back for one more cycle that reclaims the protected
 132	 * memory (memcg_low_reclaim) to avert OOM.
 133	 */
 134	unsigned int memcg_low_reclaim:1;
 135	unsigned int memcg_low_skipped:1;
 136
 137	/* Shared cgroup tree walk failed, rescan the whole tree */
 138	unsigned int memcg_full_walk:1;
 139
 140	unsigned int hibernation_mode:1;
 141
 142	/* One of the zones is ready for compaction */
 143	unsigned int compaction_ready:1;
 144
 145	/* There is easily reclaimable cold cache in the current node */
 146	unsigned int cache_trim_mode:1;
 147
 148	/* The file folios on the current node are dangerously low */
 149	unsigned int file_is_tiny:1;
 150
 151	/* Always discard instead of demoting to lower tier memory */
 152	unsigned int no_demotion:1;
 153
 154	/* Allocation order */
 155	s8 order;
 156
 157	/* Scan (total_size >> priority) pages at once */
 158	s8 priority;
 159
 160	/* The highest zone to isolate folios for reclaim from */
 161	s8 reclaim_idx;
 162
 163	/* This context's GFP mask */
 164	gfp_t gfp_mask;
 165
 166	/* Incremented by the number of inactive pages that were scanned */
 167	unsigned long nr_scanned;
 168
 169	/* Number of pages freed so far during a call to shrink_zones() */
 170	unsigned long nr_reclaimed;
 171
 172	struct {
 173		unsigned int dirty;
 174		unsigned int unqueued_dirty;
 175		unsigned int congested;
 176		unsigned int writeback;
 177		unsigned int immediate;
 178		unsigned int file_taken;
 179		unsigned int taken;
 180	} nr;
 181
 182	/* for recording the reclaimed slab by now */
 183	struct reclaim_state reclaim_state;
 184};
 185
 186#ifdef ARCH_HAS_PREFETCHW
 187#define prefetchw_prev_lru_folio(_folio, _base, _field)			\
 188	do {								\
 189		if ((_folio)->lru.prev != _base) {			\
 190			struct folio *prev;				\
 191									\
 192			prev = lru_to_folio(&(_folio->lru));		\
 193			prefetchw(&prev->_field);			\
 194		}							\
 195	} while (0)
 196#else
 197#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
 198#endif
 199
 200/*
 201 * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
 202 */
 203int vm_swappiness = 60;
 
 204
 205#ifdef CONFIG_MEMCG
 
 206
 207/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
 208static bool cgroup_reclaim(struct scan_control *sc)
 
 
 
 
 
 
 209{
 210	return sc->target_mem_cgroup;
 211}
 212
 213/*
 214 * Returns true for reclaim on the root cgroup. This is true for direct
 215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
 216 */
 217static bool root_reclaim(struct scan_control *sc)
 218{
 219	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
 220}
 221
 222/**
 223 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 224 * @sc: scan_control in question
 225 *
 226 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 227 * completely broken with the legacy memcg and direct stalling in
 228 * shrink_folio_list() is used for throttling instead, which lacks all the
 229 * niceties such as fairness, adaptive pausing, bandwidth proportional
 230 * allocation and configurability.
 231 *
 232 * This function tests whether the vmscan currently in progress can assume
 233 * that the normal dirty throttling mechanism is operational.
 234 */
 235static bool writeback_throttling_sane(struct scan_control *sc)
 236{
 237	if (!cgroup_reclaim(sc))
 238		return true;
 239#ifdef CONFIG_CGROUP_WRITEBACK
 240	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 241		return true;
 242#endif
 243	return false;
 244}
 245
 246static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
 247{
 248	if (sc->proactive && sc->proactive_swappiness)
 249		return *sc->proactive_swappiness;
 250	return mem_cgroup_swappiness(memcg);
 251}
 252#else
 253static bool cgroup_reclaim(struct scan_control *sc)
 254{
 255	return false;
 256}
 257
 258static bool root_reclaim(struct scan_control *sc)
 259{
 260	return true;
 261}
 262
 263static bool writeback_throttling_sane(struct scan_control *sc)
 
 
 
 264{
 265	return true;
 
 
 
 266}
 
 267
 268static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
 
 
 
 269{
 270	return READ_ONCE(vm_swappiness);
 
 
 271}
 272#endif
 273
 274static void set_task_reclaim_state(struct task_struct *task,
 275				   struct reclaim_state *rs)
 
 276{
 277	/* Check for an overwrite */
 278	WARN_ON_ONCE(rs && task->reclaim_state);
 279
 280	/* Check for the nulling of an already-nulled member */
 281	WARN_ON_ONCE(!rs && !task->reclaim_state);
 282
 283	task->reclaim_state = rs;
 284}
 285
 
 286/*
 287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
 288 * scan_control->nr_reclaimed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289 */
 290static void flush_reclaim_state(struct scan_control *sc)
 
 
 291{
 292	/*
 293	 * Currently, reclaim_state->reclaimed includes three types of pages
 294	 * freed outside of vmscan:
 295	 * (1) Slab pages.
 296	 * (2) Clean file pages from pruned inodes (on highmem systems).
 297	 * (3) XFS freed buffer pages.
 298	 *
 299	 * For all of these cases, we cannot universally link the pages to a
 300	 * single memcg. For example, a memcg-aware shrinker can free one object
 301	 * charged to the target memcg, causing an entire page to be freed.
 302	 * If we count the entire page as reclaimed from the memcg, we end up
 303	 * overestimating the reclaimed amount (potentially under-reclaiming).
 304	 *
 305	 * Only count such pages for global reclaim to prevent under-reclaiming
 306	 * from the target memcg; preventing unnecessary retries during memcg
 307	 * charging and false positives from proactive reclaim.
 308	 *
 309	 * For uncommon cases where the freed pages were actually mostly
 310	 * charged to the target memcg, we end up underestimating the reclaimed
 311	 * amount. This should be fine. The freed pages will be uncharged
 312	 * anyway, even if they are not counted here properly, and we will be
 313	 * able to make forward progress in charging (which is usually in a
 314	 * retry loop).
 315	 *
 316	 * We can go one step further, and report the uncharged objcg pages in
 317	 * memcg reclaim, to make reporting more accurate and reduce
 318	 * underestimation, but it's probably not worth the complexity for now.
 319	 */
 320	if (current->reclaim_state && root_reclaim(sc)) {
 321		sc->nr_reclaimed += current->reclaim_state->reclaimed;
 322		current->reclaim_state->reclaimed = 0;
 323	}
 324}
 325
 326static bool can_demote(int nid, struct scan_control *sc)
 327{
 328	if (!numa_demotion_enabled)
 329		return false;
 330	if (sc && sc->no_demotion)
 331		return false;
 332	if (next_demotion_node(nid) == NUMA_NO_NODE)
 333		return false;
 
 
 
 
 
 
 
 
 
 
 334
 335	return true;
 336}
 
 
 
 
 
 
 
 
 
 
 337
 338static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
 339					  int nid,
 340					  struct scan_control *sc)
 341{
 342	if (memcg == NULL) {
 343		/*
 344		 * For non-memcg reclaim, is there
 345		 * space in any swap device?
 
 
 
 
 
 
 
 
 346		 */
 347		if (get_nr_swap_pages() > 0)
 348			return true;
 349	} else {
 350		/* Is the memcg below its swap limit? */
 351		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
 352			return true;
 353	}
 354
 355	/*
 356	 * The page can not be swapped.
 357	 *
 358	 * Can it be reclaimed from this node via demotion?
 359	 */
 360	return can_demote(nid, sc);
 361}
 362
 363/*
 364 * This misses isolated folios which are not accounted for to save counters.
 365 * As the data only determines if reclaim or compaction continues, it is
 366 * not expected that isolated folios will be a dominating factor.
 367 */
 368unsigned long zone_reclaimable_pages(struct zone *zone)
 369{
 370	unsigned long nr;
 371
 372	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 373		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 374	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
 375		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 376			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 377	/*
 378	 * If there are no reclaimable file-backed or anonymous pages,
 379	 * ensure zones with sufficient free pages are not skipped.
 380	 * This prevents zones like DMA32 from being ignored in reclaim
 381	 * scenarios where they can still help alleviate memory pressure.
 382	 */
 383	if (nr == 0)
 384		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
 385	return nr;
 386}
 387
 388/**
 389 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 390 * @lruvec: lru vector
 391 * @lru: lru to use
 392 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
 393 */
 394static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
 395				     int zone_idx)
 396{
 397	unsigned long size = 0;
 398	int zid;
 399
 400	for (zid = 0; zid <= zone_idx; zid++) {
 401		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 402
 403		if (!managed_zone(zone))
 404			continue;
 
 
 
 
 
 
 
 
 
 405
 406		if (!mem_cgroup_disabled())
 407			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 408		else
 409			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
 410	}
 411	return size;
 
 
 
 412}
 413
 414static unsigned long drop_slab_node(int nid)
 
 415{
 416	unsigned long freed = 0;
 417	struct mem_cgroup *memcg = NULL;
 418
 419	memcg = mem_cgroup_iter(NULL, NULL, NULL);
 420	do {
 421		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 422	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 
 
 
 
 
 423
 424	return freed;
 
 
 
 
 
 
 
 
 
 
 425}
 426
 427void drop_slab(void)
 428{
 429	int nid;
 430	int shift = 0;
 431	unsigned long freed;
 432
 433	do {
 434		freed = 0;
 435		for_each_online_node(nid) {
 436			if (fatal_signal_pending(current))
 437				return;
 438
 439			freed += drop_slab_node(nid);
 440		}
 441	} while ((freed >> shift++) > 1);
 442}
 443
 444static int reclaimer_offset(void)
 445{
 446	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 447			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
 448	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 449			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
 450	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
 451			PGSCAN_DIRECT - PGSCAN_KSWAPD);
 452	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
 453			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
 454
 455	if (current_is_kswapd())
 456		return 0;
 457	if (current_is_khugepaged())
 458		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
 459	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
 460}
 461
 462static inline int is_page_cache_freeable(struct folio *folio)
 463{
 464	/*
 465	 * A freeable page cache folio is referenced only by the caller
 466	 * that isolated the folio, the page cache and optional filesystem
 467	 * private data at folio->private.
 468	 */
 469	return folio_ref_count(folio) - folio_test_private(folio) ==
 470		1 + folio_nr_pages(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471}
 472
 473/*
 474 * We detected a synchronous write error writing a folio out.  Probably
 475 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 476 * fsync(), msync() or close().
 477 *
 478 * The tricky part is that after writepage we cannot touch the mapping: nothing
 479 * prevents it from being freed up.  But we have a ref on the folio and once
 480 * that folio is locked, the mapping is pinned.
 481 *
 482 * We're allowed to run sleeping folio_lock() here because we know the caller has
 483 * __GFP_FS.
 484 */
 485static void handle_write_error(struct address_space *mapping,
 486				struct folio *folio, int error)
 487{
 488	folio_lock(folio);
 489	if (folio_mapping(folio) == mapping)
 490		mapping_set_error(mapping, error);
 491	folio_unlock(folio);
 492}
 493
 494static bool skip_throttle_noprogress(pg_data_t *pgdat)
 495{
 496	int reclaimable = 0, write_pending = 0;
 497	int i;
 498
 499	/*
 500	 * If kswapd is disabled, reschedule if necessary but do not
 501	 * throttle as the system is likely near OOM.
 502	 */
 503	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
 504		return true;
 505
 506	/*
 507	 * If there are a lot of dirty/writeback folios then do not
 508	 * throttle as throttling will occur when the folios cycle
 509	 * towards the end of the LRU if still under writeback.
 510	 */
 511	for (i = 0; i < MAX_NR_ZONES; i++) {
 512		struct zone *zone = pgdat->node_zones + i;
 513
 514		if (!managed_zone(zone))
 515			continue;
 516
 517		reclaimable += zone_reclaimable_pages(zone);
 518		write_pending += zone_page_state_snapshot(zone,
 519						  NR_ZONE_WRITE_PENDING);
 520	}
 521	if (2 * write_pending <= reclaimable)
 522		return true;
 523
 524	return false;
 525}
 526
 527void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
 528{
 529	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
 530	long timeout, ret;
 531	DEFINE_WAIT(wait);
 532
 533	/*
 534	 * Do not throttle user workers, kthreads other than kswapd or
 535	 * workqueues. They may be required for reclaim to make
 536	 * forward progress (e.g. journalling workqueues or kthreads).
 537	 */
 538	if (!current_is_kswapd() &&
 539	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
 540		cond_resched();
 541		return;
 542	}
 543
 544	/*
 545	 * These figures are pulled out of thin air.
 546	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
 547	 * parallel reclaimers which is a short-lived event so the timeout is
 548	 * short. Failing to make progress or waiting on writeback are
 549	 * potentially long-lived events so use a longer timeout. This is shaky
 550	 * logic as a failure to make progress could be due to anything from
 551	 * writeback to a slow device to excessive referenced folios at the tail
 552	 * of the inactive LRU.
 553	 */
 554	switch(reason) {
 555	case VMSCAN_THROTTLE_WRITEBACK:
 556		timeout = HZ/10;
 557
 558		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
 559			WRITE_ONCE(pgdat->nr_reclaim_start,
 560				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
 561		}
 562
 563		break;
 564	case VMSCAN_THROTTLE_CONGESTED:
 565		fallthrough;
 566	case VMSCAN_THROTTLE_NOPROGRESS:
 567		if (skip_throttle_noprogress(pgdat)) {
 568			cond_resched();
 569			return;
 570		}
 571
 572		timeout = 1;
 573
 574		break;
 575	case VMSCAN_THROTTLE_ISOLATED:
 576		timeout = HZ/50;
 577		break;
 578	default:
 579		WARN_ON_ONCE(1);
 580		timeout = HZ;
 581		break;
 582	}
 583
 584	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 585	ret = schedule_timeout(timeout);
 586	finish_wait(wqh, &wait);
 587
 588	if (reason == VMSCAN_THROTTLE_WRITEBACK)
 589		atomic_dec(&pgdat->nr_writeback_throttled);
 590
 591	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
 592				jiffies_to_usecs(timeout - ret),
 593				reason);
 594}
 595
 596/*
 597 * Account for folios written if tasks are throttled waiting on dirty
 598 * folios to clean. If enough folios have been cleaned since throttling
 599 * started then wakeup the throttled tasks.
 600 */
 601void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 602							int nr_throttled)
 603{
 604	unsigned long nr_written;
 605
 606	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
 607
 608	/*
 609	 * This is an inaccurate read as the per-cpu deltas may not
 610	 * be synchronised. However, given that the system is
 611	 * writeback throttled, it is not worth taking the penalty
 612	 * of getting an accurate count. At worst, the throttle
 613	 * timeout guarantees forward progress.
 614	 */
 615	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
 616		READ_ONCE(pgdat->nr_reclaim_start);
 617
 618	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
 619		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
 620}
 621
 622/* possible outcome of pageout() */
 623typedef enum {
 624	/* failed to write folio out, folio is locked */
 625	PAGE_KEEP,
 626	/* move folio to the active list, folio is locked */
 627	PAGE_ACTIVATE,
 628	/* folio has been sent to the disk successfully, folio is unlocked */
 629	PAGE_SUCCESS,
 630	/* folio is clean and locked */
 631	PAGE_CLEAN,
 632} pageout_t;
 633
 634/*
 635 * pageout is called by shrink_folio_list() for each dirty folio.
 636 * Calls ->writepage().
 637 */
 638static pageout_t pageout(struct folio *folio, struct address_space *mapping,
 639			 struct swap_iocb **plug, struct list_head *folio_list)
 640{
 641	/*
 642	 * If the folio is dirty, only perform writeback if that write
 643	 * will be non-blocking.  To prevent this allocation from being
 644	 * stalled by pagecache activity.  But note that there may be
 645	 * stalls if we need to run get_block().  We could test
 646	 * PagePrivate for that.
 647	 *
 648	 * If this process is currently in __generic_file_write_iter() against
 649	 * this folio's queue, we can perform writeback even if that
 650	 * will block.
 651	 *
 652	 * If the folio is swapcache, write it back even if that would
 653	 * block, for some throttling. This happens by accident, because
 654	 * swap_backing_dev_info is bust: it doesn't reflect the
 655	 * congestion state of the swapdevs.  Easy to fix, if needed.
 656	 */
 657	if (!is_page_cache_freeable(folio))
 658		return PAGE_KEEP;
 659	if (!mapping) {
 660		/*
 661		 * Some data journaling orphaned folios can have
 662		 * folio->mapping == NULL while being dirty with clean buffers.
 663		 */
 664		if (folio_test_private(folio)) {
 665			if (try_to_free_buffers(folio)) {
 666				folio_clear_dirty(folio);
 667				pr_info("%s: orphaned folio\n", __func__);
 668				return PAGE_CLEAN;
 669			}
 670		}
 671		return PAGE_KEEP;
 672	}
 673	if (mapping->a_ops->writepage == NULL)
 674		return PAGE_ACTIVATE;
 
 
 675
 676	if (folio_clear_dirty_for_io(folio)) {
 677		int res;
 678		struct writeback_control wbc = {
 679			.sync_mode = WB_SYNC_NONE,
 680			.nr_to_write = SWAP_CLUSTER_MAX,
 681			.range_start = 0,
 682			.range_end = LLONG_MAX,
 683			.for_reclaim = 1,
 684			.swap_plug = plug,
 685		};
 686
 687		/*
 688		 * The large shmem folio can be split if CONFIG_THP_SWAP is
 689		 * not enabled or contiguous swap entries are failed to
 690		 * allocate.
 691		 */
 692		if (shmem_mapping(mapping) && folio_test_large(folio))
 693			wbc.list = folio_list;
 694
 695		folio_set_reclaim(folio);
 696		res = mapping->a_ops->writepage(&folio->page, &wbc);
 697		if (res < 0)
 698			handle_write_error(mapping, folio, res);
 699		if (res == AOP_WRITEPAGE_ACTIVATE) {
 700			folio_clear_reclaim(folio);
 701			return PAGE_ACTIVATE;
 702		}
 703
 704		if (!folio_test_writeback(folio)) {
 
 
 
 
 
 
 
 
 
 705			/* synchronous write or broken a_ops? */
 706			folio_clear_reclaim(folio);
 707		}
 708		trace_mm_vmscan_write_folio(folio);
 709		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
 
 710		return PAGE_SUCCESS;
 711	}
 712
 713	return PAGE_CLEAN;
 714}
 715
 716/*
 717 * Same as remove_mapping, but if the folio is removed from the mapping, it
 718 * gets returned with a refcount of 0.
 719 */
 720static int __remove_mapping(struct address_space *mapping, struct folio *folio,
 721			    bool reclaimed, struct mem_cgroup *target_memcg)
 722{
 723	int refcount;
 724	void *shadow = NULL;
 725
 726	BUG_ON(!folio_test_locked(folio));
 727	BUG_ON(mapping != folio_mapping(folio));
 728
 729	if (!folio_test_swapcache(folio))
 730		spin_lock(&mapping->host->i_lock);
 731	xa_lock_irq(&mapping->i_pages);
 732	/*
 733	 * The non racy check for a busy folio.
 734	 *
 735	 * Must be careful with the order of the tests. When someone has
 736	 * a ref to the folio, it may be possible that they dirty it then
 737	 * drop the reference. So if the dirty flag is tested before the
 738	 * refcount here, then the following race may occur:
 739	 *
 740	 * get_user_pages(&page);
 741	 * [user mapping goes away]
 742	 * write_to(page);
 743	 *				!folio_test_dirty(folio)    [good]
 744	 * folio_set_dirty(folio);
 745	 * folio_put(folio);
 746	 *				!refcount(folio)   [good, discard it]
 747	 *
 748	 * [oops, our write_to data is lost]
 749	 *
 750	 * Reversing the order of the tests ensures such a situation cannot
 751	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
 752	 * load is not satisfied before that of folio->_refcount.
 753	 *
 754	 * Note that if the dirty flag is always set via folio_mark_dirty,
 755	 * and thus under the i_pages lock, then this ordering is not required.
 756	 */
 757	refcount = 1 + folio_nr_pages(folio);
 758	if (!folio_ref_freeze(folio, refcount))
 759		goto cannot_free;
 760	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
 761	if (unlikely(folio_test_dirty(folio))) {
 762		folio_ref_unfreeze(folio, refcount);
 763		goto cannot_free;
 764	}
 765
 766	if (folio_test_swapcache(folio)) {
 767		swp_entry_t swap = folio->swap;
 
 
 
 
 
 768
 769		if (reclaimed && !mapping_exiting(mapping))
 770			shadow = workingset_eviction(folio, target_memcg);
 771		__delete_from_swap_cache(folio, swap, shadow);
 772		mem_cgroup_swapout(folio, swap);
 773		xa_unlock_irq(&mapping->i_pages);
 774		put_swap_folio(folio, swap);
 775	} else {
 776		void (*free_folio)(struct folio *);
 777
 778		free_folio = mapping->a_ops->free_folio;
 779		/*
 780		 * Remember a shadow entry for reclaimed file cache in
 781		 * order to detect refaults, thus thrashing, later on.
 782		 *
 783		 * But don't store shadows in an address space that is
 784		 * already exiting.  This is not just an optimization,
 785		 * inode reclaim needs to empty out the radix tree or
 786		 * the nodes are lost.  Don't plant shadows behind its
 787		 * back.
 788		 *
 789		 * We also don't store shadows for DAX mappings because the
 790		 * only page cache folios found in these are zero pages
 791		 * covering holes, and because we don't want to mix DAX
 792		 * exceptional entries and shadow exceptional entries in the
 793		 * same address_space.
 794		 */
 795		if (reclaimed && folio_is_file_lru(folio) &&
 796		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 797			shadow = workingset_eviction(folio, target_memcg);
 798		__filemap_remove_folio(folio, shadow);
 799		xa_unlock_irq(&mapping->i_pages);
 800		if (mapping_shrinkable(mapping))
 801			inode_add_lru(mapping->host);
 802		spin_unlock(&mapping->host->i_lock);
 803
 804		if (free_folio)
 805			free_folio(folio);
 806	}
 807
 808	return 1;
 809
 810cannot_free:
 811	xa_unlock_irq(&mapping->i_pages);
 812	if (!folio_test_swapcache(folio))
 813		spin_unlock(&mapping->host->i_lock);
 814	return 0;
 815}
 816
 817/**
 818 * remove_mapping() - Attempt to remove a folio from its mapping.
 819 * @mapping: The address space.
 820 * @folio: The folio to remove.
 821 *
 822 * If the folio is dirty, under writeback or if someone else has a ref
 823 * on it, removal will fail.
 824 * Return: The number of pages removed from the mapping.  0 if the folio
 825 * could not be removed.
 826 * Context: The caller should have a single refcount on the folio and
 827 * hold its lock.
 828 */
 829long remove_mapping(struct address_space *mapping, struct folio *folio)
 830{
 831	if (__remove_mapping(mapping, folio, false, NULL)) {
 832		/*
 833		 * Unfreezing the refcount with 1 effectively
 834		 * drops the pagecache ref for us without requiring another
 835		 * atomic operation.
 836		 */
 837		folio_ref_unfreeze(folio, 1);
 838		return folio_nr_pages(folio);
 839	}
 840	return 0;
 841}
 842
 843/**
 844 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
 845 * @folio: Folio to be returned to an LRU list.
 846 *
 847 * Add previously isolated @folio to appropriate LRU list.
 848 * The folio may still be unevictable for other reasons.
 849 *
 850 * Context: lru_lock must not be held, interrupts must be enabled.
 851 */
 852void folio_putback_lru(struct folio *folio)
 853{
 854	folio_add_lru(folio);
 855	folio_put(folio);		/* drop ref from isolate */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857
 858enum folio_references {
 859	FOLIOREF_RECLAIM,
 860	FOLIOREF_RECLAIM_CLEAN,
 861	FOLIOREF_KEEP,
 862	FOLIOREF_ACTIVATE,
 863};
 864
 865static enum folio_references folio_check_references(struct folio *folio,
 866						  struct scan_control *sc)
 867{
 868	int referenced_ptes, referenced_folio;
 869	unsigned long vm_flags;
 870
 871	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
 872					   &vm_flags);
 873	referenced_folio = folio_test_clear_referenced(folio);
 
 
 
 874
 875	/*
 876	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
 877	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
 878	 */
 879	if (vm_flags & VM_LOCKED)
 880		return FOLIOREF_ACTIVATE;
 881
 882	/*
 883	 * There are two cases to consider.
 884	 * 1) Rmap lock contention: rotate.
 885	 * 2) Skip the non-shared swapbacked folio mapped solely by
 886	 *    the exiting or OOM-reaped process.
 887	 */
 888	if (referenced_ptes == -1)
 889		return FOLIOREF_KEEP;
 890
 891	if (referenced_ptes) {
 
 
 892		/*
 893		 * All mapped folios start out with page table
 894		 * references from the instantiating fault, so we need
 895		 * to look twice if a mapped file/anon folio is used more
 896		 * than once.
 897		 *
 898		 * Mark it and spare it for another trip around the
 899		 * inactive list.  Another page table reference will
 900		 * lead to its activation.
 901		 *
 902		 * Note: the mark is set for activated folios as well
 903		 * so that recently deactivated but used folios are
 904		 * quickly recovered.
 905		 */
 906		folio_set_referenced(folio);
 907
 908		if (referenced_folio || referenced_ptes > 1)
 909			return FOLIOREF_ACTIVATE;
 910
 911		/*
 912		 * Activate file-backed executable folios after first usage.
 913		 */
 914		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
 915			return FOLIOREF_ACTIVATE;
 916
 917		return FOLIOREF_KEEP;
 918	}
 919
 920	/* Reclaim if clean, defer dirty folios to writeback */
 921	if (referenced_folio && folio_is_file_lru(folio))
 922		return FOLIOREF_RECLAIM_CLEAN;
 923
 924	return FOLIOREF_RECLAIM;
 925}
 926
 927/* Check if a folio is dirty or under writeback */
 928static void folio_check_dirty_writeback(struct folio *folio,
 929				       bool *dirty, bool *writeback)
 930{
 931	struct address_space *mapping;
 
 932
 933	/*
 934	 * Anonymous folios are not handled by flushers and must be written
 935	 * from reclaim context. Do not stall reclaim based on them.
 936	 * MADV_FREE anonymous folios are put into inactive file list too.
 937	 * They could be mistakenly treated as file lru. So further anon
 938	 * test is needed.
 939	 */
 940	if (!folio_is_file_lru(folio) ||
 941	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
 942		*dirty = false;
 943		*writeback = false;
 944		return;
 945	}
 946
 947	/* By default assume that the folio flags are accurate */
 948	*dirty = folio_test_dirty(folio);
 949	*writeback = folio_test_writeback(folio);
 950
 951	/* Verify dirty/writeback state if the filesystem supports it */
 952	if (!folio_test_private(folio))
 953		return;
 954
 955	mapping = folio_mapping(folio);
 956	if (mapping && mapping->a_ops->is_dirty_writeback)
 957		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
 958}
 959
 960struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
 961{
 962	struct folio *dst;
 963	nodemask_t *allowed_mask;
 964	struct migration_target_control *mtc;
 965
 966	mtc = (struct migration_target_control *)private;
 967
 968	allowed_mask = mtc->nmask;
 969	/*
 970	 * make sure we allocate from the target node first also trying to
 971	 * demote or reclaim pages from the target node via kswapd if we are
 972	 * low on free memory on target node. If we don't do this and if
 973	 * we have free memory on the slower(lower) memtier, we would start
 974	 * allocating pages from slower(lower) memory tiers without even forcing
 975	 * a demotion of cold pages from the target memtier. This can result
 976	 * in the kernel placing hot pages in slower(lower) memory tiers.
 977	 */
 978	mtc->nmask = NULL;
 979	mtc->gfp_mask |= __GFP_THISNODE;
 980	dst = alloc_migration_target(src, (unsigned long)mtc);
 981	if (dst)
 982		return dst;
 983
 984	mtc->gfp_mask &= ~__GFP_THISNODE;
 985	mtc->nmask = allowed_mask;
 986
 987	return alloc_migration_target(src, (unsigned long)mtc);
 988}
 989
 990/*
 991 * Take folios on @demote_folios and attempt to demote them to another node.
 992 * Folios which are not demoted are left on @demote_folios.
 993 */
 994static unsigned int demote_folio_list(struct list_head *demote_folios,
 995				     struct pglist_data *pgdat)
 
 996{
 997	int target_nid = next_demotion_node(pgdat->node_id);
 998	unsigned int nr_succeeded;
 999	nodemask_t allowed_mask;
1000
1001	struct migration_target_control mtc = {
1002		/*
1003		 * Allocate from 'node', or fail quickly and quietly.
1004		 * When this happens, 'page' will likely just be discarded
1005		 * instead of migrated.
1006		 */
1007		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1008			__GFP_NOMEMALLOC | GFP_NOWAIT,
1009		.nid = target_nid,
1010		.nmask = &allowed_mask,
1011		.reason = MR_DEMOTION,
1012	};
1013
1014	if (list_empty(demote_folios))
1015		return 0;
1016
1017	if (target_nid == NUMA_NO_NODE)
1018		return 0;
1019
1020	node_get_allowed_targets(pgdat, &allowed_mask);
1021
1022	/* Demotion ignores all cpuset and mempolicy settings */
1023	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1024		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1025		      &nr_succeeded);
1026
1027	return nr_succeeded;
1028}
1029
1030static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1031{
1032	if (gfp_mask & __GFP_FS)
1033		return true;
1034	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1035		return false;
1036	/*
1037	 * We can "enter_fs" for swap-cache with only __GFP_IO
1038	 * providing this isn't SWP_FS_OPS.
1039	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1040	 * but that will never affect SWP_FS_OPS, so the data_race
1041	 * is safe.
1042	 */
1043	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1044}
1045
1046/*
1047 * shrink_folio_list() returns the number of reclaimed pages
1048 */
1049static unsigned int shrink_folio_list(struct list_head *folio_list,
1050		struct pglist_data *pgdat, struct scan_control *sc,
1051		struct reclaim_stat *stat, bool ignore_references)
1052{
1053	struct folio_batch free_folios;
1054	LIST_HEAD(ret_folios);
1055	LIST_HEAD(demote_folios);
1056	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1057	unsigned int pgactivate = 0;
1058	bool do_demote_pass;
1059	struct swap_iocb *plug = NULL;
1060
1061	folio_batch_init(&free_folios);
1062	memset(stat, 0, sizeof(*stat));
1063	cond_resched();
1064	do_demote_pass = can_demote(pgdat->node_id, sc);
1065
1066retry:
1067	while (!list_empty(folio_list)) {
1068		struct address_space *mapping;
1069		struct folio *folio;
1070		enum folio_references references = FOLIOREF_RECLAIM;
1071		bool dirty, writeback;
1072		unsigned int nr_pages;
1073
1074		cond_resched();
1075
1076		folio = lru_to_folio(folio_list);
1077		list_del(&folio->lru);
1078
1079		if (!folio_trylock(folio))
1080			goto keep;
1081
1082		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1083
1084		nr_pages = folio_nr_pages(folio);
1085
1086		/* Account the number of base pages */
1087		sc->nr_scanned += nr_pages;
1088
1089		if (unlikely(!folio_evictable(folio)))
1090			goto activate_locked;
1091
1092		if (!sc->may_unmap && folio_mapped(folio))
1093			goto keep_locked;
1094
1095		/* folio_update_gen() tried to promote this page? */
1096		if (lru_gen_enabled() && !ignore_references &&
1097		    folio_mapped(folio) && folio_test_referenced(folio))
1098			goto keep_locked;
1099
1100		/*
1101		 * The number of dirty pages determines if a node is marked
1102		 * reclaim_congested. kswapd will stall and start writing
1103		 * folios if the tail of the LRU is all dirty unqueued folios.
1104		 */
1105		folio_check_dirty_writeback(folio, &dirty, &writeback);
1106		if (dirty || writeback)
1107			stat->nr_dirty += nr_pages;
1108
1109		if (dirty && !writeback)
1110			stat->nr_unqueued_dirty += nr_pages;
1111
1112		/*
1113		 * Treat this folio as congested if folios are cycling
1114		 * through the LRU so quickly that the folios marked
1115		 * for immediate reclaim are making it to the end of
1116		 * the LRU a second time.
1117		 */
1118		if (writeback && folio_test_reclaim(folio))
1119			stat->nr_congested += nr_pages;
1120
1121		/*
1122		 * If a folio at the tail of the LRU is under writeback, there
1123		 * are three cases to consider.
1124		 *
1125		 * 1) If reclaim is encountering an excessive number
1126		 *    of folios under writeback and this folio has both
1127		 *    the writeback and reclaim flags set, then it
1128		 *    indicates that folios are being queued for I/O but
1129		 *    are being recycled through the LRU before the I/O
1130		 *    can complete. Waiting on the folio itself risks an
1131		 *    indefinite stall if it is impossible to writeback
1132		 *    the folio due to I/O error or disconnected storage
1133		 *    so instead note that the LRU is being scanned too
1134		 *    quickly and the caller can stall after the folio
1135		 *    list has been processed.
1136		 *
1137		 * 2) Global or new memcg reclaim encounters a folio that is
1138		 *    not marked for immediate reclaim, or the caller does not
1139		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1140		 *    not to fs). In this case mark the folio for immediate
1141		 *    reclaim and continue scanning.
1142		 *
1143		 *    Require may_enter_fs() because we would wait on fs, which
1144		 *    may not have submitted I/O yet. And the loop driver might
1145		 *    enter reclaim, and deadlock if it waits on a folio for
1146		 *    which it is needed to do the write (loop masks off
1147		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1148		 *    would probably show more reasons.
1149		 *
1150		 * 3) Legacy memcg encounters a folio that already has the
1151		 *    reclaim flag set. memcg does not have any dirty folio
1152		 *    throttling so we could easily OOM just because too many
1153		 *    folios are in writeback and there is nothing else to
1154		 *    reclaim. Wait for the writeback to complete.
1155		 *
1156		 * In cases 1) and 2) we activate the folios to get them out of
1157		 * the way while we continue scanning for clean folios on the
1158		 * inactive list and refilling from the active list. The
1159		 * observation here is that waiting for disk writes is more
1160		 * expensive than potentially causing reloads down the line.
1161		 * Since they're marked for immediate reclaim, they won't put
1162		 * memory pressure on the cache working set any longer than it
1163		 * takes to write them to disk.
1164		 */
1165		if (folio_test_writeback(folio)) {
1166			/* Case 1 above */
1167			if (current_is_kswapd() &&
1168			    folio_test_reclaim(folio) &&
1169			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1170				stat->nr_immediate += nr_pages;
1171				goto activate_locked;
1172
1173			/* Case 2 above */
1174			} else if (writeback_throttling_sane(sc) ||
1175			    !folio_test_reclaim(folio) ||
1176			    !may_enter_fs(folio, sc->gfp_mask)) {
1177				/*
1178				 * This is slightly racy -
1179				 * folio_end_writeback() might have
1180				 * just cleared the reclaim flag, then
1181				 * setting the reclaim flag here ends up
1182				 * interpreted as the readahead flag - but
1183				 * that does not matter enough to care.
1184				 * What we do want is for this folio to
1185				 * have the reclaim flag set next time
1186				 * memcg reclaim reaches the tests above,
1187				 * so it will then wait for writeback to
1188				 * avoid OOM; and it's also appropriate
1189				 * in global reclaim.
1190				 */
1191				folio_set_reclaim(folio);
1192				stat->nr_writeback += nr_pages;
1193				goto activate_locked;
1194
1195			/* Case 3 above */
1196			} else {
1197				folio_unlock(folio);
1198				folio_wait_writeback(folio);
1199				/* then go back and try same folio again */
1200				list_add_tail(&folio->lru, folio_list);
1201				continue;
1202			}
1203		}
1204
1205		if (!ignore_references)
1206			references = folio_check_references(folio, sc);
1207
1208		switch (references) {
1209		case FOLIOREF_ACTIVATE:
1210			goto activate_locked;
1211		case FOLIOREF_KEEP:
1212			stat->nr_ref_keep += nr_pages;
1213			goto keep_locked;
1214		case FOLIOREF_RECLAIM:
1215		case FOLIOREF_RECLAIM_CLEAN:
1216			; /* try to reclaim the folio below */
1217		}
1218
1219		/*
1220		 * Before reclaiming the folio, try to relocate
1221		 * its contents to another node.
1222		 */
1223		if (do_demote_pass &&
1224		    (thp_migration_supported() || !folio_test_large(folio))) {
1225			list_add(&folio->lru, &demote_folios);
1226			folio_unlock(folio);
1227			continue;
1228		}
1229
1230		/*
1231		 * Anonymous process memory has backing store?
1232		 * Try to allocate it some swap space here.
1233		 * Lazyfree folio could be freed directly
1234		 */
1235		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1236			if (!folio_test_swapcache(folio)) {
1237				if (!(sc->gfp_mask & __GFP_IO))
1238					goto keep_locked;
1239				if (folio_maybe_dma_pinned(folio))
1240					goto keep_locked;
1241				if (folio_test_large(folio)) {
1242					/* cannot split folio, skip it */
1243					if (!can_split_folio(folio, 1, NULL))
1244						goto activate_locked;
1245					/*
1246					 * Split partially mapped folios right away.
1247					 * We can free the unmapped pages without IO.
1248					 */
1249					if (data_race(!list_empty(&folio->_deferred_list) &&
1250					    folio_test_partially_mapped(folio)) &&
1251					    split_folio_to_list(folio, folio_list))
1252						goto activate_locked;
1253				}
1254				if (!add_to_swap(folio)) {
1255					int __maybe_unused order = folio_order(folio);
1256
1257					if (!folio_test_large(folio))
1258						goto activate_locked_split;
1259					/* Fallback to swap normal pages */
1260					if (split_folio_to_list(folio, folio_list))
1261						goto activate_locked;
1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263					if (nr_pages >= HPAGE_PMD_NR) {
1264						count_memcg_folio_events(folio,
1265							THP_SWPOUT_FALLBACK, 1);
1266						count_vm_event(THP_SWPOUT_FALLBACK);
1267					}
1268#endif
1269					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1270					if (!add_to_swap(folio))
1271						goto activate_locked_split;
1272				}
1273			}
1274		}
1275
1276		/*
1277		 * If the folio was split above, the tail pages will make
1278		 * their own pass through this function and be accounted
1279		 * then.
1280		 */
1281		if ((nr_pages > 1) && !folio_test_large(folio)) {
1282			sc->nr_scanned -= (nr_pages - 1);
1283			nr_pages = 1;
1284		}
1285
1286		/*
1287		 * The folio is mapped into the page tables of one or more
1288		 * processes. Try to unmap it here.
1289		 */
1290		if (folio_mapped(folio)) {
1291			enum ttu_flags flags = TTU_BATCH_FLUSH;
1292			bool was_swapbacked = folio_test_swapbacked(folio);
1293
1294			if (folio_test_pmd_mappable(folio))
1295				flags |= TTU_SPLIT_HUGE_PMD;
1296			/*
1297			 * Without TTU_SYNC, try_to_unmap will only begin to
1298			 * hold PTL from the first present PTE within a large
1299			 * folio. Some initial PTEs might be skipped due to
1300			 * races with parallel PTE writes in which PTEs can be
1301			 * cleared temporarily before being written new present
1302			 * values. This will lead to a large folio is still
1303			 * mapped while some subpages have been partially
1304			 * unmapped after try_to_unmap; TTU_SYNC helps
1305			 * try_to_unmap acquire PTL from the first PTE,
1306			 * eliminating the influence of temporary PTE values.
1307			 */
1308			if (folio_test_large(folio))
1309				flags |= TTU_SYNC;
1310
1311			try_to_unmap(folio, flags);
1312			if (folio_mapped(folio)) {
1313				stat->nr_unmap_fail += nr_pages;
1314				if (!was_swapbacked &&
1315				    folio_test_swapbacked(folio))
1316					stat->nr_lazyfree_fail += nr_pages;
1317				goto activate_locked;
 
 
 
 
 
 
1318			}
1319		}
1320
1321		/*
1322		 * Folio is unmapped now so it cannot be newly pinned anymore.
1323		 * No point in trying to reclaim folio if it is pinned.
1324		 * Furthermore we don't want to reclaim underlying fs metadata
1325		 * if the folio is pinned and thus potentially modified by the
1326		 * pinning process as that may upset the filesystem.
1327		 */
1328		if (folio_maybe_dma_pinned(folio))
1329			goto activate_locked;
1330
1331		mapping = folio_mapping(folio);
1332		if (folio_test_dirty(folio)) {
1333			/*
1334			 * Only kswapd can writeback filesystem folios
1335			 * to avoid risk of stack overflow. But avoid
1336			 * injecting inefficient single-folio I/O into
1337			 * flusher writeback as much as possible: only
1338			 * write folios when we've encountered many
1339			 * dirty folios, and when we've already scanned
1340			 * the rest of the LRU for clean folios and see
1341			 * the same dirty folios again (with the reclaim
1342			 * flag set).
1343			 */
1344			if (folio_is_file_lru(folio) &&
1345			    (!current_is_kswapd() ||
1346			     !folio_test_reclaim(folio) ||
1347			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1348				/*
1349				 * Immediately reclaim when written back.
1350				 * Similar in principle to folio_deactivate()
1351				 * except we already have the folio isolated
1352				 * and know it's dirty
1353				 */
1354				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1355						nr_pages);
1356				folio_set_reclaim(folio);
1357
1358				goto activate_locked;
1359			}
1360
1361			if (references == FOLIOREF_RECLAIM_CLEAN)
1362				goto keep_locked;
1363			if (!may_enter_fs(folio, sc->gfp_mask))
1364				goto keep_locked;
1365			if (!sc->may_writepage)
1366				goto keep_locked;
1367
1368			/*
1369			 * Folio is dirty. Flush the TLB if a writable entry
1370			 * potentially exists to avoid CPU writes after I/O
1371			 * starts and then write it out here.
1372			 */
1373			try_to_unmap_flush_dirty();
1374			switch (pageout(folio, mapping, &plug, folio_list)) {
1375			case PAGE_KEEP:
 
1376				goto keep_locked;
1377			case PAGE_ACTIVATE:
1378				/*
1379				 * If shmem folio is split when writeback to swap,
1380				 * the tail pages will make their own pass through
1381				 * this function and be accounted then.
1382				 */
1383				if (nr_pages > 1 && !folio_test_large(folio)) {
1384					sc->nr_scanned -= (nr_pages - 1);
1385					nr_pages = 1;
1386				}
1387				goto activate_locked;
1388			case PAGE_SUCCESS:
1389				if (nr_pages > 1 && !folio_test_large(folio)) {
1390					sc->nr_scanned -= (nr_pages - 1);
1391					nr_pages = 1;
1392				}
1393				stat->nr_pageout += nr_pages;
1394
1395				if (folio_test_writeback(folio))
1396					goto keep;
1397				if (folio_test_dirty(folio))
1398					goto keep;
1399
1400				/*
1401				 * A synchronous write - probably a ramdisk.  Go
1402				 * ahead and try to reclaim the folio.
1403				 */
1404				if (!folio_trylock(folio))
1405					goto keep;
1406				if (folio_test_dirty(folio) ||
1407				    folio_test_writeback(folio))
1408					goto keep_locked;
1409				mapping = folio_mapping(folio);
1410				fallthrough;
1411			case PAGE_CLEAN:
1412				; /* try to free the folio below */
1413			}
1414		}
1415
1416		/*
1417		 * If the folio has buffers, try to free the buffer
1418		 * mappings associated with this folio. If we succeed
1419		 * we try to free the folio as well.
1420		 *
1421		 * We do this even if the folio is dirty.
1422		 * filemap_release_folio() does not perform I/O, but it
1423		 * is possible for a folio to have the dirty flag set,
1424		 * but it is actually clean (all its buffers are clean).
1425		 * This happens if the buffers were written out directly,
1426		 * with submit_bh(). ext3 will do this, as well as
1427		 * the blockdev mapping.  filemap_release_folio() will
1428		 * discover that cleanness and will drop the buffers
1429		 * and mark the folio clean - it can be freed.
1430		 *
1431		 * Rarely, folios can have buffers and no ->mapping.
1432		 * These are the folios which were not successfully
1433		 * invalidated in truncate_cleanup_folio().  We try to
1434		 * drop those buffers here and if that worked, and the
1435		 * folio is no longer mapped into process address space
1436		 * (refcount == 1) it can be freed.  Otherwise, leave
1437		 * the folio on the LRU so it is swappable.
1438		 */
1439		if (folio_needs_release(folio)) {
1440			if (!filemap_release_folio(folio, sc->gfp_mask))
1441				goto activate_locked;
1442			if (!mapping && folio_ref_count(folio) == 1) {
1443				folio_unlock(folio);
1444				if (folio_put_testzero(folio))
1445					goto free_it;
1446				else {
1447					/*
1448					 * rare race with speculative reference.
1449					 * the speculative reference will free
1450					 * this folio shortly, so we may
1451					 * increment nr_reclaimed here (and
1452					 * leave it off the LRU).
1453					 */
1454					nr_reclaimed += nr_pages;
1455					continue;
1456				}
1457			}
1458		}
1459
1460		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1461			/* follow __remove_mapping for reference */
1462			if (!folio_ref_freeze(folio, 1))
1463				goto keep_locked;
1464			/*
1465			 * The folio has only one reference left, which is
1466			 * from the isolation. After the caller puts the
1467			 * folio back on the lru and drops the reference, the
1468			 * folio will be freed anyway. It doesn't matter
1469			 * which lru it goes on. So we don't bother checking
1470			 * the dirty flag here.
1471			 */
1472			count_vm_events(PGLAZYFREED, nr_pages);
1473			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1474		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1475							 sc->target_mem_cgroup))
1476			goto keep_locked;
1477
1478		folio_unlock(folio);
 
 
 
 
 
 
 
1479free_it:
 
 
1480		/*
1481		 * Folio may get swapped out as a whole, need to account
1482		 * all pages in it.
1483		 */
1484		nr_reclaimed += nr_pages;
 
1485
1486		folio_unqueue_deferred_split(folio);
1487		if (folio_batch_add(&free_folios, folio) == 0) {
1488			mem_cgroup_uncharge_folios(&free_folios);
1489			try_to_unmap_flush();
1490			free_unref_folios(&free_folios);
1491		}
1492		continue;
1493
1494activate_locked_split:
1495		/*
1496		 * The tail pages that are failed to add into swap cache
1497		 * reach here.  Fixup nr_scanned and nr_pages.
1498		 */
1499		if (nr_pages > 1) {
1500			sc->nr_scanned -= (nr_pages - 1);
1501			nr_pages = 1;
1502		}
1503activate_locked:
1504		/* Not a candidate for swapping, so reclaim swap space. */
1505		if (folio_test_swapcache(folio) &&
1506		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1507			folio_free_swap(folio);
1508		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1509		if (!folio_test_mlocked(folio)) {
1510			int type = folio_is_file_lru(folio);
1511			folio_set_active(folio);
1512			stat->nr_activate[type] += nr_pages;
1513			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1514		}
1515keep_locked:
1516		folio_unlock(folio);
1517keep:
1518		list_add(&folio->lru, &ret_folios);
1519		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1520				folio_test_unevictable(folio), folio);
1521	}
1522	/* 'folio_list' is always empty here */
1523
1524	/* Migrate folios selected for demotion */
1525	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1526	nr_reclaimed += nr_demoted;
1527	stat->nr_demoted += nr_demoted;
1528	/* Folios that could not be demoted are still in @demote_folios */
1529	if (!list_empty(&demote_folios)) {
1530		/* Folios which weren't demoted go back on @folio_list */
1531		list_splice_init(&demote_folios, folio_list);
1532
1533		/*
1534		 * goto retry to reclaim the undemoted folios in folio_list if
1535		 * desired.
1536		 *
1537		 * Reclaiming directly from top tier nodes is not often desired
1538		 * due to it breaking the LRU ordering: in general memory
1539		 * should be reclaimed from lower tier nodes and demoted from
1540		 * top tier nodes.
1541		 *
1542		 * However, disabling reclaim from top tier nodes entirely
1543		 * would cause ooms in edge scenarios where lower tier memory
1544		 * is unreclaimable for whatever reason, eg memory being
1545		 * mlocked or too hot to reclaim. We can disable reclaim
1546		 * from top tier nodes in proactive reclaim though as that is
1547		 * not real memory pressure.
1548		 */
1549		if (!sc->proactive) {
1550			do_demote_pass = false;
1551			goto retry;
1552		}
1553	}
1554
1555	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
 
 
 
 
 
 
 
1556
1557	mem_cgroup_uncharge_folios(&free_folios);
1558	try_to_unmap_flush();
1559	free_unref_folios(&free_folios);
1560
1561	list_splice(&ret_folios, folio_list);
1562	count_vm_events(PGACTIVATE, pgactivate);
1563
1564	if (plug)
1565		swap_write_unplug(plug);
1566	return nr_reclaimed;
1567}
1568
1569unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1570					   struct list_head *folio_list)
 
 
 
 
 
 
 
 
 
1571{
1572	struct scan_control sc = {
1573		.gfp_mask = GFP_KERNEL,
1574		.may_unmap = 1,
1575	};
1576	struct reclaim_stat stat;
1577	unsigned int nr_reclaimed;
1578	struct folio *folio, *next;
1579	LIST_HEAD(clean_folios);
1580	unsigned int noreclaim_flag;
1581
1582	list_for_each_entry_safe(folio, next, folio_list, lru) {
1583		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1584		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1585		    !folio_test_unevictable(folio)) {
1586			folio_clear_active(folio);
1587			list_move(&folio->lru, &clean_folios);
1588		}
1589	}
1590
1591	/*
1592	 * We should be safe here since we are only dealing with file pages and
1593	 * we are not kswapd and therefore cannot write dirty file pages. But
1594	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1595	 * change in the future.
1596	 */
1597	noreclaim_flag = memalloc_noreclaim_save();
1598	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1599					&stat, true);
1600	memalloc_noreclaim_restore(noreclaim_flag);
1601
1602	list_splice(&clean_folios, folio_list);
1603	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1604			    -(long)nr_reclaimed);
1605	/*
1606	 * Since lazyfree pages are isolated from file LRU from the beginning,
1607	 * they will rotate back to anonymous LRU in the end if it failed to
1608	 * discard so isolated count will be mismatched.
1609	 * Compensate the isolated count for both LRU lists.
1610	 */
1611	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1612			    stat.nr_lazyfree_fail);
1613	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1614			    -(long)stat.nr_lazyfree_fail);
1615	return nr_reclaimed;
1616}
1617
1618/*
1619 * Update LRU sizes after isolating pages. The LRU size updates must
1620 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1621 */
1622static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1623			enum lru_list lru, unsigned long *nr_zone_taken)
1624{
1625	int zid;
1626
1627	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1628		if (!nr_zone_taken[zid])
1629			continue;
1630
1631		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
 
 
 
 
 
 
 
1632	}
1633
 
1634}
1635
1636/*
1637 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1638 *
1639 * lruvec->lru_lock is heavily contended.  Some of the functions that
1640 * shrink the lists perform better by taking out a batch of pages
1641 * and working on them outside the LRU lock.
1642 *
1643 * For pagecache intensive workloads, this function is the hottest
1644 * spot in the kernel (apart from copy_*_user functions).
1645 *
1646 * Lru_lock must be held before calling this function.
1647 *
1648 * @nr_to_scan:	The number of eligible pages to look through on the list.
1649 * @lruvec:	The LRU vector to pull pages from.
1650 * @dst:	The temp list to put pages on to.
1651 * @nr_scanned:	The number of pages that were scanned.
1652 * @sc:		The scan_control struct for this reclaim session
1653 * @lru:	LRU list id for isolating
 
1654 *
1655 * returns how many pages were moved onto *@dst.
1656 */
1657static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1658		struct lruvec *lruvec, struct list_head *dst,
1659		unsigned long *nr_scanned, struct scan_control *sc,
1660		enum lru_list lru)
1661{
1662	struct list_head *src = &lruvec->lists[lru];
1663	unsigned long nr_taken = 0;
1664	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1665	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1666	unsigned long skipped = 0;
1667	unsigned long scan, total_scan, nr_pages;
1668	LIST_HEAD(folios_skipped);
1669
1670	total_scan = 0;
1671	scan = 0;
1672	while (scan < nr_to_scan && !list_empty(src)) {
1673		struct list_head *move_to = src;
1674		struct folio *folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675
1676		folio = lru_to_folio(src);
1677		prefetchw_prev_lru_folio(folio, src, flags);
1678
1679		nr_pages = folio_nr_pages(folio);
1680		total_scan += nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
1681
1682		if (folio_zonenum(folio) > sc->reclaim_idx) {
1683			nr_skipped[folio_zonenum(folio)] += nr_pages;
1684			move_to = &folios_skipped;
1685			goto move;
1686		}
1687
1688		/*
1689		 * Do not count skipped folios because that makes the function
1690		 * return with no isolated folios if the LRU mostly contains
1691		 * ineligible folios.  This causes the VM to not reclaim any
1692		 * folios, triggering a premature OOM.
1693		 * Account all pages in a folio.
1694		 */
1695		scan += nr_pages;
1696
1697		if (!folio_test_lru(folio))
1698			goto move;
1699		if (!sc->may_unmap && folio_mapped(folio))
1700			goto move;
1701
1702		/*
1703		 * Be careful not to clear the lru flag until after we're
1704		 * sure the folio is not being freed elsewhere -- the
1705		 * folio release code relies on it.
1706		 */
1707		if (unlikely(!folio_try_get(folio)))
1708			goto move;
 
 
 
 
 
1709
1710		if (!folio_test_clear_lru(folio)) {
1711			/* Another thread is already isolating this folio */
1712			folio_put(folio);
1713			goto move;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714		}
1715
1716		nr_taken += nr_pages;
1717		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1718		move_to = dst;
1719move:
1720		list_move(&folio->lru, move_to);
1721	}
1722
1723	/*
1724	 * Splice any skipped folios to the start of the LRU list. Note that
1725	 * this disrupts the LRU order when reclaiming for lower zones but
1726	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1727	 * scanning would soon rescan the same folios to skip and waste lots
1728	 * of cpu cycles.
1729	 */
1730	if (!list_empty(&folios_skipped)) {
1731		int zid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732
1733		list_splice(&folios_skipped, src);
1734		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1735			if (!nr_skipped[zid])
1736				continue;
 
 
 
 
 
 
1737
1738			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1739			skipped += nr_skipped[zid];
 
 
 
 
 
1740		}
 
 
1741	}
1742	*nr_scanned = total_scan;
1743	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1744				    total_scan, skipped, nr_taken, lru);
1745	update_lru_sizes(lruvec, lru, nr_zone_taken);
1746	return nr_taken;
1747}
1748
1749/**
1750 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1751 * @folio: Folio to isolate from its LRU list.
 
 
 
1752 *
1753 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1754 * corresponding to whatever LRU list the folio was on.
1755 *
1756 * The folio will have its LRU flag cleared.  If it was found on the
1757 * active list, it will have the Active flag set.  If it was found on the
1758 * unevictable list, it will have the Unevictable flag set.  These flags
1759 * may need to be cleared by the caller before letting the page go.
1760 *
1761 * Context:
 
1762 *
1763 * (1) Must be called with an elevated refcount on the folio. This is a
1764 *     fundamental difference from isolate_lru_folios() (which is called
 
1765 *     without a stable reference).
1766 * (2) The lru_lock must not be held.
1767 * (3) Interrupts must be enabled.
1768 *
1769 * Return: true if the folio was removed from an LRU list.
1770 * false if the folio was not on an LRU list.
1771 */
1772bool folio_isolate_lru(struct folio *folio)
1773{
1774	bool ret = false;
 
 
1775
1776	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
 
1777
1778	if (folio_test_clear_lru(folio)) {
1779		struct lruvec *lruvec;
 
 
 
 
1780
1781		folio_get(folio);
1782		lruvec = folio_lruvec_lock_irq(folio);
1783		lruvec_del_folio(lruvec, folio);
1784		unlock_page_lruvec_irq(lruvec);
1785		ret = true;
1786	}
1787
1788	return ret;
1789}
1790
1791/*
1792 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1793 * then get rescheduled. When there are massive number of tasks doing page
1794 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1795 * the LRU list will go small and be scanned faster than necessary, leading to
1796 * unnecessary swapping, thrashing and OOM.
1797 */
1798static bool too_many_isolated(struct pglist_data *pgdat, int file,
1799		struct scan_control *sc)
1800{
1801	unsigned long inactive, isolated;
1802	bool too_many;
1803
1804	if (current_is_kswapd())
1805		return false;
1806
1807	if (!writeback_throttling_sane(sc))
1808		return false;
1809
1810	if (file) {
1811		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1812		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1813	} else {
1814		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1815		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1816	}
1817
1818	/*
1819	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1820	 * won't get blocked by normal direct-reclaimers, forming a circular
1821	 * deadlock.
1822	 */
1823	if (gfp_has_io_fs(sc->gfp_mask))
1824		inactive >>= 3;
1825
1826	too_many = isolated > inactive;
1827
1828	/* Wake up tasks throttled due to too_many_isolated. */
1829	if (!too_many)
1830		wake_throttle_isolated(pgdat);
1831
1832	return too_many;
1833}
1834
1835/*
1836 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1841		struct list_head *list)
 
 
1842{
1843	int nr_pages, nr_moved = 0;
1844	struct folio_batch free_folios;
 
1845
1846	folio_batch_init(&free_folios);
1847	while (!list_empty(list)) {
1848		struct folio *folio = lru_to_folio(list);
1849
1850		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1851		list_del(&folio->lru);
1852		if (unlikely(!folio_evictable(folio))) {
1853			spin_unlock_irq(&lruvec->lru_lock);
1854			folio_putback_lru(folio);
1855			spin_lock_irq(&lruvec->lru_lock);
1856			continue;
1857		}
1858
1859		/*
1860		 * The folio_set_lru needs to be kept here for list integrity.
1861		 * Otherwise:
1862		 *   #0 move_folios_to_lru             #1 release_pages
1863		 *   if (!folio_put_testzero())
1864		 *				      if (folio_put_testzero())
1865		 *				        !lru //skip lru_lock
1866		 *     folio_set_lru()
1867		 *     list_add(&folio->lru,)
1868		 *                                        list_add(&folio->lru,)
1869		 */
1870		folio_set_lru(folio);
1871
1872		if (unlikely(folio_put_testzero(folio))) {
1873			__folio_clear_lru_flags(folio);
1874
1875			folio_unqueue_deferred_split(folio);
1876			if (folio_batch_add(&free_folios, folio) == 0) {
1877				spin_unlock_irq(&lruvec->lru_lock);
1878				mem_cgroup_uncharge_folios(&free_folios);
1879				free_unref_folios(&free_folios);
1880				spin_lock_irq(&lruvec->lru_lock);
1881			}
1882
1883			continue;
1884		}
1885
1886		/*
1887		 * All pages were isolated from the same lruvec (and isolation
1888		 * inhibits memcg migration).
1889		 */
1890		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1891		lruvec_add_folio(lruvec, folio);
1892		nr_pages = folio_nr_pages(folio);
1893		nr_moved += nr_pages;
1894		if (folio_test_active(folio))
1895			workingset_age_nonresident(lruvec, nr_pages);
1896	}
1897
1898	if (free_folios.nr) {
1899		spin_unlock_irq(&lruvec->lru_lock);
1900		mem_cgroup_uncharge_folios(&free_folios);
1901		free_unref_folios(&free_folios);
1902		spin_lock_irq(&lruvec->lru_lock);
1903	}
1904
1905	return nr_moved;
1906}
1907
1908/*
1909 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1910 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1911 * we should not throttle.  Otherwise it is safe to do so.
1912 */
1913static int current_may_throttle(void)
1914{
1915	return !(current->flags & PF_LOCAL_THROTTLE);
1916}
1917
1918/*
1919 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1920 * of reclaimed pages
1921 */
1922static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1923		struct lruvec *lruvec, struct scan_control *sc,
1924		enum lru_list lru)
1925{
1926	LIST_HEAD(folio_list);
1927	unsigned long nr_scanned;
1928	unsigned int nr_reclaimed = 0;
1929	unsigned long nr_taken;
1930	struct reclaim_stat stat;
1931	bool file = is_file_lru(lru);
1932	enum vm_event_item item;
1933	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1934	bool stalled = false;
1935
1936	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1937		if (stalled)
1938			return 0;
1939
1940		/* wait a bit for the reclaimer. */
1941		stalled = true;
1942		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1943
1944		/* We are about to die and free our memory. Return now. */
1945		if (fatal_signal_pending(current))
1946			return SWAP_CLUSTER_MAX;
1947	}
1948
1949	lru_add_drain();
1950
1951	spin_lock_irq(&lruvec->lru_lock);
1952
1953	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1954				     &nr_scanned, sc, lru);
1955
1956	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1957	item = PGSCAN_KSWAPD + reclaimer_offset();
1958	if (!cgroup_reclaim(sc))
1959		__count_vm_events(item, nr_scanned);
1960	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1961	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1962
1963	spin_unlock_irq(&lruvec->lru_lock);
1964
1965	if (nr_taken == 0)
1966		return 0;
1967
1968	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1969
1970	spin_lock_irq(&lruvec->lru_lock);
1971	move_folios_to_lru(lruvec, &folio_list);
1972
1973	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1974					stat.nr_demoted);
1975	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1976	item = PGSTEAL_KSWAPD + reclaimer_offset();
1977	if (!cgroup_reclaim(sc))
1978		__count_vm_events(item, nr_reclaimed);
1979	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1980	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1981	spin_unlock_irq(&lruvec->lru_lock);
1982
1983	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1984
1985	/*
1986	 * If dirty folios are scanned that are not queued for IO, it
1987	 * implies that flushers are not doing their job. This can
1988	 * happen when memory pressure pushes dirty folios to the end of
1989	 * the LRU before the dirty limits are breached and the dirty
1990	 * data has expired. It can also happen when the proportion of
1991	 * dirty folios grows not through writes but through memory
1992	 * pressure reclaiming all the clean cache. And in some cases,
1993	 * the flushers simply cannot keep up with the allocation
1994	 * rate. Nudge the flusher threads in case they are asleep.
1995	 */
1996	if (stat.nr_unqueued_dirty == nr_taken) {
1997		wakeup_flusher_threads(WB_REASON_VMSCAN);
1998		/*
1999		 * For cgroupv1 dirty throttling is achieved by waking up
2000		 * the kernel flusher here and later waiting on folios
2001		 * which are in writeback to finish (see shrink_folio_list()).
2002		 *
2003		 * Flusher may not be able to issue writeback quickly
2004		 * enough for cgroupv1 writeback throttling to work
2005		 * on a large system.
2006		 */
2007		if (!writeback_throttling_sane(sc))
2008			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2009	}
2010
2011	sc->nr.dirty += stat.nr_dirty;
2012	sc->nr.congested += stat.nr_congested;
2013	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2014	sc->nr.writeback += stat.nr_writeback;
2015	sc->nr.immediate += stat.nr_immediate;
2016	sc->nr.taken += nr_taken;
2017	if (file)
2018		sc->nr.file_taken += nr_taken;
2019
2020	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2021			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2022	return nr_reclaimed;
2023}
2024
2025/*
2026 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2027 *
2028 * We move them the other way if the folio is referenced by one or more
2029 * processes.
2030 *
2031 * If the folios are mostly unmapped, the processing is fast and it is
2032 * appropriate to hold lru_lock across the whole operation.  But if
2033 * the folios are mapped, the processing is slow (folio_referenced()), so
2034 * we should drop lru_lock around each folio.  It's impossible to balance
2035 * this, so instead we remove the folios from the LRU while processing them.
2036 * It is safe to rely on the active flag against the non-LRU folios in here
2037 * because nobody will play with that bit on a non-LRU folio.
2038 *
2039 * The downside is that we have to touch folio->_refcount against each folio.
2040 * But we had to alter folio->flags anyway.
2041 */
2042static void shrink_active_list(unsigned long nr_to_scan,
2043			       struct lruvec *lruvec,
2044			       struct scan_control *sc,
2045			       enum lru_list lru)
2046{
2047	unsigned long nr_taken;
2048	unsigned long nr_scanned;
2049	unsigned long vm_flags;
2050	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2051	LIST_HEAD(l_active);
2052	LIST_HEAD(l_inactive);
2053	unsigned nr_deactivate, nr_activate;
2054	unsigned nr_rotated = 0;
2055	bool file = is_file_lru(lru);
2056	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2057
2058	lru_add_drain();
2059
2060	spin_lock_irq(&lruvec->lru_lock);
2061
2062	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2063				     &nr_scanned, sc, lru);
2064
2065	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2066
2067	if (!cgroup_reclaim(sc))
2068		__count_vm_events(PGREFILL, nr_scanned);
2069	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2070
2071	spin_unlock_irq(&lruvec->lru_lock);
2072
2073	while (!list_empty(&l_hold)) {
2074		struct folio *folio;
2075
2076		cond_resched();
2077		folio = lru_to_folio(&l_hold);
2078		list_del(&folio->lru);
2079
2080		if (unlikely(!folio_evictable(folio))) {
2081			folio_putback_lru(folio);
2082			continue;
2083		}
2084
2085		if (unlikely(buffer_heads_over_limit)) {
2086			if (folio_needs_release(folio) &&
2087			    folio_trylock(folio)) {
2088				filemap_release_folio(folio, 0);
2089				folio_unlock(folio);
2090			}
2091		}
2092
2093		/* Referenced or rmap lock contention: rotate */
2094		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2095				     &vm_flags) != 0) {
2096			/*
2097			 * Identify referenced, file-backed active folios and
2098			 * give them one more trip around the active list. So
2099			 * that executable code get better chances to stay in
2100			 * memory under moderate memory pressure.  Anon folios
2101			 * are not likely to be evicted by use-once streaming
2102			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2103			 * so we ignore them here.
2104			 */
2105			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2106				nr_rotated += folio_nr_pages(folio);
2107				list_add(&folio->lru, &l_active);
2108				continue;
2109			}
2110		}
2111
2112		folio_clear_active(folio);	/* we are de-activating */
2113		folio_set_workingset(folio);
2114		list_add(&folio->lru, &l_inactive);
2115	}
 
 
2116
2117	/*
2118	 * Move folios back to the lru list.
2119	 */
2120	spin_lock_irq(&lruvec->lru_lock);
2121
2122	nr_activate = move_folios_to_lru(lruvec, &l_active);
2123	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2124
2125	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2126	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2127
2128	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2129	spin_unlock_irq(&lruvec->lru_lock);
2130
2131	if (nr_rotated)
2132		lru_note_cost(lruvec, file, 0, nr_rotated);
2133	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2134			nr_deactivate, nr_rotated, sc->priority, file);
2135}
2136
2137static unsigned int reclaim_folio_list(struct list_head *folio_list,
2138				      struct pglist_data *pgdat)
 
 
 
2139{
2140	struct reclaim_stat stat;
2141	unsigned int nr_reclaimed;
2142	struct folio *folio;
2143	struct scan_control sc = {
2144		.gfp_mask = GFP_KERNEL,
2145		.may_writepage = 1,
2146		.may_unmap = 1,
2147		.may_swap = 1,
2148		.no_demotion = 1,
2149	};
2150
2151	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2152	while (!list_empty(folio_list)) {
2153		folio = lru_to_folio(folio_list);
2154		list_del(&folio->lru);
2155		folio_putback_lru(folio);
2156	}
2157	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2158
2159	return nr_reclaimed;
2160}
 
 
 
 
 
 
2161
2162unsigned long reclaim_pages(struct list_head *folio_list)
2163{
2164	int nid;
2165	unsigned int nr_reclaimed = 0;
2166	LIST_HEAD(node_folio_list);
2167	unsigned int noreclaim_flag;
2168
2169	if (list_empty(folio_list))
2170		return nr_reclaimed;
2171
2172	noreclaim_flag = memalloc_noreclaim_save();
2173
2174	nid = folio_nid(lru_to_folio(folio_list));
2175	do {
2176		struct folio *folio = lru_to_folio(folio_list);
2177
2178		if (nid == folio_nid(folio)) {
2179			folio_clear_active(folio);
2180			list_move(&folio->lru, &node_folio_list);
2181			continue;
2182		}
2183
2184		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2185		nid = folio_nid(lru_to_folio(folio_list));
2186	} while (!list_empty(folio_list));
2187
2188	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2189
2190	memalloc_noreclaim_restore(noreclaim_flag);
2191
2192	return nr_reclaimed;
2193}
2194
2195static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2196				 struct lruvec *lruvec, struct scan_control *sc)
2197{
2198	if (is_active_lru(lru)) {
2199		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2200			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2201		else
2202			sc->skipped_deactivate = 1;
2203		return 0;
2204	}
2205
2206	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
 
2207}
2208
2209/*
2210 * The inactive anon list should be small enough that the VM never has
2211 * to do too much work.
2212 *
2213 * The inactive file list should be small enough to leave most memory
2214 * to the established workingset on the scan-resistant active list,
2215 * but large enough to avoid thrashing the aggregate readahead window.
2216 *
2217 * Both inactive lists should also be large enough that each inactive
2218 * folio has a chance to be referenced again before it is reclaimed.
2219 *
2220 * If that fails and refaulting is observed, the inactive list grows.
2221 *
2222 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2223 * on this LRU, maintained by the pageout code. An inactive_ratio
2224 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2225 *
2226 * total     target    max
2227 * memory    ratio     inactive
2228 * -------------------------------------
2229 *   10MB       1         5MB
2230 *  100MB       1        50MB
2231 *    1GB       3       250MB
2232 *   10GB      10       0.9GB
2233 *  100GB      31         3GB
2234 *    1TB     101        10GB
2235 *   10TB     320        32GB
2236 */
2237static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2238{
2239	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2240	unsigned long inactive, active;
2241	unsigned long inactive_ratio;
2242	unsigned long gb;
2243
2244	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2245	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2246
2247	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2248	if (gb)
2249		inactive_ratio = int_sqrt(10 * gb);
2250	else
2251		inactive_ratio = 1;
2252
2253	return inactive * inactive_ratio < active;
2254}
2255
2256enum scan_balance {
2257	SCAN_EQUAL,
2258	SCAN_FRACT,
2259	SCAN_ANON,
2260	SCAN_FILE,
2261};
2262
2263static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2264{
2265	unsigned long file;
2266	struct lruvec *target_lruvec;
2267
2268	if (lru_gen_enabled())
2269		return;
 
2270
2271	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
 
 
2272
2273	/*
2274	 * Flush the memory cgroup stats in rate-limited way as we don't need
2275	 * most accurate stats here. We may switch to regular stats flushing
2276	 * in the future once it is cheap enough.
2277	 */
2278	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2279
2280	/*
2281	 * Determine the scan balance between anon and file LRUs.
 
 
 
2282	 */
2283	spin_lock_irq(&target_lruvec->lru_lock);
2284	sc->anon_cost = target_lruvec->anon_cost;
2285	sc->file_cost = target_lruvec->file_cost;
2286	spin_unlock_irq(&target_lruvec->lru_lock);
2287
2288	/*
2289	 * Target desirable inactive:active list ratios for the anon
2290	 * and file LRU lists.
2291	 */
2292	if (!sc->force_deactivate) {
2293		unsigned long refaults;
2294
2295		/*
2296		 * When refaults are being observed, it means a new
2297		 * workingset is being established. Deactivate to get
2298		 * rid of any stale active pages quickly.
2299		 */
2300		refaults = lruvec_page_state(target_lruvec,
2301				WORKINGSET_ACTIVATE_ANON);
2302		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2303			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2304			sc->may_deactivate |= DEACTIVATE_ANON;
2305		else
2306			sc->may_deactivate &= ~DEACTIVATE_ANON;
2307
2308		refaults = lruvec_page_state(target_lruvec,
2309				WORKINGSET_ACTIVATE_FILE);
2310		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2311		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2312			sc->may_deactivate |= DEACTIVATE_FILE;
2313		else
2314			sc->may_deactivate &= ~DEACTIVATE_FILE;
2315	} else
2316		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2317
2318	/*
2319	 * If we have plenty of inactive file pages that aren't
2320	 * thrashing, try to reclaim those first before touching
2321	 * anonymous pages.
2322	 */
2323	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2324	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2325	    !sc->no_cache_trim_mode)
2326		sc->cache_trim_mode = 1;
2327	else
2328		sc->cache_trim_mode = 0;
2329
2330	/*
2331	 * Prevent the reclaimer from falling into the cache trap: as
2332	 * cache pages start out inactive, every cache fault will tip
2333	 * the scan balance towards the file LRU.  And as the file LRU
2334	 * shrinks, so does the window for rotation from references.
2335	 * This means we have a runaway feedback loop where a tiny
2336	 * thrashing file LRU becomes infinitely more attractive than
2337	 * anon pages.  Try to detect this based on file LRU size.
2338	 */
2339	if (!cgroup_reclaim(sc)) {
2340		unsigned long total_high_wmark = 0;
2341		unsigned long free, anon;
2342		int z;
2343
2344		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2345		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2346			   node_page_state(pgdat, NR_INACTIVE_FILE);
2347
2348		for (z = 0; z < MAX_NR_ZONES; z++) {
2349			struct zone *zone = &pgdat->node_zones[z];
2350
2351			if (!managed_zone(zone))
2352				continue;
2353
2354			total_high_wmark += high_wmark_pages(zone);
2355		}
2356
2357		/*
2358		 * Consider anon: if that's low too, this isn't a
2359		 * runaway file reclaim problem, but rather just
2360		 * extreme pressure. Reclaim as per usual then.
2361		 */
2362		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2363
2364		sc->file_is_tiny =
2365			file + free <= total_high_wmark &&
2366			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2367			anon >> sc->priority;
2368	}
2369}
2370
2371/*
2372 * Determine how aggressively the anon and file LRU lists should be
2373 * scanned.
2374 *
2375 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2376 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2377 */
2378static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2379			   unsigned long *nr)
 
2380{
2381	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2382	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2383	unsigned long anon_cost, file_cost, total_cost;
2384	int swappiness = sc_swappiness(sc, memcg);
2385	u64 fraction[ANON_AND_FILE];
2386	u64 denominator = 0;	/* gcc */
2387	enum scan_balance scan_balance;
2388	unsigned long ap, fp;
2389	enum lru_list lru;
2390
2391	/* If we have no swap space, do not bother scanning anon folios. */
2392	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2393		scan_balance = SCAN_FILE;
2394		goto out;
2395	}
2396
2397	/*
2398	 * Global reclaim will swap to prevent OOM even with no
2399	 * swappiness, but memcg users want to use this knob to
2400	 * disable swapping for individual groups completely when
2401	 * using the memory controller's swap limit feature would be
2402	 * too expensive.
2403	 */
2404	if (cgroup_reclaim(sc) && !swappiness) {
2405		scan_balance = SCAN_FILE;
2406		goto out;
2407	}
2408
2409	/*
2410	 * Do not apply any pressure balancing cleverness when the
2411	 * system is close to OOM, scan both anon and file equally
2412	 * (unless the swappiness setting disagrees with swapping).
2413	 */
2414	if (!sc->priority && swappiness) {
2415		scan_balance = SCAN_EQUAL;
2416		goto out;
2417	}
2418
2419	/*
2420	 * If the system is almost out of file pages, force-scan anon.
2421	 */
2422	if (sc->file_is_tiny) {
2423		scan_balance = SCAN_ANON;
2424		goto out;
2425	}
2426
2427	/*
2428	 * If there is enough inactive page cache, we do not reclaim
2429	 * anything from the anonymous working right now.
2430	 */
2431	if (sc->cache_trim_mode) {
2432		scan_balance = SCAN_FILE;
2433		goto out;
2434	}
2435
2436	scan_balance = SCAN_FRACT;
2437	/*
2438	 * Calculate the pressure balance between anon and file pages.
2439	 *
2440	 * The amount of pressure we put on each LRU is inversely
2441	 * proportional to the cost of reclaiming each list, as
2442	 * determined by the share of pages that are refaulting, times
2443	 * the relative IO cost of bringing back a swapped out
2444	 * anonymous page vs reloading a filesystem page (swappiness).
2445	 *
2446	 * Although we limit that influence to ensure no list gets
2447	 * left behind completely: at least a third of the pressure is
2448	 * applied, before swappiness.
2449	 *
2450	 * With swappiness at 100, anon and file have equal IO cost.
2451	 */
2452	total_cost = sc->anon_cost + sc->file_cost;
2453	anon_cost = total_cost + sc->anon_cost;
2454	file_cost = total_cost + sc->file_cost;
2455	total_cost = anon_cost + file_cost;
2456
2457	ap = swappiness * (total_cost + 1);
2458	ap /= anon_cost + 1;
2459
2460	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2461	fp /= file_cost + 1;
2462
2463	fraction[0] = ap;
2464	fraction[1] = fp;
2465	denominator = ap + fp;
2466out:
2467	for_each_evictable_lru(lru) {
2468		bool file = is_file_lru(lru);
2469		unsigned long lruvec_size;
2470		unsigned long low, min;
2471		unsigned long scan;
2472
2473		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2474		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2475				      &min, &low);
2476
2477		if (min || low) {
2478			/*
2479			 * Scale a cgroup's reclaim pressure by proportioning
2480			 * its current usage to its memory.low or memory.min
2481			 * setting.
2482			 *
2483			 * This is important, as otherwise scanning aggression
2484			 * becomes extremely binary -- from nothing as we
2485			 * approach the memory protection threshold, to totally
2486			 * nominal as we exceed it.  This results in requiring
2487			 * setting extremely liberal protection thresholds. It
2488			 * also means we simply get no protection at all if we
2489			 * set it too low, which is not ideal.
2490			 *
2491			 * If there is any protection in place, we reduce scan
2492			 * pressure by how much of the total memory used is
2493			 * within protection thresholds.
2494			 *
2495			 * There is one special case: in the first reclaim pass,
2496			 * we skip over all groups that are within their low
2497			 * protection. If that fails to reclaim enough pages to
2498			 * satisfy the reclaim goal, we come back and override
2499			 * the best-effort low protection. However, we still
2500			 * ideally want to honor how well-behaved groups are in
2501			 * that case instead of simply punishing them all
2502			 * equally. As such, we reclaim them based on how much
2503			 * memory they are using, reducing the scan pressure
2504			 * again by how much of the total memory used is under
2505			 * hard protection.
2506			 */
2507			unsigned long cgroup_size = mem_cgroup_size(memcg);
2508			unsigned long protection;
2509
2510			/* memory.low scaling, make sure we retry before OOM */
2511			if (!sc->memcg_low_reclaim && low > min) {
2512				protection = low;
2513				sc->memcg_low_skipped = 1;
2514			} else {
2515				protection = min;
2516			}
2517
2518			/* Avoid TOCTOU with earlier protection check */
2519			cgroup_size = max(cgroup_size, protection);
2520
2521			scan = lruvec_size - lruvec_size * protection /
2522				(cgroup_size + 1);
2523
2524			/*
2525			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2526			 * reclaim moving forwards, avoiding decrementing
2527			 * sc->priority further than desirable.
2528			 */
2529			scan = max(scan, SWAP_CLUSTER_MAX);
2530		} else {
2531			scan = lruvec_size;
2532		}
2533
2534		scan >>= sc->priority;
2535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536		/*
2537		 * If the cgroup's already been deleted, make sure to
2538		 * scrape out the remaining cache.
2539		 */
2540		if (!scan && !mem_cgroup_online(memcg))
2541			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2542
2543		switch (scan_balance) {
2544		case SCAN_EQUAL:
2545			/* Scan lists relative to size */
2546			break;
2547		case SCAN_FRACT:
2548			/*
2549			 * Scan types proportional to swappiness and
2550			 * their relative recent reclaim efficiency.
2551			 * Make sure we don't miss the last page on
2552			 * the offlined memory cgroups because of a
2553			 * round-off error.
2554			 */
2555			scan = mem_cgroup_online(memcg) ?
2556			       div64_u64(scan * fraction[file], denominator) :
2557			       DIV64_U64_ROUND_UP(scan * fraction[file],
2558						  denominator);
2559			break;
2560		case SCAN_FILE:
2561		case SCAN_ANON:
2562			/* Scan one type exclusively */
2563			if ((scan_balance == SCAN_FILE) != file)
2564				scan = 0;
2565			break;
2566		default:
2567			/* Look ma, no brain */
2568			BUG();
2569		}
2570
2571		nr[lru] = scan;
2572	}
2573}
2574
2575/*
2576 * Anonymous LRU management is a waste if there is
2577 * ultimately no way to reclaim the memory.
2578 */
2579static bool can_age_anon_pages(struct pglist_data *pgdat,
2580			       struct scan_control *sc)
2581{
2582	/* Aging the anon LRU is valuable if swap is present: */
2583	if (total_swap_pages > 0)
2584		return true;
2585
2586	/* Also valuable if anon pages can be demoted: */
2587	return can_demote(pgdat->node_id, sc);
2588}
2589
2590#ifdef CONFIG_LRU_GEN
2591
2592#ifdef CONFIG_LRU_GEN_ENABLED
2593DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2594#define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2595#else
2596DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2597#define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2598#endif
2599
2600static bool should_walk_mmu(void)
2601{
2602	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2603}
2604
2605static bool should_clear_pmd_young(void)
2606{
2607	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2608}
2609
2610/******************************************************************************
2611 *                          shorthand helpers
2612 ******************************************************************************/
2613
2614#define DEFINE_MAX_SEQ(lruvec)						\
2615	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2616
2617#define DEFINE_MIN_SEQ(lruvec)						\
2618	unsigned long min_seq[ANON_AND_FILE] = {			\
2619		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2620		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2621	}
2622
2623#define for_each_gen_type_zone(gen, type, zone)				\
2624	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2625		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2626			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2627
2628#define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2629#define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2630
2631static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2632{
2633	struct pglist_data *pgdat = NODE_DATA(nid);
2634
2635#ifdef CONFIG_MEMCG
2636	if (memcg) {
2637		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2638
2639		/* see the comment in mem_cgroup_lruvec() */
2640		if (!lruvec->pgdat)
2641			lruvec->pgdat = pgdat;
2642
2643		return lruvec;
2644	}
2645#endif
2646	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2647
2648	return &pgdat->__lruvec;
2649}
 
 
2650
2651static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2652{
2653	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2654	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2655
2656	if (!sc->may_swap)
2657		return 0;
2658
2659	if (!can_demote(pgdat->node_id, sc) &&
2660	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2661		return 0;
2662
2663	return sc_swappiness(sc, memcg);
2664}
2665
2666static int get_nr_gens(struct lruvec *lruvec, int type)
2667{
2668	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2669}
2670
2671static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2672{
2673	/* see the comment on lru_gen_folio */
2674	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2675	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2676	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2677}
2678
2679/******************************************************************************
2680 *                          Bloom filters
2681 ******************************************************************************/
2682
2683/*
2684 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2685 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2686 * bits in a bitmap, k is the number of hash functions and n is the number of
2687 * inserted items.
2688 *
2689 * Page table walkers use one of the two filters to reduce their search space.
2690 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2691 * aging uses the double-buffering technique to flip to the other filter each
2692 * time it produces a new generation. For non-leaf entries that have enough
2693 * leaf entries, the aging carries them over to the next generation in
2694 * walk_pmd_range(); the eviction also report them when walking the rmap
2695 * in lru_gen_look_around().
2696 *
2697 * For future optimizations:
2698 * 1. It's not necessary to keep both filters all the time. The spare one can be
2699 *    freed after the RCU grace period and reallocated if needed again.
2700 * 2. And when reallocating, it's worth scaling its size according to the number
2701 *    of inserted entries in the other filter, to reduce the memory overhead on
2702 *    small systems and false positives on large systems.
2703 * 3. Jenkins' hash function is an alternative to Knuth's.
 
 
 
2704 */
2705#define BLOOM_FILTER_SHIFT	15
2706
2707static inline int filter_gen_from_seq(unsigned long seq)
 
 
2708{
2709	return seq % NR_BLOOM_FILTERS;
2710}
 
2711
2712static void get_item_key(void *item, int *key)
2713{
2714	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2715
2716	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
 
2717
2718	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2719	key[1] = hash >> BLOOM_FILTER_SHIFT;
2720}
2721
2722static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2723			      void *item)
2724{
2725	int key[2];
2726	unsigned long *filter;
2727	int gen = filter_gen_from_seq(seq);
2728
2729	filter = READ_ONCE(mm_state->filters[gen]);
2730	if (!filter)
2731		return true;
2732
2733	get_item_key(item, key);
2734
2735	return test_bit(key[0], filter) && test_bit(key[1], filter);
2736}
2737
2738static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2739				void *item)
2740{
2741	int key[2];
2742	unsigned long *filter;
2743	int gen = filter_gen_from_seq(seq);
2744
2745	filter = READ_ONCE(mm_state->filters[gen]);
2746	if (!filter)
2747		return;
2748
2749	get_item_key(item, key);
2750
2751	if (!test_bit(key[0], filter))
2752		set_bit(key[0], filter);
2753	if (!test_bit(key[1], filter))
2754		set_bit(key[1], filter);
2755}
2756
2757static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2758{
2759	unsigned long *filter;
2760	int gen = filter_gen_from_seq(seq);
2761
2762	filter = mm_state->filters[gen];
2763	if (filter) {
2764		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2765		return;
2766	}
2767
2768	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2769			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2770	WRITE_ONCE(mm_state->filters[gen], filter);
2771}
2772
2773/******************************************************************************
2774 *                          mm_struct list
2775 ******************************************************************************/
2776
2777#ifdef CONFIG_LRU_GEN_WALKS_MMU
2778
2779static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2780{
2781	static struct lru_gen_mm_list mm_list = {
2782		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2783		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2784	};
2785
2786#ifdef CONFIG_MEMCG
2787	if (memcg)
2788		return &memcg->mm_list;
2789#endif
2790	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2791
2792	return &mm_list;
2793}
2794
2795static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2796{
2797	return &lruvec->mm_state;
2798}
2799
2800static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2801{
2802	int key;
2803	struct mm_struct *mm;
2804	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2805	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2806
2807	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2808	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2809
2810	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2811		return NULL;
2812
2813	clear_bit(key, &mm->lru_gen.bitmap);
2814
2815	return mmget_not_zero(mm) ? mm : NULL;
2816}
2817
2818void lru_gen_add_mm(struct mm_struct *mm)
2819{
2820	int nid;
2821	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2822	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2823
2824	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2825#ifdef CONFIG_MEMCG
2826	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2827	mm->lru_gen.memcg = memcg;
2828#endif
2829	spin_lock(&mm_list->lock);
2830
2831	for_each_node_state(nid, N_MEMORY) {
2832		struct lruvec *lruvec = get_lruvec(memcg, nid);
2833		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2834
2835		/* the first addition since the last iteration */
2836		if (mm_state->tail == &mm_list->fifo)
2837			mm_state->tail = &mm->lru_gen.list;
2838	}
2839
2840	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2841
2842	spin_unlock(&mm_list->lock);
2843}
2844
2845void lru_gen_del_mm(struct mm_struct *mm)
2846{
2847	int nid;
2848	struct lru_gen_mm_list *mm_list;
2849	struct mem_cgroup *memcg = NULL;
2850
2851	if (list_empty(&mm->lru_gen.list))
2852		return;
2853
2854#ifdef CONFIG_MEMCG
2855	memcg = mm->lru_gen.memcg;
2856#endif
2857	mm_list = get_mm_list(memcg);
2858
2859	spin_lock(&mm_list->lock);
2860
2861	for_each_node(nid) {
2862		struct lruvec *lruvec = get_lruvec(memcg, nid);
2863		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2864
2865		/* where the current iteration continues after */
2866		if (mm_state->head == &mm->lru_gen.list)
2867			mm_state->head = mm_state->head->prev;
2868
2869		/* where the last iteration ended before */
2870		if (mm_state->tail == &mm->lru_gen.list)
2871			mm_state->tail = mm_state->tail->next;
2872	}
2873
2874	list_del_init(&mm->lru_gen.list);
2875
2876	spin_unlock(&mm_list->lock);
2877
2878#ifdef CONFIG_MEMCG
2879	mem_cgroup_put(mm->lru_gen.memcg);
2880	mm->lru_gen.memcg = NULL;
2881#endif
2882}
2883
2884#ifdef CONFIG_MEMCG
2885void lru_gen_migrate_mm(struct mm_struct *mm)
2886{
2887	struct mem_cgroup *memcg;
2888	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2889
2890	VM_WARN_ON_ONCE(task->mm != mm);
2891	lockdep_assert_held(&task->alloc_lock);
2892
2893	/* for mm_update_next_owner() */
2894	if (mem_cgroup_disabled())
2895		return;
2896
2897	/* migration can happen before addition */
2898	if (!mm->lru_gen.memcg)
2899		return;
2900
2901	rcu_read_lock();
2902	memcg = mem_cgroup_from_task(task);
2903	rcu_read_unlock();
2904	if (memcg == mm->lru_gen.memcg)
2905		return;
2906
2907	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2908
2909	lru_gen_del_mm(mm);
2910	lru_gen_add_mm(mm);
2911}
2912#endif
2913
2914#else /* !CONFIG_LRU_GEN_WALKS_MMU */
2915
2916static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2917{
2918	return NULL;
2919}
2920
2921static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2922{
2923	return NULL;
2924}
2925
2926static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2927{
2928	return NULL;
2929}
2930
2931#endif
2932
2933static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2934{
2935	int i;
2936	int hist;
2937	struct lruvec *lruvec = walk->lruvec;
2938	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2939
2940	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2941
2942	hist = lru_hist_from_seq(walk->seq);
2943
2944	for (i = 0; i < NR_MM_STATS; i++) {
2945		WRITE_ONCE(mm_state->stats[hist][i],
2946			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2947		walk->mm_stats[i] = 0;
2948	}
2949
2950	if (NR_HIST_GENS > 1 && last) {
2951		hist = lru_hist_from_seq(walk->seq + 1);
2952
2953		for (i = 0; i < NR_MM_STATS; i++)
2954			WRITE_ONCE(mm_state->stats[hist][i], 0);
2955	}
2956}
2957
2958static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2959{
2960	bool first = false;
2961	bool last = false;
2962	struct mm_struct *mm = NULL;
2963	struct lruvec *lruvec = walk->lruvec;
2964	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2965	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2966	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2967
2968	/*
2969	 * mm_state->seq is incremented after each iteration of mm_list. There
2970	 * are three interesting cases for this page table walker:
2971	 * 1. It tries to start a new iteration with a stale max_seq: there is
2972	 *    nothing left to do.
2973	 * 2. It started the next iteration: it needs to reset the Bloom filter
2974	 *    so that a fresh set of PTE tables can be recorded.
2975	 * 3. It ended the current iteration: it needs to reset the mm stats
2976	 *    counters and tell its caller to increment max_seq.
2977	 */
2978	spin_lock(&mm_list->lock);
2979
2980	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2981
2982	if (walk->seq <= mm_state->seq)
2983		goto done;
2984
2985	if (!mm_state->head)
2986		mm_state->head = &mm_list->fifo;
2987
2988	if (mm_state->head == &mm_list->fifo)
2989		first = true;
2990
2991	do {
2992		mm_state->head = mm_state->head->next;
2993		if (mm_state->head == &mm_list->fifo) {
2994			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2995			last = true;
2996			break;
2997		}
2998
2999		/* force scan for those added after the last iteration */
3000		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3001			mm_state->tail = mm_state->head->next;
3002			walk->force_scan = true;
3003		}
3004	} while (!(mm = get_next_mm(walk)));
3005done:
3006	if (*iter || last)
3007		reset_mm_stats(walk, last);
3008
3009	spin_unlock(&mm_list->lock);
3010
3011	if (mm && first)
3012		reset_bloom_filter(mm_state, walk->seq + 1);
3013
3014	if (*iter)
3015		mmput_async(*iter);
3016
3017	*iter = mm;
3018
3019	return last;
3020}
3021
3022static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3023{
3024	bool success = false;
3025	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3026	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3027	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3028
3029	spin_lock(&mm_list->lock);
3030
3031	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3032
3033	if (seq > mm_state->seq) {
3034		mm_state->head = NULL;
3035		mm_state->tail = NULL;
3036		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3037		success = true;
3038	}
3039
3040	spin_unlock(&mm_list->lock);
3041
3042	return success;
3043}
3044
3045/******************************************************************************
3046 *                          PID controller
3047 ******************************************************************************/
3048
3049/*
3050 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3051 *
3052 * The P term is refaulted/(evicted+protected) from a tier in the generation
3053 * currently being evicted; the I term is the exponential moving average of the
3054 * P term over the generations previously evicted, using the smoothing factor
3055 * 1/2; the D term isn't supported.
3056 *
3057 * The setpoint (SP) is always the first tier of one type; the process variable
3058 * (PV) is either any tier of the other type or any other tier of the same
3059 * type.
3060 *
3061 * The error is the difference between the SP and the PV; the correction is to
3062 * turn off protection when SP>PV or turn on protection when SP<PV.
3063 *
3064 * For future optimizations:
3065 * 1. The D term may discount the other two terms over time so that long-lived
3066 *    generations can resist stale information.
3067 */
3068struct ctrl_pos {
3069	unsigned long refaulted;
3070	unsigned long total;
3071	int gain;
3072};
3073
3074static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3075			  struct ctrl_pos *pos)
3076{
3077	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3078	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
 
 
 
 
 
 
 
3079
3080	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3081			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3082	pos->total = lrugen->avg_total[type][tier] +
3083		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3084	if (tier)
3085		pos->total += lrugen->protected[hist][type][tier - 1];
3086	pos->gain = gain;
3087}
3088
3089static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3090{
3091	int hist, tier;
3092	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3093	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3094	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3095
3096	lockdep_assert_held(&lruvec->lru_lock);
3097
3098	if (!carryover && !clear)
3099		return;
3100
3101	hist = lru_hist_from_seq(seq);
3102
3103	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3104		if (carryover) {
3105			unsigned long sum;
3106
3107			sum = lrugen->avg_refaulted[type][tier] +
3108			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3109			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3110
3111			sum = lrugen->avg_total[type][tier] +
3112			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3113			if (tier)
3114				sum += lrugen->protected[hist][type][tier - 1];
3115			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3116		}
3117
3118		if (clear) {
3119			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3120			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3121			if (tier)
3122				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3123		}
3124	}
3125}
3126
3127static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3128{
3129	/*
3130	 * Return true if the PV has a limited number of refaults or a lower
3131	 * refaulted/total than the SP.
3132	 */
3133	return pv->refaulted < MIN_LRU_BATCH ||
3134	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3135	       (sp->refaulted + 1) * pv->total * pv->gain;
3136}
3137
3138/******************************************************************************
3139 *                          the aging
3140 ******************************************************************************/
 
 
 
 
3141
3142/* promote pages accessed through page tables */
3143static int folio_update_gen(struct folio *folio, int gen)
3144{
3145	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3146
3147	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3148
3149	do {
3150		/* lru_gen_del_folio() has isolated this page? */
3151		if (!(old_flags & LRU_GEN_MASK)) {
3152			/* for shrink_folio_list() */
3153			new_flags = old_flags | BIT(PG_referenced);
3154			continue;
3155		}
3156
3157		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3158		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3159	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3160
3161	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3162}
3163
3164/* protect pages accessed multiple times through file descriptors */
3165static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3166{
3167	int type = folio_is_file_lru(folio);
3168	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3169	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3170	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3171
3172	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3173
3174	do {
3175		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3176		/* folio_update_gen() has promoted this page? */
3177		if (new_gen >= 0 && new_gen != old_gen)
3178			return new_gen;
3179
3180		new_gen = (old_gen + 1) % MAX_NR_GENS;
3181
3182		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3183		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3184		/* for folio_end_writeback() */
3185		if (reclaiming)
3186			new_flags |= BIT(PG_reclaim);
3187	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3188
3189	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3190
3191	return new_gen;
3192}
3193
3194static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3195			      int old_gen, int new_gen)
3196{
3197	int type = folio_is_file_lru(folio);
3198	int zone = folio_zonenum(folio);
3199	int delta = folio_nr_pages(folio);
3200
3201	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3202	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3203
3204	walk->batched++;
3205
3206	walk->nr_pages[old_gen][type][zone] -= delta;
3207	walk->nr_pages[new_gen][type][zone] += delta;
3208}
3209
3210static void reset_batch_size(struct lru_gen_mm_walk *walk)
3211{
3212	int gen, type, zone;
3213	struct lruvec *lruvec = walk->lruvec;
3214	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3215
3216	walk->batched = 0;
3217
3218	for_each_gen_type_zone(gen, type, zone) {
3219		enum lru_list lru = type * LRU_INACTIVE_FILE;
3220		int delta = walk->nr_pages[gen][type][zone];
3221
3222		if (!delta)
3223			continue;
3224
3225		walk->nr_pages[gen][type][zone] = 0;
3226		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3227			   lrugen->nr_pages[gen][type][zone] + delta);
3228
3229		if (lru_gen_is_active(lruvec, gen))
3230			lru += LRU_ACTIVE;
3231		__update_lru_size(lruvec, lru, zone, delta);
3232	}
3233}
3234
3235static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3236{
3237	struct address_space *mapping;
3238	struct vm_area_struct *vma = args->vma;
3239	struct lru_gen_mm_walk *walk = args->private;
3240
3241	if (!vma_is_accessible(vma))
3242		return true;
3243
3244	if (is_vm_hugetlb_page(vma))
3245		return true;
3246
3247	if (!vma_has_recency(vma))
3248		return true;
3249
3250	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3251		return true;
3252
3253	if (vma == get_gate_vma(vma->vm_mm))
3254		return true;
3255
3256	if (vma_is_anonymous(vma))
3257		return !walk->can_swap;
3258
3259	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3260		return true;
3261
3262	mapping = vma->vm_file->f_mapping;
3263	if (mapping_unevictable(mapping))
3264		return true;
3265
3266	if (shmem_mapping(mapping))
3267		return !walk->can_swap;
3268
3269	/* to exclude special mappings like dax, etc. */
3270	return !mapping->a_ops->read_folio;
3271}
3272
3273/*
3274 * Some userspace memory allocators map many single-page VMAs. Instead of
3275 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3276 * table to reduce zigzags and improve cache performance.
3277 */
3278static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3279			 unsigned long *vm_start, unsigned long *vm_end)
3280{
3281	unsigned long start = round_up(*vm_end, size);
3282	unsigned long end = (start | ~mask) + 1;
3283	VMA_ITERATOR(vmi, args->mm, start);
3284
3285	VM_WARN_ON_ONCE(mask & size);
3286	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3287
3288	for_each_vma(vmi, args->vma) {
3289		if (end && end <= args->vma->vm_start)
3290			return false;
3291
3292		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3293			continue;
3294
3295		*vm_start = max(start, args->vma->vm_start);
3296		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3297
3298		return true;
3299	}
3300
3301	return false;
3302}
3303
3304static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3305				 struct pglist_data *pgdat)
3306{
3307	unsigned long pfn = pte_pfn(pte);
3308
3309	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3310
3311	if (!pte_present(pte) || is_zero_pfn(pfn))
3312		return -1;
3313
3314	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3315		return -1;
3316
3317	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3318		return -1;
3319
3320	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3321		return -1;
3322
3323	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3324		return -1;
3325
3326	return pfn;
3327}
3328
3329static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3330				 struct pglist_data *pgdat)
3331{
3332	unsigned long pfn = pmd_pfn(pmd);
3333
3334	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3335
3336	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3337		return -1;
3338
3339	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3340		return -1;
3341
3342	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3343		return -1;
3344
3345	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3346		return -1;
3347
3348	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3349		return -1;
3350
3351	return pfn;
3352}
3353
3354static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3355				   struct pglist_data *pgdat, bool can_swap)
3356{
3357	struct folio *folio;
3358
3359	folio = pfn_folio(pfn);
3360	if (folio_nid(folio) != pgdat->node_id)
3361		return NULL;
3362
3363	if (folio_memcg(folio) != memcg)
3364		return NULL;
3365
3366	/* file VMAs can contain anon pages from COW */
3367	if (!folio_is_file_lru(folio) && !can_swap)
3368		return NULL;
3369
3370	return folio;
3371}
3372
3373static bool suitable_to_scan(int total, int young)
3374{
3375	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3376
3377	/* suitable if the average number of young PTEs per cacheline is >=1 */
3378	return young * n >= total;
3379}
3380
3381static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3382			   struct mm_walk *args)
3383{
3384	int i;
3385	pte_t *pte;
3386	spinlock_t *ptl;
3387	unsigned long addr;
3388	int total = 0;
3389	int young = 0;
3390	struct lru_gen_mm_walk *walk = args->private;
3391	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3392	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3393	DEFINE_MAX_SEQ(walk->lruvec);
3394	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3395	pmd_t pmdval;
3396
3397	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3398				       &ptl);
3399	if (!pte)
3400		return false;
3401	if (!spin_trylock(ptl)) {
3402		pte_unmap(pte);
3403		return false;
3404	}
3405
3406	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3407		pte_unmap_unlock(pte, ptl);
3408		return false;
3409	}
3410
3411	arch_enter_lazy_mmu_mode();
3412restart:
3413	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3414		unsigned long pfn;
3415		struct folio *folio;
3416		pte_t ptent = ptep_get(pte + i);
3417
3418		total++;
3419		walk->mm_stats[MM_LEAF_TOTAL]++;
3420
3421		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3422		if (pfn == -1)
3423			continue;
3424
3425		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3426		if (!folio)
3427			continue;
3428
3429		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3430			continue;
3431
3432		young++;
3433		walk->mm_stats[MM_LEAF_YOUNG]++;
3434
3435		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3436		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3437		      !folio_test_swapcache(folio)))
3438			folio_mark_dirty(folio);
3439
3440		old_gen = folio_update_gen(folio, new_gen);
3441		if (old_gen >= 0 && old_gen != new_gen)
3442			update_batch_size(walk, folio, old_gen, new_gen);
3443	}
3444
3445	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3446		goto restart;
3447
3448	arch_leave_lazy_mmu_mode();
3449	pte_unmap_unlock(pte, ptl);
3450
3451	return suitable_to_scan(total, young);
3452}
3453
3454static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3455				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3456{
3457	int i;
3458	pmd_t *pmd;
3459	spinlock_t *ptl;
3460	struct lru_gen_mm_walk *walk = args->private;
3461	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3462	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3463	DEFINE_MAX_SEQ(walk->lruvec);
3464	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3465
3466	VM_WARN_ON_ONCE(pud_leaf(*pud));
3467
3468	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3469	if (*first == -1) {
3470		*first = addr;
3471		bitmap_zero(bitmap, MIN_LRU_BATCH);
3472		return;
3473	}
3474
3475	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3476	if (i && i <= MIN_LRU_BATCH) {
3477		__set_bit(i - 1, bitmap);
3478		return;
3479	}
3480
3481	pmd = pmd_offset(pud, *first);
3482
3483	ptl = pmd_lockptr(args->mm, pmd);
3484	if (!spin_trylock(ptl))
3485		goto done;
3486
3487	arch_enter_lazy_mmu_mode();
3488
3489	do {
3490		unsigned long pfn;
3491		struct folio *folio;
3492
3493		/* don't round down the first address */
3494		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3495
3496		if (!pmd_present(pmd[i]))
3497			goto next;
3498
3499		if (!pmd_trans_huge(pmd[i])) {
3500			if (!walk->force_scan && should_clear_pmd_young() &&
3501			    !mm_has_notifiers(args->mm))
3502				pmdp_test_and_clear_young(vma, addr, pmd + i);
3503			goto next;
3504		}
3505
3506		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3507		if (pfn == -1)
3508			goto next;
3509
3510		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3511		if (!folio)
3512			goto next;
3513
3514		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3515			goto next;
3516
3517		walk->mm_stats[MM_LEAF_YOUNG]++;
3518
3519		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3520		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3521		      !folio_test_swapcache(folio)))
3522			folio_mark_dirty(folio);
3523
3524		old_gen = folio_update_gen(folio, new_gen);
3525		if (old_gen >= 0 && old_gen != new_gen)
3526			update_batch_size(walk, folio, old_gen, new_gen);
3527next:
3528		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3529	} while (i <= MIN_LRU_BATCH);
3530
3531	arch_leave_lazy_mmu_mode();
3532	spin_unlock(ptl);
3533done:
3534	*first = -1;
3535}
3536
3537static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3538			   struct mm_walk *args)
3539{
3540	int i;
3541	pmd_t *pmd;
3542	unsigned long next;
3543	unsigned long addr;
3544	struct vm_area_struct *vma;
3545	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3546	unsigned long first = -1;
3547	struct lru_gen_mm_walk *walk = args->private;
3548	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3549
3550	VM_WARN_ON_ONCE(pud_leaf(*pud));
3551
3552	/*
3553	 * Finish an entire PMD in two passes: the first only reaches to PTE
3554	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3555	 * the PMD lock to clear the accessed bit in PMD entries.
3556	 */
3557	pmd = pmd_offset(pud, start & PUD_MASK);
3558restart:
3559	/* walk_pte_range() may call get_next_vma() */
3560	vma = args->vma;
3561	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3562		pmd_t val = pmdp_get_lockless(pmd + i);
3563
3564		next = pmd_addr_end(addr, end);
3565
3566		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3567			walk->mm_stats[MM_LEAF_TOTAL]++;
3568			continue;
3569		}
3570
3571		if (pmd_trans_huge(val)) {
3572			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3573			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3574
3575			walk->mm_stats[MM_LEAF_TOTAL]++;
3576
3577			if (pfn != -1)
3578				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3579			continue;
3580		}
3581
3582		if (!walk->force_scan && should_clear_pmd_young() &&
3583		    !mm_has_notifiers(args->mm)) {
3584			if (!pmd_young(val))
3585				continue;
3586
3587			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3588		}
3589
3590		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3591			continue;
3592
3593		walk->mm_stats[MM_NONLEAF_FOUND]++;
3594
3595		if (!walk_pte_range(&val, addr, next, args))
3596			continue;
3597
3598		walk->mm_stats[MM_NONLEAF_ADDED]++;
3599
3600		/* carry over to the next generation */
3601		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3602	}
3603
3604	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3605
3606	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3607		goto restart;
3608}
3609
3610static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3611			  struct mm_walk *args)
3612{
3613	int i;
3614	pud_t *pud;
3615	unsigned long addr;
3616	unsigned long next;
3617	struct lru_gen_mm_walk *walk = args->private;
3618
3619	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3620
3621	pud = pud_offset(p4d, start & P4D_MASK);
3622restart:
3623	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3624		pud_t val = READ_ONCE(pud[i]);
3625
3626		next = pud_addr_end(addr, end);
3627
3628		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3629			continue;
3630
3631		walk_pmd_range(&val, addr, next, args);
3632
3633		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3634			end = (addr | ~PUD_MASK) + 1;
3635			goto done;
3636		}
3637	}
3638
3639	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3640		goto restart;
3641
3642	end = round_up(end, P4D_SIZE);
3643done:
3644	if (!end || !args->vma)
3645		return 1;
3646
3647	walk->next_addr = max(end, args->vma->vm_start);
3648
3649	return -EAGAIN;
3650}
3651
3652static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3653{
3654	static const struct mm_walk_ops mm_walk_ops = {
3655		.test_walk = should_skip_vma,
3656		.p4d_entry = walk_pud_range,
3657		.walk_lock = PGWALK_RDLOCK,
3658	};
3659	int err;
3660	struct lruvec *lruvec = walk->lruvec;
3661
3662	walk->next_addr = FIRST_USER_ADDRESS;
3663
3664	do {
3665		DEFINE_MAX_SEQ(lruvec);
3666
3667		err = -EBUSY;
3668
3669		/* another thread might have called inc_max_seq() */
3670		if (walk->seq != max_seq)
3671			break;
3672
3673		/* the caller might be holding the lock for write */
3674		if (mmap_read_trylock(mm)) {
3675			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3676
3677			mmap_read_unlock(mm);
3678		}
3679
3680		if (walk->batched) {
3681			spin_lock_irq(&lruvec->lru_lock);
3682			reset_batch_size(walk);
3683			spin_unlock_irq(&lruvec->lru_lock);
3684		}
3685
3686		cond_resched();
3687	} while (err == -EAGAIN);
3688}
3689
3690static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3691{
3692	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3693
3694	if (pgdat && current_is_kswapd()) {
3695		VM_WARN_ON_ONCE(walk);
3696
3697		walk = &pgdat->mm_walk;
3698	} else if (!walk && force_alloc) {
3699		VM_WARN_ON_ONCE(current_is_kswapd());
3700
3701		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3702	}
3703
3704	current->reclaim_state->mm_walk = walk;
3705
3706	return walk;
3707}
3708
3709static void clear_mm_walk(void)
3710{
3711	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3712
3713	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3714	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3715
3716	current->reclaim_state->mm_walk = NULL;
3717
3718	if (!current_is_kswapd())
3719		kfree(walk);
3720}
3721
3722static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3723{
3724	int zone;
3725	int remaining = MAX_LRU_BATCH;
3726	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3727	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3728
3729	if (type == LRU_GEN_ANON && !can_swap)
3730		goto done;
3731
3732	/* prevent cold/hot inversion if force_scan is true */
3733	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3734		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3735
3736		while (!list_empty(head)) {
3737			struct folio *folio = lru_to_folio(head);
3738
3739			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3740			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3741			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3742			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3743
3744			new_gen = folio_inc_gen(lruvec, folio, false);
3745			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3746
3747			if (!--remaining)
3748				return false;
3749		}
3750	}
3751done:
3752	reset_ctrl_pos(lruvec, type, true);
3753	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3754
3755	return true;
3756}
3757
3758static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3759{
3760	int gen, type, zone;
3761	bool success = false;
3762	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3763	DEFINE_MIN_SEQ(lruvec);
3764
3765	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3766
3767	/* find the oldest populated generation */
3768	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3769		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3770			gen = lru_gen_from_seq(min_seq[type]);
3771
3772			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3773				if (!list_empty(&lrugen->folios[gen][type][zone]))
3774					goto next;
3775			}
3776
3777			min_seq[type]++;
3778		}
3779next:
3780		;
3781	}
3782
3783	/* see the comment on lru_gen_folio */
3784	if (can_swap) {
3785		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3786		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3787	}
3788
3789	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3790		if (min_seq[type] == lrugen->min_seq[type])
3791			continue;
3792
3793		reset_ctrl_pos(lruvec, type, true);
3794		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3795		success = true;
3796	}
3797
3798	return success;
3799}
3800
3801static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3802			bool can_swap, bool force_scan)
3803{
3804	bool success;
3805	int prev, next;
3806	int type, zone;
3807	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3808restart:
3809	if (seq < READ_ONCE(lrugen->max_seq))
3810		return false;
3811
3812	spin_lock_irq(&lruvec->lru_lock);
3813
3814	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3815
3816	success = seq == lrugen->max_seq;
3817	if (!success)
3818		goto unlock;
3819
3820	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3821		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3822			continue;
3823
3824		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3825
3826		if (inc_min_seq(lruvec, type, can_swap))
3827			continue;
3828
3829		spin_unlock_irq(&lruvec->lru_lock);
3830		cond_resched();
3831		goto restart;
3832	}
3833
3834	/*
3835	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3836	 * the current max_seq need to be covered, since max_seq+1 can overlap
3837	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3838	 * overlap, cold/hot inversion happens.
3839	 */
3840	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3841	next = lru_gen_from_seq(lrugen->max_seq + 1);
3842
3843	for (type = 0; type < ANON_AND_FILE; type++) {
3844		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3845			enum lru_list lru = type * LRU_INACTIVE_FILE;
3846			long delta = lrugen->nr_pages[prev][type][zone] -
3847				     lrugen->nr_pages[next][type][zone];
3848
3849			if (!delta)
3850				continue;
3851
3852			__update_lru_size(lruvec, lru, zone, delta);
3853			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3854		}
3855	}
3856
3857	for (type = 0; type < ANON_AND_FILE; type++)
3858		reset_ctrl_pos(lruvec, type, false);
3859
3860	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3861	/* make sure preceding modifications appear */
3862	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3863unlock:
3864	spin_unlock_irq(&lruvec->lru_lock);
3865
3866	return success;
3867}
3868
3869static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3870			       bool can_swap, bool force_scan)
3871{
3872	bool success;
3873	struct lru_gen_mm_walk *walk;
3874	struct mm_struct *mm = NULL;
3875	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3876	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3877
3878	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3879
3880	if (!mm_state)
3881		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3882
3883	/* see the comment in iterate_mm_list() */
3884	if (seq <= READ_ONCE(mm_state->seq))
3885		return false;
3886
3887	/*
3888	 * If the hardware doesn't automatically set the accessed bit, fallback
3889	 * to lru_gen_look_around(), which only clears the accessed bit in a
3890	 * handful of PTEs. Spreading the work out over a period of time usually
3891	 * is less efficient, but it avoids bursty page faults.
3892	 */
3893	if (!should_walk_mmu()) {
3894		success = iterate_mm_list_nowalk(lruvec, seq);
3895		goto done;
3896	}
3897
3898	walk = set_mm_walk(NULL, true);
3899	if (!walk) {
3900		success = iterate_mm_list_nowalk(lruvec, seq);
3901		goto done;
3902	}
3903
3904	walk->lruvec = lruvec;
3905	walk->seq = seq;
3906	walk->can_swap = can_swap;
3907	walk->force_scan = force_scan;
3908
3909	do {
3910		success = iterate_mm_list(walk, &mm);
3911		if (mm)
3912			walk_mm(mm, walk);
3913	} while (mm);
3914done:
3915	if (success) {
3916		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3917		WARN_ON_ONCE(!success);
3918	}
3919
3920	return success;
3921}
3922
3923/******************************************************************************
3924 *                          working set protection
3925 ******************************************************************************/
3926
3927static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3928{
3929	int priority;
3930	unsigned long reclaimable;
3931
3932	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3933		return;
3934	/*
3935	 * Determine the initial priority based on
3936	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3937	 * where reclaimed_to_scanned_ratio = inactive / total.
3938	 */
3939	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3940	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3941		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3942
3943	/* round down reclaimable and round up sc->nr_to_reclaim */
3944	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3945
3946	/*
3947	 * The estimation is based on LRU pages only, so cap it to prevent
3948	 * overshoots of shrinker objects by large margins.
 
 
3949	 */
3950	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3951}
3952
3953static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3954{
3955	int gen, type, zone;
3956	unsigned long total = 0;
3957	bool can_swap = get_swappiness(lruvec, sc);
3958	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3959	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3960	DEFINE_MAX_SEQ(lruvec);
3961	DEFINE_MIN_SEQ(lruvec);
3962
3963	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3964		unsigned long seq;
3965
3966		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3967			gen = lru_gen_from_seq(seq);
3968
3969			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3970				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3971		}
3972	}
3973
3974	/* whether the size is big enough to be helpful */
3975	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
 
 
 
 
3976}
3977
3978static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3979				  unsigned long min_ttl)
3980{
3981	int gen;
3982	unsigned long birth;
3983	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3984	DEFINE_MIN_SEQ(lruvec);
3985
3986	if (mem_cgroup_below_min(NULL, memcg))
3987		return false;
3988
3989	if (!lruvec_is_sizable(lruvec, sc))
3990		return false;
3991
3992	/* see the comment on lru_gen_folio */
3993	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3994	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3995
3996	return time_is_before_jiffies(birth + min_ttl);
3997}
3998
3999/* to protect the working set of the last N jiffies */
4000static unsigned long lru_gen_min_ttl __read_mostly;
4001
4002static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
 
 
 
 
 
4003{
4004	struct mem_cgroup *memcg;
4005	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4006	bool reclaimable = !min_ttl;
4007
4008	VM_WARN_ON_ONCE(!current_is_kswapd());
4009
4010	set_initial_priority(pgdat, sc);
4011
4012	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4013	do {
4014		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4015
4016		mem_cgroup_calculate_protection(NULL, memcg);
4017
4018		if (!reclaimable)
4019			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4020	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4021
4022	/*
4023	 * The main goal is to OOM kill if every generation from all memcgs is
4024	 * younger than min_ttl. However, another possibility is all memcgs are
4025	 * either too small or below min.
4026	 */
4027	if (!reclaimable && mutex_trylock(&oom_lock)) {
4028		struct oom_control oc = {
4029			.gfp_mask = sc->gfp_mask,
4030		};
4031
4032		out_of_memory(&oc);
4033
4034		mutex_unlock(&oom_lock);
4035	}
4036}
4037
4038/******************************************************************************
4039 *                          rmap/PT walk feedback
4040 ******************************************************************************/
4041
4042/*
4043 * This function exploits spatial locality when shrink_folio_list() walks the
4044 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4045 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4046 * the PTE table to the Bloom filter. This forms a feedback loop between the
4047 * eviction and the aging.
4048 */
4049bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4050{
4051	int i;
4052	unsigned long start;
4053	unsigned long end;
4054	struct lru_gen_mm_walk *walk;
4055	int young = 1;
4056	pte_t *pte = pvmw->pte;
4057	unsigned long addr = pvmw->address;
4058	struct vm_area_struct *vma = pvmw->vma;
4059	struct folio *folio = pfn_folio(pvmw->pfn);
4060	bool can_swap = !folio_is_file_lru(folio);
4061	struct mem_cgroup *memcg = folio_memcg(folio);
4062	struct pglist_data *pgdat = folio_pgdat(folio);
4063	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4064	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4065	DEFINE_MAX_SEQ(lruvec);
4066	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4067
4068	lockdep_assert_held(pvmw->ptl);
4069	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4070
4071	if (!ptep_clear_young_notify(vma, addr, pte))
4072		return false;
4073
4074	if (spin_is_contended(pvmw->ptl))
4075		return true;
4076
4077	/* exclude special VMAs containing anon pages from COW */
4078	if (vma->vm_flags & VM_SPECIAL)
4079		return true;
4080
4081	/* avoid taking the LRU lock under the PTL when possible */
4082	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4083
4084	start = max(addr & PMD_MASK, vma->vm_start);
4085	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4086
4087	if (end - start == PAGE_SIZE)
4088		return true;
4089
4090	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4091		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4092			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4093		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4094			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4095		else {
4096			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4097			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4098		}
4099	}
4100
4101	arch_enter_lazy_mmu_mode();
4102
4103	pte -= (addr - start) / PAGE_SIZE;
4104
4105	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4106		unsigned long pfn;
4107		pte_t ptent = ptep_get(pte + i);
4108
4109		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4110		if (pfn == -1)
4111			continue;
4112
4113		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4114		if (!folio)
4115			continue;
4116
4117		if (!ptep_clear_young_notify(vma, addr, pte + i))
4118			continue;
4119
4120		young++;
4121
4122		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4123		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4124		      !folio_test_swapcache(folio)))
4125			folio_mark_dirty(folio);
4126
4127		if (walk) {
4128			old_gen = folio_update_gen(folio, new_gen);
4129			if (old_gen >= 0 && old_gen != new_gen)
4130				update_batch_size(walk, folio, old_gen, new_gen);
4131
4132			continue;
4133		}
4134
4135		old_gen = folio_lru_gen(folio);
4136		if (old_gen < 0)
4137			folio_set_referenced(folio);
4138		else if (old_gen != new_gen) {
4139			folio_clear_lru_refs(folio);
4140			folio_activate(folio);
4141		}
4142	}
4143
4144	arch_leave_lazy_mmu_mode();
4145
4146	/* feedback from rmap walkers to page table walkers */
4147	if (mm_state && suitable_to_scan(i, young))
4148		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4149
4150	return true;
4151}
4152
4153/******************************************************************************
4154 *                          memcg LRU
4155 ******************************************************************************/
4156
4157/* see the comment on MEMCG_NR_GENS */
4158enum {
4159	MEMCG_LRU_NOP,
4160	MEMCG_LRU_HEAD,
4161	MEMCG_LRU_TAIL,
4162	MEMCG_LRU_OLD,
4163	MEMCG_LRU_YOUNG,
4164};
4165
4166static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4167{
4168	int seg;
4169	int old, new;
4170	unsigned long flags;
4171	int bin = get_random_u32_below(MEMCG_NR_BINS);
4172	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4173
4174	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4175
4176	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4177
4178	seg = 0;
4179	new = old = lruvec->lrugen.gen;
4180
4181	/* see the comment on MEMCG_NR_GENS */
4182	if (op == MEMCG_LRU_HEAD)
4183		seg = MEMCG_LRU_HEAD;
4184	else if (op == MEMCG_LRU_TAIL)
4185		seg = MEMCG_LRU_TAIL;
4186	else if (op == MEMCG_LRU_OLD)
4187		new = get_memcg_gen(pgdat->memcg_lru.seq);
4188	else if (op == MEMCG_LRU_YOUNG)
4189		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4190	else
4191		VM_WARN_ON_ONCE(true);
4192
4193	WRITE_ONCE(lruvec->lrugen.seg, seg);
4194	WRITE_ONCE(lruvec->lrugen.gen, new);
4195
4196	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4197
4198	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4199		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4200	else
4201		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4202
4203	pgdat->memcg_lru.nr_memcgs[old]--;
4204	pgdat->memcg_lru.nr_memcgs[new]++;
4205
4206	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4207		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4208
4209	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4210}
4211
4212#ifdef CONFIG_MEMCG
4213
4214void lru_gen_online_memcg(struct mem_cgroup *memcg)
4215{
4216	int gen;
4217	int nid;
4218	int bin = get_random_u32_below(MEMCG_NR_BINS);
4219
4220	for_each_node(nid) {
4221		struct pglist_data *pgdat = NODE_DATA(nid);
4222		struct lruvec *lruvec = get_lruvec(memcg, nid);
4223
4224		spin_lock_irq(&pgdat->memcg_lru.lock);
4225
4226		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4227
4228		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4229
4230		lruvec->lrugen.gen = gen;
4231
4232		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4233		pgdat->memcg_lru.nr_memcgs[gen]++;
4234
4235		spin_unlock_irq(&pgdat->memcg_lru.lock);
4236	}
4237}
 
4238
4239void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4240{
4241	int nid;
4242
4243	for_each_node(nid) {
4244		struct lruvec *lruvec = get_lruvec(memcg, nid);
4245
4246		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4247	}
4248}
4249
4250void lru_gen_release_memcg(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4251{
4252	int gen;
4253	int nid;
4254
4255	for_each_node(nid) {
4256		struct pglist_data *pgdat = NODE_DATA(nid);
4257		struct lruvec *lruvec = get_lruvec(memcg, nid);
4258
4259		spin_lock_irq(&pgdat->memcg_lru.lock);
4260
4261		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4262			goto unlock;
4263
4264		gen = lruvec->lrugen.gen;
4265
4266		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4267		pgdat->memcg_lru.nr_memcgs[gen]--;
4268
4269		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4270			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4271unlock:
4272		spin_unlock_irq(&pgdat->memcg_lru.lock);
4273	}
4274}
4275
4276void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
 
4277{
4278	struct lruvec *lruvec = get_lruvec(memcg, nid);
4279
4280	/* see the comment on MEMCG_NR_GENS */
4281	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4282		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4283}
4284
4285#endif /* CONFIG_MEMCG */
4286
4287/******************************************************************************
4288 *                          the eviction
4289 ******************************************************************************/
4290
4291static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4292		       int tier_idx)
4293{
4294	bool success;
4295	bool dirty, writeback;
4296	int gen = folio_lru_gen(folio);
4297	int type = folio_is_file_lru(folio);
4298	int zone = folio_zonenum(folio);
4299	int delta = folio_nr_pages(folio);
4300	int refs = folio_lru_refs(folio);
4301	int tier = lru_tier_from_refs(refs);
4302	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4303
4304	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4305
4306	/* unevictable */
4307	if (!folio_evictable(folio)) {
4308		success = lru_gen_del_folio(lruvec, folio, true);
4309		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4310		folio_set_unevictable(folio);
4311		lruvec_add_folio(lruvec, folio);
4312		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4313		return true;
4314	}
4315
4316	/* promoted */
4317	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4318		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4319		return true;
4320	}
4321
4322	/* protected */
4323	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4324		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4325
4326		gen = folio_inc_gen(lruvec, folio, false);
4327		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4328
4329		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4330			   lrugen->protected[hist][type][tier - 1] + delta);
4331		return true;
4332	}
4333
4334	/* ineligible */
4335	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4336		gen = folio_inc_gen(lruvec, folio, false);
4337		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4338		return true;
4339	}
4340
4341	dirty = folio_test_dirty(folio);
4342	writeback = folio_test_writeback(folio);
4343	if (type == LRU_GEN_FILE && dirty) {
4344		sc->nr.file_taken += delta;
4345		if (!writeback)
4346			sc->nr.unqueued_dirty += delta;
4347	}
4348
4349	/* waiting for writeback */
4350	if (folio_test_locked(folio) || writeback ||
4351	    (type == LRU_GEN_FILE && dirty)) {
4352		gen = folio_inc_gen(lruvec, folio, true);
4353		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4354		return true;
4355	}
4356
4357	return false;
4358}
4359
4360static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4361{
4362	bool success;
4363
4364	/* swap constrained */
4365	if (!(sc->gfp_mask & __GFP_IO) &&
4366	    (folio_test_dirty(folio) ||
4367	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4368		return false;
4369
4370	/* raced with release_pages() */
4371	if (!folio_try_get(folio))
4372		return false;
4373
4374	/* raced with another isolation */
4375	if (!folio_test_clear_lru(folio)) {
4376		folio_put(folio);
4377		return false;
4378	}
4379
4380	/* see the comment on MAX_NR_TIERS */
4381	if (!folio_test_referenced(folio))
4382		folio_clear_lru_refs(folio);
4383
4384	/* for shrink_folio_list() */
4385	folio_clear_reclaim(folio);
4386	folio_clear_referenced(folio);
4387
4388	success = lru_gen_del_folio(lruvec, folio, true);
4389	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4390
4391	return true;
4392}
4393
4394static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4395		       int type, int tier, struct list_head *list)
4396{
4397	int i;
4398	int gen;
4399	enum vm_event_item item;
4400	int sorted = 0;
4401	int scanned = 0;
4402	int isolated = 0;
4403	int skipped = 0;
4404	int remaining = MAX_LRU_BATCH;
4405	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4406	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4407
4408	VM_WARN_ON_ONCE(!list_empty(list));
4409
4410	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4411		return 0;
4412
4413	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4414
4415	for (i = MAX_NR_ZONES; i > 0; i--) {
4416		LIST_HEAD(moved);
4417		int skipped_zone = 0;
4418		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4419		struct list_head *head = &lrugen->folios[gen][type][zone];
4420
4421		while (!list_empty(head)) {
4422			struct folio *folio = lru_to_folio(head);
4423			int delta = folio_nr_pages(folio);
4424
4425			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4426			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4427			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4428			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4429
4430			scanned += delta;
4431
4432			if (sort_folio(lruvec, folio, sc, tier))
4433				sorted += delta;
4434			else if (isolate_folio(lruvec, folio, sc)) {
4435				list_add(&folio->lru, list);
4436				isolated += delta;
4437			} else {
4438				list_move(&folio->lru, &moved);
4439				skipped_zone += delta;
4440			}
4441
4442			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4443				break;
4444		}
4445
4446		if (skipped_zone) {
4447			list_splice(&moved, head);
4448			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4449			skipped += skipped_zone;
4450		}
4451
4452		if (!remaining || isolated >= MIN_LRU_BATCH)
4453			break;
4454	}
4455
4456	item = PGSCAN_KSWAPD + reclaimer_offset();
4457	if (!cgroup_reclaim(sc)) {
4458		__count_vm_events(item, isolated);
4459		__count_vm_events(PGREFILL, sorted);
4460	}
4461	__count_memcg_events(memcg, item, isolated);
4462	__count_memcg_events(memcg, PGREFILL, sorted);
4463	__count_vm_events(PGSCAN_ANON + type, isolated);
4464	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4465				scanned, skipped, isolated,
4466				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4467	if (type == LRU_GEN_FILE)
4468		sc->nr.file_taken += isolated;
4469	/*
4470	 * There might not be eligible folios due to reclaim_idx. Check the
4471	 * remaining to prevent livelock if it's not making progress.
4472	 */
4473	return isolated || !remaining ? scanned : 0;
4474}
4475
4476static int get_tier_idx(struct lruvec *lruvec, int type)
4477{
4478	int tier;
4479	struct ctrl_pos sp, pv;
4480
4481	/*
4482	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4483	 * This value is chosen because any other tier would have at least twice
4484	 * as many refaults as the first tier.
4485	 */
4486	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4487	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4488		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4489		if (!positive_ctrl_err(&sp, &pv))
4490			break;
4491	}
4492
4493	return tier - 1;
4494}
4495
4496static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
 
 
 
 
 
 
 
 
 
4497{
4498	int type, tier;
4499	struct ctrl_pos sp, pv;
4500	int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4501
4502	/*
4503	 * Compare the first tier of anon with that of file to determine which
4504	 * type to scan. Also need to compare other tiers of the selected type
4505	 * with the first tier of the other type to determine the last tier (of
4506	 * the selected type) to evict.
4507	 */
4508	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4509	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4510	type = positive_ctrl_err(&sp, &pv);
4511
4512	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4513	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4514		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4515		if (!positive_ctrl_err(&sp, &pv))
4516			break;
 
 
 
 
 
 
 
4517	}
4518
4519	*tier_idx = tier - 1;
4520
4521	return type;
4522}
4523
4524static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4525			  int *type_scanned, struct list_head *list)
4526{
4527	int i;
4528	int type;
4529	int scanned;
4530	int tier = -1;
4531	DEFINE_MIN_SEQ(lruvec);
4532
4533	/*
4534	 * Try to make the obvious choice first, and if anon and file are both
4535	 * available from the same generation,
4536	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4537	 *    first.
4538	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4539	 *    exist than clean swapcache.
4540	 */
4541	if (!swappiness)
4542		type = LRU_GEN_FILE;
4543	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4544		type = LRU_GEN_ANON;
4545	else if (swappiness == 1)
4546		type = LRU_GEN_FILE;
4547	else if (swappiness == MAX_SWAPPINESS)
4548		type = LRU_GEN_ANON;
4549	else if (!(sc->gfp_mask & __GFP_IO))
4550		type = LRU_GEN_FILE;
4551	else
4552		type = get_type_to_scan(lruvec, swappiness, &tier);
4553
4554	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4555		if (tier < 0)
4556			tier = get_tier_idx(lruvec, type);
4557
4558		scanned = scan_folios(lruvec, sc, type, tier, list);
4559		if (scanned)
4560			break;
4561
4562		type = !type;
4563		tier = -1;
4564	}
4565
4566	*type_scanned = type;
4567
4568	return scanned;
4569}
4570
4571static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4572{
4573	int type;
4574	int scanned;
4575	int reclaimed;
4576	LIST_HEAD(list);
4577	LIST_HEAD(clean);
4578	struct folio *folio;
4579	struct folio *next;
4580	enum vm_event_item item;
4581	struct reclaim_stat stat;
4582	struct lru_gen_mm_walk *walk;
4583	bool skip_retry = false;
4584	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4585	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4586
4587	spin_lock_irq(&lruvec->lru_lock);
4588
4589	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4590
4591	scanned += try_to_inc_min_seq(lruvec, swappiness);
4592
4593	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4594		scanned = 0;
4595
4596	spin_unlock_irq(&lruvec->lru_lock);
4597
4598	if (list_empty(&list))
4599		return scanned;
4600retry:
4601	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4602	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4603	sc->nr_reclaimed += reclaimed;
4604	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4605			scanned, reclaimed, &stat, sc->priority,
4606			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4607
4608	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4609		if (!folio_evictable(folio)) {
4610			list_del(&folio->lru);
4611			folio_putback_lru(folio);
4612			continue;
4613		}
4614
4615		if (folio_test_reclaim(folio) &&
4616		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4617			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4618			if (folio_test_workingset(folio))
4619				folio_set_referenced(folio);
4620			continue;
4621		}
4622
4623		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4624		    folio_mapped(folio) || folio_test_locked(folio) ||
4625		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4626			/* don't add rejected folios to the oldest generation */
4627			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4628				      BIT(PG_active));
4629			continue;
4630		}
4631
4632		/* retry folios that may have missed folio_rotate_reclaimable() */
4633		list_move(&folio->lru, &clean);
4634	}
4635
4636	spin_lock_irq(&lruvec->lru_lock);
4637
4638	move_folios_to_lru(lruvec, &list);
4639
4640	walk = current->reclaim_state->mm_walk;
4641	if (walk && walk->batched) {
4642		walk->lruvec = lruvec;
4643		reset_batch_size(walk);
4644	}
4645
4646	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
4647					stat.nr_demoted);
4648
4649	item = PGSTEAL_KSWAPD + reclaimer_offset();
4650	if (!cgroup_reclaim(sc))
4651		__count_vm_events(item, reclaimed);
4652	__count_memcg_events(memcg, item, reclaimed);
4653	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4654
4655	spin_unlock_irq(&lruvec->lru_lock);
4656
4657	list_splice_init(&clean, &list);
4658
4659	if (!list_empty(&list)) {
4660		skip_retry = true;
4661		goto retry;
4662	}
4663
4664	return scanned;
4665}
4666
4667static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4668			     bool can_swap, unsigned long *nr_to_scan)
4669{
4670	int gen, type, zone;
4671	unsigned long old = 0;
4672	unsigned long young = 0;
4673	unsigned long total = 0;
4674	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4675	DEFINE_MIN_SEQ(lruvec);
4676
4677	/* whether this lruvec is completely out of cold folios */
4678	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4679		*nr_to_scan = 0;
4680		return true;
4681	}
4682
4683	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4684		unsigned long seq;
4685
4686		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4687			unsigned long size = 0;
4688
4689			gen = lru_gen_from_seq(seq);
4690
4691			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4692				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4693
4694			total += size;
4695			if (seq == max_seq)
4696				young += size;
4697			else if (seq + MIN_NR_GENS == max_seq)
4698				old += size;
4699		}
4700	}
4701
4702	*nr_to_scan = total;
4703
4704	/*
4705	 * The aging tries to be lazy to reduce the overhead, while the eviction
4706	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4707	 * ideal number of generations is MIN_NR_GENS+1.
4708	 */
4709	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4710		return false;
4711
4712	/*
4713	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4714	 * of the total number of pages for each generation. A reasonable range
4715	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4716	 * aging cares about the upper bound of hot pages, while the eviction
4717	 * cares about the lower bound of cold pages.
 
 
 
 
4718	 */
4719	if (young * MIN_NR_GENS > total)
4720		return true;
4721	if (old * (MIN_NR_GENS + 2) < total)
4722		return true;
4723
4724	return false;
4725}
4726
4727/*
4728 * For future optimizations:
4729 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4730 *    reclaim.
4731 */
4732static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4733{
4734	bool success;
4735	unsigned long nr_to_scan;
4736	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4737	DEFINE_MAX_SEQ(lruvec);
4738
4739	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4740		return -1;
4741
4742	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4743
4744	/* try to scrape all its memory if this memcg was deleted */
4745	if (nr_to_scan && !mem_cgroup_online(memcg))
4746		return nr_to_scan;
4747
4748	/* try to get away with not aging at the default priority */
4749	if (!success || sc->priority == DEF_PRIORITY)
4750		return nr_to_scan >> sc->priority;
4751
4752	/* stop scanning this lruvec as it's low on cold folios */
4753	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4754}
4755
4756static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4757{
4758	int i;
4759	enum zone_watermarks mark;
4760
4761	/* don't abort memcg reclaim to ensure fairness */
4762	if (!root_reclaim(sc))
4763		return false;
4764
4765	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4766		return true;
4767
4768	/* check the order to exclude compaction-induced reclaim */
4769	if (!current_is_kswapd() || sc->order)
4770		return false;
4771
4772	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4773	       WMARK_PROMO : WMARK_HIGH;
4774
4775	for (i = 0; i <= sc->reclaim_idx; i++) {
4776		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4777		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4778
4779		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4780			return false;
4781	}
4782
4783	/* kswapd should abort if all eligible zones are safe */
4784	return true;
4785}
4786
4787static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4788{
4789	long nr_to_scan;
4790	unsigned long scanned = 0;
4791	int swappiness = get_swappiness(lruvec, sc);
4792
4793	while (true) {
4794		int delta;
4795
4796		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4797		if (nr_to_scan <= 0)
4798			break;
4799
4800		delta = evict_folios(lruvec, sc, swappiness);
4801		if (!delta)
4802			break;
4803
4804		scanned += delta;
4805		if (scanned >= nr_to_scan)
4806			break;
4807
4808		if (should_abort_scan(lruvec, sc))
4809			break;
4810
4811		cond_resched();
4812	}
4813
4814	/*
4815	 * If too many file cache in the coldest generation can't be evicted
4816	 * due to being dirty, wake up the flusher.
 
4817	 */
4818	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4819		wakeup_flusher_threads(WB_REASON_VMSCAN);
4820
4821	/* whether this lruvec should be rotated */
4822	return nr_to_scan < 0;
4823}
4824
4825static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4826{
4827	bool success;
4828	unsigned long scanned = sc->nr_scanned;
4829	unsigned long reclaimed = sc->nr_reclaimed;
4830	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4831	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4832
4833	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4834	if (mem_cgroup_below_min(NULL, memcg))
4835		return MEMCG_LRU_YOUNG;
4836
4837	if (mem_cgroup_below_low(NULL, memcg)) {
4838		/* see the comment on MEMCG_NR_GENS */
4839		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4840			return MEMCG_LRU_TAIL;
4841
4842		memcg_memory_event(memcg, MEMCG_LOW);
4843	}
 
 
 
 
4844
4845	success = try_to_shrink_lruvec(lruvec, sc);
4846
4847	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4848
4849	if (!sc->proactive)
4850		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4851			   sc->nr_reclaimed - reclaimed);
4852
4853	flush_reclaim_state(sc);
4854
4855	if (success && mem_cgroup_online(memcg))
4856		return MEMCG_LRU_YOUNG;
4857
4858	if (!success && lruvec_is_sizable(lruvec, sc))
4859		return 0;
4860
4861	/* one retry if offlined or too small */
4862	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4863	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4864}
4865
4866static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4867{
4868	int op;
4869	int gen;
4870	int bin;
4871	int first_bin;
4872	struct lruvec *lruvec;
4873	struct lru_gen_folio *lrugen;
4874	struct mem_cgroup *memcg;
4875	struct hlist_nulls_node *pos;
4876
4877	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4878	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4879restart:
4880	op = 0;
4881	memcg = NULL;
4882
4883	rcu_read_lock();
4884
4885	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4886		if (op) {
4887			lru_gen_rotate_memcg(lruvec, op);
4888			op = 0;
4889		}
4890
4891		mem_cgroup_put(memcg);
4892		memcg = NULL;
4893
4894		if (gen != READ_ONCE(lrugen->gen))
4895			continue;
4896
4897		lruvec = container_of(lrugen, struct lruvec, lrugen);
4898		memcg = lruvec_memcg(lruvec);
4899
4900		if (!mem_cgroup_tryget(memcg)) {
4901			lru_gen_release_memcg(memcg);
4902			memcg = NULL;
4903			continue;
4904		}
4905
4906		rcu_read_unlock();
4907
4908		op = shrink_one(lruvec, sc);
4909
4910		rcu_read_lock();
4911
4912		if (should_abort_scan(lruvec, sc))
4913			break;
4914	}
4915
4916	rcu_read_unlock();
4917
4918	if (op)
4919		lru_gen_rotate_memcg(lruvec, op);
4920
4921	mem_cgroup_put(memcg);
4922
4923	if (!is_a_nulls(pos))
4924		return;
4925
4926	/* restart if raced with lru_gen_rotate_memcg() */
4927	if (gen != get_nulls_value(pos))
4928		goto restart;
4929
4930	/* try the rest of the bins of the current generation */
4931	bin = get_memcg_bin(bin + 1);
4932	if (bin != first_bin)
4933		goto restart;
4934}
4935
4936static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4937{
4938	struct blk_plug plug;
4939
4940	VM_WARN_ON_ONCE(root_reclaim(sc));
4941	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4942
4943	lru_add_drain();
4944
4945	blk_start_plug(&plug);
4946
4947	set_mm_walk(NULL, sc->proactive);
4948
4949	if (try_to_shrink_lruvec(lruvec, sc))
4950		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4951
4952	clear_mm_walk();
4953
4954	blk_finish_plug(&plug);
4955}
4956
4957static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4958{
4959	struct blk_plug plug;
4960	unsigned long reclaimed = sc->nr_reclaimed;
4961
4962	VM_WARN_ON_ONCE(!root_reclaim(sc));
4963
4964	/*
4965	 * Unmapped clean folios are already prioritized. Scanning for more of
4966	 * them is likely futile and can cause high reclaim latency when there
4967	 * is a large number of memcgs.
4968	 */
4969	if (!sc->may_writepage || !sc->may_unmap)
4970		goto done;
4971
4972	lru_add_drain();
4973
4974	blk_start_plug(&plug);
4975
4976	set_mm_walk(pgdat, sc->proactive);
4977
4978	set_initial_priority(pgdat, sc);
4979
4980	if (current_is_kswapd())
4981		sc->nr_reclaimed = 0;
4982
4983	if (mem_cgroup_disabled())
4984		shrink_one(&pgdat->__lruvec, sc);
4985	else
4986		shrink_many(pgdat, sc);
4987
4988	if (current_is_kswapd())
4989		sc->nr_reclaimed += reclaimed;
4990
4991	clear_mm_walk();
4992
4993	blk_finish_plug(&plug);
4994done:
4995	if (sc->nr_reclaimed > reclaimed)
4996		pgdat->kswapd_failures = 0;
4997}
4998
4999/******************************************************************************
5000 *                          state change
5001 ******************************************************************************/
5002
5003static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5004{
5005	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5006
5007	if (lrugen->enabled) {
5008		enum lru_list lru;
5009
5010		for_each_evictable_lru(lru) {
5011			if (!list_empty(&lruvec->lists[lru]))
5012				return false;
5013		}
5014	} else {
5015		int gen, type, zone;
5016
5017		for_each_gen_type_zone(gen, type, zone) {
5018			if (!list_empty(&lrugen->folios[gen][type][zone]))
5019				return false;
5020		}
5021	}
5022
5023	return true;
5024}
5025
5026static bool fill_evictable(struct lruvec *lruvec)
5027{
5028	enum lru_list lru;
5029	int remaining = MAX_LRU_BATCH;
5030
5031	for_each_evictable_lru(lru) {
5032		int type = is_file_lru(lru);
5033		bool active = is_active_lru(lru);
5034		struct list_head *head = &lruvec->lists[lru];
5035
5036		while (!list_empty(head)) {
5037			bool success;
5038			struct folio *folio = lru_to_folio(head);
5039
5040			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5041			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5042			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5043			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5044
5045			lruvec_del_folio(lruvec, folio);
5046			success = lru_gen_add_folio(lruvec, folio, false);
5047			VM_WARN_ON_ONCE(!success);
5048
5049			if (!--remaining)
5050				return false;
5051		}
5052	}
5053
5054	return true;
5055}
5056
5057static bool drain_evictable(struct lruvec *lruvec)
5058{
5059	int gen, type, zone;
5060	int remaining = MAX_LRU_BATCH;
5061
5062	for_each_gen_type_zone(gen, type, zone) {
5063		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5064
5065		while (!list_empty(head)) {
5066			bool success;
5067			struct folio *folio = lru_to_folio(head);
5068
5069			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5070			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5071			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5072			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5073
5074			success = lru_gen_del_folio(lruvec, folio, false);
5075			VM_WARN_ON_ONCE(!success);
5076			lruvec_add_folio(lruvec, folio);
5077
5078			if (!--remaining)
5079				return false;
5080		}
5081	}
5082
5083	return true;
5084}
5085
5086static void lru_gen_change_state(bool enabled)
5087{
5088	static DEFINE_MUTEX(state_mutex);
5089
5090	struct mem_cgroup *memcg;
5091
5092	cgroup_lock();
5093	cpus_read_lock();
5094	get_online_mems();
5095	mutex_lock(&state_mutex);
5096
5097	if (enabled == lru_gen_enabled())
5098		goto unlock;
5099
5100	if (enabled)
5101		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5102	else
5103		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5104
5105	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5106	do {
5107		int nid;
5108
5109		for_each_node(nid) {
5110			struct lruvec *lruvec = get_lruvec(memcg, nid);
5111
5112			spin_lock_irq(&lruvec->lru_lock);
5113
5114			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5115			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5116
5117			lruvec->lrugen.enabled = enabled;
5118
5119			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5120				spin_unlock_irq(&lruvec->lru_lock);
5121				cond_resched();
5122				spin_lock_irq(&lruvec->lru_lock);
5123			}
5124
5125			spin_unlock_irq(&lruvec->lru_lock);
5126		}
5127
5128		cond_resched();
5129	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5130unlock:
5131	mutex_unlock(&state_mutex);
5132	put_online_mems();
5133	cpus_read_unlock();
5134	cgroup_unlock();
5135}
5136
5137/******************************************************************************
5138 *                          sysfs interface
5139 ******************************************************************************/
5140
5141static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5142{
5143	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5144}
5145
5146/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5147static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5148				const char *buf, size_t len)
5149{
5150	unsigned int msecs;
5151
5152	if (kstrtouint(buf, 0, &msecs))
5153		return -EINVAL;
5154
5155	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5156
5157	return len;
5158}
5159
5160static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5161
5162static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5163{
5164	unsigned int caps = 0;
5165
5166	if (get_cap(LRU_GEN_CORE))
5167		caps |= BIT(LRU_GEN_CORE);
5168
5169	if (should_walk_mmu())
5170		caps |= BIT(LRU_GEN_MM_WALK);
5171
5172	if (should_clear_pmd_young())
5173		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5174
5175	return sysfs_emit(buf, "0x%04x\n", caps);
5176}
5177
5178/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5179static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5180			     const char *buf, size_t len)
5181{
5182	int i;
5183	unsigned int caps;
5184
5185	if (tolower(*buf) == 'n')
5186		caps = 0;
5187	else if (tolower(*buf) == 'y')
5188		caps = -1;
5189	else if (kstrtouint(buf, 0, &caps))
5190		return -EINVAL;
5191
5192	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5193		bool enabled = caps & BIT(i);
5194
5195		if (i == LRU_GEN_CORE)
5196			lru_gen_change_state(enabled);
5197		else if (enabled)
5198			static_branch_enable(&lru_gen_caps[i]);
5199		else
5200			static_branch_disable(&lru_gen_caps[i]);
5201	}
5202
5203	return len;
5204}
5205
5206static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5207
5208static struct attribute *lru_gen_attrs[] = {
5209	&lru_gen_min_ttl_attr.attr,
5210	&lru_gen_enabled_attr.attr,
5211	NULL
5212};
5213
5214static const struct attribute_group lru_gen_attr_group = {
5215	.name = "lru_gen",
5216	.attrs = lru_gen_attrs,
5217};
5218
5219/******************************************************************************
5220 *                          debugfs interface
5221 ******************************************************************************/
5222
5223static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5224{
5225	struct mem_cgroup *memcg;
5226	loff_t nr_to_skip = *pos;
5227
5228	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5229	if (!m->private)
5230		return ERR_PTR(-ENOMEM);
5231
5232	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5233	do {
5234		int nid;
5235
5236		for_each_node_state(nid, N_MEMORY) {
5237			if (!nr_to_skip--)
5238				return get_lruvec(memcg, nid);
5239		}
5240	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5241
5242	return NULL;
5243}
5244
5245static void lru_gen_seq_stop(struct seq_file *m, void *v)
5246{
5247	if (!IS_ERR_OR_NULL(v))
5248		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5249
5250	kvfree(m->private);
5251	m->private = NULL;
5252}
5253
5254static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5255{
5256	int nid = lruvec_pgdat(v)->node_id;
5257	struct mem_cgroup *memcg = lruvec_memcg(v);
5258
5259	++*pos;
5260
5261	nid = next_memory_node(nid);
5262	if (nid == MAX_NUMNODES) {
5263		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5264		if (!memcg)
5265			return NULL;
5266
5267		nid = first_memory_node;
5268	}
5269
5270	return get_lruvec(memcg, nid);
5271}
5272
5273static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5274				  unsigned long max_seq, unsigned long *min_seq,
5275				  unsigned long seq)
5276{
5277	int i;
5278	int type, tier;
5279	int hist = lru_hist_from_seq(seq);
5280	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5281	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5282
5283	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5284		seq_printf(m, "            %10d", tier);
5285		for (type = 0; type < ANON_AND_FILE; type++) {
5286			const char *s = "xxx";
5287			unsigned long n[3] = {};
5288
5289			if (seq == max_seq) {
5290				s = "RTx";
5291				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5292				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5293			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5294				s = "rep";
5295				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5296				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5297				if (tier)
5298					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5299			}
5300
5301			for (i = 0; i < 3; i++)
5302				seq_printf(m, " %10lu%c", n[i], s[i]);
5303		}
5304		seq_putc(m, '\n');
5305	}
5306
5307	if (!mm_state)
5308		return;
5309
5310	seq_puts(m, "                      ");
5311	for (i = 0; i < NR_MM_STATS; i++) {
5312		const char *s = "xxxx";
5313		unsigned long n = 0;
5314
5315		if (seq == max_seq && NR_HIST_GENS == 1) {
5316			s = "TYFA";
5317			n = READ_ONCE(mm_state->stats[hist][i]);
5318		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5319			s = "tyfa";
5320			n = READ_ONCE(mm_state->stats[hist][i]);
5321		}
5322
5323		seq_printf(m, " %10lu%c", n, s[i]);
5324	}
5325	seq_putc(m, '\n');
5326}
5327
5328/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5329static int lru_gen_seq_show(struct seq_file *m, void *v)
5330{
5331	unsigned long seq;
5332	bool full = !debugfs_real_fops(m->file)->write;
5333	struct lruvec *lruvec = v;
5334	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5335	int nid = lruvec_pgdat(lruvec)->node_id;
5336	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5337	DEFINE_MAX_SEQ(lruvec);
5338	DEFINE_MIN_SEQ(lruvec);
5339
5340	if (nid == first_memory_node) {
5341		const char *path = memcg ? m->private : "";
5342
5343#ifdef CONFIG_MEMCG
5344		if (memcg)
5345			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5346#endif
5347		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5348	}
5349
5350	seq_printf(m, " node %5d\n", nid);
5351
5352	if (!full)
5353		seq = min_seq[LRU_GEN_ANON];
5354	else if (max_seq >= MAX_NR_GENS)
5355		seq = max_seq - MAX_NR_GENS + 1;
5356	else
5357		seq = 0;
5358
5359	for (; seq <= max_seq; seq++) {
5360		int type, zone;
5361		int gen = lru_gen_from_seq(seq);
5362		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5363
5364		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5365
5366		for (type = 0; type < ANON_AND_FILE; type++) {
5367			unsigned long size = 0;
5368			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5369
5370			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5371				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5372
5373			seq_printf(m, " %10lu%c", size, mark);
5374		}
5375
5376		seq_putc(m, '\n');
5377
5378		if (full)
5379			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5380	}
5381
5382	return 0;
5383}
5384
5385static const struct seq_operations lru_gen_seq_ops = {
5386	.start = lru_gen_seq_start,
5387	.stop = lru_gen_seq_stop,
5388	.next = lru_gen_seq_next,
5389	.show = lru_gen_seq_show,
5390};
5391
5392static int run_aging(struct lruvec *lruvec, unsigned long seq,
5393		     bool can_swap, bool force_scan)
5394{
5395	DEFINE_MAX_SEQ(lruvec);
5396	DEFINE_MIN_SEQ(lruvec);
5397
5398	if (seq < max_seq)
5399		return 0;
5400
5401	if (seq > max_seq)
5402		return -EINVAL;
5403
5404	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5405		return -ERANGE;
5406
5407	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5408
5409	return 0;
5410}
5411
5412static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5413			int swappiness, unsigned long nr_to_reclaim)
5414{
5415	DEFINE_MAX_SEQ(lruvec);
5416
5417	if (seq + MIN_NR_GENS > max_seq)
5418		return -EINVAL;
5419
5420	sc->nr_reclaimed = 0;
5421
5422	while (!signal_pending(current)) {
5423		DEFINE_MIN_SEQ(lruvec);
5424
5425		if (seq < min_seq[!swappiness])
5426			return 0;
5427
5428		if (sc->nr_reclaimed >= nr_to_reclaim)
5429			return 0;
5430
5431		if (!evict_folios(lruvec, sc, swappiness))
5432			return 0;
5433
5434		cond_resched();
5435	}
5436
5437	return -EINTR;
5438}
5439
5440static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5441		   struct scan_control *sc, int swappiness, unsigned long opt)
5442{
5443	struct lruvec *lruvec;
5444	int err = -EINVAL;
5445	struct mem_cgroup *memcg = NULL;
5446
5447	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5448		return -EINVAL;
5449
5450	if (!mem_cgroup_disabled()) {
5451		rcu_read_lock();
5452
5453		memcg = mem_cgroup_from_id(memcg_id);
5454		if (!mem_cgroup_tryget(memcg))
5455			memcg = NULL;
5456
5457		rcu_read_unlock();
5458
5459		if (!memcg)
5460			return -EINVAL;
5461	}
5462
5463	if (memcg_id != mem_cgroup_id(memcg))
5464		goto done;
5465
5466	lruvec = get_lruvec(memcg, nid);
5467
5468	if (swappiness < MIN_SWAPPINESS)
5469		swappiness = get_swappiness(lruvec, sc);
5470	else if (swappiness > MAX_SWAPPINESS)
5471		goto done;
5472
5473	switch (cmd) {
5474	case '+':
5475		err = run_aging(lruvec, seq, swappiness, opt);
5476		break;
5477	case '-':
5478		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5479		break;
5480	}
5481done:
5482	mem_cgroup_put(memcg);
5483
5484	return err;
5485}
5486
5487/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5488static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5489				 size_t len, loff_t *pos)
5490{
5491	void *buf;
5492	char *cur, *next;
5493	unsigned int flags;
5494	struct blk_plug plug;
5495	int err = -EINVAL;
5496	struct scan_control sc = {
5497		.may_writepage = true,
5498		.may_unmap = true,
5499		.may_swap = true,
5500		.reclaim_idx = MAX_NR_ZONES - 1,
5501		.gfp_mask = GFP_KERNEL,
5502	};
5503
5504	buf = kvmalloc(len + 1, GFP_KERNEL);
5505	if (!buf)
5506		return -ENOMEM;
5507
5508	if (copy_from_user(buf, src, len)) {
5509		kvfree(buf);
5510		return -EFAULT;
5511	}
5512
5513	set_task_reclaim_state(current, &sc.reclaim_state);
5514	flags = memalloc_noreclaim_save();
5515	blk_start_plug(&plug);
5516	if (!set_mm_walk(NULL, true)) {
5517		err = -ENOMEM;
5518		goto done;
5519	}
5520
5521	next = buf;
5522	next[len] = '\0';
5523
5524	while ((cur = strsep(&next, ",;\n"))) {
5525		int n;
5526		int end;
5527		char cmd;
5528		unsigned int memcg_id;
5529		unsigned int nid;
5530		unsigned long seq;
5531		unsigned int swappiness = -1;
5532		unsigned long opt = -1;
5533
5534		cur = skip_spaces(cur);
5535		if (!*cur)
5536			continue;
5537
5538		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5539			   &seq, &end, &swappiness, &end, &opt, &end);
5540		if (n < 4 || cur[end]) {
5541			err = -EINVAL;
5542			break;
5543		}
5544
5545		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5546		if (err)
5547			break;
5548	}
5549done:
5550	clear_mm_walk();
5551	blk_finish_plug(&plug);
5552	memalloc_noreclaim_restore(flags);
5553	set_task_reclaim_state(current, NULL);
5554
5555	kvfree(buf);
5556
5557	return err ? : len;
5558}
5559
5560static int lru_gen_seq_open(struct inode *inode, struct file *file)
5561{
5562	return seq_open(file, &lru_gen_seq_ops);
5563}
5564
5565static const struct file_operations lru_gen_rw_fops = {
5566	.open = lru_gen_seq_open,
5567	.read = seq_read,
5568	.write = lru_gen_seq_write,
5569	.llseek = seq_lseek,
5570	.release = seq_release,
5571};
5572
5573static const struct file_operations lru_gen_ro_fops = {
5574	.open = lru_gen_seq_open,
5575	.read = seq_read,
5576	.llseek = seq_lseek,
5577	.release = seq_release,
5578};
5579
5580/******************************************************************************
5581 *                          initialization
5582 ******************************************************************************/
5583
5584void lru_gen_init_pgdat(struct pglist_data *pgdat)
5585{
5586	int i, j;
5587
5588	spin_lock_init(&pgdat->memcg_lru.lock);
5589
5590	for (i = 0; i < MEMCG_NR_GENS; i++) {
5591		for (j = 0; j < MEMCG_NR_BINS; j++)
5592			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5593	}
5594}
5595
5596void lru_gen_init_lruvec(struct lruvec *lruvec)
5597{
5598	int i;
5599	int gen, type, zone;
5600	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5601	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5602
5603	lrugen->max_seq = MIN_NR_GENS + 1;
5604	lrugen->enabled = lru_gen_enabled();
5605
5606	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5607		lrugen->timestamps[i] = jiffies;
5608
5609	for_each_gen_type_zone(gen, type, zone)
5610		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5611
5612	if (mm_state)
5613		mm_state->seq = MIN_NR_GENS;
5614}
5615
5616#ifdef CONFIG_MEMCG
5617
5618void lru_gen_init_memcg(struct mem_cgroup *memcg)
5619{
5620	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5621
5622	if (!mm_list)
5623		return;
5624
5625	INIT_LIST_HEAD(&mm_list->fifo);
5626	spin_lock_init(&mm_list->lock);
5627}
5628
5629void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5630{
5631	int i;
5632	int nid;
5633	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5634
5635	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5636
5637	for_each_node(nid) {
5638		struct lruvec *lruvec = get_lruvec(memcg, nid);
5639		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5640
5641		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5642					   sizeof(lruvec->lrugen.nr_pages)));
5643
5644		lruvec->lrugen.list.next = LIST_POISON1;
5645
5646		if (!mm_state)
5647			continue;
5648
5649		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5650			bitmap_free(mm_state->filters[i]);
5651			mm_state->filters[i] = NULL;
5652		}
5653	}
5654}
5655
5656#endif /* CONFIG_MEMCG */
5657
5658static int __init init_lru_gen(void)
5659{
5660	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5661	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5662
5663	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5664		pr_err("lru_gen: failed to create sysfs group\n");
5665
5666	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5667	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5668
5669	return 0;
5670};
5671late_initcall(init_lru_gen);
5672
5673#else /* !CONFIG_LRU_GEN */
5674
5675static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5676{
5677	BUILD_BUG();
5678}
5679
5680static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5681{
5682	BUILD_BUG();
5683}
5684
5685static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5686{
5687	BUILD_BUG();
5688}
5689
5690#endif /* CONFIG_LRU_GEN */
5691
5692static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5693{
5694	unsigned long nr[NR_LRU_LISTS];
5695	unsigned long targets[NR_LRU_LISTS];
5696	unsigned long nr_to_scan;
5697	enum lru_list lru;
5698	unsigned long nr_reclaimed = 0;
5699	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5700	bool proportional_reclaim;
5701	struct blk_plug plug;
5702
5703	if (lru_gen_enabled() && !root_reclaim(sc)) {
5704		lru_gen_shrink_lruvec(lruvec, sc);
5705		return;
5706	}
5707
5708	get_scan_count(lruvec, sc, nr);
5709
5710	/* Record the original scan target for proportional adjustments later */
5711	memcpy(targets, nr, sizeof(nr));
5712
5713	/*
5714	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5715	 * event that can occur when there is little memory pressure e.g.
5716	 * multiple streaming readers/writers. Hence, we do not abort scanning
5717	 * when the requested number of pages are reclaimed when scanning at
5718	 * DEF_PRIORITY on the assumption that the fact we are direct
5719	 * reclaiming implies that kswapd is not keeping up and it is best to
5720	 * do a batch of work at once. For memcg reclaim one check is made to
5721	 * abort proportional reclaim if either the file or anon lru has already
5722	 * dropped to zero at the first pass.
5723	 */
5724	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5725				sc->priority == DEF_PRIORITY);
5726
5727	blk_start_plug(&plug);
5728	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5729					nr[LRU_INACTIVE_FILE]) {
5730		unsigned long nr_anon, nr_file, percentage;
5731		unsigned long nr_scanned;
5732
5733		for_each_evictable_lru(lru) {
5734			if (nr[lru]) {
5735				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5736				nr[lru] -= nr_to_scan;
5737
5738				nr_reclaimed += shrink_list(lru, nr_to_scan,
5739							    lruvec, sc);
5740			}
5741		}
5742
5743		cond_resched();
5744
5745		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5746			continue;
5747
5748		/*
5749		 * For kswapd and memcg, reclaim at least the number of pages
5750		 * requested. Ensure that the anon and file LRUs are scanned
5751		 * proportionally what was requested by get_scan_count(). We
5752		 * stop reclaiming one LRU and reduce the amount scanning
5753		 * proportional to the original scan target.
5754		 */
5755		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5756		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5757
5758		/*
5759		 * It's just vindictive to attack the larger once the smaller
5760		 * has gone to zero.  And given the way we stop scanning the
5761		 * smaller below, this makes sure that we only make one nudge
5762		 * towards proportionality once we've got nr_to_reclaim.
5763		 */
5764		if (!nr_file || !nr_anon)
5765			break;
5766
5767		if (nr_file > nr_anon) {
5768			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5769						targets[LRU_ACTIVE_ANON] + 1;
5770			lru = LRU_BASE;
5771			percentage = nr_anon * 100 / scan_target;
5772		} else {
5773			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5774						targets[LRU_ACTIVE_FILE] + 1;
5775			lru = LRU_FILE;
5776			percentage = nr_file * 100 / scan_target;
5777		}
5778
5779		/* Stop scanning the smaller of the LRU */
5780		nr[lru] = 0;
5781		nr[lru + LRU_ACTIVE] = 0;
5782
5783		/*
5784		 * Recalculate the other LRU scan count based on its original
5785		 * scan target and the percentage scanning already complete
5786		 */
5787		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5788		nr_scanned = targets[lru] - nr[lru];
5789		nr[lru] = targets[lru] * (100 - percentage) / 100;
5790		nr[lru] -= min(nr[lru], nr_scanned);
5791
5792		lru += LRU_ACTIVE;
5793		nr_scanned = targets[lru] - nr[lru];
5794		nr[lru] = targets[lru] * (100 - percentage) / 100;
5795		nr[lru] -= min(nr[lru], nr_scanned);
5796	}
5797	blk_finish_plug(&plug);
5798	sc->nr_reclaimed += nr_reclaimed;
5799
5800	/*
5801	 * Even if we did not try to evict anon pages at all, we want to
5802	 * rebalance the anon lru active/inactive ratio.
5803	 */
5804	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5805	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5806		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5807				   sc, LRU_ACTIVE_ANON);
5808}
5809
5810/* Use reclaim/compaction for costly allocs or under memory pressure */
5811static bool in_reclaim_compaction(struct scan_control *sc)
5812{
5813	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5814			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5815			 sc->priority < DEF_PRIORITY - 2))
5816		return true;
5817
5818	return false;
5819}
5820
5821/*
5822 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5823 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5824 * true if more pages should be reclaimed such that when the page allocator
5825 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5826 * It will give up earlier than that if there is difficulty reclaiming pages.
5827 */
5828static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5829					unsigned long nr_reclaimed,
 
5830					struct scan_control *sc)
5831{
5832	unsigned long pages_for_compaction;
5833	unsigned long inactive_lru_pages;
5834	int z;
5835
5836	/* If not in reclaim/compaction mode, stop */
5837	if (!in_reclaim_compaction(sc))
5838		return false;
5839
5840	/*
5841	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5842	 * number of pages that were scanned. This will return to the caller
5843	 * with the risk reclaim/compaction and the resulting allocation attempt
5844	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5845	 * allocations through requiring that the full LRU list has been scanned
5846	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5847	 * scan, but that approximation was wrong, and there were corner cases
5848	 * where always a non-zero amount of pages were scanned.
5849	 */
5850	if (!nr_reclaimed)
5851		return false;
5852
5853	/* If compaction would go ahead or the allocation would succeed, stop */
5854	for (z = 0; z <= sc->reclaim_idx; z++) {
5855		struct zone *zone = &pgdat->node_zones[z];
5856		if (!managed_zone(zone))
5857			continue;
5858
5859		/* Allocation can already succeed, nothing to do */
5860		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5861				      sc->reclaim_idx, 0))
5862			return false;
5863
5864		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
 
 
 
 
 
 
 
 
5865			return false;
5866	}
5867
5868	/*
5869	 * If we have not reclaimed enough pages for compaction and the
5870	 * inactive lists are large enough, continue reclaiming
5871	 */
5872	pages_for_compaction = compact_gap(sc->order);
5873	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5874	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5875		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
 
 
5876
5877	return inactive_lru_pages > pages_for_compaction;
 
 
 
 
 
 
 
5878}
5879
5880static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
 
5881{
5882	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5883	struct mem_cgroup_reclaim_cookie reclaim = {
5884		.pgdat = pgdat,
5885	};
5886	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5887	struct mem_cgroup *memcg;
5888
5889	/*
5890	 * In most cases, direct reclaimers can do partial walks
5891	 * through the cgroup tree, using an iterator state that
5892	 * persists across invocations. This strikes a balance between
5893	 * fairness and allocation latency.
5894	 *
5895	 * For kswapd, reliable forward progress is more important
5896	 * than a quick return to idle. Always do full walks.
5897	 */
5898	if (current_is_kswapd() || sc->memcg_full_walk)
5899		partial = NULL;
5900
5901	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5902	do {
5903		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5904		unsigned long reclaimed;
5905		unsigned long scanned;
 
 
5906
 
 
 
 
5907		/*
5908		 * This loop can become CPU-bound when target memcgs
5909		 * aren't eligible for reclaim - either because they
5910		 * don't have any reclaimable pages, or because their
5911		 * memory is explicitly protected. Avoid soft lockups.
 
 
5912		 */
5913		cond_resched();
5914
5915		mem_cgroup_calculate_protection(target_memcg, memcg);
5916
5917		if (mem_cgroup_below_min(target_memcg, memcg)) {
5918			/*
5919			 * Hard protection.
5920			 * If there is no reclaimable memory, OOM.
5921			 */
5922			continue;
5923		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5924			/*
5925			 * Soft protection.
5926			 * Respect the protection only as long as
5927			 * there is an unprotected supply
5928			 * of reclaimable memory from other cgroups.
5929			 */
5930			if (!sc->memcg_low_reclaim) {
5931				sc->memcg_low_skipped = 1;
5932				continue;
5933			}
5934			memcg_memory_event(memcg, MEMCG_LOW);
5935		}
5936
5937		reclaimed = sc->nr_reclaimed;
5938		scanned = sc->nr_scanned;
5939
5940		shrink_lruvec(lruvec, sc);
5941
5942		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5943			    sc->priority);
5944
5945		/* Record the group's reclaim efficiency */
5946		if (!sc->proactive)
5947			vmpressure(sc->gfp_mask, memcg, false,
5948				   sc->nr_scanned - scanned,
5949				   sc->nr_reclaimed - reclaimed);
5950
5951		/* If partial walks are allowed, bail once goal is reached */
5952		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5953			mem_cgroup_iter_break(target_memcg, memcg);
5954			break;
5955		}
5956	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5957}
5958
5959static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5960{
5961	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5962	struct lruvec *target_lruvec;
5963	bool reclaimable = false;
5964
5965	if (lru_gen_enabled() && root_reclaim(sc)) {
5966		memset(&sc->nr, 0, sizeof(sc->nr));
5967		lru_gen_shrink_node(pgdat, sc);
5968		return;
5969	}
5970
5971	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5972
5973again:
5974	memset(&sc->nr, 0, sizeof(sc->nr));
5975
5976	nr_reclaimed = sc->nr_reclaimed;
5977	nr_scanned = sc->nr_scanned;
5978
5979	prepare_scan_control(pgdat, sc);
5980
5981	shrink_node_memcgs(pgdat, sc);
5982
5983	flush_reclaim_state(sc);
5984
5985	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5986
5987	/* Record the subtree's reclaim efficiency */
5988	if (!sc->proactive)
5989		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5990			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5991
5992	if (nr_node_reclaimed)
5993		reclaimable = true;
5994
5995	if (current_is_kswapd()) {
5996		/*
5997		 * If reclaim is isolating dirty pages under writeback,
5998		 * it implies that the long-lived page allocation rate
5999		 * is exceeding the page laundering rate. Either the
6000		 * global limits are not being effective at throttling
6001		 * processes due to the page distribution throughout
6002		 * zones or there is heavy usage of a slow backing
6003		 * device. The only option is to throttle from reclaim
6004		 * context which is not ideal as there is no guarantee
6005		 * the dirtying process is throttled in the same way
6006		 * balance_dirty_pages() manages.
6007		 *
6008		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6009		 * count the number of pages under pages flagged for
6010		 * immediate reclaim and stall if any are encountered
6011		 * in the nr_immediate check below.
6012		 */
6013		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6014			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6015
6016		/* Allow kswapd to start writing pages during reclaim.*/
6017		if (sc->nr.unqueued_dirty &&
6018			sc->nr.unqueued_dirty == sc->nr.file_taken)
6019			set_bit(PGDAT_DIRTY, &pgdat->flags);
6020
6021		/*
6022		 * If kswapd scans pages marked for immediate
6023		 * reclaim and under writeback (nr_immediate), it
6024		 * implies that pages are cycling through the LRU
6025		 * faster than they are written so forcibly stall
6026		 * until some pages complete writeback.
6027		 */
6028		if (sc->nr.immediate)
6029			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6030	}
 
6031
6032	/*
6033	 * Tag a node/memcg as congested if all the dirty pages were marked
6034	 * for writeback and immediate reclaim (counted in nr.congested).
6035	 *
6036	 * Legacy memcg will stall in page writeback so avoid forcibly
6037	 * stalling in reclaim_throttle().
6038	 */
6039	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6040		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6041			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6042
6043		if (current_is_kswapd())
6044			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6045	}
6046
6047	/*
6048	 * Stall direct reclaim for IO completions if the lruvec is
6049	 * node is congested. Allow kswapd to continue until it
6050	 * starts encountering unqueued dirty pages or cycling through
6051	 * the LRU too quickly.
6052	 */
6053	if (!current_is_kswapd() && current_may_throttle() &&
6054	    !sc->hibernation_mode &&
6055	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6056	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6057		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6058
6059	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6060		goto again;
6061
6062	/*
6063	 * Kswapd gives up on balancing particular nodes after too
6064	 * many failures to reclaim anything from them and goes to
6065	 * sleep. On reclaim progress, reset the failure counter. A
6066	 * successful direct reclaim run will revive a dormant kswapd.
6067	 */
6068	if (reclaimable)
6069		pgdat->kswapd_failures = 0;
6070	else if (sc->cache_trim_mode)
6071		sc->cache_trim_mode_failed = 1;
6072}
6073
6074/*
6075 * Returns true if compaction should go ahead for a costly-order request, or
6076 * the allocation would already succeed without compaction. Return false if we
6077 * should reclaim first.
6078 */
6079static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6080{
6081	unsigned long watermark;
6082
6083	if (!gfp_compaction_allowed(sc->gfp_mask))
6084		return false;
6085
6086	/* Allocation can already succeed, nothing to do */
6087	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6088			      sc->reclaim_idx, 0))
6089		return true;
6090
6091	/* Compaction cannot yet proceed. Do reclaim. */
6092	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6093		return false;
6094
6095	/*
6096	 * Compaction is already possible, but it takes time to run and there
6097	 * are potentially other callers using the pages just freed. So proceed
6098	 * with reclaim to make a buffer of free pages available to give
6099	 * compaction a reasonable chance of completing and allocating the page.
6100	 * Note that we won't actually reclaim the whole buffer in one attempt
6101	 * as the target watermark in should_continue_reclaim() is lower. But if
6102	 * we are already above the high+gap watermark, don't reclaim at all.
6103	 */
6104	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6105
6106	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6107}
6108
6109static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6110{
6111	/*
6112	 * If reclaim is making progress greater than 12% efficiency then
6113	 * wake all the NOPROGRESS throttled tasks.
6114	 */
6115	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6116		wait_queue_head_t *wqh;
6117
6118		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6119		if (waitqueue_active(wqh))
6120			wake_up(wqh);
6121
6122		return;
6123	}
6124
6125	/*
6126	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6127	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6128	 * under writeback and marked for immediate reclaim at the tail of the
6129	 * LRU.
6130	 */
6131	if (current_is_kswapd() || cgroup_reclaim(sc))
6132		return;
6133
6134	/* Throttle if making no progress at high prioities. */
6135	if (sc->priority == 1 && !sc->nr_reclaimed)
6136		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6137}
6138
6139/*
6140 * This is the direct reclaim path, for page-allocating processes.  We only
6141 * try to reclaim pages from zones which will satisfy the caller's allocation
6142 * request.
6143 *
 
 
 
 
 
 
 
 
6144 * If a zone is deemed to be full of pinned pages then just give it a light
6145 * scan then give up on it.
6146 */
6147static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 
6148{
6149	struct zoneref *z;
6150	struct zone *zone;
6151	unsigned long nr_soft_reclaimed;
6152	unsigned long nr_soft_scanned;
6153	gfp_t orig_mask;
6154	pg_data_t *last_pgdat = NULL;
6155	pg_data_t *first_pgdat = NULL;
6156
6157	/*
6158	 * If the number of buffer_heads in the machine exceeds the maximum
6159	 * allowed level, force direct reclaim to scan the highmem zone as
6160	 * highmem pages could be pinning lowmem pages storing buffer_heads
6161	 */
6162	orig_mask = sc->gfp_mask;
6163	if (buffer_heads_over_limit) {
6164		sc->gfp_mask |= __GFP_HIGHMEM;
6165		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6166	}
6167
6168	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6169					sc->reclaim_idx, sc->nodemask) {
 
 
6170		/*
6171		 * Take care memory controller reclaiming has small influence
6172		 * to global LRU.
6173		 */
6174		if (!cgroup_reclaim(sc)) {
6175			if (!cpuset_zone_allowed(zone,
6176						 GFP_KERNEL | __GFP_HARDWALL))
6177				continue;
6178
6179			/*
6180			 * If we already have plenty of memory free for
6181			 * compaction in this zone, don't free any more.
6182			 * Even though compaction is invoked for any
6183			 * non-zero order, only frequent costly order
6184			 * reclamation is disruptive enough to become a
6185			 * noticeable problem, like transparent huge
6186			 * page allocations.
6187			 */
6188			if (IS_ENABLED(CONFIG_COMPACTION) &&
6189			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6190			    compaction_ready(zone, sc)) {
6191				sc->compaction_ready = true;
6192				continue;
6193			}
6194
6195			/*
6196			 * Shrink each node in the zonelist once. If the
6197			 * zonelist is ordered by zone (not the default) then a
6198			 * node may be shrunk multiple times but in that case
6199			 * the user prefers lower zones being preserved.
6200			 */
6201			if (zone->zone_pgdat == last_pgdat)
6202				continue;
6203
 
6204			/*
6205			 * This steals pages from memory cgroups over softlimit
6206			 * and returns the number of reclaimed pages and
6207			 * scanned pages. This works for global memory pressure
6208			 * and balancing, not for a memcg's limit.
6209			 */
6210			nr_soft_scanned = 0;
6211			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6212								      sc->order, sc->gfp_mask,
6213								      &nr_soft_scanned);
6214			sc->nr_reclaimed += nr_soft_reclaimed;
6215			sc->nr_scanned += nr_soft_scanned;
6216			/* need some check for avoid more shrink_zone() */
6217		}
6218
6219		if (!first_pgdat)
6220			first_pgdat = zone->zone_pgdat;
6221
6222		/* See comment about same check for global reclaim above */
6223		if (zone->zone_pgdat == last_pgdat)
6224			continue;
6225		last_pgdat = zone->zone_pgdat;
6226		shrink_node(zone->zone_pgdat, sc);
6227	}
 
6228
6229	if (first_pgdat)
6230		consider_reclaim_throttle(first_pgdat, sc);
6231
6232	/*
6233	 * Restore to original mask to avoid the impact on the caller if we
6234	 * promoted it to __GFP_HIGHMEM.
6235	 */
6236	sc->gfp_mask = orig_mask;
6237}
6238
6239static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
 
 
6240{
6241	struct lruvec *target_lruvec;
6242	unsigned long refaults;
6243
6244	if (lru_gen_enabled())
6245		return;
 
 
 
 
 
 
 
6246
6247	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6248	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6249	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6250	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6251	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6252}
6253
6254/*
6255 * This is the main entry point to direct page reclaim.
6256 *
6257 * If a full scan of the inactive list fails to free enough memory then we
6258 * are "out of memory" and something needs to be killed.
6259 *
6260 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6261 * high - the zone may be full of dirty or under-writeback pages, which this
6262 * caller can't do much about.  We kick the writeback threads and take explicit
6263 * naps in the hope that some of these pages can be written.  But if the
6264 * allocating task holds filesystem locks which prevent writeout this might not
6265 * work, and the allocation attempt will fail.
6266 *
6267 * returns:	0, if no pages reclaimed
6268 * 		else, the number of pages reclaimed
6269 */
6270static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6271					  struct scan_control *sc)
 
6272{
6273	int initial_priority = sc->priority;
6274	pg_data_t *last_pgdat;
 
6275	struct zoneref *z;
6276	struct zone *zone;
6277retry:
 
 
6278	delayacct_freepages_start();
6279
6280	if (!cgroup_reclaim(sc))
6281		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6282
6283	do {
6284		if (!sc->proactive)
6285			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6286					sc->priority);
6287		sc->nr_scanned = 0;
6288		shrink_zones(zonelist, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6289
 
 
 
 
 
 
 
6290		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6291			break;
6292
6293		if (sc->compaction_ready)
6294			break;
6295
6296		/*
6297		 * If we're getting trouble reclaiming, start doing
6298		 * writepage even in laptop mode.
6299		 */
6300		if (sc->priority < DEF_PRIORITY - 2)
 
 
 
 
 
6301			sc->may_writepage = 1;
6302	} while (--sc->priority >= 0);
6303
6304	last_pgdat = NULL;
6305	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6306					sc->nodemask) {
6307		if (zone->zone_pgdat == last_pgdat)
6308			continue;
6309		last_pgdat = zone->zone_pgdat;
6310
6311		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6312
6313		if (cgroup_reclaim(sc)) {
6314			struct lruvec *lruvec;
6315
6316			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6317						   zone->zone_pgdat);
6318			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
 
 
 
6319		}
6320	}
6321
 
6322	delayacct_freepages_end();
 
6323
6324	if (sc->nr_reclaimed)
6325		return sc->nr_reclaimed;
6326
6327	/* Aborted reclaim to try compaction? don't OOM, then */
6328	if (sc->compaction_ready)
6329		return 1;
6330
6331	/*
6332	 * In most cases, direct reclaimers can do partial walks
6333	 * through the cgroup tree to meet the reclaim goal while
6334	 * keeping latency low. Since the iterator state is shared
6335	 * among all direct reclaim invocations (to retain fairness
6336	 * among cgroups), though, high concurrency can result in
6337	 * individual threads not seeing enough cgroups to make
6338	 * meaningful forward progress. Avoid false OOMs in this case.
6339	 */
6340	if (!sc->memcg_full_walk) {
6341		sc->priority = initial_priority;
6342		sc->memcg_full_walk = 1;
6343		goto retry;
6344	}
6345
6346	/*
6347	 * We make inactive:active ratio decisions based on the node's
6348	 * composition of memory, but a restrictive reclaim_idx or a
6349	 * memory.low cgroup setting can exempt large amounts of
6350	 * memory from reclaim. Neither of which are very common, so
6351	 * instead of doing costly eligibility calculations of the
6352	 * entire cgroup subtree up front, we assume the estimates are
6353	 * good, and retry with forcible deactivation if that fails.
6354	 */
6355	if (sc->skipped_deactivate) {
6356		sc->priority = initial_priority;
6357		sc->force_deactivate = 1;
6358		sc->skipped_deactivate = 0;
6359		goto retry;
6360	}
6361
6362	/* Untapped cgroup reserves?  Don't OOM, retry. */
6363	if (sc->memcg_low_skipped) {
6364		sc->priority = initial_priority;
6365		sc->force_deactivate = 0;
6366		sc->memcg_low_reclaim = 1;
6367		sc->memcg_low_skipped = 0;
6368		goto retry;
6369	}
6370
6371	return 0;
6372}
6373
6374static bool allow_direct_reclaim(pg_data_t *pgdat)
6375{
6376	struct zone *zone;
6377	unsigned long pfmemalloc_reserve = 0;
6378	unsigned long free_pages = 0;
6379	int i;
6380	bool wmark_ok;
6381
6382	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6383		return true;
6384
6385	for (i = 0; i <= ZONE_NORMAL; i++) {
6386		zone = &pgdat->node_zones[i];
6387		if (!managed_zone(zone))
6388			continue;
6389
6390		if (!zone_reclaimable_pages(zone))
6391			continue;
6392
6393		pfmemalloc_reserve += min_wmark_pages(zone);
6394		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6395	}
6396
6397	/* If there are no reserves (unexpected config) then do not throttle */
6398	if (!pfmemalloc_reserve)
6399		return true;
6400
6401	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6402
6403	/* kswapd must be awake if processes are being throttled */
6404	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6405		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6406			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6407
6408		wake_up_interruptible(&pgdat->kswapd_wait);
6409	}
6410
6411	return wmark_ok;
6412}
6413
6414/*
6415 * Throttle direct reclaimers if backing storage is backed by the network
6416 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6417 * depleted. kswapd will continue to make progress and wake the processes
6418 * when the low watermark is reached.
6419 *
6420 * Returns true if a fatal signal was delivered during throttling. If this
6421 * happens, the page allocator should not consider triggering the OOM killer.
6422 */
6423static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6424					nodemask_t *nodemask)
6425{
6426	struct zoneref *z;
6427	struct zone *zone;
6428	pg_data_t *pgdat = NULL;
6429
6430	/*
6431	 * Kernel threads should not be throttled as they may be indirectly
6432	 * responsible for cleaning pages necessary for reclaim to make forward
6433	 * progress. kjournald for example may enter direct reclaim while
6434	 * committing a transaction where throttling it could forcing other
6435	 * processes to block on log_wait_commit().
6436	 */
6437	if (current->flags & PF_KTHREAD)
6438		goto out;
6439
6440	/*
6441	 * If a fatal signal is pending, this process should not throttle.
6442	 * It should return quickly so it can exit and free its memory
6443	 */
6444	if (fatal_signal_pending(current))
6445		goto out;
6446
6447	/*
6448	 * Check if the pfmemalloc reserves are ok by finding the first node
6449	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6450	 * GFP_KERNEL will be required for allocating network buffers when
6451	 * swapping over the network so ZONE_HIGHMEM is unusable.
6452	 *
6453	 * Throttling is based on the first usable node and throttled processes
6454	 * wait on a queue until kswapd makes progress and wakes them. There
6455	 * is an affinity then between processes waking up and where reclaim
6456	 * progress has been made assuming the process wakes on the same node.
6457	 * More importantly, processes running on remote nodes will not compete
6458	 * for remote pfmemalloc reserves and processes on different nodes
6459	 * should make reasonable progress.
6460	 */
6461	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6462					gfp_zone(gfp_mask), nodemask) {
6463		if (zone_idx(zone) > ZONE_NORMAL)
6464			continue;
6465
6466		/* Throttle based on the first usable node */
6467		pgdat = zone->zone_pgdat;
6468		if (allow_direct_reclaim(pgdat))
6469			goto out;
6470		break;
6471	}
6472
6473	/* If no zone was usable by the allocation flags then do not throttle */
6474	if (!pgdat)
6475		goto out;
6476
6477	/* Account for the throttling */
6478	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6479
6480	/*
6481	 * If the caller cannot enter the filesystem, it's possible that it
6482	 * is due to the caller holding an FS lock or performing a journal
6483	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6484	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6485	 * blocked waiting on the same lock. Instead, throttle for up to a
6486	 * second before continuing.
6487	 */
6488	if (!(gfp_mask & __GFP_FS))
6489		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6490			allow_direct_reclaim(pgdat), HZ);
6491	else
6492		/* Throttle until kswapd wakes the process */
6493		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6494			allow_direct_reclaim(pgdat));
6495
6496	if (fatal_signal_pending(current))
6497		return true;
6498
6499out:
6500	return false;
6501}
6502
6503unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6504				gfp_t gfp_mask, nodemask_t *nodemask)
6505{
6506	unsigned long nr_reclaimed;
6507	struct scan_control sc = {
 
 
6508		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6509		.gfp_mask = current_gfp_context(gfp_mask),
6510		.reclaim_idx = gfp_zone(gfp_mask),
6511		.order = order,
 
6512		.nodemask = nodemask,
6513		.priority = DEF_PRIORITY,
6514		.may_writepage = !laptop_mode,
6515		.may_unmap = 1,
6516		.may_swap = 1,
6517	};
 
 
 
6518
6519	/*
6520	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6521	 * Confirm they are large enough for max values.
6522	 */
6523	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6524	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6525	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6526
6527	/*
6528	 * Do not enter reclaim if fatal signal was delivered while throttled.
6529	 * 1 is returned so that the page allocator does not OOM kill at this
6530	 * point.
6531	 */
6532	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6533		return 1;
6534
6535	set_task_reclaim_state(current, &sc.reclaim_state);
6536	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6537
6538	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6539
6540	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6541	set_task_reclaim_state(current, NULL);
6542
6543	return nr_reclaimed;
6544}
6545
6546#ifdef CONFIG_MEMCG
6547
6548/* Only used by soft limit reclaim. Do not reuse for anything else. */
6549unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6550						gfp_t gfp_mask, bool noswap,
6551						pg_data_t *pgdat,
6552						unsigned long *nr_scanned)
6553{
6554	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6555	struct scan_control sc = {
 
6556		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6557		.target_mem_cgroup = memcg,
6558		.may_writepage = !laptop_mode,
6559		.may_unmap = 1,
6560		.reclaim_idx = MAX_NR_ZONES - 1,
6561		.may_swap = !noswap,
 
 
6562	};
6563
6564	WARN_ON_ONCE(!current->reclaim_state);
6565
6566	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6567			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6568
6569	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
 
6570						      sc.gfp_mask);
6571
6572	/*
6573	 * NOTE: Although we can get the priority field, using it
6574	 * here is not a good idea, since it limits the pages we can scan.
6575	 * if we don't reclaim here, the shrink_node from balance_pgdat
6576	 * will pick up pages from other mem cgroup's as well. We hack
6577	 * the priority and make it zero.
6578	 */
6579	shrink_lruvec(lruvec, &sc);
6580
6581	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6582
6583	*nr_scanned = sc.nr_scanned;
6584
6585	return sc.nr_reclaimed;
6586}
6587
6588unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6589					   unsigned long nr_pages,
6590					   gfp_t gfp_mask,
6591					   unsigned int reclaim_options,
6592					   int *swappiness)
6593{
 
6594	unsigned long nr_reclaimed;
6595	unsigned int noreclaim_flag;
6596	struct scan_control sc = {
6597		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6598		.proactive_swappiness = swappiness,
6599		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6600				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6601		.reclaim_idx = MAX_NR_ZONES - 1,
6602		.target_mem_cgroup = memcg,
6603		.priority = DEF_PRIORITY,
6604		.may_writepage = !laptop_mode,
6605		.may_unmap = 1,
6606		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6607		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
 
 
 
 
 
 
 
 
6608	};
 
6609	/*
6610	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6611	 * equal pressure on all the nodes. This is based on the assumption that
6612	 * the reclaim does not bail out early.
6613	 */
6614	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
 
6615
6616	set_task_reclaim_state(current, &sc.reclaim_state);
6617	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6618	noreclaim_flag = memalloc_noreclaim_save();
6619
6620	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6621
6622	memalloc_noreclaim_restore(noreclaim_flag);
6623	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6624	set_task_reclaim_state(current, NULL);
6625
6626	return nr_reclaimed;
6627}
6628#endif
6629
6630static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6631{
6632	struct mem_cgroup *memcg;
6633	struct lruvec *lruvec;
6634
6635	if (lru_gen_enabled()) {
6636		lru_gen_age_node(pgdat, sc);
6637		return;
6638	}
6639
6640	if (!can_age_anon_pages(pgdat, sc))
6641		return;
6642
6643	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6644	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6645		return;
6646
6647	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6648	do {
6649		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6650		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6651				   sc, LRU_ACTIVE_ANON);
6652		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6653	} while (memcg);
6654}
6655
6656static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6657{
6658	int i;
6659	struct zone *zone;
6660
6661	/*
6662	 * Check for watermark boosts top-down as the higher zones
6663	 * are more likely to be boosted. Both watermarks and boosts
6664	 * should not be checked at the same time as reclaim would
6665	 * start prematurely when there is no boosting and a lower
6666	 * zone is balanced.
6667	 */
6668	for (i = highest_zoneidx; i >= 0; i--) {
6669		zone = pgdat->node_zones + i;
6670		if (!managed_zone(zone))
6671			continue;
6672
6673		if (zone->watermark_boost)
6674			return true;
6675	}
6676
6677	return false;
6678}
6679
6680/*
6681 * Returns true if there is an eligible zone balanced for the request order
6682 * and highest_zoneidx
 
 
 
 
 
 
 
 
 
 
 
 
6683 */
6684static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
 
6685{
 
6686	int i;
6687	unsigned long mark = -1;
6688	struct zone *zone;
6689
6690	/*
6691	 * Check watermarks bottom-up as lower zones are more likely to
6692	 * meet watermarks.
6693	 */
6694	for (i = 0; i <= highest_zoneidx; i++) {
6695		zone = pgdat->node_zones + i;
6696
6697		if (!managed_zone(zone))
6698			continue;
6699
6700		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6701			mark = promo_wmark_pages(zone);
6702		else
6703			mark = high_wmark_pages(zone);
6704		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6705			return true;
6706	}
6707
6708	/*
6709	 * If a node has no managed zone within highest_zoneidx, it does not
6710	 * need balancing by definition. This can happen if a zone-restricted
6711	 * allocation tries to wake a remote kswapd.
6712	 */
6713	if (mark == -1)
6714		return true;
6715
6716	return false;
6717}
6718
6719/* Clear pgdat state for congested, dirty or under writeback. */
6720static void clear_pgdat_congested(pg_data_t *pgdat)
 
6721{
6722	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
 
 
6723
6724	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6725	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6726	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6727	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6728}
6729
6730/*
6731 * Prepare kswapd for sleeping. This verifies that there are no processes
6732 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6733 *
6734 * Returns true if kswapd is ready to sleep
6735 */
6736static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6737				int highest_zoneidx)
6738{
6739	/*
6740	 * The throttled processes are normally woken up in balance_pgdat() as
6741	 * soon as allow_direct_reclaim() is true. But there is a potential
6742	 * race between when kswapd checks the watermarks and a process gets
6743	 * throttled. There is also a potential race if processes get
6744	 * throttled, kswapd wakes, a large process exits thereby balancing the
6745	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6746	 * the wake up checks. If kswapd is going to sleep, no process should
6747	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6748	 * the wake up is premature, processes will wake kswapd and get
6749	 * throttled again. The difference from wake ups in balance_pgdat() is
6750	 * that here we are under prepare_to_wait().
6751	 */
6752	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6753		wake_up_all(&pgdat->pfmemalloc_wait);
6754
6755	/* Hopeless node, leave it to direct reclaim */
6756	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6757		return true;
6758
6759	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6760		clear_pgdat_congested(pgdat);
6761		return true;
6762	}
6763
6764	return false;
6765}
6766
6767/*
6768 * kswapd shrinks a node of pages that are at or below the highest usable
6769 * zone that is currently unbalanced.
6770 *
6771 * Returns true if kswapd scanned at least the requested number of pages to
6772 * reclaim or if the lack of progress was due to pages under writeback.
6773 * This is used to determine if the scanning priority needs to be raised.
6774 */
6775static bool kswapd_shrink_node(pg_data_t *pgdat,
6776			       struct scan_control *sc)
6777{
6778	struct zone *zone;
6779	int z;
6780	unsigned long nr_reclaimed = sc->nr_reclaimed;
6781
6782	/* Reclaim a number of pages proportional to the number of zones */
6783	sc->nr_to_reclaim = 0;
6784	for (z = 0; z <= sc->reclaim_idx; z++) {
6785		zone = pgdat->node_zones + z;
6786		if (!managed_zone(zone))
6787			continue;
 
6788
6789		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 
 
 
 
6790	}
6791
6792	/*
6793	 * Historically care was taken to put equal pressure on all zones but
6794	 * now pressure is applied based on node LRU order.
 
6795	 */
6796	shrink_node(pgdat, sc);
6797
6798	/*
6799	 * Fragmentation may mean that the system cannot be rebalanced for
6800	 * high-order allocations. If twice the allocation size has been
6801	 * reclaimed then recheck watermarks only at order-0 to prevent
6802	 * excessive reclaim. Assume that a process requested a high-order
6803	 * can direct reclaim/compact.
6804	 */
6805	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6806		sc->order = 0;
6807
6808	/* account for progress from mm_account_reclaimed_pages() */
6809	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6810}
6811
6812/* Page allocator PCP high watermark is lowered if reclaim is active. */
6813static inline void
6814update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6815{
6816	int i;
6817	struct zone *zone;
6818
6819	for (i = 0; i <= highest_zoneidx; i++) {
6820		zone = pgdat->node_zones + i;
6821
6822		if (!managed_zone(zone))
6823			continue;
6824
6825		if (active)
6826			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6827		else
6828			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6829	}
6830}
6831
6832static inline void
6833set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6834{
6835	update_reclaim_active(pgdat, highest_zoneidx, true);
6836}
6837
6838static inline void
6839clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6840{
6841	update_reclaim_active(pgdat, highest_zoneidx, false);
6842}
6843
6844/*
6845 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6846 * that are eligible for use by the caller until at least one zone is
6847 * balanced.
 
6848 *
6849 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
6850 *
6851 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6852 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6853 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6854 * or lower is eligible for reclaim until at least one usable zone is
6855 * balanced.
 
6856 */
6857static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
 
6858{
 
 
 
6859	int i;
 
 
 
6860	unsigned long nr_soft_reclaimed;
6861	unsigned long nr_soft_scanned;
6862	unsigned long pflags;
6863	unsigned long nr_boost_reclaim;
6864	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6865	bool boosted;
6866	struct zone *zone;
6867	struct scan_control sc = {
6868		.gfp_mask = GFP_KERNEL,
 
 
 
 
 
 
 
6869		.order = order,
6870		.may_unmap = 1,
 
 
 
6871	};
 
 
 
 
 
6872
6873	set_task_reclaim_state(current, &sc.reclaim_state);
6874	psi_memstall_enter(&pflags);
6875	__fs_reclaim_acquire(_THIS_IP_);
6876
6877	count_vm_event(PAGEOUTRUN);
 
 
 
 
 
6878
6879	/*
6880	 * Account for the reclaim boost. Note that the zone boost is left in
6881	 * place so that parallel allocations that are near the watermark will
6882	 * stall or direct reclaim until kswapd is finished.
6883	 */
6884	nr_boost_reclaim = 0;
6885	for (i = 0; i <= highest_zoneidx; i++) {
6886		zone = pgdat->node_zones + i;
6887		if (!managed_zone(zone))
6888			continue;
6889
6890		nr_boost_reclaim += zone->watermark_boost;
6891		zone_boosts[i] = zone->watermark_boost;
6892	}
6893	boosted = nr_boost_reclaim;
6894
6895restart:
6896	set_reclaim_active(pgdat, highest_zoneidx);
6897	sc.priority = DEF_PRIORITY;
6898	do {
6899		unsigned long nr_reclaimed = sc.nr_reclaimed;
6900		bool raise_priority = true;
6901		bool balanced;
6902		bool ret;
6903		bool was_frozen;
6904
6905		sc.reclaim_idx = highest_zoneidx;
6906
6907		/*
6908		 * If the number of buffer_heads exceeds the maximum allowed
6909		 * then consider reclaiming from all zones. This has a dual
6910		 * purpose -- on 64-bit systems it is expected that
6911		 * buffer_heads are stripped during active rotation. On 32-bit
6912		 * systems, highmem pages can pin lowmem memory and shrinking
6913		 * buffers can relieve lowmem pressure. Reclaim may still not
6914		 * go ahead if all eligible zones for the original allocation
6915		 * request are balanced to avoid excessive reclaim from kswapd.
6916		 */
6917		if (buffer_heads_over_limit) {
6918			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6919				zone = pgdat->node_zones + i;
6920				if (!managed_zone(zone))
6921					continue;
6922
6923				sc.reclaim_idx = i;
 
 
 
 
 
 
 
 
 
 
6924				break;
 
 
 
6925			}
6926		}
 
 
 
 
 
6927
6928		/*
6929		 * If the pgdat is imbalanced then ignore boosting and preserve
6930		 * the watermarks for a later time and restart. Note that the
6931		 * zone watermarks will be still reset at the end of balancing
6932		 * on the grounds that the normal reclaim should be enough to
6933		 * re-evaluate if boosting is required when kswapd next wakes.
6934		 */
6935		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6936		if (!balanced && nr_boost_reclaim) {
6937			nr_boost_reclaim = 0;
6938			goto restart;
6939		}
6940
6941		/*
6942		 * If boosting is not active then only reclaim if there are no
6943		 * eligible zones. Note that sc.reclaim_idx is not used as
6944		 * buffer_heads_over_limit may have adjusted it.
6945		 */
6946		if (!nr_boost_reclaim && balanced)
6947			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6948
6949		/* Limit the priority of boosting to avoid reclaim writeback */
6950		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6951			raise_priority = false;
 
 
 
 
 
 
6952
6953		/*
6954		 * Do not writeback or swap pages for boosted reclaim. The
6955		 * intent is to relieve pressure not issue sub-optimal IO
6956		 * from reclaim context. If no pages are reclaimed, the
6957		 * reclaim will be aborted.
6958		 */
6959		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6960		sc.may_swap = !nr_boost_reclaim;
 
 
 
 
 
 
 
 
 
 
 
 
 
6961
6962		/*
6963		 * Do some background aging, to give pages a chance to be
6964		 * referenced before reclaiming. All pages are rotated
6965		 * regardless of classzone as this is about consistent aging.
6966		 */
6967		kswapd_age_node(pgdat, &sc);
6968
6969		/*
6970		 * If we're getting trouble reclaiming, start doing writepage
6971		 * even in laptop mode.
6972		 */
6973		if (sc.priority < DEF_PRIORITY - 2)
6974			sc.may_writepage = 1;
 
 
 
 
 
 
 
 
6975
6976		/* Call soft limit reclaim before calling shrink_node. */
6977		sc.nr_scanned = 0;
6978		nr_soft_scanned = 0;
6979		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6980							      sc.gfp_mask, &nr_soft_scanned);
6981		sc.nr_reclaimed += nr_soft_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6982
 
 
 
6983		/*
6984		 * There should be no need to raise the scanning priority if
6985		 * enough pages are already being scanned that that high
6986		 * watermark would be met at 100% efficiency.
6987		 */
6988		if (kswapd_shrink_node(pgdat, &sc))
6989			raise_priority = false;
 
 
 
 
6990
6991		/*
6992		 * If the low watermark is met there is no need for processes
6993		 * to be throttled on pfmemalloc_wait as they should not be
6994		 * able to safely make forward progress. Wake them
 
6995		 */
6996		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6997				allow_direct_reclaim(pgdat))
6998			wake_up_all(&pgdat->pfmemalloc_wait);
 
6999
7000		/* Check if kswapd should be suspending */
7001		__fs_reclaim_release(_THIS_IP_);
7002		ret = kthread_freezable_should_stop(&was_frozen);
7003		__fs_reclaim_acquire(_THIS_IP_);
7004		if (was_frozen || ret)
7005			break;
 
7006
7007		/*
7008		 * Raise priority if scanning rate is too low or there was no
7009		 * progress in reclaiming pages
7010		 */
7011		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7012		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7013
7014		/*
7015		 * If reclaim made no progress for a boost, stop reclaim as
7016		 * IO cannot be queued and it could be an infinite loop in
7017		 * extreme circumstances.
 
 
 
 
 
 
 
 
 
7018		 */
7019		if (nr_boost_reclaim && !nr_reclaimed)
7020			break;
7021
7022		if (raise_priority || !nr_reclaimed)
7023			sc.priority--;
7024	} while (sc.priority >= 1);
7025
7026	/*
7027	 * Restart only if it went through the priority loop all the way,
7028	 * but cache_trim_mode didn't work.
 
 
 
 
7029	 */
7030	if (!sc.nr_reclaimed && sc.priority < 1 &&
7031	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7032		sc.no_cache_trim_mode = 1;
7033		goto restart;
7034	}
7035
7036	if (!sc.nr_reclaimed)
7037		pgdat->kswapd_failures++;
7038
7039out:
7040	clear_reclaim_active(pgdat, highest_zoneidx);
7041
7042	/* If reclaim was boosted, account for the reclaim done in this pass */
7043	if (boosted) {
7044		unsigned long flags;
 
 
 
7045
7046		for (i = 0; i <= highest_zoneidx; i++) {
7047			if (!zone_boosts[i])
7048				continue;
7049
7050			/* Increments are under the zone lock */
7051			zone = pgdat->node_zones + i;
7052			spin_lock_irqsave(&zone->lock, flags);
7053			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7054			spin_unlock_irqrestore(&zone->lock, flags);
7055		}
7056
7057		/*
7058		 * As there is now likely space, wakeup kcompact to defragment
7059		 * pageblocks.
7060		 */
7061		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7062	}
7063
7064	snapshot_refaults(NULL, pgdat);
7065	__fs_reclaim_release(_THIS_IP_);
7066	psi_memstall_leave(&pflags);
7067	set_task_reclaim_state(current, NULL);
7068
7069	/*
7070	 * Return the order kswapd stopped reclaiming at as
7071	 * prepare_kswapd_sleep() takes it into account. If another caller
7072	 * entered the allocator slow path while kswapd was awake, order will
7073	 * remain at the higher level.
7074	 */
7075	return sc.order;
7076}
7077
7078/*
7079 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7080 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7081 * not a valid index then either kswapd runs for first time or kswapd couldn't
7082 * sleep after previous reclaim attempt (node is still unbalanced). In that
7083 * case return the zone index of the previous kswapd reclaim cycle.
7084 */
7085static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7086					   enum zone_type prev_highest_zoneidx)
7087{
7088	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7089
7090	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7091}
7092
7093static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7094				unsigned int highest_zoneidx)
7095{
7096	long remaining = 0;
7097	DEFINE_WAIT(wait);
7098
7099	if (freezing(current) || kthread_should_stop())
7100		return;
7101
7102	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7103
7104	/*
7105	 * Try to sleep for a short interval. Note that kcompactd will only be
7106	 * woken if it is possible to sleep for a short interval. This is
7107	 * deliberate on the assumption that if reclaim cannot keep an
7108	 * eligible zone balanced that it's also unlikely that compaction will
7109	 * succeed.
7110	 */
7111	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7112		/*
7113		 * Compaction records what page blocks it recently failed to
7114		 * isolate pages from and skips them in the future scanning.
7115		 * When kswapd is going to sleep, it is reasonable to assume
7116		 * that pages and compaction may succeed so reset the cache.
7117		 */
7118		reset_isolation_suitable(pgdat);
7119
7120		/*
7121		 * We have freed the memory, now we should compact it to make
7122		 * allocation of the requested order possible.
7123		 */
7124		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7125
7126		remaining = schedule_timeout(HZ/10);
7127
7128		/*
7129		 * If woken prematurely then reset kswapd_highest_zoneidx and
7130		 * order. The values will either be from a wakeup request or
7131		 * the previous request that slept prematurely.
7132		 */
7133		if (remaining) {
7134			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7135					kswapd_highest_zoneidx(pgdat,
7136							highest_zoneidx));
7137
7138			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7139				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7140		}
7141
7142		finish_wait(&pgdat->kswapd_wait, &wait);
7143		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7144	}
7145
7146	/*
7147	 * After a short sleep, check if it was a premature sleep. If not, then
7148	 * go fully to sleep until explicitly woken up.
7149	 */
7150	if (!remaining &&
7151	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7152		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7153
7154		/*
7155		 * vmstat counters are not perfectly accurate and the estimated
7156		 * value for counters such as NR_FREE_PAGES can deviate from the
7157		 * true value by nr_online_cpus * threshold. To avoid the zone
7158		 * watermarks being breached while under pressure, we reduce the
7159		 * per-cpu vmstat threshold while kswapd is awake and restore
7160		 * them before going back to sleep.
7161		 */
7162		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7163
7164		if (!kthread_should_stop())
7165			schedule();
7166
7167		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7168	} else {
7169		if (remaining)
7170			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7171		else
7172			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7173	}
7174	finish_wait(&pgdat->kswapd_wait, &wait);
7175}
7176
7177/*
7178 * The background pageout daemon, started as a kernel thread
7179 * from the init process.
7180 *
7181 * This basically trickles out pages so that we have _some_
7182 * free memory available even if there is no other activity
7183 * that frees anything up. This is needed for things like routing
7184 * etc, where we otherwise might have all activity going on in
7185 * asynchronous contexts that cannot page things out.
7186 *
7187 * If there are applications that are active memory-allocators
7188 * (most normal use), this basically shouldn't matter.
7189 */
7190static int kswapd(void *p)
7191{
7192	unsigned int alloc_order, reclaim_order;
7193	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7194	pg_data_t *pgdat = (pg_data_t *)p;
7195	struct task_struct *tsk = current;
 
 
 
 
7196	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7197
 
 
7198	if (!cpumask_empty(cpumask))
7199		set_cpus_allowed_ptr(tsk, cpumask);
 
7200
7201	/*
7202	 * Tell the memory management that we're a "memory allocator",
7203	 * and that if we need more memory we should get access to it
7204	 * regardless (see "__alloc_pages()"). "kswapd" should
7205	 * never get caught in the normal page freeing logic.
7206	 *
7207	 * (Kswapd normally doesn't need memory anyway, but sometimes
7208	 * you need a small amount of memory in order to be able to
7209	 * page out something else, and this flag essentially protects
7210	 * us from recursively trying to free more memory as we're
7211	 * trying to free the first piece of memory in the first place).
7212	 */
7213	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7214	set_freezable();
7215
7216	WRITE_ONCE(pgdat->kswapd_order, 0);
7217	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7218	atomic_set(&pgdat->nr_writeback_throttled, 0);
7219	for ( ; ; ) {
7220		bool was_frozen;
 
 
 
 
 
 
 
 
 
 
 
 
7221
7222		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7223		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7224							highest_zoneidx);
7225
7226kswapd_try_sleep:
7227		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7228					highest_zoneidx);
7229
7230		/* Read the new order and highest_zoneidx */
7231		alloc_order = READ_ONCE(pgdat->kswapd_order);
7232		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7233							highest_zoneidx);
7234		WRITE_ONCE(pgdat->kswapd_order, 0);
7235		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7236
7237		if (kthread_freezable_should_stop(&was_frozen))
 
7238			break;
7239
7240		/*
7241		 * We can speed up thawing tasks if we don't call balance_pgdat
7242		 * after returning from the refrigerator
7243		 */
7244		if (was_frozen)
7245			continue;
7246
7247		/*
7248		 * Reclaim begins at the requested order but if a high-order
7249		 * reclaim fails then kswapd falls back to reclaiming for
7250		 * order-0. If that happens, kswapd will consider sleeping
7251		 * for the order it finished reclaiming at (reclaim_order)
7252		 * but kcompactd is woken to compact for the original
7253		 * request (alloc_order).
7254		 */
7255		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7256						alloc_order);
7257		reclaim_order = balance_pgdat(pgdat, alloc_order,
7258						highest_zoneidx);
7259		if (reclaim_order < alloc_order)
7260			goto kswapd_try_sleep;
7261	}
7262
7263	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7264
7265	return 0;
7266}
7267
7268/*
7269 * A zone is low on free memory or too fragmented for high-order memory.  If
7270 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7271 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7272 * has failed or is not needed, still wake up kcompactd if only compaction is
7273 * needed.
7274 */
7275void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7276		   enum zone_type highest_zoneidx)
7277{
7278	pg_data_t *pgdat;
7279	enum zone_type curr_idx;
7280
7281	if (!managed_zone(zone))
7282		return;
7283
7284	if (!cpuset_zone_allowed(zone, gfp_flags))
 
 
 
 
 
 
 
 
 
7285		return;
7286
7287	pgdat = zone->zone_pgdat;
7288	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7289
7290	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7291		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7292
7293	if (READ_ONCE(pgdat->kswapd_order) < order)
7294		WRITE_ONCE(pgdat->kswapd_order, order);
 
7295
7296	if (!waitqueue_active(&pgdat->kswapd_wait))
7297		return;
7298
7299	/* Hopeless node, leave it to direct reclaim if possible */
7300	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7301	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7302	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7303		/*
7304		 * There may be plenty of free memory available, but it's too
7305		 * fragmented for high-order allocations.  Wake up kcompactd
7306		 * and rely on compaction_suitable() to determine if it's
7307		 * needed.  If it fails, it will defer subsequent attempts to
7308		 * ratelimit its work.
7309		 */
7310		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7311			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7312		return;
7313	}
7314
7315	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7316				      gfp_flags);
7317	wake_up_interruptible(&pgdat->kswapd_wait);
7318}
7319
7320#ifdef CONFIG_HIBERNATION
7321/*
7322 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7323 * freed pages.
7324 *
7325 * Rather than trying to age LRUs the aim is to preserve the overall
7326 * LRU order by reclaiming preferentially
7327 * inactive > active > active referenced > active mapped
7328 */
7329unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7330{
 
7331	struct scan_control sc = {
7332		.nr_to_reclaim = nr_to_reclaim,
7333		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7334		.reclaim_idx = MAX_NR_ZONES - 1,
7335		.priority = DEF_PRIORITY,
7336		.may_writepage = 1,
7337		.may_unmap = 1,
7338		.may_swap = 1,
7339		.hibernation_mode = 1,
 
 
 
 
7340	};
7341	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
 
7342	unsigned long nr_reclaimed;
7343	unsigned int noreclaim_flag;
7344
7345	fs_reclaim_acquire(sc.gfp_mask);
7346	noreclaim_flag = memalloc_noreclaim_save();
7347	set_task_reclaim_state(current, &sc.reclaim_state);
 
 
 
 
 
 
 
7348
7349	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
 
 
7350
7351	set_task_reclaim_state(current, NULL);
7352	memalloc_noreclaim_restore(noreclaim_flag);
7353	fs_reclaim_release(sc.gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
7354
7355	return nr_reclaimed;
 
 
 
 
 
7356}
7357#endif /* CONFIG_HIBERNATION */
7358
7359/*
7360 * This kswapd start function will be called by init and node-hot-add.
 
7361 */
7362void __meminit kswapd_run(int nid)
7363{
7364	pg_data_t *pgdat = NODE_DATA(nid);
 
 
 
 
7365
7366	pgdat_kswapd_lock(pgdat);
7367	if (!pgdat->kswapd) {
7368		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7369		if (IS_ERR(pgdat->kswapd)) {
7370			/* failure at boot is fatal */
7371			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7372				   nid, PTR_ERR(pgdat->kswapd));
7373			BUG_ON(system_state < SYSTEM_RUNNING);
7374			pgdat->kswapd = NULL;
7375		}
7376	}
7377	pgdat_kswapd_unlock(pgdat);
7378}
7379
7380/*
7381 * Called by memory hotplug when all memory in a node is offlined.  Caller must
7382 * be holding mem_hotplug_begin/done().
7383 */
7384void __meminit kswapd_stop(int nid)
7385{
7386	pg_data_t *pgdat = NODE_DATA(nid);
7387	struct task_struct *kswapd;
7388
7389	pgdat_kswapd_lock(pgdat);
7390	kswapd = pgdat->kswapd;
7391	if (kswapd) {
7392		kthread_stop(kswapd);
7393		pgdat->kswapd = NULL;
7394	}
7395	pgdat_kswapd_unlock(pgdat);
7396}
7397
7398static int __init kswapd_init(void)
7399{
7400	int nid;
7401
7402	swap_setup();
7403	for_each_node_state(nid, N_MEMORY)
7404 		kswapd_run(nid);
 
7405	return 0;
7406}
7407
7408module_init(kswapd_init)
7409
7410#ifdef CONFIG_NUMA
7411/*
7412 * Node reclaim mode
7413 *
7414 * If non-zero call node_reclaim when the number of free pages falls below
7415 * the watermarks.
7416 */
7417int node_reclaim_mode __read_mostly;
 
 
 
 
 
7418
7419/*
7420 * Priority for NODE_RECLAIM. This determines the fraction of pages
7421 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7422 * a zone.
7423 */
7424#define NODE_RECLAIM_PRIORITY 4
7425
7426/*
7427 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7428 * occur.
7429 */
7430int sysctl_min_unmapped_ratio = 1;
7431
7432/*
7433 * If the number of slab pages in a zone grows beyond this percentage then
7434 * slab reclaim needs to occur.
7435 */
7436int sysctl_min_slab_ratio = 5;
7437
7438static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7439{
7440	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7441	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7442		node_page_state(pgdat, NR_ACTIVE_FILE);
7443
7444	/*
7445	 * It's possible for there to be more file mapped pages than
7446	 * accounted for by the pages on the file LRU lists because
7447	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7448	 */
7449	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7450}
7451
7452/* Work out how many page cache pages we can reclaim in this reclaim_mode */
7453static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7454{
7455	unsigned long nr_pagecache_reclaimable;
7456	unsigned long delta = 0;
7457
7458	/*
7459	 * If RECLAIM_UNMAP is set, then all file pages are considered
7460	 * potentially reclaimable. Otherwise, we have to worry about
7461	 * pages like swapcache and node_unmapped_file_pages() provides
7462	 * a better estimate
7463	 */
7464	if (node_reclaim_mode & RECLAIM_UNMAP)
7465		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7466	else
7467		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7468
7469	/* If we can't clean pages, remove dirty pages from consideration */
7470	if (!(node_reclaim_mode & RECLAIM_WRITE))
7471		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7472
7473	/* Watch for any possible underflows due to delta */
7474	if (unlikely(delta > nr_pagecache_reclaimable))
7475		delta = nr_pagecache_reclaimable;
7476
7477	return nr_pagecache_reclaimable - delta;
7478}
7479
7480/*
7481 * Try to free up some pages from this node through reclaim.
7482 */
7483static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7484{
7485	/* Minimum pages needed in order to stay on node */
7486	const unsigned long nr_pages = 1 << order;
7487	struct task_struct *p = current;
7488	unsigned int noreclaim_flag;
 
7489	struct scan_control sc = {
7490		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7491		.gfp_mask = current_gfp_context(gfp_mask),
 
 
 
 
7492		.order = order,
7493		.priority = NODE_RECLAIM_PRIORITY,
7494		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7495		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7496		.may_swap = 1,
7497		.reclaim_idx = gfp_zone(gfp_mask),
7498	};
7499	unsigned long pflags;
7500
7501	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7502					   sc.gfp_mask);
7503
7504	cond_resched();
7505	psi_memstall_enter(&pflags);
7506	delayacct_freepages_start();
7507	fs_reclaim_acquire(sc.gfp_mask);
7508	/*
7509	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7510	 */
7511	noreclaim_flag = memalloc_noreclaim_save();
7512	set_task_reclaim_state(p, &sc.reclaim_state);
 
 
 
 
7513
7514	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7515	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7516		/*
7517		 * Free memory by calling shrink node with increasing
7518		 * priorities until we have enough memory freed.
7519		 */
 
7520		do {
7521			shrink_node(pgdat, &sc);
7522		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 
7523	}
7524
7525	set_task_reclaim_state(p, NULL);
7526	memalloc_noreclaim_restore(noreclaim_flag);
7527	fs_reclaim_release(sc.gfp_mask);
7528	psi_memstall_leave(&pflags);
7529	delayacct_freepages_end();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7530
7531	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
 
 
 
 
 
 
 
7532
 
 
 
7533	return sc.nr_reclaimed >= nr_pages;
7534}
7535
7536int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7537{
 
7538	int ret;
7539
7540	/*
7541	 * Node reclaim reclaims unmapped file backed pages and
7542	 * slab pages if we are over the defined limits.
7543	 *
7544	 * A small portion of unmapped file backed pages is needed for
7545	 * file I/O otherwise pages read by file I/O will be immediately
7546	 * thrown out if the node is overallocated. So we do not reclaim
7547	 * if less than a specified percentage of the node is used by
7548	 * unmapped file backed pages.
7549	 */
7550	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7551	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7552	    pgdat->min_slab_pages)
7553		return NODE_RECLAIM_FULL;
 
 
7554
7555	/*
7556	 * Do not scan if the allocation should not be delayed.
7557	 */
7558	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7559		return NODE_RECLAIM_NOSCAN;
7560
7561	/*
7562	 * Only run node reclaim on the local node or on nodes that do not
7563	 * have associated processors. This will favor the local processor
7564	 * over remote processors and spread off node memory allocations
7565	 * as wide as possible.
7566	 */
7567	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7568		return NODE_RECLAIM_NOSCAN;
 
7569
7570	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7571		return NODE_RECLAIM_NOSCAN;
7572
7573	ret = __node_reclaim(pgdat, gfp_mask, order);
7574	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7575
7576	if (ret)
7577		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7578	else
7579		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7580
7581	return ret;
7582}
7583#endif
7584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7585/**
7586 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7587 * lru list
7588 * @fbatch: Batch of lru folios to check.
7589 *
7590 * Checks folios for evictability, if an evictable folio is in the unevictable
7591 * lru list, moves it to the appropriate evictable lru list. This function
7592 * should be only used for lru folios.
7593 */
7594void check_move_unevictable_folios(struct folio_batch *fbatch)
7595{
7596	struct lruvec *lruvec = NULL;
7597	int pgscanned = 0;
7598	int pgrescued = 0;
7599	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7600
7601	for (i = 0; i < fbatch->nr; i++) {
7602		struct folio *folio = fbatch->folios[i];
7603		int nr_pages = folio_nr_pages(folio);
7604
7605		pgscanned += nr_pages;
7606
7607		/* block memcg migration while the folio moves between lrus */
7608		if (!folio_test_clear_lru(folio))
7609			continue;
7610
7611		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7612		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7613			lruvec_del_folio(lruvec, folio);
7614			folio_clear_unevictable(folio);
7615			lruvec_add_folio(lruvec, folio);
7616			pgrescued += nr_pages;
7617		}
7618		folio_set_lru(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7619	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7620
7621	if (lruvec) {
7622		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7623		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7624		unlock_page_lruvec_irq(lruvec);
7625	} else if (pgscanned) {
7626		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7627	}
 
7628}
7629EXPORT_SYMBOL_GPL(check_move_unevictable_folios);