Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
 
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>	/* for try_to_release_page(),
  27					buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
  45#include <linux/prefetch.h>
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
 
  51
  52#include "internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/vmscan.h>
  56
  57/*
  58 * reclaim_mode determines how the inactive list is shrunk
  59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  60 * RECLAIM_MODE_ASYNC:  Do not block
  61 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  63 *			page from the LRU and reclaim all pages within a
  64 *			naturally aligned range
  65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  66 *			order-0 pages and then compact the zone
  67 */
  68typedef unsigned __bitwise__ reclaim_mode_t;
  69#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
  70#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
  71#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
  72#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
  73#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
  74
  75struct scan_control {
  76	/* Incremented by the number of inactive pages that were scanned */
  77	unsigned long nr_scanned;
  78
  79	/* Number of pages freed so far during a call to shrink_zones() */
  80	unsigned long nr_reclaimed;
  81
  82	/* How many pages shrink_list() should reclaim */
  83	unsigned long nr_to_reclaim;
  84
  85	unsigned long hibernation_mode;
  86
  87	/* This context's GFP mask */
  88	gfp_t gfp_mask;
  89
  90	int may_writepage;
  91
  92	/* Can mapped pages be reclaimed? */
  93	int may_unmap;
  94
  95	/* Can pages be swapped as part of reclaim? */
  96	int may_swap;
  97
  98	int order;
  99
 
 
 
 100	/*
 101	 * Intend to reclaim enough continuous memory rather than reclaim
 102	 * enough amount of memory. i.e, mode for high order allocation.
 103	 */
 104	reclaim_mode_t reclaim_mode;
 105
 106	/* Which cgroup do we reclaim from */
 107	struct mem_cgroup *mem_cgroup;
 108
 109	/*
 110	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
 111	 * are scanned.
 112	 */
 113	nodemask_t	*nodemask;
 114};
 115
 116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 117
 118#ifdef ARCH_HAS_PREFETCH
 119#define prefetch_prev_lru_page(_page, _base, _field)			\
 120	do {								\
 121		if ((_page)->lru.prev != _base) {			\
 122			struct page *prev;				\
 123									\
 124			prev = lru_to_page(&(_page->lru));		\
 125			prefetch(&prev->_field);			\
 126		}							\
 127	} while (0)
 128#else
 129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 130#endif
 131
 132#ifdef ARCH_HAS_PREFETCHW
 133#define prefetchw_prev_lru_page(_page, _base, _field)			\
 134	do {								\
 135		if ((_page)->lru.prev != _base) {			\
 136			struct page *prev;				\
 137									\
 138			prev = lru_to_page(&(_page->lru));		\
 139			prefetchw(&prev->_field);			\
 140		}							\
 141	} while (0)
 142#else
 143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 144#endif
 145
 146/*
 147 * From 0 .. 100.  Higher means more swappy.
 148 */
 149int vm_swappiness = 60;
 150long vm_total_pages;	/* The total number of pages which the VM controls */
 151
 152static LIST_HEAD(shrinker_list);
 153static DECLARE_RWSEM(shrinker_rwsem);
 154
 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 156#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
 
 
 
 157#else
 158#define scanning_global_lru(sc)	(1)
 
 
 
 159#endif
 160
 161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 162						  struct scan_control *sc)
 163{
 164	if (!scanning_global_lru(sc))
 165		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 
 
 166
 167	return &zone->reclaim_stat;
 
 
 
 
 168}
 169
 170static unsigned long zone_nr_lru_pages(struct zone *zone,
 171				struct scan_control *sc, enum lru_list lru)
 172{
 173	if (!scanning_global_lru(sc))
 174		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
 175				zone_to_nid(zone), zone_idx(zone), BIT(lru));
 176
 177	return zone_page_state(zone, NR_LRU_BASE + lru);
 178}
 179
 
 
 
 
 
 
 
 180
 181/*
 182 * Add a shrinker callback to be called from the vm
 183 */
 184void register_shrinker(struct shrinker *shrinker)
 185{
 186	shrinker->nr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	down_write(&shrinker_rwsem);
 188	list_add_tail(&shrinker->list, &shrinker_list);
 189	up_write(&shrinker_rwsem);
 
 190}
 191EXPORT_SYMBOL(register_shrinker);
 192
 193/*
 194 * Remove one
 195 */
 196void unregister_shrinker(struct shrinker *shrinker)
 197{
 198	down_write(&shrinker_rwsem);
 199	list_del(&shrinker->list);
 200	up_write(&shrinker_rwsem);
 
 201}
 202EXPORT_SYMBOL(unregister_shrinker);
 203
 204static inline int do_shrinker_shrink(struct shrinker *shrinker,
 205				     struct shrink_control *sc,
 206				     unsigned long nr_to_scan)
 207{
 208	sc->nr_to_scan = nr_to_scan;
 209	return (*shrinker->shrink)(shrinker, sc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210}
 211
 212#define SHRINK_BATCH 128
 213/*
 214 * Call the shrink functions to age shrinkable caches
 215 *
 216 * Here we assume it costs one seek to replace a lru page and that it also
 217 * takes a seek to recreate a cache object.  With this in mind we age equal
 218 * percentages of the lru and ageable caches.  This should balance the seeks
 219 * generated by these structures.
 220 *
 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
 222 * slab to avoid swapping.
 223 *
 224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 225 *
 226 * `lru_pages' represents the number of on-LRU pages in all the zones which
 227 * are eligible for the caller's allocation attempt.  It is used for balancing
 228 * slab reclaim versus page reclaim.
 229 *
 230 * Returns the number of slab objects which we shrunk.
 231 */
 232unsigned long shrink_slab(struct shrink_control *shrink,
 233			  unsigned long nr_pages_scanned,
 234			  unsigned long lru_pages)
 235{
 236	struct shrinker *shrinker;
 237	unsigned long ret = 0;
 238
 239	if (nr_pages_scanned == 0)
 240		nr_pages_scanned = SWAP_CLUSTER_MAX;
 241
 242	if (!down_read_trylock(&shrinker_rwsem)) {
 243		/* Assume we'll be able to shrink next time */
 244		ret = 1;
 
 
 
 
 
 245		goto out;
 246	}
 247
 248	list_for_each_entry(shrinker, &shrinker_list, list) {
 249		unsigned long long delta;
 250		unsigned long total_scan;
 251		unsigned long max_pass;
 252		int shrink_ret = 0;
 253		long nr;
 254		long new_nr;
 255		long batch_size = shrinker->batch ? shrinker->batch
 256						  : SHRINK_BATCH;
 257
 258		/*
 259		 * copy the current shrinker scan count into a local variable
 260		 * and zero it so that other concurrent shrinker invocations
 261		 * don't also do this scanning work.
 262		 */
 263		do {
 264			nr = shrinker->nr;
 265		} while (cmpxchg(&shrinker->nr, nr, 0) != nr);
 266
 267		total_scan = nr;
 268		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 269		delta = (4 * nr_pages_scanned) / shrinker->seeks;
 270		delta *= max_pass;
 271		do_div(delta, lru_pages + 1);
 272		total_scan += delta;
 273		if (total_scan < 0) {
 274			printk(KERN_ERR "shrink_slab: %pF negative objects to "
 275			       "delete nr=%ld\n",
 276			       shrinker->shrink, total_scan);
 277			total_scan = max_pass;
 278		}
 279
 280		/*
 281		 * We need to avoid excessive windup on filesystem shrinkers
 282		 * due to large numbers of GFP_NOFS allocations causing the
 283		 * shrinkers to return -1 all the time. This results in a large
 284		 * nr being built up so when a shrink that can do some work
 285		 * comes along it empties the entire cache due to nr >>>
 286		 * max_pass.  This is bad for sustaining a working set in
 287		 * memory.
 288		 *
 289		 * Hence only allow the shrinker to scan the entire cache when
 290		 * a large delta change is calculated directly.
 291		 */
 292		if (delta < max_pass / 4)
 293			total_scan = min(total_scan, max_pass / 2);
 294
 295		/*
 296		 * Avoid risking looping forever due to too large nr value:
 297		 * never try to free more than twice the estimate number of
 298		 * freeable entries.
 299		 */
 300		if (total_scan > max_pass * 2)
 301			total_scan = max_pass * 2;
 302
 303		trace_mm_shrink_slab_start(shrinker, shrink, nr,
 304					nr_pages_scanned, lru_pages,
 305					max_pass, delta, total_scan);
 306
 307		while (total_scan >= batch_size) {
 308			int nr_before;
 309
 310			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 311			shrink_ret = do_shrinker_shrink(shrinker, shrink,
 312							batch_size);
 313			if (shrink_ret == -1)
 314				break;
 315			if (shrink_ret < nr_before)
 316				ret += nr_before - shrink_ret;
 317			count_vm_events(SLABS_SCANNED, batch_size);
 318			total_scan -= batch_size;
 319
 320			cond_resched();
 321		}
 322
 323		/*
 324		 * move the unused scan count back into the shrinker in a
 325		 * manner that handles concurrent updates. If we exhausted the
 326		 * scan, there is no need to do an update.
 327		 */
 328		do {
 329			nr = shrinker->nr;
 330			new_nr = total_scan + nr;
 331			if (total_scan <= 0)
 332				break;
 333		} while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
 334
 335		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 336	}
 337	up_read(&shrinker_rwsem);
 338out:
 339	cond_resched();
 340	return ret;
 341}
 342
 343static void set_reclaim_mode(int priority, struct scan_control *sc,
 344				   bool sync)
 345{
 346	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 347
 348	/*
 349	 * Initially assume we are entering either lumpy reclaim or
 350	 * reclaim/compaction.Depending on the order, we will either set the
 351	 * sync mode or just reclaim order-0 pages later.
 352	 */
 353	if (COMPACTION_BUILD)
 354		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 355	else
 356		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 357
 358	/*
 359	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
 360	 * restricting when its set to either costly allocations or when
 361	 * under memory pressure
 362	 */
 363	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 364		sc->reclaim_mode |= syncmode;
 365	else if (sc->order && priority < DEF_PRIORITY - 2)
 366		sc->reclaim_mode |= syncmode;
 367	else
 368		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 369}
 370
 371static void reset_reclaim_mode(struct scan_control *sc)
 372{
 373	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 374}
 375
 376static inline int is_page_cache_freeable(struct page *page)
 377{
 378	/*
 379	 * A freeable page cache page is referenced only by the caller
 380	 * that isolated the page, the page cache radix tree and
 381	 * optional buffer heads at page->private.
 382	 */
 383	return page_count(page) - page_has_private(page) == 2;
 384}
 385
 386static int may_write_to_queue(struct backing_dev_info *bdi,
 387			      struct scan_control *sc)
 388{
 389	if (current->flags & PF_SWAPWRITE)
 390		return 1;
 391	if (!bdi_write_congested(bdi))
 392		return 1;
 393	if (bdi == current->backing_dev_info)
 394		return 1;
 395
 396	/* lumpy reclaim for hugepage often need a lot of write */
 397	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 398		return 1;
 399	return 0;
 400}
 401
 402/*
 403 * We detected a synchronous write error writing a page out.  Probably
 404 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 405 * fsync(), msync() or close().
 406 *
 407 * The tricky part is that after writepage we cannot touch the mapping: nothing
 408 * prevents it from being freed up.  But we have a ref on the page and once
 409 * that page is locked, the mapping is pinned.
 410 *
 411 * We're allowed to run sleeping lock_page() here because we know the caller has
 412 * __GFP_FS.
 413 */
 414static void handle_write_error(struct address_space *mapping,
 415				struct page *page, int error)
 416{
 417	lock_page(page);
 418	if (page_mapping(page) == mapping)
 419		mapping_set_error(mapping, error);
 420	unlock_page(page);
 421}
 422
 423/* possible outcome of pageout() */
 424typedef enum {
 425	/* failed to write page out, page is locked */
 426	PAGE_KEEP,
 427	/* move page to the active list, page is locked */
 428	PAGE_ACTIVATE,
 429	/* page has been sent to the disk successfully, page is unlocked */
 430	PAGE_SUCCESS,
 431	/* page is clean and locked */
 432	PAGE_CLEAN,
 433} pageout_t;
 434
 435/*
 436 * pageout is called by shrink_page_list() for each dirty page.
 437 * Calls ->writepage().
 438 */
 439static pageout_t pageout(struct page *page, struct address_space *mapping,
 440			 struct scan_control *sc)
 441{
 442	/*
 443	 * If the page is dirty, only perform writeback if that write
 444	 * will be non-blocking.  To prevent this allocation from being
 445	 * stalled by pagecache activity.  But note that there may be
 446	 * stalls if we need to run get_block().  We could test
 447	 * PagePrivate for that.
 448	 *
 449	 * If this process is currently in __generic_file_aio_write() against
 450	 * this page's queue, we can perform writeback even if that
 451	 * will block.
 452	 *
 453	 * If the page is swapcache, write it back even if that would
 454	 * block, for some throttling. This happens by accident, because
 455	 * swap_backing_dev_info is bust: it doesn't reflect the
 456	 * congestion state of the swapdevs.  Easy to fix, if needed.
 457	 */
 458	if (!is_page_cache_freeable(page))
 459		return PAGE_KEEP;
 460	if (!mapping) {
 461		/*
 462		 * Some data journaling orphaned pages can have
 463		 * page->mapping == NULL while being dirty with clean buffers.
 464		 */
 465		if (page_has_private(page)) {
 466			if (try_to_free_buffers(page)) {
 467				ClearPageDirty(page);
 468				printk("%s: orphaned page\n", __func__);
 469				return PAGE_CLEAN;
 470			}
 471		}
 472		return PAGE_KEEP;
 473	}
 474	if (mapping->a_ops->writepage == NULL)
 475		return PAGE_ACTIVATE;
 476	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 477		return PAGE_KEEP;
 478
 479	if (clear_page_dirty_for_io(page)) {
 480		int res;
 481		struct writeback_control wbc = {
 482			.sync_mode = WB_SYNC_NONE,
 483			.nr_to_write = SWAP_CLUSTER_MAX,
 484			.range_start = 0,
 485			.range_end = LLONG_MAX,
 486			.for_reclaim = 1,
 487		};
 488
 489		SetPageReclaim(page);
 490		res = mapping->a_ops->writepage(page, &wbc);
 491		if (res < 0)
 492			handle_write_error(mapping, page, res);
 493		if (res == AOP_WRITEPAGE_ACTIVATE) {
 494			ClearPageReclaim(page);
 495			return PAGE_ACTIVATE;
 496		}
 497
 498		/*
 499		 * Wait on writeback if requested to. This happens when
 500		 * direct reclaiming a large contiguous area and the
 501		 * first attempt to free a range of pages fails.
 502		 */
 503		if (PageWriteback(page) &&
 504		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
 505			wait_on_page_writeback(page);
 506
 507		if (!PageWriteback(page)) {
 508			/* synchronous write or broken a_ops? */
 509			ClearPageReclaim(page);
 510		}
 511		trace_mm_vmscan_writepage(page,
 512			trace_reclaim_flags(page, sc->reclaim_mode));
 513		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 514		return PAGE_SUCCESS;
 515	}
 516
 517	return PAGE_CLEAN;
 518}
 519
 520/*
 521 * Same as remove_mapping, but if the page is removed from the mapping, it
 522 * gets returned with a refcount of 0.
 523 */
 524static int __remove_mapping(struct address_space *mapping, struct page *page)
 
 525{
 526	BUG_ON(!PageLocked(page));
 527	BUG_ON(mapping != page_mapping(page));
 528
 529	spin_lock_irq(&mapping->tree_lock);
 530	/*
 531	 * The non racy check for a busy page.
 532	 *
 533	 * Must be careful with the order of the tests. When someone has
 534	 * a ref to the page, it may be possible that they dirty it then
 535	 * drop the reference. So if PageDirty is tested before page_count
 536	 * here, then the following race may occur:
 537	 *
 538	 * get_user_pages(&page);
 539	 * [user mapping goes away]
 540	 * write_to(page);
 541	 *				!PageDirty(page)    [good]
 542	 * SetPageDirty(page);
 543	 * put_page(page);
 544	 *				!page_count(page)   [good, discard it]
 545	 *
 546	 * [oops, our write_to data is lost]
 547	 *
 548	 * Reversing the order of the tests ensures such a situation cannot
 549	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 550	 * load is not satisfied before that of page->_count.
 551	 *
 552	 * Note that if SetPageDirty is always performed via set_page_dirty,
 553	 * and thus under tree_lock, then this ordering is not required.
 554	 */
 555	if (!page_freeze_refs(page, 2))
 556		goto cannot_free;
 557	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 558	if (unlikely(PageDirty(page))) {
 559		page_unfreeze_refs(page, 2);
 560		goto cannot_free;
 561	}
 562
 563	if (PageSwapCache(page)) {
 564		swp_entry_t swap = { .val = page_private(page) };
 565		__delete_from_swap_cache(page);
 566		spin_unlock_irq(&mapping->tree_lock);
 567		swapcache_free(swap, page);
 568	} else {
 569		void (*freepage)(struct page *);
 
 570
 571		freepage = mapping->a_ops->freepage;
 572
 573		__delete_from_page_cache(page);
 
 
 
 
 
 
 
 
 
 
 
 
 574		spin_unlock_irq(&mapping->tree_lock);
 575		mem_cgroup_uncharge_cache_page(page);
 576
 577		if (freepage != NULL)
 578			freepage(page);
 579	}
 580
 581	return 1;
 582
 583cannot_free:
 584	spin_unlock_irq(&mapping->tree_lock);
 585	return 0;
 586}
 587
 588/*
 589 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 590 * someone else has a ref on the page, abort and return 0.  If it was
 591 * successfully detached, return 1.  Assumes the caller has a single ref on
 592 * this page.
 593 */
 594int remove_mapping(struct address_space *mapping, struct page *page)
 595{
 596	if (__remove_mapping(mapping, page)) {
 597		/*
 598		 * Unfreezing the refcount with 1 rather than 2 effectively
 599		 * drops the pagecache ref for us without requiring another
 600		 * atomic operation.
 601		 */
 602		page_unfreeze_refs(page, 1);
 603		return 1;
 604	}
 605	return 0;
 606}
 607
 608/**
 609 * putback_lru_page - put previously isolated page onto appropriate LRU list
 610 * @page: page to be put back to appropriate lru list
 611 *
 612 * Add previously isolated @page to appropriate LRU list.
 613 * Page may still be unevictable for other reasons.
 614 *
 615 * lru_lock must not be held, interrupts must be enabled.
 616 */
 617void putback_lru_page(struct page *page)
 618{
 619	int lru;
 620	int active = !!TestClearPageActive(page);
 621	int was_unevictable = PageUnevictable(page);
 622
 623	VM_BUG_ON(PageLRU(page));
 624
 625redo:
 626	ClearPageUnevictable(page);
 627
 628	if (page_evictable(page, NULL)) {
 629		/*
 630		 * For evictable pages, we can use the cache.
 631		 * In event of a race, worst case is we end up with an
 632		 * unevictable page on [in]active list.
 633		 * We know how to handle that.
 634		 */
 635		lru = active + page_lru_base_type(page);
 636		lru_cache_add_lru(page, lru);
 637	} else {
 638		/*
 639		 * Put unevictable pages directly on zone's unevictable
 640		 * list.
 641		 */
 642		lru = LRU_UNEVICTABLE;
 643		add_page_to_unevictable_list(page);
 644		/*
 645		 * When racing with an mlock clearing (page is
 646		 * unlocked), make sure that if the other thread does
 647		 * not observe our setting of PG_lru and fails
 648		 * isolation, we see PG_mlocked cleared below and move
 
 649		 * the page back to the evictable list.
 650		 *
 651		 * The other side is TestClearPageMlocked().
 652		 */
 653		smp_mb();
 654	}
 655
 656	/*
 657	 * page's status can change while we move it among lru. If an evictable
 658	 * page is on unevictable list, it never be freed. To avoid that,
 659	 * check after we added it to the list, again.
 660	 */
 661	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 662		if (!isolate_lru_page(page)) {
 663			put_page(page);
 664			goto redo;
 665		}
 666		/* This means someone else dropped this page from LRU
 667		 * So, it will be freed or putback to LRU again. There is
 668		 * nothing to do here.
 669		 */
 670	}
 671
 672	if (was_unevictable && lru != LRU_UNEVICTABLE)
 673		count_vm_event(UNEVICTABLE_PGRESCUED);
 674	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 675		count_vm_event(UNEVICTABLE_PGCULLED);
 676
 677	put_page(page);		/* drop ref from isolate */
 678}
 679
 680enum page_references {
 681	PAGEREF_RECLAIM,
 682	PAGEREF_RECLAIM_CLEAN,
 683	PAGEREF_KEEP,
 684	PAGEREF_ACTIVATE,
 685};
 686
 687static enum page_references page_check_references(struct page *page,
 688						  struct scan_control *sc)
 689{
 690	int referenced_ptes, referenced_page;
 691	unsigned long vm_flags;
 692
 693	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 
 694	referenced_page = TestClearPageReferenced(page);
 695
 696	/* Lumpy reclaim - ignore references */
 697	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 698		return PAGEREF_RECLAIM;
 699
 700	/*
 701	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 702	 * move the page to the unevictable list.
 703	 */
 704	if (vm_flags & VM_LOCKED)
 705		return PAGEREF_RECLAIM;
 706
 707	if (referenced_ptes) {
 708		if (PageAnon(page))
 709			return PAGEREF_ACTIVATE;
 710		/*
 711		 * All mapped pages start out with page table
 712		 * references from the instantiating fault, so we need
 713		 * to look twice if a mapped file page is used more
 714		 * than once.
 715		 *
 716		 * Mark it and spare it for another trip around the
 717		 * inactive list.  Another page table reference will
 718		 * lead to its activation.
 719		 *
 720		 * Note: the mark is set for activated pages as well
 721		 * so that recently deactivated but used pages are
 722		 * quickly recovered.
 723		 */
 724		SetPageReferenced(page);
 725
 726		if (referenced_page)
 
 
 
 
 
 
 727			return PAGEREF_ACTIVATE;
 728
 729		return PAGEREF_KEEP;
 730	}
 731
 732	/* Reclaim if clean, defer dirty pages to writeback */
 733	if (referenced_page && !PageSwapBacked(page))
 734		return PAGEREF_RECLAIM_CLEAN;
 735
 736	return PAGEREF_RECLAIM;
 737}
 738
 739static noinline_for_stack void free_page_list(struct list_head *free_pages)
 
 
 740{
 741	struct pagevec freed_pvec;
 742	struct page *page, *tmp;
 743
 744	pagevec_init(&freed_pvec, 1);
 745
 746	list_for_each_entry_safe(page, tmp, free_pages, lru) {
 747		list_del(&page->lru);
 748		if (!pagevec_add(&freed_pvec, page)) {
 749			__pagevec_free(&freed_pvec);
 750			pagevec_reinit(&freed_pvec);
 751		}
 
 
 752	}
 753
 754	pagevec_free(&freed_pvec);
 
 
 
 
 
 
 
 
 
 
 755}
 756
 757/*
 758 * shrink_page_list() returns the number of reclaimed pages
 759 */
 760static unsigned long shrink_page_list(struct list_head *page_list,
 761				      struct zone *zone,
 762				      struct scan_control *sc)
 
 
 
 
 
 
 
 763{
 764	LIST_HEAD(ret_pages);
 765	LIST_HEAD(free_pages);
 766	int pgactivate = 0;
 
 767	unsigned long nr_dirty = 0;
 768	unsigned long nr_congested = 0;
 769	unsigned long nr_reclaimed = 0;
 
 
 770
 771	cond_resched();
 772
 
 773	while (!list_empty(page_list)) {
 774		enum page_references references;
 775		struct address_space *mapping;
 776		struct page *page;
 777		int may_enter_fs;
 
 
 778
 779		cond_resched();
 780
 781		page = lru_to_page(page_list);
 782		list_del(&page->lru);
 783
 784		if (!trylock_page(page))
 785			goto keep;
 786
 787		VM_BUG_ON(PageActive(page));
 788		VM_BUG_ON(page_zone(page) != zone);
 789
 790		sc->nr_scanned++;
 791
 792		if (unlikely(!page_evictable(page, NULL)))
 793			goto cull_mlocked;
 794
 795		if (!sc->may_unmap && page_mapped(page))
 796			goto keep_locked;
 797
 798		/* Double the slab pressure for mapped and swapcache pages */
 799		if (page_mapped(page) || PageSwapCache(page))
 800			sc->nr_scanned++;
 801
 802		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 803			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805		if (PageWriteback(page)) {
 806			/*
 807			 * Synchronous reclaim is performed in two passes,
 808			 * first an asynchronous pass over the list to
 809			 * start parallel writeback, and a second synchronous
 810			 * pass to wait for the IO to complete.  Wait here
 811			 * for any page for which writeback has already
 812			 * started.
 813			 */
 814			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 815			    may_enter_fs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816				wait_on_page_writeback(page);
 817			else {
 818				unlock_page(page);
 819				goto keep_lumpy;
 820			}
 821		}
 822
 823		references = page_check_references(page, sc);
 
 
 824		switch (references) {
 825		case PAGEREF_ACTIVATE:
 826			goto activate_locked;
 827		case PAGEREF_KEEP:
 828			goto keep_locked;
 829		case PAGEREF_RECLAIM:
 830		case PAGEREF_RECLAIM_CLEAN:
 831			; /* try to reclaim the page below */
 832		}
 833
 834		/*
 835		 * Anonymous process memory has backing store?
 836		 * Try to allocate it some swap space here.
 837		 */
 838		if (PageAnon(page) && !PageSwapCache(page)) {
 839			if (!(sc->gfp_mask & __GFP_IO))
 840				goto keep_locked;
 841			if (!add_to_swap(page))
 842				goto activate_locked;
 843			may_enter_fs = 1;
 844		}
 845
 846		mapping = page_mapping(page);
 
 
 847
 848		/*
 849		 * The page is mapped into the page tables of one or more
 850		 * processes. Try to unmap it here.
 851		 */
 852		if (page_mapped(page) && mapping) {
 853			switch (try_to_unmap(page, TTU_UNMAP)) {
 854			case SWAP_FAIL:
 855				goto activate_locked;
 856			case SWAP_AGAIN:
 857				goto keep_locked;
 858			case SWAP_MLOCK:
 859				goto cull_mlocked;
 860			case SWAP_SUCCESS:
 861				; /* try to free the page below */
 862			}
 863		}
 864
 865		if (PageDirty(page)) {
 866			nr_dirty++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868			if (references == PAGEREF_RECLAIM_CLEAN)
 869				goto keep_locked;
 870			if (!may_enter_fs)
 871				goto keep_locked;
 872			if (!sc->may_writepage)
 873				goto keep_locked;
 874
 875			/* Page is dirty, try to write it out here */
 876			switch (pageout(page, mapping, sc)) {
 877			case PAGE_KEEP:
 878				nr_congested++;
 879				goto keep_locked;
 880			case PAGE_ACTIVATE:
 881				goto activate_locked;
 882			case PAGE_SUCCESS:
 883				if (PageWriteback(page))
 884					goto keep_lumpy;
 885				if (PageDirty(page))
 886					goto keep;
 887
 888				/*
 889				 * A synchronous write - probably a ramdisk.  Go
 890				 * ahead and try to reclaim the page.
 891				 */
 892				if (!trylock_page(page))
 893					goto keep;
 894				if (PageDirty(page) || PageWriteback(page))
 895					goto keep_locked;
 896				mapping = page_mapping(page);
 897			case PAGE_CLEAN:
 898				; /* try to free the page below */
 899			}
 900		}
 901
 902		/*
 903		 * If the page has buffers, try to free the buffer mappings
 904		 * associated with this page. If we succeed we try to free
 905		 * the page as well.
 906		 *
 907		 * We do this even if the page is PageDirty().
 908		 * try_to_release_page() does not perform I/O, but it is
 909		 * possible for a page to have PageDirty set, but it is actually
 910		 * clean (all its buffers are clean).  This happens if the
 911		 * buffers were written out directly, with submit_bh(). ext3
 912		 * will do this, as well as the blockdev mapping.
 913		 * try_to_release_page() will discover that cleanness and will
 914		 * drop the buffers and mark the page clean - it can be freed.
 915		 *
 916		 * Rarely, pages can have buffers and no ->mapping.  These are
 917		 * the pages which were not successfully invalidated in
 918		 * truncate_complete_page().  We try to drop those buffers here
 919		 * and if that worked, and the page is no longer mapped into
 920		 * process address space (page_count == 1) it can be freed.
 921		 * Otherwise, leave the page on the LRU so it is swappable.
 922		 */
 923		if (page_has_private(page)) {
 924			if (!try_to_release_page(page, sc->gfp_mask))
 925				goto activate_locked;
 926			if (!mapping && page_count(page) == 1) {
 927				unlock_page(page);
 928				if (put_page_testzero(page))
 929					goto free_it;
 930				else {
 931					/*
 932					 * rare race with speculative reference.
 933					 * the speculative reference will free
 934					 * this page shortly, so we may
 935					 * increment nr_reclaimed here (and
 936					 * leave it off the LRU).
 937					 */
 938					nr_reclaimed++;
 939					continue;
 940				}
 941			}
 942		}
 943
 944		if (!mapping || !__remove_mapping(mapping, page))
 945			goto keep_locked;
 946
 947		/*
 948		 * At this point, we have no other references and there is
 949		 * no way to pick any more up (removed from LRU, removed
 950		 * from pagecache). Can use non-atomic bitops now (and
 951		 * we obviously don't have to worry about waking up a process
 952		 * waiting on the page lock, because there are no references.
 953		 */
 954		__clear_page_locked(page);
 955free_it:
 956		nr_reclaimed++;
 957
 958		/*
 959		 * Is there need to periodically free_page_list? It would
 960		 * appear not as the counts should be low
 961		 */
 962		list_add(&page->lru, &free_pages);
 963		continue;
 964
 965cull_mlocked:
 966		if (PageSwapCache(page))
 967			try_to_free_swap(page);
 968		unlock_page(page);
 969		putback_lru_page(page);
 970		reset_reclaim_mode(sc);
 971		continue;
 972
 973activate_locked:
 974		/* Not a candidate for swapping, so reclaim swap space. */
 975		if (PageSwapCache(page) && vm_swap_full())
 976			try_to_free_swap(page);
 977		VM_BUG_ON(PageActive(page));
 978		SetPageActive(page);
 979		pgactivate++;
 980keep_locked:
 981		unlock_page(page);
 982keep:
 983		reset_reclaim_mode(sc);
 984keep_lumpy:
 985		list_add(&page->lru, &ret_pages);
 986		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 987	}
 988
 989	/*
 990	 * Tag a zone as congested if all the dirty pages encountered were
 991	 * backed by a congested BDI. In this case, reclaimers should just
 992	 * back off and wait for congestion to clear because further reclaim
 993	 * will encounter the same problem
 994	 */
 995	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
 996		zone_set_flag(zone, ZONE_CONGESTED);
 997
 998	free_page_list(&free_pages);
 999
1000	list_splice(&ret_pages, page_list);
1001	count_vm_events(PGACTIVATE, pgactivate);
 
 
 
 
 
 
1002	return nr_reclaimed;
1003}
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005/*
1006 * Attempt to remove the specified page from its LRU.  Only take this page
1007 * if it is of the appropriate PageActive status.  Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page:	page to consider
1011 * mode:	one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015int __isolate_lru_page(struct page *page, int mode, int file)
1016{
1017	int ret = -EINVAL;
1018
1019	/* Only take pages on the LRU. */
1020	if (!PageLRU(page))
1021		return ret;
1022
1023	/*
1024	 * When checking the active state, we need to be sure we are
1025	 * dealing with comparible boolean values.  Take the logical not
1026	 * of each.
1027	 */
1028	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
1029		return ret;
1030
1031	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
1032		return ret;
1033
1034	/*
1035	 * When this function is being called for lumpy reclaim, we
1036	 * initially look into all LRU pages, active, inactive and
1037	 * unevictable; only give shrink_page_list evictable pages.
 
 
 
 
 
 
1038	 */
1039	if (PageUnevictable(page))
1040		return ret;
 
 
1041
1042	ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044	if (likely(get_page_unless_zero(page))) {
1045		/*
1046		 * Be careful not to clear PageLRU until after we're
1047		 * sure the page is not being freed elsewhere -- the
1048		 * page release code relies on it.
1049		 */
1050		ClearPageLRU(page);
1051		ret = 0;
1052	}
1053
1054	return ret;
1055}
1056
1057/*
1058 * zone->lru_lock is heavily contended.  Some of the functions that
1059 * shrink the lists perform better by taking out a batch of pages
1060 * and working on them outside the LRU lock.
1061 *
1062 * For pagecache intensive workloads, this function is the hottest
1063 * spot in the kernel (apart from copy_*_user functions).
1064 *
1065 * Appropriate locks must be held before calling this function.
1066 *
1067 * @nr_to_scan:	The number of pages to look through on the list.
1068 * @src:	The LRU list to pull pages off.
1069 * @dst:	The temp list to put pages on to.
1070 * @scanned:	The number of pages that were scanned.
1071 * @order:	The caller's attempted allocation order
1072 * @mode:	One of the LRU isolation modes
1073 * @file:	True [1] if isolating file [!anon] pages
1074 *
1075 * returns how many pages were moved onto *@dst.
1076 */
1077static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1078		struct list_head *src, struct list_head *dst,
1079		unsigned long *scanned, int order, int mode, int file)
 
1080{
 
1081	unsigned long nr_taken = 0;
1082	unsigned long nr_lumpy_taken = 0;
1083	unsigned long nr_lumpy_dirty = 0;
1084	unsigned long nr_lumpy_failed = 0;
1085	unsigned long scan;
1086
1087	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1088		struct page *page;
1089		unsigned long pfn;
1090		unsigned long end_pfn;
1091		unsigned long page_pfn;
1092		int zone_id;
1093
1094		page = lru_to_page(src);
1095		prefetchw_prev_lru_page(page, src, flags);
1096
1097		VM_BUG_ON(!PageLRU(page));
1098
1099		switch (__isolate_lru_page(page, mode, file)) {
1100		case 0:
 
 
1101			list_move(&page->lru, dst);
1102			mem_cgroup_del_lru(page);
1103			nr_taken += hpage_nr_pages(page);
1104			break;
1105
1106		case -EBUSY:
1107			/* else it is being freed elsewhere */
1108			list_move(&page->lru, src);
1109			mem_cgroup_rotate_lru_list(page, page_lru(page));
1110			continue;
1111
1112		default:
1113			BUG();
1114		}
1115
1116		if (!order)
1117			continue;
1118
1119		/*
1120		 * Attempt to take all pages in the order aligned region
1121		 * surrounding the tag page.  Only take those pages of
1122		 * the same active state as that tag page.  We may safely
1123		 * round the target page pfn down to the requested order
1124		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1125		 * where that page is in a different zone we will detect
1126		 * it from its zone id and abort this block scan.
1127		 */
1128		zone_id = page_zone_id(page);
1129		page_pfn = page_to_pfn(page);
1130		pfn = page_pfn & ~((1 << order) - 1);
1131		end_pfn = pfn + (1 << order);
1132		for (; pfn < end_pfn; pfn++) {
1133			struct page *cursor_page;
1134
1135			/* The target page is in the block, ignore it. */
1136			if (unlikely(pfn == page_pfn))
1137				continue;
1138
1139			/* Avoid holes within the zone. */
1140			if (unlikely(!pfn_valid_within(pfn)))
1141				break;
1142
1143			cursor_page = pfn_to_page(pfn);
1144
1145			/* Check that we have not crossed a zone boundary. */
1146			if (unlikely(page_zone_id(cursor_page) != zone_id))
1147				break;
1148
1149			/*
1150			 * If we don't have enough swap space, reclaiming of
1151			 * anon page which don't already have a swap slot is
1152			 * pointless.
1153			 */
1154			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1155			    !PageSwapCache(cursor_page))
1156				break;
1157
1158			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1159				list_move(&cursor_page->lru, dst);
1160				mem_cgroup_del_lru(cursor_page);
1161				nr_taken += hpage_nr_pages(page);
1162				nr_lumpy_taken++;
1163				if (PageDirty(cursor_page))
1164					nr_lumpy_dirty++;
1165				scan++;
1166			} else {
1167				/*
1168				 * Check if the page is freed already.
1169				 *
1170				 * We can't use page_count() as that
1171				 * requires compound_head and we don't
1172				 * have a pin on the page here. If a
1173				 * page is tail, we may or may not
1174				 * have isolated the head, so assume
1175				 * it's not free, it'd be tricky to
1176				 * track the head status without a
1177				 * page pin.
1178				 */
1179				if (!PageTail(cursor_page) &&
1180				    !atomic_read(&cursor_page->_count))
1181					continue;
1182				break;
1183			}
1184		}
1185
1186		/* If we break out of the loop above, lumpy reclaim failed */
1187		if (pfn < end_pfn)
1188			nr_lumpy_failed++;
1189	}
1190
1191	*scanned = scan;
1192
1193	trace_mm_vmscan_lru_isolate(order,
1194			nr_to_scan, scan,
1195			nr_taken,
1196			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1197			mode);
1198	return nr_taken;
1199}
1200
1201static unsigned long isolate_pages_global(unsigned long nr,
1202					struct list_head *dst,
1203					unsigned long *scanned, int order,
1204					int mode, struct zone *z,
1205					int active, int file)
1206{
1207	int lru = LRU_BASE;
1208	if (active)
1209		lru += LRU_ACTIVE;
1210	if (file)
1211		lru += LRU_FILE;
1212	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1213								mode, file);
1214}
1215
1216/*
1217 * clear_active_flags() is a helper for shrink_active_list(), clearing
1218 * any active bits from the pages in the list.
1219 */
1220static unsigned long clear_active_flags(struct list_head *page_list,
1221					unsigned int *count)
1222{
1223	int nr_active = 0;
1224	int lru;
1225	struct page *page;
1226
1227	list_for_each_entry(page, page_list, lru) {
1228		int numpages = hpage_nr_pages(page);
1229		lru = page_lru_base_type(page);
1230		if (PageActive(page)) {
1231			lru += LRU_ACTIVE;
1232			ClearPageActive(page);
1233			nr_active += numpages;
1234		}
1235		if (count)
1236			count[lru] += numpages;
1237	}
1238
1239	return nr_active;
1240}
1241
1242/**
1243 * isolate_lru_page - tries to isolate a page from its LRU list
1244 * @page: page to isolate from its LRU list
1245 *
1246 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1247 * vmstat statistic corresponding to whatever LRU list the page was on.
1248 *
1249 * Returns 0 if the page was removed from an LRU list.
1250 * Returns -EBUSY if the page was not on an LRU list.
1251 *
1252 * The returned page will have PageLRU() cleared.  If it was found on
1253 * the active list, it will have PageActive set.  If it was found on
1254 * the unevictable list, it will have the PageUnevictable bit set. That flag
1255 * may need to be cleared by the caller before letting the page go.
1256 *
1257 * The vmstat statistic corresponding to the list on which the page was
1258 * found will be decremented.
1259 *
1260 * Restrictions:
1261 * (1) Must be called with an elevated refcount on the page. This is a
1262 *     fundamentnal difference from isolate_lru_pages (which is called
1263 *     without a stable reference).
1264 * (2) the lru_lock must not be held.
1265 * (3) interrupts must be enabled.
1266 */
1267int isolate_lru_page(struct page *page)
1268{
1269	int ret = -EBUSY;
1270
1271	VM_BUG_ON(!page_count(page));
1272
1273	if (PageLRU(page)) {
1274		struct zone *zone = page_zone(page);
 
1275
1276		spin_lock_irq(&zone->lru_lock);
 
1277		if (PageLRU(page)) {
1278			int lru = page_lru(page);
1279			ret = 0;
1280			get_page(page);
1281			ClearPageLRU(page);
1282
1283			del_page_from_lru_list(zone, page, lru);
1284		}
1285		spin_unlock_irq(&zone->lru_lock);
1286	}
1287	return ret;
1288}
1289
1290/*
1291 * Are there way too many processes in the direct reclaim path already?
 
 
 
 
1292 */
1293static int too_many_isolated(struct zone *zone, int file,
1294		struct scan_control *sc)
1295{
1296	unsigned long inactive, isolated;
1297
1298	if (current_is_kswapd())
1299		return 0;
1300
1301	if (!scanning_global_lru(sc))
1302		return 0;
1303
1304	if (file) {
1305		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1306		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1307	} else {
1308		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1309		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1310	}
1311
 
 
 
 
 
 
 
 
1312	return isolated > inactive;
1313}
1314
1315/*
1316 * TODO: Try merging with migrations version of putback_lru_pages
1317 */
1318static noinline_for_stack void
1319putback_lru_pages(struct zone *zone, struct scan_control *sc,
1320				unsigned long nr_anon, unsigned long nr_file,
1321				struct list_head *page_list)
1322{
1323	struct page *page;
1324	struct pagevec pvec;
1325	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1326
1327	pagevec_init(&pvec, 1);
1328
1329	/*
1330	 * Put back any unfreeable pages.
1331	 */
1332	spin_lock(&zone->lru_lock);
1333	while (!list_empty(page_list)) {
 
1334		int lru;
1335		page = lru_to_page(page_list);
1336		VM_BUG_ON(PageLRU(page));
1337		list_del(&page->lru);
1338		if (unlikely(!page_evictable(page, NULL))) {
1339			spin_unlock_irq(&zone->lru_lock);
1340			putback_lru_page(page);
1341			spin_lock_irq(&zone->lru_lock);
1342			continue;
1343		}
 
 
 
1344		SetPageLRU(page);
1345		lru = page_lru(page);
1346		add_page_to_lru_list(zone, page, lru);
 
1347		if (is_active_lru(lru)) {
1348			int file = is_file_lru(lru);
1349			int numpages = hpage_nr_pages(page);
1350			reclaim_stat->recent_rotated[file] += numpages;
1351		}
1352		if (!pagevec_add(&pvec, page)) {
1353			spin_unlock_irq(&zone->lru_lock);
1354			__pagevec_release(&pvec);
1355			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
 
1356		}
1357	}
1358	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1359	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1360
1361	spin_unlock_irq(&zone->lru_lock);
1362	pagevec_release(&pvec);
1363}
1364
1365static noinline_for_stack void update_isolated_counts(struct zone *zone,
1366					struct scan_control *sc,
1367					unsigned long *nr_anon,
1368					unsigned long *nr_file,
1369					struct list_head *isolated_list)
1370{
1371	unsigned long nr_active;
1372	unsigned int count[NR_LRU_LISTS] = { 0, };
1373	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1374
1375	nr_active = clear_active_flags(isolated_list, count);
1376	__count_vm_events(PGDEACTIVATE, nr_active);
1377
1378	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1379			      -count[LRU_ACTIVE_FILE]);
1380	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1381			      -count[LRU_INACTIVE_FILE]);
1382	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1383			      -count[LRU_ACTIVE_ANON]);
1384	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1385			      -count[LRU_INACTIVE_ANON]);
1386
1387	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1388	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1389	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1390	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1391
1392	reclaim_stat->recent_scanned[0] += *nr_anon;
1393	reclaim_stat->recent_scanned[1] += *nr_file;
1394}
1395
1396/*
1397 * Returns true if the caller should wait to clean dirty/writeback pages.
1398 *
1399 * If we are direct reclaiming for contiguous pages and we do not reclaim
1400 * everything in the list, try again and wait for writeback IO to complete.
1401 * This will stall high-order allocations noticeably. Only do that when really
1402 * need to free the pages under high memory pressure.
1403 */
1404static inline bool should_reclaim_stall(unsigned long nr_taken,
1405					unsigned long nr_freed,
1406					int priority,
1407					struct scan_control *sc)
1408{
1409	int lumpy_stall_priority;
1410
1411	/* kswapd should not stall on sync IO */
1412	if (current_is_kswapd())
1413		return false;
1414
1415	/* Only stall on lumpy reclaim */
1416	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1417		return false;
1418
1419	/* If we have relaimed everything on the isolated list, no stall */
1420	if (nr_freed == nr_taken)
1421		return false;
1422
1423	/*
1424	 * For high-order allocations, there are two stall thresholds.
1425	 * High-cost allocations stall immediately where as lower
1426	 * order allocations such as stacks require the scanning
1427	 * priority to be much higher before stalling.
1428	 */
1429	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1430		lumpy_stall_priority = DEF_PRIORITY;
1431	else
1432		lumpy_stall_priority = DEF_PRIORITY / 3;
1433
1434	return priority <= lumpy_stall_priority;
1435}
1436
1437/*
1438 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1439 * of reclaimed pages
1440 */
1441static noinline_for_stack unsigned long
1442shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1443			struct scan_control *sc, int priority, int file)
1444{
1445	LIST_HEAD(page_list);
1446	unsigned long nr_scanned;
1447	unsigned long nr_reclaimed = 0;
1448	unsigned long nr_taken;
1449	unsigned long nr_anon;
1450	unsigned long nr_file;
 
 
 
 
 
 
 
1451
1452	while (unlikely(too_many_isolated(zone, file, sc))) {
1453		congestion_wait(BLK_RW_ASYNC, HZ/10);
1454
1455		/* We are about to die and free our memory. Return now. */
1456		if (fatal_signal_pending(current))
1457			return SWAP_CLUSTER_MAX;
1458	}
1459
1460	set_reclaim_mode(priority, sc, false);
1461	lru_add_drain();
 
 
 
 
 
 
1462	spin_lock_irq(&zone->lru_lock);
1463
1464	if (scanning_global_lru(sc)) {
1465		nr_taken = isolate_pages_global(nr_to_scan,
1466			&page_list, &nr_scanned, sc->order,
1467			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1468					ISOLATE_BOTH : ISOLATE_INACTIVE,
1469			zone, 0, file);
 
1470		zone->pages_scanned += nr_scanned;
1471		if (current_is_kswapd())
1472			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1473					       nr_scanned);
1474		else
1475			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1476					       nr_scanned);
1477	} else {
1478		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1479			&page_list, &nr_scanned, sc->order,
1480			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1481					ISOLATE_BOTH : ISOLATE_INACTIVE,
1482			zone, sc->mem_cgroup,
1483			0, file);
1484		/*
1485		 * mem_cgroup_isolate_pages() keeps track of
1486		 * scanned pages on its own.
1487		 */
1488	}
 
1489
1490	if (nr_taken == 0) {
1491		spin_unlock_irq(&zone->lru_lock);
1492		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493	}
1494
1495	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
 
 
1496
1497	spin_unlock_irq(&zone->lru_lock);
1498
1499	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1500
1501	/* Check if we should syncronously wait for writeback */
1502	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1503		set_reclaim_mode(priority, sc, true);
1504		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1505	}
 
 
 
 
 
 
 
 
 
 
 
1506
1507	local_irq_disable();
1508	if (current_is_kswapd())
1509		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1510	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
 
 
 
 
 
 
 
1511
1512	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513
1514	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1515		zone_idx(zone),
1516		nr_scanned, nr_reclaimed,
1517		priority,
1518		trace_shrink_flags(file, sc->reclaim_mode));
1519	return nr_reclaimed;
1520}
1521
1522/*
1523 * This moves pages from the active list to the inactive list.
1524 *
1525 * We move them the other way if the page is referenced by one or more
1526 * processes, from rmap.
1527 *
1528 * If the pages are mostly unmapped, the processing is fast and it is
1529 * appropriate to hold zone->lru_lock across the whole operation.  But if
1530 * the pages are mapped, the processing is slow (page_referenced()) so we
1531 * should drop zone->lru_lock around each page.  It's impossible to balance
1532 * this, so instead we remove the pages from the LRU while processing them.
1533 * It is safe to rely on PG_active against the non-LRU pages in here because
1534 * nobody will play with that bit on a non-LRU page.
1535 *
1536 * The downside is that we have to touch page->_count against each page.
1537 * But we had to alter page->flags anyway.
1538 */
1539
1540static void move_active_pages_to_lru(struct zone *zone,
1541				     struct list_head *list,
 
1542				     enum lru_list lru)
1543{
 
1544	unsigned long pgmoved = 0;
1545	struct pagevec pvec;
1546	struct page *page;
1547
1548	pagevec_init(&pvec, 1);
1549
1550	while (!list_empty(list)) {
1551		page = lru_to_page(list);
 
1552
1553		VM_BUG_ON(PageLRU(page));
1554		SetPageLRU(page);
1555
1556		list_move(&page->lru, &zone->lru[lru].list);
1557		mem_cgroup_add_lru_list(page, lru);
1558		pgmoved += hpage_nr_pages(page);
1559
1560		if (!pagevec_add(&pvec, page) || list_empty(list)) {
1561			spin_unlock_irq(&zone->lru_lock);
1562			if (buffer_heads_over_limit)
1563				pagevec_strip(&pvec);
1564			__pagevec_release(&pvec);
1565			spin_lock_irq(&zone->lru_lock);
 
 
 
 
 
 
1566		}
1567	}
1568	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569	if (!is_active_lru(lru))
1570		__count_vm_events(PGDEACTIVATE, pgmoved);
1571}
1572
1573static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1574			struct scan_control *sc, int priority, int file)
 
 
1575{
1576	unsigned long nr_taken;
1577	unsigned long pgscanned;
1578	unsigned long vm_flags;
1579	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1580	LIST_HEAD(l_active);
1581	LIST_HEAD(l_inactive);
1582	struct page *page;
1583	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1584	unsigned long nr_rotated = 0;
 
 
 
1585
1586	lru_add_drain();
 
 
 
 
 
 
1587	spin_lock_irq(&zone->lru_lock);
1588	if (scanning_global_lru(sc)) {
1589		nr_taken = isolate_pages_global(nr_pages, &l_hold,
1590						&pgscanned, sc->order,
1591						ISOLATE_ACTIVE, zone,
1592						1, file);
1593		zone->pages_scanned += pgscanned;
1594	} else {
1595		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1596						&pgscanned, sc->order,
1597						ISOLATE_ACTIVE, zone,
1598						sc->mem_cgroup, 1, file);
1599		/*
1600		 * mem_cgroup_isolate_pages() keeps track of
1601		 * scanned pages on its own.
1602		 */
1603	}
1604
1605	reclaim_stat->recent_scanned[file] += nr_taken;
1606
1607	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1608	if (file)
1609		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1610	else
1611		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1612	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1613	spin_unlock_irq(&zone->lru_lock);
1614
1615	while (!list_empty(&l_hold)) {
1616		cond_resched();
1617		page = lru_to_page(&l_hold);
1618		list_del(&page->lru);
1619
1620		if (unlikely(!page_evictable(page, NULL))) {
1621			putback_lru_page(page);
1622			continue;
1623		}
1624
1625		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
 
 
 
 
 
 
 
 
 
1626			nr_rotated += hpage_nr_pages(page);
1627			/*
1628			 * Identify referenced, file-backed active pages and
1629			 * give them one more trip around the active list. So
1630			 * that executable code get better chances to stay in
1631			 * memory under moderate memory pressure.  Anon pages
1632			 * are not likely to be evicted by use-once streaming
1633			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1634			 * so we ignore them here.
1635			 */
1636			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1637				list_add(&page->lru, &l_active);
1638				continue;
1639			}
1640		}
1641
1642		ClearPageActive(page);	/* we are de-activating */
1643		list_add(&page->lru, &l_inactive);
1644	}
1645
1646	/*
1647	 * Move pages back to the lru list.
1648	 */
1649	spin_lock_irq(&zone->lru_lock);
1650	/*
1651	 * Count referenced pages from currently used mappings as rotated,
1652	 * even though only some of them are actually re-activated.  This
1653	 * helps balance scan pressure between file and anonymous pages in
1654	 * get_scan_ratio.
1655	 */
1656	reclaim_stat->recent_rotated[file] += nr_rotated;
1657
1658	move_active_pages_to_lru(zone, &l_active,
1659						LRU_ACTIVE + file * LRU_FILE);
1660	move_active_pages_to_lru(zone, &l_inactive,
1661						LRU_BASE   + file * LRU_FILE);
1662	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1663	spin_unlock_irq(&zone->lru_lock);
 
 
1664}
1665
1666#ifdef CONFIG_SWAP
1667static int inactive_anon_is_low_global(struct zone *zone)
1668{
1669	unsigned long active, inactive;
1670
1671	active = zone_page_state(zone, NR_ACTIVE_ANON);
1672	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1673
1674	if (inactive * zone->inactive_ratio < active)
1675		return 1;
1676
1677	return 0;
1678}
1679
1680/**
1681 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1682 * @zone: zone to check
1683 * @sc:   scan control of this context
1684 *
1685 * Returns true if the zone does not have enough inactive anon pages,
1686 * meaning some active anon pages need to be deactivated.
1687 */
1688static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1689{
1690	int low;
1691
1692	/*
1693	 * If we don't have swap space, anonymous page deactivation
1694	 * is pointless.
1695	 */
1696	if (!total_swap_pages)
1697		return 0;
1698
1699	if (scanning_global_lru(sc))
1700		low = inactive_anon_is_low_global(zone);
1701	else
1702		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1703	return low;
1704}
1705#else
1706static inline int inactive_anon_is_low(struct zone *zone,
1707					struct scan_control *sc)
1708{
1709	return 0;
1710}
1711#endif
1712
1713static int inactive_file_is_low_global(struct zone *zone)
1714{
1715	unsigned long active, inactive;
1716
1717	active = zone_page_state(zone, NR_ACTIVE_FILE);
1718	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720	return (active > inactive);
1721}
1722
1723/**
1724 * inactive_file_is_low - check if file pages need to be deactivated
1725 * @zone: zone to check
1726 * @sc:   scan control of this context
1727 *
1728 * When the system is doing streaming IO, memory pressure here
1729 * ensures that active file pages get deactivated, until more
1730 * than half of the file pages are on the inactive list.
1731 *
1732 * Once we get to that situation, protect the system's working
1733 * set from being evicted by disabling active file page aging.
1734 *
1735 * This uses a different ratio than the anonymous pages, because
1736 * the page cache uses a use-once replacement algorithm.
1737 */
1738static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1739{
1740	int low;
 
1741
1742	if (scanning_global_lru(sc))
1743		low = inactive_file_is_low_global(zone);
1744	else
1745		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1746	return low;
1747}
1748
1749static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1750				int file)
1751{
1752	if (file)
1753		return inactive_file_is_low(zone, sc);
1754	else
1755		return inactive_anon_is_low(zone, sc);
1756}
1757
1758static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1759	struct zone *zone, struct scan_control *sc, int priority)
1760{
1761	int file = is_file_lru(lru);
1762
1763	if (is_active_lru(lru)) {
1764		if (inactive_list_is_low(zone, sc, file))
1765		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1766		return 0;
1767	}
1768
1769	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1770}
1771
1772static int vmscan_swappiness(struct scan_control *sc)
1773{
1774	if (scanning_global_lru(sc))
1775		return vm_swappiness;
1776	return mem_cgroup_swappiness(sc->mem_cgroup);
1777}
1778
 
 
 
 
 
 
 
1779/*
1780 * Determine how aggressively the anon and file LRU lists should be
1781 * scanned.  The relative value of each set of LRU lists is determined
1782 * by looking at the fraction of the pages scanned we did rotate back
1783 * onto the active list instead of evict.
1784 *
1785 * nr[0] = anon pages to scan; nr[1] = file pages to scan
 
1786 */
1787static void get_scan_count(struct zone *zone, struct scan_control *sc,
1788					unsigned long *nr, int priority)
1789{
1790	unsigned long anon, file, free;
 
 
 
1791	unsigned long anon_prio, file_prio;
1792	unsigned long ap, fp;
1793	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1794	u64 fraction[2], denominator;
1795	enum lru_list l;
1796	int noswap = 0;
1797	bool force_scan = false;
1798	unsigned long nr_force_scan[2];
 
1799
1800	/* kswapd does zone balancing and needs to scan this zone */
1801	if (scanning_global_lru(sc) && current_is_kswapd())
 
 
 
 
 
 
 
 
 
1802		force_scan = true;
1803	/* memcg may have small limit and need to avoid priority drop */
1804	if (!scanning_global_lru(sc))
1805		force_scan = true;
1806
1807	/* If we have no swap space, do not bother scanning anon pages. */
1808	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1809		noswap = 1;
1810		fraction[0] = 0;
1811		fraction[1] = 1;
1812		denominator = 1;
1813		nr_force_scan[0] = 0;
1814		nr_force_scan[1] = SWAP_CLUSTER_MAX;
 
 
 
 
 
 
 
1815		goto out;
1816	}
1817
1818	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1819		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1820	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1821		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1822
1823	if (scanning_global_lru(sc)) {
1824		free  = zone_page_state(zone, NR_FREE_PAGES);
1825		/* If we have very few page cache pages,
1826		   force-scan anon pages. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827		if (unlikely(file + free <= high_wmark_pages(zone))) {
1828			fraction[0] = 1;
1829			fraction[1] = 0;
1830			denominator = 1;
1831			nr_force_scan[0] = SWAP_CLUSTER_MAX;
1832			nr_force_scan[1] = 0;
1833			goto out;
1834		}
1835	}
1836
1837	/*
 
 
 
 
 
 
 
 
 
 
 
1838	 * With swappiness at 100, anonymous and file have the same priority.
1839	 * This scanning priority is essentially the inverse of IO cost.
1840	 */
1841	anon_prio = vmscan_swappiness(sc);
1842	file_prio = 200 - vmscan_swappiness(sc);
1843
1844	/*
1845	 * OK, so we have swap space and a fair amount of page cache
1846	 * pages.  We use the recently rotated / recently scanned
1847	 * ratios to determine how valuable each cache is.
1848	 *
1849	 * Because workloads change over time (and to avoid overflow)
1850	 * we keep these statistics as a floating average, which ends
1851	 * up weighing recent references more than old ones.
1852	 *
1853	 * anon in [0], file in [1]
1854	 */
1855	spin_lock_irq(&zone->lru_lock);
1856	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1857		reclaim_stat->recent_scanned[0] /= 2;
1858		reclaim_stat->recent_rotated[0] /= 2;
1859	}
1860
1861	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1862		reclaim_stat->recent_scanned[1] /= 2;
1863		reclaim_stat->recent_rotated[1] /= 2;
1864	}
1865
1866	/*
1867	 * The amount of pressure on anon vs file pages is inversely
1868	 * proportional to the fraction of recently scanned pages on
1869	 * each list that were recently referenced and in active use.
1870	 */
1871	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1872	ap /= reclaim_stat->recent_rotated[0] + 1;
1873
1874	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1875	fp /= reclaim_stat->recent_rotated[1] + 1;
1876	spin_unlock_irq(&zone->lru_lock);
1877
1878	fraction[0] = ap;
1879	fraction[1] = fp;
1880	denominator = ap + fp + 1;
1881	if (force_scan) {
1882		unsigned long scan = SWAP_CLUSTER_MAX;
1883		nr_force_scan[0] = div64_u64(scan * ap, denominator);
1884		nr_force_scan[1] = div64_u64(scan * fp, denominator);
1885	}
1886out:
1887	for_each_evictable_lru(l) {
1888		int file = is_file_lru(l);
 
1889		unsigned long scan;
1890
1891		scan = zone_nr_lru_pages(zone, sc, l);
1892		if (priority || noswap) {
1893			scan >>= priority;
 
 
 
 
 
 
 
 
 
 
 
 
1894			scan = div64_u64(scan * fraction[file], denominator);
 
 
 
 
 
 
 
 
 
 
1895		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897		/*
1898		 * If zone is small or memcg is small, nr[l] can be 0.
1899		 * This results no-scan on this priority and priority drop down.
1900		 * For global direct reclaim, it can visit next zone and tend
1901		 * not to have problems. For global kswapd, it's for zone
1902		 * balancing and it need to scan a small amounts. When using
1903		 * memcg, priority drop can cause big latency. So, it's better
1904		 * to scan small amount. See may_noscan above.
1905		 */
1906		if (!scan && force_scan)
1907			scan = nr_force_scan[file];
1908		nr[l] = scan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910}
1911
1912/*
1913 * Reclaim/compaction depends on a number of pages being freed. To avoid
1914 * disruption to the system, a small number of order-0 pages continue to be
1915 * rotated and reclaimed in the normal fashion. However, by the time we get
1916 * back to the allocator and call try_to_compact_zone(), we ensure that
1917 * there are enough free pages for it to be likely successful
1918 */
1919static inline bool should_continue_reclaim(struct zone *zone,
1920					unsigned long nr_reclaimed,
1921					unsigned long nr_scanned,
1922					struct scan_control *sc)
1923{
1924	unsigned long pages_for_compaction;
1925	unsigned long inactive_lru_pages;
1926
1927	/* If not in reclaim/compaction mode, stop */
1928	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1929		return false;
1930
1931	/* Consider stopping depending on scan and reclaim activity */
1932	if (sc->gfp_mask & __GFP_REPEAT) {
1933		/*
1934		 * For __GFP_REPEAT allocations, stop reclaiming if the
1935		 * full LRU list has been scanned and we are still failing
1936		 * to reclaim pages. This full LRU scan is potentially
1937		 * expensive but a __GFP_REPEAT caller really wants to succeed
1938		 */
1939		if (!nr_reclaimed && !nr_scanned)
1940			return false;
1941	} else {
1942		/*
1943		 * For non-__GFP_REPEAT allocations which can presumably
1944		 * fail without consequence, stop if we failed to reclaim
1945		 * any pages from the last SWAP_CLUSTER_MAX number of
1946		 * pages that were scanned. This will return to the
1947		 * caller faster at the risk reclaim/compaction and
1948		 * the resulting allocation attempt fails
1949		 */
1950		if (!nr_reclaimed)
1951			return false;
1952	}
1953
1954	/*
1955	 * If we have not reclaimed enough pages for compaction and the
1956	 * inactive lists are large enough, continue reclaiming
1957	 */
1958	pages_for_compaction = (2UL << sc->order);
1959	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1960				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
 
1961	if (sc->nr_reclaimed < pages_for_compaction &&
1962			inactive_lru_pages > pages_for_compaction)
1963		return true;
1964
1965	/* If compaction would go ahead or the allocation would succeed, stop */
1966	switch (compaction_suitable(zone, sc->order)) {
1967	case COMPACT_PARTIAL:
1968	case COMPACT_CONTINUE:
1969		return false;
1970	default:
1971		return true;
1972	}
1973}
1974
1975/*
1976 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1977 */
1978static void shrink_zone(int priority, struct zone *zone,
1979				struct scan_control *sc)
1980{
1981	unsigned long nr[NR_LRU_LISTS];
1982	unsigned long nr_to_scan;
1983	enum lru_list l;
1984	unsigned long nr_reclaimed, nr_scanned;
1985	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1986
1987restart:
1988	nr_reclaimed = 0;
1989	nr_scanned = sc->nr_scanned;
1990	get_scan_count(zone, sc, nr, priority);
 
 
 
1991
1992	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1993					nr[LRU_INACTIVE_FILE]) {
1994		for_each_evictable_lru(l) {
1995			if (nr[l]) {
1996				nr_to_scan = min_t(unsigned long,
1997						   nr[l], SWAP_CLUSTER_MAX);
1998				nr[l] -= nr_to_scan;
1999
2000				nr_reclaimed += shrink_list(l, nr_to_scan,
2001							    zone, sc, priority);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002			}
2003		}
2004		/*
2005		 * On large memory systems, scan >> priority can become
2006		 * really large. This is fine for the starting priority;
2007		 * we want to put equal scanning pressure on each zone.
2008		 * However, if the VM has a harder time of freeing pages,
2009		 * with multiple processes reclaiming pages, the total
2010		 * freeing target can get unreasonably large.
2011		 */
2012		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2013			break;
2014	}
2015	sc->nr_reclaimed += nr_reclaimed;
 
 
 
 
 
 
 
2016
2017	/*
2018	 * Even if we did not try to evict anon pages at all, we want to
2019	 * rebalance the anon lru active/inactive ratio.
 
 
 
 
 
 
 
 
 
 
 
 
2020	 */
2021	if (inactive_anon_is_low(zone, sc))
2022		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2023
2024	/* reclaim/compaction might need reclaim to continue */
2025	if (should_continue_reclaim(zone, nr_reclaimed,
2026					sc->nr_scanned - nr_scanned, sc))
2027		goto restart;
2028
2029	throttle_vm_writeout(sc->gfp_mask);
2030}
2031
2032/*
2033 * This is the direct reclaim path, for page-allocating processes.  We only
2034 * try to reclaim pages from zones which will satisfy the caller's allocation
2035 * request.
2036 *
2037 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2038 * Because:
2039 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2040 *    allocation or
2041 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2042 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2043 *    zone defense algorithm.
2044 *
2045 * If a zone is deemed to be full of pinned pages then just give it a light
2046 * scan then give up on it.
 
 
 
 
 
2047 */
2048static void shrink_zones(int priority, struct zonelist *zonelist,
2049					struct scan_control *sc)
2050{
2051	struct zoneref *z;
2052	struct zone *zone;
2053	unsigned long nr_soft_reclaimed;
2054	unsigned long nr_soft_scanned;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057					gfp_zone(sc->gfp_mask), sc->nodemask) {
2058		if (!populated_zone(zone))
2059			continue;
2060		/*
2061		 * Take care memory controller reclaiming has small influence
2062		 * to global LRU.
2063		 */
2064		if (scanning_global_lru(sc)) {
2065			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2066				continue;
2067			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 
 
 
 
 
2068				continue;	/* Let kswapd poll it */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069			/*
2070			 * This steals pages from memory cgroups over softlimit
2071			 * and returns the number of reclaimed pages and
2072			 * scanned pages. This works for global memory pressure
2073			 * and balancing, not for a memcg's limit.
2074			 */
2075			nr_soft_scanned = 0;
2076			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2077						sc->order, sc->gfp_mask,
2078						&nr_soft_scanned);
2079			sc->nr_reclaimed += nr_soft_reclaimed;
2080			sc->nr_scanned += nr_soft_scanned;
2081			/* need some check for avoid more shrink_zone() */
2082		}
2083
2084		shrink_zone(priority, zone, sc);
2085	}
2086}
2087
2088static bool zone_reclaimable(struct zone *zone)
2089{
2090	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091}
2092
2093/* All zones in zonelist are unreclaimable? */
2094static bool all_unreclaimable(struct zonelist *zonelist,
2095		struct scan_control *sc)
2096{
2097	struct zoneref *z;
2098	struct zone *zone;
2099
2100	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2101			gfp_zone(sc->gfp_mask), sc->nodemask) {
2102		if (!populated_zone(zone))
2103			continue;
2104		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2105			continue;
2106		if (!zone->all_unreclaimable)
2107			return false;
2108	}
2109
2110	return true;
2111}
2112
2113/*
2114 * This is the main entry point to direct page reclaim.
2115 *
2116 * If a full scan of the inactive list fails to free enough memory then we
2117 * are "out of memory" and something needs to be killed.
2118 *
2119 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2120 * high - the zone may be full of dirty or under-writeback pages, which this
2121 * caller can't do much about.  We kick the writeback threads and take explicit
2122 * naps in the hope that some of these pages can be written.  But if the
2123 * allocating task holds filesystem locks which prevent writeout this might not
2124 * work, and the allocation attempt will fail.
2125 *
2126 * returns:	0, if no pages reclaimed
2127 * 		else, the number of pages reclaimed
2128 */
2129static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2130					struct scan_control *sc,
2131					struct shrink_control *shrink)
2132{
2133	int priority;
2134	unsigned long total_scanned = 0;
2135	struct reclaim_state *reclaim_state = current->reclaim_state;
2136	struct zoneref *z;
2137	struct zone *zone;
2138	unsigned long writeback_threshold;
 
2139
2140	get_mems_allowed();
2141	delayacct_freepages_start();
2142
2143	if (scanning_global_lru(sc))
2144		count_vm_event(ALLOCSTALL);
2145
2146	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
 
 
2147		sc->nr_scanned = 0;
2148		if (!priority)
2149			disable_swap_token(sc->mem_cgroup);
2150		shrink_zones(priority, zonelist, sc);
2151		/*
2152		 * Don't shrink slabs when reclaiming memory from
2153		 * over limit cgroups
2154		 */
2155		if (scanning_global_lru(sc)) {
2156			unsigned long lru_pages = 0;
2157			for_each_zone_zonelist(zone, z, zonelist,
2158					gfp_zone(sc->gfp_mask)) {
2159				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2160					continue;
2161
2162				lru_pages += zone_reclaimable_pages(zone);
2163			}
2164
2165			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2166			if (reclaim_state) {
2167				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2168				reclaim_state->reclaimed_slab = 0;
2169			}
2170		}
2171		total_scanned += sc->nr_scanned;
2172		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2173			goto out;
2174
2175		/*
 
 
 
 
 
 
 
2176		 * Try to write back as many pages as we just scanned.  This
2177		 * tends to cause slow streaming writers to write data to the
2178		 * disk smoothly, at the dirtying rate, which is nice.   But
2179		 * that's undesirable in laptop mode, where we *want* lumpy
2180		 * writeout.  So in laptop mode, write out the whole world.
2181		 */
2182		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2183		if (total_scanned > writeback_threshold) {
2184			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
 
2185			sc->may_writepage = 1;
2186		}
2187
2188		/* Take a nap, wait for some writeback to complete */
2189		if (!sc->hibernation_mode && sc->nr_scanned &&
2190		    priority < DEF_PRIORITY - 2) {
2191			struct zone *preferred_zone;
2192
2193			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2194						&cpuset_current_mems_allowed,
2195						&preferred_zone);
2196			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2197		}
2198	}
2199
2200out:
2201	delayacct_freepages_end();
2202	put_mems_allowed();
2203
2204	if (sc->nr_reclaimed)
2205		return sc->nr_reclaimed;
2206
2207	/*
2208	 * As hibernation is going on, kswapd is freezed so that it can't mark
2209	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2210	 * check.
2211	 */
2212	if (oom_killer_disabled)
2213		return 0;
2214
 
 
 
 
2215	/* top priority shrink_zones still had more to do? don't OOM, then */
2216	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2217		return 1;
2218
2219	return 0;
2220}
2221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2223				gfp_t gfp_mask, nodemask_t *nodemask)
2224{
2225	unsigned long nr_reclaimed;
2226	struct scan_control sc = {
2227		.gfp_mask = gfp_mask,
2228		.may_writepage = !laptop_mode,
2229		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2230		.may_unmap = 1,
2231		.may_swap = 1,
2232		.order = order,
2233		.mem_cgroup = NULL,
 
2234		.nodemask = nodemask,
2235	};
2236	struct shrink_control shrink = {
2237		.gfp_mask = sc.gfp_mask,
2238	};
 
 
 
 
 
2239
2240	trace_mm_vmscan_direct_reclaim_begin(order,
2241				sc.may_writepage,
2242				gfp_mask);
2243
2244	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2245
2246	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2247
2248	return nr_reclaimed;
2249}
2250
2251#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2252
2253unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2254						gfp_t gfp_mask, bool noswap,
2255						struct zone *zone,
2256						unsigned long *nr_scanned)
2257{
2258	struct scan_control sc = {
2259		.nr_scanned = 0,
2260		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2261		.may_writepage = !laptop_mode,
2262		.may_unmap = 1,
2263		.may_swap = !noswap,
2264		.order = 0,
2265		.mem_cgroup = mem,
 
2266	};
 
2267
2268	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2269			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2270
2271	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2272						      sc.may_writepage,
2273						      sc.gfp_mask);
2274
2275	/*
2276	 * NOTE: Although we can get the priority field, using it
2277	 * here is not a good idea, since it limits the pages we can scan.
2278	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2279	 * will pick up pages from other mem cgroup's as well. We hack
2280	 * the priority and make it zero.
2281	 */
2282	shrink_zone(0, zone, &sc);
2283
2284	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2285
2286	*nr_scanned = sc.nr_scanned;
2287	return sc.nr_reclaimed;
2288}
2289
2290unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2291					   gfp_t gfp_mask,
2292					   bool noswap)
2293{
2294	struct zonelist *zonelist;
2295	unsigned long nr_reclaimed;
2296	int nid;
2297	struct scan_control sc = {
2298		.may_writepage = !laptop_mode,
2299		.may_unmap = 1,
2300		.may_swap = !noswap,
2301		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2302		.order = 0,
2303		.mem_cgroup = mem_cont,
 
2304		.nodemask = NULL, /* we don't care the placement */
2305		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307	};
2308	struct shrink_control shrink = {
2309		.gfp_mask = sc.gfp_mask,
2310	};
2311
2312	/*
2313	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314	 * take care of from where we get pages. So the node where we start the
2315	 * scan does not need to be the current node.
2316	 */
2317	nid = mem_cgroup_select_victim_node(mem_cont);
2318
2319	zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321	trace_mm_vmscan_memcg_reclaim_begin(0,
2322					    sc.may_writepage,
2323					    sc.gfp_mask);
2324
2325	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2326
2327	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2328
2329	return nr_reclaimed;
2330}
2331#endif
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * pgdat_balanced is used when checking if a node is balanced for high-order
2335 * allocations. Only zones that meet watermarks and are in a zone allowed
2336 * by the callers classzone_idx are added to balanced_pages. The total of
2337 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2338 * for the node to be considered balanced. Forcing all zones to be balanced
2339 * for high orders can cause excessive reclaim when there are imbalanced zones.
 
 
 
 
2340 * The choice of 25% is due to
2341 *   o a 16M DMA zone that is balanced will not balance a zone on any
2342 *     reasonable sized machine
2343 *   o On all other machines, the top zone must be at least a reasonable
2344 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2345 *     would need to be at least 256M for it to be balance a whole node.
2346 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2347 *     to balance a node on its own. These seemed like reasonable ratios.
2348 */
2349static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2350						int classzone_idx)
2351{
2352	unsigned long present_pages = 0;
 
2353	int i;
2354
2355	for (i = 0; i <= classzone_idx; i++)
2356		present_pages += pgdat->node_zones[i].present_pages;
2357
2358	/* A special case here: if zone has no page, we think it's balanced */
2359	return balanced_pages >= (present_pages >> 2);
2360}
2361
2362/* is kswapd sleeping prematurely? */
2363static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2364					int classzone_idx)
2365{
2366	int i;
2367	unsigned long balanced = 0;
2368	bool all_zones_ok = true;
2369
2370	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2371	if (remaining)
2372		return true;
2373
2374	/* Check the watermark levels */
2375	for (i = 0; i <= classzone_idx; i++) {
2376		struct zone *zone = pgdat->node_zones + i;
2377
2378		if (!populated_zone(zone))
2379			continue;
2380
 
 
2381		/*
 
 
2382		 * balance_pgdat() skips over all_unreclaimable after
2383		 * DEF_PRIORITY. Effectively, it considers them balanced so
2384		 * they must be considered balanced here as well if kswapd
2385		 * is to sleep
2386		 */
2387		if (zone->all_unreclaimable) {
2388			balanced += zone->present_pages;
2389			continue;
2390		}
2391
2392		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2393							i, 0))
2394			all_zones_ok = false;
2395		else
2396			balanced += zone->present_pages;
2397	}
2398
2399	/*
2400	 * For high-order requests, the balanced zones must contain at least
2401	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2402	 * must be balanced
2403	 */
2404	if (order)
2405		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2406	else
2407		return !all_zones_ok;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408}
2409
2410/*
2411 * For kswapd, balance_pgdat() will work across all this node's zones until
2412 * they are all at high_wmark_pages(zone).
2413 *
2414 * Returns the final order kswapd was reclaiming at
2415 *
2416 * There is special handling here for zones which are full of pinned pages.
2417 * This can happen if the pages are all mlocked, or if they are all used by
2418 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2419 * What we do is to detect the case where all pages in the zone have been
2420 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2421 * dead and from now on, only perform a short scan.  Basically we're polling
2422 * the zone for when the problem goes away.
2423 *
2424 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2425 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2426 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2427 * lower zones regardless of the number of free pages in the lower zones. This
2428 * interoperates with the page allocator fallback scheme to ensure that aging
2429 * of pages is balanced across the zones.
2430 */
2431static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2432							int *classzone_idx)
2433{
2434	int all_zones_ok;
2435	unsigned long balanced;
2436	int priority;
2437	int i;
2438	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2439	unsigned long total_scanned;
2440	struct reclaim_state *reclaim_state = current->reclaim_state;
2441	unsigned long nr_soft_reclaimed;
2442	unsigned long nr_soft_scanned;
2443	struct scan_control sc = {
2444		.gfp_mask = GFP_KERNEL,
 
2445		.may_unmap = 1,
2446		.may_swap = 1,
2447		/*
2448		 * kswapd doesn't want to be bailed out while reclaim. because
2449		 * we want to put equal scanning pressure on each zone.
2450		 */
2451		.nr_to_reclaim = ULONG_MAX,
2452		.order = order,
2453		.mem_cgroup = NULL,
2454	};
2455	struct shrink_control shrink = {
2456		.gfp_mask = sc.gfp_mask,
2457	};
2458loop_again:
2459	total_scanned = 0;
2460	sc.nr_reclaimed = 0;
2461	sc.may_writepage = !laptop_mode;
2462	count_vm_event(PAGEOUTRUN);
2463
2464	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2465		unsigned long lru_pages = 0;
2466		int has_under_min_watermark_zone = 0;
2467
2468		/* The swap token gets in the way of swapout... */
2469		if (!priority)
2470			disable_swap_token(NULL);
2471
2472		all_zones_ok = 1;
2473		balanced = 0;
2474
2475		/*
2476		 * Scan in the highmem->dma direction for the highest
2477		 * zone which needs scanning
2478		 */
2479		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2480			struct zone *zone = pgdat->node_zones + i;
2481
2482			if (!populated_zone(zone))
2483				continue;
2484
2485			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 
2486				continue;
2487
2488			/*
2489			 * Do some background aging of the anon list, to give
2490			 * pages a chance to be referenced before reclaiming.
2491			 */
2492			if (inactive_anon_is_low(zone, &sc))
2493				shrink_active_list(SWAP_CLUSTER_MAX, zone,
2494							&sc, priority, 0);
 
 
 
 
 
 
 
 
 
2495
2496			if (!zone_watermark_ok_safe(zone, order,
2497					high_wmark_pages(zone), 0, 0)) {
2498				end_zone = i;
2499				break;
2500			} else {
2501				/* If balanced, clear the congested flag */
 
 
 
2502				zone_clear_flag(zone, ZONE_CONGESTED);
 
2503			}
2504		}
 
2505		if (i < 0)
2506			goto out;
2507
2508		for (i = 0; i <= end_zone; i++) {
2509			struct zone *zone = pgdat->node_zones + i;
2510
 
 
 
2511			lru_pages += zone_reclaimable_pages(zone);
 
 
 
 
 
 
 
 
 
 
 
2512		}
2513
2514		/*
 
 
 
 
 
 
 
2515		 * Now scan the zone in the dma->highmem direction, stopping
2516		 * at the last zone which needs scanning.
2517		 *
2518		 * We do this because the page allocator works in the opposite
2519		 * direction.  This prevents the page allocator from allocating
2520		 * pages behind kswapd's direction of progress, which would
2521		 * cause too much scanning of the lower zones.
2522		 */
2523		for (i = 0; i <= end_zone; i++) {
2524			struct zone *zone = pgdat->node_zones + i;
2525			int nr_slab;
2526			unsigned long balance_gap;
2527
2528			if (!populated_zone(zone))
2529				continue;
2530
2531			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
 
2532				continue;
2533
2534			sc.nr_scanned = 0;
2535
2536			nr_soft_scanned = 0;
2537			/*
2538			 * Call soft limit reclaim before calling shrink_zone.
2539			 */
2540			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2541							order, sc.gfp_mask,
2542							&nr_soft_scanned);
2543			sc.nr_reclaimed += nr_soft_reclaimed;
2544			total_scanned += nr_soft_scanned;
2545
2546			/*
2547			 * We put equal pressure on every zone, unless
2548			 * one zone has way too many pages free
2549			 * already. The "too many pages" is defined
2550			 * as the high wmark plus a "gap" where the
2551			 * gap is either the low watermark or 1%
2552			 * of the zone, whichever is smaller.
2553			 */
2554			balance_gap = min(low_wmark_pages(zone),
2555				(zone->present_pages +
2556					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2557				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2558			if (!zone_watermark_ok_safe(zone, order,
2559					high_wmark_pages(zone) + balance_gap,
2560					end_zone, 0)) {
2561				shrink_zone(priority, zone, &sc);
2562
2563				reclaim_state->reclaimed_slab = 0;
2564				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2565				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2566				total_scanned += sc.nr_scanned;
2567
2568				if (nr_slab == 0 && !zone_reclaimable(zone))
2569					zone->all_unreclaimable = 1;
2570			}
2571
2572			/*
2573			 * If we've done a decent amount of scanning and
2574			 * the reclaim ratio is low, start doing writepage
2575			 * even in laptop mode
 
2576			 */
2577			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2578			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2579				sc.may_writepage = 1;
2580
2581			if (zone->all_unreclaimable) {
2582				if (end_zone && end_zone == i)
2583					end_zone--;
2584				continue;
2585			}
2586
2587			if (!zone_watermark_ok_safe(zone, order,
2588					high_wmark_pages(zone), end_zone, 0)) {
2589				all_zones_ok = 0;
2590				/*
2591				 * We are still under min water mark.  This
2592				 * means that we have a GFP_ATOMIC allocation
2593				 * failure risk. Hurry up!
2594				 */
2595				if (!zone_watermark_ok_safe(zone, order,
2596					    min_wmark_pages(zone), end_zone, 0))
2597					has_under_min_watermark_zone = 1;
2598			} else {
2599				/*
2600				 * If a zone reaches its high watermark,
2601				 * consider it to be no longer congested. It's
2602				 * possible there are dirty pages backed by
2603				 * congested BDIs but as pressure is relieved,
2604				 * spectulatively avoid congestion waits
2605				 */
2606				zone_clear_flag(zone, ZONE_CONGESTED);
2607				if (i <= *classzone_idx)
2608					balanced += zone->present_pages;
2609			}
2610
2611		}
2612		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2613			break;		/* kswapd: all done */
2614		/*
2615		 * OK, kswapd is getting into trouble.  Take a nap, then take
2616		 * another pass across the zones.
2617		 */
2618		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2619			if (has_under_min_watermark_zone)
2620				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2621			else
2622				congestion_wait(BLK_RW_ASYNC, HZ/10);
2623		}
2624
2625		/*
2626		 * We do this so kswapd doesn't build up large priorities for
2627		 * example when it is freeing in parallel with allocators. It
2628		 * matches the direct reclaim path behaviour in terms of impact
2629		 * on zone->*_priority.
2630		 */
2631		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2632			break;
2633	}
2634out:
2635
2636	/*
2637	 * order-0: All zones must meet high watermark for a balanced node
2638	 * high-order: Balanced zones must make up at least 25% of the node
2639	 *             for the node to be balanced
2640	 */
2641	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2642		cond_resched();
2643
2644		try_to_freeze();
2645
2646		/*
2647		 * Fragmentation may mean that the system cannot be
2648		 * rebalanced for high-order allocations in all zones.
2649		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2650		 * it means the zones have been fully scanned and are still
2651		 * not balanced. For high-order allocations, there is
2652		 * little point trying all over again as kswapd may
2653		 * infinite loop.
2654		 *
2655		 * Instead, recheck all watermarks at order-0 as they
2656		 * are the most important. If watermarks are ok, kswapd will go
2657		 * back to sleep. High-order users can still perform direct
2658		 * reclaim if they wish.
2659		 */
2660		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2661			order = sc.order = 0;
2662
2663		goto loop_again;
2664	}
2665
2666	/*
2667	 * If kswapd was reclaiming at a higher order, it has the option of
2668	 * sleeping without all zones being balanced. Before it does, it must
2669	 * ensure that the watermarks for order-0 on *all* zones are met and
2670	 * that the congestion flags are cleared. The congestion flag must
2671	 * be cleared as kswapd is the only mechanism that clears the flag
2672	 * and it is potentially going to sleep here.
2673	 */
2674	if (order) {
2675		for (i = 0; i <= end_zone; i++) {
2676			struct zone *zone = pgdat->node_zones + i;
2677
2678			if (!populated_zone(zone))
2679				continue;
2680
2681			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2682				continue;
2683
2684			/* Confirm the zone is balanced for order-0 */
2685			if (!zone_watermark_ok(zone, 0,
2686					high_wmark_pages(zone), 0, 0)) {
2687				order = sc.order = 0;
2688				goto loop_again;
2689			}
2690
2691			/* If balanced, clear the congested flag */
2692			zone_clear_flag(zone, ZONE_CONGESTED);
2693		}
2694	}
 
 
 
 
2695
 
2696	/*
2697	 * Return the order we were reclaiming at so sleeping_prematurely()
2698	 * makes a decision on the order we were last reclaiming at. However,
2699	 * if another caller entered the allocator slow path while kswapd
2700	 * was awake, order will remain at the higher level
2701	 */
2702	*classzone_idx = end_zone;
2703	return order;
2704}
2705
2706static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2707{
2708	long remaining = 0;
2709	DEFINE_WAIT(wait);
2710
2711	if (freezing(current) || kthread_should_stop())
2712		return;
2713
2714	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2715
2716	/* Try to sleep for a short interval */
2717	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2718		remaining = schedule_timeout(HZ/10);
2719		finish_wait(&pgdat->kswapd_wait, &wait);
2720		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721	}
2722
2723	/*
2724	 * After a short sleep, check if it was a premature sleep. If not, then
2725	 * go fully to sleep until explicitly woken up.
2726	 */
2727	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2728		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2729
2730		/*
2731		 * vmstat counters are not perfectly accurate and the estimated
2732		 * value for counters such as NR_FREE_PAGES can deviate from the
2733		 * true value by nr_online_cpus * threshold. To avoid the zone
2734		 * watermarks being breached while under pressure, we reduce the
2735		 * per-cpu vmstat threshold while kswapd is awake and restore
2736		 * them before going back to sleep.
2737		 */
2738		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2739		schedule();
 
 
 
 
 
 
 
 
 
 
 
2740		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2741	} else {
2742		if (remaining)
2743			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2744		else
2745			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2746	}
2747	finish_wait(&pgdat->kswapd_wait, &wait);
2748}
2749
2750/*
2751 * The background pageout daemon, started as a kernel thread
2752 * from the init process.
2753 *
2754 * This basically trickles out pages so that we have _some_
2755 * free memory available even if there is no other activity
2756 * that frees anything up. This is needed for things like routing
2757 * etc, where we otherwise might have all activity going on in
2758 * asynchronous contexts that cannot page things out.
2759 *
2760 * If there are applications that are active memory-allocators
2761 * (most normal use), this basically shouldn't matter.
2762 */
2763static int kswapd(void *p)
2764{
2765	unsigned long order, new_order;
 
2766	int classzone_idx, new_classzone_idx;
 
2767	pg_data_t *pgdat = (pg_data_t*)p;
2768	struct task_struct *tsk = current;
2769
2770	struct reclaim_state reclaim_state = {
2771		.reclaimed_slab = 0,
2772	};
2773	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2774
2775	lockdep_set_current_reclaim_state(GFP_KERNEL);
2776
2777	if (!cpumask_empty(cpumask))
2778		set_cpus_allowed_ptr(tsk, cpumask);
2779	current->reclaim_state = &reclaim_state;
2780
2781	/*
2782	 * Tell the memory management that we're a "memory allocator",
2783	 * and that if we need more memory we should get access to it
2784	 * regardless (see "__alloc_pages()"). "kswapd" should
2785	 * never get caught in the normal page freeing logic.
2786	 *
2787	 * (Kswapd normally doesn't need memory anyway, but sometimes
2788	 * you need a small amount of memory in order to be able to
2789	 * page out something else, and this flag essentially protects
2790	 * us from recursively trying to free more memory as we're
2791	 * trying to free the first piece of memory in the first place).
2792	 */
2793	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2794	set_freezable();
2795
2796	order = new_order = 0;
 
2797	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
 
2798	for ( ; ; ) {
2799		int ret;
2800
2801		/*
2802		 * If the last balance_pgdat was unsuccessful it's unlikely a
2803		 * new request of a similar or harder type will succeed soon
2804		 * so consider going to sleep on the basis we reclaimed at
2805		 */
2806		if (classzone_idx >= new_classzone_idx && order == new_order) {
 
2807			new_order = pgdat->kswapd_max_order;
2808			new_classzone_idx = pgdat->classzone_idx;
2809			pgdat->kswapd_max_order =  0;
2810			pgdat->classzone_idx = pgdat->nr_zones - 1;
2811		}
2812
2813		if (order < new_order || classzone_idx > new_classzone_idx) {
2814			/*
2815			 * Don't sleep if someone wants a larger 'order'
2816			 * allocation or has tigher zone constraints
2817			 */
2818			order = new_order;
2819			classzone_idx = new_classzone_idx;
2820		} else {
2821			kswapd_try_to_sleep(pgdat, order, classzone_idx);
 
2822			order = pgdat->kswapd_max_order;
2823			classzone_idx = pgdat->classzone_idx;
 
 
2824			pgdat->kswapd_max_order = 0;
2825			pgdat->classzone_idx = pgdat->nr_zones - 1;
2826		}
2827
2828		ret = try_to_freeze();
2829		if (kthread_should_stop())
2830			break;
2831
2832		/*
2833		 * We can speed up thawing tasks if we don't call balance_pgdat
2834		 * after returning from the refrigerator
2835		 */
2836		if (!ret) {
2837			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2838			order = balance_pgdat(pgdat, order, &classzone_idx);
 
 
2839		}
2840	}
 
 
2841	return 0;
2842}
2843
2844/*
2845 * A zone is low on free memory, so wake its kswapd task to service it.
2846 */
2847void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2848{
2849	pg_data_t *pgdat;
2850
2851	if (!populated_zone(zone))
2852		return;
2853
2854	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2855		return;
2856	pgdat = zone->zone_pgdat;
2857	if (pgdat->kswapd_max_order < order) {
2858		pgdat->kswapd_max_order = order;
2859		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2860	}
2861	if (!waitqueue_active(&pgdat->kswapd_wait))
2862		return;
2863	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2864		return;
2865
2866	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2867	wake_up_interruptible(&pgdat->kswapd_wait);
2868}
2869
2870/*
2871 * The reclaimable count would be mostly accurate.
2872 * The less reclaimable pages may be
2873 * - mlocked pages, which will be moved to unevictable list when encountered
2874 * - mapped pages, which may require several travels to be reclaimed
2875 * - dirty pages, which is not "instantly" reclaimable
2876 */
2877unsigned long global_reclaimable_pages(void)
2878{
2879	int nr;
2880
2881	nr = global_page_state(NR_ACTIVE_FILE) +
2882	     global_page_state(NR_INACTIVE_FILE);
2883
2884	if (nr_swap_pages > 0)
2885		nr += global_page_state(NR_ACTIVE_ANON) +
2886		      global_page_state(NR_INACTIVE_ANON);
2887
2888	return nr;
2889}
2890
2891unsigned long zone_reclaimable_pages(struct zone *zone)
2892{
2893	int nr;
2894
2895	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2896	     zone_page_state(zone, NR_INACTIVE_FILE);
2897
2898	if (nr_swap_pages > 0)
2899		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2900		      zone_page_state(zone, NR_INACTIVE_ANON);
2901
2902	return nr;
2903}
2904
2905#ifdef CONFIG_HIBERNATION
2906/*
2907 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2908 * freed pages.
2909 *
2910 * Rather than trying to age LRUs the aim is to preserve the overall
2911 * LRU order by reclaiming preferentially
2912 * inactive > active > active referenced > active mapped
2913 */
2914unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2915{
2916	struct reclaim_state reclaim_state;
2917	struct scan_control sc = {
2918		.gfp_mask = GFP_HIGHUSER_MOVABLE,
2919		.may_swap = 1,
2920		.may_unmap = 1,
2921		.may_writepage = 1,
2922		.nr_to_reclaim = nr_to_reclaim,
2923		.hibernation_mode = 1,
2924		.order = 0,
2925	};
2926	struct shrink_control shrink = {
2927		.gfp_mask = sc.gfp_mask,
2928	};
2929	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2930	struct task_struct *p = current;
2931	unsigned long nr_reclaimed;
2932
2933	p->flags |= PF_MEMALLOC;
2934	lockdep_set_current_reclaim_state(sc.gfp_mask);
2935	reclaim_state.reclaimed_slab = 0;
2936	p->reclaim_state = &reclaim_state;
2937
2938	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2939
2940	p->reclaim_state = NULL;
2941	lockdep_clear_current_reclaim_state();
2942	p->flags &= ~PF_MEMALLOC;
2943
2944	return nr_reclaimed;
2945}
2946#endif /* CONFIG_HIBERNATION */
2947
2948/* It's optimal to keep kswapds on the same CPUs as their memory, but
2949   not required for correctness.  So if the last cpu in a node goes
2950   away, we get changed to run anywhere: as the first one comes back,
2951   restore their cpu bindings. */
2952static int __devinit cpu_callback(struct notifier_block *nfb,
2953				  unsigned long action, void *hcpu)
2954{
2955	int nid;
2956
2957	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2958		for_each_node_state(nid, N_HIGH_MEMORY) {
2959			pg_data_t *pgdat = NODE_DATA(nid);
2960			const struct cpumask *mask;
2961
2962			mask = cpumask_of_node(pgdat->node_id);
2963
2964			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2965				/* One of our CPUs online: restore mask */
2966				set_cpus_allowed_ptr(pgdat->kswapd, mask);
2967		}
2968	}
2969	return NOTIFY_OK;
2970}
2971
2972/*
2973 * This kswapd start function will be called by init and node-hot-add.
2974 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2975 */
2976int kswapd_run(int nid)
2977{
2978	pg_data_t *pgdat = NODE_DATA(nid);
2979	int ret = 0;
2980
2981	if (pgdat->kswapd)
2982		return 0;
2983
2984	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2985	if (IS_ERR(pgdat->kswapd)) {
2986		/* failure at boot is fatal */
2987		BUG_ON(system_state == SYSTEM_BOOTING);
2988		printk("Failed to start kswapd on node %d\n",nid);
2989		ret = -1;
 
2990	}
2991	return ret;
2992}
2993
2994/*
2995 * Called by memory hotplug when all memory in a node is offlined.
 
2996 */
2997void kswapd_stop(int nid)
2998{
2999	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3000
3001	if (kswapd)
3002		kthread_stop(kswapd);
 
 
3003}
3004
3005static int __init kswapd_init(void)
3006{
3007	int nid;
3008
3009	swap_setup();
3010	for_each_node_state(nid, N_HIGH_MEMORY)
3011 		kswapd_run(nid);
3012	hotcpu_notifier(cpu_callback, 0);
3013	return 0;
3014}
3015
3016module_init(kswapd_init)
3017
3018#ifdef CONFIG_NUMA
3019/*
3020 * Zone reclaim mode
3021 *
3022 * If non-zero call zone_reclaim when the number of free pages falls below
3023 * the watermarks.
3024 */
3025int zone_reclaim_mode __read_mostly;
3026
3027#define RECLAIM_OFF 0
3028#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3029#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3030#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3031
3032/*
3033 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3034 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3035 * a zone.
3036 */
3037#define ZONE_RECLAIM_PRIORITY 4
3038
3039/*
3040 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3041 * occur.
3042 */
3043int sysctl_min_unmapped_ratio = 1;
3044
3045/*
3046 * If the number of slab pages in a zone grows beyond this percentage then
3047 * slab reclaim needs to occur.
3048 */
3049int sysctl_min_slab_ratio = 5;
3050
3051static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3052{
3053	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3054	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3055		zone_page_state(zone, NR_ACTIVE_FILE);
3056
3057	/*
3058	 * It's possible for there to be more file mapped pages than
3059	 * accounted for by the pages on the file LRU lists because
3060	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3061	 */
3062	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3063}
3064
3065/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3066static long zone_pagecache_reclaimable(struct zone *zone)
3067{
3068	long nr_pagecache_reclaimable;
3069	long delta = 0;
3070
3071	/*
3072	 * If RECLAIM_SWAP is set, then all file pages are considered
3073	 * potentially reclaimable. Otherwise, we have to worry about
3074	 * pages like swapcache and zone_unmapped_file_pages() provides
3075	 * a better estimate
3076	 */
3077	if (zone_reclaim_mode & RECLAIM_SWAP)
3078		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3079	else
3080		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3081
3082	/* If we can't clean pages, remove dirty pages from consideration */
3083	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3084		delta += zone_page_state(zone, NR_FILE_DIRTY);
3085
3086	/* Watch for any possible underflows due to delta */
3087	if (unlikely(delta > nr_pagecache_reclaimable))
3088		delta = nr_pagecache_reclaimable;
3089
3090	return nr_pagecache_reclaimable - delta;
3091}
3092
3093/*
3094 * Try to free up some pages from this zone through reclaim.
3095 */
3096static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3097{
3098	/* Minimum pages needed in order to stay on node */
3099	const unsigned long nr_pages = 1 << order;
3100	struct task_struct *p = current;
3101	struct reclaim_state reclaim_state;
3102	int priority;
3103	struct scan_control sc = {
3104		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3105		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3106		.may_swap = 1,
3107		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3108				       SWAP_CLUSTER_MAX),
3109		.gfp_mask = gfp_mask,
3110		.order = order,
 
3111	};
3112	struct shrink_control shrink = {
3113		.gfp_mask = sc.gfp_mask,
3114	};
3115	unsigned long nr_slab_pages0, nr_slab_pages1;
3116
3117	cond_resched();
3118	/*
3119	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3120	 * and we also need to be able to write out pages for RECLAIM_WRITE
3121	 * and RECLAIM_SWAP.
3122	 */
3123	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3124	lockdep_set_current_reclaim_state(gfp_mask);
3125	reclaim_state.reclaimed_slab = 0;
3126	p->reclaim_state = &reclaim_state;
3127
3128	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3129		/*
3130		 * Free memory by calling shrink zone with increasing
3131		 * priorities until we have enough memory freed.
3132		 */
3133		priority = ZONE_RECLAIM_PRIORITY;
3134		do {
3135			shrink_zone(priority, zone, &sc);
3136			priority--;
3137		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3138	}
3139
3140	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3141	if (nr_slab_pages0 > zone->min_slab_pages) {
3142		/*
3143		 * shrink_slab() does not currently allow us to determine how
3144		 * many pages were freed in this zone. So we take the current
3145		 * number of slab pages and shake the slab until it is reduced
3146		 * by the same nr_pages that we used for reclaiming unmapped
3147		 * pages.
3148		 *
3149		 * Note that shrink_slab will free memory on all zones and may
3150		 * take a long time.
3151		 */
 
 
3152		for (;;) {
3153			unsigned long lru_pages = zone_reclaimable_pages(zone);
3154
3155			/* No reclaimable slab or very low memory pressure */
3156			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3157				break;
3158
3159			/* Freed enough memory */
3160			nr_slab_pages1 = zone_page_state(zone,
3161							NR_SLAB_RECLAIMABLE);
3162			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3163				break;
3164		}
3165
3166		/*
3167		 * Update nr_reclaimed by the number of slab pages we
3168		 * reclaimed from this zone.
3169		 */
3170		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3171		if (nr_slab_pages1 < nr_slab_pages0)
3172			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3173	}
3174
3175	p->reclaim_state = NULL;
3176	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3177	lockdep_clear_current_reclaim_state();
3178	return sc.nr_reclaimed >= nr_pages;
3179}
3180
3181int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3182{
3183	int node_id;
3184	int ret;
3185
3186	/*
3187	 * Zone reclaim reclaims unmapped file backed pages and
3188	 * slab pages if we are over the defined limits.
3189	 *
3190	 * A small portion of unmapped file backed pages is needed for
3191	 * file I/O otherwise pages read by file I/O will be immediately
3192	 * thrown out if the zone is overallocated. So we do not reclaim
3193	 * if less than a specified percentage of the zone is used by
3194	 * unmapped file backed pages.
3195	 */
3196	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3197	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3198		return ZONE_RECLAIM_FULL;
3199
3200	if (zone->all_unreclaimable)
3201		return ZONE_RECLAIM_FULL;
3202
3203	/*
3204	 * Do not scan if the allocation should not be delayed.
3205	 */
3206	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3207		return ZONE_RECLAIM_NOSCAN;
3208
3209	/*
3210	 * Only run zone reclaim on the local zone or on zones that do not
3211	 * have associated processors. This will favor the local processor
3212	 * over remote processors and spread off node memory allocations
3213	 * as wide as possible.
3214	 */
3215	node_id = zone_to_nid(zone);
3216	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3217		return ZONE_RECLAIM_NOSCAN;
3218
3219	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3220		return ZONE_RECLAIM_NOSCAN;
3221
3222	ret = __zone_reclaim(zone, gfp_mask, order);
3223	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3224
3225	if (!ret)
3226		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3227
3228	return ret;
3229}
3230#endif
3231
3232/*
3233 * page_evictable - test whether a page is evictable
3234 * @page: the page to test
3235 * @vma: the VMA in which the page is or will be mapped, may be NULL
3236 *
3237 * Test whether page is evictable--i.e., should be placed on active/inactive
3238 * lists vs unevictable list.  The vma argument is !NULL when called from the
3239 * fault path to determine how to instantate a new page.
3240 *
3241 * Reasons page might not be evictable:
3242 * (1) page's mapping marked unevictable
3243 * (2) page is part of an mlocked VMA
3244 *
3245 */
3246int page_evictable(struct page *page, struct vm_area_struct *vma)
3247{
3248
3249	if (mapping_unevictable(page_mapping(page)))
3250		return 0;
3251
3252	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3253		return 0;
3254
3255	return 1;
3256}
3257
 
3258/**
3259 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3260 * @page: page to check evictability and move to appropriate lru list
3261 * @zone: zone page is in
3262 *
3263 * Checks a page for evictability and moves the page to the appropriate
3264 * zone lru list.
3265 *
3266 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3267 * have PageUnevictable set.
3268 */
3269static void check_move_unevictable_page(struct page *page, struct zone *zone)
3270{
3271	VM_BUG_ON(PageActive(page));
3272
3273retry:
3274	ClearPageUnevictable(page);
3275	if (page_evictable(page, NULL)) {
3276		enum lru_list l = page_lru_base_type(page);
3277
3278		__dec_zone_state(zone, NR_UNEVICTABLE);
3279		list_move(&page->lru, &zone->lru[l].list);
3280		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3281		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
3282		__count_vm_event(UNEVICTABLE_PGRESCUED);
3283	} else {
3284		/*
3285		 * rotate unevictable list
3286		 */
3287		SetPageUnevictable(page);
3288		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3289		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3290		if (page_evictable(page, NULL))
3291			goto retry;
3292	}
3293}
3294
3295/**
3296 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3297 * @mapping: struct address_space to scan for evictable pages
3298 *
3299 * Scan all pages in mapping.  Check unevictable pages for
3300 * evictability and move them to the appropriate zone lru list.
3301 */
3302void scan_mapping_unevictable_pages(struct address_space *mapping)
3303{
3304	pgoff_t next = 0;
3305	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3306			 PAGE_CACHE_SHIFT;
3307	struct zone *zone;
3308	struct pagevec pvec;
3309
3310	if (mapping->nrpages == 0)
3311		return;
3312
3313	pagevec_init(&pvec, 0);
3314	while (next < end &&
3315		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3316		int i;
3317		int pg_scanned = 0;
3318
3319		zone = NULL;
3320
3321		for (i = 0; i < pagevec_count(&pvec); i++) {
3322			struct page *page = pvec.pages[i];
3323			pgoff_t page_index = page->index;
3324			struct zone *pagezone = page_zone(page);
3325
3326			pg_scanned++;
3327			if (page_index > next)
3328				next = page_index;
3329			next++;
3330
3331			if (pagezone != zone) {
3332				if (zone)
3333					spin_unlock_irq(&zone->lru_lock);
3334				zone = pagezone;
3335				spin_lock_irq(&zone->lru_lock);
3336			}
3337
3338			if (PageLRU(page) && PageUnevictable(page))
3339				check_move_unevictable_page(page, zone);
 
 
 
3340		}
3341		if (zone)
3342			spin_unlock_irq(&zone->lru_lock);
3343		pagevec_release(&pvec);
3344
3345		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3346	}
3347
3348}
3349
3350/**
3351 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3352 * @zone - zone of which to scan the unevictable list
3353 *
3354 * Scan @zone's unevictable LRU lists to check for pages that have become
3355 * evictable.  Move those that have to @zone's inactive list where they
3356 * become candidates for reclaim, unless shrink_inactive_zone() decides
3357 * to reactivate them.  Pages that are still unevictable are rotated
3358 * back onto @zone's unevictable list.
3359 */
3360#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3361static void scan_zone_unevictable_pages(struct zone *zone)
3362{
3363	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3364	unsigned long scan;
3365	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3366
3367	while (nr_to_scan > 0) {
3368		unsigned long batch_size = min(nr_to_scan,
3369						SCAN_UNEVICTABLE_BATCH_SIZE);
3370
3371		spin_lock_irq(&zone->lru_lock);
3372		for (scan = 0;  scan < batch_size; scan++) {
3373			struct page *page = lru_to_page(l_unevictable);
3374
3375			if (!trylock_page(page))
3376				continue;
3377
3378			prefetchw_prev_lru_page(page, l_unevictable, flags);
3379
3380			if (likely(PageLRU(page) && PageUnevictable(page)))
3381				check_move_unevictable_page(page, zone);
3382
3383			unlock_page(page);
3384		}
3385		spin_unlock_irq(&zone->lru_lock);
3386
3387		nr_to_scan -= batch_size;
3388	}
3389}
 
3390
3391
3392/**
3393 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3394 *
3395 * A really big hammer:  scan all zones' unevictable LRU lists to check for
3396 * pages that have become evictable.  Move those back to the zones'
3397 * inactive list where they become candidates for reclaim.
3398 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3399 * and we add swap to the system.  As such, it runs in the context of a task
3400 * that has possibly/probably made some previously unevictable pages
3401 * evictable.
3402 */
3403static void scan_all_zones_unevictable_pages(void)
3404{
3405	struct zone *zone;
3406
3407	for_each_zone(zone) {
3408		scan_zone_unevictable_pages(zone);
3409	}
3410}
3411
3412/*
3413 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3414 * all nodes' unevictable lists for evictable pages
3415 */
3416unsigned long scan_unevictable_pages;
3417
3418int scan_unevictable_handler(struct ctl_table *table, int write,
3419			   void __user *buffer,
3420			   size_t *length, loff_t *ppos)
3421{
 
3422	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3423
3424	if (write && *(unsigned long *)table->data)
3425		scan_all_zones_unevictable_pages();
3426
3427	scan_unevictable_pages = 0;
3428	return 0;
3429}
3430
3431#ifdef CONFIG_NUMA
3432/*
3433 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3434 * a specified node's per zone unevictable lists for evictable pages.
3435 */
3436
3437static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3438					  struct sysdev_attribute *attr,
3439					  char *buf)
3440{
 
3441	return sprintf(buf, "0\n");	/* always zero; should fit... */
3442}
3443
3444static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3445					   struct sysdev_attribute *attr,
3446					const char *buf, size_t count)
3447{
3448	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3449	struct zone *zone;
3450	unsigned long res;
3451	unsigned long req = strict_strtoul(buf, 10, &res);
3452
3453	if (!req)
3454		return 1;	/* zero is no-op */
3455
3456	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3457		if (!populated_zone(zone))
3458			continue;
3459		scan_zone_unevictable_pages(zone);
3460	}
3461	return 1;
3462}
3463
3464
3465static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3466			read_scan_unevictable_node,
3467			write_scan_unevictable_node);
3468
3469int scan_unevictable_register_node(struct node *node)
3470{
3471	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3472}
3473
3474void scan_unevictable_unregister_node(struct node *node)
3475{
3476	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3477}
3478#endif
v3.15
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmpressure.h>
  23#include <linux/vmstat.h>
  24#include <linux/file.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/buffer_head.h>	/* for try_to_release_page(),
  28					buffer_heads_over_limit */
  29#include <linux/mm_inline.h>
 
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
  45#include <linux/prefetch.h>
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
  51#include <linux/balloon_compaction.h>
  52
  53#include "internal.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/vmscan.h>
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58struct scan_control {
  59	/* Incremented by the number of inactive pages that were scanned */
  60	unsigned long nr_scanned;
  61
  62	/* Number of pages freed so far during a call to shrink_zones() */
  63	unsigned long nr_reclaimed;
  64
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
  68	unsigned long hibernation_mode;
  69
  70	/* This context's GFP mask */
  71	gfp_t gfp_mask;
  72
  73	int may_writepage;
  74
  75	/* Can mapped pages be reclaimed? */
  76	int may_unmap;
  77
  78	/* Can pages be swapped as part of reclaim? */
  79	int may_swap;
  80
  81	int order;
  82
  83	/* Scan (total_size >> priority) pages at once */
  84	int priority;
  85
  86	/*
  87	 * The memory cgroup that hit its limit and as a result is the
  88	 * primary target of this reclaim invocation.
  89	 */
  90	struct mem_cgroup *target_mem_cgroup;
 
 
 
  91
  92	/*
  93	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  94	 * are scanned.
  95	 */
  96	nodemask_t	*nodemask;
  97};
  98
  99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 100
 101#ifdef ARCH_HAS_PREFETCH
 102#define prefetch_prev_lru_page(_page, _base, _field)			\
 103	do {								\
 104		if ((_page)->lru.prev != _base) {			\
 105			struct page *prev;				\
 106									\
 107			prev = lru_to_page(&(_page->lru));		\
 108			prefetch(&prev->_field);			\
 109		}							\
 110	} while (0)
 111#else
 112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 113#endif
 114
 115#ifdef ARCH_HAS_PREFETCHW
 116#define prefetchw_prev_lru_page(_page, _base, _field)			\
 117	do {								\
 118		if ((_page)->lru.prev != _base) {			\
 119			struct page *prev;				\
 120									\
 121			prev = lru_to_page(&(_page->lru));		\
 122			prefetchw(&prev->_field);			\
 123		}							\
 124	} while (0)
 125#else
 126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 127#endif
 128
 129/*
 130 * From 0 .. 100.  Higher means more swappy.
 131 */
 132int vm_swappiness = 60;
 133unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
 134
 135static LIST_HEAD(shrinker_list);
 136static DECLARE_RWSEM(shrinker_rwsem);
 137
 138#ifdef CONFIG_MEMCG
 139static bool global_reclaim(struct scan_control *sc)
 140{
 141	return !sc->target_mem_cgroup;
 142}
 143#else
 144static bool global_reclaim(struct scan_control *sc)
 145{
 146	return true;
 147}
 148#endif
 149
 150static unsigned long zone_reclaimable_pages(struct zone *zone)
 
 151{
 152	int nr;
 153
 154	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
 155	     zone_page_state(zone, NR_INACTIVE_FILE);
 156
 157	if (get_nr_swap_pages() > 0)
 158		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
 159		      zone_page_state(zone, NR_INACTIVE_ANON);
 160
 161	return nr;
 162}
 163
 164bool zone_reclaimable(struct zone *zone)
 
 165{
 166	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 
 
 
 
 167}
 168
 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 170{
 171	if (!mem_cgroup_disabled())
 172		return mem_cgroup_get_lru_size(lruvec, lru);
 173
 174	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 175}
 176
 177/*
 178 * Add a shrinker callback to be called from the vm.
 179 */
 180int register_shrinker(struct shrinker *shrinker)
 181{
 182	size_t size = sizeof(*shrinker->nr_deferred);
 183
 184	/*
 185	 * If we only have one possible node in the system anyway, save
 186	 * ourselves the trouble and disable NUMA aware behavior. This way we
 187	 * will save memory and some small loop time later.
 188	 */
 189	if (nr_node_ids == 1)
 190		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
 191
 192	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 193		size *= nr_node_ids;
 194
 195	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 196	if (!shrinker->nr_deferred)
 197		return -ENOMEM;
 198
 199	down_write(&shrinker_rwsem);
 200	list_add_tail(&shrinker->list, &shrinker_list);
 201	up_write(&shrinker_rwsem);
 202	return 0;
 203}
 204EXPORT_SYMBOL(register_shrinker);
 205
 206/*
 207 * Remove one
 208 */
 209void unregister_shrinker(struct shrinker *shrinker)
 210{
 211	down_write(&shrinker_rwsem);
 212	list_del(&shrinker->list);
 213	up_write(&shrinker_rwsem);
 214	kfree(shrinker->nr_deferred);
 215}
 216EXPORT_SYMBOL(unregister_shrinker);
 217
 218#define SHRINK_BATCH 128
 219
 220static unsigned long
 221shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
 222		 unsigned long nr_pages_scanned, unsigned long lru_pages)
 223{
 224	unsigned long freed = 0;
 225	unsigned long long delta;
 226	long total_scan;
 227	long freeable;
 228	long nr;
 229	long new_nr;
 230	int nid = shrinkctl->nid;
 231	long batch_size = shrinker->batch ? shrinker->batch
 232					  : SHRINK_BATCH;
 233
 234	freeable = shrinker->count_objects(shrinker, shrinkctl);
 235	if (freeable == 0)
 236		return 0;
 237
 238	/*
 239	 * copy the current shrinker scan count into a local variable
 240	 * and zero it so that other concurrent shrinker invocations
 241	 * don't also do this scanning work.
 242	 */
 243	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 244
 245	total_scan = nr;
 246	delta = (4 * nr_pages_scanned) / shrinker->seeks;
 247	delta *= freeable;
 248	do_div(delta, lru_pages + 1);
 249	total_scan += delta;
 250	if (total_scan < 0) {
 251		printk(KERN_ERR
 252		"shrink_slab: %pF negative objects to delete nr=%ld\n",
 253		       shrinker->scan_objects, total_scan);
 254		total_scan = freeable;
 255	}
 256
 257	/*
 258	 * We need to avoid excessive windup on filesystem shrinkers
 259	 * due to large numbers of GFP_NOFS allocations causing the
 260	 * shrinkers to return -1 all the time. This results in a large
 261	 * nr being built up so when a shrink that can do some work
 262	 * comes along it empties the entire cache due to nr >>>
 263	 * freeable. This is bad for sustaining a working set in
 264	 * memory.
 265	 *
 266	 * Hence only allow the shrinker to scan the entire cache when
 267	 * a large delta change is calculated directly.
 268	 */
 269	if (delta < freeable / 4)
 270		total_scan = min(total_scan, freeable / 2);
 271
 272	/*
 273	 * Avoid risking looping forever due to too large nr value:
 274	 * never try to free more than twice the estimate number of
 275	 * freeable entries.
 276	 */
 277	if (total_scan > freeable * 2)
 278		total_scan = freeable * 2;
 279
 280	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 281				nr_pages_scanned, lru_pages,
 282				freeable, delta, total_scan);
 283
 284	/*
 285	 * Normally, we should not scan less than batch_size objects in one
 286	 * pass to avoid too frequent shrinker calls, but if the slab has less
 287	 * than batch_size objects in total and we are really tight on memory,
 288	 * we will try to reclaim all available objects, otherwise we can end
 289	 * up failing allocations although there are plenty of reclaimable
 290	 * objects spread over several slabs with usage less than the
 291	 * batch_size.
 292	 *
 293	 * We detect the "tight on memory" situations by looking at the total
 294	 * number of objects we want to scan (total_scan). If it is greater
 295	 * than the total number of objects on slab (freeable), we must be
 296	 * scanning at high prio and therefore should try to reclaim as much as
 297	 * possible.
 298	 */
 299	while (total_scan >= batch_size ||
 300	       total_scan >= freeable) {
 301		unsigned long ret;
 302		unsigned long nr_to_scan = min(batch_size, total_scan);
 303
 304		shrinkctl->nr_to_scan = nr_to_scan;
 305		ret = shrinker->scan_objects(shrinker, shrinkctl);
 306		if (ret == SHRINK_STOP)
 307			break;
 308		freed += ret;
 309
 310		count_vm_events(SLABS_SCANNED, nr_to_scan);
 311		total_scan -= nr_to_scan;
 312
 313		cond_resched();
 314	}
 315
 316	/*
 317	 * move the unused scan count back into the shrinker in a
 318	 * manner that handles concurrent updates. If we exhausted the
 319	 * scan, there is no need to do an update.
 320	 */
 321	if (total_scan > 0)
 322		new_nr = atomic_long_add_return(total_scan,
 323						&shrinker->nr_deferred[nid]);
 324	else
 325		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 326
 327	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
 328	return freed;
 329}
 330
 
 331/*
 332 * Call the shrink functions to age shrinkable caches
 333 *
 334 * Here we assume it costs one seek to replace a lru page and that it also
 335 * takes a seek to recreate a cache object.  With this in mind we age equal
 336 * percentages of the lru and ageable caches.  This should balance the seeks
 337 * generated by these structures.
 338 *
 339 * If the vm encountered mapped pages on the LRU it increase the pressure on
 340 * slab to avoid swapping.
 341 *
 342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 343 *
 344 * `lru_pages' represents the number of on-LRU pages in all the zones which
 345 * are eligible for the caller's allocation attempt.  It is used for balancing
 346 * slab reclaim versus page reclaim.
 347 *
 348 * Returns the number of slab objects which we shrunk.
 349 */
 350unsigned long shrink_slab(struct shrink_control *shrinkctl,
 351			  unsigned long nr_pages_scanned,
 352			  unsigned long lru_pages)
 353{
 354	struct shrinker *shrinker;
 355	unsigned long freed = 0;
 356
 357	if (nr_pages_scanned == 0)
 358		nr_pages_scanned = SWAP_CLUSTER_MAX;
 359
 360	if (!down_read_trylock(&shrinker_rwsem)) {
 361		/*
 362		 * If we would return 0, our callers would understand that we
 363		 * have nothing else to shrink and give up trying. By returning
 364		 * 1 we keep it going and assume we'll be able to shrink next
 365		 * time.
 366		 */
 367		freed = 1;
 368		goto out;
 369	}
 370
 371	list_for_each_entry(shrinker, &shrinker_list, list) {
 372		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
 373			shrinkctl->nid = 0;
 374			freed += shrink_slab_node(shrinkctl, shrinker,
 375					nr_pages_scanned, lru_pages);
 376			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		}
 378
 379		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
 380			if (node_online(shrinkctl->nid))
 381				freed += shrink_slab_node(shrinkctl, shrinker,
 382						nr_pages_scanned, lru_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 
 384		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385	}
 386	up_read(&shrinker_rwsem);
 387out:
 388	cond_resched();
 389	return freed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391
 392static inline int is_page_cache_freeable(struct page *page)
 393{
 394	/*
 395	 * A freeable page cache page is referenced only by the caller
 396	 * that isolated the page, the page cache radix tree and
 397	 * optional buffer heads at page->private.
 398	 */
 399	return page_count(page) - page_has_private(page) == 2;
 400}
 401
 402static int may_write_to_queue(struct backing_dev_info *bdi,
 403			      struct scan_control *sc)
 404{
 405	if (current->flags & PF_SWAPWRITE)
 406		return 1;
 407	if (!bdi_write_congested(bdi))
 408		return 1;
 409	if (bdi == current->backing_dev_info)
 410		return 1;
 
 
 
 
 411	return 0;
 412}
 413
 414/*
 415 * We detected a synchronous write error writing a page out.  Probably
 416 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 417 * fsync(), msync() or close().
 418 *
 419 * The tricky part is that after writepage we cannot touch the mapping: nothing
 420 * prevents it from being freed up.  But we have a ref on the page and once
 421 * that page is locked, the mapping is pinned.
 422 *
 423 * We're allowed to run sleeping lock_page() here because we know the caller has
 424 * __GFP_FS.
 425 */
 426static void handle_write_error(struct address_space *mapping,
 427				struct page *page, int error)
 428{
 429	lock_page(page);
 430	if (page_mapping(page) == mapping)
 431		mapping_set_error(mapping, error);
 432	unlock_page(page);
 433}
 434
 435/* possible outcome of pageout() */
 436typedef enum {
 437	/* failed to write page out, page is locked */
 438	PAGE_KEEP,
 439	/* move page to the active list, page is locked */
 440	PAGE_ACTIVATE,
 441	/* page has been sent to the disk successfully, page is unlocked */
 442	PAGE_SUCCESS,
 443	/* page is clean and locked */
 444	PAGE_CLEAN,
 445} pageout_t;
 446
 447/*
 448 * pageout is called by shrink_page_list() for each dirty page.
 449 * Calls ->writepage().
 450 */
 451static pageout_t pageout(struct page *page, struct address_space *mapping,
 452			 struct scan_control *sc)
 453{
 454	/*
 455	 * If the page is dirty, only perform writeback if that write
 456	 * will be non-blocking.  To prevent this allocation from being
 457	 * stalled by pagecache activity.  But note that there may be
 458	 * stalls if we need to run get_block().  We could test
 459	 * PagePrivate for that.
 460	 *
 461	 * If this process is currently in __generic_file_aio_write() against
 462	 * this page's queue, we can perform writeback even if that
 463	 * will block.
 464	 *
 465	 * If the page is swapcache, write it back even if that would
 466	 * block, for some throttling. This happens by accident, because
 467	 * swap_backing_dev_info is bust: it doesn't reflect the
 468	 * congestion state of the swapdevs.  Easy to fix, if needed.
 469	 */
 470	if (!is_page_cache_freeable(page))
 471		return PAGE_KEEP;
 472	if (!mapping) {
 473		/*
 474		 * Some data journaling orphaned pages can have
 475		 * page->mapping == NULL while being dirty with clean buffers.
 476		 */
 477		if (page_has_private(page)) {
 478			if (try_to_free_buffers(page)) {
 479				ClearPageDirty(page);
 480				printk("%s: orphaned page\n", __func__);
 481				return PAGE_CLEAN;
 482			}
 483		}
 484		return PAGE_KEEP;
 485	}
 486	if (mapping->a_ops->writepage == NULL)
 487		return PAGE_ACTIVATE;
 488	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 489		return PAGE_KEEP;
 490
 491	if (clear_page_dirty_for_io(page)) {
 492		int res;
 493		struct writeback_control wbc = {
 494			.sync_mode = WB_SYNC_NONE,
 495			.nr_to_write = SWAP_CLUSTER_MAX,
 496			.range_start = 0,
 497			.range_end = LLONG_MAX,
 498			.for_reclaim = 1,
 499		};
 500
 501		SetPageReclaim(page);
 502		res = mapping->a_ops->writepage(page, &wbc);
 503		if (res < 0)
 504			handle_write_error(mapping, page, res);
 505		if (res == AOP_WRITEPAGE_ACTIVATE) {
 506			ClearPageReclaim(page);
 507			return PAGE_ACTIVATE;
 508		}
 509
 
 
 
 
 
 
 
 
 
 510		if (!PageWriteback(page)) {
 511			/* synchronous write or broken a_ops? */
 512			ClearPageReclaim(page);
 513		}
 514		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
 
 515		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 516		return PAGE_SUCCESS;
 517	}
 518
 519	return PAGE_CLEAN;
 520}
 521
 522/*
 523 * Same as remove_mapping, but if the page is removed from the mapping, it
 524 * gets returned with a refcount of 0.
 525 */
 526static int __remove_mapping(struct address_space *mapping, struct page *page,
 527			    bool reclaimed)
 528{
 529	BUG_ON(!PageLocked(page));
 530	BUG_ON(mapping != page_mapping(page));
 531
 532	spin_lock_irq(&mapping->tree_lock);
 533	/*
 534	 * The non racy check for a busy page.
 535	 *
 536	 * Must be careful with the order of the tests. When someone has
 537	 * a ref to the page, it may be possible that they dirty it then
 538	 * drop the reference. So if PageDirty is tested before page_count
 539	 * here, then the following race may occur:
 540	 *
 541	 * get_user_pages(&page);
 542	 * [user mapping goes away]
 543	 * write_to(page);
 544	 *				!PageDirty(page)    [good]
 545	 * SetPageDirty(page);
 546	 * put_page(page);
 547	 *				!page_count(page)   [good, discard it]
 548	 *
 549	 * [oops, our write_to data is lost]
 550	 *
 551	 * Reversing the order of the tests ensures such a situation cannot
 552	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 553	 * load is not satisfied before that of page->_count.
 554	 *
 555	 * Note that if SetPageDirty is always performed via set_page_dirty,
 556	 * and thus under tree_lock, then this ordering is not required.
 557	 */
 558	if (!page_freeze_refs(page, 2))
 559		goto cannot_free;
 560	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 561	if (unlikely(PageDirty(page))) {
 562		page_unfreeze_refs(page, 2);
 563		goto cannot_free;
 564	}
 565
 566	if (PageSwapCache(page)) {
 567		swp_entry_t swap = { .val = page_private(page) };
 568		__delete_from_swap_cache(page);
 569		spin_unlock_irq(&mapping->tree_lock);
 570		swapcache_free(swap, page);
 571	} else {
 572		void (*freepage)(struct page *);
 573		void *shadow = NULL;
 574
 575		freepage = mapping->a_ops->freepage;
 576		/*
 577		 * Remember a shadow entry for reclaimed file cache in
 578		 * order to detect refaults, thus thrashing, later on.
 579		 *
 580		 * But don't store shadows in an address space that is
 581		 * already exiting.  This is not just an optizimation,
 582		 * inode reclaim needs to empty out the radix tree or
 583		 * the nodes are lost.  Don't plant shadows behind its
 584		 * back.
 585		 */
 586		if (reclaimed && page_is_file_cache(page) &&
 587		    !mapping_exiting(mapping))
 588			shadow = workingset_eviction(mapping, page);
 589		__delete_from_page_cache(page, shadow);
 590		spin_unlock_irq(&mapping->tree_lock);
 591		mem_cgroup_uncharge_cache_page(page);
 592
 593		if (freepage != NULL)
 594			freepage(page);
 595	}
 596
 597	return 1;
 598
 599cannot_free:
 600	spin_unlock_irq(&mapping->tree_lock);
 601	return 0;
 602}
 603
 604/*
 605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 606 * someone else has a ref on the page, abort and return 0.  If it was
 607 * successfully detached, return 1.  Assumes the caller has a single ref on
 608 * this page.
 609 */
 610int remove_mapping(struct address_space *mapping, struct page *page)
 611{
 612	if (__remove_mapping(mapping, page, false)) {
 613		/*
 614		 * Unfreezing the refcount with 1 rather than 2 effectively
 615		 * drops the pagecache ref for us without requiring another
 616		 * atomic operation.
 617		 */
 618		page_unfreeze_refs(page, 1);
 619		return 1;
 620	}
 621	return 0;
 622}
 623
 624/**
 625 * putback_lru_page - put previously isolated page onto appropriate LRU list
 626 * @page: page to be put back to appropriate lru list
 627 *
 628 * Add previously isolated @page to appropriate LRU list.
 629 * Page may still be unevictable for other reasons.
 630 *
 631 * lru_lock must not be held, interrupts must be enabled.
 632 */
 633void putback_lru_page(struct page *page)
 634{
 635	bool is_unevictable;
 
 636	int was_unevictable = PageUnevictable(page);
 637
 638	VM_BUG_ON_PAGE(PageLRU(page), page);
 639
 640redo:
 641	ClearPageUnevictable(page);
 642
 643	if (page_evictable(page)) {
 644		/*
 645		 * For evictable pages, we can use the cache.
 646		 * In event of a race, worst case is we end up with an
 647		 * unevictable page on [in]active list.
 648		 * We know how to handle that.
 649		 */
 650		is_unevictable = false;
 651		lru_cache_add(page);
 652	} else {
 653		/*
 654		 * Put unevictable pages directly on zone's unevictable
 655		 * list.
 656		 */
 657		is_unevictable = true;
 658		add_page_to_unevictable_list(page);
 659		/*
 660		 * When racing with an mlock or AS_UNEVICTABLE clearing
 661		 * (page is unlocked) make sure that if the other thread
 662		 * does not observe our setting of PG_lru and fails
 663		 * isolation/check_move_unevictable_pages,
 664		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 665		 * the page back to the evictable list.
 666		 *
 667		 * The other side is TestClearPageMlocked() or shmem_lock().
 668		 */
 669		smp_mb();
 670	}
 671
 672	/*
 673	 * page's status can change while we move it among lru. If an evictable
 674	 * page is on unevictable list, it never be freed. To avoid that,
 675	 * check after we added it to the list, again.
 676	 */
 677	if (is_unevictable && page_evictable(page)) {
 678		if (!isolate_lru_page(page)) {
 679			put_page(page);
 680			goto redo;
 681		}
 682		/* This means someone else dropped this page from LRU
 683		 * So, it will be freed or putback to LRU again. There is
 684		 * nothing to do here.
 685		 */
 686	}
 687
 688	if (was_unevictable && !is_unevictable)
 689		count_vm_event(UNEVICTABLE_PGRESCUED);
 690	else if (!was_unevictable && is_unevictable)
 691		count_vm_event(UNEVICTABLE_PGCULLED);
 692
 693	put_page(page);		/* drop ref from isolate */
 694}
 695
 696enum page_references {
 697	PAGEREF_RECLAIM,
 698	PAGEREF_RECLAIM_CLEAN,
 699	PAGEREF_KEEP,
 700	PAGEREF_ACTIVATE,
 701};
 702
 703static enum page_references page_check_references(struct page *page,
 704						  struct scan_control *sc)
 705{
 706	int referenced_ptes, referenced_page;
 707	unsigned long vm_flags;
 708
 709	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 710					  &vm_flags);
 711	referenced_page = TestClearPageReferenced(page);
 712
 
 
 
 
 713	/*
 714	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 715	 * move the page to the unevictable list.
 716	 */
 717	if (vm_flags & VM_LOCKED)
 718		return PAGEREF_RECLAIM;
 719
 720	if (referenced_ptes) {
 721		if (PageSwapBacked(page))
 722			return PAGEREF_ACTIVATE;
 723		/*
 724		 * All mapped pages start out with page table
 725		 * references from the instantiating fault, so we need
 726		 * to look twice if a mapped file page is used more
 727		 * than once.
 728		 *
 729		 * Mark it and spare it for another trip around the
 730		 * inactive list.  Another page table reference will
 731		 * lead to its activation.
 732		 *
 733		 * Note: the mark is set for activated pages as well
 734		 * so that recently deactivated but used pages are
 735		 * quickly recovered.
 736		 */
 737		SetPageReferenced(page);
 738
 739		if (referenced_page || referenced_ptes > 1)
 740			return PAGEREF_ACTIVATE;
 741
 742		/*
 743		 * Activate file-backed executable pages after first usage.
 744		 */
 745		if (vm_flags & VM_EXEC)
 746			return PAGEREF_ACTIVATE;
 747
 748		return PAGEREF_KEEP;
 749	}
 750
 751	/* Reclaim if clean, defer dirty pages to writeback */
 752	if (referenced_page && !PageSwapBacked(page))
 753		return PAGEREF_RECLAIM_CLEAN;
 754
 755	return PAGEREF_RECLAIM;
 756}
 757
 758/* Check if a page is dirty or under writeback */
 759static void page_check_dirty_writeback(struct page *page,
 760				       bool *dirty, bool *writeback)
 761{
 762	struct address_space *mapping;
 
 
 
 763
 764	/*
 765	 * Anonymous pages are not handled by flushers and must be written
 766	 * from reclaim context. Do not stall reclaim based on them
 767	 */
 768	if (!page_is_file_cache(page)) {
 769		*dirty = false;
 770		*writeback = false;
 771		return;
 772	}
 773
 774	/* By default assume that the page flags are accurate */
 775	*dirty = PageDirty(page);
 776	*writeback = PageWriteback(page);
 777
 778	/* Verify dirty/writeback state if the filesystem supports it */
 779	if (!page_has_private(page))
 780		return;
 781
 782	mapping = page_mapping(page);
 783	if (mapping && mapping->a_ops->is_dirty_writeback)
 784		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 785}
 786
 787/*
 788 * shrink_page_list() returns the number of reclaimed pages
 789 */
 790static unsigned long shrink_page_list(struct list_head *page_list,
 791				      struct zone *zone,
 792				      struct scan_control *sc,
 793				      enum ttu_flags ttu_flags,
 794				      unsigned long *ret_nr_dirty,
 795				      unsigned long *ret_nr_unqueued_dirty,
 796				      unsigned long *ret_nr_congested,
 797				      unsigned long *ret_nr_writeback,
 798				      unsigned long *ret_nr_immediate,
 799				      bool force_reclaim)
 800{
 801	LIST_HEAD(ret_pages);
 802	LIST_HEAD(free_pages);
 803	int pgactivate = 0;
 804	unsigned long nr_unqueued_dirty = 0;
 805	unsigned long nr_dirty = 0;
 806	unsigned long nr_congested = 0;
 807	unsigned long nr_reclaimed = 0;
 808	unsigned long nr_writeback = 0;
 809	unsigned long nr_immediate = 0;
 810
 811	cond_resched();
 812
 813	mem_cgroup_uncharge_start();
 814	while (!list_empty(page_list)) {
 
 815		struct address_space *mapping;
 816		struct page *page;
 817		int may_enter_fs;
 818		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 819		bool dirty, writeback;
 820
 821		cond_resched();
 822
 823		page = lru_to_page(page_list);
 824		list_del(&page->lru);
 825
 826		if (!trylock_page(page))
 827			goto keep;
 828
 829		VM_BUG_ON_PAGE(PageActive(page), page);
 830		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
 831
 832		sc->nr_scanned++;
 833
 834		if (unlikely(!page_evictable(page)))
 835			goto cull_mlocked;
 836
 837		if (!sc->may_unmap && page_mapped(page))
 838			goto keep_locked;
 839
 840		/* Double the slab pressure for mapped and swapcache pages */
 841		if (page_mapped(page) || PageSwapCache(page))
 842			sc->nr_scanned++;
 843
 844		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 845			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 846
 847		/*
 848		 * The number of dirty pages determines if a zone is marked
 849		 * reclaim_congested which affects wait_iff_congested. kswapd
 850		 * will stall and start writing pages if the tail of the LRU
 851		 * is all dirty unqueued pages.
 852		 */
 853		page_check_dirty_writeback(page, &dirty, &writeback);
 854		if (dirty || writeback)
 855			nr_dirty++;
 856
 857		if (dirty && !writeback)
 858			nr_unqueued_dirty++;
 859
 860		/*
 861		 * Treat this page as congested if the underlying BDI is or if
 862		 * pages are cycling through the LRU so quickly that the
 863		 * pages marked for immediate reclaim are making it to the
 864		 * end of the LRU a second time.
 865		 */
 866		mapping = page_mapping(page);
 867		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
 868		    (writeback && PageReclaim(page)))
 869			nr_congested++;
 870
 871		/*
 872		 * If a page at the tail of the LRU is under writeback, there
 873		 * are three cases to consider.
 874		 *
 875		 * 1) If reclaim is encountering an excessive number of pages
 876		 *    under writeback and this page is both under writeback and
 877		 *    PageReclaim then it indicates that pages are being queued
 878		 *    for IO but are being recycled through the LRU before the
 879		 *    IO can complete. Waiting on the page itself risks an
 880		 *    indefinite stall if it is impossible to writeback the
 881		 *    page due to IO error or disconnected storage so instead
 882		 *    note that the LRU is being scanned too quickly and the
 883		 *    caller can stall after page list has been processed.
 884		 *
 885		 * 2) Global reclaim encounters a page, memcg encounters a
 886		 *    page that is not marked for immediate reclaim or
 887		 *    the caller does not have __GFP_IO. In this case mark
 888		 *    the page for immediate reclaim and continue scanning.
 889		 *
 890		 *    __GFP_IO is checked  because a loop driver thread might
 891		 *    enter reclaim, and deadlock if it waits on a page for
 892		 *    which it is needed to do the write (loop masks off
 893		 *    __GFP_IO|__GFP_FS for this reason); but more thought
 894		 *    would probably show more reasons.
 895		 *
 896		 *    Don't require __GFP_FS, since we're not going into the
 897		 *    FS, just waiting on its writeback completion. Worryingly,
 898		 *    ext4 gfs2 and xfs allocate pages with
 899		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
 900		 *    may_enter_fs here is liable to OOM on them.
 901		 *
 902		 * 3) memcg encounters a page that is not already marked
 903		 *    PageReclaim. memcg does not have any dirty pages
 904		 *    throttling so we could easily OOM just because too many
 905		 *    pages are in writeback and there is nothing else to
 906		 *    reclaim. Wait for the writeback to complete.
 907		 */
 908		if (PageWriteback(page)) {
 909			/* Case 1 above */
 910			if (current_is_kswapd() &&
 911			    PageReclaim(page) &&
 912			    zone_is_reclaim_writeback(zone)) {
 913				nr_immediate++;
 914				goto keep_locked;
 915
 916			/* Case 2 above */
 917			} else if (global_reclaim(sc) ||
 918			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
 919				/*
 920				 * This is slightly racy - end_page_writeback()
 921				 * might have just cleared PageReclaim, then
 922				 * setting PageReclaim here end up interpreted
 923				 * as PageReadahead - but that does not matter
 924				 * enough to care.  What we do want is for this
 925				 * page to have PageReclaim set next time memcg
 926				 * reclaim reaches the tests above, so it will
 927				 * then wait_on_page_writeback() to avoid OOM;
 928				 * and it's also appropriate in global reclaim.
 929				 */
 930				SetPageReclaim(page);
 931				nr_writeback++;
 932
 933				goto keep_locked;
 934
 935			/* Case 3 above */
 936			} else {
 937				wait_on_page_writeback(page);
 
 
 
 938			}
 939		}
 940
 941		if (!force_reclaim)
 942			references = page_check_references(page, sc);
 943
 944		switch (references) {
 945		case PAGEREF_ACTIVATE:
 946			goto activate_locked;
 947		case PAGEREF_KEEP:
 948			goto keep_locked;
 949		case PAGEREF_RECLAIM:
 950		case PAGEREF_RECLAIM_CLEAN:
 951			; /* try to reclaim the page below */
 952		}
 953
 954		/*
 955		 * Anonymous process memory has backing store?
 956		 * Try to allocate it some swap space here.
 957		 */
 958		if (PageAnon(page) && !PageSwapCache(page)) {
 959			if (!(sc->gfp_mask & __GFP_IO))
 960				goto keep_locked;
 961			if (!add_to_swap(page, page_list))
 962				goto activate_locked;
 963			may_enter_fs = 1;
 
 964
 965			/* Adding to swap updated mapping */
 966			mapping = page_mapping(page);
 967		}
 968
 969		/*
 970		 * The page is mapped into the page tables of one or more
 971		 * processes. Try to unmap it here.
 972		 */
 973		if (page_mapped(page) && mapping) {
 974			switch (try_to_unmap(page, ttu_flags)) {
 975			case SWAP_FAIL:
 976				goto activate_locked;
 977			case SWAP_AGAIN:
 978				goto keep_locked;
 979			case SWAP_MLOCK:
 980				goto cull_mlocked;
 981			case SWAP_SUCCESS:
 982				; /* try to free the page below */
 983			}
 984		}
 985
 986		if (PageDirty(page)) {
 987			/*
 988			 * Only kswapd can writeback filesystem pages to
 989			 * avoid risk of stack overflow but only writeback
 990			 * if many dirty pages have been encountered.
 991			 */
 992			if (page_is_file_cache(page) &&
 993					(!current_is_kswapd() ||
 994					 !zone_is_reclaim_dirty(zone))) {
 995				/*
 996				 * Immediately reclaim when written back.
 997				 * Similar in principal to deactivate_page()
 998				 * except we already have the page isolated
 999				 * and know it's dirty
1000				 */
1001				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002				SetPageReclaim(page);
1003
1004				goto keep_locked;
1005			}
1006
1007			if (references == PAGEREF_RECLAIM_CLEAN)
1008				goto keep_locked;
1009			if (!may_enter_fs)
1010				goto keep_locked;
1011			if (!sc->may_writepage)
1012				goto keep_locked;
1013
1014			/* Page is dirty, try to write it out here */
1015			switch (pageout(page, mapping, sc)) {
1016			case PAGE_KEEP:
 
1017				goto keep_locked;
1018			case PAGE_ACTIVATE:
1019				goto activate_locked;
1020			case PAGE_SUCCESS:
1021				if (PageWriteback(page))
1022					goto keep;
1023				if (PageDirty(page))
1024					goto keep;
1025
1026				/*
1027				 * A synchronous write - probably a ramdisk.  Go
1028				 * ahead and try to reclaim the page.
1029				 */
1030				if (!trylock_page(page))
1031					goto keep;
1032				if (PageDirty(page) || PageWriteback(page))
1033					goto keep_locked;
1034				mapping = page_mapping(page);
1035			case PAGE_CLEAN:
1036				; /* try to free the page below */
1037			}
1038		}
1039
1040		/*
1041		 * If the page has buffers, try to free the buffer mappings
1042		 * associated with this page. If we succeed we try to free
1043		 * the page as well.
1044		 *
1045		 * We do this even if the page is PageDirty().
1046		 * try_to_release_page() does not perform I/O, but it is
1047		 * possible for a page to have PageDirty set, but it is actually
1048		 * clean (all its buffers are clean).  This happens if the
1049		 * buffers were written out directly, with submit_bh(). ext3
1050		 * will do this, as well as the blockdev mapping.
1051		 * try_to_release_page() will discover that cleanness and will
1052		 * drop the buffers and mark the page clean - it can be freed.
1053		 *
1054		 * Rarely, pages can have buffers and no ->mapping.  These are
1055		 * the pages which were not successfully invalidated in
1056		 * truncate_complete_page().  We try to drop those buffers here
1057		 * and if that worked, and the page is no longer mapped into
1058		 * process address space (page_count == 1) it can be freed.
1059		 * Otherwise, leave the page on the LRU so it is swappable.
1060		 */
1061		if (page_has_private(page)) {
1062			if (!try_to_release_page(page, sc->gfp_mask))
1063				goto activate_locked;
1064			if (!mapping && page_count(page) == 1) {
1065				unlock_page(page);
1066				if (put_page_testzero(page))
1067					goto free_it;
1068				else {
1069					/*
1070					 * rare race with speculative reference.
1071					 * the speculative reference will free
1072					 * this page shortly, so we may
1073					 * increment nr_reclaimed here (and
1074					 * leave it off the LRU).
1075					 */
1076					nr_reclaimed++;
1077					continue;
1078				}
1079			}
1080		}
1081
1082		if (!mapping || !__remove_mapping(mapping, page, true))
1083			goto keep_locked;
1084
1085		/*
1086		 * At this point, we have no other references and there is
1087		 * no way to pick any more up (removed from LRU, removed
1088		 * from pagecache). Can use non-atomic bitops now (and
1089		 * we obviously don't have to worry about waking up a process
1090		 * waiting on the page lock, because there are no references.
1091		 */
1092		__clear_page_locked(page);
1093free_it:
1094		nr_reclaimed++;
1095
1096		/*
1097		 * Is there need to periodically free_page_list? It would
1098		 * appear not as the counts should be low
1099		 */
1100		list_add(&page->lru, &free_pages);
1101		continue;
1102
1103cull_mlocked:
1104		if (PageSwapCache(page))
1105			try_to_free_swap(page);
1106		unlock_page(page);
1107		putback_lru_page(page);
 
1108		continue;
1109
1110activate_locked:
1111		/* Not a candidate for swapping, so reclaim swap space. */
1112		if (PageSwapCache(page) && vm_swap_full())
1113			try_to_free_swap(page);
1114		VM_BUG_ON_PAGE(PageActive(page), page);
1115		SetPageActive(page);
1116		pgactivate++;
1117keep_locked:
1118		unlock_page(page);
1119keep:
 
 
1120		list_add(&page->lru, &ret_pages);
1121		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122	}
1123
1124	free_hot_cold_page_list(&free_pages, 1);
 
 
 
 
 
 
 
 
 
1125
1126	list_splice(&ret_pages, page_list);
1127	count_vm_events(PGACTIVATE, pgactivate);
1128	mem_cgroup_uncharge_end();
1129	*ret_nr_dirty += nr_dirty;
1130	*ret_nr_congested += nr_congested;
1131	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132	*ret_nr_writeback += nr_writeback;
1133	*ret_nr_immediate += nr_immediate;
1134	return nr_reclaimed;
1135}
1136
1137unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138					    struct list_head *page_list)
1139{
1140	struct scan_control sc = {
1141		.gfp_mask = GFP_KERNEL,
1142		.priority = DEF_PRIORITY,
1143		.may_unmap = 1,
1144	};
1145	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146	struct page *page, *next;
1147	LIST_HEAD(clean_pages);
1148
1149	list_for_each_entry_safe(page, next, page_list, lru) {
1150		if (page_is_file_cache(page) && !PageDirty(page) &&
1151		    !isolated_balloon_page(page)) {
1152			ClearPageActive(page);
1153			list_move(&page->lru, &clean_pages);
1154		}
1155	}
1156
1157	ret = shrink_page_list(&clean_pages, zone, &sc,
1158			TTU_UNMAP|TTU_IGNORE_ACCESS,
1159			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160	list_splice(&clean_pages, page_list);
1161	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162	return ret;
1163}
1164
1165/*
1166 * Attempt to remove the specified page from its LRU.  Only take this page
1167 * if it is of the appropriate PageActive status.  Pages which are being
1168 * freed elsewhere are also ignored.
1169 *
1170 * page:	page to consider
1171 * mode:	one of the LRU isolation modes defined above
1172 *
1173 * returns 0 on success, -ve errno on failure.
1174 */
1175int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176{
1177	int ret = -EINVAL;
1178
1179	/* Only take pages on the LRU. */
1180	if (!PageLRU(page))
1181		return ret;
1182
1183	/* Compaction should not handle unevictable pages but CMA can do so */
1184	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
 
 
 
 
1185		return ret;
1186
1187	ret = -EBUSY;
 
1188
1189	/*
1190	 * To minimise LRU disruption, the caller can indicate that it only
1191	 * wants to isolate pages it will be able to operate on without
1192	 * blocking - clean pages for the most part.
1193	 *
1194	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195	 * is used by reclaim when it is cannot write to backing storage
1196	 *
1197	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198	 * that it is possible to migrate without blocking
1199	 */
1200	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201		/* All the caller can do on PageWriteback is block */
1202		if (PageWriteback(page))
1203			return ret;
1204
1205		if (PageDirty(page)) {
1206			struct address_space *mapping;
1207
1208			/* ISOLATE_CLEAN means only clean pages */
1209			if (mode & ISOLATE_CLEAN)
1210				return ret;
1211
1212			/*
1213			 * Only pages without mappings or that have a
1214			 * ->migratepage callback are possible to migrate
1215			 * without blocking
1216			 */
1217			mapping = page_mapping(page);
1218			if (mapping && !mapping->a_ops->migratepage)
1219				return ret;
1220		}
1221	}
1222
1223	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224		return ret;
1225
1226	if (likely(get_page_unless_zero(page))) {
1227		/*
1228		 * Be careful not to clear PageLRU until after we're
1229		 * sure the page is not being freed elsewhere -- the
1230		 * page release code relies on it.
1231		 */
1232		ClearPageLRU(page);
1233		ret = 0;
1234	}
1235
1236	return ret;
1237}
1238
1239/*
1240 * zone->lru_lock is heavily contended.  Some of the functions that
1241 * shrink the lists perform better by taking out a batch of pages
1242 * and working on them outside the LRU lock.
1243 *
1244 * For pagecache intensive workloads, this function is the hottest
1245 * spot in the kernel (apart from copy_*_user functions).
1246 *
1247 * Appropriate locks must be held before calling this function.
1248 *
1249 * @nr_to_scan:	The number of pages to look through on the list.
1250 * @lruvec:	The LRU vector to pull pages from.
1251 * @dst:	The temp list to put pages on to.
1252 * @nr_scanned:	The number of pages that were scanned.
1253 * @sc:		The scan_control struct for this reclaim session
1254 * @mode:	One of the LRU isolation modes
1255 * @lru:	LRU list id for isolating
1256 *
1257 * returns how many pages were moved onto *@dst.
1258 */
1259static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260		struct lruvec *lruvec, struct list_head *dst,
1261		unsigned long *nr_scanned, struct scan_control *sc,
1262		isolate_mode_t mode, enum lru_list lru)
1263{
1264	struct list_head *src = &lruvec->lists[lru];
1265	unsigned long nr_taken = 0;
 
 
 
1266	unsigned long scan;
1267
1268	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1269		struct page *page;
1270		int nr_pages;
 
 
 
1271
1272		page = lru_to_page(src);
1273		prefetchw_prev_lru_page(page, src, flags);
1274
1275		VM_BUG_ON_PAGE(!PageLRU(page), page);
1276
1277		switch (__isolate_lru_page(page, mode)) {
1278		case 0:
1279			nr_pages = hpage_nr_pages(page);
1280			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281			list_move(&page->lru, dst);
1282			nr_taken += nr_pages;
 
1283			break;
1284
1285		case -EBUSY:
1286			/* else it is being freed elsewhere */
1287			list_move(&page->lru, src);
 
1288			continue;
1289
1290		default:
1291			BUG();
1292		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293	}
1294
1295	*nr_scanned = scan;
1296	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297				    nr_taken, mode, is_file_lru(lru));
 
 
 
 
1298	return nr_taken;
1299}
1300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301/**
1302 * isolate_lru_page - tries to isolate a page from its LRU list
1303 * @page: page to isolate from its LRU list
1304 *
1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306 * vmstat statistic corresponding to whatever LRU list the page was on.
1307 *
1308 * Returns 0 if the page was removed from an LRU list.
1309 * Returns -EBUSY if the page was not on an LRU list.
1310 *
1311 * The returned page will have PageLRU() cleared.  If it was found on
1312 * the active list, it will have PageActive set.  If it was found on
1313 * the unevictable list, it will have the PageUnevictable bit set. That flag
1314 * may need to be cleared by the caller before letting the page go.
1315 *
1316 * The vmstat statistic corresponding to the list on which the page was
1317 * found will be decremented.
1318 *
1319 * Restrictions:
1320 * (1) Must be called with an elevated refcount on the page. This is a
1321 *     fundamentnal difference from isolate_lru_pages (which is called
1322 *     without a stable reference).
1323 * (2) the lru_lock must not be held.
1324 * (3) interrupts must be enabled.
1325 */
1326int isolate_lru_page(struct page *page)
1327{
1328	int ret = -EBUSY;
1329
1330	VM_BUG_ON_PAGE(!page_count(page), page);
1331
1332	if (PageLRU(page)) {
1333		struct zone *zone = page_zone(page);
1334		struct lruvec *lruvec;
1335
1336		spin_lock_irq(&zone->lru_lock);
1337		lruvec = mem_cgroup_page_lruvec(page, zone);
1338		if (PageLRU(page)) {
1339			int lru = page_lru(page);
 
1340			get_page(page);
1341			ClearPageLRU(page);
1342			del_page_from_lru_list(page, lruvec, lru);
1343			ret = 0;
1344		}
1345		spin_unlock_irq(&zone->lru_lock);
1346	}
1347	return ret;
1348}
1349
1350/*
1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352 * then get resheduled. When there are massive number of tasks doing page
1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354 * the LRU list will go small and be scanned faster than necessary, leading to
1355 * unnecessary swapping, thrashing and OOM.
1356 */
1357static int too_many_isolated(struct zone *zone, int file,
1358		struct scan_control *sc)
1359{
1360	unsigned long inactive, isolated;
1361
1362	if (current_is_kswapd())
1363		return 0;
1364
1365	if (!global_reclaim(sc))
1366		return 0;
1367
1368	if (file) {
1369		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371	} else {
1372		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374	}
1375
1376	/*
1377	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378	 * won't get blocked by normal direct-reclaimers, forming a circular
1379	 * deadlock.
1380	 */
1381	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382		inactive >>= 3;
1383
1384	return isolated > inactive;
1385}
1386
 
 
 
1387static noinline_for_stack void
1388putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
 
 
1389{
1390	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391	struct zone *zone = lruvec_zone(lruvec);
1392	LIST_HEAD(pages_to_free);
 
 
1393
1394	/*
1395	 * Put back any unfreeable pages.
1396	 */
 
1397	while (!list_empty(page_list)) {
1398		struct page *page = lru_to_page(page_list);
1399		int lru;
1400
1401		VM_BUG_ON_PAGE(PageLRU(page), page);
1402		list_del(&page->lru);
1403		if (unlikely(!page_evictable(page))) {
1404			spin_unlock_irq(&zone->lru_lock);
1405			putback_lru_page(page);
1406			spin_lock_irq(&zone->lru_lock);
1407			continue;
1408		}
1409
1410		lruvec = mem_cgroup_page_lruvec(page, zone);
1411
1412		SetPageLRU(page);
1413		lru = page_lru(page);
1414		add_page_to_lru_list(page, lruvec, lru);
1415
1416		if (is_active_lru(lru)) {
1417			int file = is_file_lru(lru);
1418			int numpages = hpage_nr_pages(page);
1419			reclaim_stat->recent_rotated[file] += numpages;
1420		}
1421		if (put_page_testzero(page)) {
1422			__ClearPageLRU(page);
1423			__ClearPageActive(page);
1424			del_page_from_lru_list(page, lruvec, lru);
1425
1426			if (unlikely(PageCompound(page))) {
1427				spin_unlock_irq(&zone->lru_lock);
1428				(*get_compound_page_dtor(page))(page);
1429				spin_lock_irq(&zone->lru_lock);
1430			} else
1431				list_add(&page->lru, &pages_to_free);
1432		}
1433	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434
1435	/*
1436	 * To save our caller's stack, now use input list for pages to free.
 
 
 
1437	 */
1438	list_splice(&pages_to_free, page_list);
 
 
 
 
 
1439}
1440
1441/*
1442 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1443 * of reclaimed pages
1444 */
1445static noinline_for_stack unsigned long
1446shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447		     struct scan_control *sc, enum lru_list lru)
1448{
1449	LIST_HEAD(page_list);
1450	unsigned long nr_scanned;
1451	unsigned long nr_reclaimed = 0;
1452	unsigned long nr_taken;
1453	unsigned long nr_dirty = 0;
1454	unsigned long nr_congested = 0;
1455	unsigned long nr_unqueued_dirty = 0;
1456	unsigned long nr_writeback = 0;
1457	unsigned long nr_immediate = 0;
1458	isolate_mode_t isolate_mode = 0;
1459	int file = is_file_lru(lru);
1460	struct zone *zone = lruvec_zone(lruvec);
1461	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462
1463	while (unlikely(too_many_isolated(zone, file, sc))) {
1464		congestion_wait(BLK_RW_ASYNC, HZ/10);
1465
1466		/* We are about to die and free our memory. Return now. */
1467		if (fatal_signal_pending(current))
1468			return SWAP_CLUSTER_MAX;
1469	}
1470
 
1471	lru_add_drain();
1472
1473	if (!sc->may_unmap)
1474		isolate_mode |= ISOLATE_UNMAPPED;
1475	if (!sc->may_writepage)
1476		isolate_mode |= ISOLATE_CLEAN;
1477
1478	spin_lock_irq(&zone->lru_lock);
1479
1480	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481				     &nr_scanned, sc, isolate_mode, lru);
1482
1483	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1485
1486	if (global_reclaim(sc)) {
1487		zone->pages_scanned += nr_scanned;
1488		if (current_is_kswapd())
1489			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
 
1490		else
1491			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
 
 
 
 
 
 
 
 
 
 
 
 
1492	}
1493	spin_unlock_irq(&zone->lru_lock);
1494
1495	if (nr_taken == 0)
 
1496		return 0;
1497
1498	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500				&nr_writeback, &nr_immediate,
1501				false);
1502
1503	spin_lock_irq(&zone->lru_lock);
1504
1505	reclaim_stat->recent_scanned[file] += nr_taken;
1506
1507	if (global_reclaim(sc)) {
1508		if (current_is_kswapd())
1509			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510					       nr_reclaimed);
1511		else
1512			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513					       nr_reclaimed);
1514	}
1515
1516	putback_inactive_pages(lruvec, &page_list);
1517
1518	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519
1520	spin_unlock_irq(&zone->lru_lock);
1521
1522	free_hot_cold_page_list(&page_list, 1);
1523
1524	/*
1525	 * If reclaim is isolating dirty pages under writeback, it implies
1526	 * that the long-lived page allocation rate is exceeding the page
1527	 * laundering rate. Either the global limits are not being effective
1528	 * at throttling processes due to the page distribution throughout
1529	 * zones or there is heavy usage of a slow backing device. The
1530	 * only option is to throttle from reclaim context which is not ideal
1531	 * as there is no guarantee the dirtying process is throttled in the
1532	 * same way balance_dirty_pages() manages.
1533	 *
1534	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535	 * of pages under pages flagged for immediate reclaim and stall if any
1536	 * are encountered in the nr_immediate check below.
1537	 */
1538	if (nr_writeback && nr_writeback == nr_taken)
1539		zone_set_flag(zone, ZONE_WRITEBACK);
1540
1541	/*
1542	 * memcg will stall in page writeback so only consider forcibly
1543	 * stalling for global reclaim
1544	 */
1545	if (global_reclaim(sc)) {
1546		/*
1547		 * Tag a zone as congested if all the dirty pages scanned were
1548		 * backed by a congested BDI and wait_iff_congested will stall.
1549		 */
1550		if (nr_dirty && nr_dirty == nr_congested)
1551			zone_set_flag(zone, ZONE_CONGESTED);
1552
1553		/*
1554		 * If dirty pages are scanned that are not queued for IO, it
1555		 * implies that flushers are not keeping up. In this case, flag
1556		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557		 * pages from reclaim context. It will forcibly stall in the
1558		 * next check.
1559		 */
1560		if (nr_unqueued_dirty == nr_taken)
1561			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1562
1563		/*
1564		 * In addition, if kswapd scans pages marked marked for
1565		 * immediate reclaim and under writeback (nr_immediate), it
1566		 * implies that pages are cycling through the LRU faster than
1567		 * they are written so also forcibly stall.
1568		 */
1569		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570			congestion_wait(BLK_RW_ASYNC, HZ/10);
1571	}
1572
1573	/*
1574	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1575	 * is congested. Allow kswapd to continue until it starts encountering
1576	 * unqueued dirty pages or cycling through the LRU too quickly.
1577	 */
1578	if (!sc->hibernation_mode && !current_is_kswapd())
1579		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
1581	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582		zone_idx(zone),
1583		nr_scanned, nr_reclaimed,
1584		sc->priority,
1585		trace_shrink_flags(file));
1586	return nr_reclaimed;
1587}
1588
1589/*
1590 * This moves pages from the active list to the inactive list.
1591 *
1592 * We move them the other way if the page is referenced by one or more
1593 * processes, from rmap.
1594 *
1595 * If the pages are mostly unmapped, the processing is fast and it is
1596 * appropriate to hold zone->lru_lock across the whole operation.  But if
1597 * the pages are mapped, the processing is slow (page_referenced()) so we
1598 * should drop zone->lru_lock around each page.  It's impossible to balance
1599 * this, so instead we remove the pages from the LRU while processing them.
1600 * It is safe to rely on PG_active against the non-LRU pages in here because
1601 * nobody will play with that bit on a non-LRU page.
1602 *
1603 * The downside is that we have to touch page->_count against each page.
1604 * But we had to alter page->flags anyway.
1605 */
1606
1607static void move_active_pages_to_lru(struct lruvec *lruvec,
1608				     struct list_head *list,
1609				     struct list_head *pages_to_free,
1610				     enum lru_list lru)
1611{
1612	struct zone *zone = lruvec_zone(lruvec);
1613	unsigned long pgmoved = 0;
 
1614	struct page *page;
1615	int nr_pages;
 
1616
1617	while (!list_empty(list)) {
1618		page = lru_to_page(list);
1619		lruvec = mem_cgroup_page_lruvec(page, zone);
1620
1621		VM_BUG_ON_PAGE(PageLRU(page), page);
1622		SetPageLRU(page);
1623
1624		nr_pages = hpage_nr_pages(page);
1625		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626		list_move(&page->lru, &lruvec->lists[lru]);
1627		pgmoved += nr_pages;
1628
1629		if (put_page_testzero(page)) {
1630			__ClearPageLRU(page);
1631			__ClearPageActive(page);
1632			del_page_from_lru_list(page, lruvec, lru);
1633
1634			if (unlikely(PageCompound(page))) {
1635				spin_unlock_irq(&zone->lru_lock);
1636				(*get_compound_page_dtor(page))(page);
1637				spin_lock_irq(&zone->lru_lock);
1638			} else
1639				list_add(&page->lru, pages_to_free);
1640		}
1641	}
1642	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643	if (!is_active_lru(lru))
1644		__count_vm_events(PGDEACTIVATE, pgmoved);
1645}
1646
1647static void shrink_active_list(unsigned long nr_to_scan,
1648			       struct lruvec *lruvec,
1649			       struct scan_control *sc,
1650			       enum lru_list lru)
1651{
1652	unsigned long nr_taken;
1653	unsigned long nr_scanned;
1654	unsigned long vm_flags;
1655	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1656	LIST_HEAD(l_active);
1657	LIST_HEAD(l_inactive);
1658	struct page *page;
1659	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660	unsigned long nr_rotated = 0;
1661	isolate_mode_t isolate_mode = 0;
1662	int file = is_file_lru(lru);
1663	struct zone *zone = lruvec_zone(lruvec);
1664
1665	lru_add_drain();
1666
1667	if (!sc->may_unmap)
1668		isolate_mode |= ISOLATE_UNMAPPED;
1669	if (!sc->may_writepage)
1670		isolate_mode |= ISOLATE_CLEAN;
1671
1672	spin_lock_irq(&zone->lru_lock);
1673
1674	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675				     &nr_scanned, sc, isolate_mode, lru);
1676	if (global_reclaim(sc))
1677		zone->pages_scanned += nr_scanned;
 
 
 
 
 
 
 
 
 
 
 
1678
1679	reclaim_stat->recent_scanned[file] += nr_taken;
1680
1681	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
 
 
 
1683	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684	spin_unlock_irq(&zone->lru_lock);
1685
1686	while (!list_empty(&l_hold)) {
1687		cond_resched();
1688		page = lru_to_page(&l_hold);
1689		list_del(&page->lru);
1690
1691		if (unlikely(!page_evictable(page))) {
1692			putback_lru_page(page);
1693			continue;
1694		}
1695
1696		if (unlikely(buffer_heads_over_limit)) {
1697			if (page_has_private(page) && trylock_page(page)) {
1698				if (page_has_private(page))
1699					try_to_release_page(page, 0);
1700				unlock_page(page);
1701			}
1702		}
1703
1704		if (page_referenced(page, 0, sc->target_mem_cgroup,
1705				    &vm_flags)) {
1706			nr_rotated += hpage_nr_pages(page);
1707			/*
1708			 * Identify referenced, file-backed active pages and
1709			 * give them one more trip around the active list. So
1710			 * that executable code get better chances to stay in
1711			 * memory under moderate memory pressure.  Anon pages
1712			 * are not likely to be evicted by use-once streaming
1713			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714			 * so we ignore them here.
1715			 */
1716			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717				list_add(&page->lru, &l_active);
1718				continue;
1719			}
1720		}
1721
1722		ClearPageActive(page);	/* we are de-activating */
1723		list_add(&page->lru, &l_inactive);
1724	}
1725
1726	/*
1727	 * Move pages back to the lru list.
1728	 */
1729	spin_lock_irq(&zone->lru_lock);
1730	/*
1731	 * Count referenced pages from currently used mappings as rotated,
1732	 * even though only some of them are actually re-activated.  This
1733	 * helps balance scan pressure between file and anonymous pages in
1734	 * get_scan_ratio.
1735	 */
1736	reclaim_stat->recent_rotated[file] += nr_rotated;
1737
1738	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
 
 
1740	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741	spin_unlock_irq(&zone->lru_lock);
1742
1743	free_hot_cold_page_list(&l_hold, 1);
1744}
1745
1746#ifdef CONFIG_SWAP
1747static int inactive_anon_is_low_global(struct zone *zone)
1748{
1749	unsigned long active, inactive;
1750
1751	active = zone_page_state(zone, NR_ACTIVE_ANON);
1752	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754	if (inactive * zone->inactive_ratio < active)
1755		return 1;
1756
1757	return 0;
1758}
1759
1760/**
1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762 * @lruvec: LRU vector to check
 
1763 *
1764 * Returns true if the zone does not have enough inactive anon pages,
1765 * meaning some active anon pages need to be deactivated.
1766 */
1767static int inactive_anon_is_low(struct lruvec *lruvec)
1768{
 
 
1769	/*
1770	 * If we don't have swap space, anonymous page deactivation
1771	 * is pointless.
1772	 */
1773	if (!total_swap_pages)
1774		return 0;
1775
1776	if (!mem_cgroup_disabled())
1777		return mem_cgroup_inactive_anon_is_low(lruvec);
1778
1779	return inactive_anon_is_low_global(lruvec_zone(lruvec));
 
1780}
1781#else
1782static inline int inactive_anon_is_low(struct lruvec *lruvec)
 
1783{
1784	return 0;
1785}
1786#endif
1787
 
 
 
 
 
 
 
 
 
 
1788/**
1789 * inactive_file_is_low - check if file pages need to be deactivated
1790 * @lruvec: LRU vector to check
 
1791 *
1792 * When the system is doing streaming IO, memory pressure here
1793 * ensures that active file pages get deactivated, until more
1794 * than half of the file pages are on the inactive list.
1795 *
1796 * Once we get to that situation, protect the system's working
1797 * set from being evicted by disabling active file page aging.
1798 *
1799 * This uses a different ratio than the anonymous pages, because
1800 * the page cache uses a use-once replacement algorithm.
1801 */
1802static int inactive_file_is_low(struct lruvec *lruvec)
1803{
1804	unsigned long inactive;
1805	unsigned long active;
1806
1807	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809
1810	return active > inactive;
 
1811}
1812
1813static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
 
1814{
1815	if (is_file_lru(lru))
1816		return inactive_file_is_low(lruvec);
1817	else
1818		return inactive_anon_is_low(lruvec);
1819}
1820
1821static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822				 struct lruvec *lruvec, struct scan_control *sc)
1823{
 
 
1824	if (is_active_lru(lru)) {
1825		if (inactive_list_is_low(lruvec, lru))
1826			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827		return 0;
1828	}
1829
1830	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831}
1832
1833static int vmscan_swappiness(struct scan_control *sc)
1834{
1835	if (global_reclaim(sc))
1836		return vm_swappiness;
1837	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838}
1839
1840enum scan_balance {
1841	SCAN_EQUAL,
1842	SCAN_FRACT,
1843	SCAN_ANON,
1844	SCAN_FILE,
1845};
1846
1847/*
1848 * Determine how aggressively the anon and file LRU lists should be
1849 * scanned.  The relative value of each set of LRU lists is determined
1850 * by looking at the fraction of the pages scanned we did rotate back
1851 * onto the active list instead of evict.
1852 *
1853 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855 */
1856static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857			   unsigned long *nr)
1858{
1859	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860	u64 fraction[2];
1861	u64 denominator = 0;	/* gcc */
1862	struct zone *zone = lruvec_zone(lruvec);
1863	unsigned long anon_prio, file_prio;
1864	enum scan_balance scan_balance;
1865	unsigned long anon, file;
 
 
 
1866	bool force_scan = false;
1867	unsigned long ap, fp;
1868	enum lru_list lru;
1869
1870	/*
1871	 * If the zone or memcg is small, nr[l] can be 0.  This
1872	 * results in no scanning on this priority and a potential
1873	 * priority drop.  Global direct reclaim can go to the next
1874	 * zone and tends to have no problems. Global kswapd is for
1875	 * zone balancing and it needs to scan a minimum amount. When
1876	 * reclaiming for a memcg, a priority drop can cause high
1877	 * latencies, so it's better to scan a minimum amount there as
1878	 * well.
1879	 */
1880	if (current_is_kswapd() && !zone_reclaimable(zone))
1881		force_scan = true;
1882	if (!global_reclaim(sc))
 
1883		force_scan = true;
1884
1885	/* If we have no swap space, do not bother scanning anon pages. */
1886	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887		scan_balance = SCAN_FILE;
1888		goto out;
1889	}
1890
1891	/*
1892	 * Global reclaim will swap to prevent OOM even with no
1893	 * swappiness, but memcg users want to use this knob to
1894	 * disable swapping for individual groups completely when
1895	 * using the memory controller's swap limit feature would be
1896	 * too expensive.
1897	 */
1898	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899		scan_balance = SCAN_FILE;
1900		goto out;
1901	}
1902
1903	/*
1904	 * Do not apply any pressure balancing cleverness when the
1905	 * system is close to OOM, scan both anon and file equally
1906	 * (unless the swappiness setting disagrees with swapping).
1907	 */
1908	if (!sc->priority && vmscan_swappiness(sc)) {
1909		scan_balance = SCAN_EQUAL;
1910		goto out;
1911	}
1912
1913	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1914		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1915	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1916		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917
1918	/*
1919	 * Prevent the reclaimer from falling into the cache trap: as
1920	 * cache pages start out inactive, every cache fault will tip
1921	 * the scan balance towards the file LRU.  And as the file LRU
1922	 * shrinks, so does the window for rotation from references.
1923	 * This means we have a runaway feedback loop where a tiny
1924	 * thrashing file LRU becomes infinitely more attractive than
1925	 * anon pages.  Try to detect this based on file LRU size.
1926	 */
1927	if (global_reclaim(sc)) {
1928		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1929
1930		if (unlikely(file + free <= high_wmark_pages(zone))) {
1931			scan_balance = SCAN_ANON;
 
 
 
 
1932			goto out;
1933		}
1934	}
1935
1936	/*
1937	 * There is enough inactive page cache, do not reclaim
1938	 * anything from the anonymous working set right now.
1939	 */
1940	if (!inactive_file_is_low(lruvec)) {
1941		scan_balance = SCAN_FILE;
1942		goto out;
1943	}
1944
1945	scan_balance = SCAN_FRACT;
1946
1947	/*
1948	 * With swappiness at 100, anonymous and file have the same priority.
1949	 * This scanning priority is essentially the inverse of IO cost.
1950	 */
1951	anon_prio = vmscan_swappiness(sc);
1952	file_prio = 200 - anon_prio;
1953
1954	/*
1955	 * OK, so we have swap space and a fair amount of page cache
1956	 * pages.  We use the recently rotated / recently scanned
1957	 * ratios to determine how valuable each cache is.
1958	 *
1959	 * Because workloads change over time (and to avoid overflow)
1960	 * we keep these statistics as a floating average, which ends
1961	 * up weighing recent references more than old ones.
1962	 *
1963	 * anon in [0], file in [1]
1964	 */
1965	spin_lock_irq(&zone->lru_lock);
1966	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1967		reclaim_stat->recent_scanned[0] /= 2;
1968		reclaim_stat->recent_rotated[0] /= 2;
1969	}
1970
1971	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1972		reclaim_stat->recent_scanned[1] /= 2;
1973		reclaim_stat->recent_rotated[1] /= 2;
1974	}
1975
1976	/*
1977	 * The amount of pressure on anon vs file pages is inversely
1978	 * proportional to the fraction of recently scanned pages on
1979	 * each list that were recently referenced and in active use.
1980	 */
1981	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1982	ap /= reclaim_stat->recent_rotated[0] + 1;
1983
1984	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1985	fp /= reclaim_stat->recent_rotated[1] + 1;
1986	spin_unlock_irq(&zone->lru_lock);
1987
1988	fraction[0] = ap;
1989	fraction[1] = fp;
1990	denominator = ap + fp + 1;
 
 
 
 
 
1991out:
1992	for_each_evictable_lru(lru) {
1993		int file = is_file_lru(lru);
1994		unsigned long size;
1995		unsigned long scan;
1996
1997		size = get_lru_size(lruvec, lru);
1998		scan = size >> sc->priority;
1999
2000		if (!scan && force_scan)
2001			scan = min(size, SWAP_CLUSTER_MAX);
2002
2003		switch (scan_balance) {
2004		case SCAN_EQUAL:
2005			/* Scan lists relative to size */
2006			break;
2007		case SCAN_FRACT:
2008			/*
2009			 * Scan types proportional to swappiness and
2010			 * their relative recent reclaim efficiency.
2011			 */
2012			scan = div64_u64(scan * fraction[file], denominator);
2013			break;
2014		case SCAN_FILE:
2015		case SCAN_ANON:
2016			/* Scan one type exclusively */
2017			if ((scan_balance == SCAN_FILE) != file)
2018				scan = 0;
2019			break;
2020		default:
2021			/* Look ma, no brain */
2022			BUG();
2023		}
2024		nr[lru] = scan;
2025	}
2026}
2027
2028/*
2029 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030 */
2031static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2032{
2033	unsigned long nr[NR_LRU_LISTS];
2034	unsigned long targets[NR_LRU_LISTS];
2035	unsigned long nr_to_scan;
2036	enum lru_list lru;
2037	unsigned long nr_reclaimed = 0;
2038	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039	struct blk_plug plug;
2040	bool scan_adjusted = false;
2041
2042	get_scan_count(lruvec, sc, nr);
2043
2044	/* Record the original scan target for proportional adjustments later */
2045	memcpy(targets, nr, sizeof(nr));
2046
2047	blk_start_plug(&plug);
2048	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2049					nr[LRU_INACTIVE_FILE]) {
2050		unsigned long nr_anon, nr_file, percentage;
2051		unsigned long nr_scanned;
2052
2053		for_each_evictable_lru(lru) {
2054			if (nr[lru]) {
2055				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2056				nr[lru] -= nr_to_scan;
2057
2058				nr_reclaimed += shrink_list(lru, nr_to_scan,
2059							    lruvec, sc);
2060			}
2061		}
2062
2063		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2064			continue;
2065
2066		/*
2067		 * For global direct reclaim, reclaim only the number of pages
2068		 * requested. Less care is taken to scan proportionally as it
2069		 * is more important to minimise direct reclaim stall latency
2070		 * than it is to properly age the LRU lists.
 
 
 
2071		 */
2072		if (global_reclaim(sc) && !current_is_kswapd())
2073			break;
2074
2075		/*
2076		 * For kswapd and memcg, reclaim at least the number of pages
2077		 * requested. Ensure that the anon and file LRUs shrink
2078		 * proportionally what was requested by get_scan_count(). We
2079		 * stop reclaiming one LRU and reduce the amount scanning
2080		 * proportional to the original scan target.
2081		 */
2082		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2083		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2084
2085		if (nr_file > nr_anon) {
2086			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2087						targets[LRU_ACTIVE_ANON] + 1;
2088			lru = LRU_BASE;
2089			percentage = nr_anon * 100 / scan_target;
2090		} else {
2091			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2092						targets[LRU_ACTIVE_FILE] + 1;
2093			lru = LRU_FILE;
2094			percentage = nr_file * 100 / scan_target;
2095		}
2096
2097		/* Stop scanning the smaller of the LRU */
2098		nr[lru] = 0;
2099		nr[lru + LRU_ACTIVE] = 0;
2100
2101		/*
2102		 * Recalculate the other LRU scan count based on its original
2103		 * scan target and the percentage scanning already complete
2104		 */
2105		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2106		nr_scanned = targets[lru] - nr[lru];
2107		nr[lru] = targets[lru] * (100 - percentage) / 100;
2108		nr[lru] -= min(nr[lru], nr_scanned);
2109
2110		lru += LRU_ACTIVE;
2111		nr_scanned = targets[lru] - nr[lru];
2112		nr[lru] = targets[lru] * (100 - percentage) / 100;
2113		nr[lru] -= min(nr[lru], nr_scanned);
2114
2115		scan_adjusted = true;
2116	}
2117	blk_finish_plug(&plug);
2118	sc->nr_reclaimed += nr_reclaimed;
2119
2120	/*
2121	 * Even if we did not try to evict anon pages at all, we want to
2122	 * rebalance the anon lru active/inactive ratio.
2123	 */
2124	if (inactive_anon_is_low(lruvec))
2125		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2126				   sc, LRU_ACTIVE_ANON);
2127
2128	throttle_vm_writeout(sc->gfp_mask);
2129}
2130
2131/* Use reclaim/compaction for costly allocs or under memory pressure */
2132static bool in_reclaim_compaction(struct scan_control *sc)
2133{
2134	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2135			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2136			 sc->priority < DEF_PRIORITY - 2))
2137		return true;
2138
2139	return false;
2140}
2141
2142/*
2143 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2144 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2145 * true if more pages should be reclaimed such that when the page allocator
2146 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2147 * It will give up earlier than that if there is difficulty reclaiming pages.
2148 */
2149static inline bool should_continue_reclaim(struct zone *zone,
2150					unsigned long nr_reclaimed,
2151					unsigned long nr_scanned,
2152					struct scan_control *sc)
2153{
2154	unsigned long pages_for_compaction;
2155	unsigned long inactive_lru_pages;
2156
2157	/* If not in reclaim/compaction mode, stop */
2158	if (!in_reclaim_compaction(sc))
2159		return false;
2160
2161	/* Consider stopping depending on scan and reclaim activity */
2162	if (sc->gfp_mask & __GFP_REPEAT) {
2163		/*
2164		 * For __GFP_REPEAT allocations, stop reclaiming if the
2165		 * full LRU list has been scanned and we are still failing
2166		 * to reclaim pages. This full LRU scan is potentially
2167		 * expensive but a __GFP_REPEAT caller really wants to succeed
2168		 */
2169		if (!nr_reclaimed && !nr_scanned)
2170			return false;
2171	} else {
2172		/*
2173		 * For non-__GFP_REPEAT allocations which can presumably
2174		 * fail without consequence, stop if we failed to reclaim
2175		 * any pages from the last SWAP_CLUSTER_MAX number of
2176		 * pages that were scanned. This will return to the
2177		 * caller faster at the risk reclaim/compaction and
2178		 * the resulting allocation attempt fails
2179		 */
2180		if (!nr_reclaimed)
2181			return false;
2182	}
2183
2184	/*
2185	 * If we have not reclaimed enough pages for compaction and the
2186	 * inactive lists are large enough, continue reclaiming
2187	 */
2188	pages_for_compaction = (2UL << sc->order);
2189	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2190	if (get_nr_swap_pages() > 0)
2191		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2192	if (sc->nr_reclaimed < pages_for_compaction &&
2193			inactive_lru_pages > pages_for_compaction)
2194		return true;
2195
2196	/* If compaction would go ahead or the allocation would succeed, stop */
2197	switch (compaction_suitable(zone, sc->order)) {
2198	case COMPACT_PARTIAL:
2199	case COMPACT_CONTINUE:
2200		return false;
2201	default:
2202		return true;
2203	}
2204}
2205
2206static void shrink_zone(struct zone *zone, struct scan_control *sc)
 
 
 
 
2207{
 
 
 
2208	unsigned long nr_reclaimed, nr_scanned;
 
2209
2210	do {
2211		struct mem_cgroup *root = sc->target_mem_cgroup;
2212		struct mem_cgroup_reclaim_cookie reclaim = {
2213			.zone = zone,
2214			.priority = sc->priority,
2215		};
2216		struct mem_cgroup *memcg;
2217
2218		nr_reclaimed = sc->nr_reclaimed;
2219		nr_scanned = sc->nr_scanned;
2220
2221		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2222		do {
2223			struct lruvec *lruvec;
 
2224
2225			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2226
2227			shrink_lruvec(lruvec, sc);
2228
2229			/*
2230			 * Direct reclaim and kswapd have to scan all memory
2231			 * cgroups to fulfill the overall scan target for the
2232			 * zone.
2233			 *
2234			 * Limit reclaim, on the other hand, only cares about
2235			 * nr_to_reclaim pages to be reclaimed and it will
2236			 * retry with decreasing priority if one round over the
2237			 * whole hierarchy is not sufficient.
2238			 */
2239			if (!global_reclaim(sc) &&
2240					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2241				mem_cgroup_iter_break(root, memcg);
2242				break;
2243			}
2244			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2245		} while (memcg);
2246
2247		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2248			   sc->nr_scanned - nr_scanned,
2249			   sc->nr_reclaimed - nr_reclaimed);
2250
2251	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2252					 sc->nr_scanned - nr_scanned, sc));
2253}
2254
2255/* Returns true if compaction should go ahead for a high-order request */
2256static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2257{
2258	unsigned long balance_gap, watermark;
2259	bool watermark_ok;
2260
2261	/* Do not consider compaction for orders reclaim is meant to satisfy */
2262	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2263		return false;
2264
2265	/*
2266	 * Compaction takes time to run and there are potentially other
2267	 * callers using the pages just freed. Continue reclaiming until
2268	 * there is a buffer of free pages available to give compaction
2269	 * a reasonable chance of completing and allocating the page
2270	 */
2271	balance_gap = min(low_wmark_pages(zone),
2272		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2273			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2274	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2275	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2276
2277	/*
2278	 * If compaction is deferred, reclaim up to a point where
2279	 * compaction will have a chance of success when re-enabled
2280	 */
2281	if (compaction_deferred(zone, sc->order))
2282		return watermark_ok;
2283
2284	/* If compaction is not ready to start, keep reclaiming */
2285	if (!compaction_suitable(zone, sc->order))
2286		return false;
 
2287
2288	return watermark_ok;
2289}
2290
2291/*
2292 * This is the direct reclaim path, for page-allocating processes.  We only
2293 * try to reclaim pages from zones which will satisfy the caller's allocation
2294 * request.
2295 *
2296 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2297 * Because:
2298 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2299 *    allocation or
2300 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2301 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2302 *    zone defense algorithm.
2303 *
2304 * If a zone is deemed to be full of pinned pages then just give it a light
2305 * scan then give up on it.
2306 *
2307 * This function returns true if a zone is being reclaimed for a costly
2308 * high-order allocation and compaction is ready to begin. This indicates to
2309 * the caller that it should consider retrying the allocation instead of
2310 * further reclaim.
2311 */
2312static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
 
2313{
2314	struct zoneref *z;
2315	struct zone *zone;
2316	unsigned long nr_soft_reclaimed;
2317	unsigned long nr_soft_scanned;
2318	unsigned long lru_pages = 0;
2319	bool aborted_reclaim = false;
2320	struct reclaim_state *reclaim_state = current->reclaim_state;
2321	gfp_t orig_mask;
2322	struct shrink_control shrink = {
2323		.gfp_mask = sc->gfp_mask,
2324	};
2325	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2326
2327	/*
2328	 * If the number of buffer_heads in the machine exceeds the maximum
2329	 * allowed level, force direct reclaim to scan the highmem zone as
2330	 * highmem pages could be pinning lowmem pages storing buffer_heads
2331	 */
2332	orig_mask = sc->gfp_mask;
2333	if (buffer_heads_over_limit)
2334		sc->gfp_mask |= __GFP_HIGHMEM;
2335
2336	nodes_clear(shrink.nodes_to_scan);
2337
2338	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2339					gfp_zone(sc->gfp_mask), sc->nodemask) {
2340		if (!populated_zone(zone))
2341			continue;
2342		/*
2343		 * Take care memory controller reclaiming has small influence
2344		 * to global LRU.
2345		 */
2346		if (global_reclaim(sc)) {
2347			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2348				continue;
2349
2350			lru_pages += zone_reclaimable_pages(zone);
2351			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2352
2353			if (sc->priority != DEF_PRIORITY &&
2354			    !zone_reclaimable(zone))
2355				continue;	/* Let kswapd poll it */
2356			if (IS_ENABLED(CONFIG_COMPACTION)) {
2357				/*
2358				 * If we already have plenty of memory free for
2359				 * compaction in this zone, don't free any more.
2360				 * Even though compaction is invoked for any
2361				 * non-zero order, only frequent costly order
2362				 * reclamation is disruptive enough to become a
2363				 * noticeable problem, like transparent huge
2364				 * page allocations.
2365				 */
2366				if ((zonelist_zone_idx(z) <= requested_highidx)
2367				    && compaction_ready(zone, sc)) {
2368					aborted_reclaim = true;
2369					continue;
2370				}
2371			}
2372			/*
2373			 * This steals pages from memory cgroups over softlimit
2374			 * and returns the number of reclaimed pages and
2375			 * scanned pages. This works for global memory pressure
2376			 * and balancing, not for a memcg's limit.
2377			 */
2378			nr_soft_scanned = 0;
2379			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2380						sc->order, sc->gfp_mask,
2381						&nr_soft_scanned);
2382			sc->nr_reclaimed += nr_soft_reclaimed;
2383			sc->nr_scanned += nr_soft_scanned;
2384			/* need some check for avoid more shrink_zone() */
2385		}
2386
2387		shrink_zone(zone, sc);
2388	}
 
2389
2390	/*
2391	 * Don't shrink slabs when reclaiming memory from over limit cgroups
2392	 * but do shrink slab at least once when aborting reclaim for
2393	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2394	 * pages.
2395	 */
2396	if (global_reclaim(sc)) {
2397		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2398		if (reclaim_state) {
2399			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2400			reclaim_state->reclaimed_slab = 0;
2401		}
2402	}
2403
2404	/*
2405	 * Restore to original mask to avoid the impact on the caller if we
2406	 * promoted it to __GFP_HIGHMEM.
2407	 */
2408	sc->gfp_mask = orig_mask;
2409
2410	return aborted_reclaim;
2411}
2412
2413/* All zones in zonelist are unreclaimable? */
2414static bool all_unreclaimable(struct zonelist *zonelist,
2415		struct scan_control *sc)
2416{
2417	struct zoneref *z;
2418	struct zone *zone;
2419
2420	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2421			gfp_zone(sc->gfp_mask), sc->nodemask) {
2422		if (!populated_zone(zone))
2423			continue;
2424		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2425			continue;
2426		if (zone_reclaimable(zone))
2427			return false;
2428	}
2429
2430	return true;
2431}
2432
2433/*
2434 * This is the main entry point to direct page reclaim.
2435 *
2436 * If a full scan of the inactive list fails to free enough memory then we
2437 * are "out of memory" and something needs to be killed.
2438 *
2439 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2440 * high - the zone may be full of dirty or under-writeback pages, which this
2441 * caller can't do much about.  We kick the writeback threads and take explicit
2442 * naps in the hope that some of these pages can be written.  But if the
2443 * allocating task holds filesystem locks which prevent writeout this might not
2444 * work, and the allocation attempt will fail.
2445 *
2446 * returns:	0, if no pages reclaimed
2447 * 		else, the number of pages reclaimed
2448 */
2449static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2450					  struct scan_control *sc)
 
2451{
 
2452	unsigned long total_scanned = 0;
 
 
 
2453	unsigned long writeback_threshold;
2454	bool aborted_reclaim;
2455
 
2456	delayacct_freepages_start();
2457
2458	if (global_reclaim(sc))
2459		count_vm_event(ALLOCSTALL);
2460
2461	do {
2462		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2463				sc->priority);
2464		sc->nr_scanned = 0;
2465		aborted_reclaim = shrink_zones(zonelist, sc);
 
 
 
 
 
 
 
 
 
 
 
 
2466
 
 
 
 
 
 
 
 
 
2467		total_scanned += sc->nr_scanned;
2468		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2469			goto out;
2470
2471		/*
2472		 * If we're getting trouble reclaiming, start doing
2473		 * writepage even in laptop mode.
2474		 */
2475		if (sc->priority < DEF_PRIORITY - 2)
2476			sc->may_writepage = 1;
2477
2478		/*
2479		 * Try to write back as many pages as we just scanned.  This
2480		 * tends to cause slow streaming writers to write data to the
2481		 * disk smoothly, at the dirtying rate, which is nice.   But
2482		 * that's undesirable in laptop mode, where we *want* lumpy
2483		 * writeout.  So in laptop mode, write out the whole world.
2484		 */
2485		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2486		if (total_scanned > writeback_threshold) {
2487			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2488						WB_REASON_TRY_TO_FREE_PAGES);
2489			sc->may_writepage = 1;
2490		}
2491	} while (--sc->priority >= 0 && !aborted_reclaim);
 
 
 
 
 
 
 
 
 
 
 
2492
2493out:
2494	delayacct_freepages_end();
 
2495
2496	if (sc->nr_reclaimed)
2497		return sc->nr_reclaimed;
2498
2499	/*
2500	 * As hibernation is going on, kswapd is freezed so that it can't mark
2501	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2502	 * check.
2503	 */
2504	if (oom_killer_disabled)
2505		return 0;
2506
2507	/* Aborted reclaim to try compaction? don't OOM, then */
2508	if (aborted_reclaim)
2509		return 1;
2510
2511	/* top priority shrink_zones still had more to do? don't OOM, then */
2512	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2513		return 1;
2514
2515	return 0;
2516}
2517
2518static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2519{
2520	struct zone *zone;
2521	unsigned long pfmemalloc_reserve = 0;
2522	unsigned long free_pages = 0;
2523	int i;
2524	bool wmark_ok;
2525
2526	for (i = 0; i <= ZONE_NORMAL; i++) {
2527		zone = &pgdat->node_zones[i];
2528		pfmemalloc_reserve += min_wmark_pages(zone);
2529		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2530	}
2531
2532	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2533
2534	/* kswapd must be awake if processes are being throttled */
2535	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2536		pgdat->classzone_idx = min(pgdat->classzone_idx,
2537						(enum zone_type)ZONE_NORMAL);
2538		wake_up_interruptible(&pgdat->kswapd_wait);
2539	}
2540
2541	return wmark_ok;
2542}
2543
2544/*
2545 * Throttle direct reclaimers if backing storage is backed by the network
2546 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2547 * depleted. kswapd will continue to make progress and wake the processes
2548 * when the low watermark is reached.
2549 *
2550 * Returns true if a fatal signal was delivered during throttling. If this
2551 * happens, the page allocator should not consider triggering the OOM killer.
2552 */
2553static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2554					nodemask_t *nodemask)
2555{
2556	struct zone *zone;
2557	int high_zoneidx = gfp_zone(gfp_mask);
2558	pg_data_t *pgdat;
2559
2560	/*
2561	 * Kernel threads should not be throttled as they may be indirectly
2562	 * responsible for cleaning pages necessary for reclaim to make forward
2563	 * progress. kjournald for example may enter direct reclaim while
2564	 * committing a transaction where throttling it could forcing other
2565	 * processes to block on log_wait_commit().
2566	 */
2567	if (current->flags & PF_KTHREAD)
2568		goto out;
2569
2570	/*
2571	 * If a fatal signal is pending, this process should not throttle.
2572	 * It should return quickly so it can exit and free its memory
2573	 */
2574	if (fatal_signal_pending(current))
2575		goto out;
2576
2577	/* Check if the pfmemalloc reserves are ok */
2578	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2579	pgdat = zone->zone_pgdat;
2580	if (pfmemalloc_watermark_ok(pgdat))
2581		goto out;
2582
2583	/* Account for the throttling */
2584	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2585
2586	/*
2587	 * If the caller cannot enter the filesystem, it's possible that it
2588	 * is due to the caller holding an FS lock or performing a journal
2589	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2590	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2591	 * blocked waiting on the same lock. Instead, throttle for up to a
2592	 * second before continuing.
2593	 */
2594	if (!(gfp_mask & __GFP_FS)) {
2595		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2596			pfmemalloc_watermark_ok(pgdat), HZ);
2597
2598		goto check_pending;
2599	}
2600
2601	/* Throttle until kswapd wakes the process */
2602	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2603		pfmemalloc_watermark_ok(pgdat));
2604
2605check_pending:
2606	if (fatal_signal_pending(current))
2607		return true;
2608
2609out:
2610	return false;
2611}
2612
2613unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2614				gfp_t gfp_mask, nodemask_t *nodemask)
2615{
2616	unsigned long nr_reclaimed;
2617	struct scan_control sc = {
2618		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2619		.may_writepage = !laptop_mode,
2620		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2621		.may_unmap = 1,
2622		.may_swap = 1,
2623		.order = order,
2624		.priority = DEF_PRIORITY,
2625		.target_mem_cgroup = NULL,
2626		.nodemask = nodemask,
2627	};
2628
2629	/*
2630	 * Do not enter reclaim if fatal signal was delivered while throttled.
2631	 * 1 is returned so that the page allocator does not OOM kill at this
2632	 * point.
2633	 */
2634	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2635		return 1;
2636
2637	trace_mm_vmscan_direct_reclaim_begin(order,
2638				sc.may_writepage,
2639				gfp_mask);
2640
2641	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2642
2643	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2644
2645	return nr_reclaimed;
2646}
2647
2648#ifdef CONFIG_MEMCG
2649
2650unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2651						gfp_t gfp_mask, bool noswap,
2652						struct zone *zone,
2653						unsigned long *nr_scanned)
2654{
2655	struct scan_control sc = {
2656		.nr_scanned = 0,
2657		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2658		.may_writepage = !laptop_mode,
2659		.may_unmap = 1,
2660		.may_swap = !noswap,
2661		.order = 0,
2662		.priority = 0,
2663		.target_mem_cgroup = memcg,
2664	};
2665	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2666
2667	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2669
2670	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2671						      sc.may_writepage,
2672						      sc.gfp_mask);
2673
2674	/*
2675	 * NOTE: Although we can get the priority field, using it
2676	 * here is not a good idea, since it limits the pages we can scan.
2677	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2678	 * will pick up pages from other mem cgroup's as well. We hack
2679	 * the priority and make it zero.
2680	 */
2681	shrink_lruvec(lruvec, &sc);
2682
2683	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2684
2685	*nr_scanned = sc.nr_scanned;
2686	return sc.nr_reclaimed;
2687}
2688
2689unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2690					   gfp_t gfp_mask,
2691					   bool noswap)
2692{
2693	struct zonelist *zonelist;
2694	unsigned long nr_reclaimed;
2695	int nid;
2696	struct scan_control sc = {
2697		.may_writepage = !laptop_mode,
2698		.may_unmap = 1,
2699		.may_swap = !noswap,
2700		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2701		.order = 0,
2702		.priority = DEF_PRIORITY,
2703		.target_mem_cgroup = memcg,
2704		.nodemask = NULL, /* we don't care the placement */
2705		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2706				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2707	};
 
 
 
2708
2709	/*
2710	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2711	 * take care of from where we get pages. So the node where we start the
2712	 * scan does not need to be the current node.
2713	 */
2714	nid = mem_cgroup_select_victim_node(memcg);
2715
2716	zonelist = NODE_DATA(nid)->node_zonelists;
2717
2718	trace_mm_vmscan_memcg_reclaim_begin(0,
2719					    sc.may_writepage,
2720					    sc.gfp_mask);
2721
2722	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2723
2724	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2725
2726	return nr_reclaimed;
2727}
2728#endif
2729
2730static void age_active_anon(struct zone *zone, struct scan_control *sc)
2731{
2732	struct mem_cgroup *memcg;
2733
2734	if (!total_swap_pages)
2735		return;
2736
2737	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2738	do {
2739		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2740
2741		if (inactive_anon_is_low(lruvec))
2742			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2743					   sc, LRU_ACTIVE_ANON);
2744
2745		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2746	} while (memcg);
2747}
2748
2749static bool zone_balanced(struct zone *zone, int order,
2750			  unsigned long balance_gap, int classzone_idx)
2751{
2752	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2753				    balance_gap, classzone_idx, 0))
2754		return false;
2755
2756	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2757	    !compaction_suitable(zone, order))
2758		return false;
2759
2760	return true;
2761}
2762
2763/*
2764 * pgdat_balanced() is used when checking if a node is balanced.
2765 *
2766 * For order-0, all zones must be balanced!
2767 *
2768 * For high-order allocations only zones that meet watermarks and are in a
2769 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2770 * total of balanced pages must be at least 25% of the zones allowed by
2771 * classzone_idx for the node to be considered balanced. Forcing all zones to
2772 * be balanced for high orders can cause excessive reclaim when there are
2773 * imbalanced zones.
2774 * The choice of 25% is due to
2775 *   o a 16M DMA zone that is balanced will not balance a zone on any
2776 *     reasonable sized machine
2777 *   o On all other machines, the top zone must be at least a reasonable
2778 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2779 *     would need to be at least 256M for it to be balance a whole node.
2780 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2781 *     to balance a node on its own. These seemed like reasonable ratios.
2782 */
2783static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
 
2784{
2785	unsigned long managed_pages = 0;
2786	unsigned long balanced_pages = 0;
2787	int i;
2788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789	/* Check the watermark levels */
2790	for (i = 0; i <= classzone_idx; i++) {
2791		struct zone *zone = pgdat->node_zones + i;
2792
2793		if (!populated_zone(zone))
2794			continue;
2795
2796		managed_pages += zone->managed_pages;
2797
2798		/*
2799		 * A special case here:
2800		 *
2801		 * balance_pgdat() skips over all_unreclaimable after
2802		 * DEF_PRIORITY. Effectively, it considers them balanced so
2803		 * they must be considered balanced here as well!
 
2804		 */
2805		if (!zone_reclaimable(zone)) {
2806			balanced_pages += zone->managed_pages;
2807			continue;
2808		}
2809
2810		if (zone_balanced(zone, order, 0, i))
2811			balanced_pages += zone->managed_pages;
2812		else if (!order)
2813			return false;
 
2814	}
2815
 
 
 
 
 
2816	if (order)
2817		return balanced_pages >= (managed_pages >> 2);
2818	else
2819		return true;
2820}
2821
2822/*
2823 * Prepare kswapd for sleeping. This verifies that there are no processes
2824 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2825 *
2826 * Returns true if kswapd is ready to sleep
2827 */
2828static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2829					int classzone_idx)
2830{
2831	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2832	if (remaining)
2833		return false;
2834
2835	/*
2836	 * There is a potential race between when kswapd checks its watermarks
2837	 * and a process gets throttled. There is also a potential race if
2838	 * processes get throttled, kswapd wakes, a large process exits therby
2839	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2840	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2841	 * so wake them now if necessary. If necessary, processes will wake
2842	 * kswapd and get throttled again
2843	 */
2844	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2845		wake_up(&pgdat->pfmemalloc_wait);
2846		return false;
2847	}
2848
2849	return pgdat_balanced(pgdat, order, classzone_idx);
2850}
2851
2852/*
2853 * kswapd shrinks the zone by the number of pages required to reach
2854 * the high watermark.
2855 *
2856 * Returns true if kswapd scanned at least the requested number of pages to
2857 * reclaim or if the lack of progress was due to pages under writeback.
2858 * This is used to determine if the scanning priority needs to be raised.
2859 */
2860static bool kswapd_shrink_zone(struct zone *zone,
2861			       int classzone_idx,
2862			       struct scan_control *sc,
2863			       unsigned long lru_pages,
2864			       unsigned long *nr_attempted)
2865{
2866	int testorder = sc->order;
2867	unsigned long balance_gap;
2868	struct reclaim_state *reclaim_state = current->reclaim_state;
2869	struct shrink_control shrink = {
2870		.gfp_mask = sc->gfp_mask,
2871	};
2872	bool lowmem_pressure;
2873
2874	/* Reclaim above the high watermark. */
2875	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2876
2877	/*
2878	 * Kswapd reclaims only single pages with compaction enabled. Trying
2879	 * too hard to reclaim until contiguous free pages have become
2880	 * available can hurt performance by evicting too much useful data
2881	 * from memory. Do not reclaim more than needed for compaction.
2882	 */
2883	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2884			compaction_suitable(zone, sc->order) !=
2885				COMPACT_SKIPPED)
2886		testorder = 0;
2887
2888	/*
2889	 * We put equal pressure on every zone, unless one zone has way too
2890	 * many pages free already. The "too many pages" is defined as the
2891	 * high wmark plus a "gap" where the gap is either the low
2892	 * watermark or 1% of the zone, whichever is smaller.
2893	 */
2894	balance_gap = min(low_wmark_pages(zone),
2895		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2896		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2897
2898	/*
2899	 * If there is no low memory pressure or the zone is balanced then no
2900	 * reclaim is necessary
2901	 */
2902	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2903	if (!lowmem_pressure && zone_balanced(zone, testorder,
2904						balance_gap, classzone_idx))
2905		return true;
2906
2907	shrink_zone(zone, sc);
2908	nodes_clear(shrink.nodes_to_scan);
2909	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2910
2911	reclaim_state->reclaimed_slab = 0;
2912	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2913	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2914
2915	/* Account for the number of pages attempted to reclaim */
2916	*nr_attempted += sc->nr_to_reclaim;
2917
2918	zone_clear_flag(zone, ZONE_WRITEBACK);
2919
2920	/*
2921	 * If a zone reaches its high watermark, consider it to be no longer
2922	 * congested. It's possible there are dirty pages backed by congested
2923	 * BDIs but as pressure is relieved, speculatively avoid congestion
2924	 * waits.
2925	 */
2926	if (zone_reclaimable(zone) &&
2927	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2928		zone_clear_flag(zone, ZONE_CONGESTED);
2929		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2930	}
2931
2932	return sc->nr_scanned >= sc->nr_to_reclaim;
2933}
2934
2935/*
2936 * For kswapd, balance_pgdat() will work across all this node's zones until
2937 * they are all at high_wmark_pages(zone).
2938 *
2939 * Returns the final order kswapd was reclaiming at
2940 *
2941 * There is special handling here for zones which are full of pinned pages.
2942 * This can happen if the pages are all mlocked, or if they are all used by
2943 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2944 * What we do is to detect the case where all pages in the zone have been
2945 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2946 * dead and from now on, only perform a short scan.  Basically we're polling
2947 * the zone for when the problem goes away.
2948 *
2949 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2950 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2951 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2952 * lower zones regardless of the number of free pages in the lower zones. This
2953 * interoperates with the page allocator fallback scheme to ensure that aging
2954 * of pages is balanced across the zones.
2955 */
2956static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2957							int *classzone_idx)
2958{
 
 
 
2959	int i;
2960	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
 
 
2961	unsigned long nr_soft_reclaimed;
2962	unsigned long nr_soft_scanned;
2963	struct scan_control sc = {
2964		.gfp_mask = GFP_KERNEL,
2965		.priority = DEF_PRIORITY,
2966		.may_unmap = 1,
2967		.may_swap = 1,
2968		.may_writepage = !laptop_mode,
 
 
 
 
2969		.order = order,
2970		.target_mem_cgroup = NULL,
 
 
 
2971	};
 
 
 
 
2972	count_vm_event(PAGEOUTRUN);
2973
2974	do {
2975		unsigned long lru_pages = 0;
2976		unsigned long nr_attempted = 0;
2977		bool raise_priority = true;
2978		bool pgdat_needs_compaction = (order > 0);
 
 
2979
2980		sc.nr_reclaimed = 0;
 
2981
2982		/*
2983		 * Scan in the highmem->dma direction for the highest
2984		 * zone which needs scanning
2985		 */
2986		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2987			struct zone *zone = pgdat->node_zones + i;
2988
2989			if (!populated_zone(zone))
2990				continue;
2991
2992			if (sc.priority != DEF_PRIORITY &&
2993			    !zone_reclaimable(zone))
2994				continue;
2995
2996			/*
2997			 * Do some background aging of the anon list, to give
2998			 * pages a chance to be referenced before reclaiming.
2999			 */
3000			age_active_anon(zone, &sc);
3001
3002			/*
3003			 * If the number of buffer_heads in the machine
3004			 * exceeds the maximum allowed level and this node
3005			 * has a highmem zone, force kswapd to reclaim from
3006			 * it to relieve lowmem pressure.
3007			 */
3008			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3009				end_zone = i;
3010				break;
3011			}
3012
3013			if (!zone_balanced(zone, order, 0, 0)) {
 
3014				end_zone = i;
3015				break;
3016			} else {
3017				/*
3018				 * If balanced, clear the dirty and congested
3019				 * flags
3020				 */
3021				zone_clear_flag(zone, ZONE_CONGESTED);
3022				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3023			}
3024		}
3025
3026		if (i < 0)
3027			goto out;
3028
3029		for (i = 0; i <= end_zone; i++) {
3030			struct zone *zone = pgdat->node_zones + i;
3031
3032			if (!populated_zone(zone))
3033				continue;
3034
3035			lru_pages += zone_reclaimable_pages(zone);
3036
3037			/*
3038			 * If any zone is currently balanced then kswapd will
3039			 * not call compaction as it is expected that the
3040			 * necessary pages are already available.
3041			 */
3042			if (pgdat_needs_compaction &&
3043					zone_watermark_ok(zone, order,
3044						low_wmark_pages(zone),
3045						*classzone_idx, 0))
3046				pgdat_needs_compaction = false;
3047		}
3048
3049		/*
3050		 * If we're getting trouble reclaiming, start doing writepage
3051		 * even in laptop mode.
3052		 */
3053		if (sc.priority < DEF_PRIORITY - 2)
3054			sc.may_writepage = 1;
3055
3056		/*
3057		 * Now scan the zone in the dma->highmem direction, stopping
3058		 * at the last zone which needs scanning.
3059		 *
3060		 * We do this because the page allocator works in the opposite
3061		 * direction.  This prevents the page allocator from allocating
3062		 * pages behind kswapd's direction of progress, which would
3063		 * cause too much scanning of the lower zones.
3064		 */
3065		for (i = 0; i <= end_zone; i++) {
3066			struct zone *zone = pgdat->node_zones + i;
 
 
3067
3068			if (!populated_zone(zone))
3069				continue;
3070
3071			if (sc.priority != DEF_PRIORITY &&
3072			    !zone_reclaimable(zone))
3073				continue;
3074
3075			sc.nr_scanned = 0;
3076
3077			nr_soft_scanned = 0;
3078			/*
3079			 * Call soft limit reclaim before calling shrink_zone.
3080			 */
3081			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3082							order, sc.gfp_mask,
3083							&nr_soft_scanned);
3084			sc.nr_reclaimed += nr_soft_reclaimed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085
3086			/*
3087			 * There should be no need to raise the scanning
3088			 * priority if enough pages are already being scanned
3089			 * that that high watermark would be met at 100%
3090			 * efficiency.
3091			 */
3092			if (kswapd_shrink_zone(zone, end_zone, &sc,
3093					lru_pages, &nr_attempted))
3094				raise_priority = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095		}
3096
3097		/*
3098		 * If the low watermark is met there is no need for processes
3099		 * to be throttled on pfmemalloc_wait as they should not be
3100		 * able to safely make forward progress. Wake them
 
3101		 */
3102		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3103				pfmemalloc_watermark_ok(pgdat))
3104			wake_up(&pgdat->pfmemalloc_wait);
 
 
 
 
 
 
 
 
 
 
 
3105
3106		/*
3107		 * Fragmentation may mean that the system cannot be rebalanced
3108		 * for high-order allocations in all zones. If twice the
3109		 * allocation size has been reclaimed and the zones are still
3110		 * not balanced then recheck the watermarks at order-0 to
3111		 * prevent kswapd reclaiming excessively. Assume that a
3112		 * process requested a high-order can direct reclaim/compact.
 
 
 
 
 
 
3113		 */
3114		if (order && sc.nr_reclaimed >= 2UL << order)
3115			order = sc.order = 0;
3116
3117		/* Check if kswapd should be suspending */
3118		if (try_to_freeze() || kthread_should_stop())
3119			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120
3121		/*
3122		 * Compact if necessary and kswapd is reclaiming at least the
3123		 * high watermark number of pages as requsted
3124		 */
3125		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3126			compact_pgdat(pgdat, order);
3127
3128		/*
3129		 * Raise priority if scanning rate is too low or there was no
3130		 * progress in reclaiming pages
3131		 */
3132		if (raise_priority || !sc.nr_reclaimed)
3133			sc.priority--;
3134	} while (sc.priority >= 1 &&
3135		 !pgdat_balanced(pgdat, order, *classzone_idx));
3136
3137out:
3138	/*
3139	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3140	 * makes a decision on the order we were last reclaiming at. However,
3141	 * if another caller entered the allocator slow path while kswapd
3142	 * was awake, order will remain at the higher level
3143	 */
3144	*classzone_idx = end_zone;
3145	return order;
3146}
3147
3148static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3149{
3150	long remaining = 0;
3151	DEFINE_WAIT(wait);
3152
3153	if (freezing(current) || kthread_should_stop())
3154		return;
3155
3156	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3157
3158	/* Try to sleep for a short interval */
3159	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3160		remaining = schedule_timeout(HZ/10);
3161		finish_wait(&pgdat->kswapd_wait, &wait);
3162		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3163	}
3164
3165	/*
3166	 * After a short sleep, check if it was a premature sleep. If not, then
3167	 * go fully to sleep until explicitly woken up.
3168	 */
3169	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3170		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3171
3172		/*
3173		 * vmstat counters are not perfectly accurate and the estimated
3174		 * value for counters such as NR_FREE_PAGES can deviate from the
3175		 * true value by nr_online_cpus * threshold. To avoid the zone
3176		 * watermarks being breached while under pressure, we reduce the
3177		 * per-cpu vmstat threshold while kswapd is awake and restore
3178		 * them before going back to sleep.
3179		 */
3180		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3181
3182		/*
3183		 * Compaction records what page blocks it recently failed to
3184		 * isolate pages from and skips them in the future scanning.
3185		 * When kswapd is going to sleep, it is reasonable to assume
3186		 * that pages and compaction may succeed so reset the cache.
3187		 */
3188		reset_isolation_suitable(pgdat);
3189
3190		if (!kthread_should_stop())
3191			schedule();
3192
3193		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3194	} else {
3195		if (remaining)
3196			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3197		else
3198			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3199	}
3200	finish_wait(&pgdat->kswapd_wait, &wait);
3201}
3202
3203/*
3204 * The background pageout daemon, started as a kernel thread
3205 * from the init process.
3206 *
3207 * This basically trickles out pages so that we have _some_
3208 * free memory available even if there is no other activity
3209 * that frees anything up. This is needed for things like routing
3210 * etc, where we otherwise might have all activity going on in
3211 * asynchronous contexts that cannot page things out.
3212 *
3213 * If there are applications that are active memory-allocators
3214 * (most normal use), this basically shouldn't matter.
3215 */
3216static int kswapd(void *p)
3217{
3218	unsigned long order, new_order;
3219	unsigned balanced_order;
3220	int classzone_idx, new_classzone_idx;
3221	int balanced_classzone_idx;
3222	pg_data_t *pgdat = (pg_data_t*)p;
3223	struct task_struct *tsk = current;
3224
3225	struct reclaim_state reclaim_state = {
3226		.reclaimed_slab = 0,
3227	};
3228	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3229
3230	lockdep_set_current_reclaim_state(GFP_KERNEL);
3231
3232	if (!cpumask_empty(cpumask))
3233		set_cpus_allowed_ptr(tsk, cpumask);
3234	current->reclaim_state = &reclaim_state;
3235
3236	/*
3237	 * Tell the memory management that we're a "memory allocator",
3238	 * and that if we need more memory we should get access to it
3239	 * regardless (see "__alloc_pages()"). "kswapd" should
3240	 * never get caught in the normal page freeing logic.
3241	 *
3242	 * (Kswapd normally doesn't need memory anyway, but sometimes
3243	 * you need a small amount of memory in order to be able to
3244	 * page out something else, and this flag essentially protects
3245	 * us from recursively trying to free more memory as we're
3246	 * trying to free the first piece of memory in the first place).
3247	 */
3248	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3249	set_freezable();
3250
3251	order = new_order = 0;
3252	balanced_order = 0;
3253	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3254	balanced_classzone_idx = classzone_idx;
3255	for ( ; ; ) {
3256		bool ret;
3257
3258		/*
3259		 * If the last balance_pgdat was unsuccessful it's unlikely a
3260		 * new request of a similar or harder type will succeed soon
3261		 * so consider going to sleep on the basis we reclaimed at
3262		 */
3263		if (balanced_classzone_idx >= new_classzone_idx &&
3264					balanced_order == new_order) {
3265			new_order = pgdat->kswapd_max_order;
3266			new_classzone_idx = pgdat->classzone_idx;
3267			pgdat->kswapd_max_order =  0;
3268			pgdat->classzone_idx = pgdat->nr_zones - 1;
3269		}
3270
3271		if (order < new_order || classzone_idx > new_classzone_idx) {
3272			/*
3273			 * Don't sleep if someone wants a larger 'order'
3274			 * allocation or has tigher zone constraints
3275			 */
3276			order = new_order;
3277			classzone_idx = new_classzone_idx;
3278		} else {
3279			kswapd_try_to_sleep(pgdat, balanced_order,
3280						balanced_classzone_idx);
3281			order = pgdat->kswapd_max_order;
3282			classzone_idx = pgdat->classzone_idx;
3283			new_order = order;
3284			new_classzone_idx = classzone_idx;
3285			pgdat->kswapd_max_order = 0;
3286			pgdat->classzone_idx = pgdat->nr_zones - 1;
3287		}
3288
3289		ret = try_to_freeze();
3290		if (kthread_should_stop())
3291			break;
3292
3293		/*
3294		 * We can speed up thawing tasks if we don't call balance_pgdat
3295		 * after returning from the refrigerator
3296		 */
3297		if (!ret) {
3298			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3299			balanced_classzone_idx = classzone_idx;
3300			balanced_order = balance_pgdat(pgdat, order,
3301						&balanced_classzone_idx);
3302		}
3303	}
3304
3305	current->reclaim_state = NULL;
3306	return 0;
3307}
3308
3309/*
3310 * A zone is low on free memory, so wake its kswapd task to service it.
3311 */
3312void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3313{
3314	pg_data_t *pgdat;
3315
3316	if (!populated_zone(zone))
3317		return;
3318
3319	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3320		return;
3321	pgdat = zone->zone_pgdat;
3322	if (pgdat->kswapd_max_order < order) {
3323		pgdat->kswapd_max_order = order;
3324		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3325	}
3326	if (!waitqueue_active(&pgdat->kswapd_wait))
3327		return;
3328	if (zone_balanced(zone, order, 0, 0))
3329		return;
3330
3331	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3332	wake_up_interruptible(&pgdat->kswapd_wait);
3333}
3334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3335#ifdef CONFIG_HIBERNATION
3336/*
3337 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3338 * freed pages.
3339 *
3340 * Rather than trying to age LRUs the aim is to preserve the overall
3341 * LRU order by reclaiming preferentially
3342 * inactive > active > active referenced > active mapped
3343 */
3344unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3345{
3346	struct reclaim_state reclaim_state;
3347	struct scan_control sc = {
3348		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3349		.may_swap = 1,
3350		.may_unmap = 1,
3351		.may_writepage = 1,
3352		.nr_to_reclaim = nr_to_reclaim,
3353		.hibernation_mode = 1,
3354		.order = 0,
3355		.priority = DEF_PRIORITY,
 
 
3356	};
3357	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358	struct task_struct *p = current;
3359	unsigned long nr_reclaimed;
3360
3361	p->flags |= PF_MEMALLOC;
3362	lockdep_set_current_reclaim_state(sc.gfp_mask);
3363	reclaim_state.reclaimed_slab = 0;
3364	p->reclaim_state = &reclaim_state;
3365
3366	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3367
3368	p->reclaim_state = NULL;
3369	lockdep_clear_current_reclaim_state();
3370	p->flags &= ~PF_MEMALLOC;
3371
3372	return nr_reclaimed;
3373}
3374#endif /* CONFIG_HIBERNATION */
3375
3376/* It's optimal to keep kswapds on the same CPUs as their memory, but
3377   not required for correctness.  So if the last cpu in a node goes
3378   away, we get changed to run anywhere: as the first one comes back,
3379   restore their cpu bindings. */
3380static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3381			void *hcpu)
3382{
3383	int nid;
3384
3385	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3386		for_each_node_state(nid, N_MEMORY) {
3387			pg_data_t *pgdat = NODE_DATA(nid);
3388			const struct cpumask *mask;
3389
3390			mask = cpumask_of_node(pgdat->node_id);
3391
3392			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3393				/* One of our CPUs online: restore mask */
3394				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3395		}
3396	}
3397	return NOTIFY_OK;
3398}
3399
3400/*
3401 * This kswapd start function will be called by init and node-hot-add.
3402 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3403 */
3404int kswapd_run(int nid)
3405{
3406	pg_data_t *pgdat = NODE_DATA(nid);
3407	int ret = 0;
3408
3409	if (pgdat->kswapd)
3410		return 0;
3411
3412	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3413	if (IS_ERR(pgdat->kswapd)) {
3414		/* failure at boot is fatal */
3415		BUG_ON(system_state == SYSTEM_BOOTING);
3416		pr_err("Failed to start kswapd on node %d\n", nid);
3417		ret = PTR_ERR(pgdat->kswapd);
3418		pgdat->kswapd = NULL;
3419	}
3420	return ret;
3421}
3422
3423/*
3424 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3425 * hold lock_memory_hotplug().
3426 */
3427void kswapd_stop(int nid)
3428{
3429	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3430
3431	if (kswapd) {
3432		kthread_stop(kswapd);
3433		NODE_DATA(nid)->kswapd = NULL;
3434	}
3435}
3436
3437static int __init kswapd_init(void)
3438{
3439	int nid;
3440
3441	swap_setup();
3442	for_each_node_state(nid, N_MEMORY)
3443 		kswapd_run(nid);
3444	hotcpu_notifier(cpu_callback, 0);
3445	return 0;
3446}
3447
3448module_init(kswapd_init)
3449
3450#ifdef CONFIG_NUMA
3451/*
3452 * Zone reclaim mode
3453 *
3454 * If non-zero call zone_reclaim when the number of free pages falls below
3455 * the watermarks.
3456 */
3457int zone_reclaim_mode __read_mostly;
3458
3459#define RECLAIM_OFF 0
3460#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3461#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3462#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3463
3464/*
3465 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3466 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3467 * a zone.
3468 */
3469#define ZONE_RECLAIM_PRIORITY 4
3470
3471/*
3472 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3473 * occur.
3474 */
3475int sysctl_min_unmapped_ratio = 1;
3476
3477/*
3478 * If the number of slab pages in a zone grows beyond this percentage then
3479 * slab reclaim needs to occur.
3480 */
3481int sysctl_min_slab_ratio = 5;
3482
3483static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3484{
3485	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3486	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3487		zone_page_state(zone, NR_ACTIVE_FILE);
3488
3489	/*
3490	 * It's possible for there to be more file mapped pages than
3491	 * accounted for by the pages on the file LRU lists because
3492	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3493	 */
3494	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3495}
3496
3497/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3498static long zone_pagecache_reclaimable(struct zone *zone)
3499{
3500	long nr_pagecache_reclaimable;
3501	long delta = 0;
3502
3503	/*
3504	 * If RECLAIM_SWAP is set, then all file pages are considered
3505	 * potentially reclaimable. Otherwise, we have to worry about
3506	 * pages like swapcache and zone_unmapped_file_pages() provides
3507	 * a better estimate
3508	 */
3509	if (zone_reclaim_mode & RECLAIM_SWAP)
3510		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3511	else
3512		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3513
3514	/* If we can't clean pages, remove dirty pages from consideration */
3515	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3516		delta += zone_page_state(zone, NR_FILE_DIRTY);
3517
3518	/* Watch for any possible underflows due to delta */
3519	if (unlikely(delta > nr_pagecache_reclaimable))
3520		delta = nr_pagecache_reclaimable;
3521
3522	return nr_pagecache_reclaimable - delta;
3523}
3524
3525/*
3526 * Try to free up some pages from this zone through reclaim.
3527 */
3528static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3529{
3530	/* Minimum pages needed in order to stay on node */
3531	const unsigned long nr_pages = 1 << order;
3532	struct task_struct *p = current;
3533	struct reclaim_state reclaim_state;
 
3534	struct scan_control sc = {
3535		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3536		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3537		.may_swap = 1,
3538		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3539		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
 
3540		.order = order,
3541		.priority = ZONE_RECLAIM_PRIORITY,
3542	};
3543	struct shrink_control shrink = {
3544		.gfp_mask = sc.gfp_mask,
3545	};
3546	unsigned long nr_slab_pages0, nr_slab_pages1;
3547
3548	cond_resched();
3549	/*
3550	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3551	 * and we also need to be able to write out pages for RECLAIM_WRITE
3552	 * and RECLAIM_SWAP.
3553	 */
3554	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3555	lockdep_set_current_reclaim_state(gfp_mask);
3556	reclaim_state.reclaimed_slab = 0;
3557	p->reclaim_state = &reclaim_state;
3558
3559	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3560		/*
3561		 * Free memory by calling shrink zone with increasing
3562		 * priorities until we have enough memory freed.
3563		 */
 
3564		do {
3565			shrink_zone(zone, &sc);
3566		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
 
3567	}
3568
3569	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3570	if (nr_slab_pages0 > zone->min_slab_pages) {
3571		/*
3572		 * shrink_slab() does not currently allow us to determine how
3573		 * many pages were freed in this zone. So we take the current
3574		 * number of slab pages and shake the slab until it is reduced
3575		 * by the same nr_pages that we used for reclaiming unmapped
3576		 * pages.
 
 
 
3577		 */
3578		nodes_clear(shrink.nodes_to_scan);
3579		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3580		for (;;) {
3581			unsigned long lru_pages = zone_reclaimable_pages(zone);
3582
3583			/* No reclaimable slab or very low memory pressure */
3584			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3585				break;
3586
3587			/* Freed enough memory */
3588			nr_slab_pages1 = zone_page_state(zone,
3589							NR_SLAB_RECLAIMABLE);
3590			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3591				break;
3592		}
3593
3594		/*
3595		 * Update nr_reclaimed by the number of slab pages we
3596		 * reclaimed from this zone.
3597		 */
3598		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3599		if (nr_slab_pages1 < nr_slab_pages0)
3600			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3601	}
3602
3603	p->reclaim_state = NULL;
3604	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3605	lockdep_clear_current_reclaim_state();
3606	return sc.nr_reclaimed >= nr_pages;
3607}
3608
3609int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3610{
3611	int node_id;
3612	int ret;
3613
3614	/*
3615	 * Zone reclaim reclaims unmapped file backed pages and
3616	 * slab pages if we are over the defined limits.
3617	 *
3618	 * A small portion of unmapped file backed pages is needed for
3619	 * file I/O otherwise pages read by file I/O will be immediately
3620	 * thrown out if the zone is overallocated. So we do not reclaim
3621	 * if less than a specified percentage of the zone is used by
3622	 * unmapped file backed pages.
3623	 */
3624	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3625	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3626		return ZONE_RECLAIM_FULL;
3627
3628	if (!zone_reclaimable(zone))
3629		return ZONE_RECLAIM_FULL;
3630
3631	/*
3632	 * Do not scan if the allocation should not be delayed.
3633	 */
3634	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3635		return ZONE_RECLAIM_NOSCAN;
3636
3637	/*
3638	 * Only run zone reclaim on the local zone or on zones that do not
3639	 * have associated processors. This will favor the local processor
3640	 * over remote processors and spread off node memory allocations
3641	 * as wide as possible.
3642	 */
3643	node_id = zone_to_nid(zone);
3644	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3645		return ZONE_RECLAIM_NOSCAN;
3646
3647	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3648		return ZONE_RECLAIM_NOSCAN;
3649
3650	ret = __zone_reclaim(zone, gfp_mask, order);
3651	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3652
3653	if (!ret)
3654		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3655
3656	return ret;
3657}
3658#endif
3659
3660/*
3661 * page_evictable - test whether a page is evictable
3662 * @page: the page to test
 
3663 *
3664 * Test whether page is evictable--i.e., should be placed on active/inactive
3665 * lists vs unevictable list.
 
3666 *
3667 * Reasons page might not be evictable:
3668 * (1) page's mapping marked unevictable
3669 * (2) page is part of an mlocked VMA
3670 *
3671 */
3672int page_evictable(struct page *page)
3673{
3674	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
 
 
 
 
 
 
 
3675}
3676
3677#ifdef CONFIG_SHMEM
3678/**
3679 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3680 * @pages:	array of pages to check
3681 * @nr_pages:	number of pages to check
3682 *
3683 * Checks pages for evictability and moves them to the appropriate lru list.
 
3684 *
3685 * This function is only used for SysV IPC SHM_UNLOCK.
 
3686 */
3687void check_move_unevictable_pages(struct page **pages, int nr_pages)
3688{
3689	struct lruvec *lruvec;
3690	struct zone *zone = NULL;
3691	int pgscanned = 0;
3692	int pgrescued = 0;
3693	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3694
3695	for (i = 0; i < nr_pages; i++) {
3696		struct page *page = pages[i];
3697		struct zone *pagezone;
3698
3699		pgscanned++;
3700		pagezone = page_zone(page);
3701		if (pagezone != zone) {
3702			if (zone)
3703				spin_unlock_irq(&zone->lru_lock);
3704			zone = pagezone;
3705			spin_lock_irq(&zone->lru_lock);
3706		}
3707		lruvec = mem_cgroup_page_lruvec(page, zone);
 
3708
3709		if (!PageLRU(page) || !PageUnevictable(page))
3710			continue;
3711
3712		if (page_evictable(page)) {
3713			enum lru_list lru = page_lru_base_type(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3714
3715			VM_BUG_ON_PAGE(PageActive(page), page);
3716			ClearPageUnevictable(page);
3717			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3718			add_page_to_lru_list(page, lruvec, lru);
3719			pgrescued++;
3720		}
 
 
 
 
 
3721	}
3722
3723	if (zone) {
3724		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3725		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726		spin_unlock_irq(&zone->lru_lock);
 
 
3727	}
3728}
3729#endif /* CONFIG_SHMEM */
3730
3731static void warn_scan_unevictable_pages(void)
 
 
 
 
 
 
 
 
 
 
 
 
3732{
3733	printk_once(KERN_WARNING
3734		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3735		    "disabled for lack of a legitimate use case.  If you have "
3736		    "one, please send an email to linux-mm@kvack.org.\n",
3737		    current->comm);
3738}
3739
3740/*
3741 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3742 * all nodes' unevictable lists for evictable pages
3743 */
3744unsigned long scan_unevictable_pages;
3745
3746int scan_unevictable_handler(struct ctl_table *table, int write,
3747			   void __user *buffer,
3748			   size_t *length, loff_t *ppos)
3749{
3750	warn_scan_unevictable_pages();
3751	proc_doulongvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
3752	scan_unevictable_pages = 0;
3753	return 0;
3754}
3755
3756#ifdef CONFIG_NUMA
3757/*
3758 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3759 * a specified node's per zone unevictable lists for evictable pages.
3760 */
3761
3762static ssize_t read_scan_unevictable_node(struct device *dev,
3763					  struct device_attribute *attr,
3764					  char *buf)
3765{
3766	warn_scan_unevictable_pages();
3767	return sprintf(buf, "0\n");	/* always zero; should fit... */
3768}
3769
3770static ssize_t write_scan_unevictable_node(struct device *dev,
3771					   struct device_attribute *attr,
3772					const char *buf, size_t count)
3773{
3774	warn_scan_unevictable_pages();
 
 
 
 
 
 
 
 
 
 
 
 
3775	return 1;
3776}
3777
3778
3779static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3780			read_scan_unevictable_node,
3781			write_scan_unevictable_node);
3782
3783int scan_unevictable_register_node(struct node *node)
3784{
3785	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3786}
3787
3788void scan_unevictable_unregister_node(struct node *node)
3789{
3790	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3791}
3792#endif