Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
  45#include <linux/prefetch.h>
 
 
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
 
  51
  52#include "internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/vmscan.h>
  56
  57/*
  58 * reclaim_mode determines how the inactive list is shrunk
  59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  60 * RECLAIM_MODE_ASYNC:  Do not block
  61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  63 *			page from the LRU and reclaim all pages within a
  64 *			naturally aligned range
  65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  66 *			order-0 pages and then compact the zone
  67 */
  68typedef unsigned __bitwise__ reclaim_mode_t;
  69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
  70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
  71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
  72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
  73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
  74
  75struct scan_control {
  76	/* Incremented by the number of inactive pages that were scanned */
  77	unsigned long nr_scanned;
  78
  79	/* Number of pages freed so far during a call to shrink_zones() */
  80	unsigned long nr_reclaimed;
  81
  82	/* How many pages shrink_list() should reclaim */
  83	unsigned long nr_to_reclaim;
  84
  85	unsigned long hibernation_mode;
  86
  87	/* This context's GFP mask */
  88	gfp_t gfp_mask;
  89
  90	int may_writepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92	/* Can mapped pages be reclaimed? */
  93	int may_unmap;
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	int may_swap;
  97
  98	int order;
 
  99
 100	/*
 101	 * Intend to reclaim enough continuous memory rather than reclaim
 102	 * enough amount of memory. i.e, mode for high order allocation.
 103	 */
 104	reclaim_mode_t reclaim_mode;
 105
 106	/* Which cgroup do we reclaim from */
 107	struct mem_cgroup *mem_cgroup;
 108
 109	/*
 110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 111	 * are scanned.
 112	 */
 113	nodemask_t	*nodemask;
 114};
 115
 116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 
 
 117
 118#ifdef ARCH_HAS_PREFETCH
 119#define prefetch_prev_lru_page(_page, _base, _field)			\
 120	do {								\
 121		if ((_page)->lru.prev != _base) {			\
 122			struct page *prev;				\
 123									\
 124			prev = lru_to_page(&(_page->lru));		\
 125			prefetch(&prev->_field);			\
 126		}							\
 127	} while (0)
 128#else
 129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 130#endif
 131
 132#ifdef ARCH_HAS_PREFETCHW
 133#define prefetchw_prev_lru_page(_page, _base, _field)			\
 134	do {								\
 135		if ((_page)->lru.prev != _base) {			\
 136			struct page *prev;				\
 137									\
 138			prev = lru_to_page(&(_page->lru));		\
 139			prefetchw(&prev->_field);			\
 140		}							\
 141	} while (0)
 142#else
 143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 144#endif
 145
 146/*
 147 * From 0 .. 100.  Higher means more swappy.
 148 */
 149int vm_swappiness = 60;
 150long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 151
 152static LIST_HEAD(shrinker_list);
 153static DECLARE_RWSEM(shrinker_rwsem);
 154
 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157#else
 158#define scanning_global_lru(sc)	(1)
 
 
 
 
 
 
 
 
 159#endif
 160
 161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 162						  struct scan_control *sc)
 
 
 
 
 163{
 164	if (!scanning_global_lru(sc))
 165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 166
 167	return &zone->reclaim_stat;
 
 
 
 
 
 
 168}
 169
 170static unsigned long zone_nr_lru_pages(struct zone *zone,
 171				struct scan_control *sc, enum lru_list lru)
 172{
 173	if (!scanning_global_lru(sc))
 174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
 175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
 
 
 
 
 
 
 
 176
 177	return zone_page_state(zone, NR_LRU_BASE + lru);
 
 
 
 
 
 
 178}
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181/*
 182 * Add a shrinker callback to be called from the vm
 183 */
 184void register_shrinker(struct shrinker *shrinker)
 185{
 186	shrinker->nr = 0;
 
 
 
 
 
 
 
 
 187	down_write(&shrinker_rwsem);
 188	list_add_tail(&shrinker->list, &shrinker_list);
 189	up_write(&shrinker_rwsem);
 
 190}
 191EXPORT_SYMBOL(register_shrinker);
 192
 193/*
 194 * Remove one
 195 */
 196void unregister_shrinker(struct shrinker *shrinker)
 197{
 198	down_write(&shrinker_rwsem);
 199	list_del(&shrinker->list);
 200	up_write(&shrinker_rwsem);
 
 201}
 202EXPORT_SYMBOL(unregister_shrinker);
 203
 204static inline int do_shrinker_shrink(struct shrinker *shrinker,
 205				     struct shrink_control *sc,
 206				     unsigned long nr_to_scan)
 207{
 208	sc->nr_to_scan = nr_to_scan;
 209	return (*shrinker->shrink)(shrinker, sc);
 210}
 211
 212#define SHRINK_BATCH 128
 213/*
 214 * Call the shrink functions to age shrinkable caches
 215 *
 216 * Here we assume it costs one seek to replace a lru page and that it also
 217 * takes a seek to recreate a cache object.  With this in mind we age equal
 218 * percentages of the lru and ageable caches.  This should balance the seeks
 219 * generated by these structures.
 220 *
 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
 222 * slab to avoid swapping.
 223 *
 224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 225 *
 226 * `lru_pages' represents the number of on-LRU pages in all the zones which
 227 * are eligible for the caller's allocation attempt.  It is used for balancing
 228 * slab reclaim versus page reclaim.
 229 *
 230 * Returns the number of slab objects which we shrunk.
 231 */
 232unsigned long shrink_slab(struct shrink_control *shrink,
 233			  unsigned long nr_pages_scanned,
 234			  unsigned long lru_pages)
 235{
 236	struct shrinker *shrinker;
 237	unsigned long ret = 0;
 238
 239	if (nr_pages_scanned == 0)
 240		nr_pages_scanned = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 241
 242	if (!down_read_trylock(&shrinker_rwsem)) {
 243		/* Assume we'll be able to shrink next time */
 244		ret = 1;
 245		goto out;
 246	}
 247
 248	list_for_each_entry(shrinker, &shrinker_list, list) {
 249		unsigned long long delta;
 250		unsigned long total_scan;
 251		unsigned long max_pass;
 252		int shrink_ret = 0;
 253		long nr;
 254		long new_nr;
 255		long batch_size = shrinker->batch ? shrinker->batch
 256						  : SHRINK_BATCH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257
 258		/*
 259		 * copy the current shrinker scan count into a local variable
 260		 * and zero it so that other concurrent shrinker invocations
 261		 * don't also do this scanning work.
 262		 */
 263		do {
 264			nr = shrinker->nr;
 265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
 266
 267		total_scan = nr;
 268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 270		delta *= max_pass;
 271		do_div(delta, lru_pages + 1);
 272		total_scan += delta;
 273		if (total_scan < 0) {
 274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 275			       "delete nr=%ld\n",
 276			       shrinker->shrink, total_scan);
 277			total_scan = max_pass;
 278		}
 279
 280		/*
 281		 * We need to avoid excessive windup on filesystem shrinkers
 282		 * due to large numbers of GFP_NOFS allocations causing the
 283		 * shrinkers to return -1 all the time. This results in a large
 284		 * nr being built up so when a shrink that can do some work
 285		 * comes along it empties the entire cache due to nr >>>
 286		 * max_pass.  This is bad for sustaining a working set in
 287		 * memory.
 288		 *
 289		 * Hence only allow the shrinker to scan the entire cache when
 290		 * a large delta change is calculated directly.
 291		 */
 292		if (delta < max_pass / 4)
 293			total_scan = min(total_scan, max_pass / 2);
 
 
 
 
 
 
 
 
 
 
 
 294
 295		/*
 296		 * Avoid risking looping forever due to too large nr value:
 297		 * never try to free more than twice the estimate number of
 298		 * freeable entries.
 299		 */
 300		if (total_scan > max_pass * 2)
 301			total_scan = max_pass * 2;
 302
 303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 304					nr_pages_scanned, lru_pages,
 305					max_pass, delta, total_scan);
 306
 307		while (total_scan >= batch_size) {
 308			int nr_before;
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 312							batch_size);
 313			if (shrink_ret == -1)
 314				break;
 315			if (shrink_ret < nr_before)
 316				ret += nr_before - shrink_ret;
 317			count_vm_events(SLABS_SCANNED, batch_size);
 318			total_scan -= batch_size;
 319
 320			cond_resched();
 321		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322
 
 
 
 
 
 
 
 323		/*
 324		 * move the unused scan count back into the shrinker in a
 325		 * manner that handles concurrent updates. If we exhausted the
 326		 * scan, there is no need to do an update.
 
 327		 */
 328		do {
 329			nr = shrinker->nr;
 330			new_nr = total_scan + nr;
 331			if (total_scan <= 0)
 332				break;
 333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
 334
 335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336	}
 
 337	up_read(&shrinker_rwsem);
 338out:
 339	cond_resched();
 340	return ret;
 341}
 342
 343static void set_reclaim_mode(int priority, struct scan_control *sc,
 344				   bool sync)
 345{
 346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 347
 348	/*
 349	 * Initially assume we are entering either lumpy reclaim or
 350	 * reclaim/compaction.Depending on the order, we will either set the
 351	 * sync mode or just reclaim order-0 pages later.
 352	 */
 353	if (COMPACTION_BUILD)
 354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 355	else
 356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 357
 358	/*
 359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
 360	 * restricting when its set to either costly allocations or when
 361	 * under memory pressure
 362	 */
 363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 364		sc->reclaim_mode |= syncmode;
 365	else if (sc->order && priority < DEF_PRIORITY - 2)
 366		sc->reclaim_mode |= syncmode;
 367	else
 368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 369}
 370
 371static void reset_reclaim_mode(struct scan_control *sc)
 372{
 373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 
 
 
 374}
 375
 376static inline int is_page_cache_freeable(struct page *page)
 377{
 378	/*
 379	 * A freeable page cache page is referenced only by the caller
 380	 * that isolated the page, the page cache radix tree and
 381	 * optional buffer heads at page->private.
 382	 */
 383	return page_count(page) - page_has_private(page) == 2;
 384}
 385
 386static int may_write_to_queue(struct backing_dev_info *bdi,
 387			      struct scan_control *sc)
 388{
 389	if (current->flags & PF_SWAPWRITE)
 390		return 1;
 391	if (!bdi_write_congested(bdi))
 392		return 1;
 393	if (bdi == current->backing_dev_info)
 394		return 1;
 395
 396	/* lumpy reclaim for hugepage often need a lot of write */
 397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 398		return 1;
 399	return 0;
 400}
 401
 402/*
 403 * We detected a synchronous write error writing a page out.  Probably
 404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 405 * fsync(), msync() or close().
 406 *
 407 * The tricky part is that after writepage we cannot touch the mapping: nothing
 408 * prevents it from being freed up.  But we have a ref on the page and once
 409 * that page is locked, the mapping is pinned.
 410 *
 411 * We're allowed to run sleeping lock_page() here because we know the caller has
 412 * __GFP_FS.
 413 */
 414static void handle_write_error(struct address_space *mapping,
 415				struct page *page, int error)
 416{
 417	lock_page(page);
 418	if (page_mapping(page) == mapping)
 419		mapping_set_error(mapping, error);
 420	unlock_page(page);
 421}
 422
 423/* possible outcome of pageout() */
 424typedef enum {
 425	/* failed to write page out, page is locked */
 426	PAGE_KEEP,
 427	/* move page to the active list, page is locked */
 428	PAGE_ACTIVATE,
 429	/* page has been sent to the disk successfully, page is unlocked */
 430	PAGE_SUCCESS,
 431	/* page is clean and locked */
 432	PAGE_CLEAN,
 433} pageout_t;
 434
 435/*
 436 * pageout is called by shrink_page_list() for each dirty page.
 437 * Calls ->writepage().
 438 */
 439static pageout_t pageout(struct page *page, struct address_space *mapping,
 440			 struct scan_control *sc)
 441{
 442	/*
 443	 * If the page is dirty, only perform writeback if that write
 444	 * will be non-blocking.  To prevent this allocation from being
 445	 * stalled by pagecache activity.  But note that there may be
 446	 * stalls if we need to run get_block().  We could test
 447	 * PagePrivate for that.
 448	 *
 449	 * If this process is currently in __generic_file_aio_write() against
 450	 * this page's queue, we can perform writeback even if that
 451	 * will block.
 452	 *
 453	 * If the page is swapcache, write it back even if that would
 454	 * block, for some throttling. This happens by accident, because
 455	 * swap_backing_dev_info is bust: it doesn't reflect the
 456	 * congestion state of the swapdevs.  Easy to fix, if needed.
 457	 */
 458	if (!is_page_cache_freeable(page))
 459		return PAGE_KEEP;
 460	if (!mapping) {
 461		/*
 462		 * Some data journaling orphaned pages can have
 463		 * page->mapping == NULL while being dirty with clean buffers.
 464		 */
 465		if (page_has_private(page)) {
 466			if (try_to_free_buffers(page)) {
 467				ClearPageDirty(page);
 468				printk("%s: orphaned page\n", __func__);
 469				return PAGE_CLEAN;
 470			}
 471		}
 472		return PAGE_KEEP;
 473	}
 474	if (mapping->a_ops->writepage == NULL)
 475		return PAGE_ACTIVATE;
 476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 477		return PAGE_KEEP;
 478
 479	if (clear_page_dirty_for_io(page)) {
 480		int res;
 481		struct writeback_control wbc = {
 482			.sync_mode = WB_SYNC_NONE,
 483			.nr_to_write = SWAP_CLUSTER_MAX,
 484			.range_start = 0,
 485			.range_end = LLONG_MAX,
 486			.for_reclaim = 1,
 487		};
 488
 489		SetPageReclaim(page);
 490		res = mapping->a_ops->writepage(page, &wbc);
 491		if (res < 0)
 492			handle_write_error(mapping, page, res);
 493		if (res == AOP_WRITEPAGE_ACTIVATE) {
 494			ClearPageReclaim(page);
 495			return PAGE_ACTIVATE;
 496		}
 497
 498		/*
 499		 * Wait on writeback if requested to. This happens when
 500		 * direct reclaiming a large contiguous area and the
 501		 * first attempt to free a range of pages fails.
 502		 */
 503		if (PageWriteback(page) &&
 504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
 505			wait_on_page_writeback(page);
 506
 507		if (!PageWriteback(page)) {
 508			/* synchronous write or broken a_ops? */
 509			ClearPageReclaim(page);
 510		}
 511		trace_mm_vmscan_writepage(page,
 512			trace_reclaim_flags(page, sc->reclaim_mode));
 513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 514		return PAGE_SUCCESS;
 515	}
 516
 517	return PAGE_CLEAN;
 518}
 519
 520/*
 521 * Same as remove_mapping, but if the page is removed from the mapping, it
 522 * gets returned with a refcount of 0.
 523 */
 524static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 525{
 
 
 526	BUG_ON(!PageLocked(page));
 527	BUG_ON(mapping != page_mapping(page));
 528
 529	spin_lock_irq(&mapping->tree_lock);
 530	/*
 531	 * The non racy check for a busy page.
 532	 *
 533	 * Must be careful with the order of the tests. When someone has
 534	 * a ref to the page, it may be possible that they dirty it then
 535	 * drop the reference. So if PageDirty is tested before page_count
 536	 * here, then the following race may occur:
 537	 *
 538	 * get_user_pages(&page);
 539	 * [user mapping goes away]
 540	 * write_to(page);
 541	 *				!PageDirty(page)    [good]
 542	 * SetPageDirty(page);
 543	 * put_page(page);
 544	 *				!page_count(page)   [good, discard it]
 545	 *
 546	 * [oops, our write_to data is lost]
 547	 *
 548	 * Reversing the order of the tests ensures such a situation cannot
 549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 550	 * load is not satisfied before that of page->_count.
 551	 *
 552	 * Note that if SetPageDirty is always performed via set_page_dirty,
 553	 * and thus under tree_lock, then this ordering is not required.
 554	 */
 555	if (!page_freeze_refs(page, 2))
 556		goto cannot_free;
 557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 558	if (unlikely(PageDirty(page))) {
 559		page_unfreeze_refs(page, 2);
 560		goto cannot_free;
 561	}
 562
 563	if (PageSwapCache(page)) {
 564		swp_entry_t swap = { .val = page_private(page) };
 
 565		__delete_from_swap_cache(page);
 566		spin_unlock_irq(&mapping->tree_lock);
 567		swapcache_free(swap, page);
 568	} else {
 569		void (*freepage)(struct page *);
 
 570
 571		freepage = mapping->a_ops->freepage;
 572
 573		__delete_from_page_cache(page);
 574		spin_unlock_irq(&mapping->tree_lock);
 575		mem_cgroup_uncharge_cache_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577		if (freepage != NULL)
 578			freepage(page);
 579	}
 580
 581	return 1;
 582
 583cannot_free:
 584	spin_unlock_irq(&mapping->tree_lock);
 585	return 0;
 586}
 587
 588/*
 589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 590 * someone else has a ref on the page, abort and return 0.  If it was
 591 * successfully detached, return 1.  Assumes the caller has a single ref on
 592 * this page.
 593 */
 594int remove_mapping(struct address_space *mapping, struct page *page)
 595{
 596	if (__remove_mapping(mapping, page)) {
 597		/*
 598		 * Unfreezing the refcount with 1 rather than 2 effectively
 599		 * drops the pagecache ref for us without requiring another
 600		 * atomic operation.
 601		 */
 602		page_unfreeze_refs(page, 1);
 603		return 1;
 604	}
 605	return 0;
 606}
 607
 608/**
 609 * putback_lru_page - put previously isolated page onto appropriate LRU list
 610 * @page: page to be put back to appropriate lru list
 611 *
 612 * Add previously isolated @page to appropriate LRU list.
 613 * Page may still be unevictable for other reasons.
 614 *
 615 * lru_lock must not be held, interrupts must be enabled.
 616 */
 617void putback_lru_page(struct page *page)
 618{
 619	int lru;
 620	int active = !!TestClearPageActive(page);
 621	int was_unevictable = PageUnevictable(page);
 622
 623	VM_BUG_ON(PageLRU(page));
 624
 625redo:
 626	ClearPageUnevictable(page);
 627
 628	if (page_evictable(page, NULL)) {
 629		/*
 630		 * For evictable pages, we can use the cache.
 631		 * In event of a race, worst case is we end up with an
 632		 * unevictable page on [in]active list.
 633		 * We know how to handle that.
 634		 */
 635		lru = active + page_lru_base_type(page);
 636		lru_cache_add_lru(page, lru);
 637	} else {
 638		/*
 639		 * Put unevictable pages directly on zone's unevictable
 640		 * list.
 641		 */
 642		lru = LRU_UNEVICTABLE;
 643		add_page_to_unevictable_list(page);
 644		/*
 645		 * When racing with an mlock clearing (page is
 646		 * unlocked), make sure that if the other thread does
 647		 * not observe our setting of PG_lru and fails
 648		 * isolation, we see PG_mlocked cleared below and move
 
 649		 * the page back to the evictable list.
 650		 *
 651		 * The other side is TestClearPageMlocked().
 652		 */
 653		smp_mb();
 654	}
 655
 656	/*
 657	 * page's status can change while we move it among lru. If an evictable
 658	 * page is on unevictable list, it never be freed. To avoid that,
 659	 * check after we added it to the list, again.
 660	 */
 661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 662		if (!isolate_lru_page(page)) {
 663			put_page(page);
 664			goto redo;
 665		}
 666		/* This means someone else dropped this page from LRU
 667		 * So, it will be freed or putback to LRU again. There is
 668		 * nothing to do here.
 669		 */
 670	}
 671
 672	if (was_unevictable && lru != LRU_UNEVICTABLE)
 673		count_vm_event(UNEVICTABLE_PGRESCUED);
 674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 675		count_vm_event(UNEVICTABLE_PGCULLED);
 676
 677	put_page(page);		/* drop ref from isolate */
 678}
 679
 680enum page_references {
 681	PAGEREF_RECLAIM,
 682	PAGEREF_RECLAIM_CLEAN,
 683	PAGEREF_KEEP,
 684	PAGEREF_ACTIVATE,
 685};
 686
 687static enum page_references page_check_references(struct page *page,
 688						  struct scan_control *sc)
 689{
 690	int referenced_ptes, referenced_page;
 691	unsigned long vm_flags;
 692
 693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 
 694	referenced_page = TestClearPageReferenced(page);
 695
 696	/* Lumpy reclaim - ignore references */
 697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 698		return PAGEREF_RECLAIM;
 699
 700	/*
 701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 702	 * move the page to the unevictable list.
 703	 */
 704	if (vm_flags & VM_LOCKED)
 705		return PAGEREF_RECLAIM;
 706
 707	if (referenced_ptes) {
 708		if (PageAnon(page))
 709			return PAGEREF_ACTIVATE;
 710		/*
 711		 * All mapped pages start out with page table
 712		 * references from the instantiating fault, so we need
 713		 * to look twice if a mapped file page is used more
 714		 * than once.
 715		 *
 716		 * Mark it and spare it for another trip around the
 717		 * inactive list.  Another page table reference will
 718		 * lead to its activation.
 719		 *
 720		 * Note: the mark is set for activated pages as well
 721		 * so that recently deactivated but used pages are
 722		 * quickly recovered.
 723		 */
 724		SetPageReferenced(page);
 725
 726		if (referenced_page)
 
 
 
 
 
 
 727			return PAGEREF_ACTIVATE;
 728
 729		return PAGEREF_KEEP;
 730	}
 731
 732	/* Reclaim if clean, defer dirty pages to writeback */
 733	if (referenced_page && !PageSwapBacked(page))
 734		return PAGEREF_RECLAIM_CLEAN;
 735
 736	return PAGEREF_RECLAIM;
 737}
 738
 739static noinline_for_stack void free_page_list(struct list_head *free_pages)
 
 
 740{
 741	struct pagevec freed_pvec;
 742	struct page *page, *tmp;
 743
 744	pagevec_init(&freed_pvec, 1);
 745
 746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
 747		list_del(&page->lru);
 748		if (!pagevec_add(&freed_pvec, page)) {
 749			__pagevec_free(&freed_pvec);
 750			pagevec_reinit(&freed_pvec);
 751		}
 752	}
 753
 754	pagevec_free(&freed_pvec);
 
 
 
 
 
 
 
 
 
 
 755}
 756
 757/*
 758 * shrink_page_list() returns the number of reclaimed pages
 759 */
 760static unsigned long shrink_page_list(struct list_head *page_list,
 761				      struct zone *zone,
 762				      struct scan_control *sc)
 
 
 
 
 
 
 
 763{
 764	LIST_HEAD(ret_pages);
 765	LIST_HEAD(free_pages);
 766	int pgactivate = 0;
 
 767	unsigned long nr_dirty = 0;
 768	unsigned long nr_congested = 0;
 769	unsigned long nr_reclaimed = 0;
 
 
 770
 771	cond_resched();
 772
 773	while (!list_empty(page_list)) {
 774		enum page_references references;
 775		struct address_space *mapping;
 776		struct page *page;
 777		int may_enter_fs;
 
 
 
 
 778
 779		cond_resched();
 780
 781		page = lru_to_page(page_list);
 782		list_del(&page->lru);
 783
 784		if (!trylock_page(page))
 785			goto keep;
 786
 787		VM_BUG_ON(PageActive(page));
 788		VM_BUG_ON(page_zone(page) != zone);
 789
 790		sc->nr_scanned++;
 791
 792		if (unlikely(!page_evictable(page, NULL)))
 793			goto cull_mlocked;
 794
 795		if (!sc->may_unmap && page_mapped(page))
 796			goto keep_locked;
 797
 798		/* Double the slab pressure for mapped and swapcache pages */
 799		if (page_mapped(page) || PageSwapCache(page))
 800			sc->nr_scanned++;
 801
 802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805		if (PageWriteback(page)) {
 806			/*
 807			 * Synchronous reclaim is performed in two passes,
 808			 * first an asynchronous pass over the list to
 809			 * start parallel writeback, and a second synchronous
 810			 * pass to wait for the IO to complete.  Wait here
 811			 * for any page for which writeback has already
 812			 * started.
 813			 */
 814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 815			    may_enter_fs)
 816				wait_on_page_writeback(page);
 817			else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818				unlock_page(page);
 819				goto keep_lumpy;
 
 
 
 820			}
 821		}
 822
 823		references = page_check_references(page, sc);
 
 
 824		switch (references) {
 825		case PAGEREF_ACTIVATE:
 826			goto activate_locked;
 827		case PAGEREF_KEEP:
 828			goto keep_locked;
 829		case PAGEREF_RECLAIM:
 830		case PAGEREF_RECLAIM_CLEAN:
 831			; /* try to reclaim the page below */
 832		}
 833
 834		/*
 835		 * Anonymous process memory has backing store?
 836		 * Try to allocate it some swap space here.
 837		 */
 838		if (PageAnon(page) && !PageSwapCache(page)) {
 839			if (!(sc->gfp_mask & __GFP_IO))
 840				goto keep_locked;
 841			if (!add_to_swap(page))
 842				goto activate_locked;
 
 843			may_enter_fs = 1;
 
 
 
 
 
 
 
 844		}
 845
 846		mapping = page_mapping(page);
 847
 848		/*
 849		 * The page is mapped into the page tables of one or more
 850		 * processes. Try to unmap it here.
 851		 */
 852		if (page_mapped(page) && mapping) {
 853			switch (try_to_unmap(page, TTU_UNMAP)) {
 
 
 854			case SWAP_FAIL:
 855				goto activate_locked;
 856			case SWAP_AGAIN:
 857				goto keep_locked;
 858			case SWAP_MLOCK:
 859				goto cull_mlocked;
 
 
 860			case SWAP_SUCCESS:
 861				; /* try to free the page below */
 862			}
 863		}
 864
 865		if (PageDirty(page)) {
 866			nr_dirty++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868			if (references == PAGEREF_RECLAIM_CLEAN)
 869				goto keep_locked;
 870			if (!may_enter_fs)
 871				goto keep_locked;
 872			if (!sc->may_writepage)
 873				goto keep_locked;
 874
 875			/* Page is dirty, try to write it out here */
 
 
 
 
 
 876			switch (pageout(page, mapping, sc)) {
 877			case PAGE_KEEP:
 878				nr_congested++;
 879				goto keep_locked;
 880			case PAGE_ACTIVATE:
 881				goto activate_locked;
 882			case PAGE_SUCCESS:
 883				if (PageWriteback(page))
 884					goto keep_lumpy;
 885				if (PageDirty(page))
 886					goto keep;
 887
 888				/*
 889				 * A synchronous write - probably a ramdisk.  Go
 890				 * ahead and try to reclaim the page.
 891				 */
 892				if (!trylock_page(page))
 893					goto keep;
 894				if (PageDirty(page) || PageWriteback(page))
 895					goto keep_locked;
 896				mapping = page_mapping(page);
 897			case PAGE_CLEAN:
 898				; /* try to free the page below */
 899			}
 900		}
 901
 902		/*
 903		 * If the page has buffers, try to free the buffer mappings
 904		 * associated with this page. If we succeed we try to free
 905		 * the page as well.
 906		 *
 907		 * We do this even if the page is PageDirty().
 908		 * try_to_release_page() does not perform I/O, but it is
 909		 * possible for a page to have PageDirty set, but it is actually
 910		 * clean (all its buffers are clean).  This happens if the
 911		 * buffers were written out directly, with submit_bh(). ext3
 912		 * will do this, as well as the blockdev mapping.
 913		 * try_to_release_page() will discover that cleanness and will
 914		 * drop the buffers and mark the page clean - it can be freed.
 915		 *
 916		 * Rarely, pages can have buffers and no ->mapping.  These are
 917		 * the pages which were not successfully invalidated in
 918		 * truncate_complete_page().  We try to drop those buffers here
 919		 * and if that worked, and the page is no longer mapped into
 920		 * process address space (page_count == 1) it can be freed.
 921		 * Otherwise, leave the page on the LRU so it is swappable.
 922		 */
 923		if (page_has_private(page)) {
 924			if (!try_to_release_page(page, sc->gfp_mask))
 925				goto activate_locked;
 926			if (!mapping && page_count(page) == 1) {
 927				unlock_page(page);
 928				if (put_page_testzero(page))
 929					goto free_it;
 930				else {
 931					/*
 932					 * rare race with speculative reference.
 933					 * the speculative reference will free
 934					 * this page shortly, so we may
 935					 * increment nr_reclaimed here (and
 936					 * leave it off the LRU).
 937					 */
 938					nr_reclaimed++;
 939					continue;
 940				}
 941			}
 942		}
 943
 944		if (!mapping || !__remove_mapping(mapping, page))
 
 945			goto keep_locked;
 946
 947		/*
 948		 * At this point, we have no other references and there is
 949		 * no way to pick any more up (removed from LRU, removed
 950		 * from pagecache). Can use non-atomic bitops now (and
 951		 * we obviously don't have to worry about waking up a process
 952		 * waiting on the page lock, because there are no references.
 953		 */
 954		__clear_page_locked(page);
 955free_it:
 
 
 
 956		nr_reclaimed++;
 957
 958		/*
 959		 * Is there need to periodically free_page_list? It would
 960		 * appear not as the counts should be low
 961		 */
 962		list_add(&page->lru, &free_pages);
 963		continue;
 964
 965cull_mlocked:
 966		if (PageSwapCache(page))
 967			try_to_free_swap(page);
 968		unlock_page(page);
 969		putback_lru_page(page);
 970		reset_reclaim_mode(sc);
 971		continue;
 972
 973activate_locked:
 974		/* Not a candidate for swapping, so reclaim swap space. */
 975		if (PageSwapCache(page) && vm_swap_full())
 976			try_to_free_swap(page);
 977		VM_BUG_ON(PageActive(page));
 978		SetPageActive(page);
 979		pgactivate++;
 980keep_locked:
 981		unlock_page(page);
 982keep:
 983		reset_reclaim_mode(sc);
 984keep_lumpy:
 985		list_add(&page->lru, &ret_pages);
 986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 987	}
 988
 989	/*
 990	 * Tag a zone as congested if all the dirty pages encountered were
 991	 * backed by a congested BDI. In this case, reclaimers should just
 992	 * back off and wait for congestion to clear because further reclaim
 993	 * will encounter the same problem
 994	 */
 995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
 996		zone_set_flag(zone, ZONE_CONGESTED);
 997
 998	free_page_list(&free_pages);
 999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
 
 
 
 
 
 
1002	return nr_reclaimed;
1003}
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, int mode, int file)
1016{
1017	int ret = -EINVAL;
1018
1019	/* Only take pages on the LRU. */
1020	if (!PageLRU(page))
1021		return ret;
1022
1023	/*
1024	 * When checking the active state, we need to be sure we are
1025	 * dealing with comparible boolean values.  Take the logical not
1026	 * of each.
1027	 */
1028	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1029		return ret;
1030
1031	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1032		return ret;
1033
1034	/*
1035	 * When this function is being called for lumpy reclaim, we
1036	 * initially look into all LRU pages, active, inactive and
1037	 * unevictable; only give shrink_page_list evictable pages.
 
 
 
 
 
 
1038	 */
1039	if (PageUnevictable(page))
1040		return ret;
 
 
1041
1042	ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044	if (likely(get_page_unless_zero(page))) {
1045		/*
1046		 * Be careful not to clear PageLRU until after we're
1047		 * sure the page is not being freed elsewhere -- the
1048		 * page release code relies on it.
1049		 */
1050		ClearPageLRU(page);
1051		ret = 0;
1052	}
1053
1054	return ret;
1055}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057/*
1058 * zone->lru_lock is heavily contended.  Some of the functions that
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1061 *
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1064 *
1065 * Appropriate locks must be held before calling this function.
1066 *
1067 * @nr_to_scan:	The number of pages to look through on the list.
1068 * @src:	The LRU list to pull pages off.
1069 * @dst:	The temp list to put pages on to.
1070 * @scanned:	The number of pages that were scanned.
1071 * @order:	The caller's attempted allocation order
1072 * @mode:	One of the LRU isolation modes
1073 * @file:	True [1] if isolating file [!anon] pages
1074 *
1075 * returns how many pages were moved onto *@dst.
1076 */
1077static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1078		struct list_head *src, struct list_head *dst,
1079		unsigned long *scanned, int order, int mode, int file)
 
1080{
 
1081	unsigned long nr_taken = 0;
1082	unsigned long nr_lumpy_taken = 0;
1083	unsigned long nr_lumpy_dirty = 0;
1084	unsigned long nr_lumpy_failed = 0;
1085	unsigned long scan;
1086
1087	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
1088		struct page *page;
1089		unsigned long pfn;
1090		unsigned long end_pfn;
1091		unsigned long page_pfn;
1092		int zone_id;
1093
1094		page = lru_to_page(src);
1095		prefetchw_prev_lru_page(page, src, flags);
1096
1097		VM_BUG_ON(!PageLRU(page));
 
 
 
 
 
 
 
 
 
 
 
 
1098
1099		switch (__isolate_lru_page(page, mode, file)) {
1100		case 0:
 
 
 
1101			list_move(&page->lru, dst);
1102			mem_cgroup_del_lru(page);
1103			nr_taken += hpage_nr_pages(page);
1104			break;
1105
1106		case -EBUSY:
1107			/* else it is being freed elsewhere */
1108			list_move(&page->lru, src);
1109			mem_cgroup_rotate_lru_list(page, page_lru(page));
1110			continue;
1111
1112		default:
1113			BUG();
1114		}
 
1115
1116		if (!order)
1117			continue;
1118
1119		/*
1120		 * Attempt to take all pages in the order aligned region
1121		 * surrounding the tag page.  Only take those pages of
1122		 * the same active state as that tag page.  We may safely
1123		 * round the target page pfn down to the requested order
1124		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125		 * where that page is in a different zone we will detect
1126		 * it from its zone id and abort this block scan.
1127		 */
1128		zone_id = page_zone_id(page);
1129		page_pfn = page_to_pfn(page);
1130		pfn = page_pfn & ~((1 << order) - 1);
1131		end_pfn = pfn + (1 << order);
1132		for (; pfn < end_pfn; pfn++) {
1133			struct page *cursor_page;
1134
1135			/* The target page is in the block, ignore it. */
1136			if (unlikely(pfn == page_pfn))
1137				continue;
1138
1139			/* Avoid holes within the zone. */
1140			if (unlikely(!pfn_valid_within(pfn)))
1141				break;
1142
1143			cursor_page = pfn_to_page(pfn);
1144
1145			/* Check that we have not crossed a zone boundary. */
1146			if (unlikely(page_zone_id(cursor_page) != zone_id))
1147				break;
1148
1149			/*
1150			 * If we don't have enough swap space, reclaiming of
1151			 * anon page which don't already have a swap slot is
1152			 * pointless.
1153			 */
1154			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1155			    !PageSwapCache(cursor_page))
1156				break;
1157
1158			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1159				list_move(&cursor_page->lru, dst);
1160				mem_cgroup_del_lru(cursor_page);
1161				nr_taken += hpage_nr_pages(page);
1162				nr_lumpy_taken++;
1163				if (PageDirty(cursor_page))
1164					nr_lumpy_dirty++;
1165				scan++;
1166			} else {
1167				/*
1168				 * Check if the page is freed already.
1169				 *
1170				 * We can't use page_count() as that
1171				 * requires compound_head and we don't
1172				 * have a pin on the page here. If a
1173				 * page is tail, we may or may not
1174				 * have isolated the head, so assume
1175				 * it's not free, it'd be tricky to
1176				 * track the head status without a
1177				 * page pin.
1178				 */
1179				if (!PageTail(cursor_page) &&
1180				    !atomic_read(&cursor_page->_count))
1181					continue;
1182				break;
1183			}
1184		}
1185
1186		/* If we break out of the loop above, lumpy reclaim failed */
1187		if (pfn < end_pfn)
1188			nr_lumpy_failed++;
1189	}
1190
1191	*scanned = scan;
1192
1193	trace_mm_vmscan_lru_isolate(order,
1194			nr_to_scan, scan,
1195			nr_taken,
1196			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1197			mode);
1198	return nr_taken;
1199}
1200
1201static unsigned long isolate_pages_global(unsigned long nr,
1202					struct list_head *dst,
1203					unsigned long *scanned, int order,
1204					int mode, struct zone *z,
1205					int active, int file)
1206{
1207	int lru = LRU_BASE;
1208	if (active)
1209		lru += LRU_ACTIVE;
1210	if (file)
1211		lru += LRU_FILE;
1212	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1213								mode, file);
1214}
1215
1216/*
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1219 */
1220static unsigned long clear_active_flags(struct list_head *page_list,
1221					unsigned int *count)
1222{
1223	int nr_active = 0;
1224	int lru;
1225	struct page *page;
1226
1227	list_for_each_entry(page, page_list, lru) {
1228		int numpages = hpage_nr_pages(page);
1229		lru = page_lru_base_type(page);
1230		if (PageActive(page)) {
1231			lru += LRU_ACTIVE;
1232			ClearPageActive(page);
1233			nr_active += numpages;
1234		}
1235		if (count)
1236			count[lru] += numpages;
1237	}
1238
1239	return nr_active;
 
 
 
1240}
1241
1242/**
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1245 *
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1248 *
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1251 *
1252 * The returned page will have PageLRU() cleared.  If it was found on
1253 * the active list, it will have PageActive set.  If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1256 *
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1259 *
1260 * Restrictions:
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 *     fundamentnal difference from isolate_lru_pages (which is called
1263 *     without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1266 */
1267int isolate_lru_page(struct page *page)
1268{
1269	int ret = -EBUSY;
1270
1271	VM_BUG_ON(!page_count(page));
 
1272
1273	if (PageLRU(page)) {
1274		struct zone *zone = page_zone(page);
 
1275
1276		spin_lock_irq(&zone->lru_lock);
 
1277		if (PageLRU(page)) {
1278			int lru = page_lru(page);
1279			ret = 0;
1280			get_page(page);
1281			ClearPageLRU(page);
1282
1283			del_page_from_lru_list(zone, page, lru);
1284		}
1285		spin_unlock_irq(&zone->lru_lock);
1286	}
1287	return ret;
1288}
1289
1290/*
1291 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1292 */
1293static int too_many_isolated(struct zone *zone, int file,
1294		struct scan_control *sc)
1295{
1296	unsigned long inactive, isolated;
1297
1298	if (current_is_kswapd())
1299		return 0;
1300
1301	if (!scanning_global_lru(sc))
1302		return 0;
1303
1304	if (file) {
1305		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1306		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1307	} else {
1308		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1309		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1310	}
1311
 
 
 
 
 
 
 
 
1312	return isolated > inactive;
1313}
1314
1315/*
1316 * TODO: Try merging with migrations version of putback_lru_pages
1317 */
1318static noinline_for_stack void
1319putback_lru_pages(struct zone *zone, struct scan_control *sc,
1320				unsigned long nr_anon, unsigned long nr_file,
1321				struct list_head *page_list)
1322{
1323	struct page *page;
1324	struct pagevec pvec;
1325	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1326
1327	pagevec_init(&pvec, 1);
1328
1329	/*
1330	 * Put back any unfreeable pages.
1331	 */
1332	spin_lock(&zone->lru_lock);
1333	while (!list_empty(page_list)) {
 
1334		int lru;
1335		page = lru_to_page(page_list);
1336		VM_BUG_ON(PageLRU(page));
1337		list_del(&page->lru);
1338		if (unlikely(!page_evictable(page, NULL))) {
1339			spin_unlock_irq(&zone->lru_lock);
1340			putback_lru_page(page);
1341			spin_lock_irq(&zone->lru_lock);
1342			continue;
1343		}
 
 
 
1344		SetPageLRU(page);
1345		lru = page_lru(page);
1346		add_page_to_lru_list(zone, page, lru);
 
1347		if (is_active_lru(lru)) {
1348			int file = is_file_lru(lru);
1349			int numpages = hpage_nr_pages(page);
1350			reclaim_stat->recent_rotated[file] += numpages;
1351		}
1352		if (!pagevec_add(&pvec, page)) {
1353			spin_unlock_irq(&zone->lru_lock);
1354			__pagevec_release(&pvec);
1355			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
 
1356		}
1357	}
1358	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1359	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1360
1361	spin_unlock_irq(&zone->lru_lock);
1362	pagevec_release(&pvec);
1363}
1364
1365static noinline_for_stack void update_isolated_counts(struct zone *zone,
1366					struct scan_control *sc,
1367					unsigned long *nr_anon,
1368					unsigned long *nr_file,
1369					struct list_head *isolated_list)
1370{
1371	unsigned long nr_active;
1372	unsigned int count[NR_LRU_LISTS] = { 0, };
1373	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1374
1375	nr_active = clear_active_flags(isolated_list, count);
1376	__count_vm_events(PGDEACTIVATE, nr_active);
1377
1378	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1379			      -count[LRU_ACTIVE_FILE]);
1380	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1381			      -count[LRU_INACTIVE_FILE]);
1382	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1383			      -count[LRU_ACTIVE_ANON]);
1384	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1385			      -count[LRU_INACTIVE_ANON]);
1386
1387	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1388	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1389	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1390	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1391
1392	reclaim_stat->recent_scanned[0] += *nr_anon;
1393	reclaim_stat->recent_scanned[1] += *nr_file;
1394}
1395
1396/*
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
1398 *
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1403 */
1404static inline bool should_reclaim_stall(unsigned long nr_taken,
1405					unsigned long nr_freed,
1406					int priority,
1407					struct scan_control *sc)
1408{
1409	int lumpy_stall_priority;
 
 
 
1410
1411	/* kswapd should not stall on sync IO */
1412	if (current_is_kswapd())
1413		return false;
 
 
 
 
1414
1415	/* Only stall on lumpy reclaim */
1416	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1417		return false;
1418
1419	/* If we have relaimed everything on the isolated list, no stall */
1420	if (nr_freed == nr_taken)
1421		return false;
 
1422
1423	/*
1424	 * For high-order allocations, there are two stall thresholds.
1425	 * High-cost allocations stall immediately where as lower
1426	 * order allocations such as stacks require the scanning
1427	 * priority to be much higher before stalling.
1428	 */
1429	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1430		lumpy_stall_priority = DEF_PRIORITY;
1431	else
1432		lumpy_stall_priority = DEF_PRIORITY / 3;
1433
1434	return priority <= lumpy_stall_priority;
1435}
1436
1437/*
1438 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1439 * of reclaimed pages
1440 */
1441static noinline_for_stack unsigned long
1442shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1443			struct scan_control *sc, int priority, int file)
1444{
1445	LIST_HEAD(page_list);
1446	unsigned long nr_scanned;
1447	unsigned long nr_reclaimed = 0;
1448	unsigned long nr_taken;
1449	unsigned long nr_anon;
1450	unsigned long nr_file;
 
 
 
 
 
 
 
1451
1452	while (unlikely(too_many_isolated(zone, file, sc))) {
 
 
 
1453		congestion_wait(BLK_RW_ASYNC, HZ/10);
1454
1455		/* We are about to die and free our memory. Return now. */
1456		if (fatal_signal_pending(current))
1457			return SWAP_CLUSTER_MAX;
1458	}
1459
1460	set_reclaim_mode(priority, sc, false);
1461	lru_add_drain();
1462	spin_lock_irq(&zone->lru_lock);
1463
1464	if (scanning_global_lru(sc)) {
1465		nr_taken = isolate_pages_global(nr_to_scan,
1466			&page_list, &nr_scanned, sc->order,
1467			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1468					ISOLATE_BOTH : ISOLATE_INACTIVE,
1469			zone, 0, file);
1470		zone->pages_scanned += nr_scanned;
 
 
 
 
 
 
 
 
1471		if (current_is_kswapd())
1472			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1473					       nr_scanned);
1474		else
1475			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1476					       nr_scanned);
1477	} else {
1478		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1479			&page_list, &nr_scanned, sc->order,
1480			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1481					ISOLATE_BOTH : ISOLATE_INACTIVE,
1482			zone, sc->mem_cgroup,
1483			0, file);
1484		/*
1485		 * mem_cgroup_isolate_pages() keeps track of
1486		 * scanned pages on its own.
1487		 */
1488	}
 
1489
1490	if (nr_taken == 0) {
1491		spin_unlock_irq(&zone->lru_lock);
1492		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1493	}
1494
1495	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1496
1497	spin_unlock_irq(&zone->lru_lock);
1498
1499	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1500
1501	/* Check if we should syncronously wait for writeback */
1502	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1503		set_reclaim_mode(priority, sc, true);
1504		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1505	}
1506
1507	local_irq_disable();
1508	if (current_is_kswapd())
1509		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1510	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511
1512	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
 
 
 
 
 
 
 
1513
1514	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1515		zone_idx(zone),
1516		nr_scanned, nr_reclaimed,
1517		priority,
1518		trace_shrink_flags(file, sc->reclaim_mode));
1519	return nr_reclaimed;
1520}
1521
1522/*
1523 * This moves pages from the active list to the inactive list.
1524 *
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
1527 *
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation.  But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page.  It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1535 *
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
1538 */
1539
1540static void move_active_pages_to_lru(struct zone *zone,
1541				     struct list_head *list,
 
1542				     enum lru_list lru)
1543{
 
1544	unsigned long pgmoved = 0;
1545	struct pagevec pvec;
1546	struct page *page;
1547
1548	pagevec_init(&pvec, 1);
1549
1550	while (!list_empty(list)) {
1551		page = lru_to_page(list);
 
1552
1553		VM_BUG_ON(PageLRU(page));
1554		SetPageLRU(page);
1555
1556		list_move(&page->lru, &zone->lru[lru].list);
1557		mem_cgroup_add_lru_list(page, lru);
1558		pgmoved += hpage_nr_pages(page);
1559
1560		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1561			spin_unlock_irq(&zone->lru_lock);
1562			if (buffer_heads_over_limit)
1563				pagevec_strip(&pvec);
1564			__pagevec_release(&pvec);
1565			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
1566		}
1567	}
1568	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569	if (!is_active_lru(lru))
1570		__count_vm_events(PGDEACTIVATE, pgmoved);
1571}
1572
1573static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1574			struct scan_control *sc, int priority, int file)
 
 
1575{
1576	unsigned long nr_taken;
1577	unsigned long pgscanned;
1578	unsigned long vm_flags;
1579	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1580	LIST_HEAD(l_active);
1581	LIST_HEAD(l_inactive);
1582	struct page *page;
1583	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1584	unsigned long nr_rotated = 0;
 
 
 
1585
1586	lru_add_drain();
1587	spin_lock_irq(&zone->lru_lock);
1588	if (scanning_global_lru(sc)) {
1589		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1590						&pgscanned, sc->order,
1591						ISOLATE_ACTIVE, zone,
1592						1, file);
1593		zone->pages_scanned += pgscanned;
1594	} else {
1595		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1596						&pgscanned, sc->order,
1597						ISOLATE_ACTIVE, zone,
1598						sc->mem_cgroup, 1, file);
1599		/*
1600		 * mem_cgroup_isolate_pages() keeps track of
1601		 * scanned pages on its own.
1602		 */
1603	}
1604
 
 
 
 
 
 
 
 
 
 
 
1605	reclaim_stat->recent_scanned[file] += nr_taken;
1606
1607	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1608	if (file)
1609		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1610	else
1611		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1612	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1613	spin_unlock_irq(&zone->lru_lock);
1614
1615	while (!list_empty(&l_hold)) {
1616		cond_resched();
1617		page = lru_to_page(&l_hold);
1618		list_del(&page->lru);
1619
1620		if (unlikely(!page_evictable(page, NULL))) {
1621			putback_lru_page(page);
1622			continue;
1623		}
1624
1625		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
 
 
 
 
 
 
 
 
 
1626			nr_rotated += hpage_nr_pages(page);
1627			/*
1628			 * Identify referenced, file-backed active pages and
1629			 * give them one more trip around the active list. So
1630			 * that executable code get better chances to stay in
1631			 * memory under moderate memory pressure.  Anon pages
1632			 * are not likely to be evicted by use-once streaming
1633			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634			 * so we ignore them here.
1635			 */
1636			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1637				list_add(&page->lru, &l_active);
1638				continue;
1639			}
1640		}
1641
1642		ClearPageActive(page);	/* we are de-activating */
1643		list_add(&page->lru, &l_inactive);
1644	}
1645
1646	/*
1647	 * Move pages back to the lru list.
1648	 */
1649	spin_lock_irq(&zone->lru_lock);
1650	/*
1651	 * Count referenced pages from currently used mappings as rotated,
1652	 * even though only some of them are actually re-activated.  This
1653	 * helps balance scan pressure between file and anonymous pages in
1654	 * get_scan_ratio.
1655	 */
1656	reclaim_stat->recent_rotated[file] += nr_rotated;
1657
1658	move_active_pages_to_lru(zone, &l_active,
1659						LRU_ACTIVE + file * LRU_FILE);
1660	move_active_pages_to_lru(zone, &l_inactive,
1661						LRU_BASE   + file * LRU_FILE);
1662	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1663	spin_unlock_irq(&zone->lru_lock);
1664}
1665
1666#ifdef CONFIG_SWAP
1667static int inactive_anon_is_low_global(struct zone *zone)
1668{
1669	unsigned long active, inactive;
1670
1671	active = zone_page_state(zone, NR_ACTIVE_ANON);
1672	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1673
1674	if (inactive * zone->inactive_ratio < active)
1675		return 1;
1676
1677	return 0;
1678}
1679
1680/**
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc:   scan control of this context
1684 *
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1687 */
1688static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1689{
1690	int low;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692	/*
1693	 * If we don't have swap space, anonymous page deactivation
1694	 * is pointless.
1695	 */
1696	if (!total_swap_pages)
1697		return 0;
1698
1699	if (scanning_global_lru(sc))
1700		low = inactive_anon_is_low_global(zone);
1701	else
1702		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1703	return low;
1704}
1705#else
1706static inline int inactive_anon_is_low(struct zone *zone,
1707					struct scan_control *sc)
1708{
1709	return 0;
1710}
1711#endif
1712
1713static int inactive_file_is_low_global(struct zone *zone)
1714{
1715	unsigned long active, inactive;
1716
1717	active = zone_page_state(zone, NR_ACTIVE_FILE);
1718	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720	return (active > inactive);
1721}
1722
1723/**
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc:   scan control of this context
1727 *
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1731 *
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1734 *
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1737 */
1738static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1739{
1740	int low;
1741
1742	if (scanning_global_lru(sc))
1743		low = inactive_file_is_low_global(zone);
 
1744	else
1745		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1746	return low;
1747}
1748
1749static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1750				int file)
1751{
1752	if (file)
1753		return inactive_file_is_low(zone, sc);
1754	else
1755		return inactive_anon_is_low(zone, sc);
1756}
1757
1758static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1759	struct zone *zone, struct scan_control *sc, int priority)
1760{
1761	int file = is_file_lru(lru);
1762
1763	if (is_active_lru(lru)) {
1764		if (inactive_list_is_low(zone, sc, file))
1765		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1766		return 0;
1767	}
1768
1769	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1770}
1771
1772static int vmscan_swappiness(struct scan_control *sc)
1773{
1774	if (scanning_global_lru(sc))
1775		return vm_swappiness;
1776	return mem_cgroup_swappiness(sc->mem_cgroup);
1777}
1778
1779/*
1780 * Determine how aggressively the anon and file LRU lists should be
1781 * scanned.  The relative value of each set of LRU lists is determined
1782 * by looking at the fraction of the pages scanned we did rotate back
1783 * onto the active list instead of evict.
1784 *
1785 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1786 */
1787static void get_scan_count(struct zone *zone, struct scan_control *sc,
1788					unsigned long *nr, int priority)
1789{
1790	unsigned long anon, file, free;
 
 
 
 
 
1791	unsigned long anon_prio, file_prio;
1792	unsigned long ap, fp;
1793	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1794	u64 fraction[2], denominator;
1795	enum lru_list l;
1796	int noswap = 0;
1797	bool force_scan = false;
1798	unsigned long nr_force_scan[2];
1799
1800	/* kswapd does zone balancing and needs to scan this zone */
1801	if (scanning_global_lru(sc) && current_is_kswapd())
1802		force_scan = true;
1803	/* memcg may have small limit and need to avoid priority drop */
1804	if (!scanning_global_lru(sc))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805		force_scan = true;
1806
1807	/* If we have no swap space, do not bother scanning anon pages. */
1808	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1809		noswap = 1;
1810		fraction[0] = 0;
1811		fraction[1] = 1;
1812		denominator = 1;
1813		nr_force_scan[0] = 0;
1814		nr_force_scan[1] = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
1815		goto out;
1816	}
1817
1818	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1819		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1820	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1821		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1822
1823	if (scanning_global_lru(sc)) {
1824		free  = zone_page_state(zone, NR_FREE_PAGES);
1825		/* If we have very few page cache pages,
1826		   force-scan anon pages. */
1827		if (unlikely(file + free <= high_wmark_pages(zone))) {
1828			fraction[0] = 1;
1829			fraction[1] = 0;
1830			denominator = 1;
1831			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1832			nr_force_scan[1] = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833			goto out;
1834		}
1835	}
1836
1837	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838	 * With swappiness at 100, anonymous and file have the same priority.
1839	 * This scanning priority is essentially the inverse of IO cost.
1840	 */
1841	anon_prio = vmscan_swappiness(sc);
1842	file_prio = 200 - vmscan_swappiness(sc);
1843
1844	/*
1845	 * OK, so we have swap space and a fair amount of page cache
1846	 * pages.  We use the recently rotated / recently scanned
1847	 * ratios to determine how valuable each cache is.
1848	 *
1849	 * Because workloads change over time (and to avoid overflow)
1850	 * we keep these statistics as a floating average, which ends
1851	 * up weighing recent references more than old ones.
1852	 *
1853	 * anon in [0], file in [1]
1854	 */
1855	spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
1856	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1857		reclaim_stat->recent_scanned[0] /= 2;
1858		reclaim_stat->recent_rotated[0] /= 2;
1859	}
1860
1861	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1862		reclaim_stat->recent_scanned[1] /= 2;
1863		reclaim_stat->recent_rotated[1] /= 2;
1864	}
1865
1866	/*
1867	 * The amount of pressure on anon vs file pages is inversely
1868	 * proportional to the fraction of recently scanned pages on
1869	 * each list that were recently referenced and in active use.
1870	 */
1871	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1872	ap /= reclaim_stat->recent_rotated[0] + 1;
1873
1874	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1875	fp /= reclaim_stat->recent_rotated[1] + 1;
1876	spin_unlock_irq(&zone->lru_lock);
1877
1878	fraction[0] = ap;
1879	fraction[1] = fp;
1880	denominator = ap + fp + 1;
1881	if (force_scan) {
1882		unsigned long scan = SWAP_CLUSTER_MAX;
1883		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1884		nr_force_scan[1] = div64_u64(scan * fp, denominator);
1885	}
1886out:
1887	for_each_evictable_lru(l) {
1888		int file = is_file_lru(l);
1889		unsigned long scan;
 
 
 
 
 
 
 
 
1890
1891		scan = zone_nr_lru_pages(zone, sc, l);
1892		if (priority || noswap) {
1893			scan >>= priority;
1894			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897		/*
1898		 * If zone is small or memcg is small, nr[l] can be 0.
1899		 * This results no-scan on this priority and priority drop down.
1900		 * For global direct reclaim, it can visit next zone and tend
1901		 * not to have problems. For global kswapd, it's for zone
1902		 * balancing and it need to scan a small amounts. When using
1903		 * memcg, priority drop can cause big latency. So, it's better
1904		 * to scan small amount. See may_noscan above.
1905		 */
1906		if (!scan && force_scan)
1907			scan = nr_force_scan[file];
1908		nr[l] = scan;
 
 
 
 
 
 
 
 
1909	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910}
1911
1912/*
1913 * Reclaim/compaction depends on a number of pages being freed. To avoid
1914 * disruption to the system, a small number of order-0 pages continue to be
1915 * rotated and reclaimed in the normal fashion. However, by the time we get
1916 * back to the allocator and call try_to_compact_zone(), we ensure that
1917 * there are enough free pages for it to be likely successful
1918 */
1919static inline bool should_continue_reclaim(struct zone *zone,
1920					unsigned long nr_reclaimed,
1921					unsigned long nr_scanned,
1922					struct scan_control *sc)
1923{
1924	unsigned long pages_for_compaction;
1925	unsigned long inactive_lru_pages;
 
1926
1927	/* If not in reclaim/compaction mode, stop */
1928	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1929		return false;
1930
1931	/* Consider stopping depending on scan and reclaim activity */
1932	if (sc->gfp_mask & __GFP_REPEAT) {
1933		/*
1934		 * For __GFP_REPEAT allocations, stop reclaiming if the
1935		 * full LRU list has been scanned and we are still failing
1936		 * to reclaim pages. This full LRU scan is potentially
1937		 * expensive but a __GFP_REPEAT caller really wants to succeed
1938		 */
1939		if (!nr_reclaimed && !nr_scanned)
1940			return false;
1941	} else {
1942		/*
1943		 * For non-__GFP_REPEAT allocations which can presumably
1944		 * fail without consequence, stop if we failed to reclaim
1945		 * any pages from the last SWAP_CLUSTER_MAX number of
1946		 * pages that were scanned. This will return to the
1947		 * caller faster at the risk reclaim/compaction and
1948		 * the resulting allocation attempt fails
1949		 */
1950		if (!nr_reclaimed)
1951			return false;
1952	}
1953
1954	/*
1955	 * If we have not reclaimed enough pages for compaction and the
1956	 * inactive lists are large enough, continue reclaiming
1957	 */
1958	pages_for_compaction = (2UL << sc->order);
1959	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1960				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
 
1961	if (sc->nr_reclaimed < pages_for_compaction &&
1962			inactive_lru_pages > pages_for_compaction)
1963		return true;
1964
1965	/* If compaction would go ahead or the allocation would succeed, stop */
1966	switch (compaction_suitable(zone, sc->order)) {
1967	case COMPACT_PARTIAL:
1968	case COMPACT_CONTINUE:
1969		return false;
1970	default:
1971		return true;
 
 
 
 
 
 
 
1972	}
 
1973}
1974
1975/*
1976 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1977 */
1978static void shrink_zone(int priority, struct zone *zone,
1979				struct scan_control *sc)
1980{
1981	unsigned long nr[NR_LRU_LISTS];
1982	unsigned long nr_to_scan;
1983	enum lru_list l;
1984	unsigned long nr_reclaimed, nr_scanned;
1985	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1986
1987restart:
1988	nr_reclaimed = 0;
1989	nr_scanned = sc->nr_scanned;
1990	get_scan_count(zone, sc, nr, priority);
 
 
 
 
1991
1992	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1993					nr[LRU_INACTIVE_FILE]) {
1994		for_each_evictable_lru(l) {
1995			if (nr[l]) {
1996				nr_to_scan = min_t(unsigned long,
1997						   nr[l], SWAP_CLUSTER_MAX);
1998				nr[l] -= nr_to_scan;
1999
2000				nr_reclaimed += shrink_list(l, nr_to_scan,
2001							    zone, sc, priority);
 
 
 
 
 
 
 
 
2002			}
2003		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2004		/*
2005		 * On large memory systems, scan >> priority can become
2006		 * really large. This is fine for the starting priority;
2007		 * we want to put equal scanning pressure on each zone.
2008		 * However, if the VM has a harder time of freeing pages,
2009		 * with multiple processes reclaiming pages, the total
2010		 * freeing target can get unreasonably large.
2011		 */
2012		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2013			break;
2014	}
2015	sc->nr_reclaimed += nr_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016
2017	/*
2018	 * Even if we did not try to evict anon pages at all, we want to
2019	 * rebalance the anon lru active/inactive ratio.
 
 
 
 
 
2020	 */
2021	if (inactive_anon_is_low(zone, sc))
2022		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2023
2024	/* reclaim/compaction might need reclaim to continue */
2025	if (should_continue_reclaim(zone, nr_reclaimed,
2026					sc->nr_scanned - nr_scanned, sc))
2027		goto restart;
2028
2029	throttle_vm_writeout(sc->gfp_mask);
2030}
2031
2032/*
2033 * This is the direct reclaim path, for page-allocating processes.  We only
2034 * try to reclaim pages from zones which will satisfy the caller's allocation
2035 * request.
2036 *
2037 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2038 * Because:
2039 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2040 *    allocation or
2041 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2042 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2043 *    zone defense algorithm.
2044 *
2045 * If a zone is deemed to be full of pinned pages then just give it a light
2046 * scan then give up on it.
2047 */
2048static void shrink_zones(int priority, struct zonelist *zonelist,
2049					struct scan_control *sc)
2050{
2051	struct zoneref *z;
2052	struct zone *zone;
2053	unsigned long nr_soft_reclaimed;
2054	unsigned long nr_soft_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057					gfp_zone(sc->gfp_mask), sc->nodemask) {
2058		if (!populated_zone(zone))
2059			continue;
2060		/*
2061		 * Take care memory controller reclaiming has small influence
2062		 * to global LRU.
2063		 */
2064		if (scanning_global_lru(sc)) {
2065			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
2066				continue;
2067			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 
 
2068				continue;	/* Let kswapd poll it */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069			/*
2070			 * This steals pages from memory cgroups over softlimit
2071			 * and returns the number of reclaimed pages and
2072			 * scanned pages. This works for global memory pressure
2073			 * and balancing, not for a memcg's limit.
2074			 */
2075			nr_soft_scanned = 0;
2076			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2077						sc->order, sc->gfp_mask,
2078						&nr_soft_scanned);
2079			sc->nr_reclaimed += nr_soft_reclaimed;
2080			sc->nr_scanned += nr_soft_scanned;
2081			/* need some check for avoid more shrink_zone() */
2082		}
2083
2084		shrink_zone(priority, zone, sc);
2085	}
2086}
2087
2088static bool zone_reclaimable(struct zone *zone)
2089{
2090	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2091}
2092
2093/* All zones in zonelist are unreclaimable? */
2094static bool all_unreclaimable(struct zonelist *zonelist,
2095		struct scan_control *sc)
2096{
2097	struct zoneref *z;
2098	struct zone *zone;
2099
2100	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2101			gfp_zone(sc->gfp_mask), sc->nodemask) {
2102		if (!populated_zone(zone))
2103			continue;
2104		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105			continue;
2106		if (!zone->all_unreclaimable)
2107			return false;
2108	}
2109
2110	return true;
 
 
 
 
2111}
2112
2113/*
2114 * This is the main entry point to direct page reclaim.
2115 *
2116 * If a full scan of the inactive list fails to free enough memory then we
2117 * are "out of memory" and something needs to be killed.
2118 *
2119 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2120 * high - the zone may be full of dirty or under-writeback pages, which this
2121 * caller can't do much about.  We kick the writeback threads and take explicit
2122 * naps in the hope that some of these pages can be written.  But if the
2123 * allocating task holds filesystem locks which prevent writeout this might not
2124 * work, and the allocation attempt will fail.
2125 *
2126 * returns:	0, if no pages reclaimed
2127 * 		else, the number of pages reclaimed
2128 */
2129static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2130					struct scan_control *sc,
2131					struct shrink_control *shrink)
2132{
2133	int priority;
2134	unsigned long total_scanned = 0;
2135	struct reclaim_state *reclaim_state = current->reclaim_state;
2136	struct zoneref *z;
2137	struct zone *zone;
2138	unsigned long writeback_threshold;
2139
2140	get_mems_allowed();
2141	delayacct_freepages_start();
2142
2143	if (scanning_global_lru(sc))
2144		count_vm_event(ALLOCSTALL);
2145
2146	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 
 
2147		sc->nr_scanned = 0;
2148		if (!priority)
2149			disable_swap_token(sc->mem_cgroup);
2150		shrink_zones(priority, zonelist, sc);
2151		/*
2152		 * Don't shrink slabs when reclaiming memory from
2153		 * over limit cgroups
2154		 */
2155		if (scanning_global_lru(sc)) {
2156			unsigned long lru_pages = 0;
2157			for_each_zone_zonelist(zone, z, zonelist,
2158					gfp_zone(sc->gfp_mask)) {
2159				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2160					continue;
2161
2162				lru_pages += zone_reclaimable_pages(zone);
2163			}
2164
2165			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2166			if (reclaim_state) {
2167				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2168				reclaim_state->reclaimed_slab = 0;
2169			}
2170		}
2171		total_scanned += sc->nr_scanned;
2172		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2173			goto out;
 
 
 
 
 
 
 
 
 
 
2174
2175		/*
2176		 * Try to write back as many pages as we just scanned.  This
2177		 * tends to cause slow streaming writers to write data to the
2178		 * disk smoothly, at the dirtying rate, which is nice.   But
2179		 * that's undesirable in laptop mode, where we *want* lumpy
2180		 * writeout.  So in laptop mode, write out the whole world.
2181		 */
2182		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2183		if (total_scanned > writeback_threshold) {
2184			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
 
2185			sc->may_writepage = 1;
2186		}
 
2187
2188		/* Take a nap, wait for some writeback to complete */
2189		if (!sc->hibernation_mode && sc->nr_scanned &&
2190		    priority < DEF_PRIORITY - 2) {
2191			struct zone *preferred_zone;
2192
2193			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2194						&cpuset_current_mems_allowed,
2195						&preferred_zone);
2196			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2197		}
2198	}
2199
2200out:
2201	delayacct_freepages_end();
2202	put_mems_allowed();
2203
2204	if (sc->nr_reclaimed)
2205		return sc->nr_reclaimed;
2206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207	/*
2208	 * As hibernation is going on, kswapd is freezed so that it can't mark
2209	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2210	 * check.
 
 
2211	 */
2212	if (oom_killer_disabled)
2213		return 0;
2214
2215	/* top priority shrink_zones still had more to do? don't OOM, then */
2216	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2217		return 1;
 
 
 
2218
2219	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220}
2221
2222unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2223				gfp_t gfp_mask, nodemask_t *nodemask)
2224{
2225	unsigned long nr_reclaimed;
2226	struct scan_control sc = {
2227		.gfp_mask = gfp_mask,
2228		.may_writepage = !laptop_mode,
2229		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2230		.may_unmap = 1,
2231		.may_swap = 1,
2232		.order = order,
2233		.mem_cgroup = NULL,
2234		.nodemask = nodemask,
 
 
 
 
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
 
 
 
 
 
2239
2240	trace_mm_vmscan_direct_reclaim_begin(order,
2241				sc.may_writepage,
2242				gfp_mask);
 
2243
2244	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2245
2246	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2247
2248	return nr_reclaimed;
2249}
2250
2251#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2252
2253unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2254						gfp_t gfp_mask, bool noswap,
2255						struct zone *zone,
2256						unsigned long *nr_scanned)
2257{
2258	struct scan_control sc = {
2259		.nr_scanned = 0,
2260		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2261		.may_writepage = !laptop_mode,
2262		.may_unmap = 1,
 
2263		.may_swap = !noswap,
2264		.order = 0,
2265		.mem_cgroup = mem,
2266	};
 
2267
2268	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2269			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2270
2271	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2272						      sc.may_writepage,
2273						      sc.gfp_mask);
 
2274
2275	/*
2276	 * NOTE: Although we can get the priority field, using it
2277	 * here is not a good idea, since it limits the pages we can scan.
2278	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2279	 * will pick up pages from other mem cgroup's as well. We hack
2280	 * the priority and make it zero.
2281	 */
2282	shrink_zone(0, zone, &sc);
2283
2284	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2285
2286	*nr_scanned = sc.nr_scanned;
2287	return sc.nr_reclaimed;
2288}
2289
2290unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
 
2291					   gfp_t gfp_mask,
2292					   bool noswap)
2293{
2294	struct zonelist *zonelist;
2295	unsigned long nr_reclaimed;
2296	int nid;
2297	struct scan_control sc = {
2298		.may_writepage = !laptop_mode,
2299		.may_unmap = 1,
2300		.may_swap = !noswap,
2301		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2302		.order = 0,
2303		.mem_cgroup = mem_cont,
2304		.nodemask = NULL, /* we don't care the placement */
2305		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307	};
2308	struct shrink_control shrink = {
2309		.gfp_mask = sc.gfp_mask,
 
 
 
2310	};
2311
2312	/*
2313	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314	 * take care of from where we get pages. So the node where we start the
2315	 * scan does not need to be the current node.
2316	 */
2317	nid = mem_cgroup_select_victim_node(mem_cont);
2318
2319	zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321	trace_mm_vmscan_memcg_reclaim_begin(0,
2322					    sc.may_writepage,
2323					    sc.gfp_mask);
 
2324
2325	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
 
 
2326
2327	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2328
2329	return nr_reclaimed;
2330}
2331#endif
2332
2333/*
2334 * pgdat_balanced is used when checking if a node is balanced for high-order
2335 * allocations. Only zones that meet watermarks and are in a zone allowed
2336 * by the callers classzone_idx are added to balanced_pages. The total of
2337 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2338 * for the node to be considered balanced. Forcing all zones to be balanced
2339 * for high orders can cause excessive reclaim when there are imbalanced zones.
2340 * The choice of 25% is due to
2341 *   o a 16M DMA zone that is balanced will not balance a zone on any
2342 *     reasonable sized machine
2343 *   o On all other machines, the top zone must be at least a reasonable
2344 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2345 *     would need to be at least 256M for it to be balance a whole node.
2346 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2347 *     to balance a node on its own. These seemed like reasonable ratios.
2348 */
2349static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2350						int classzone_idx)
2351{
2352	unsigned long present_pages = 0;
2353	int i;
 
 
 
 
 
 
2354
2355	for (i = 0; i <= classzone_idx; i++)
2356		present_pages += pgdat->node_zones[i].present_pages;
 
2357
2358	/* A special case here: if zone has no page, we think it's balanced */
2359	return balanced_pages >= (present_pages >> 2);
2360}
2361
2362/* is kswapd sleeping prematurely? */
2363static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2364					int classzone_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2365{
2366	int i;
2367	unsigned long balanced = 0;
2368	bool all_zones_ok = true;
2369
2370	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2371	if (remaining)
2372		return true;
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374	/* Check the watermark levels */
2375	for (i = 0; i <= classzone_idx; i++) {
2376		struct zone *zone = pgdat->node_zones + i;
2377
2378		if (!populated_zone(zone))
2379			continue;
2380
2381		/*
2382		 * balance_pgdat() skips over all_unreclaimable after
2383		 * DEF_PRIORITY. Effectively, it considers them balanced so
2384		 * they must be considered balanced here as well if kswapd
2385		 * is to sleep
2386		 */
2387		if (zone->all_unreclaimable) {
2388			balanced += zone->present_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389			continue;
2390		}
2391
2392		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2393							i, 0))
2394			all_zones_ok = false;
2395		else
2396			balanced += zone->present_pages;
2397	}
2398
2399	/*
2400	 * For high-order requests, the balanced zones must contain at least
2401	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2402	 * must be balanced
2403	 */
2404	if (order)
2405		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2406	else
2407		return !all_zones_ok;
 
 
 
 
 
 
 
 
 
2408}
2409
2410/*
2411 * For kswapd, balance_pgdat() will work across all this node's zones until
2412 * they are all at high_wmark_pages(zone).
 
2413 *
2414 * Returns the final order kswapd was reclaiming at
2415 *
2416 * There is special handling here for zones which are full of pinned pages.
2417 * This can happen if the pages are all mlocked, or if they are all used by
2418 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2419 * What we do is to detect the case where all pages in the zone have been
2420 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2421 * dead and from now on, only perform a short scan.  Basically we're polling
2422 * the zone for when the problem goes away.
2423 *
2424 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2425 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2426 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2427 * lower zones regardless of the number of free pages in the lower zones. This
2428 * interoperates with the page allocator fallback scheme to ensure that aging
2429 * of pages is balanced across the zones.
2430 */
2431static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2432							int *classzone_idx)
2433{
2434	int all_zones_ok;
2435	unsigned long balanced;
2436	int priority;
2437	int i;
2438	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2439	unsigned long total_scanned;
2440	struct reclaim_state *reclaim_state = current->reclaim_state;
2441	unsigned long nr_soft_reclaimed;
2442	unsigned long nr_soft_scanned;
 
2443	struct scan_control sc = {
2444		.gfp_mask = GFP_KERNEL,
 
 
 
2445		.may_unmap = 1,
2446		.may_swap = 1,
2447		/*
2448		 * kswapd doesn't want to be bailed out while reclaim. because
2449		 * we want to put equal scanning pressure on each zone.
2450		 */
2451		.nr_to_reclaim = ULONG_MAX,
2452		.order = order,
2453		.mem_cgroup = NULL,
2454	};
2455	struct shrink_control shrink = {
2456		.gfp_mask = sc.gfp_mask,
2457	};
2458loop_again:
2459	total_scanned = 0;
2460	sc.nr_reclaimed = 0;
2461	sc.may_writepage = !laptop_mode;
2462	count_vm_event(PAGEOUTRUN);
2463
2464	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2465		unsigned long lru_pages = 0;
2466		int has_under_min_watermark_zone = 0;
2467
2468		/* The swap token gets in the way of swapout... */
2469		if (!priority)
2470			disable_swap_token(NULL);
2471
2472		all_zones_ok = 1;
2473		balanced = 0;
2474
2475		/*
2476		 * Scan in the highmem->dma direction for the highest
2477		 * zone which needs scanning
2478		 */
2479		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2480			struct zone *zone = pgdat->node_zones + i;
2481
2482			if (!populated_zone(zone))
2483				continue;
2484
2485			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2486				continue;
 
 
 
2487
2488			/*
2489			 * Do some background aging of the anon list, to give
2490			 * pages a chance to be referenced before reclaiming.
2491			 */
2492			if (inactive_anon_is_low(zone, &sc))
2493				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2494							&sc, priority, 0);
2495
2496			if (!zone_watermark_ok_safe(zone, order,
2497					high_wmark_pages(zone), 0, 0)) {
2498				end_zone = i;
2499				break;
2500			} else {
2501				/* If balanced, clear the congested flag */
2502				zone_clear_flag(zone, ZONE_CONGESTED);
2503			}
2504		}
2505		if (i < 0)
2506			goto out;
2507
2508		for (i = 0; i <= end_zone; i++) {
2509			struct zone *zone = pgdat->node_zones + i;
2510
2511			lru_pages += zone_reclaimable_pages(zone);
2512		}
2513
2514		/*
2515		 * Now scan the zone in the dma->highmem direction, stopping
2516		 * at the last zone which needs scanning.
2517		 *
2518		 * We do this because the page allocator works in the opposite
2519		 * direction.  This prevents the page allocator from allocating
2520		 * pages behind kswapd's direction of progress, which would
2521		 * cause too much scanning of the lower zones.
2522		 */
2523		for (i = 0; i <= end_zone; i++) {
2524			struct zone *zone = pgdat->node_zones + i;
2525			int nr_slab;
2526			unsigned long balance_gap;
2527
2528			if (!populated_zone(zone))
2529				continue;
2530
2531			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2532				continue;
2533
2534			sc.nr_scanned = 0;
2535
2536			nr_soft_scanned = 0;
2537			/*
2538			 * Call soft limit reclaim before calling shrink_zone.
2539			 */
2540			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2541							order, sc.gfp_mask,
2542							&nr_soft_scanned);
2543			sc.nr_reclaimed += nr_soft_reclaimed;
2544			total_scanned += nr_soft_scanned;
2545
2546			/*
2547			 * We put equal pressure on every zone, unless
2548			 * one zone has way too many pages free
2549			 * already. The "too many pages" is defined
2550			 * as the high wmark plus a "gap" where the
2551			 * gap is either the low watermark or 1%
2552			 * of the zone, whichever is smaller.
2553			 */
2554			balance_gap = min(low_wmark_pages(zone),
2555				(zone->present_pages +
2556					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2557				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2558			if (!zone_watermark_ok_safe(zone, order,
2559					high_wmark_pages(zone) + balance_gap,
2560					end_zone, 0)) {
2561				shrink_zone(priority, zone, &sc);
2562
2563				reclaim_state->reclaimed_slab = 0;
2564				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2565				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2566				total_scanned += sc.nr_scanned;
2567
2568				if (nr_slab == 0 && !zone_reclaimable(zone))
2569					zone->all_unreclaimable = 1;
2570			}
2571
2572			/*
2573			 * If we've done a decent amount of scanning and
2574			 * the reclaim ratio is low, start doing writepage
2575			 * even in laptop mode
2576			 */
2577			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2578			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2579				sc.may_writepage = 1;
2580
2581			if (zone->all_unreclaimable) {
2582				if (end_zone && end_zone == i)
2583					end_zone--;
2584				continue;
2585			}
2586
2587			if (!zone_watermark_ok_safe(zone, order,
2588					high_wmark_pages(zone), end_zone, 0)) {
2589				all_zones_ok = 0;
2590				/*
2591				 * We are still under min water mark.  This
2592				 * means that we have a GFP_ATOMIC allocation
2593				 * failure risk. Hurry up!
2594				 */
2595				if (!zone_watermark_ok_safe(zone, order,
2596					    min_wmark_pages(zone), end_zone, 0))
2597					has_under_min_watermark_zone = 1;
2598			} else {
2599				/*
2600				 * If a zone reaches its high watermark,
2601				 * consider it to be no longer congested. It's
2602				 * possible there are dirty pages backed by
2603				 * congested BDIs but as pressure is relieved,
2604				 * spectulatively avoid congestion waits
2605				 */
2606				zone_clear_flag(zone, ZONE_CONGESTED);
2607				if (i <= *classzone_idx)
2608					balanced += zone->present_pages;
2609			}
2610
2611		}
2612		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2613			break;		/* kswapd: all done */
2614		/*
2615		 * OK, kswapd is getting into trouble.  Take a nap, then take
2616		 * another pass across the zones.
 
 
2617		 */
2618		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2619			if (has_under_min_watermark_zone)
2620				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2621			else
2622				congestion_wait(BLK_RW_ASYNC, HZ/10);
2623		}
2624
2625		/*
2626		 * We do this so kswapd doesn't build up large priorities for
2627		 * example when it is freeing in parallel with allocators. It
2628		 * matches the direct reclaim path behaviour in terms of impact
2629		 * on zone->*_priority.
2630		 */
2631		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2632			break;
2633	}
2634out:
2635
2636	/*
2637	 * order-0: All zones must meet high watermark for a balanced node
2638	 * high-order: Balanced zones must make up at least 25% of the node
2639	 *             for the node to be balanced
2640	 */
2641	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2642		cond_resched();
2643
2644		try_to_freeze();
 
 
 
 
 
2645
2646		/*
2647		 * Fragmentation may mean that the system cannot be
2648		 * rebalanced for high-order allocations in all zones.
2649		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2650		 * it means the zones have been fully scanned and are still
2651		 * not balanced. For high-order allocations, there is
2652		 * little point trying all over again as kswapd may
2653		 * infinite loop.
2654		 *
2655		 * Instead, recheck all watermarks at order-0 as they
2656		 * are the most important. If watermarks are ok, kswapd will go
2657		 * back to sleep. High-order users can still perform direct
2658		 * reclaim if they wish.
2659		 */
2660		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2661			order = sc.order = 0;
2662
2663		goto loop_again;
2664	}
2665
2666	/*
2667	 * If kswapd was reclaiming at a higher order, it has the option of
2668	 * sleeping without all zones being balanced. Before it does, it must
2669	 * ensure that the watermarks for order-0 on *all* zones are met and
2670	 * that the congestion flags are cleared. The congestion flag must
2671	 * be cleared as kswapd is the only mechanism that clears the flag
2672	 * and it is potentially going to sleep here.
2673	 */
2674	if (order) {
2675		for (i = 0; i <= end_zone; i++) {
2676			struct zone *zone = pgdat->node_zones + i;
2677
2678			if (!populated_zone(zone))
2679				continue;
2680
2681			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2682				continue;
 
 
 
 
 
 
2683
2684			/* Confirm the zone is balanced for order-0 */
2685			if (!zone_watermark_ok(zone, 0,
2686					high_wmark_pages(zone), 0, 0)) {
2687				order = sc.order = 0;
2688				goto loop_again;
2689			}
2690
2691			/* If balanced, clear the congested flag */
2692			zone_clear_flag(zone, ZONE_CONGESTED);
2693		}
2694	}
 
 
 
2695
 
2696	/*
2697	 * Return the order we were reclaiming at so sleeping_prematurely()
2698	 * makes a decision on the order we were last reclaiming at. However,
2699	 * if another caller entered the allocator slow path while kswapd
2700	 * was awake, order will remain at the higher level
2701	 */
2702	*classzone_idx = end_zone;
2703	return order;
2704}
2705
2706static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
2707{
2708	long remaining = 0;
2709	DEFINE_WAIT(wait);
2710
2711	if (freezing(current) || kthread_should_stop())
2712		return;
2713
2714	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2715
2716	/* Try to sleep for a short interval */
2717	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718		remaining = schedule_timeout(HZ/10);
 
 
 
 
 
 
 
 
 
 
 
2719		finish_wait(&pgdat->kswapd_wait, &wait);
2720		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721	}
2722
2723	/*
2724	 * After a short sleep, check if it was a premature sleep. If not, then
2725	 * go fully to sleep until explicitly woken up.
2726	 */
2727	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
 
2728		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2729
2730		/*
2731		 * vmstat counters are not perfectly accurate and the estimated
2732		 * value for counters such as NR_FREE_PAGES can deviate from the
2733		 * true value by nr_online_cpus * threshold. To avoid the zone
2734		 * watermarks being breached while under pressure, we reduce the
2735		 * per-cpu vmstat threshold while kswapd is awake and restore
2736		 * them before going back to sleep.
2737		 */
2738		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2739		schedule();
 
 
 
2740		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2741	} else {
2742		if (remaining)
2743			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2744		else
2745			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2746	}
2747	finish_wait(&pgdat->kswapd_wait, &wait);
2748}
2749
2750/*
2751 * The background pageout daemon, started as a kernel thread
2752 * from the init process.
2753 *
2754 * This basically trickles out pages so that we have _some_
2755 * free memory available even if there is no other activity
2756 * that frees anything up. This is needed for things like routing
2757 * etc, where we otherwise might have all activity going on in
2758 * asynchronous contexts that cannot page things out.
2759 *
2760 * If there are applications that are active memory-allocators
2761 * (most normal use), this basically shouldn't matter.
2762 */
2763static int kswapd(void *p)
2764{
2765	unsigned long order, new_order;
2766	int classzone_idx, new_classzone_idx;
2767	pg_data_t *pgdat = (pg_data_t*)p;
2768	struct task_struct *tsk = current;
2769
2770	struct reclaim_state reclaim_state = {
2771		.reclaimed_slab = 0,
2772	};
2773	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2774
2775	lockdep_set_current_reclaim_state(GFP_KERNEL);
2776
2777	if (!cpumask_empty(cpumask))
2778		set_cpus_allowed_ptr(tsk, cpumask);
2779	current->reclaim_state = &reclaim_state;
2780
2781	/*
2782	 * Tell the memory management that we're a "memory allocator",
2783	 * and that if we need more memory we should get access to it
2784	 * regardless (see "__alloc_pages()"). "kswapd" should
2785	 * never get caught in the normal page freeing logic.
2786	 *
2787	 * (Kswapd normally doesn't need memory anyway, but sometimes
2788	 * you need a small amount of memory in order to be able to
2789	 * page out something else, and this flag essentially protects
2790	 * us from recursively trying to free more memory as we're
2791	 * trying to free the first piece of memory in the first place).
2792	 */
2793	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2794	set_freezable();
2795
2796	order = new_order = 0;
2797	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2798	for ( ; ; ) {
2799		int ret;
2800
2801		/*
2802		 * If the last balance_pgdat was unsuccessful it's unlikely a
2803		 * new request of a similar or harder type will succeed soon
2804		 * so consider going to sleep on the basis we reclaimed at
2805		 */
2806		if (classzone_idx >= new_classzone_idx && order == new_order) {
2807			new_order = pgdat->kswapd_max_order;
2808			new_classzone_idx = pgdat->classzone_idx;
2809			pgdat->kswapd_max_order =  0;
2810			pgdat->classzone_idx = pgdat->nr_zones - 1;
2811		}
2812
2813		if (order < new_order || classzone_idx > new_classzone_idx) {
2814			/*
2815			 * Don't sleep if someone wants a larger 'order'
2816			 * allocation or has tigher zone constraints
2817			 */
2818			order = new_order;
2819			classzone_idx = new_classzone_idx;
2820		} else {
2821			kswapd_try_to_sleep(pgdat, order, classzone_idx);
2822			order = pgdat->kswapd_max_order;
2823			classzone_idx = pgdat->classzone_idx;
2824			pgdat->kswapd_max_order = 0;
2825			pgdat->classzone_idx = pgdat->nr_zones - 1;
2826		}
2827
2828		ret = try_to_freeze();
2829		if (kthread_should_stop())
2830			break;
2831
2832		/*
2833		 * We can speed up thawing tasks if we don't call balance_pgdat
2834		 * after returning from the refrigerator
2835		 */
2836		if (!ret) {
2837			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2838			order = balance_pgdat(pgdat, order, &classzone_idx);
2839		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840	}
 
 
 
 
 
2841	return 0;
2842}
2843
2844/*
2845 * A zone is low on free memory, so wake its kswapd task to service it.
2846 */
2847void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2848{
2849	pg_data_t *pgdat;
 
2850
2851	if (!populated_zone(zone))
2852		return;
2853
2854	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2855		return;
2856	pgdat = zone->zone_pgdat;
2857	if (pgdat->kswapd_max_order < order) {
2858		pgdat->kswapd_max_order = order;
2859		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2860	}
2861	if (!waitqueue_active(&pgdat->kswapd_wait))
2862		return;
2863	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2864		return;
2865
2866	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2867	wake_up_interruptible(&pgdat->kswapd_wait);
2868}
2869
2870/*
2871 * The reclaimable count would be mostly accurate.
2872 * The less reclaimable pages may be
2873 * - mlocked pages, which will be moved to unevictable list when encountered
2874 * - mapped pages, which may require several travels to be reclaimed
2875 * - dirty pages, which is not "instantly" reclaimable
2876 */
2877unsigned long global_reclaimable_pages(void)
2878{
2879	int nr;
2880
2881	nr = global_page_state(NR_ACTIVE_FILE) +
2882	     global_page_state(NR_INACTIVE_FILE);
2883
2884	if (nr_swap_pages > 0)
2885		nr += global_page_state(NR_ACTIVE_ANON) +
2886		      global_page_state(NR_INACTIVE_ANON);
2887
2888	return nr;
2889}
2890
2891unsigned long zone_reclaimable_pages(struct zone *zone)
2892{
2893	int nr;
2894
2895	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2896	     zone_page_state(zone, NR_INACTIVE_FILE);
 
 
 
2897
2898	if (nr_swap_pages > 0)
2899		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2900		      zone_page_state(zone, NR_INACTIVE_ANON);
2901
2902	return nr;
 
2903}
2904
2905#ifdef CONFIG_HIBERNATION
2906/*
2907 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2908 * freed pages.
2909 *
2910 * Rather than trying to age LRUs the aim is to preserve the overall
2911 * LRU order by reclaiming preferentially
2912 * inactive > active > active referenced > active mapped
2913 */
2914unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2915{
2916	struct reclaim_state reclaim_state;
2917	struct scan_control sc = {
 
2918		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2919		.may_swap = 1,
2920		.may_unmap = 1,
2921		.may_writepage = 1,
2922		.nr_to_reclaim = nr_to_reclaim,
 
2923		.hibernation_mode = 1,
2924		.order = 0,
2925	};
2926	struct shrink_control shrink = {
2927		.gfp_mask = sc.gfp_mask,
2928	};
2929	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2930	struct task_struct *p = current;
2931	unsigned long nr_reclaimed;
2932
2933	p->flags |= PF_MEMALLOC;
2934	lockdep_set_current_reclaim_state(sc.gfp_mask);
2935	reclaim_state.reclaimed_slab = 0;
2936	p->reclaim_state = &reclaim_state;
2937
2938	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2939
2940	p->reclaim_state = NULL;
2941	lockdep_clear_current_reclaim_state();
2942	p->flags &= ~PF_MEMALLOC;
2943
2944	return nr_reclaimed;
2945}
2946#endif /* CONFIG_HIBERNATION */
2947
2948/* It's optimal to keep kswapds on the same CPUs as their memory, but
2949   not required for correctness.  So if the last cpu in a node goes
2950   away, we get changed to run anywhere: as the first one comes back,
2951   restore their cpu bindings. */
2952static int __devinit cpu_callback(struct notifier_block *nfb,
2953				  unsigned long action, void *hcpu)
2954{
2955	int nid;
2956
2957	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2958		for_each_node_state(nid, N_HIGH_MEMORY) {
2959			pg_data_t *pgdat = NODE_DATA(nid);
2960			const struct cpumask *mask;
2961
2962			mask = cpumask_of_node(pgdat->node_id);
2963
2964			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2965				/* One of our CPUs online: restore mask */
2966				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2967		}
2968	}
2969	return NOTIFY_OK;
2970}
2971
2972/*
2973 * This kswapd start function will be called by init and node-hot-add.
2974 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2975 */
2976int kswapd_run(int nid)
2977{
2978	pg_data_t *pgdat = NODE_DATA(nid);
2979	int ret = 0;
2980
2981	if (pgdat->kswapd)
2982		return 0;
2983
2984	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2985	if (IS_ERR(pgdat->kswapd)) {
2986		/* failure at boot is fatal */
2987		BUG_ON(system_state == SYSTEM_BOOTING);
2988		printk("Failed to start kswapd on node %d\n",nid);
2989		ret = -1;
 
2990	}
2991	return ret;
2992}
2993
2994/*
2995 * Called by memory hotplug when all memory in a node is offlined.
 
2996 */
2997void kswapd_stop(int nid)
2998{
2999	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3000
3001	if (kswapd)
3002		kthread_stop(kswapd);
 
 
3003}
3004
3005static int __init kswapd_init(void)
3006{
3007	int nid;
3008
3009	swap_setup();
3010	for_each_node_state(nid, N_HIGH_MEMORY)
3011 		kswapd_run(nid);
3012	hotcpu_notifier(cpu_callback, 0);
 
 
 
3013	return 0;
3014}
3015
3016module_init(kswapd_init)
3017
3018#ifdef CONFIG_NUMA
3019/*
3020 * Zone reclaim mode
3021 *
3022 * If non-zero call zone_reclaim when the number of free pages falls below
3023 * the watermarks.
3024 */
3025int zone_reclaim_mode __read_mostly;
3026
3027#define RECLAIM_OFF 0
3028#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3029#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3030#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3031
3032/*
3033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3035 * a zone.
3036 */
3037#define ZONE_RECLAIM_PRIORITY 4
3038
3039/*
3040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3041 * occur.
3042 */
3043int sysctl_min_unmapped_ratio = 1;
3044
3045/*
3046 * If the number of slab pages in a zone grows beyond this percentage then
3047 * slab reclaim needs to occur.
3048 */
3049int sysctl_min_slab_ratio = 5;
3050
3051static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3052{
3053	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3054	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3055		zone_page_state(zone, NR_ACTIVE_FILE);
3056
3057	/*
3058	 * It's possible for there to be more file mapped pages than
3059	 * accounted for by the pages on the file LRU lists because
3060	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3061	 */
3062	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3063}
3064
3065/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3066static long zone_pagecache_reclaimable(struct zone *zone)
3067{
3068	long nr_pagecache_reclaimable;
3069	long delta = 0;
3070
3071	/*
3072	 * If RECLAIM_SWAP is set, then all file pages are considered
3073	 * potentially reclaimable. Otherwise, we have to worry about
3074	 * pages like swapcache and zone_unmapped_file_pages() provides
3075	 * a better estimate
3076	 */
3077	if (zone_reclaim_mode & RECLAIM_SWAP)
3078		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3079	else
3080		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3081
3082	/* If we can't clean pages, remove dirty pages from consideration */
3083	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3084		delta += zone_page_state(zone, NR_FILE_DIRTY);
3085
3086	/* Watch for any possible underflows due to delta */
3087	if (unlikely(delta > nr_pagecache_reclaimable))
3088		delta = nr_pagecache_reclaimable;
3089
3090	return nr_pagecache_reclaimable - delta;
3091}
3092
3093/*
3094 * Try to free up some pages from this zone through reclaim.
3095 */
3096static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3097{
3098	/* Minimum pages needed in order to stay on node */
3099	const unsigned long nr_pages = 1 << order;
3100	struct task_struct *p = current;
3101	struct reclaim_state reclaim_state;
3102	int priority;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
 
 
 
 
 
3111	};
3112	struct shrink_control shrink = {
3113		.gfp_mask = sc.gfp_mask,
3114	};
3115	unsigned long nr_slab_pages0, nr_slab_pages1;
3116
3117	cond_resched();
3118	/*
3119	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3120	 * and we also need to be able to write out pages for RECLAIM_WRITE
3121	 * and RECLAIM_SWAP.
3122	 */
3123	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3124	lockdep_set_current_reclaim_state(gfp_mask);
3125	reclaim_state.reclaimed_slab = 0;
3126	p->reclaim_state = &reclaim_state;
3127
3128	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3129		/*
3130		 * Free memory by calling shrink zone with increasing
3131		 * priorities until we have enough memory freed.
3132		 */
3133		priority = ZONE_RECLAIM_PRIORITY;
3134		do {
3135			shrink_zone(priority, zone, &sc);
3136			priority--;
3137		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3138	}
3139
3140	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3141	if (nr_slab_pages0 > zone->min_slab_pages) {
3142		/*
3143		 * shrink_slab() does not currently allow us to determine how
3144		 * many pages were freed in this zone. So we take the current
3145		 * number of slab pages and shake the slab until it is reduced
3146		 * by the same nr_pages that we used for reclaiming unmapped
3147		 * pages.
3148		 *
3149		 * Note that shrink_slab will free memory on all zones and may
3150		 * take a long time.
3151		 */
3152		for (;;) {
3153			unsigned long lru_pages = zone_reclaimable_pages(zone);
3154
3155			/* No reclaimable slab or very low memory pressure */
3156			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3157				break;
3158
3159			/* Freed enough memory */
3160			nr_slab_pages1 = zone_page_state(zone,
3161							NR_SLAB_RECLAIMABLE);
3162			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3163				break;
3164		}
3165
3166		/*
3167		 * Update nr_reclaimed by the number of slab pages we
3168		 * reclaimed from this zone.
3169		 */
3170		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3171		if (nr_slab_pages1 < nr_slab_pages0)
3172			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3173	}
3174
3175	p->reclaim_state = NULL;
3176	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3177	lockdep_clear_current_reclaim_state();
3178	return sc.nr_reclaimed >= nr_pages;
3179}
3180
3181int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3182{
3183	int node_id;
3184	int ret;
3185
3186	/*
3187	 * Zone reclaim reclaims unmapped file backed pages and
3188	 * slab pages if we are over the defined limits.
3189	 *
3190	 * A small portion of unmapped file backed pages is needed for
3191	 * file I/O otherwise pages read by file I/O will be immediately
3192	 * thrown out if the zone is overallocated. So we do not reclaim
3193	 * if less than a specified percentage of the zone is used by
3194	 * unmapped file backed pages.
3195	 */
3196	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3197	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3198		return ZONE_RECLAIM_FULL;
3199
3200	if (zone->all_unreclaimable)
3201		return ZONE_RECLAIM_FULL;
3202
3203	/*
3204	 * Do not scan if the allocation should not be delayed.
3205	 */
3206	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3207		return ZONE_RECLAIM_NOSCAN;
3208
3209	/*
3210	 * Only run zone reclaim on the local zone or on zones that do not
3211	 * have associated processors. This will favor the local processor
3212	 * over remote processors and spread off node memory allocations
3213	 * as wide as possible.
3214	 */
3215	node_id = zone_to_nid(zone);
3216	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3217		return ZONE_RECLAIM_NOSCAN;
3218
3219	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3220		return ZONE_RECLAIM_NOSCAN;
3221
3222	ret = __zone_reclaim(zone, gfp_mask, order);
3223	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3224
3225	if (!ret)
3226		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3227
3228	return ret;
3229}
3230#endif
3231
3232/*
3233 * page_evictable - test whether a page is evictable
3234 * @page: the page to test
3235 * @vma: the VMA in which the page is or will be mapped, may be NULL
3236 *
3237 * Test whether page is evictable--i.e., should be placed on active/inactive
3238 * lists vs unevictable list.  The vma argument is !NULL when called from the
3239 * fault path to determine how to instantate a new page.
3240 *
3241 * Reasons page might not be evictable:
3242 * (1) page's mapping marked unevictable
3243 * (2) page is part of an mlocked VMA
3244 *
3245 */
3246int page_evictable(struct page *page, struct vm_area_struct *vma)
3247{
3248
3249	if (mapping_unevictable(page_mapping(page)))
3250		return 0;
3251
3252	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3253		return 0;
3254
3255	return 1;
3256}
3257
 
3258/**
3259 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3260 * @page: page to check evictability and move to appropriate lru list
3261 * @zone: zone page is in
3262 *
3263 * Checks a page for evictability and moves the page to the appropriate
3264 * zone lru list.
3265 *
3266 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3267 * have PageUnevictable set.
3268 */
3269static void check_move_unevictable_page(struct page *page, struct zone *zone)
3270{
3271	VM_BUG_ON(PageActive(page));
3272
3273retry:
3274	ClearPageUnevictable(page);
3275	if (page_evictable(page, NULL)) {
3276		enum lru_list l = page_lru_base_type(page);
3277
3278		__dec_zone_state(zone, NR_UNEVICTABLE);
3279		list_move(&page->lru, &zone->lru[l].list);
3280		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3281		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3282		__count_vm_event(UNEVICTABLE_PGRESCUED);
3283	} else {
3284		/*
3285		 * rotate unevictable list
3286		 */
3287		SetPageUnevictable(page);
3288		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3289		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3290		if (page_evictable(page, NULL))
3291			goto retry;
3292	}
3293}
3294
3295/**
3296 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3297 * @mapping: struct address_space to scan for evictable pages
3298 *
3299 * Scan all pages in mapping.  Check unevictable pages for
3300 * evictability and move them to the appropriate zone lru list.
3301 */
3302void scan_mapping_unevictable_pages(struct address_space *mapping)
3303{
3304	pgoff_t next = 0;
3305	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3306			 PAGE_CACHE_SHIFT;
3307	struct zone *zone;
3308	struct pagevec pvec;
3309
3310	if (mapping->nrpages == 0)
3311		return;
3312
3313	pagevec_init(&pvec, 0);
3314	while (next < end &&
3315		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3316		int i;
3317		int pg_scanned = 0;
3318
3319		zone = NULL;
3320
3321		for (i = 0; i < pagevec_count(&pvec); i++) {
3322			struct page *page = pvec.pages[i];
3323			pgoff_t page_index = page->index;
3324			struct zone *pagezone = page_zone(page);
3325
3326			pg_scanned++;
3327			if (page_index > next)
3328				next = page_index;
3329			next++;
3330
3331			if (pagezone != zone) {
3332				if (zone)
3333					spin_unlock_irq(&zone->lru_lock);
3334				zone = pagezone;
3335				spin_lock_irq(&zone->lru_lock);
3336			}
3337
3338			if (PageLRU(page) && PageUnevictable(page))
3339				check_move_unevictable_page(page, zone);
 
 
 
 
 
 
 
 
3340		}
3341		if (zone)
3342			spin_unlock_irq(&zone->lru_lock);
3343		pagevec_release(&pvec);
3344
3345		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3346	}
3347
3348}
3349
3350/**
3351 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3352 * @zone - zone of which to scan the unevictable list
3353 *
3354 * Scan @zone's unevictable LRU lists to check for pages that have become
3355 * evictable.  Move those that have to @zone's inactive list where they
3356 * become candidates for reclaim, unless shrink_inactive_zone() decides
3357 * to reactivate them.  Pages that are still unevictable are rotated
3358 * back onto @zone's unevictable list.
3359 */
3360#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3361static void scan_zone_unevictable_pages(struct zone *zone)
3362{
3363	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3364	unsigned long scan;
3365	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3366
3367	while (nr_to_scan > 0) {
3368		unsigned long batch_size = min(nr_to_scan,
3369						SCAN_UNEVICTABLE_BATCH_SIZE);
3370
3371		spin_lock_irq(&zone->lru_lock);
3372		for (scan = 0;  scan < batch_size; scan++) {
3373			struct page *page = lru_to_page(l_unevictable);
3374
3375			if (!trylock_page(page))
3376				continue;
3377
3378			prefetchw_prev_lru_page(page, l_unevictable, flags);
 
3379
3380			if (likely(PageLRU(page) && PageUnevictable(page)))
3381				check_move_unevictable_page(page, zone);
3382
3383			unlock_page(page);
 
 
 
 
3384		}
3385		spin_unlock_irq(&zone->lru_lock);
3386
3387		nr_to_scan -= batch_size;
3388	}
3389}
3390
3391
3392/**
3393 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3394 *
3395 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3396 * pages that have become evictable.  Move those back to the zones'
3397 * inactive list where they become candidates for reclaim.
3398 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3399 * and we add swap to the system.  As such, it runs in the context of a task
3400 * that has possibly/probably made some previously unevictable pages
3401 * evictable.
3402 */
3403static void scan_all_zones_unevictable_pages(void)
3404{
3405	struct zone *zone;
3406
3407	for_each_zone(zone) {
3408		scan_zone_unevictable_pages(zone);
 
 
3409	}
3410}
3411
3412/*
3413 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3414 * all nodes' unevictable lists for evictable pages
3415 */
3416unsigned long scan_unevictable_pages;
3417
3418int scan_unevictable_handler(struct ctl_table *table, int write,
3419			   void __user *buffer,
3420			   size_t *length, loff_t *ppos)
3421{
3422	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3423
3424	if (write && *(unsigned long *)table->data)
3425		scan_all_zones_unevictable_pages();
3426
3427	scan_unevictable_pages = 0;
3428	return 0;
3429}
3430
3431#ifdef CONFIG_NUMA
3432/*
3433 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3434 * a specified node's per zone unevictable lists for evictable pages.
3435 */
3436
3437static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3438					  struct sysdev_attribute *attr,
3439					  char *buf)
3440{
3441	return sprintf(buf, "0\n");	/* always zero; should fit... */
3442}
3443
3444static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3445					   struct sysdev_attribute *attr,
3446					const char *buf, size_t count)
3447{
3448	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3449	struct zone *zone;
3450	unsigned long res;
3451	unsigned long req = strict_strtoul(buf, 10, &res);
3452
3453	if (!req)
3454		return 1;	/* zero is no-op */
3455
3456	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3457		if (!populated_zone(zone))
3458			continue;
3459		scan_zone_unevictable_pages(zone);
3460	}
3461	return 1;
3462}
3463
3464
3465static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3466			read_scan_unevictable_node,
3467			write_scan_unevictable_node);
3468
3469int scan_unevictable_register_node(struct node *node)
3470{
3471	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3472}
3473
3474void scan_unevictable_unregister_node(struct node *node)
3475{
3476	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3477}
3478#endif
v4.10.11
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
 
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
  47#include <linux/prefetch.h>
  48#include <linux/printk.h>
  49#include <linux/dax.h>
  50
  51#include <asm/tlbflush.h>
  52#include <asm/div64.h>
  53
  54#include <linux/swapops.h>
  55#include <linux/balloon_compaction.h>
  56
  57#include "internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/vmscan.h>
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62struct scan_control {
 
 
 
 
 
 
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
  65
 
 
  66	/* This context's GFP mask */
  67	gfp_t gfp_mask;
  68
  69	/* Allocation order */
  70	int order;
  71
  72	/*
  73	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  74	 * are scanned.
  75	 */
  76	nodemask_t	*nodemask;
  77
  78	/*
  79	 * The memory cgroup that hit its limit and as a result is the
  80	 * primary target of this reclaim invocation.
  81	 */
  82	struct mem_cgroup *target_mem_cgroup;
  83
  84	/* Scan (total_size >> priority) pages at once */
  85	int priority;
  86
  87	/* The highest zone to isolate pages for reclaim from */
  88	enum zone_type reclaim_idx;
  89
  90	unsigned int may_writepage:1;
  91
  92	/* Can mapped pages be reclaimed? */
  93	unsigned int may_unmap:1;
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	unsigned int may_swap:1;
  97
  98	/* Can cgroups be reclaimed below their normal consumption range? */
  99	unsigned int may_thrash:1;
 100
 101	unsigned int hibernation_mode:1;
 
 
 
 
 102
 103	/* One of the zones is ready for compaction */
 104	unsigned int compaction_ready:1;
 105
 106	/* Incremented by the number of inactive pages that were scanned */
 107	unsigned long nr_scanned;
 
 
 
 
 108
 109	/* Number of pages freed so far during a call to shrink_zones() */
 110	unsigned long nr_reclaimed;
 111};
 112
 113#ifdef ARCH_HAS_PREFETCH
 114#define prefetch_prev_lru_page(_page, _base, _field)			\
 115	do {								\
 116		if ((_page)->lru.prev != _base) {			\
 117			struct page *prev;				\
 118									\
 119			prev = lru_to_page(&(_page->lru));		\
 120			prefetch(&prev->_field);			\
 121		}							\
 122	} while (0)
 123#else
 124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 125#endif
 126
 127#ifdef ARCH_HAS_PREFETCHW
 128#define prefetchw_prev_lru_page(_page, _base, _field)			\
 129	do {								\
 130		if ((_page)->lru.prev != _base) {			\
 131			struct page *prev;				\
 132									\
 133			prev = lru_to_page(&(_page->lru));		\
 134			prefetchw(&prev->_field);			\
 135		}							\
 136	} while (0)
 137#else
 138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 139#endif
 140
 141/*
 142 * From 0 .. 100.  Higher means more swappy.
 143 */
 144int vm_swappiness = 60;
 145/*
 146 * The total number of pages which are beyond the high watermark within all
 147 * zones.
 148 */
 149unsigned long vm_total_pages;
 150
 151static LIST_HEAD(shrinker_list);
 152static DECLARE_RWSEM(shrinker_rwsem);
 153
 154#ifdef CONFIG_MEMCG
 155static bool global_reclaim(struct scan_control *sc)
 156{
 157	return !sc->target_mem_cgroup;
 158}
 159
 160/**
 161 * sane_reclaim - is the usual dirty throttling mechanism operational?
 162 * @sc: scan_control in question
 163 *
 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 165 * completely broken with the legacy memcg and direct stalling in
 166 * shrink_page_list() is used for throttling instead, which lacks all the
 167 * niceties such as fairness, adaptive pausing, bandwidth proportional
 168 * allocation and configurability.
 169 *
 170 * This function tests whether the vmscan currently in progress can assume
 171 * that the normal dirty throttling mechanism is operational.
 172 */
 173static bool sane_reclaim(struct scan_control *sc)
 174{
 175	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 176
 177	if (!memcg)
 178		return true;
 179#ifdef CONFIG_CGROUP_WRITEBACK
 180	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 181		return true;
 182#endif
 183	return false;
 184}
 185#else
 186static bool global_reclaim(struct scan_control *sc)
 187{
 188	return true;
 189}
 190
 191static bool sane_reclaim(struct scan_control *sc)
 192{
 193	return true;
 194}
 195#endif
 196
 197/*
 198 * This misses isolated pages which are not accounted for to save counters.
 199 * As the data only determines if reclaim or compaction continues, it is
 200 * not expected that isolated pages will be a dominating factor.
 201 */
 202unsigned long zone_reclaimable_pages(struct zone *zone)
 203{
 204	unsigned long nr;
 
 205
 206	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 207		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 208	if (get_nr_swap_pages() > 0)
 209		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 210			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 211
 212	return nr;
 213}
 214
 215unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
 
 216{
 217	unsigned long nr;
 218
 219	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
 220	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
 221	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
 222
 223	if (get_nr_swap_pages() > 0)
 224		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
 225		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
 226		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
 227
 228	return nr;
 229}
 230
 231bool pgdat_reclaimable(struct pglist_data *pgdat)
 232{
 233	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
 234		pgdat_reclaimable_pages(pgdat) * 6;
 235}
 236
 237/**
 238 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 239 * @lruvec: lru vector
 240 * @lru: lru to use
 241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 242 */
 243unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 244{
 245	unsigned long lru_size;
 246	int zid;
 247
 248	if (!mem_cgroup_disabled())
 249		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 250	else
 251		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 252
 253	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 254		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 255		unsigned long size;
 256
 257		if (!managed_zone(zone))
 258			continue;
 259
 260		if (!mem_cgroup_disabled())
 261			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 262		else
 263			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 264				       NR_ZONE_LRU_BASE + lru);
 265		lru_size -= min(size, lru_size);
 266	}
 267
 268	return lru_size;
 269
 270}
 271
 272/*
 273 * Add a shrinker callback to be called from the vm.
 274 */
 275int register_shrinker(struct shrinker *shrinker)
 276{
 277	size_t size = sizeof(*shrinker->nr_deferred);
 278
 279	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 280		size *= nr_node_ids;
 281
 282	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 283	if (!shrinker->nr_deferred)
 284		return -ENOMEM;
 285
 286	down_write(&shrinker_rwsem);
 287	list_add_tail(&shrinker->list, &shrinker_list);
 288	up_write(&shrinker_rwsem);
 289	return 0;
 290}
 291EXPORT_SYMBOL(register_shrinker);
 292
 293/*
 294 * Remove one
 295 */
 296void unregister_shrinker(struct shrinker *shrinker)
 297{
 298	down_write(&shrinker_rwsem);
 299	list_del(&shrinker->list);
 300	up_write(&shrinker_rwsem);
 301	kfree(shrinker->nr_deferred);
 302}
 303EXPORT_SYMBOL(unregister_shrinker);
 304
 
 
 
 
 
 
 
 
 305#define SHRINK_BATCH 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306
 307static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 308				    struct shrinker *shrinker,
 309				    unsigned long nr_scanned,
 310				    unsigned long nr_eligible)
 311{
 312	unsigned long freed = 0;
 313	unsigned long long delta;
 314	long total_scan;
 315	long freeable;
 316	long nr;
 317	long new_nr;
 318	int nid = shrinkctl->nid;
 319	long batch_size = shrinker->batch ? shrinker->batch
 320					  : SHRINK_BATCH;
 321	long scanned = 0, next_deferred;
 322
 323	freeable = shrinker->count_objects(shrinker, shrinkctl);
 324	if (freeable == 0)
 325		return 0;
 
 
 326
 327	/*
 328	 * copy the current shrinker scan count into a local variable
 329	 * and zero it so that other concurrent shrinker invocations
 330	 * don't also do this scanning work.
 331	 */
 332	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 333
 334	total_scan = nr;
 335	delta = (4 * nr_scanned) / shrinker->seeks;
 336	delta *= freeable;
 337	do_div(delta, nr_eligible + 1);
 338	total_scan += delta;
 339	if (total_scan < 0) {
 340		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 341		       shrinker->scan_objects, total_scan);
 342		total_scan = freeable;
 343		next_deferred = nr;
 344	} else
 345		next_deferred = total_scan;
 346
 347	/*
 348	 * We need to avoid excessive windup on filesystem shrinkers
 349	 * due to large numbers of GFP_NOFS allocations causing the
 350	 * shrinkers to return -1 all the time. This results in a large
 351	 * nr being built up so when a shrink that can do some work
 352	 * comes along it empties the entire cache due to nr >>>
 353	 * freeable. This is bad for sustaining a working set in
 354	 * memory.
 355	 *
 356	 * Hence only allow the shrinker to scan the entire cache when
 357	 * a large delta change is calculated directly.
 358	 */
 359	if (delta < freeable / 4)
 360		total_scan = min(total_scan, freeable / 2);
 361
 362	/*
 363	 * Avoid risking looping forever due to too large nr value:
 364	 * never try to free more than twice the estimate number of
 365	 * freeable entries.
 366	 */
 367	if (total_scan > freeable * 2)
 368		total_scan = freeable * 2;
 
 369
 370	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 371				   nr_scanned, nr_eligible,
 372				   freeable, delta, total_scan);
 
 
 
 
 
 
 
 
 
 373
 374	/*
 375	 * Normally, we should not scan less than batch_size objects in one
 376	 * pass to avoid too frequent shrinker calls, but if the slab has less
 377	 * than batch_size objects in total and we are really tight on memory,
 378	 * we will try to reclaim all available objects, otherwise we can end
 379	 * up failing allocations although there are plenty of reclaimable
 380	 * objects spread over several slabs with usage less than the
 381	 * batch_size.
 382	 *
 383	 * We detect the "tight on memory" situations by looking at the total
 384	 * number of objects we want to scan (total_scan). If it is greater
 385	 * than the total number of objects on slab (freeable), we must be
 386	 * scanning at high prio and therefore should try to reclaim as much as
 387	 * possible.
 388	 */
 389	while (total_scan >= batch_size ||
 390	       total_scan >= freeable) {
 391		unsigned long ret;
 392		unsigned long nr_to_scan = min(batch_size, total_scan);
 393
 394		shrinkctl->nr_to_scan = nr_to_scan;
 395		ret = shrinker->scan_objects(shrinker, shrinkctl);
 396		if (ret == SHRINK_STOP)
 397			break;
 398		freed += ret;
 399
 400		count_vm_events(SLABS_SCANNED, nr_to_scan);
 401		total_scan -= nr_to_scan;
 402		scanned += nr_to_scan;
 
 
 
 
 403
 404		cond_resched();
 405	}
 
 406
 407	if (next_deferred >= scanned)
 408		next_deferred -= scanned;
 409	else
 410		next_deferred = 0;
 411	/*
 412	 * move the unused scan count back into the shrinker in a
 413	 * manner that handles concurrent updates. If we exhausted the
 414	 * scan, there is no need to do an update.
 415	 */
 416	if (next_deferred > 0)
 417		new_nr = atomic_long_add_return(next_deferred,
 418						&shrinker->nr_deferred[nid]);
 419	else
 420		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 421
 422	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 423	return freed;
 424}
 
 
 
 
 
 
 425
 426/**
 427 * shrink_slab - shrink slab caches
 428 * @gfp_mask: allocation context
 429 * @nid: node whose slab caches to target
 430 * @memcg: memory cgroup whose slab caches to target
 431 * @nr_scanned: pressure numerator
 432 * @nr_eligible: pressure denominator
 433 *
 434 * Call the shrink functions to age shrinkable caches.
 435 *
 436 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 437 * unaware shrinkers will receive a node id of 0 instead.
 438 *
 439 * @memcg specifies the memory cgroup to target. If it is not NULL,
 440 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 441 * objects from the memory cgroup specified. Otherwise, only unaware
 442 * shrinkers are called.
 443 *
 444 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 445 * the available objects should be scanned.  Page reclaim for example
 446 * passes the number of pages scanned and the number of pages on the
 447 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 448 * when it encountered mapped pages.  The ratio is further biased by
 449 * the ->seeks setting of the shrink function, which indicates the
 450 * cost to recreate an object relative to that of an LRU page.
 451 *
 452 * Returns the number of reclaimed slab objects.
 453 */
 454static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 455				 struct mem_cgroup *memcg,
 456				 unsigned long nr_scanned,
 457				 unsigned long nr_eligible)
 458{
 459	struct shrinker *shrinker;
 460	unsigned long freed = 0;
 461
 462	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 463		return 0;
 464
 465	if (nr_scanned == 0)
 466		nr_scanned = SWAP_CLUSTER_MAX;
 467
 468	if (!down_read_trylock(&shrinker_rwsem)) {
 469		/*
 470		 * If we would return 0, our callers would understand that we
 471		 * have nothing else to shrink and give up trying. By returning
 472		 * 1 we keep it going and assume we'll be able to shrink next
 473		 * time.
 474		 */
 475		freed = 1;
 476		goto out;
 477	}
 
 
 
 478
 479	list_for_each_entry(shrinker, &shrinker_list, list) {
 480		struct shrink_control sc = {
 481			.gfp_mask = gfp_mask,
 482			.nid = nid,
 483			.memcg = memcg,
 484		};
 485
 486		/*
 487		 * If kernel memory accounting is disabled, we ignore
 488		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 489		 * passing NULL for memcg.
 490		 */
 491		if (memcg_kmem_enabled() &&
 492		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 493			continue;
 494
 495		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 496			sc.nid = 0;
 497
 498		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
 499	}
 500
 501	up_read(&shrinker_rwsem);
 502out:
 503	cond_resched();
 504	return freed;
 505}
 506
 507void drop_slab_node(int nid)
 
 508{
 509	unsigned long freed;
 510
 511	do {
 512		struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 513
 514		freed = 0;
 515		do {
 516			freed += shrink_slab(GFP_KERNEL, nid, memcg,
 517					     1000, 1000);
 518		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 519	} while (freed > 10);
 
 
 
 
 
 520}
 521
 522void drop_slab(void)
 523{
 524	int nid;
 525
 526	for_each_online_node(nid)
 527		drop_slab_node(nid);
 528}
 529
 530static inline int is_page_cache_freeable(struct page *page)
 531{
 532	/*
 533	 * A freeable page cache page is referenced only by the caller
 534	 * that isolated the page, the page cache radix tree and
 535	 * optional buffer heads at page->private.
 536	 */
 537	return page_count(page) - page_has_private(page) == 2;
 538}
 539
 540static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 
 541{
 542	if (current->flags & PF_SWAPWRITE)
 543		return 1;
 544	if (!inode_write_congested(inode))
 
 
 545		return 1;
 546	if (inode_to_bdi(inode) == current->backing_dev_info)
 
 
 547		return 1;
 548	return 0;
 549}
 550
 551/*
 552 * We detected a synchronous write error writing a page out.  Probably
 553 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 554 * fsync(), msync() or close().
 555 *
 556 * The tricky part is that after writepage we cannot touch the mapping: nothing
 557 * prevents it from being freed up.  But we have a ref on the page and once
 558 * that page is locked, the mapping is pinned.
 559 *
 560 * We're allowed to run sleeping lock_page() here because we know the caller has
 561 * __GFP_FS.
 562 */
 563static void handle_write_error(struct address_space *mapping,
 564				struct page *page, int error)
 565{
 566	lock_page(page);
 567	if (page_mapping(page) == mapping)
 568		mapping_set_error(mapping, error);
 569	unlock_page(page);
 570}
 571
 572/* possible outcome of pageout() */
 573typedef enum {
 574	/* failed to write page out, page is locked */
 575	PAGE_KEEP,
 576	/* move page to the active list, page is locked */
 577	PAGE_ACTIVATE,
 578	/* page has been sent to the disk successfully, page is unlocked */
 579	PAGE_SUCCESS,
 580	/* page is clean and locked */
 581	PAGE_CLEAN,
 582} pageout_t;
 583
 584/*
 585 * pageout is called by shrink_page_list() for each dirty page.
 586 * Calls ->writepage().
 587 */
 588static pageout_t pageout(struct page *page, struct address_space *mapping,
 589			 struct scan_control *sc)
 590{
 591	/*
 592	 * If the page is dirty, only perform writeback if that write
 593	 * will be non-blocking.  To prevent this allocation from being
 594	 * stalled by pagecache activity.  But note that there may be
 595	 * stalls if we need to run get_block().  We could test
 596	 * PagePrivate for that.
 597	 *
 598	 * If this process is currently in __generic_file_write_iter() against
 599	 * this page's queue, we can perform writeback even if that
 600	 * will block.
 601	 *
 602	 * If the page is swapcache, write it back even if that would
 603	 * block, for some throttling. This happens by accident, because
 604	 * swap_backing_dev_info is bust: it doesn't reflect the
 605	 * congestion state of the swapdevs.  Easy to fix, if needed.
 606	 */
 607	if (!is_page_cache_freeable(page))
 608		return PAGE_KEEP;
 609	if (!mapping) {
 610		/*
 611		 * Some data journaling orphaned pages can have
 612		 * page->mapping == NULL while being dirty with clean buffers.
 613		 */
 614		if (page_has_private(page)) {
 615			if (try_to_free_buffers(page)) {
 616				ClearPageDirty(page);
 617				pr_info("%s: orphaned page\n", __func__);
 618				return PAGE_CLEAN;
 619			}
 620		}
 621		return PAGE_KEEP;
 622	}
 623	if (mapping->a_ops->writepage == NULL)
 624		return PAGE_ACTIVATE;
 625	if (!may_write_to_inode(mapping->host, sc))
 626		return PAGE_KEEP;
 627
 628	if (clear_page_dirty_for_io(page)) {
 629		int res;
 630		struct writeback_control wbc = {
 631			.sync_mode = WB_SYNC_NONE,
 632			.nr_to_write = SWAP_CLUSTER_MAX,
 633			.range_start = 0,
 634			.range_end = LLONG_MAX,
 635			.for_reclaim = 1,
 636		};
 637
 638		SetPageReclaim(page);
 639		res = mapping->a_ops->writepage(page, &wbc);
 640		if (res < 0)
 641			handle_write_error(mapping, page, res);
 642		if (res == AOP_WRITEPAGE_ACTIVATE) {
 643			ClearPageReclaim(page);
 644			return PAGE_ACTIVATE;
 645		}
 646
 
 
 
 
 
 
 
 
 
 647		if (!PageWriteback(page)) {
 648			/* synchronous write or broken a_ops? */
 649			ClearPageReclaim(page);
 650		}
 651		trace_mm_vmscan_writepage(page);
 652		inc_node_page_state(page, NR_VMSCAN_WRITE);
 
 653		return PAGE_SUCCESS;
 654	}
 655
 656	return PAGE_CLEAN;
 657}
 658
 659/*
 660 * Same as remove_mapping, but if the page is removed from the mapping, it
 661 * gets returned with a refcount of 0.
 662 */
 663static int __remove_mapping(struct address_space *mapping, struct page *page,
 664			    bool reclaimed)
 665{
 666	unsigned long flags;
 667
 668	BUG_ON(!PageLocked(page));
 669	BUG_ON(mapping != page_mapping(page));
 670
 671	spin_lock_irqsave(&mapping->tree_lock, flags);
 672	/*
 673	 * The non racy check for a busy page.
 674	 *
 675	 * Must be careful with the order of the tests. When someone has
 676	 * a ref to the page, it may be possible that they dirty it then
 677	 * drop the reference. So if PageDirty is tested before page_count
 678	 * here, then the following race may occur:
 679	 *
 680	 * get_user_pages(&page);
 681	 * [user mapping goes away]
 682	 * write_to(page);
 683	 *				!PageDirty(page)    [good]
 684	 * SetPageDirty(page);
 685	 * put_page(page);
 686	 *				!page_count(page)   [good, discard it]
 687	 *
 688	 * [oops, our write_to data is lost]
 689	 *
 690	 * Reversing the order of the tests ensures such a situation cannot
 691	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 692	 * load is not satisfied before that of page->_refcount.
 693	 *
 694	 * Note that if SetPageDirty is always performed via set_page_dirty,
 695	 * and thus under tree_lock, then this ordering is not required.
 696	 */
 697	if (!page_ref_freeze(page, 2))
 698		goto cannot_free;
 699	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 700	if (unlikely(PageDirty(page))) {
 701		page_ref_unfreeze(page, 2);
 702		goto cannot_free;
 703	}
 704
 705	if (PageSwapCache(page)) {
 706		swp_entry_t swap = { .val = page_private(page) };
 707		mem_cgroup_swapout(page, swap);
 708		__delete_from_swap_cache(page);
 709		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 710		swapcache_free(swap);
 711	} else {
 712		void (*freepage)(struct page *);
 713		void *shadow = NULL;
 714
 715		freepage = mapping->a_ops->freepage;
 716		/*
 717		 * Remember a shadow entry for reclaimed file cache in
 718		 * order to detect refaults, thus thrashing, later on.
 719		 *
 720		 * But don't store shadows in an address space that is
 721		 * already exiting.  This is not just an optizimation,
 722		 * inode reclaim needs to empty out the radix tree or
 723		 * the nodes are lost.  Don't plant shadows behind its
 724		 * back.
 725		 *
 726		 * We also don't store shadows for DAX mappings because the
 727		 * only page cache pages found in these are zero pages
 728		 * covering holes, and because we don't want to mix DAX
 729		 * exceptional entries and shadow exceptional entries in the
 730		 * same page_tree.
 731		 */
 732		if (reclaimed && page_is_file_cache(page) &&
 733		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 734			shadow = workingset_eviction(mapping, page);
 735		__delete_from_page_cache(page, shadow);
 736		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 737
 738		if (freepage != NULL)
 739			freepage(page);
 740	}
 741
 742	return 1;
 743
 744cannot_free:
 745	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 746	return 0;
 747}
 748
 749/*
 750 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 751 * someone else has a ref on the page, abort and return 0.  If it was
 752 * successfully detached, return 1.  Assumes the caller has a single ref on
 753 * this page.
 754 */
 755int remove_mapping(struct address_space *mapping, struct page *page)
 756{
 757	if (__remove_mapping(mapping, page, false)) {
 758		/*
 759		 * Unfreezing the refcount with 1 rather than 2 effectively
 760		 * drops the pagecache ref for us without requiring another
 761		 * atomic operation.
 762		 */
 763		page_ref_unfreeze(page, 1);
 764		return 1;
 765	}
 766	return 0;
 767}
 768
 769/**
 770 * putback_lru_page - put previously isolated page onto appropriate LRU list
 771 * @page: page to be put back to appropriate lru list
 772 *
 773 * Add previously isolated @page to appropriate LRU list.
 774 * Page may still be unevictable for other reasons.
 775 *
 776 * lru_lock must not be held, interrupts must be enabled.
 777 */
 778void putback_lru_page(struct page *page)
 779{
 780	bool is_unevictable;
 
 781	int was_unevictable = PageUnevictable(page);
 782
 783	VM_BUG_ON_PAGE(PageLRU(page), page);
 784
 785redo:
 786	ClearPageUnevictable(page);
 787
 788	if (page_evictable(page)) {
 789		/*
 790		 * For evictable pages, we can use the cache.
 791		 * In event of a race, worst case is we end up with an
 792		 * unevictable page on [in]active list.
 793		 * We know how to handle that.
 794		 */
 795		is_unevictable = false;
 796		lru_cache_add(page);
 797	} else {
 798		/*
 799		 * Put unevictable pages directly on zone's unevictable
 800		 * list.
 801		 */
 802		is_unevictable = true;
 803		add_page_to_unevictable_list(page);
 804		/*
 805		 * When racing with an mlock or AS_UNEVICTABLE clearing
 806		 * (page is unlocked) make sure that if the other thread
 807		 * does not observe our setting of PG_lru and fails
 808		 * isolation/check_move_unevictable_pages,
 809		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 810		 * the page back to the evictable list.
 811		 *
 812		 * The other side is TestClearPageMlocked() or shmem_lock().
 813		 */
 814		smp_mb();
 815	}
 816
 817	/*
 818	 * page's status can change while we move it among lru. If an evictable
 819	 * page is on unevictable list, it never be freed. To avoid that,
 820	 * check after we added it to the list, again.
 821	 */
 822	if (is_unevictable && page_evictable(page)) {
 823		if (!isolate_lru_page(page)) {
 824			put_page(page);
 825			goto redo;
 826		}
 827		/* This means someone else dropped this page from LRU
 828		 * So, it will be freed or putback to LRU again. There is
 829		 * nothing to do here.
 830		 */
 831	}
 832
 833	if (was_unevictable && !is_unevictable)
 834		count_vm_event(UNEVICTABLE_PGRESCUED);
 835	else if (!was_unevictable && is_unevictable)
 836		count_vm_event(UNEVICTABLE_PGCULLED);
 837
 838	put_page(page);		/* drop ref from isolate */
 839}
 840
 841enum page_references {
 842	PAGEREF_RECLAIM,
 843	PAGEREF_RECLAIM_CLEAN,
 844	PAGEREF_KEEP,
 845	PAGEREF_ACTIVATE,
 846};
 847
 848static enum page_references page_check_references(struct page *page,
 849						  struct scan_control *sc)
 850{
 851	int referenced_ptes, referenced_page;
 852	unsigned long vm_flags;
 853
 854	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 855					  &vm_flags);
 856	referenced_page = TestClearPageReferenced(page);
 857
 
 
 
 
 858	/*
 859	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 860	 * move the page to the unevictable list.
 861	 */
 862	if (vm_flags & VM_LOCKED)
 863		return PAGEREF_RECLAIM;
 864
 865	if (referenced_ptes) {
 866		if (PageSwapBacked(page))
 867			return PAGEREF_ACTIVATE;
 868		/*
 869		 * All mapped pages start out with page table
 870		 * references from the instantiating fault, so we need
 871		 * to look twice if a mapped file page is used more
 872		 * than once.
 873		 *
 874		 * Mark it and spare it for another trip around the
 875		 * inactive list.  Another page table reference will
 876		 * lead to its activation.
 877		 *
 878		 * Note: the mark is set for activated pages as well
 879		 * so that recently deactivated but used pages are
 880		 * quickly recovered.
 881		 */
 882		SetPageReferenced(page);
 883
 884		if (referenced_page || referenced_ptes > 1)
 885			return PAGEREF_ACTIVATE;
 886
 887		/*
 888		 * Activate file-backed executable pages after first usage.
 889		 */
 890		if (vm_flags & VM_EXEC)
 891			return PAGEREF_ACTIVATE;
 892
 893		return PAGEREF_KEEP;
 894	}
 895
 896	/* Reclaim if clean, defer dirty pages to writeback */
 897	if (referenced_page && !PageSwapBacked(page))
 898		return PAGEREF_RECLAIM_CLEAN;
 899
 900	return PAGEREF_RECLAIM;
 901}
 902
 903/* Check if a page is dirty or under writeback */
 904static void page_check_dirty_writeback(struct page *page,
 905				       bool *dirty, bool *writeback)
 906{
 907	struct address_space *mapping;
 
 908
 909	/*
 910	 * Anonymous pages are not handled by flushers and must be written
 911	 * from reclaim context. Do not stall reclaim based on them
 912	 */
 913	if (!page_is_file_cache(page)) {
 914		*dirty = false;
 915		*writeback = false;
 916		return;
 917	}
 918
 919	/* By default assume that the page flags are accurate */
 920	*dirty = PageDirty(page);
 921	*writeback = PageWriteback(page);
 922
 923	/* Verify dirty/writeback state if the filesystem supports it */
 924	if (!page_has_private(page))
 925		return;
 926
 927	mapping = page_mapping(page);
 928	if (mapping && mapping->a_ops->is_dirty_writeback)
 929		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 930}
 931
 932/*
 933 * shrink_page_list() returns the number of reclaimed pages
 934 */
 935static unsigned long shrink_page_list(struct list_head *page_list,
 936				      struct pglist_data *pgdat,
 937				      struct scan_control *sc,
 938				      enum ttu_flags ttu_flags,
 939				      unsigned long *ret_nr_dirty,
 940				      unsigned long *ret_nr_unqueued_dirty,
 941				      unsigned long *ret_nr_congested,
 942				      unsigned long *ret_nr_writeback,
 943				      unsigned long *ret_nr_immediate,
 944				      bool force_reclaim)
 945{
 946	LIST_HEAD(ret_pages);
 947	LIST_HEAD(free_pages);
 948	int pgactivate = 0;
 949	unsigned long nr_unqueued_dirty = 0;
 950	unsigned long nr_dirty = 0;
 951	unsigned long nr_congested = 0;
 952	unsigned long nr_reclaimed = 0;
 953	unsigned long nr_writeback = 0;
 954	unsigned long nr_immediate = 0;
 955
 956	cond_resched();
 957
 958	while (!list_empty(page_list)) {
 
 959		struct address_space *mapping;
 960		struct page *page;
 961		int may_enter_fs;
 962		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 963		bool dirty, writeback;
 964		bool lazyfree = false;
 965		int ret = SWAP_SUCCESS;
 966
 967		cond_resched();
 968
 969		page = lru_to_page(page_list);
 970		list_del(&page->lru);
 971
 972		if (!trylock_page(page))
 973			goto keep;
 974
 975		VM_BUG_ON_PAGE(PageActive(page), page);
 
 976
 977		sc->nr_scanned++;
 978
 979		if (unlikely(!page_evictable(page)))
 980			goto cull_mlocked;
 981
 982		if (!sc->may_unmap && page_mapped(page))
 983			goto keep_locked;
 984
 985		/* Double the slab pressure for mapped and swapcache pages */
 986		if (page_mapped(page) || PageSwapCache(page))
 987			sc->nr_scanned++;
 988
 989		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 990			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 991
 992		/*
 993		 * The number of dirty pages determines if a zone is marked
 994		 * reclaim_congested which affects wait_iff_congested. kswapd
 995		 * will stall and start writing pages if the tail of the LRU
 996		 * is all dirty unqueued pages.
 997		 */
 998		page_check_dirty_writeback(page, &dirty, &writeback);
 999		if (dirty || writeback)
1000			nr_dirty++;
1001
1002		if (dirty && !writeback)
1003			nr_unqueued_dirty++;
1004
1005		/*
1006		 * Treat this page as congested if the underlying BDI is or if
1007		 * pages are cycling through the LRU so quickly that the
1008		 * pages marked for immediate reclaim are making it to the
1009		 * end of the LRU a second time.
1010		 */
1011		mapping = page_mapping(page);
1012		if (((dirty || writeback) && mapping &&
1013		     inode_write_congested(mapping->host)) ||
1014		    (writeback && PageReclaim(page)))
1015			nr_congested++;
1016
1017		/*
1018		 * If a page at the tail of the LRU is under writeback, there
1019		 * are three cases to consider.
1020		 *
1021		 * 1) If reclaim is encountering an excessive number of pages
1022		 *    under writeback and this page is both under writeback and
1023		 *    PageReclaim then it indicates that pages are being queued
1024		 *    for IO but are being recycled through the LRU before the
1025		 *    IO can complete. Waiting on the page itself risks an
1026		 *    indefinite stall if it is impossible to writeback the
1027		 *    page due to IO error or disconnected storage so instead
1028		 *    note that the LRU is being scanned too quickly and the
1029		 *    caller can stall after page list has been processed.
1030		 *
1031		 * 2) Global or new memcg reclaim encounters a page that is
1032		 *    not marked for immediate reclaim, or the caller does not
1033		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1034		 *    not to fs). In this case mark the page for immediate
1035		 *    reclaim and continue scanning.
1036		 *
1037		 *    Require may_enter_fs because we would wait on fs, which
1038		 *    may not have submitted IO yet. And the loop driver might
1039		 *    enter reclaim, and deadlock if it waits on a page for
1040		 *    which it is needed to do the write (loop masks off
1041		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1042		 *    would probably show more reasons.
1043		 *
1044		 * 3) Legacy memcg encounters a page that is already marked
1045		 *    PageReclaim. memcg does not have any dirty pages
1046		 *    throttling so we could easily OOM just because too many
1047		 *    pages are in writeback and there is nothing else to
1048		 *    reclaim. Wait for the writeback to complete.
1049		 */
1050		if (PageWriteback(page)) {
1051			/* Case 1 above */
1052			if (current_is_kswapd() &&
1053			    PageReclaim(page) &&
1054			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1055				nr_immediate++;
1056				goto keep_locked;
1057
1058			/* Case 2 above */
1059			} else if (sane_reclaim(sc) ||
1060			    !PageReclaim(page) || !may_enter_fs) {
1061				/*
1062				 * This is slightly racy - end_page_writeback()
1063				 * might have just cleared PageReclaim, then
1064				 * setting PageReclaim here end up interpreted
1065				 * as PageReadahead - but that does not matter
1066				 * enough to care.  What we do want is for this
1067				 * page to have PageReclaim set next time memcg
1068				 * reclaim reaches the tests above, so it will
1069				 * then wait_on_page_writeback() to avoid OOM;
1070				 * and it's also appropriate in global reclaim.
1071				 */
1072				SetPageReclaim(page);
1073				nr_writeback++;
1074				goto keep_locked;
1075
1076			/* Case 3 above */
1077			} else {
1078				unlock_page(page);
1079				wait_on_page_writeback(page);
1080				/* then go back and try same page again */
1081				list_add_tail(&page->lru, page_list);
1082				continue;
1083			}
1084		}
1085
1086		if (!force_reclaim)
1087			references = page_check_references(page, sc);
1088
1089		switch (references) {
1090		case PAGEREF_ACTIVATE:
1091			goto activate_locked;
1092		case PAGEREF_KEEP:
1093			goto keep_locked;
1094		case PAGEREF_RECLAIM:
1095		case PAGEREF_RECLAIM_CLEAN:
1096			; /* try to reclaim the page below */
1097		}
1098
1099		/*
1100		 * Anonymous process memory has backing store?
1101		 * Try to allocate it some swap space here.
1102		 */
1103		if (PageAnon(page) && !PageSwapCache(page)) {
1104			if (!(sc->gfp_mask & __GFP_IO))
1105				goto keep_locked;
1106			if (!add_to_swap(page, page_list))
1107				goto activate_locked;
1108			lazyfree = true;
1109			may_enter_fs = 1;
1110
1111			/* Adding to swap updated mapping */
1112			mapping = page_mapping(page);
1113		} else if (unlikely(PageTransHuge(page))) {
1114			/* Split file THP */
1115			if (split_huge_page_to_list(page, page_list))
1116				goto keep_locked;
1117		}
1118
1119		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1120
1121		/*
1122		 * The page is mapped into the page tables of one or more
1123		 * processes. Try to unmap it here.
1124		 */
1125		if (page_mapped(page) && mapping) {
1126			switch (ret = try_to_unmap(page, lazyfree ?
1127				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1128				(ttu_flags | TTU_BATCH_FLUSH))) {
1129			case SWAP_FAIL:
1130				goto activate_locked;
1131			case SWAP_AGAIN:
1132				goto keep_locked;
1133			case SWAP_MLOCK:
1134				goto cull_mlocked;
1135			case SWAP_LZFREE:
1136				goto lazyfree;
1137			case SWAP_SUCCESS:
1138				; /* try to free the page below */
1139			}
1140		}
1141
1142		if (PageDirty(page)) {
1143			/*
1144			 * Only kswapd can writeback filesystem pages to
1145			 * avoid risk of stack overflow but only writeback
1146			 * if many dirty pages have been encountered.
1147			 */
1148			if (page_is_file_cache(page) &&
1149					(!current_is_kswapd() ||
1150					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1151				/*
1152				 * Immediately reclaim when written back.
1153				 * Similar in principal to deactivate_page()
1154				 * except we already have the page isolated
1155				 * and know it's dirty
1156				 */
1157				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1158				SetPageReclaim(page);
1159
1160				goto keep_locked;
1161			}
1162
1163			if (references == PAGEREF_RECLAIM_CLEAN)
1164				goto keep_locked;
1165			if (!may_enter_fs)
1166				goto keep_locked;
1167			if (!sc->may_writepage)
1168				goto keep_locked;
1169
1170			/*
1171			 * Page is dirty. Flush the TLB if a writable entry
1172			 * potentially exists to avoid CPU writes after IO
1173			 * starts and then write it out here.
1174			 */
1175			try_to_unmap_flush_dirty();
1176			switch (pageout(page, mapping, sc)) {
1177			case PAGE_KEEP:
 
1178				goto keep_locked;
1179			case PAGE_ACTIVATE:
1180				goto activate_locked;
1181			case PAGE_SUCCESS:
1182				if (PageWriteback(page))
1183					goto keep;
1184				if (PageDirty(page))
1185					goto keep;
1186
1187				/*
1188				 * A synchronous write - probably a ramdisk.  Go
1189				 * ahead and try to reclaim the page.
1190				 */
1191				if (!trylock_page(page))
1192					goto keep;
1193				if (PageDirty(page) || PageWriteback(page))
1194					goto keep_locked;
1195				mapping = page_mapping(page);
1196			case PAGE_CLEAN:
1197				; /* try to free the page below */
1198			}
1199		}
1200
1201		/*
1202		 * If the page has buffers, try to free the buffer mappings
1203		 * associated with this page. If we succeed we try to free
1204		 * the page as well.
1205		 *
1206		 * We do this even if the page is PageDirty().
1207		 * try_to_release_page() does not perform I/O, but it is
1208		 * possible for a page to have PageDirty set, but it is actually
1209		 * clean (all its buffers are clean).  This happens if the
1210		 * buffers were written out directly, with submit_bh(). ext3
1211		 * will do this, as well as the blockdev mapping.
1212		 * try_to_release_page() will discover that cleanness and will
1213		 * drop the buffers and mark the page clean - it can be freed.
1214		 *
1215		 * Rarely, pages can have buffers and no ->mapping.  These are
1216		 * the pages which were not successfully invalidated in
1217		 * truncate_complete_page().  We try to drop those buffers here
1218		 * and if that worked, and the page is no longer mapped into
1219		 * process address space (page_count == 1) it can be freed.
1220		 * Otherwise, leave the page on the LRU so it is swappable.
1221		 */
1222		if (page_has_private(page)) {
1223			if (!try_to_release_page(page, sc->gfp_mask))
1224				goto activate_locked;
1225			if (!mapping && page_count(page) == 1) {
1226				unlock_page(page);
1227				if (put_page_testzero(page))
1228					goto free_it;
1229				else {
1230					/*
1231					 * rare race with speculative reference.
1232					 * the speculative reference will free
1233					 * this page shortly, so we may
1234					 * increment nr_reclaimed here (and
1235					 * leave it off the LRU).
1236					 */
1237					nr_reclaimed++;
1238					continue;
1239				}
1240			}
1241		}
1242
1243lazyfree:
1244		if (!mapping || !__remove_mapping(mapping, page, true))
1245			goto keep_locked;
1246
1247		/*
1248		 * At this point, we have no other references and there is
1249		 * no way to pick any more up (removed from LRU, removed
1250		 * from pagecache). Can use non-atomic bitops now (and
1251		 * we obviously don't have to worry about waking up a process
1252		 * waiting on the page lock, because there are no references.
1253		 */
1254		__ClearPageLocked(page);
1255free_it:
1256		if (ret == SWAP_LZFREE)
1257			count_vm_event(PGLAZYFREED);
1258
1259		nr_reclaimed++;
1260
1261		/*
1262		 * Is there need to periodically free_page_list? It would
1263		 * appear not as the counts should be low
1264		 */
1265		list_add(&page->lru, &free_pages);
1266		continue;
1267
1268cull_mlocked:
1269		if (PageSwapCache(page))
1270			try_to_free_swap(page);
1271		unlock_page(page);
1272		list_add(&page->lru, &ret_pages);
 
1273		continue;
1274
1275activate_locked:
1276		/* Not a candidate for swapping, so reclaim swap space. */
1277		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1278			try_to_free_swap(page);
1279		VM_BUG_ON_PAGE(PageActive(page), page);
1280		SetPageActive(page);
1281		pgactivate++;
1282keep_locked:
1283		unlock_page(page);
1284keep:
 
 
1285		list_add(&page->lru, &ret_pages);
1286		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1287	}
1288
1289	mem_cgroup_uncharge_list(&free_pages);
1290	try_to_unmap_flush();
1291	free_hot_cold_page_list(&free_pages, true);
 
 
 
 
 
 
 
1292
1293	list_splice(&ret_pages, page_list);
1294	count_vm_events(PGACTIVATE, pgactivate);
1295
1296	*ret_nr_dirty += nr_dirty;
1297	*ret_nr_congested += nr_congested;
1298	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1299	*ret_nr_writeback += nr_writeback;
1300	*ret_nr_immediate += nr_immediate;
1301	return nr_reclaimed;
1302}
1303
1304unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1305					    struct list_head *page_list)
1306{
1307	struct scan_control sc = {
1308		.gfp_mask = GFP_KERNEL,
1309		.priority = DEF_PRIORITY,
1310		.may_unmap = 1,
1311	};
1312	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1313	struct page *page, *next;
1314	LIST_HEAD(clean_pages);
1315
1316	list_for_each_entry_safe(page, next, page_list, lru) {
1317		if (page_is_file_cache(page) && !PageDirty(page) &&
1318		    !__PageMovable(page)) {
1319			ClearPageActive(page);
1320			list_move(&page->lru, &clean_pages);
1321		}
1322	}
1323
1324	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1325			TTU_UNMAP|TTU_IGNORE_ACCESS,
1326			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1327	list_splice(&clean_pages, page_list);
1328	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1329	return ret;
1330}
1331
1332/*
1333 * Attempt to remove the specified page from its LRU.  Only take this page
1334 * if it is of the appropriate PageActive status.  Pages which are being
1335 * freed elsewhere are also ignored.
1336 *
1337 * page:	page to consider
1338 * mode:	one of the LRU isolation modes defined above
1339 *
1340 * returns 0 on success, -ve errno on failure.
1341 */
1342int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1343{
1344	int ret = -EINVAL;
1345
1346	/* Only take pages on the LRU. */
1347	if (!PageLRU(page))
1348		return ret;
1349
1350	/* Compaction should not handle unevictable pages but CMA can do so */
1351	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
 
 
 
 
1352		return ret;
1353
1354	ret = -EBUSY;
 
1355
1356	/*
1357	 * To minimise LRU disruption, the caller can indicate that it only
1358	 * wants to isolate pages it will be able to operate on without
1359	 * blocking - clean pages for the most part.
1360	 *
1361	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1362	 * is used by reclaim when it is cannot write to backing storage
1363	 *
1364	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1365	 * that it is possible to migrate without blocking
1366	 */
1367	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1368		/* All the caller can do on PageWriteback is block */
1369		if (PageWriteback(page))
1370			return ret;
1371
1372		if (PageDirty(page)) {
1373			struct address_space *mapping;
1374
1375			/* ISOLATE_CLEAN means only clean pages */
1376			if (mode & ISOLATE_CLEAN)
1377				return ret;
1378
1379			/*
1380			 * Only pages without mappings or that have a
1381			 * ->migratepage callback are possible to migrate
1382			 * without blocking
1383			 */
1384			mapping = page_mapping(page);
1385			if (mapping && !mapping->a_ops->migratepage)
1386				return ret;
1387		}
1388	}
1389
1390	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1391		return ret;
1392
1393	if (likely(get_page_unless_zero(page))) {
1394		/*
1395		 * Be careful not to clear PageLRU until after we're
1396		 * sure the page is not being freed elsewhere -- the
1397		 * page release code relies on it.
1398		 */
1399		ClearPageLRU(page);
1400		ret = 0;
1401	}
1402
1403	return ret;
1404}
1405
1406
1407/*
1408 * Update LRU sizes after isolating pages. The LRU size updates must
1409 * be complete before mem_cgroup_update_lru_size due to a santity check.
1410 */
1411static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1412			enum lru_list lru, unsigned long *nr_zone_taken)
1413{
1414	int zid;
1415
1416	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1417		if (!nr_zone_taken[zid])
1418			continue;
1419
1420		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1421#ifdef CONFIG_MEMCG
1422		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1423#endif
1424	}
1425
1426}
1427
1428/*
1429 * zone_lru_lock is heavily contended.  Some of the functions that
1430 * shrink the lists perform better by taking out a batch of pages
1431 * and working on them outside the LRU lock.
1432 *
1433 * For pagecache intensive workloads, this function is the hottest
1434 * spot in the kernel (apart from copy_*_user functions).
1435 *
1436 * Appropriate locks must be held before calling this function.
1437 *
1438 * @nr_to_scan:	The number of pages to look through on the list.
1439 * @lruvec:	The LRU vector to pull pages from.
1440 * @dst:	The temp list to put pages on to.
1441 * @nr_scanned:	The number of pages that were scanned.
1442 * @sc:		The scan_control struct for this reclaim session
1443 * @mode:	One of the LRU isolation modes
1444 * @lru:	LRU list id for isolating
1445 *
1446 * returns how many pages were moved onto *@dst.
1447 */
1448static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1449		struct lruvec *lruvec, struct list_head *dst,
1450		unsigned long *nr_scanned, struct scan_control *sc,
1451		isolate_mode_t mode, enum lru_list lru)
1452{
1453	struct list_head *src = &lruvec->lists[lru];
1454	unsigned long nr_taken = 0;
1455	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1456	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1457	unsigned long scan, nr_pages;
1458	LIST_HEAD(pages_skipped);
1459
1460	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1461					!list_empty(src);) {
1462		struct page *page;
 
 
 
 
1463
1464		page = lru_to_page(src);
1465		prefetchw_prev_lru_page(page, src, flags);
1466
1467		VM_BUG_ON_PAGE(!PageLRU(page), page);
1468
1469		if (page_zonenum(page) > sc->reclaim_idx) {
1470			list_move(&page->lru, &pages_skipped);
1471			nr_skipped[page_zonenum(page)]++;
1472			continue;
1473		}
1474
1475		/*
1476		 * Account for scanned and skipped separetly to avoid the pgdat
1477		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1478		 */
1479		scan++;
1480
1481		switch (__isolate_lru_page(page, mode)) {
1482		case 0:
1483			nr_pages = hpage_nr_pages(page);
1484			nr_taken += nr_pages;
1485			nr_zone_taken[page_zonenum(page)] += nr_pages;
1486			list_move(&page->lru, dst);
 
 
1487			break;
1488
1489		case -EBUSY:
1490			/* else it is being freed elsewhere */
1491			list_move(&page->lru, src);
 
1492			continue;
1493
1494		default:
1495			BUG();
1496		}
1497	}
1498
1499	/*
1500	 * Splice any skipped pages to the start of the LRU list. Note that
1501	 * this disrupts the LRU order when reclaiming for lower zones but
1502	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1503	 * scanning would soon rescan the same pages to skip and put the
1504	 * system at risk of premature OOM.
1505	 */
1506	if (!list_empty(&pages_skipped)) {
1507		int zid;
1508		unsigned long total_skipped = 0;
 
 
 
 
 
 
 
 
1509
1510		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1511			if (!nr_skipped[zid])
1512				continue;
1513
1514			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1515			total_skipped += nr_skipped[zid];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516		}
1517
1518		/*
1519		 * Account skipped pages as a partial scan as the pgdat may be
1520		 * close to unreclaimable. If the LRU list is empty, account
1521		 * skipped pages as a full scan.
1522		 */
1523		scan += list_empty(src) ? total_skipped : total_skipped >> 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524
1525		list_splice(&pages_skipped, src);
 
 
 
 
 
 
 
 
 
1526	}
1527	*nr_scanned = scan;
1528	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1529				    nr_taken, mode, is_file_lru(lru));
1530	update_lru_sizes(lruvec, lru, nr_zone_taken);
1531	return nr_taken;
1532}
1533
1534/**
1535 * isolate_lru_page - tries to isolate a page from its LRU list
1536 * @page: page to isolate from its LRU list
1537 *
1538 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1539 * vmstat statistic corresponding to whatever LRU list the page was on.
1540 *
1541 * Returns 0 if the page was removed from an LRU list.
1542 * Returns -EBUSY if the page was not on an LRU list.
1543 *
1544 * The returned page will have PageLRU() cleared.  If it was found on
1545 * the active list, it will have PageActive set.  If it was found on
1546 * the unevictable list, it will have the PageUnevictable bit set. That flag
1547 * may need to be cleared by the caller before letting the page go.
1548 *
1549 * The vmstat statistic corresponding to the list on which the page was
1550 * found will be decremented.
1551 *
1552 * Restrictions:
1553 * (1) Must be called with an elevated refcount on the page. This is a
1554 *     fundamentnal difference from isolate_lru_pages (which is called
1555 *     without a stable reference).
1556 * (2) the lru_lock must not be held.
1557 * (3) interrupts must be enabled.
1558 */
1559int isolate_lru_page(struct page *page)
1560{
1561	int ret = -EBUSY;
1562
1563	VM_BUG_ON_PAGE(!page_count(page), page);
1564	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1565
1566	if (PageLRU(page)) {
1567		struct zone *zone = page_zone(page);
1568		struct lruvec *lruvec;
1569
1570		spin_lock_irq(zone_lru_lock(zone));
1571		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1572		if (PageLRU(page)) {
1573			int lru = page_lru(page);
 
1574			get_page(page);
1575			ClearPageLRU(page);
1576			del_page_from_lru_list(page, lruvec, lru);
1577			ret = 0;
1578		}
1579		spin_unlock_irq(zone_lru_lock(zone));
1580	}
1581	return ret;
1582}
1583
1584/*
1585 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1586 * then get resheduled. When there are massive number of tasks doing page
1587 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1588 * the LRU list will go small and be scanned faster than necessary, leading to
1589 * unnecessary swapping, thrashing and OOM.
1590 */
1591static int too_many_isolated(struct pglist_data *pgdat, int file,
1592		struct scan_control *sc)
1593{
1594	unsigned long inactive, isolated;
1595
1596	if (current_is_kswapd())
1597		return 0;
1598
1599	if (!sane_reclaim(sc))
1600		return 0;
1601
1602	if (file) {
1603		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1604		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1605	} else {
1606		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1607		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1608	}
1609
1610	/*
1611	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1612	 * won't get blocked by normal direct-reclaimers, forming a circular
1613	 * deadlock.
1614	 */
1615	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1616		inactive >>= 3;
1617
1618	return isolated > inactive;
1619}
1620
 
 
 
1621static noinline_for_stack void
1622putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
1623{
1624	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1625	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1626	LIST_HEAD(pages_to_free);
 
 
1627
1628	/*
1629	 * Put back any unfreeable pages.
1630	 */
 
1631	while (!list_empty(page_list)) {
1632		struct page *page = lru_to_page(page_list);
1633		int lru;
1634
1635		VM_BUG_ON_PAGE(PageLRU(page), page);
1636		list_del(&page->lru);
1637		if (unlikely(!page_evictable(page))) {
1638			spin_unlock_irq(&pgdat->lru_lock);
1639			putback_lru_page(page);
1640			spin_lock_irq(&pgdat->lru_lock);
1641			continue;
1642		}
1643
1644		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1645
1646		SetPageLRU(page);
1647		lru = page_lru(page);
1648		add_page_to_lru_list(page, lruvec, lru);
1649
1650		if (is_active_lru(lru)) {
1651			int file = is_file_lru(lru);
1652			int numpages = hpage_nr_pages(page);
1653			reclaim_stat->recent_rotated[file] += numpages;
1654		}
1655		if (put_page_testzero(page)) {
1656			__ClearPageLRU(page);
1657			__ClearPageActive(page);
1658			del_page_from_lru_list(page, lruvec, lru);
1659
1660			if (unlikely(PageCompound(page))) {
1661				spin_unlock_irq(&pgdat->lru_lock);
1662				mem_cgroup_uncharge(page);
1663				(*get_compound_page_dtor(page))(page);
1664				spin_lock_irq(&pgdat->lru_lock);
1665			} else
1666				list_add(&page->lru, &pages_to_free);
1667		}
1668	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669
1670	/*
1671	 * To save our caller's stack, now use input list for pages to free.
1672	 */
1673	list_splice(&pages_to_free, page_list);
 
 
 
 
 
 
 
 
 
 
 
 
1674}
1675
1676/*
1677 * If a kernel thread (such as nfsd for loop-back mounts) services
1678 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1679 * In that case we should only throttle if the backing device it is
1680 * writing to is congested.  In other cases it is safe to throttle.
 
 
1681 */
1682static int current_may_throttle(void)
 
 
 
1683{
1684	return !(current->flags & PF_LESS_THROTTLE) ||
1685		current->backing_dev_info == NULL ||
1686		bdi_write_congested(current->backing_dev_info);
1687}
1688
1689static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1690				struct scan_control *sc, enum lru_list lru)
1691{
1692	int zid;
1693	struct zone *zone;
1694	int file = is_file_lru(lru);
1695	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1696
1697	if (!global_reclaim(sc))
1698		return true;
 
1699
1700	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1701		zone = &pgdat->node_zones[zid];
1702		if (!managed_zone(zone))
1703			continue;
1704
1705		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1706				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1707			return true;
1708	}
 
 
 
 
 
 
1709
1710	return false;
1711}
1712
1713/*
1714 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1715 * of reclaimed pages
1716 */
1717static noinline_for_stack unsigned long
1718shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719		     struct scan_control *sc, enum lru_list lru)
1720{
1721	LIST_HEAD(page_list);
1722	unsigned long nr_scanned;
1723	unsigned long nr_reclaimed = 0;
1724	unsigned long nr_taken;
1725	unsigned long nr_dirty = 0;
1726	unsigned long nr_congested = 0;
1727	unsigned long nr_unqueued_dirty = 0;
1728	unsigned long nr_writeback = 0;
1729	unsigned long nr_immediate = 0;
1730	isolate_mode_t isolate_mode = 0;
1731	int file = is_file_lru(lru);
1732	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1733	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1734
1735	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1736		return 0;
1737
1738	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1739		congestion_wait(BLK_RW_ASYNC, HZ/10);
1740
1741		/* We are about to die and free our memory. Return now. */
1742		if (fatal_signal_pending(current))
1743			return SWAP_CLUSTER_MAX;
1744	}
1745
 
1746	lru_add_drain();
 
1747
1748	if (!sc->may_unmap)
1749		isolate_mode |= ISOLATE_UNMAPPED;
1750	if (!sc->may_writepage)
1751		isolate_mode |= ISOLATE_CLEAN;
1752
1753	spin_lock_irq(&pgdat->lru_lock);
1754
1755	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1756				     &nr_scanned, sc, isolate_mode, lru);
1757
1758	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1759	reclaim_stat->recent_scanned[file] += nr_taken;
1760
1761	if (global_reclaim(sc)) {
1762		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1763		if (current_is_kswapd())
1764			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
 
1765		else
1766			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
 
 
 
 
 
 
 
 
 
 
 
 
1767	}
1768	spin_unlock_irq(&pgdat->lru_lock);
1769
1770	if (nr_taken == 0)
 
1771		return 0;
1772
1773	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1774				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1775				&nr_writeback, &nr_immediate,
1776				false);
1777
1778	spin_lock_irq(&pgdat->lru_lock);
1779
1780	if (global_reclaim(sc)) {
1781		if (current_is_kswapd())
1782			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1783		else
1784			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1785	}
1786
1787	putback_inactive_pages(lruvec, &page_list);
1788
1789	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1790
1791	spin_unlock_irq(&pgdat->lru_lock);
1792
1793	mem_cgroup_uncharge_list(&page_list);
1794	free_hot_cold_page_list(&page_list, true);
 
 
 
1795
1796	/*
1797	 * If reclaim is isolating dirty pages under writeback, it implies
1798	 * that the long-lived page allocation rate is exceeding the page
1799	 * laundering rate. Either the global limits are not being effective
1800	 * at throttling processes due to the page distribution throughout
1801	 * zones or there is heavy usage of a slow backing device. The
1802	 * only option is to throttle from reclaim context which is not ideal
1803	 * as there is no guarantee the dirtying process is throttled in the
1804	 * same way balance_dirty_pages() manages.
1805	 *
1806	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1807	 * of pages under pages flagged for immediate reclaim and stall if any
1808	 * are encountered in the nr_immediate check below.
1809	 */
1810	if (nr_writeback && nr_writeback == nr_taken)
1811		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1812
1813	/*
1814	 * Legacy memcg will stall in page writeback so avoid forcibly
1815	 * stalling here.
1816	 */
1817	if (sane_reclaim(sc)) {
1818		/*
1819		 * Tag a zone as congested if all the dirty pages scanned were
1820		 * backed by a congested BDI and wait_iff_congested will stall.
1821		 */
1822		if (nr_dirty && nr_dirty == nr_congested)
1823			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1824
1825		/*
1826		 * If dirty pages are scanned that are not queued for IO, it
1827		 * implies that flushers are not keeping up. In this case, flag
1828		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1829		 * reclaim context.
1830		 */
1831		if (nr_unqueued_dirty == nr_taken)
1832			set_bit(PGDAT_DIRTY, &pgdat->flags);
1833
1834		/*
1835		 * If kswapd scans pages marked marked for immediate
1836		 * reclaim and under writeback (nr_immediate), it implies
1837		 * that pages are cycling through the LRU faster than
1838		 * they are written so also forcibly stall.
1839		 */
1840		if (nr_immediate && current_may_throttle())
1841			congestion_wait(BLK_RW_ASYNC, HZ/10);
1842	}
1843
1844	/*
1845	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1846	 * is congested. Allow kswapd to continue until it starts encountering
1847	 * unqueued dirty pages or cycling through the LRU too quickly.
1848	 */
1849	if (!sc->hibernation_mode && !current_is_kswapd() &&
1850	    current_may_throttle())
1851		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1852
1853	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1854			nr_scanned, nr_reclaimed,
1855			sc->priority, file);
 
 
1856	return nr_reclaimed;
1857}
1858
1859/*
1860 * This moves pages from the active list to the inactive list.
1861 *
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1864 *
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation.  But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page.  It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1872 *
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1875 */
1876
1877static void move_active_pages_to_lru(struct lruvec *lruvec,
1878				     struct list_head *list,
1879				     struct list_head *pages_to_free,
1880				     enum lru_list lru)
1881{
1882	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883	unsigned long pgmoved = 0;
 
1884	struct page *page;
1885	int nr_pages;
 
1886
1887	while (!list_empty(list)) {
1888		page = lru_to_page(list);
1889		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1890
1891		VM_BUG_ON_PAGE(PageLRU(page), page);
1892		SetPageLRU(page);
1893
1894		nr_pages = hpage_nr_pages(page);
1895		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1896		list_move(&page->lru, &lruvec->lists[lru]);
1897		pgmoved += nr_pages;
1898
1899		if (put_page_testzero(page)) {
1900			__ClearPageLRU(page);
1901			__ClearPageActive(page);
1902			del_page_from_lru_list(page, lruvec, lru);
1903
1904			if (unlikely(PageCompound(page))) {
1905				spin_unlock_irq(&pgdat->lru_lock);
1906				mem_cgroup_uncharge(page);
1907				(*get_compound_page_dtor(page))(page);
1908				spin_lock_irq(&pgdat->lru_lock);
1909			} else
1910				list_add(&page->lru, pages_to_free);
1911		}
1912	}
1913
1914	if (!is_active_lru(lru))
1915		__count_vm_events(PGDEACTIVATE, pgmoved);
1916}
1917
1918static void shrink_active_list(unsigned long nr_to_scan,
1919			       struct lruvec *lruvec,
1920			       struct scan_control *sc,
1921			       enum lru_list lru)
1922{
1923	unsigned long nr_taken;
1924	unsigned long nr_scanned;
1925	unsigned long vm_flags;
1926	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1927	LIST_HEAD(l_active);
1928	LIST_HEAD(l_inactive);
1929	struct page *page;
1930	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1931	unsigned long nr_rotated = 0;
1932	isolate_mode_t isolate_mode = 0;
1933	int file = is_file_lru(lru);
1934	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1935
1936	lru_add_drain();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1937
1938	if (!sc->may_unmap)
1939		isolate_mode |= ISOLATE_UNMAPPED;
1940	if (!sc->may_writepage)
1941		isolate_mode |= ISOLATE_CLEAN;
1942
1943	spin_lock_irq(&pgdat->lru_lock);
1944
1945	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1946				     &nr_scanned, sc, isolate_mode, lru);
1947
1948	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949	reclaim_stat->recent_scanned[file] += nr_taken;
1950
1951	if (global_reclaim(sc))
1952		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1953	__count_vm_events(PGREFILL, nr_scanned);
1954
1955	spin_unlock_irq(&pgdat->lru_lock);
 
 
1956
1957	while (!list_empty(&l_hold)) {
1958		cond_resched();
1959		page = lru_to_page(&l_hold);
1960		list_del(&page->lru);
1961
1962		if (unlikely(!page_evictable(page))) {
1963			putback_lru_page(page);
1964			continue;
1965		}
1966
1967		if (unlikely(buffer_heads_over_limit)) {
1968			if (page_has_private(page) && trylock_page(page)) {
1969				if (page_has_private(page))
1970					try_to_release_page(page, 0);
1971				unlock_page(page);
1972			}
1973		}
1974
1975		if (page_referenced(page, 0, sc->target_mem_cgroup,
1976				    &vm_flags)) {
1977			nr_rotated += hpage_nr_pages(page);
1978			/*
1979			 * Identify referenced, file-backed active pages and
1980			 * give them one more trip around the active list. So
1981			 * that executable code get better chances to stay in
1982			 * memory under moderate memory pressure.  Anon pages
1983			 * are not likely to be evicted by use-once streaming
1984			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1985			 * so we ignore them here.
1986			 */
1987			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1988				list_add(&page->lru, &l_active);
1989				continue;
1990			}
1991		}
1992
1993		ClearPageActive(page);	/* we are de-activating */
1994		list_add(&page->lru, &l_inactive);
1995	}
1996
1997	/*
1998	 * Move pages back to the lru list.
1999	 */
2000	spin_lock_irq(&pgdat->lru_lock);
2001	/*
2002	 * Count referenced pages from currently used mappings as rotated,
2003	 * even though only some of them are actually re-activated.  This
2004	 * helps balance scan pressure between file and anonymous pages in
2005	 * get_scan_count.
2006	 */
2007	reclaim_stat->recent_rotated[file] += nr_rotated;
2008
2009	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2010	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2011	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2012	spin_unlock_irq(&pgdat->lru_lock);
2013
2014	mem_cgroup_uncharge_list(&l_hold);
2015	free_hot_cold_page_list(&l_hold, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
2016}
2017
2018/*
2019 * The inactive anon list should be small enough that the VM never has
2020 * to do too much work.
2021 *
2022 * The inactive file list should be small enough to leave most memory
2023 * to the established workingset on the scan-resistant active list,
2024 * but large enough to avoid thrashing the aggregate readahead window.
2025 *
2026 * Both inactive lists should also be large enough that each inactive
2027 * page has a chance to be referenced again before it is reclaimed.
2028 *
2029 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2030 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2031 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2032 *
2033 * total     target    max
2034 * memory    ratio     inactive
2035 * -------------------------------------
2036 *   10MB       1         5MB
2037 *  100MB       1        50MB
2038 *    1GB       3       250MB
2039 *   10GB      10       0.9GB
2040 *  100GB      31         3GB
2041 *    1TB     101        10GB
2042 *   10TB     320        32GB
2043 */
2044static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2045						struct scan_control *sc)
2046{
2047	unsigned long inactive_ratio;
2048	unsigned long inactive, active;
2049	enum lru_list inactive_lru = file * LRU_FILE;
2050	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2051	unsigned long gb;
2052
2053	/*
2054	 * If we don't have swap space, anonymous page deactivation
2055	 * is pointless.
2056	 */
2057	if (!file && !total_swap_pages)
2058		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059
2060	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2061	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062
2063	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2064	if (gb)
2065		inactive_ratio = int_sqrt(10 * gb);
2066	else
2067		inactive_ratio = 1;
 
 
2068
2069	return inactive * inactive_ratio < active;
 
 
 
 
 
 
2070}
2071
2072static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2073				 struct lruvec *lruvec, struct scan_control *sc)
2074{
 
 
2075	if (is_active_lru(lru)) {
2076		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2077			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2078		return 0;
2079	}
2080
2081	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2082}
2083
2084enum scan_balance {
2085	SCAN_EQUAL,
2086	SCAN_FRACT,
2087	SCAN_ANON,
2088	SCAN_FILE,
2089};
2090
2091/*
2092 * Determine how aggressively the anon and file LRU lists should be
2093 * scanned.  The relative value of each set of LRU lists is determined
2094 * by looking at the fraction of the pages scanned we did rotate back
2095 * onto the active list instead of evict.
2096 *
2097 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2098 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2099 */
2100static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2101			   struct scan_control *sc, unsigned long *nr,
2102			   unsigned long *lru_pages)
2103{
2104	int swappiness = mem_cgroup_swappiness(memcg);
2105	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2106	u64 fraction[2];
2107	u64 denominator = 0;	/* gcc */
2108	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2109	unsigned long anon_prio, file_prio;
2110	enum scan_balance scan_balance;
2111	unsigned long anon, file;
 
 
 
2112	bool force_scan = false;
2113	unsigned long ap, fp;
2114	enum lru_list lru;
2115	bool some_scanned;
2116	int pass;
2117
2118	/*
2119	 * If the zone or memcg is small, nr[l] can be 0.  This
2120	 * results in no scanning on this priority and a potential
2121	 * priority drop.  Global direct reclaim can go to the next
2122	 * zone and tends to have no problems. Global kswapd is for
2123	 * zone balancing and it needs to scan a minimum amount. When
2124	 * reclaiming for a memcg, a priority drop can cause high
2125	 * latencies, so it's better to scan a minimum amount there as
2126	 * well.
2127	 */
2128	if (current_is_kswapd()) {
2129		if (!pgdat_reclaimable(pgdat))
2130			force_scan = true;
2131		if (!mem_cgroup_online(memcg))
2132			force_scan = true;
2133	}
2134	if (!global_reclaim(sc))
2135		force_scan = true;
2136
2137	/* If we have no swap space, do not bother scanning anon pages. */
2138	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2139		scan_balance = SCAN_FILE;
2140		goto out;
2141	}
2142
2143	/*
2144	 * Global reclaim will swap to prevent OOM even with no
2145	 * swappiness, but memcg users want to use this knob to
2146	 * disable swapping for individual groups completely when
2147	 * using the memory controller's swap limit feature would be
2148	 * too expensive.
2149	 */
2150	if (!global_reclaim(sc) && !swappiness) {
2151		scan_balance = SCAN_FILE;
2152		goto out;
2153	}
2154
2155	/*
2156	 * Do not apply any pressure balancing cleverness when the
2157	 * system is close to OOM, scan both anon and file equally
2158	 * (unless the swappiness setting disagrees with swapping).
2159	 */
2160	if (!sc->priority && swappiness) {
2161		scan_balance = SCAN_EQUAL;
2162		goto out;
2163	}
2164
2165	/*
2166	 * Prevent the reclaimer from falling into the cache trap: as
2167	 * cache pages start out inactive, every cache fault will tip
2168	 * the scan balance towards the file LRU.  And as the file LRU
2169	 * shrinks, so does the window for rotation from references.
2170	 * This means we have a runaway feedback loop where a tiny
2171	 * thrashing file LRU becomes infinitely more attractive than
2172	 * anon pages.  Try to detect this based on file LRU size.
2173	 */
2174	if (global_reclaim(sc)) {
2175		unsigned long pgdatfile;
2176		unsigned long pgdatfree;
2177		int z;
2178		unsigned long total_high_wmark = 0;
2179
2180		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2181		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2182			   node_page_state(pgdat, NR_INACTIVE_FILE);
2183
2184		for (z = 0; z < MAX_NR_ZONES; z++) {
2185			struct zone *zone = &pgdat->node_zones[z];
2186			if (!managed_zone(zone))
2187				continue;
2188
2189			total_high_wmark += high_wmark_pages(zone);
2190		}
2191
2192		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2193			scan_balance = SCAN_ANON;
2194			goto out;
2195		}
2196	}
2197
2198	/*
2199	 * If there is enough inactive page cache, i.e. if the size of the
2200	 * inactive list is greater than that of the active list *and* the
2201	 * inactive list actually has some pages to scan on this priority, we
2202	 * do not reclaim anything from the anonymous working set right now.
2203	 * Without the second condition we could end up never scanning an
2204	 * lruvec even if it has plenty of old anonymous pages unless the
2205	 * system is under heavy pressure.
2206	 */
2207	if (!inactive_list_is_low(lruvec, true, sc) &&
2208	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2209		scan_balance = SCAN_FILE;
2210		goto out;
2211	}
2212
2213	scan_balance = SCAN_FRACT;
2214
2215	/*
2216	 * With swappiness at 100, anonymous and file have the same priority.
2217	 * This scanning priority is essentially the inverse of IO cost.
2218	 */
2219	anon_prio = swappiness;
2220	file_prio = 200 - anon_prio;
2221
2222	/*
2223	 * OK, so we have swap space and a fair amount of page cache
2224	 * pages.  We use the recently rotated / recently scanned
2225	 * ratios to determine how valuable each cache is.
2226	 *
2227	 * Because workloads change over time (and to avoid overflow)
2228	 * we keep these statistics as a floating average, which ends
2229	 * up weighing recent references more than old ones.
2230	 *
2231	 * anon in [0], file in [1]
2232	 */
2233
2234	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2235		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2236	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2237		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2238
2239	spin_lock_irq(&pgdat->lru_lock);
2240	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2241		reclaim_stat->recent_scanned[0] /= 2;
2242		reclaim_stat->recent_rotated[0] /= 2;
2243	}
2244
2245	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2246		reclaim_stat->recent_scanned[1] /= 2;
2247		reclaim_stat->recent_rotated[1] /= 2;
2248	}
2249
2250	/*
2251	 * The amount of pressure on anon vs file pages is inversely
2252	 * proportional to the fraction of recently scanned pages on
2253	 * each list that were recently referenced and in active use.
2254	 */
2255	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2256	ap /= reclaim_stat->recent_rotated[0] + 1;
2257
2258	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2259	fp /= reclaim_stat->recent_rotated[1] + 1;
2260	spin_unlock_irq(&pgdat->lru_lock);
2261
2262	fraction[0] = ap;
2263	fraction[1] = fp;
2264	denominator = ap + fp + 1;
 
 
 
 
 
2265out:
2266	some_scanned = false;
2267	/* Only use force_scan on second pass. */
2268	for (pass = 0; !some_scanned && pass < 2; pass++) {
2269		*lru_pages = 0;
2270		for_each_evictable_lru(lru) {
2271			int file = is_file_lru(lru);
2272			unsigned long size;
2273			unsigned long scan;
2274
2275			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2276			scan = size >> sc->priority;
2277
2278			if (!scan && pass && force_scan)
2279				scan = min(size, SWAP_CLUSTER_MAX);
2280
2281			switch (scan_balance) {
2282			case SCAN_EQUAL:
2283				/* Scan lists relative to size */
2284				break;
2285			case SCAN_FRACT:
2286				/*
2287				 * Scan types proportional to swappiness and
2288				 * their relative recent reclaim efficiency.
2289				 */
2290				scan = div64_u64(scan * fraction[file],
2291							denominator);
2292				break;
2293			case SCAN_FILE:
2294			case SCAN_ANON:
2295				/* Scan one type exclusively */
2296				if ((scan_balance == SCAN_FILE) != file) {
2297					size = 0;
2298					scan = 0;
2299				}
2300				break;
2301			default:
2302				/* Look ma, no brain */
2303				BUG();
2304			}
2305
2306			*lru_pages += size;
2307			nr[lru] = scan;
2308
2309			/*
2310			 * Skip the second pass and don't force_scan,
2311			 * if we found something to scan.
2312			 */
2313			some_scanned |= !!scan;
2314		}
2315	}
2316}
2317
2318/*
2319 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2320 */
2321static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2322			      struct scan_control *sc, unsigned long *lru_pages)
2323{
2324	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2325	unsigned long nr[NR_LRU_LISTS];
2326	unsigned long targets[NR_LRU_LISTS];
2327	unsigned long nr_to_scan;
2328	enum lru_list lru;
2329	unsigned long nr_reclaimed = 0;
2330	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2331	struct blk_plug plug;
2332	bool scan_adjusted;
2333
2334	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2335
2336	/* Record the original scan target for proportional adjustments later */
2337	memcpy(targets, nr, sizeof(nr));
2338
2339	/*
2340	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2341	 * event that can occur when there is little memory pressure e.g.
2342	 * multiple streaming readers/writers. Hence, we do not abort scanning
2343	 * when the requested number of pages are reclaimed when scanning at
2344	 * DEF_PRIORITY on the assumption that the fact we are direct
2345	 * reclaiming implies that kswapd is not keeping up and it is best to
2346	 * do a batch of work at once. For memcg reclaim one check is made to
2347	 * abort proportional reclaim if either the file or anon lru has already
2348	 * dropped to zero at the first pass.
2349	 */
2350	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2351			 sc->priority == DEF_PRIORITY);
2352
2353	blk_start_plug(&plug);
2354	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2355					nr[LRU_INACTIVE_FILE]) {
2356		unsigned long nr_anon, nr_file, percentage;
2357		unsigned long nr_scanned;
2358
2359		for_each_evictable_lru(lru) {
2360			if (nr[lru]) {
2361				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2362				nr[lru] -= nr_to_scan;
2363
2364				nr_reclaimed += shrink_list(lru, nr_to_scan,
2365							    lruvec, sc);
2366			}
2367		}
2368
2369		cond_resched();
2370
2371		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2372			continue;
2373
2374		/*
2375		 * For kswapd and memcg, reclaim at least the number of pages
2376		 * requested. Ensure that the anon and file LRUs are scanned
2377		 * proportionally what was requested by get_scan_count(). We
2378		 * stop reclaiming one LRU and reduce the amount scanning
2379		 * proportional to the original scan target.
2380		 */
2381		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2382		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2383
2384		/*
2385		 * It's just vindictive to attack the larger once the smaller
2386		 * has gone to zero.  And given the way we stop scanning the
2387		 * smaller below, this makes sure that we only make one nudge
2388		 * towards proportionality once we've got nr_to_reclaim.
2389		 */
2390		if (!nr_file || !nr_anon)
2391			break;
2392
2393		if (nr_file > nr_anon) {
2394			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2395						targets[LRU_ACTIVE_ANON] + 1;
2396			lru = LRU_BASE;
2397			percentage = nr_anon * 100 / scan_target;
2398		} else {
2399			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2400						targets[LRU_ACTIVE_FILE] + 1;
2401			lru = LRU_FILE;
2402			percentage = nr_file * 100 / scan_target;
2403		}
2404
2405		/* Stop scanning the smaller of the LRU */
2406		nr[lru] = 0;
2407		nr[lru + LRU_ACTIVE] = 0;
2408
2409		/*
2410		 * Recalculate the other LRU scan count based on its original
2411		 * scan target and the percentage scanning already complete
 
 
 
 
 
2412		 */
2413		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2414		nr_scanned = targets[lru] - nr[lru];
2415		nr[lru] = targets[lru] * (100 - percentage) / 100;
2416		nr[lru] -= min(nr[lru], nr_scanned);
2417
2418		lru += LRU_ACTIVE;
2419		nr_scanned = targets[lru] - nr[lru];
2420		nr[lru] = targets[lru] * (100 - percentage) / 100;
2421		nr[lru] -= min(nr[lru], nr_scanned);
2422
2423		scan_adjusted = true;
2424	}
2425	blk_finish_plug(&plug);
2426	sc->nr_reclaimed += nr_reclaimed;
2427
2428	/*
2429	 * Even if we did not try to evict anon pages at all, we want to
2430	 * rebalance the anon lru active/inactive ratio.
2431	 */
2432	if (inactive_list_is_low(lruvec, false, sc))
2433		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2434				   sc, LRU_ACTIVE_ANON);
2435}
2436
2437/* Use reclaim/compaction for costly allocs or under memory pressure */
2438static bool in_reclaim_compaction(struct scan_control *sc)
2439{
2440	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2441			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2442			 sc->priority < DEF_PRIORITY - 2))
2443		return true;
2444
2445	return false;
2446}
2447
2448/*
2449 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2450 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2451 * true if more pages should be reclaimed such that when the page allocator
2452 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2453 * It will give up earlier than that if there is difficulty reclaiming pages.
2454 */
2455static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2456					unsigned long nr_reclaimed,
2457					unsigned long nr_scanned,
2458					struct scan_control *sc)
2459{
2460	unsigned long pages_for_compaction;
2461	unsigned long inactive_lru_pages;
2462	int z;
2463
2464	/* If not in reclaim/compaction mode, stop */
2465	if (!in_reclaim_compaction(sc))
2466		return false;
2467
2468	/* Consider stopping depending on scan and reclaim activity */
2469	if (sc->gfp_mask & __GFP_REPEAT) {
2470		/*
2471		 * For __GFP_REPEAT allocations, stop reclaiming if the
2472		 * full LRU list has been scanned and we are still failing
2473		 * to reclaim pages. This full LRU scan is potentially
2474		 * expensive but a __GFP_REPEAT caller really wants to succeed
2475		 */
2476		if (!nr_reclaimed && !nr_scanned)
2477			return false;
2478	} else {
2479		/*
2480		 * For non-__GFP_REPEAT allocations which can presumably
2481		 * fail without consequence, stop if we failed to reclaim
2482		 * any pages from the last SWAP_CLUSTER_MAX number of
2483		 * pages that were scanned. This will return to the
2484		 * caller faster at the risk reclaim/compaction and
2485		 * the resulting allocation attempt fails
2486		 */
2487		if (!nr_reclaimed)
2488			return false;
2489	}
2490
2491	/*
2492	 * If we have not reclaimed enough pages for compaction and the
2493	 * inactive lists are large enough, continue reclaiming
2494	 */
2495	pages_for_compaction = compact_gap(sc->order);
2496	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2497	if (get_nr_swap_pages() > 0)
2498		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2499	if (sc->nr_reclaimed < pages_for_compaction &&
2500			inactive_lru_pages > pages_for_compaction)
2501		return true;
2502
2503	/* If compaction would go ahead or the allocation would succeed, stop */
2504	for (z = 0; z <= sc->reclaim_idx; z++) {
2505		struct zone *zone = &pgdat->node_zones[z];
2506		if (!managed_zone(zone))
2507			continue;
2508
2509		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2510		case COMPACT_SUCCESS:
2511		case COMPACT_CONTINUE:
2512			return false;
2513		default:
2514			/* check next zone */
2515			;
2516		}
2517	}
2518	return true;
2519}
2520
2521static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
 
 
 
 
2522{
2523	struct reclaim_state *reclaim_state = current->reclaim_state;
 
 
2524	unsigned long nr_reclaimed, nr_scanned;
2525	bool reclaimable = false;
2526
2527	do {
2528		struct mem_cgroup *root = sc->target_mem_cgroup;
2529		struct mem_cgroup_reclaim_cookie reclaim = {
2530			.pgdat = pgdat,
2531			.priority = sc->priority,
2532		};
2533		unsigned long node_lru_pages = 0;
2534		struct mem_cgroup *memcg;
2535
2536		nr_reclaimed = sc->nr_reclaimed;
2537		nr_scanned = sc->nr_scanned;
 
 
 
 
 
2538
2539		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2540		do {
2541			unsigned long lru_pages;
2542			unsigned long reclaimed;
2543			unsigned long scanned;
2544
2545			if (mem_cgroup_low(root, memcg)) {
2546				if (!sc->may_thrash)
2547					continue;
2548				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2549			}
2550
2551			reclaimed = sc->nr_reclaimed;
2552			scanned = sc->nr_scanned;
2553
2554			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2555			node_lru_pages += lru_pages;
2556
2557			if (memcg)
2558				shrink_slab(sc->gfp_mask, pgdat->node_id,
2559					    memcg, sc->nr_scanned - scanned,
2560					    lru_pages);
2561
2562			/* Record the group's reclaim efficiency */
2563			vmpressure(sc->gfp_mask, memcg, false,
2564				   sc->nr_scanned - scanned,
2565				   sc->nr_reclaimed - reclaimed);
2566
2567			/*
2568			 * Direct reclaim and kswapd have to scan all memory
2569			 * cgroups to fulfill the overall scan target for the
2570			 * node.
2571			 *
2572			 * Limit reclaim, on the other hand, only cares about
2573			 * nr_to_reclaim pages to be reclaimed and it will
2574			 * retry with decreasing priority if one round over the
2575			 * whole hierarchy is not sufficient.
2576			 */
2577			if (!global_reclaim(sc) &&
2578					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2579				mem_cgroup_iter_break(root, memcg);
2580				break;
2581			}
2582		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2583
2584		/*
2585		 * Shrink the slab caches in the same proportion that
2586		 * the eligible LRU pages were scanned.
 
 
 
 
2587		 */
2588		if (global_reclaim(sc))
2589			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2590				    sc->nr_scanned - nr_scanned,
2591				    node_lru_pages);
2592
2593		if (reclaim_state) {
2594			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2595			reclaim_state->reclaimed_slab = 0;
2596		}
2597
2598		/* Record the subtree's reclaim efficiency */
2599		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2600			   sc->nr_scanned - nr_scanned,
2601			   sc->nr_reclaimed - nr_reclaimed);
2602
2603		if (sc->nr_reclaimed - nr_reclaimed)
2604			reclaimable = true;
2605
2606	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2607					 sc->nr_scanned - nr_scanned, sc));
2608
2609	return reclaimable;
2610}
2611
2612/*
2613 * Returns true if compaction should go ahead for a costly-order request, or
2614 * the allocation would already succeed without compaction. Return false if we
2615 * should reclaim first.
2616 */
2617static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2618{
2619	unsigned long watermark;
2620	enum compact_result suitable;
2621
2622	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2623	if (suitable == COMPACT_SUCCESS)
2624		/* Allocation should succeed already. Don't reclaim. */
2625		return true;
2626	if (suitable == COMPACT_SKIPPED)
2627		/* Compaction cannot yet proceed. Do reclaim. */
2628		return false;
2629
2630	/*
2631	 * Compaction is already possible, but it takes time to run and there
2632	 * are potentially other callers using the pages just freed. So proceed
2633	 * with reclaim to make a buffer of free pages available to give
2634	 * compaction a reasonable chance of completing and allocating the page.
2635	 * Note that we won't actually reclaim the whole buffer in one attempt
2636	 * as the target watermark in should_continue_reclaim() is lower. But if
2637	 * we are already above the high+gap watermark, don't reclaim at all.
2638	 */
2639	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
 
 
 
 
 
 
2640
2641	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2642}
2643
2644/*
2645 * This is the direct reclaim path, for page-allocating processes.  We only
2646 * try to reclaim pages from zones which will satisfy the caller's allocation
2647 * request.
2648 *
 
 
 
 
 
 
 
 
2649 * If a zone is deemed to be full of pinned pages then just give it a light
2650 * scan then give up on it.
2651 */
2652static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 
2653{
2654	struct zoneref *z;
2655	struct zone *zone;
2656	unsigned long nr_soft_reclaimed;
2657	unsigned long nr_soft_scanned;
2658	gfp_t orig_mask;
2659	pg_data_t *last_pgdat = NULL;
2660
2661	/*
2662	 * If the number of buffer_heads in the machine exceeds the maximum
2663	 * allowed level, force direct reclaim to scan the highmem zone as
2664	 * highmem pages could be pinning lowmem pages storing buffer_heads
2665	 */
2666	orig_mask = sc->gfp_mask;
2667	if (buffer_heads_over_limit) {
2668		sc->gfp_mask |= __GFP_HIGHMEM;
2669		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2670	}
2671
2672	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2673					sc->reclaim_idx, sc->nodemask) {
 
 
2674		/*
2675		 * Take care memory controller reclaiming has small influence
2676		 * to global LRU.
2677		 */
2678		if (global_reclaim(sc)) {
2679			if (!cpuset_zone_allowed(zone,
2680						 GFP_KERNEL | __GFP_HARDWALL))
2681				continue;
2682
2683			if (sc->priority != DEF_PRIORITY &&
2684			    !pgdat_reclaimable(zone->zone_pgdat))
2685				continue;	/* Let kswapd poll it */
2686
2687			/*
2688			 * If we already have plenty of memory free for
2689			 * compaction in this zone, don't free any more.
2690			 * Even though compaction is invoked for any
2691			 * non-zero order, only frequent costly order
2692			 * reclamation is disruptive enough to become a
2693			 * noticeable problem, like transparent huge
2694			 * page allocations.
2695			 */
2696			if (IS_ENABLED(CONFIG_COMPACTION) &&
2697			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2698			    compaction_ready(zone, sc)) {
2699				sc->compaction_ready = true;
2700				continue;
2701			}
2702
2703			/*
2704			 * Shrink each node in the zonelist once. If the
2705			 * zonelist is ordered by zone (not the default) then a
2706			 * node may be shrunk multiple times but in that case
2707			 * the user prefers lower zones being preserved.
2708			 */
2709			if (zone->zone_pgdat == last_pgdat)
2710				continue;
2711
2712			/*
2713			 * This steals pages from memory cgroups over softlimit
2714			 * and returns the number of reclaimed pages and
2715			 * scanned pages. This works for global memory pressure
2716			 * and balancing, not for a memcg's limit.
2717			 */
2718			nr_soft_scanned = 0;
2719			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2720						sc->order, sc->gfp_mask,
2721						&nr_soft_scanned);
2722			sc->nr_reclaimed += nr_soft_reclaimed;
2723			sc->nr_scanned += nr_soft_scanned;
2724			/* need some check for avoid more shrink_zone() */
2725		}
2726
2727		/* See comment about same check for global reclaim above */
2728		if (zone->zone_pgdat == last_pgdat)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2729			continue;
2730		last_pgdat = zone->zone_pgdat;
2731		shrink_node(zone->zone_pgdat, sc);
2732	}
2733
2734	/*
2735	 * Restore to original mask to avoid the impact on the caller if we
2736	 * promoted it to __GFP_HIGHMEM.
2737	 */
2738	sc->gfp_mask = orig_mask;
2739}
2740
2741/*
2742 * This is the main entry point to direct page reclaim.
2743 *
2744 * If a full scan of the inactive list fails to free enough memory then we
2745 * are "out of memory" and something needs to be killed.
2746 *
2747 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2748 * high - the zone may be full of dirty or under-writeback pages, which this
2749 * caller can't do much about.  We kick the writeback threads and take explicit
2750 * naps in the hope that some of these pages can be written.  But if the
2751 * allocating task holds filesystem locks which prevent writeout this might not
2752 * work, and the allocation attempt will fail.
2753 *
2754 * returns:	0, if no pages reclaimed
2755 * 		else, the number of pages reclaimed
2756 */
2757static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2758					  struct scan_control *sc)
 
2759{
2760	int initial_priority = sc->priority;
2761	unsigned long total_scanned = 0;
 
 
 
2762	unsigned long writeback_threshold;
2763retry:
 
2764	delayacct_freepages_start();
2765
2766	if (global_reclaim(sc))
2767		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2768
2769	do {
2770		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2771				sc->priority);
2772		sc->nr_scanned = 0;
2773		shrink_zones(zonelist, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774
 
 
 
 
 
 
2775		total_scanned += sc->nr_scanned;
2776		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2777			break;
2778
2779		if (sc->compaction_ready)
2780			break;
2781
2782		/*
2783		 * If we're getting trouble reclaiming, start doing
2784		 * writepage even in laptop mode.
2785		 */
2786		if (sc->priority < DEF_PRIORITY - 2)
2787			sc->may_writepage = 1;
2788
2789		/*
2790		 * Try to write back as many pages as we just scanned.  This
2791		 * tends to cause slow streaming writers to write data to the
2792		 * disk smoothly, at the dirtying rate, which is nice.   But
2793		 * that's undesirable in laptop mode, where we *want* lumpy
2794		 * writeout.  So in laptop mode, write out the whole world.
2795		 */
2796		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2797		if (total_scanned > writeback_threshold) {
2798			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2799						WB_REASON_TRY_TO_FREE_PAGES);
2800			sc->may_writepage = 1;
2801		}
2802	} while (--sc->priority >= 0);
2803
 
 
 
 
 
 
 
 
 
 
 
 
 
2804	delayacct_freepages_end();
 
2805
2806	if (sc->nr_reclaimed)
2807		return sc->nr_reclaimed;
2808
2809	/* Aborted reclaim to try compaction? don't OOM, then */
2810	if (sc->compaction_ready)
2811		return 1;
2812
2813	/* Untapped cgroup reserves?  Don't OOM, retry. */
2814	if (!sc->may_thrash) {
2815		sc->priority = initial_priority;
2816		sc->may_thrash = 1;
2817		goto retry;
2818	}
2819
2820	return 0;
2821}
2822
2823static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2824{
2825	struct zone *zone;
2826	unsigned long pfmemalloc_reserve = 0;
2827	unsigned long free_pages = 0;
2828	int i;
2829	bool wmark_ok;
2830
2831	for (i = 0; i <= ZONE_NORMAL; i++) {
2832		zone = &pgdat->node_zones[i];
2833		if (!managed_zone(zone) ||
2834		    pgdat_reclaimable_pages(pgdat) == 0)
2835			continue;
2836
2837		pfmemalloc_reserve += min_wmark_pages(zone);
2838		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2839	}
2840
2841	/* If there are no reserves (unexpected config) then do not throttle */
2842	if (!pfmemalloc_reserve)
2843		return true;
2844
2845	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2846
2847	/* kswapd must be awake if processes are being throttled */
2848	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2849		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2850						(enum zone_type)ZONE_NORMAL);
2851		wake_up_interruptible(&pgdat->kswapd_wait);
2852	}
2853
2854	return wmark_ok;
2855}
2856
2857/*
2858 * Throttle direct reclaimers if backing storage is backed by the network
2859 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2860 * depleted. kswapd will continue to make progress and wake the processes
2861 * when the low watermark is reached.
2862 *
2863 * Returns true if a fatal signal was delivered during throttling. If this
2864 * happens, the page allocator should not consider triggering the OOM killer.
2865 */
2866static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2867					nodemask_t *nodemask)
2868{
2869	struct zoneref *z;
2870	struct zone *zone;
2871	pg_data_t *pgdat = NULL;
2872
2873	/*
2874	 * Kernel threads should not be throttled as they may be indirectly
2875	 * responsible for cleaning pages necessary for reclaim to make forward
2876	 * progress. kjournald for example may enter direct reclaim while
2877	 * committing a transaction where throttling it could forcing other
2878	 * processes to block on log_wait_commit().
2879	 */
2880	if (current->flags & PF_KTHREAD)
2881		goto out;
2882
2883	/*
2884	 * If a fatal signal is pending, this process should not throttle.
2885	 * It should return quickly so it can exit and free its memory
2886	 */
2887	if (fatal_signal_pending(current))
2888		goto out;
2889
2890	/*
2891	 * Check if the pfmemalloc reserves are ok by finding the first node
2892	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2893	 * GFP_KERNEL will be required for allocating network buffers when
2894	 * swapping over the network so ZONE_HIGHMEM is unusable.
2895	 *
2896	 * Throttling is based on the first usable node and throttled processes
2897	 * wait on a queue until kswapd makes progress and wakes them. There
2898	 * is an affinity then between processes waking up and where reclaim
2899	 * progress has been made assuming the process wakes on the same node.
2900	 * More importantly, processes running on remote nodes will not compete
2901	 * for remote pfmemalloc reserves and processes on different nodes
2902	 * should make reasonable progress.
2903	 */
2904	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2905					gfp_zone(gfp_mask), nodemask) {
2906		if (zone_idx(zone) > ZONE_NORMAL)
2907			continue;
2908
2909		/* Throttle based on the first usable node */
2910		pgdat = zone->zone_pgdat;
2911		if (pfmemalloc_watermark_ok(pgdat))
2912			goto out;
2913		break;
2914	}
2915
2916	/* If no zone was usable by the allocation flags then do not throttle */
2917	if (!pgdat)
2918		goto out;
2919
2920	/* Account for the throttling */
2921	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2922
2923	/*
2924	 * If the caller cannot enter the filesystem, it's possible that it
2925	 * is due to the caller holding an FS lock or performing a journal
2926	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2927	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2928	 * blocked waiting on the same lock. Instead, throttle for up to a
2929	 * second before continuing.
2930	 */
2931	if (!(gfp_mask & __GFP_FS)) {
2932		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2933			pfmemalloc_watermark_ok(pgdat), HZ);
2934
2935		goto check_pending;
2936	}
2937
2938	/* Throttle until kswapd wakes the process */
2939	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2940		pfmemalloc_watermark_ok(pgdat));
2941
2942check_pending:
2943	if (fatal_signal_pending(current))
2944		return true;
2945
2946out:
2947	return false;
2948}
2949
2950unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2951				gfp_t gfp_mask, nodemask_t *nodemask)
2952{
2953	unsigned long nr_reclaimed;
2954	struct scan_control sc = {
 
 
2955		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2956		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2957		.reclaim_idx = gfp_zone(gfp_mask),
2958		.order = order,
 
2959		.nodemask = nodemask,
2960		.priority = DEF_PRIORITY,
2961		.may_writepage = !laptop_mode,
2962		.may_unmap = 1,
2963		.may_swap = 1,
2964	};
2965
2966	/*
2967	 * Do not enter reclaim if fatal signal was delivered while throttled.
2968	 * 1 is returned so that the page allocator does not OOM kill at this
2969	 * point.
2970	 */
2971	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2972		return 1;
2973
2974	trace_mm_vmscan_direct_reclaim_begin(order,
2975				sc.may_writepage,
2976				gfp_mask,
2977				sc.reclaim_idx);
2978
2979	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2980
2981	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2982
2983	return nr_reclaimed;
2984}
2985
2986#ifdef CONFIG_MEMCG
2987
2988unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2989						gfp_t gfp_mask, bool noswap,
2990						pg_data_t *pgdat,
2991						unsigned long *nr_scanned)
2992{
2993	struct scan_control sc = {
 
2994		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2995		.target_mem_cgroup = memcg,
2996		.may_writepage = !laptop_mode,
2997		.may_unmap = 1,
2998		.reclaim_idx = MAX_NR_ZONES - 1,
2999		.may_swap = !noswap,
 
 
3000	};
3001	unsigned long lru_pages;
3002
3003	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3004			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3005
3006	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3007						      sc.may_writepage,
3008						      sc.gfp_mask,
3009						      sc.reclaim_idx);
3010
3011	/*
3012	 * NOTE: Although we can get the priority field, using it
3013	 * here is not a good idea, since it limits the pages we can scan.
3014	 * if we don't reclaim here, the shrink_node from balance_pgdat
3015	 * will pick up pages from other mem cgroup's as well. We hack
3016	 * the priority and make it zero.
3017	 */
3018	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3019
3020	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3021
3022	*nr_scanned = sc.nr_scanned;
3023	return sc.nr_reclaimed;
3024}
3025
3026unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3027					   unsigned long nr_pages,
3028					   gfp_t gfp_mask,
3029					   bool may_swap)
3030{
3031	struct zonelist *zonelist;
3032	unsigned long nr_reclaimed;
3033	int nid;
3034	struct scan_control sc = {
3035		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
 
 
 
 
 
 
3036		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3037				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3038		.reclaim_idx = MAX_NR_ZONES - 1,
3039		.target_mem_cgroup = memcg,
3040		.priority = DEF_PRIORITY,
3041		.may_writepage = !laptop_mode,
3042		.may_unmap = 1,
3043		.may_swap = may_swap,
3044	};
3045
3046	/*
3047	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3048	 * take care of from where we get pages. So the node where we start the
3049	 * scan does not need to be the current node.
3050	 */
3051	nid = mem_cgroup_select_victim_node(memcg);
3052
3053	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3054
3055	trace_mm_vmscan_memcg_reclaim_begin(0,
3056					    sc.may_writepage,
3057					    sc.gfp_mask,
3058					    sc.reclaim_idx);
3059
3060	current->flags |= PF_MEMALLOC;
3061	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3062	current->flags &= ~PF_MEMALLOC;
3063
3064	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3065
3066	return nr_reclaimed;
3067}
3068#endif
3069
3070static void age_active_anon(struct pglist_data *pgdat,
3071				struct scan_control *sc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3072{
3073	struct mem_cgroup *memcg;
3074
3075	if (!total_swap_pages)
3076		return;
3077
3078	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3079	do {
3080		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3081
3082		if (inactive_list_is_low(lruvec, false, sc))
3083			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3084					   sc, LRU_ACTIVE_ANON);
3085
3086		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3087	} while (memcg);
3088}
3089
3090static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3091{
3092	unsigned long mark = high_wmark_pages(zone);
3093
3094	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3095		return false;
3096
3097	/*
3098	 * If any eligible zone is balanced then the node is not considered
3099	 * to be congested or dirty
3100	 */
3101	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3102	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3103
3104	return true;
3105}
3106
3107/*
3108 * Prepare kswapd for sleeping. This verifies that there are no processes
3109 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3110 *
3111 * Returns true if kswapd is ready to sleep
3112 */
3113static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3114{
3115	int i;
 
 
3116
3117	/*
3118	 * The throttled processes are normally woken up in balance_pgdat() as
3119	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3120	 * race between when kswapd checks the watermarks and a process gets
3121	 * throttled. There is also a potential race if processes get
3122	 * throttled, kswapd wakes, a large process exits thereby balancing the
3123	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3124	 * the wake up checks. If kswapd is going to sleep, no process should
3125	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3126	 * the wake up is premature, processes will wake kswapd and get
3127	 * throttled again. The difference from wake ups in balance_pgdat() is
3128	 * that here we are under prepare_to_wait().
3129	 */
3130	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3131		wake_up_all(&pgdat->pfmemalloc_wait);
3132
 
3133	for (i = 0; i <= classzone_idx; i++) {
3134		struct zone *zone = pgdat->node_zones + i;
3135
3136		if (!managed_zone(zone))
3137			continue;
3138
3139		if (!zone_balanced(zone, order, classzone_idx))
3140			return false;
3141	}
3142
3143	return true;
3144}
3145
3146/*
3147 * kswapd shrinks a node of pages that are at or below the highest usable
3148 * zone that is currently unbalanced.
3149 *
3150 * Returns true if kswapd scanned at least the requested number of pages to
3151 * reclaim or if the lack of progress was due to pages under writeback.
3152 * This is used to determine if the scanning priority needs to be raised.
3153 */
3154static bool kswapd_shrink_node(pg_data_t *pgdat,
3155			       struct scan_control *sc)
3156{
3157	struct zone *zone;
3158	int z;
3159
3160	/* Reclaim a number of pages proportional to the number of zones */
3161	sc->nr_to_reclaim = 0;
3162	for (z = 0; z <= sc->reclaim_idx; z++) {
3163		zone = pgdat->node_zones + z;
3164		if (!managed_zone(zone))
3165			continue;
 
3166
3167		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
 
 
 
 
3168	}
3169
3170	/*
3171	 * Historically care was taken to put equal pressure on all zones but
3172	 * now pressure is applied based on node LRU order.
 
3173	 */
3174	shrink_node(pgdat, sc);
3175
3176	/*
3177	 * Fragmentation may mean that the system cannot be rebalanced for
3178	 * high-order allocations. If twice the allocation size has been
3179	 * reclaimed then recheck watermarks only at order-0 to prevent
3180	 * excessive reclaim. Assume that a process requested a high-order
3181	 * can direct reclaim/compact.
3182	 */
3183	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3184		sc->order = 0;
3185
3186	return sc->nr_scanned >= sc->nr_to_reclaim;
3187}
3188
3189/*
3190 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3191 * that are eligible for use by the caller until at least one zone is
3192 * balanced.
3193 *
3194 * Returns the order kswapd finished reclaiming at.
 
 
 
 
 
 
 
 
3195 *
3196 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3197 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3198 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3199 * or lower is eligible for reclaim until at least one usable zone is
3200 * balanced.
 
3201 */
3202static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
 
3203{
 
 
 
3204	int i;
 
 
 
3205	unsigned long nr_soft_reclaimed;
3206	unsigned long nr_soft_scanned;
3207	struct zone *zone;
3208	struct scan_control sc = {
3209		.gfp_mask = GFP_KERNEL,
3210		.order = order,
3211		.priority = DEF_PRIORITY,
3212		.may_writepage = !laptop_mode,
3213		.may_unmap = 1,
3214		.may_swap = 1,
 
 
 
 
 
 
 
 
 
 
3215	};
 
 
 
 
3216	count_vm_event(PAGEOUTRUN);
3217
3218	do {
3219		bool raise_priority = true;
 
3220
3221		sc.nr_reclaimed = 0;
3222		sc.reclaim_idx = classzone_idx;
 
 
 
 
3223
3224		/*
3225		 * If the number of buffer_heads exceeds the maximum allowed
3226		 * then consider reclaiming from all zones. This has a dual
3227		 * purpose -- on 64-bit systems it is expected that
3228		 * buffer_heads are stripped during active rotation. On 32-bit
3229		 * systems, highmem pages can pin lowmem memory and shrinking
3230		 * buffers can relieve lowmem pressure. Reclaim may still not
3231		 * go ahead if all eligible zones for the original allocation
3232		 * request are balanced to avoid excessive reclaim from kswapd.
3233		 */
3234		if (buffer_heads_over_limit) {
3235			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3236				zone = pgdat->node_zones + i;
3237				if (!managed_zone(zone))
3238					continue;
3239
3240				sc.reclaim_idx = i;
 
 
 
 
 
 
 
 
 
 
3241				break;
 
 
 
3242			}
3243		}
 
 
 
 
 
 
 
 
3244
3245		/*
3246		 * Only reclaim if there are no eligible zones. Check from
3247		 * high to low zone as allocations prefer higher zones.
3248		 * Scanning from low to high zone would allow congestion to be
3249		 * cleared during a very small window when a small low
3250		 * zone was balanced even under extreme pressure when the
3251		 * overall node may be congested. Note that sc.reclaim_idx
3252		 * is not used as buffer_heads_over_limit may have adjusted
3253		 * it.
3254		 */
3255		for (i = classzone_idx; i >= 0; i--) {
3256			zone = pgdat->node_zones + i;
3257			if (!managed_zone(zone))
 
 
 
 
 
3258				continue;
3259
3260			if (zone_balanced(zone, sc.order, classzone_idx))
3261				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3262		}
3263
 
3264		/*
3265		 * Do some background aging of the anon list, to give
3266		 * pages a chance to be referenced before reclaiming. All
3267		 * pages are rotated regardless of classzone as this is
3268		 * about consistent aging.
3269		 */
3270		age_active_anon(pgdat, &sc);
 
 
 
 
 
3271
3272		/*
3273		 * If we're getting trouble reclaiming, start doing writepage
3274		 * even in laptop mode.
 
 
3275		 */
3276		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3277			sc.may_writepage = 1;
 
 
 
 
 
 
 
 
 
 
3278
3279		/* Call soft limit reclaim before calling shrink_node. */
3280		sc.nr_scanned = 0;
3281		nr_soft_scanned = 0;
3282		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3283						sc.gfp_mask, &nr_soft_scanned);
3284		sc.nr_reclaimed += nr_soft_reclaimed;
3285
3286		/*
3287		 * There should be no need to raise the scanning priority if
3288		 * enough pages are already being scanned that that high
3289		 * watermark would be met at 100% efficiency.
 
 
 
 
 
 
 
 
 
3290		 */
3291		if (kswapd_shrink_node(pgdat, &sc))
3292			raise_priority = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293
3294		/*
3295		 * If the low watermark is met there is no need for processes
3296		 * to be throttled on pfmemalloc_wait as they should not be
3297		 * able to safely make forward progress. Wake them
3298		 */
3299		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3300				pfmemalloc_watermark_ok(pgdat))
3301			wake_up_all(&pgdat->pfmemalloc_wait);
3302
3303		/* Check if kswapd should be suspending */
3304		if (try_to_freeze() || kthread_should_stop())
3305			break;
 
 
 
3306
3307		/*
3308		 * Raise priority if scanning rate is too low or there was no
3309		 * progress in reclaiming pages
3310		 */
3311		if (raise_priority || !sc.nr_reclaimed)
3312			sc.priority--;
3313	} while (sc.priority >= 1);
3314
3315out:
3316	/*
3317	 * Return the order kswapd stopped reclaiming at as
3318	 * prepare_kswapd_sleep() takes it into account. If another caller
3319	 * entered the allocator slow path while kswapd was awake, order will
3320	 * remain at the higher level.
3321	 */
3322	return sc.order;
 
3323}
3324
3325static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3326				unsigned int classzone_idx)
3327{
3328	long remaining = 0;
3329	DEFINE_WAIT(wait);
3330
3331	if (freezing(current) || kthread_should_stop())
3332		return;
3333
3334	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3335
3336	/* Try to sleep for a short interval */
3337	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3338		/*
3339		 * Compaction records what page blocks it recently failed to
3340		 * isolate pages from and skips them in the future scanning.
3341		 * When kswapd is going to sleep, it is reasonable to assume
3342		 * that pages and compaction may succeed so reset the cache.
3343		 */
3344		reset_isolation_suitable(pgdat);
3345
3346		/*
3347		 * We have freed the memory, now we should compact it to make
3348		 * allocation of the requested order possible.
3349		 */
3350		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3351
3352		remaining = schedule_timeout(HZ/10);
3353
3354		/*
3355		 * If woken prematurely then reset kswapd_classzone_idx and
3356		 * order. The values will either be from a wakeup request or
3357		 * the previous request that slept prematurely.
3358		 */
3359		if (remaining) {
3360			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3361			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3362		}
3363
3364		finish_wait(&pgdat->kswapd_wait, &wait);
3365		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3366	}
3367
3368	/*
3369	 * After a short sleep, check if it was a premature sleep. If not, then
3370	 * go fully to sleep until explicitly woken up.
3371	 */
3372	if (!remaining &&
3373	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3374		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3375
3376		/*
3377		 * vmstat counters are not perfectly accurate and the estimated
3378		 * value for counters such as NR_FREE_PAGES can deviate from the
3379		 * true value by nr_online_cpus * threshold. To avoid the zone
3380		 * watermarks being breached while under pressure, we reduce the
3381		 * per-cpu vmstat threshold while kswapd is awake and restore
3382		 * them before going back to sleep.
3383		 */
3384		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3385
3386		if (!kthread_should_stop())
3387			schedule();
3388
3389		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3390	} else {
3391		if (remaining)
3392			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3393		else
3394			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3395	}
3396	finish_wait(&pgdat->kswapd_wait, &wait);
3397}
3398
3399/*
3400 * The background pageout daemon, started as a kernel thread
3401 * from the init process.
3402 *
3403 * This basically trickles out pages so that we have _some_
3404 * free memory available even if there is no other activity
3405 * that frees anything up. This is needed for things like routing
3406 * etc, where we otherwise might have all activity going on in
3407 * asynchronous contexts that cannot page things out.
3408 *
3409 * If there are applications that are active memory-allocators
3410 * (most normal use), this basically shouldn't matter.
3411 */
3412static int kswapd(void *p)
3413{
3414	unsigned int alloc_order, reclaim_order, classzone_idx;
 
3415	pg_data_t *pgdat = (pg_data_t*)p;
3416	struct task_struct *tsk = current;
3417
3418	struct reclaim_state reclaim_state = {
3419		.reclaimed_slab = 0,
3420	};
3421	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3422
3423	lockdep_set_current_reclaim_state(GFP_KERNEL);
3424
3425	if (!cpumask_empty(cpumask))
3426		set_cpus_allowed_ptr(tsk, cpumask);
3427	current->reclaim_state = &reclaim_state;
3428
3429	/*
3430	 * Tell the memory management that we're a "memory allocator",
3431	 * and that if we need more memory we should get access to it
3432	 * regardless (see "__alloc_pages()"). "kswapd" should
3433	 * never get caught in the normal page freeing logic.
3434	 *
3435	 * (Kswapd normally doesn't need memory anyway, but sometimes
3436	 * you need a small amount of memory in order to be able to
3437	 * page out something else, and this flag essentially protects
3438	 * us from recursively trying to free more memory as we're
3439	 * trying to free the first piece of memory in the first place).
3440	 */
3441	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3442	set_freezable();
3443
3444	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3445	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3446	for ( ; ; ) {
3447		bool ret;
3448
3449kswapd_try_sleep:
3450		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3451					classzone_idx);
3452
3453		/* Read the new order and classzone_idx */
3454		alloc_order = reclaim_order = pgdat->kswapd_order;
3455		classzone_idx = pgdat->kswapd_classzone_idx;
3456		pgdat->kswapd_order = 0;
3457		pgdat->kswapd_classzone_idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3458
3459		ret = try_to_freeze();
3460		if (kthread_should_stop())
3461			break;
3462
3463		/*
3464		 * We can speed up thawing tasks if we don't call balance_pgdat
3465		 * after returning from the refrigerator
3466		 */
3467		if (ret)
3468			continue;
3469
3470		/*
3471		 * Reclaim begins at the requested order but if a high-order
3472		 * reclaim fails then kswapd falls back to reclaiming for
3473		 * order-0. If that happens, kswapd will consider sleeping
3474		 * for the order it finished reclaiming at (reclaim_order)
3475		 * but kcompactd is woken to compact for the original
3476		 * request (alloc_order).
3477		 */
3478		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3479						alloc_order);
3480		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3481		if (reclaim_order < alloc_order)
3482			goto kswapd_try_sleep;
3483
3484		alloc_order = reclaim_order = pgdat->kswapd_order;
3485		classzone_idx = pgdat->kswapd_classzone_idx;
3486	}
3487
3488	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3489	current->reclaim_state = NULL;
3490	lockdep_clear_current_reclaim_state();
3491
3492	return 0;
3493}
3494
3495/*
3496 * A zone is low on free memory, so wake its kswapd task to service it.
3497 */
3498void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3499{
3500	pg_data_t *pgdat;
3501	int z;
3502
3503	if (!managed_zone(zone))
3504		return;
3505
3506	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3507		return;
3508	pgdat = zone->zone_pgdat;
3509	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3510	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
 
 
3511	if (!waitqueue_active(&pgdat->kswapd_wait))
3512		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3513
3514	/* Only wake kswapd if all zones are unbalanced */
3515	for (z = 0; z <= classzone_idx; z++) {
3516		zone = pgdat->node_zones + z;
3517		if (!managed_zone(zone))
3518			continue;
3519
3520		if (zone_balanced(zone, order, classzone_idx))
3521			return;
3522	}
3523
3524	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3525	wake_up_interruptible(&pgdat->kswapd_wait);
3526}
3527
3528#ifdef CONFIG_HIBERNATION
3529/*
3530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3531 * freed pages.
3532 *
3533 * Rather than trying to age LRUs the aim is to preserve the overall
3534 * LRU order by reclaiming preferentially
3535 * inactive > active > active referenced > active mapped
3536 */
3537unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3538{
3539	struct reclaim_state reclaim_state;
3540	struct scan_control sc = {
3541		.nr_to_reclaim = nr_to_reclaim,
3542		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3543		.reclaim_idx = MAX_NR_ZONES - 1,
3544		.priority = DEF_PRIORITY,
3545		.may_writepage = 1,
3546		.may_unmap = 1,
3547		.may_swap = 1,
3548		.hibernation_mode = 1,
 
 
 
 
3549	};
3550	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3551	struct task_struct *p = current;
3552	unsigned long nr_reclaimed;
3553
3554	p->flags |= PF_MEMALLOC;
3555	lockdep_set_current_reclaim_state(sc.gfp_mask);
3556	reclaim_state.reclaimed_slab = 0;
3557	p->reclaim_state = &reclaim_state;
3558
3559	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3560
3561	p->reclaim_state = NULL;
3562	lockdep_clear_current_reclaim_state();
3563	p->flags &= ~PF_MEMALLOC;
3564
3565	return nr_reclaimed;
3566}
3567#endif /* CONFIG_HIBERNATION */
3568
3569/* It's optimal to keep kswapds on the same CPUs as their memory, but
3570   not required for correctness.  So if the last cpu in a node goes
3571   away, we get changed to run anywhere: as the first one comes back,
3572   restore their cpu bindings. */
3573static int kswapd_cpu_online(unsigned int cpu)
 
3574{
3575	int nid;
3576
3577	for_each_node_state(nid, N_MEMORY) {
3578		pg_data_t *pgdat = NODE_DATA(nid);
3579		const struct cpumask *mask;
3580
3581		mask = cpumask_of_node(pgdat->node_id);
3582
3583		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3584			/* One of our CPUs online: restore mask */
3585			set_cpus_allowed_ptr(pgdat->kswapd, mask);
 
 
3586	}
3587	return 0;
3588}
3589
3590/*
3591 * This kswapd start function will be called by init and node-hot-add.
3592 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3593 */
3594int kswapd_run(int nid)
3595{
3596	pg_data_t *pgdat = NODE_DATA(nid);
3597	int ret = 0;
3598
3599	if (pgdat->kswapd)
3600		return 0;
3601
3602	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3603	if (IS_ERR(pgdat->kswapd)) {
3604		/* failure at boot is fatal */
3605		BUG_ON(system_state == SYSTEM_BOOTING);
3606		pr_err("Failed to start kswapd on node %d\n", nid);
3607		ret = PTR_ERR(pgdat->kswapd);
3608		pgdat->kswapd = NULL;
3609	}
3610	return ret;
3611}
3612
3613/*
3614 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3615 * hold mem_hotplug_begin/end().
3616 */
3617void kswapd_stop(int nid)
3618{
3619	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3620
3621	if (kswapd) {
3622		kthread_stop(kswapd);
3623		NODE_DATA(nid)->kswapd = NULL;
3624	}
3625}
3626
3627static int __init kswapd_init(void)
3628{
3629	int nid, ret;
3630
3631	swap_setup();
3632	for_each_node_state(nid, N_MEMORY)
3633 		kswapd_run(nid);
3634	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3635					"mm/vmscan:online", kswapd_cpu_online,
3636					NULL);
3637	WARN_ON(ret < 0);
3638	return 0;
3639}
3640
3641module_init(kswapd_init)
3642
3643#ifdef CONFIG_NUMA
3644/*
3645 * Node reclaim mode
3646 *
3647 * If non-zero call node_reclaim when the number of free pages falls below
3648 * the watermarks.
3649 */
3650int node_reclaim_mode __read_mostly;
3651
3652#define RECLAIM_OFF 0
3653#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3654#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3655#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3656
3657/*
3658 * Priority for NODE_RECLAIM. This determines the fraction of pages
3659 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3660 * a zone.
3661 */
3662#define NODE_RECLAIM_PRIORITY 4
3663
3664/*
3665 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3666 * occur.
3667 */
3668int sysctl_min_unmapped_ratio = 1;
3669
3670/*
3671 * If the number of slab pages in a zone grows beyond this percentage then
3672 * slab reclaim needs to occur.
3673 */
3674int sysctl_min_slab_ratio = 5;
3675
3676static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3677{
3678	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3679	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3680		node_page_state(pgdat, NR_ACTIVE_FILE);
3681
3682	/*
3683	 * It's possible for there to be more file mapped pages than
3684	 * accounted for by the pages on the file LRU lists because
3685	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3686	 */
3687	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3688}
3689
3690/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3691static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3692{
3693	unsigned long nr_pagecache_reclaimable;
3694	unsigned long delta = 0;
3695
3696	/*
3697	 * If RECLAIM_UNMAP is set, then all file pages are considered
3698	 * potentially reclaimable. Otherwise, we have to worry about
3699	 * pages like swapcache and node_unmapped_file_pages() provides
3700	 * a better estimate
3701	 */
3702	if (node_reclaim_mode & RECLAIM_UNMAP)
3703		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3704	else
3705		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3706
3707	/* If we can't clean pages, remove dirty pages from consideration */
3708	if (!(node_reclaim_mode & RECLAIM_WRITE))
3709		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3710
3711	/* Watch for any possible underflows due to delta */
3712	if (unlikely(delta > nr_pagecache_reclaimable))
3713		delta = nr_pagecache_reclaimable;
3714
3715	return nr_pagecache_reclaimable - delta;
3716}
3717
3718/*
3719 * Try to free up some pages from this node through reclaim.
3720 */
3721static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3722{
3723	/* Minimum pages needed in order to stay on node */
3724	const unsigned long nr_pages = 1 << order;
3725	struct task_struct *p = current;
3726	struct reclaim_state reclaim_state;
3727	int classzone_idx = gfp_zone(gfp_mask);
3728	struct scan_control sc = {
3729		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3730		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
 
 
 
 
3731		.order = order,
3732		.priority = NODE_RECLAIM_PRIORITY,
3733		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3734		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3735		.may_swap = 1,
3736		.reclaim_idx = classzone_idx,
3737	};
 
 
 
 
3738
3739	cond_resched();
3740	/*
3741	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742	 * and we also need to be able to write out pages for RECLAIM_WRITE
3743	 * and RECLAIM_UNMAP.
3744	 */
3745	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3746	lockdep_set_current_reclaim_state(gfp_mask);
3747	reclaim_state.reclaimed_slab = 0;
3748	p->reclaim_state = &reclaim_state;
3749
3750	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3751		/*
3752		 * Free memory by calling shrink zone with increasing
3753		 * priorities until we have enough memory freed.
3754		 */
 
3755		do {
3756			shrink_node(pgdat, &sc);
3757		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3758	}
3759
3760	p->reclaim_state = NULL;
3761	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3762	lockdep_clear_current_reclaim_state();
3763	return sc.nr_reclaimed >= nr_pages;
3764}
3765
3766int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3767{
 
3768	int ret;
3769
3770	/*
3771	 * Node reclaim reclaims unmapped file backed pages and
3772	 * slab pages if we are over the defined limits.
3773	 *
3774	 * A small portion of unmapped file backed pages is needed for
3775	 * file I/O otherwise pages read by file I/O will be immediately
3776	 * thrown out if the node is overallocated. So we do not reclaim
3777	 * if less than a specified percentage of the node is used by
3778	 * unmapped file backed pages.
3779	 */
3780	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3781	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3782		return NODE_RECLAIM_FULL;
3783
3784	if (!pgdat_reclaimable(pgdat))
3785		return NODE_RECLAIM_FULL;
3786
3787	/*
3788	 * Do not scan if the allocation should not be delayed.
3789	 */
3790	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3791		return NODE_RECLAIM_NOSCAN;
3792
3793	/*
3794	 * Only run node reclaim on the local node or on nodes that do not
3795	 * have associated processors. This will favor the local processor
3796	 * over remote processors and spread off node memory allocations
3797	 * as wide as possible.
3798	 */
3799	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3800		return NODE_RECLAIM_NOSCAN;
 
3801
3802	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3803		return NODE_RECLAIM_NOSCAN;
3804
3805	ret = __node_reclaim(pgdat, gfp_mask, order);
3806	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3807
3808	if (!ret)
3809		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3810
3811	return ret;
3812}
3813#endif
3814
3815/*
3816 * page_evictable - test whether a page is evictable
3817 * @page: the page to test
 
3818 *
3819 * Test whether page is evictable--i.e., should be placed on active/inactive
3820 * lists vs unevictable list.
 
3821 *
3822 * Reasons page might not be evictable:
3823 * (1) page's mapping marked unevictable
3824 * (2) page is part of an mlocked VMA
3825 *
3826 */
3827int page_evictable(struct page *page)
3828{
3829	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 
 
 
 
 
 
 
3830}
3831
3832#ifdef CONFIG_SHMEM
3833/**
3834 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3835 * @pages:	array of pages to check
3836 * @nr_pages:	number of pages to check
 
 
 
3837 *
3838 * Checks pages for evictability and moves them to the appropriate lru list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3839 *
3840 * This function is only used for SysV IPC SHM_UNLOCK.
 
3841 */
3842void check_move_unevictable_pages(struct page **pages, int nr_pages)
3843{
3844	struct lruvec *lruvec;
3845	struct pglist_data *pgdat = NULL;
3846	int pgscanned = 0;
3847	int pgrescued = 0;
3848	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3849
3850	for (i = 0; i < nr_pages; i++) {
3851		struct page *page = pages[i];
3852		struct pglist_data *pagepgdat = page_pgdat(page);
3853
3854		pgscanned++;
3855		if (pagepgdat != pgdat) {
3856			if (pgdat)
3857				spin_unlock_irq(&pgdat->lru_lock);
3858			pgdat = pagepgdat;
3859			spin_lock_irq(&pgdat->lru_lock);
3860		}
3861		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3862
3863		if (!PageLRU(page) || !PageUnevictable(page))
3864			continue;
3865
3866		if (page_evictable(page)) {
3867			enum lru_list lru = page_lru_base_type(page);
3868
3869			VM_BUG_ON_PAGE(PageActive(page), page);
3870			ClearPageUnevictable(page);
3871			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3872			add_page_to_lru_list(page, lruvec, lru);
3873			pgrescued++;
3874		}
 
 
 
3875	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3876
3877	if (pgdat) {
3878		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3879		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3880		spin_unlock_irq(&pgdat->lru_lock);
3881	}
3882}
3883#endif /* CONFIG_SHMEM */