Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/arm/mm/ioremap.c
  3 *
  4 * Re-map IO memory to kernel address space so that we can access it.
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 *
  8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
  9 * Hacked to allow all architectures to build, and various cleanups
 10 * by Russell King
 11 *
 12 * This allows a driver to remap an arbitrary region of bus memory into
 13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 14 * so on with such remapped areas.
 15 *
 16 * Because the ARM only has a 32-bit address space we can't address the
 17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 18 * allows us to circumvent this restriction by splitting PCI space into
 19 * two 2GB chunks and mapping only one at a time into processor memory.
 20 * We use MMU protection domains to trap any attempt to access the bank
 21 * that is not currently mapped.  (This isn't fully implemented yet.)
 22 */
 23#include <linux/module.h>
 24#include <linux/errno.h>
 25#include <linux/mm.h>
 26#include <linux/vmalloc.h>
 27#include <linux/io.h>
 
 28
 
 29#include <asm/cputype.h>
 30#include <asm/cacheflush.h>
 
 31#include <asm/mmu_context.h>
 32#include <asm/pgalloc.h>
 33#include <asm/tlbflush.h>
 34#include <asm/sizes.h>
 35
 36#include <asm/mach/map.h>
 
 37#include "mm.h"
 38
 39/*
 40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
 41 * I/O regions in vm_struct->flags field.
 42 */
 43#define VM_ARM_SECTION_MAPPING	0x80000000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45int ioremap_page(unsigned long virt, unsigned long phys,
 46		 const struct mem_type *mtype)
 47{
 48	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
 49				  __pgprot(mtype->prot_pte));
 50}
 51EXPORT_SYMBOL(ioremap_page);
 52
 53void __check_kvm_seq(struct mm_struct *mm)
 54{
 55	unsigned int seq;
 56
 57	do {
 58		seq = init_mm.context.kvm_seq;
 59		memcpy(pgd_offset(mm, VMALLOC_START),
 60		       pgd_offset_k(VMALLOC_START),
 61		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
 62					pgd_index(VMALLOC_START)));
 63		mm->context.kvm_seq = seq;
 64	} while (seq != init_mm.context.kvm_seq);
 65}
 66
 67#ifndef CONFIG_SMP
 68/*
 69 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
 70 * the other CPUs will not see this change until their next context switch.
 71 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
 72 * which requires the new ioremap'd region to be referenced, the CPU will
 73 * reference the _old_ region.
 74 *
 75 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
 76 * mask the size back to 1MB aligned or we will overflow in the loop below.
 77 */
 78static void unmap_area_sections(unsigned long virt, unsigned long size)
 79{
 80	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
 81	pgd_t *pgd;
 
 
 82
 83	flush_cache_vunmap(addr, end);
 84	pgd = pgd_offset_k(addr);
 
 
 85	do {
 86		pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
 87
 88		pmd = *pmdp;
 89		if (!pmd_none(pmd)) {
 90			/*
 91			 * Clear the PMD from the page table, and
 92			 * increment the kvm sequence so others
 93			 * notice this change.
 94			 *
 95			 * Note: this is still racy on SMP machines.
 96			 */
 97			pmd_clear(pmdp);
 98			init_mm.context.kvm_seq++;
 99
100			/*
101			 * Free the page table, if there was one.
102			 */
103			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
104				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
105		}
106
107		addr += PGDIR_SIZE;
108		pgd++;
109	} while (addr < end);
110
111	/*
112	 * Ensure that the active_mm is up to date - we want to
113	 * catch any use-after-iounmap cases.
114	 */
115	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116		__check_kvm_seq(current->active_mm);
117
118	flush_tlb_kernel_range(virt, end);
119}
120
121static int
122remap_area_sections(unsigned long virt, unsigned long pfn,
123		    size_t size, const struct mem_type *type)
124{
125	unsigned long addr = virt, end = virt + size;
126	pgd_t *pgd;
 
 
127
128	/*
129	 * Remove and free any PTE-based mapping, and
130	 * sync the current kernel mapping.
131	 */
132	unmap_area_sections(virt, size);
133
134	pgd = pgd_offset_k(addr);
 
 
135	do {
136		pmd_t *pmd = pmd_offset(pgd, addr);
137
138		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
139		pfn += SZ_1M >> PAGE_SHIFT;
140		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141		pfn += SZ_1M >> PAGE_SHIFT;
142		flush_pmd_entry(pmd);
143
144		addr += PGDIR_SIZE;
145		pgd++;
146	} while (addr < end);
147
148	return 0;
149}
150
151static int
152remap_area_supersections(unsigned long virt, unsigned long pfn,
153			 size_t size, const struct mem_type *type)
154{
155	unsigned long addr = virt, end = virt + size;
156	pgd_t *pgd;
 
 
157
158	/*
159	 * Remove and free any PTE-based mapping, and
160	 * sync the current kernel mapping.
161	 */
162	unmap_area_sections(virt, size);
163
164	pgd = pgd_offset_k(virt);
 
 
165	do {
166		unsigned long super_pmd_val, i;
167
168		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
169				PMD_SECT_SUPER;
170		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
171
172		for (i = 0; i < 8; i++) {
173			pmd_t *pmd = pmd_offset(pgd, addr);
174
175			pmd[0] = __pmd(super_pmd_val);
176			pmd[1] = __pmd(super_pmd_val);
177			flush_pmd_entry(pmd);
178
179			addr += PGDIR_SIZE;
180			pgd++;
181		}
182
183		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
184	} while (addr < end);
185
186	return 0;
187}
188#endif
189
190void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
191	unsigned long offset, size_t size, unsigned int mtype, void *caller)
192{
193	const struct mem_type *type;
194	int err;
195	unsigned long addr;
196 	struct vm_struct * area;
 
197
 
198	/*
199	 * High mappings must be supersection aligned
200	 */
201	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
202		return NULL;
203
204	/*
205	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
206	 */
207	if (WARN_ON(pfn_valid(pfn)))
208		return NULL;
 
209
210	type = get_mem_type(mtype);
211	if (!type)
212		return NULL;
213
214	/*
215	 * Page align the mapping size, taking account of any offset.
216	 */
217	size = PAGE_ALIGN(offset + size);
218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219	area = get_vm_area_caller(size, VM_IOREMAP, caller);
220 	if (!area)
221 		return NULL;
222 	addr = (unsigned long)area->addr;
 
223
224#ifndef CONFIG_SMP
225	if (DOMAIN_IO == 0 &&
226	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
227	       cpu_is_xsc3()) && pfn >= 0x100000 &&
228	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
229		area->flags |= VM_ARM_SECTION_MAPPING;
230		err = remap_area_supersections(addr, pfn, size, type);
231	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
232		area->flags |= VM_ARM_SECTION_MAPPING;
233		err = remap_area_sections(addr, pfn, size, type);
234	} else
235#endif
236		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
237					 __pgprot(type->prot_pte));
238
239	if (err) {
240 		vunmap((void *)addr);
241 		return NULL;
242 	}
243
244	flush_cache_vmap(addr, addr + size);
245	return (void __iomem *) (offset + addr);
246}
247
248void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
249	unsigned int mtype, void *caller)
250{
251	unsigned long last_addr;
252 	unsigned long offset = phys_addr & ~PAGE_MASK;
253 	unsigned long pfn = __phys_to_pfn(phys_addr);
254
255 	/*
256 	 * Don't allow wraparound or zero size
257	 */
258	last_addr = phys_addr + size - 1;
259	if (!size || last_addr < phys_addr)
260		return NULL;
261
262	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
263			caller);
264}
265
266/*
267 * Remap an arbitrary physical address space into the kernel virtual
268 * address space. Needed when the kernel wants to access high addresses
269 * directly.
270 *
271 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
272 * have to convert them into an offset in a page-aligned mapping, but the
273 * caller shouldn't need to know that small detail.
274 */
275void __iomem *
276__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
277		  unsigned int mtype)
278{
279	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
280			__builtin_return_address(0));
281}
282EXPORT_SYMBOL(__arm_ioremap_pfn);
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284void __iomem *
285__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
286{
 
 
 
 
 
 
 
287	return __arm_ioremap_caller(phys_addr, size, mtype,
288			__builtin_return_address(0));
289}
290EXPORT_SYMBOL(__arm_ioremap);
 
 
 
 
 
 
291
292void __iounmap(volatile void __iomem *io_addr)
293{
294	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
295#ifndef CONFIG_SMP
296	struct vm_struct **p, *tmp;
297
298	/*
299	 * If this is a section based mapping we need to handle it
300	 * specially as the VM subsystem does not know how to handle
301	 * such a beast. We need the lock here b/c we need to clear
302	 * all the mappings before the area can be reclaimed
303	 * by someone else.
304	 */
305	write_lock(&vmlist_lock);
306	for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
307		if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
308			if (tmp->flags & VM_ARM_SECTION_MAPPING) {
309				unmap_area_sections((unsigned long)tmp->addr,
310						    tmp->size);
311			}
312			break;
313		}
 
 
314	}
315	write_unlock(&vmlist_lock);
316#endif
317
318	vunmap(addr);
319}
320EXPORT_SYMBOL(__iounmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.10.11
  1/*
  2 *  linux/arch/arm/mm/ioremap.c
  3 *
  4 * Re-map IO memory to kernel address space so that we can access it.
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 *
  8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
  9 * Hacked to allow all architectures to build, and various cleanups
 10 * by Russell King
 11 *
 12 * This allows a driver to remap an arbitrary region of bus memory into
 13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 14 * so on with such remapped areas.
 15 *
 16 * Because the ARM only has a 32-bit address space we can't address the
 17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 18 * allows us to circumvent this restriction by splitting PCI space into
 19 * two 2GB chunks and mapping only one at a time into processor memory.
 20 * We use MMU protection domains to trap any attempt to access the bank
 21 * that is not currently mapped.  (This isn't fully implemented yet.)
 22 */
 23#include <linux/module.h>
 24#include <linux/errno.h>
 25#include <linux/mm.h>
 26#include <linux/vmalloc.h>
 27#include <linux/io.h>
 28#include <linux/sizes.h>
 29
 30#include <asm/cp15.h>
 31#include <asm/cputype.h>
 32#include <asm/cacheflush.h>
 33#include <asm/early_ioremap.h>
 34#include <asm/mmu_context.h>
 35#include <asm/pgalloc.h>
 36#include <asm/tlbflush.h>
 37#include <asm/system_info.h>
 38
 39#include <asm/mach/map.h>
 40#include <asm/mach/pci.h>
 41#include "mm.h"
 42
 43
 44LIST_HEAD(static_vmlist);
 45
 46static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 47			size_t size, unsigned int mtype)
 48{
 49	struct static_vm *svm;
 50	struct vm_struct *vm;
 51
 52	list_for_each_entry(svm, &static_vmlist, list) {
 53		vm = &svm->vm;
 54		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 55			continue;
 56		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 57			continue;
 58
 59		if (vm->phys_addr > paddr ||
 60			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 61			continue;
 62
 63		return svm;
 64	}
 65
 66	return NULL;
 67}
 68
 69struct static_vm *find_static_vm_vaddr(void *vaddr)
 70{
 71	struct static_vm *svm;
 72	struct vm_struct *vm;
 73
 74	list_for_each_entry(svm, &static_vmlist, list) {
 75		vm = &svm->vm;
 76
 77		/* static_vmlist is ascending order */
 78		if (vm->addr > vaddr)
 79			break;
 80
 81		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 82			return svm;
 83	}
 84
 85	return NULL;
 86}
 87
 88void __init add_static_vm_early(struct static_vm *svm)
 89{
 90	struct static_vm *curr_svm;
 91	struct vm_struct *vm;
 92	void *vaddr;
 93
 94	vm = &svm->vm;
 95	vm_area_add_early(vm);
 96	vaddr = vm->addr;
 97
 98	list_for_each_entry(curr_svm, &static_vmlist, list) {
 99		vm = &curr_svm->vm;
100
101		if (vm->addr > vaddr)
102			break;
103	}
104	list_add_tail(&svm->list, &curr_svm->list);
105}
106
107int ioremap_page(unsigned long virt, unsigned long phys,
108		 const struct mem_type *mtype)
109{
110	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
111				  __pgprot(mtype->prot_pte));
112}
113EXPORT_SYMBOL(ioremap_page);
114
115void __check_vmalloc_seq(struct mm_struct *mm)
116{
117	unsigned int seq;
118
119	do {
120		seq = init_mm.context.vmalloc_seq;
121		memcpy(pgd_offset(mm, VMALLOC_START),
122		       pgd_offset_k(VMALLOC_START),
123		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
124					pgd_index(VMALLOC_START)));
125		mm->context.vmalloc_seq = seq;
126	} while (seq != init_mm.context.vmalloc_seq);
127}
128
129#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
130/*
131 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
132 * the other CPUs will not see this change until their next context switch.
133 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
134 * which requires the new ioremap'd region to be referenced, the CPU will
135 * reference the _old_ region.
136 *
137 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
138 * mask the size back to 1MB aligned or we will overflow in the loop below.
139 */
140static void unmap_area_sections(unsigned long virt, unsigned long size)
141{
142	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
143	pgd_t *pgd;
144	pud_t *pud;
145	pmd_t *pmdp;
146
147	flush_cache_vunmap(addr, end);
148	pgd = pgd_offset_k(addr);
149	pud = pud_offset(pgd, addr);
150	pmdp = pmd_offset(pud, addr);
151	do {
152		pmd_t pmd = *pmdp;
153
 
154		if (!pmd_none(pmd)) {
155			/*
156			 * Clear the PMD from the page table, and
157			 * increment the vmalloc sequence so others
158			 * notice this change.
159			 *
160			 * Note: this is still racy on SMP machines.
161			 */
162			pmd_clear(pmdp);
163			init_mm.context.vmalloc_seq++;
164
165			/*
166			 * Free the page table, if there was one.
167			 */
168			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
169				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
170		}
171
172		addr += PMD_SIZE;
173		pmdp += 2;
174	} while (addr < end);
175
176	/*
177	 * Ensure that the active_mm is up to date - we want to
178	 * catch any use-after-iounmap cases.
179	 */
180	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
181		__check_vmalloc_seq(current->active_mm);
182
183	flush_tlb_kernel_range(virt, end);
184}
185
186static int
187remap_area_sections(unsigned long virt, unsigned long pfn,
188		    size_t size, const struct mem_type *type)
189{
190	unsigned long addr = virt, end = virt + size;
191	pgd_t *pgd;
192	pud_t *pud;
193	pmd_t *pmd;
194
195	/*
196	 * Remove and free any PTE-based mapping, and
197	 * sync the current kernel mapping.
198	 */
199	unmap_area_sections(virt, size);
200
201	pgd = pgd_offset_k(addr);
202	pud = pud_offset(pgd, addr);
203	pmd = pmd_offset(pud, addr);
204	do {
 
 
205		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
206		pfn += SZ_1M >> PAGE_SHIFT;
207		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
208		pfn += SZ_1M >> PAGE_SHIFT;
209		flush_pmd_entry(pmd);
210
211		addr += PMD_SIZE;
212		pmd += 2;
213	} while (addr < end);
214
215	return 0;
216}
217
218static int
219remap_area_supersections(unsigned long virt, unsigned long pfn,
220			 size_t size, const struct mem_type *type)
221{
222	unsigned long addr = virt, end = virt + size;
223	pgd_t *pgd;
224	pud_t *pud;
225	pmd_t *pmd;
226
227	/*
228	 * Remove and free any PTE-based mapping, and
229	 * sync the current kernel mapping.
230	 */
231	unmap_area_sections(virt, size);
232
233	pgd = pgd_offset_k(virt);
234	pud = pud_offset(pgd, addr);
235	pmd = pmd_offset(pud, addr);
236	do {
237		unsigned long super_pmd_val, i;
238
239		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
240				PMD_SECT_SUPER;
241		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
242
243		for (i = 0; i < 8; i++) {
 
 
244			pmd[0] = __pmd(super_pmd_val);
245			pmd[1] = __pmd(super_pmd_val);
246			flush_pmd_entry(pmd);
247
248			addr += PMD_SIZE;
249			pmd += 2;
250		}
251
252		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
253	} while (addr < end);
254
255	return 0;
256}
257#endif
258
259static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
260	unsigned long offset, size_t size, unsigned int mtype, void *caller)
261{
262	const struct mem_type *type;
263	int err;
264	unsigned long addr;
265	struct vm_struct *area;
266	phys_addr_t paddr = __pfn_to_phys(pfn);
267
268#ifndef CONFIG_ARM_LPAE
269	/*
270	 * High mappings must be supersection aligned
271	 */
272	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
 
 
 
 
 
 
273		return NULL;
274#endif
275
276	type = get_mem_type(mtype);
277	if (!type)
278		return NULL;
279
280	/*
281	 * Page align the mapping size, taking account of any offset.
282	 */
283	size = PAGE_ALIGN(offset + size);
284
285	/*
286	 * Try to reuse one of the static mapping whenever possible.
287	 */
288	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
289		struct static_vm *svm;
290
291		svm = find_static_vm_paddr(paddr, size, mtype);
292		if (svm) {
293			addr = (unsigned long)svm->vm.addr;
294			addr += paddr - svm->vm.phys_addr;
295			return (void __iomem *) (offset + addr);
296		}
297	}
298
299	/*
300	 * Don't allow RAM to be mapped with mismatched attributes - this
301	 * causes problems with ARMv6+
302	 */
303	if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
304		return NULL;
305
306	area = get_vm_area_caller(size, VM_IOREMAP, caller);
307 	if (!area)
308 		return NULL;
309 	addr = (unsigned long)area->addr;
310	area->phys_addr = paddr;
311
312#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
313	if (DOMAIN_IO == 0 &&
314	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
315	       cpu_is_xsc3()) && pfn >= 0x100000 &&
316	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
317		area->flags |= VM_ARM_SECTION_MAPPING;
318		err = remap_area_supersections(addr, pfn, size, type);
319	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
320		area->flags |= VM_ARM_SECTION_MAPPING;
321		err = remap_area_sections(addr, pfn, size, type);
322	} else
323#endif
324		err = ioremap_page_range(addr, addr + size, paddr,
325					 __pgprot(type->prot_pte));
326
327	if (err) {
328 		vunmap((void *)addr);
329 		return NULL;
330 	}
331
332	flush_cache_vmap(addr, addr + size);
333	return (void __iomem *) (offset + addr);
334}
335
336void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
337	unsigned int mtype, void *caller)
338{
339	phys_addr_t last_addr;
340 	unsigned long offset = phys_addr & ~PAGE_MASK;
341 	unsigned long pfn = __phys_to_pfn(phys_addr);
342
343 	/*
344 	 * Don't allow wraparound or zero size
345	 */
346	last_addr = phys_addr + size - 1;
347	if (!size || last_addr < phys_addr)
348		return NULL;
349
350	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
351			caller);
352}
353
354/*
355 * Remap an arbitrary physical address space into the kernel virtual
356 * address space. Needed when the kernel wants to access high addresses
357 * directly.
358 *
359 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
360 * have to convert them into an offset in a page-aligned mapping, but the
361 * caller shouldn't need to know that small detail.
362 */
363void __iomem *
364__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
365		  unsigned int mtype)
366{
367	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
368					__builtin_return_address(0));
369}
370EXPORT_SYMBOL(__arm_ioremap_pfn);
371
372void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
373				      unsigned int, void *) =
374	__arm_ioremap_caller;
375
376void __iomem *ioremap(resource_size_t res_cookie, size_t size)
377{
378	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
379				   __builtin_return_address(0));
380}
381EXPORT_SYMBOL(ioremap);
382
383void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
384	__alias(ioremap_cached);
385
386void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
387{
388	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
389				   __builtin_return_address(0));
390}
391EXPORT_SYMBOL(ioremap_cache);
392EXPORT_SYMBOL(ioremap_cached);
393
394void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
395{
396	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
397				   __builtin_return_address(0));
398}
399EXPORT_SYMBOL(ioremap_wc);
400
401/*
402 * Remap an arbitrary physical address space into the kernel virtual
403 * address space as memory. Needed when the kernel wants to execute
404 * code in external memory. This is needed for reprogramming source
405 * clocks that would affect normal memory for example. Please see
406 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
407 */
408void __iomem *
409__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
410{
411	unsigned int mtype;
412
413	if (cached)
414		mtype = MT_MEMORY_RWX;
415	else
416		mtype = MT_MEMORY_RWX_NONCACHED;
417
418	return __arm_ioremap_caller(phys_addr, size, mtype,
419			__builtin_return_address(0));
420}
421
422void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
423{
424	return (__force void *)arch_ioremap_caller(phys_addr, size,
425						   MT_MEMORY_RW,
426						   __builtin_return_address(0));
427}
428
429void __iounmap(volatile void __iomem *io_addr)
430{
431	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
432	struct static_vm *svm;
 
433
434	/* If this is a static mapping, we must leave it alone */
435	svm = find_static_vm_vaddr(addr);
436	if (svm)
437		return;
438
439#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
440	{
441		struct vm_struct *vm;
442
443		vm = find_vm_area(addr);
444
445		/*
446		 * If this is a section based mapping we need to handle it
447		 * specially as the VM subsystem does not know how to handle
448		 * such a beast.
449		 */
450		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
451			unmap_area_sections((unsigned long)vm->addr, vm->size);
452	}
 
453#endif
454
455	vunmap(addr);
456}
457
458void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
459
460void iounmap(volatile void __iomem *cookie)
461{
462	arch_iounmap(cookie);
463}
464EXPORT_SYMBOL(iounmap);
465
466#ifdef CONFIG_PCI
467static int pci_ioremap_mem_type = MT_DEVICE;
468
469void pci_ioremap_set_mem_type(int mem_type)
470{
471	pci_ioremap_mem_type = mem_type;
472}
473
474int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
475{
476	BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
477
478	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
479				  PCI_IO_VIRT_BASE + offset + SZ_64K,
480				  phys_addr,
481				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
482}
483EXPORT_SYMBOL_GPL(pci_ioremap_io);
484#endif
485
486/*
487 * Must be called after early_fixmap_init
488 */
489void __init early_ioremap_init(void)
490{
491	early_ioremap_setup();
492}