Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2013 Red Hat
  4 * Author: Rob Clark <robdclark@gmail.com>
  5 */
  6
  7#ifndef __MSM_GPU_H__
  8#define __MSM_GPU_H__
  9
 10#include <linux/adreno-smmu-priv.h>
 11#include <linux/clk.h>
 12#include <linux/devfreq.h>
 13#include <linux/interconnect.h>
 14#include <linux/pm_opp.h>
 15#include <linux/regulator/consumer.h>
 16
 17#include "msm_drv.h"
 18#include "msm_fence.h"
 19#include "msm_ringbuffer.h"
 20#include "msm_gem.h"
 21
 22struct msm_gem_submit;
 23struct msm_gpu_perfcntr;
 24struct msm_gpu_state;
 25struct msm_file_private;
 26
 27struct msm_gpu_config {
 28	const char *ioname;
 29	unsigned int nr_rings;
 30};
 31
 32/* So far, with hardware that I've seen to date, we can have:
 33 *  + zero, one, or two z180 2d cores
 34 *  + a3xx or a2xx 3d core, which share a common CP (the firmware
 35 *    for the CP seems to implement some different PM4 packet types
 36 *    but the basics of cmdstream submission are the same)
 37 *
 38 * Which means that the eventual complete "class" hierarchy, once
 39 * support for all past and present hw is in place, becomes:
 40 *  + msm_gpu
 41 *    + adreno_gpu
 42 *      + a3xx_gpu
 43 *      + a2xx_gpu
 44 *    + z180_gpu
 45 */
 46struct msm_gpu_funcs {
 47	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
 48			 uint32_t param, uint64_t *value, uint32_t *len);
 49	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
 50			 uint32_t param, uint64_t value, uint32_t len);
 51	int (*hw_init)(struct msm_gpu *gpu);
 52
 53	/**
 54	 * @ucode_load: Optional hook to upload fw to GEM objs
 55	 */
 56	int (*ucode_load)(struct msm_gpu *gpu);
 57
 58	int (*pm_suspend)(struct msm_gpu *gpu);
 59	int (*pm_resume)(struct msm_gpu *gpu);
 60	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
 61	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
 62	irqreturn_t (*irq)(struct msm_gpu *irq);
 63	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
 64	void (*recover)(struct msm_gpu *gpu);
 65	void (*destroy)(struct msm_gpu *gpu);
 66#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
 67	/* show GPU status in debugfs: */
 68	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
 69			struct drm_printer *p);
 70	/* for generation specific debugfs: */
 71	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
 72#endif
 73	/* note: gpu_busy() can assume that we have been pm_resumed */
 74	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
 75	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
 76	int (*gpu_state_put)(struct msm_gpu_state *state);
 77	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
 78	/* note: gpu_set_freq() can assume that we have been pm_resumed */
 79	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
 80			     bool suspended);
 81	struct msm_gem_address_space *(*create_address_space)
 82		(struct msm_gpu *gpu, struct platform_device *pdev);
 83	struct msm_gem_address_space *(*create_private_address_space)
 84		(struct msm_gpu *gpu);
 85	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
 86
 87	/**
 88	 * progress: Has the GPU made progress?
 89	 *
 90	 * Return true if GPU position in cmdstream has advanced (or changed)
 91	 * since the last call.  To avoid false negatives, this should account
 92	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
 93	 */
 94	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
 95};
 96
 97/* Additional state for iommu faults: */
 98struct msm_gpu_fault_info {
 99	u64 ttbr0;
100	unsigned long iova;
101	int flags;
102	const char *type;
103	const char *block;
104};
105
106/**
107 * struct msm_gpu_devfreq - devfreq related state
108 */
109struct msm_gpu_devfreq {
110	/** devfreq: devfreq instance */
111	struct devfreq *devfreq;
112
113	/** lock: lock for "suspended", "busy_cycles", and "time" */
114	struct mutex lock;
115
116	/**
117	 * idle_freq:
118	 *
119	 * Shadow frequency used while the GPU is idle.  From the PoV of
120	 * the devfreq governor, we are continuing to sample busyness and
121	 * adjust frequency while the GPU is idle, but we use this shadow
122	 * value as the GPU is actually clamped to minimum frequency while
123	 * it is inactive.
124	 */
125	unsigned long idle_freq;
126
127	/**
128	 * boost_constraint:
129	 *
130	 * A PM QoS constraint to boost min freq for a period of time
131	 * until the boost expires.
132	 */
133	struct dev_pm_qos_request boost_freq;
134
135	/**
136	 * busy_cycles: Last busy counter value, for calculating elapsed busy
137	 * cycles since last sampling period.
138	 */
139	u64 busy_cycles;
140
141	/** time: Time of last sampling period. */
142	ktime_t time;
143
144	/** idle_time: Time of last transition to idle: */
145	ktime_t idle_time;
146
147	/**
148	 * idle_work:
149	 *
150	 * Used to delay clamping to idle freq on active->idle transition.
151	 */
152	struct msm_hrtimer_work idle_work;
153
154	/**
155	 * boost_work:
156	 *
157	 * Used to reset the boost_constraint after the boost period has
158	 * elapsed
159	 */
160	struct msm_hrtimer_work boost_work;
161
162	/** suspended: tracks if we're suspended */
163	bool suspended;
164};
165
166struct msm_gpu {
167	const char *name;
168	struct drm_device *dev;
169	struct platform_device *pdev;
170	const struct msm_gpu_funcs *funcs;
171
172	struct adreno_smmu_priv adreno_smmu;
173
174	/* performance counters (hw & sw): */
175	spinlock_t perf_lock;
176	bool perfcntr_active;
177	struct {
178		bool active;
179		ktime_t time;
180	} last_sample;
181	uint32_t totaltime, activetime;    /* sw counters */
182	uint32_t last_cntrs[5];            /* hw counters */
183	const struct msm_gpu_perfcntr *perfcntrs;
184	uint32_t num_perfcntrs;
185
186	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
187	int nr_rings;
188
189	/**
190	 * sysprof_active:
191	 *
192	 * The count of contexts that have enabled system profiling.
193	 */
194	refcount_t sysprof_active;
195
196	/**
197	 * lock:
198	 *
199	 * General lock for serializing all the gpu things.
200	 *
201	 * TODO move to per-ring locking where feasible (ie. submit/retire
202	 * path, etc)
203	 */
204	struct mutex lock;
205
206	/**
207	 * active_submits:
208	 *
209	 * The number of submitted but not yet retired submits, used to
210	 * determine transitions between active and idle.
211	 *
212	 * Protected by active_lock
213	 */
214	int active_submits;
215
216	/** lock: protects active_submits and idle/active transitions */
217	struct mutex active_lock;
218
219	/* does gpu need hw_init? */
220	bool needs_hw_init;
221
222	/**
223	 * global_faults: number of GPU hangs not attributed to a particular
224	 * address space
225	 */
226	int global_faults;
227
228	void __iomem *mmio;
229	int irq;
230
231	struct msm_gem_address_space *aspace;
232
233	/* Power Control: */
234	struct regulator *gpu_reg, *gpu_cx;
235	struct clk_bulk_data *grp_clks;
236	int nr_clocks;
237	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
238	uint32_t fast_rate;
239
240	/* Hang and Inactivity Detection:
241	 */
242#define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
243
244#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
245#define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
246	struct timer_list hangcheck_timer;
247
248	/* Fault info for most recent iova fault: */
249	struct msm_gpu_fault_info fault_info;
250
251	/* work for handling GPU ioval faults: */
252	struct kthread_work fault_work;
253
254	/* work for handling GPU recovery: */
255	struct kthread_work recover_work;
256
257	/** retire_event: notified when submits are retired: */
258	wait_queue_head_t retire_event;
259
260	/* work for handling active-list retiring: */
261	struct kthread_work retire_work;
262
263	/* worker for retire/recover: */
264	struct kthread_worker *worker;
265
266	struct drm_gem_object *memptrs_bo;
267
268	struct msm_gpu_devfreq devfreq;
269
270	uint32_t suspend_count;
271
272	struct msm_gpu_state *crashstate;
273
274	/* True if the hardware supports expanded apriv (a650 and newer) */
275	bool hw_apriv;
276
277	/**
278	 * @allow_relocs: allow relocs in SUBMIT ioctl
279	 *
280	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
281	 * switch-over happened early enough in mesa a6xx bringup that we
282	 * can disallow relocs for a6xx and newer.
283	 */
284	bool allow_relocs;
285
286	struct thermal_cooling_device *cooling;
287};
288
289static inline struct msm_gpu *dev_to_gpu(struct device *dev)
290{
291	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
292
293	if (!adreno_smmu)
294		return NULL;
295
296	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
297}
298
299/* It turns out that all targets use the same ringbuffer size */
300#define MSM_GPU_RINGBUFFER_SZ SZ_32K
301#define MSM_GPU_RINGBUFFER_BLKSIZE 32
302
303#define MSM_GPU_RB_CNTL_DEFAULT \
304		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
305		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
306
307static inline bool msm_gpu_active(struct msm_gpu *gpu)
308{
309	int i;
310
311	for (i = 0; i < gpu->nr_rings; i++) {
312		struct msm_ringbuffer *ring = gpu->rb[i];
313
314		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
315			return true;
316	}
317
318	return false;
319}
320
321/* Perf-Counters:
322 * The select_reg and select_val are just there for the benefit of the child
323 * class that actually enables the perf counter..  but msm_gpu base class
324 * will handle sampling/displaying the counters.
325 */
326
327struct msm_gpu_perfcntr {
328	uint32_t select_reg;
329	uint32_t sample_reg;
330	uint32_t select_val;
331	const char *name;
332};
333
334/*
335 * The number of priority levels provided by drm gpu scheduler.  The
336 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
337 * cases, so we don't use it (no need for kernel generated jobs).
338 */
339#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
340
341/**
342 * struct msm_file_private - per-drm_file context
343 *
344 * @queuelock:    synchronizes access to submitqueues list
345 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
346 * @queueid:      counter incremented each time a submitqueue is created,
347 *                used to assign &msm_gpu_submitqueue.id
348 * @aspace:       the per-process GPU address-space
349 * @ref:          reference count
350 * @seqno:        unique per process seqno
351 */
352struct msm_file_private {
353	rwlock_t queuelock;
354	struct list_head submitqueues;
355	int queueid;
356	struct msm_gem_address_space *aspace;
357	struct kref ref;
358	int seqno;
359
360	/**
361	 * sysprof:
362	 *
363	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
364	 * intended to be used by system profiling tools like Mesa's
365	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
366	 *
367	 * Setting a value of 1 will preserve performance counters across
368	 * context switches.  Setting a value of 2 will in addition
369	 * suppress suspend.  (Performance counters lose state across
370	 * power collapse, which is undesirable for profiling in some
371	 * cases.)
372	 *
373	 * The value automatically reverts to zero when the drm device
374	 * file is closed.
375	 */
376	int sysprof;
377
378	/**
379	 * comm: Overridden task comm, see MSM_PARAM_COMM
380	 *
381	 * Accessed under msm_gpu::lock
382	 */
383	char *comm;
384
385	/**
386	 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
387	 *
388	 * Accessed under msm_gpu::lock
389	 */
390	char *cmdline;
391
392	/**
393	 * elapsed:
394	 *
395	 * The total (cumulative) elapsed time GPU was busy with rendering
396	 * from this context in ns.
397	 */
398	uint64_t elapsed_ns;
399
400	/**
401	 * cycles:
402	 *
403	 * The total (cumulative) GPU cycles elapsed attributed to this
404	 * context.
405	 */
406	uint64_t cycles;
407
408	/**
409	 * entities:
410	 *
411	 * Table of per-priority-level sched entities used by submitqueues
412	 * associated with this &drm_file.  Because some userspace apps
413	 * make assumptions about rendering from multiple gl contexts
414	 * (of the same priority) within the process happening in FIFO
415	 * order without requiring any fencing beyond MakeCurrent(), we
416	 * create at most one &drm_sched_entity per-process per-priority-
417	 * level.
418	 */
419	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
420
421	/**
422	 * ctx_mem:
423	 *
424	 * Total amount of memory of GEM buffers with handles attached for
425	 * this context.
426	 */
427	atomic64_t ctx_mem;
428};
429
430/**
431 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
432 *
433 * @gpu:        the gpu instance
434 * @prio:       the userspace priority level
435 * @ring_nr:    [out] the ringbuffer the userspace priority maps to
436 * @sched_prio: [out] the gpu scheduler priority level which the userspace
437 *              priority maps to
438 *
439 * With drm/scheduler providing it's own level of prioritization, our total
440 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
441 * Each ring is associated with it's own scheduler instance.  However, our
442 * UABI is that lower numerical values are higher priority.  So mapping the
443 * single userspace priority level into ring_nr and sched_prio takes some
444 * care.  The userspace provided priority (when a submitqueue is created)
445 * is mapped to ring nr and scheduler priority as such:
446 *
447 *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
448 *   sched_prio = NR_SCHED_PRIORITIES -
449 *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
450 *
451 * This allows generations without preemption (nr_rings==1) to have some
452 * amount of prioritization, and provides more priority levels for gens
453 * that do have preemption.
454 */
455static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
456		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
457{
458	unsigned rn, sp;
459
460	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
461
462	/* invert sched priority to map to higher-numeric-is-higher-
463	 * priority convention
464	 */
465	sp = NR_SCHED_PRIORITIES - sp - 1;
466
467	if (rn >= gpu->nr_rings)
468		return -EINVAL;
469
470	*ring_nr = rn;
471	*sched_prio = sp;
472
473	return 0;
474}
475
476/**
477 * struct msm_gpu_submitqueues - Userspace created context.
478 *
479 * A submitqueue is associated with a gl context or vk queue (or equiv)
480 * in userspace.
481 *
482 * @id:        userspace id for the submitqueue, unique within the drm_file
483 * @flags:     userspace flags for the submitqueue, specified at creation
484 *             (currently unusued)
485 * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
486 *             by the submitqueue's priority
487 * @faults:    the number of GPU hangs associated with this submitqueue
488 * @last_fence: the sequence number of the last allocated fence (for error
489 *             checking)
490 * @ctx:       the per-drm_file context associated with the submitqueue (ie.
491 *             which set of pgtables do submits jobs associated with the
492 *             submitqueue use)
493 * @node:      node in the context's list of submitqueues
494 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
495 *             seqno, protected by submitqueue lock
496 * @idr_lock:  for serializing access to fence_idr
497 * @lock:      submitqueue lock for serializing submits on a queue
498 * @ref:       reference count
499 * @entity:    the submit job-queue
500 */
501struct msm_gpu_submitqueue {
502	int id;
503	u32 flags;
504	u32 ring_nr;
505	int faults;
506	uint32_t last_fence;
507	struct msm_file_private *ctx;
508	struct list_head node;
509	struct idr fence_idr;
510	struct spinlock idr_lock;
511	struct mutex lock;
512	struct kref ref;
513	struct drm_sched_entity *entity;
514};
515
516struct msm_gpu_state_bo {
517	u64 iova;
518	size_t size;
519	u32 flags;
520	void *data;
521	bool encoded;
522	char name[32];
523};
524
525struct msm_gpu_state {
526	struct kref ref;
527	struct timespec64 time;
528
529	struct {
530		u64 iova;
531		u32 fence;
532		u32 seqno;
533		u32 rptr;
534		u32 wptr;
535		void *data;
536		int data_size;
537		bool encoded;
538	} ring[MSM_GPU_MAX_RINGS];
539
540	int nr_registers;
541	u32 *registers;
542
543	u32 rbbm_status;
544
545	char *comm;
546	char *cmd;
547
548	struct msm_gpu_fault_info fault_info;
549
550	int nr_bos;
551	struct msm_gpu_state_bo *bos;
552};
553
554static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
555{
556	writel(data, gpu->mmio + (reg << 2));
557}
558
559static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
560{
561	return readl(gpu->mmio + (reg << 2));
562}
563
564static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
565{
566	msm_rmw(gpu->mmio + (reg << 2), mask, or);
567}
568
569static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
570{
571	u64 val;
572
573	/*
574	 * Why not a readq here? Two reasons: 1) many of the LO registers are
575	 * not quad word aligned and 2) the GPU hardware designers have a bit
576	 * of a history of putting registers where they fit, especially in
577	 * spins. The longer a GPU family goes the higher the chance that
578	 * we'll get burned.  We could do a series of validity checks if we
579	 * wanted to, but really is a readq() that much better? Nah.
580	 */
581
582	/*
583	 * For some lo/hi registers (like perfcounters), the hi value is latched
584	 * when the lo is read, so make sure to read the lo first to trigger
585	 * that
586	 */
587	val = (u64) readl(gpu->mmio + (reg << 2));
588	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
589
590	return val;
591}
592
593static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
594{
595	/* Why not a writeq here? Read the screed above */
596	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
597	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
598}
599
600int msm_gpu_pm_suspend(struct msm_gpu *gpu);
601int msm_gpu_pm_resume(struct msm_gpu *gpu);
602
603void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
604			 struct drm_printer *p);
605
606int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
607struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
608		u32 id);
609int msm_submitqueue_create(struct drm_device *drm,
610		struct msm_file_private *ctx,
611		u32 prio, u32 flags, u32 *id);
612int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
613		struct drm_msm_submitqueue_query *args);
614int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
615void msm_submitqueue_close(struct msm_file_private *ctx);
616
617void msm_submitqueue_destroy(struct kref *kref);
618
619int msm_file_private_set_sysprof(struct msm_file_private *ctx,
620				 struct msm_gpu *gpu, int sysprof);
621void __msm_file_private_destroy(struct kref *kref);
622
623static inline void msm_file_private_put(struct msm_file_private *ctx)
624{
625	kref_put(&ctx->ref, __msm_file_private_destroy);
626}
627
628static inline struct msm_file_private *msm_file_private_get(
629	struct msm_file_private *ctx)
630{
631	kref_get(&ctx->ref);
632	return ctx;
633}
634
635void msm_devfreq_init(struct msm_gpu *gpu);
636void msm_devfreq_cleanup(struct msm_gpu *gpu);
637void msm_devfreq_resume(struct msm_gpu *gpu);
638void msm_devfreq_suspend(struct msm_gpu *gpu);
639void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
640void msm_devfreq_active(struct msm_gpu *gpu);
641void msm_devfreq_idle(struct msm_gpu *gpu);
642
643int msm_gpu_hw_init(struct msm_gpu *gpu);
644
645void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
646void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
647int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
648		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
649
650void msm_gpu_retire(struct msm_gpu *gpu);
651void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
652
653int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
654		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
655		const char *name, struct msm_gpu_config *config);
656
657struct msm_gem_address_space *
658msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
659
660void msm_gpu_cleanup(struct msm_gpu *gpu);
661
662struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
663void __init adreno_register(void);
664void __exit adreno_unregister(void);
665
666static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
667{
668	if (queue)
669		kref_put(&queue->ref, msm_submitqueue_destroy);
670}
671
672static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
673{
674	struct msm_gpu_state *state = NULL;
675
676	mutex_lock(&gpu->lock);
677
678	if (gpu->crashstate) {
679		kref_get(&gpu->crashstate->ref);
680		state = gpu->crashstate;
681	}
682
683	mutex_unlock(&gpu->lock);
684
685	return state;
686}
687
688static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
689{
690	mutex_lock(&gpu->lock);
691
692	if (gpu->crashstate) {
693		if (gpu->funcs->gpu_state_put(gpu->crashstate))
694			gpu->crashstate = NULL;
695	}
696
697	mutex_unlock(&gpu->lock);
698}
699
700/*
701 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
702 * support expanded privileges
703 */
704#define check_apriv(gpu, flags) \
705	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
706
707
708#endif /* __MSM_GPU_H__ */