Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/mm/ioremap.c
  3 *
  4 * Re-map IO memory to kernel address space so that we can access it.
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 *
  8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
  9 * Hacked to allow all architectures to build, and various cleanups
 10 * by Russell King
 11 *
 12 * This allows a driver to remap an arbitrary region of bus memory into
 13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 14 * so on with such remapped areas.
 15 *
 16 * Because the ARM only has a 32-bit address space we can't address the
 17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 18 * allows us to circumvent this restriction by splitting PCI space into
 19 * two 2GB chunks and mapping only one at a time into processor memory.
 20 * We use MMU protection domains to trap any attempt to access the bank
 21 * that is not currently mapped.  (This isn't fully implemented yet.)
 22 */
 23#include <linux/module.h>
 24#include <linux/errno.h>
 
 25#include <linux/mm.h>
 26#include <linux/vmalloc.h>
 27#include <linux/io.h>
 
 
 28
 
 29#include <asm/cputype.h>
 30#include <asm/cacheflush.h>
 
 31#include <asm/mmu_context.h>
 32#include <asm/pgalloc.h>
 33#include <asm/tlbflush.h>
 34#include <asm/sizes.h>
 
 35
 36#include <asm/mach/map.h>
 
 37#include "mm.h"
 38
 39/*
 40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
 41 * I/O regions in vm_struct->flags field.
 42 */
 43#define VM_ARM_SECTION_MAPPING	0x80000000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45int ioremap_page(unsigned long virt, unsigned long phys,
 46		 const struct mem_type *mtype)
 47{
 48	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
 49				  __pgprot(mtype->prot_pte));
 50}
 51EXPORT_SYMBOL(ioremap_page);
 52
 53void __check_kvm_seq(struct mm_struct *mm)
 
 54{
 55	unsigned int seq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56
 57	do {
 58		seq = init_mm.context.kvm_seq;
 59		memcpy(pgd_offset(mm, VMALLOC_START),
 60		       pgd_offset_k(VMALLOC_START),
 61		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
 62					pgd_index(VMALLOC_START)));
 63		mm->context.kvm_seq = seq;
 64	} while (seq != init_mm.context.kvm_seq);
 
 
 
 
 
 
 
 
 
 65}
 66
 67#ifndef CONFIG_SMP
 68/*
 69 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
 70 * the other CPUs will not see this change until their next context switch.
 71 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
 72 * which requires the new ioremap'd region to be referenced, the CPU will
 73 * reference the _old_ region.
 74 *
 75 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
 76 * mask the size back to 1MB aligned or we will overflow in the loop below.
 77 */
 78static void unmap_area_sections(unsigned long virt, unsigned long size)
 79{
 80	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
 81	pgd_t *pgd;
 82
 83	flush_cache_vunmap(addr, end);
 84	pgd = pgd_offset_k(addr);
 85	do {
 86		pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
 87
 88		pmd = *pmdp;
 89		if (!pmd_none(pmd)) {
 90			/*
 91			 * Clear the PMD from the page table, and
 92			 * increment the kvm sequence so others
 93			 * notice this change.
 94			 *
 95			 * Note: this is still racy on SMP machines.
 96			 */
 97			pmd_clear(pmdp);
 98			init_mm.context.kvm_seq++;
 99
100			/*
101			 * Free the page table, if there was one.
102			 */
103			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
104				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
105		}
106
107		addr += PGDIR_SIZE;
108		pgd++;
109	} while (addr < end);
110
111	/*
112	 * Ensure that the active_mm is up to date - we want to
113	 * catch any use-after-iounmap cases.
114	 */
115	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116		__check_kvm_seq(current->active_mm);
117
118	flush_tlb_kernel_range(virt, end);
119}
120
121static int
122remap_area_sections(unsigned long virt, unsigned long pfn,
123		    size_t size, const struct mem_type *type)
124{
125	unsigned long addr = virt, end = virt + size;
126	pgd_t *pgd;
127
128	/*
129	 * Remove and free any PTE-based mapping, and
130	 * sync the current kernel mapping.
131	 */
132	unmap_area_sections(virt, size);
133
134	pgd = pgd_offset_k(addr);
135	do {
136		pmd_t *pmd = pmd_offset(pgd, addr);
137
138		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
139		pfn += SZ_1M >> PAGE_SHIFT;
140		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141		pfn += SZ_1M >> PAGE_SHIFT;
142		flush_pmd_entry(pmd);
143
144		addr += PGDIR_SIZE;
145		pgd++;
146	} while (addr < end);
147
148	return 0;
149}
150
151static int
152remap_area_supersections(unsigned long virt, unsigned long pfn,
153			 size_t size, const struct mem_type *type)
154{
155	unsigned long addr = virt, end = virt + size;
156	pgd_t *pgd;
157
158	/*
159	 * Remove and free any PTE-based mapping, and
160	 * sync the current kernel mapping.
161	 */
162	unmap_area_sections(virt, size);
163
164	pgd = pgd_offset_k(virt);
165	do {
166		unsigned long super_pmd_val, i;
167
168		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
169				PMD_SECT_SUPER;
170		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
171
172		for (i = 0; i < 8; i++) {
173			pmd_t *pmd = pmd_offset(pgd, addr);
174
175			pmd[0] = __pmd(super_pmd_val);
176			pmd[1] = __pmd(super_pmd_val);
177			flush_pmd_entry(pmd);
178
179			addr += PGDIR_SIZE;
180			pgd++;
181		}
182
183		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
184	} while (addr < end);
185
186	return 0;
187}
188#endif
189
190void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
191	unsigned long offset, size_t size, unsigned int mtype, void *caller)
192{
193	const struct mem_type *type;
194	int err;
195	unsigned long addr;
196 	struct vm_struct * area;
 
197
 
198	/*
199	 * High mappings must be supersection aligned
200	 */
201	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
202		return NULL;
203
204	/*
205	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
206	 */
207	if (WARN_ON(pfn_valid(pfn)))
208		return NULL;
 
209
210	type = get_mem_type(mtype);
211	if (!type)
212		return NULL;
213
214	/*
215	 * Page align the mapping size, taking account of any offset.
216	 */
217	size = PAGE_ALIGN(offset + size);
218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219	area = get_vm_area_caller(size, VM_IOREMAP, caller);
220 	if (!area)
221 		return NULL;
222 	addr = (unsigned long)area->addr;
 
223
224#ifndef CONFIG_SMP
225	if (DOMAIN_IO == 0 &&
226	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
227	       cpu_is_xsc3()) && pfn >= 0x100000 &&
228	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
229		area->flags |= VM_ARM_SECTION_MAPPING;
230		err = remap_area_supersections(addr, pfn, size, type);
231	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
232		area->flags |= VM_ARM_SECTION_MAPPING;
233		err = remap_area_sections(addr, pfn, size, type);
234	} else
235#endif
236		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
237					 __pgprot(type->prot_pte));
238
239	if (err) {
240 		vunmap((void *)addr);
241 		return NULL;
242 	}
243
244	flush_cache_vmap(addr, addr + size);
245	return (void __iomem *) (offset + addr);
246}
247
248void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
249	unsigned int mtype, void *caller)
250{
251	unsigned long last_addr;
252 	unsigned long offset = phys_addr & ~PAGE_MASK;
253 	unsigned long pfn = __phys_to_pfn(phys_addr);
254
255 	/*
256 	 * Don't allow wraparound or zero size
257	 */
258	last_addr = phys_addr + size - 1;
259	if (!size || last_addr < phys_addr)
260		return NULL;
261
262	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
263			caller);
264}
265
266/*
267 * Remap an arbitrary physical address space into the kernel virtual
268 * address space. Needed when the kernel wants to access high addresses
269 * directly.
270 *
271 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
272 * have to convert them into an offset in a page-aligned mapping, but the
273 * caller shouldn't need to know that small detail.
274 */
275void __iomem *
276__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
277		  unsigned int mtype)
278{
279	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
280			__builtin_return_address(0));
281}
282EXPORT_SYMBOL(__arm_ioremap_pfn);
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284void __iomem *
285__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
286{
 
 
 
 
 
 
 
287	return __arm_ioremap_caller(phys_addr, size, mtype,
288			__builtin_return_address(0));
289}
290EXPORT_SYMBOL(__arm_ioremap);
291
292void __iounmap(volatile void __iomem *io_addr)
 
 
 
 
 
 
 
 
 
 
 
 
293{
294	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
295#ifndef CONFIG_SMP
296	struct vm_struct **p, *tmp;
297
298	/*
299	 * If this is a section based mapping we need to handle it
300	 * specially as the VM subsystem does not know how to handle
301	 * such a beast. We need the lock here b/c we need to clear
302	 * all the mappings before the area can be reclaimed
303	 * by someone else.
304	 */
305	write_lock(&vmlist_lock);
306	for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
307		if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
308			if (tmp->flags & VM_ARM_SECTION_MAPPING) {
309				unmap_area_sections((unsigned long)tmp->addr,
310						    tmp->size);
311			}
312			break;
313		}
 
 
314	}
315	write_unlock(&vmlist_lock);
316#endif
317
318	vunmap(addr);
319}
320EXPORT_SYMBOL(__iounmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/ioremap.c
  4 *
  5 * Re-map IO memory to kernel address space so that we can access it.
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 *
  9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
 10 * Hacked to allow all architectures to build, and various cleanups
 11 * by Russell King
 12 *
 13 * This allows a driver to remap an arbitrary region of bus memory into
 14 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 15 * so on with such remapped areas.
 16 *
 17 * Because the ARM only has a 32-bit address space we can't address the
 18 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 19 * allows us to circumvent this restriction by splitting PCI space into
 20 * two 2GB chunks and mapping only one at a time into processor memory.
 21 * We use MMU protection domains to trap any attempt to access the bank
 22 * that is not currently mapped.  (This isn't fully implemented yet.)
 23 */
 24#include <linux/module.h>
 25#include <linux/errno.h>
 26#include <linux/kasan.h>
 27#include <linux/mm.h>
 28#include <linux/vmalloc.h>
 29#include <linux/io.h>
 30#include <linux/sizes.h>
 31#include <linux/memblock.h>
 32
 33#include <asm/cp15.h>
 34#include <asm/cputype.h>
 35#include <asm/cacheflush.h>
 36#include <asm/early_ioremap.h>
 37#include <asm/mmu_context.h>
 38#include <asm/pgalloc.h>
 39#include <asm/tlbflush.h>
 40#include <asm/set_memory.h>
 41#include <asm/system_info.h>
 42
 43#include <asm/mach/map.h>
 44#include <asm/mach/pci.h>
 45#include "mm.h"
 46
 47
 48LIST_HEAD(static_vmlist);
 49
 50static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 51			size_t size, unsigned int mtype)
 52{
 53	struct static_vm *svm;
 54	struct vm_struct *vm;
 55
 56	list_for_each_entry(svm, &static_vmlist, list) {
 57		vm = &svm->vm;
 58		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 59			continue;
 60		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 61			continue;
 62
 63		if (vm->phys_addr > paddr ||
 64			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 65			continue;
 66
 67		return svm;
 68	}
 69
 70	return NULL;
 71}
 72
 73struct static_vm *find_static_vm_vaddr(void *vaddr)
 74{
 75	struct static_vm *svm;
 76	struct vm_struct *vm;
 77
 78	list_for_each_entry(svm, &static_vmlist, list) {
 79		vm = &svm->vm;
 80
 81		/* static_vmlist is ascending order */
 82		if (vm->addr > vaddr)
 83			break;
 84
 85		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 86			return svm;
 87	}
 88
 89	return NULL;
 90}
 91
 92void __init add_static_vm_early(struct static_vm *svm)
 93{
 94	struct static_vm *curr_svm;
 95	struct vm_struct *vm;
 96	void *vaddr;
 97
 98	vm = &svm->vm;
 99	vm_area_add_early(vm);
100	vaddr = vm->addr;
101
102	list_for_each_entry(curr_svm, &static_vmlist, list) {
103		vm = &curr_svm->vm;
104
105		if (vm->addr > vaddr)
106			break;
107	}
108	list_add_tail(&svm->list, &curr_svm->list);
109}
110
111int ioremap_page(unsigned long virt, unsigned long phys,
112		 const struct mem_type *mtype)
113{
114	return vmap_page_range(virt, virt + PAGE_SIZE, phys,
115			       __pgprot(mtype->prot_pte));
116}
117EXPORT_SYMBOL(ioremap_page);
118
119#ifdef CONFIG_KASAN
120static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
121{
122	return (unsigned long)kasan_mem_to_shadow((void *)addr);
123}
124#else
125static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
126{
127	return 0;
128}
129#endif
130
131static void memcpy_pgd(struct mm_struct *mm, unsigned long start,
132		       unsigned long end)
133{
134	end = ALIGN(end, PGDIR_SIZE);
135	memcpy(pgd_offset(mm, start), pgd_offset_k(start),
136	       sizeof(pgd_t) * (pgd_index(end) - pgd_index(start)));
137}
138
139void __check_vmalloc_seq(struct mm_struct *mm)
140{
141	int seq;
142
143	do {
144		seq = atomic_read_acquire(&init_mm.context.vmalloc_seq);
145		memcpy_pgd(mm, VMALLOC_START, VMALLOC_END);
146		if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) {
147			unsigned long start =
148				arm_kasan_mem_to_shadow(VMALLOC_START);
149			unsigned long end =
150				arm_kasan_mem_to_shadow(VMALLOC_END);
151			memcpy_pgd(mm, start, end);
152		}
153		/*
154		 * Use a store-release so that other CPUs that observe the
155		 * counter's new value are guaranteed to see the results of the
156		 * memcpy as well.
157		 */
158		atomic_set_release(&mm->context.vmalloc_seq, seq);
159	} while (seq != atomic_read(&init_mm.context.vmalloc_seq));
160}
161
162#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
163/*
164 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
165 * the other CPUs will not see this change until their next context switch.
166 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
167 * which requires the new ioremap'd region to be referenced, the CPU will
168 * reference the _old_ region.
169 *
170 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
171 * mask the size back to 1MB aligned or we will overflow in the loop below.
172 */
173static void unmap_area_sections(unsigned long virt, unsigned long size)
174{
175	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
176	pmd_t *pmdp = pmd_off_k(addr);
177
 
 
178	do {
179		pmd_t pmd = *pmdp;
180
 
181		if (!pmd_none(pmd)) {
182			/*
183			 * Clear the PMD from the page table, and
184			 * increment the vmalloc sequence so others
185			 * notice this change.
186			 *
187			 * Note: this is still racy on SMP machines.
188			 */
189			pmd_clear(pmdp);
190			atomic_inc_return_release(&init_mm.context.vmalloc_seq);
191
192			/*
193			 * Free the page table, if there was one.
194			 */
195			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
196				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
197		}
198
199		addr += PMD_SIZE;
200		pmdp += 2;
201	} while (addr < end);
202
203	/*
204	 * Ensure that the active_mm is up to date - we want to
205	 * catch any use-after-iounmap cases.
206	 */
207	check_vmalloc_seq(current->active_mm);
 
208
209	flush_tlb_kernel_range(virt, end);
210}
211
212static int
213remap_area_sections(unsigned long virt, unsigned long pfn,
214		    size_t size, const struct mem_type *type)
215{
216	unsigned long addr = virt, end = virt + size;
217	pmd_t *pmd = pmd_off_k(addr);
218
219	/*
220	 * Remove and free any PTE-based mapping, and
221	 * sync the current kernel mapping.
222	 */
223	unmap_area_sections(virt, size);
224
 
225	do {
 
 
226		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
227		pfn += SZ_1M >> PAGE_SHIFT;
228		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
229		pfn += SZ_1M >> PAGE_SHIFT;
230		flush_pmd_entry(pmd);
231
232		addr += PMD_SIZE;
233		pmd += 2;
234	} while (addr < end);
235
236	return 0;
237}
238
239static int
240remap_area_supersections(unsigned long virt, unsigned long pfn,
241			 size_t size, const struct mem_type *type)
242{
243	unsigned long addr = virt, end = virt + size;
244	pmd_t *pmd = pmd_off_k(addr);
245
246	/*
247	 * Remove and free any PTE-based mapping, and
248	 * sync the current kernel mapping.
249	 */
250	unmap_area_sections(virt, size);
 
 
251	do {
252		unsigned long super_pmd_val, i;
253
254		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
255				PMD_SECT_SUPER;
256		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
257
258		for (i = 0; i < 8; i++) {
 
 
259			pmd[0] = __pmd(super_pmd_val);
260			pmd[1] = __pmd(super_pmd_val);
261			flush_pmd_entry(pmd);
262
263			addr += PMD_SIZE;
264			pmd += 2;
265		}
266
267		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
268	} while (addr < end);
269
270	return 0;
271}
272#endif
273
274static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
275	unsigned long offset, size_t size, unsigned int mtype, void *caller)
276{
277	const struct mem_type *type;
278	int err;
279	unsigned long addr;
280	struct vm_struct *area;
281	phys_addr_t paddr = __pfn_to_phys(pfn);
282
283#ifndef CONFIG_ARM_LPAE
284	/*
285	 * High mappings must be supersection aligned
286	 */
287	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
 
 
 
 
 
 
288		return NULL;
289#endif
290
291	type = get_mem_type(mtype);
292	if (!type)
293		return NULL;
294
295	/*
296	 * Page align the mapping size, taking account of any offset.
297	 */
298	size = PAGE_ALIGN(offset + size);
299
300	/*
301	 * Try to reuse one of the static mapping whenever possible.
302	 */
303	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
304		struct static_vm *svm;
305
306		svm = find_static_vm_paddr(paddr, size, mtype);
307		if (svm) {
308			addr = (unsigned long)svm->vm.addr;
309			addr += paddr - svm->vm.phys_addr;
310			return (void __iomem *) (offset + addr);
311		}
312	}
313
314	/*
315	 * Don't allow RAM to be mapped with mismatched attributes - this
316	 * causes problems with ARMv6+
317	 */
318	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
319		    mtype != MT_MEMORY_RW))
320		return NULL;
321
322	area = get_vm_area_caller(size, VM_IOREMAP, caller);
323 	if (!area)
324 		return NULL;
325 	addr = (unsigned long)area->addr;
326	area->phys_addr = paddr;
327
328#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
329	if (DOMAIN_IO == 0 &&
330	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
331	       cpu_is_xsc3()) && pfn >= 0x100000 &&
332	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
333		area->flags |= VM_ARM_SECTION_MAPPING;
334		err = remap_area_supersections(addr, pfn, size, type);
335	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
336		area->flags |= VM_ARM_SECTION_MAPPING;
337		err = remap_area_sections(addr, pfn, size, type);
338	} else
339#endif
340		err = ioremap_page_range(addr, addr + size, paddr,
341					 __pgprot(type->prot_pte));
342
343	if (err) {
344 		vunmap((void *)addr);
345 		return NULL;
346 	}
347
348	flush_cache_vmap(addr, addr + size);
349	return (void __iomem *) (offset + addr);
350}
351
352void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
353	unsigned int mtype, void *caller)
354{
355	phys_addr_t last_addr;
356 	unsigned long offset = phys_addr & ~PAGE_MASK;
357 	unsigned long pfn = __phys_to_pfn(phys_addr);
358
359 	/*
360 	 * Don't allow wraparound or zero size
361	 */
362	last_addr = phys_addr + size - 1;
363	if (!size || last_addr < phys_addr)
364		return NULL;
365
366	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
367			caller);
368}
369
370/*
371 * Remap an arbitrary physical address space into the kernel virtual
372 * address space. Needed when the kernel wants to access high addresses
373 * directly.
374 *
375 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
376 * have to convert them into an offset in a page-aligned mapping, but the
377 * caller shouldn't need to know that small detail.
378 */
379void __iomem *
380__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
381		  unsigned int mtype)
382{
383	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
384					__builtin_return_address(0));
385}
386EXPORT_SYMBOL(__arm_ioremap_pfn);
387
388void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
389				      unsigned int, void *) =
390	__arm_ioremap_caller;
391
392void __iomem *ioremap(resource_size_t res_cookie, size_t size)
393{
394	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
395				   __builtin_return_address(0));
396}
397EXPORT_SYMBOL(ioremap);
398
399void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
400{
401	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
402				   __builtin_return_address(0));
403}
404EXPORT_SYMBOL(ioremap_cache);
405
406void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
407{
408	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
409				   __builtin_return_address(0));
410}
411EXPORT_SYMBOL(ioremap_wc);
412
413/*
414 * Remap an arbitrary physical address space into the kernel virtual
415 * address space as memory. Needed when the kernel wants to execute
416 * code in external memory. This is needed for reprogramming source
417 * clocks that would affect normal memory for example. Please see
418 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
419 */
420void __iomem *
421__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
422{
423	unsigned int mtype;
424
425	if (cached)
426		mtype = MT_MEMORY_RWX;
427	else
428		mtype = MT_MEMORY_RWX_NONCACHED;
429
430	return __arm_ioremap_caller(phys_addr, size, mtype,
431			__builtin_return_address(0));
432}
 
433
434void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
435{
436	set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
437}
438
439void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
440{
441	return (__force void *)arch_ioremap_caller(phys_addr, size,
442						   MT_MEMORY_RW,
443						   __builtin_return_address(0));
444}
445
446void iounmap(volatile void __iomem *io_addr)
447{
448	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
449	struct static_vm *svm;
 
450
451	/* If this is a static mapping, we must leave it alone */
452	svm = find_static_vm_vaddr(addr);
453	if (svm)
454		return;
455
456#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
457	{
458		struct vm_struct *vm;
459
460		vm = find_vm_area(addr);
461
462		/*
463		 * If this is a section based mapping we need to handle it
464		 * specially as the VM subsystem does not know how to handle
465		 * such a beast.
466		 */
467		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
468			unmap_area_sections((unsigned long)vm->addr, vm->size);
469	}
 
470#endif
471
472	vunmap(addr);
473}
474EXPORT_SYMBOL(iounmap);
475
476#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
477static int pci_ioremap_mem_type = MT_DEVICE;
478
479void pci_ioremap_set_mem_type(int mem_type)
480{
481	pci_ioremap_mem_type = mem_type;
482}
483
484int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
485{
486	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
487
488	if (!(res->flags & IORESOURCE_IO))
489		return -EINVAL;
490
491	if (res->end > IO_SPACE_LIMIT)
492		return -EINVAL;
493
494	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
495			       __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
496}
497EXPORT_SYMBOL(pci_remap_iospace);
498
499void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
500{
501	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
502				   __builtin_return_address(0));
503}
504EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
505#endif
506
507/*
508 * Must be called after early_fixmap_init
509 */
510void __init early_ioremap_init(void)
511{
512	early_ioremap_setup();
513}
514
515bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
516				 unsigned long flags)
517{
518	unsigned long pfn = PHYS_PFN(offset);
519
520	return memblock_is_map_memory(pfn);
521}