Loading...
1/*
2 * linux/arch/arm/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 *
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
11 *
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
15 *
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
22 */
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/vmalloc.h>
27#include <linux/io.h>
28
29#include <asm/cputype.h>
30#include <asm/cacheflush.h>
31#include <asm/mmu_context.h>
32#include <asm/pgalloc.h>
33#include <asm/tlbflush.h>
34#include <asm/sizes.h>
35
36#include <asm/mach/map.h>
37#include "mm.h"
38
39/*
40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
41 * I/O regions in vm_struct->flags field.
42 */
43#define VM_ARM_SECTION_MAPPING 0x80000000
44
45int ioremap_page(unsigned long virt, unsigned long phys,
46 const struct mem_type *mtype)
47{
48 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
49 __pgprot(mtype->prot_pte));
50}
51EXPORT_SYMBOL(ioremap_page);
52
53void __check_kvm_seq(struct mm_struct *mm)
54{
55 unsigned int seq;
56
57 do {
58 seq = init_mm.context.kvm_seq;
59 memcpy(pgd_offset(mm, VMALLOC_START),
60 pgd_offset_k(VMALLOC_START),
61 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
62 pgd_index(VMALLOC_START)));
63 mm->context.kvm_seq = seq;
64 } while (seq != init_mm.context.kvm_seq);
65}
66
67#ifndef CONFIG_SMP
68/*
69 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
70 * the other CPUs will not see this change until their next context switch.
71 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
72 * which requires the new ioremap'd region to be referenced, the CPU will
73 * reference the _old_ region.
74 *
75 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
76 * mask the size back to 1MB aligned or we will overflow in the loop below.
77 */
78static void unmap_area_sections(unsigned long virt, unsigned long size)
79{
80 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
81 pgd_t *pgd;
82
83 flush_cache_vunmap(addr, end);
84 pgd = pgd_offset_k(addr);
85 do {
86 pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
87
88 pmd = *pmdp;
89 if (!pmd_none(pmd)) {
90 /*
91 * Clear the PMD from the page table, and
92 * increment the kvm sequence so others
93 * notice this change.
94 *
95 * Note: this is still racy on SMP machines.
96 */
97 pmd_clear(pmdp);
98 init_mm.context.kvm_seq++;
99
100 /*
101 * Free the page table, if there was one.
102 */
103 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
104 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
105 }
106
107 addr += PGDIR_SIZE;
108 pgd++;
109 } while (addr < end);
110
111 /*
112 * Ensure that the active_mm is up to date - we want to
113 * catch any use-after-iounmap cases.
114 */
115 if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116 __check_kvm_seq(current->active_mm);
117
118 flush_tlb_kernel_range(virt, end);
119}
120
121static int
122remap_area_sections(unsigned long virt, unsigned long pfn,
123 size_t size, const struct mem_type *type)
124{
125 unsigned long addr = virt, end = virt + size;
126 pgd_t *pgd;
127
128 /*
129 * Remove and free any PTE-based mapping, and
130 * sync the current kernel mapping.
131 */
132 unmap_area_sections(virt, size);
133
134 pgd = pgd_offset_k(addr);
135 do {
136 pmd_t *pmd = pmd_offset(pgd, addr);
137
138 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
139 pfn += SZ_1M >> PAGE_SHIFT;
140 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141 pfn += SZ_1M >> PAGE_SHIFT;
142 flush_pmd_entry(pmd);
143
144 addr += PGDIR_SIZE;
145 pgd++;
146 } while (addr < end);
147
148 return 0;
149}
150
151static int
152remap_area_supersections(unsigned long virt, unsigned long pfn,
153 size_t size, const struct mem_type *type)
154{
155 unsigned long addr = virt, end = virt + size;
156 pgd_t *pgd;
157
158 /*
159 * Remove and free any PTE-based mapping, and
160 * sync the current kernel mapping.
161 */
162 unmap_area_sections(virt, size);
163
164 pgd = pgd_offset_k(virt);
165 do {
166 unsigned long super_pmd_val, i;
167
168 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
169 PMD_SECT_SUPER;
170 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
171
172 for (i = 0; i < 8; i++) {
173 pmd_t *pmd = pmd_offset(pgd, addr);
174
175 pmd[0] = __pmd(super_pmd_val);
176 pmd[1] = __pmd(super_pmd_val);
177 flush_pmd_entry(pmd);
178
179 addr += PGDIR_SIZE;
180 pgd++;
181 }
182
183 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
184 } while (addr < end);
185
186 return 0;
187}
188#endif
189
190void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
191 unsigned long offset, size_t size, unsigned int mtype, void *caller)
192{
193 const struct mem_type *type;
194 int err;
195 unsigned long addr;
196 struct vm_struct * area;
197
198 /*
199 * High mappings must be supersection aligned
200 */
201 if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
202 return NULL;
203
204 /*
205 * Don't allow RAM to be mapped - this causes problems with ARMv6+
206 */
207 if (WARN_ON(pfn_valid(pfn)))
208 return NULL;
209
210 type = get_mem_type(mtype);
211 if (!type)
212 return NULL;
213
214 /*
215 * Page align the mapping size, taking account of any offset.
216 */
217 size = PAGE_ALIGN(offset + size);
218
219 area = get_vm_area_caller(size, VM_IOREMAP, caller);
220 if (!area)
221 return NULL;
222 addr = (unsigned long)area->addr;
223
224#ifndef CONFIG_SMP
225 if (DOMAIN_IO == 0 &&
226 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
227 cpu_is_xsc3()) && pfn >= 0x100000 &&
228 !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
229 area->flags |= VM_ARM_SECTION_MAPPING;
230 err = remap_area_supersections(addr, pfn, size, type);
231 } else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
232 area->flags |= VM_ARM_SECTION_MAPPING;
233 err = remap_area_sections(addr, pfn, size, type);
234 } else
235#endif
236 err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
237 __pgprot(type->prot_pte));
238
239 if (err) {
240 vunmap((void *)addr);
241 return NULL;
242 }
243
244 flush_cache_vmap(addr, addr + size);
245 return (void __iomem *) (offset + addr);
246}
247
248void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
249 unsigned int mtype, void *caller)
250{
251 unsigned long last_addr;
252 unsigned long offset = phys_addr & ~PAGE_MASK;
253 unsigned long pfn = __phys_to_pfn(phys_addr);
254
255 /*
256 * Don't allow wraparound or zero size
257 */
258 last_addr = phys_addr + size - 1;
259 if (!size || last_addr < phys_addr)
260 return NULL;
261
262 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
263 caller);
264}
265
266/*
267 * Remap an arbitrary physical address space into the kernel virtual
268 * address space. Needed when the kernel wants to access high addresses
269 * directly.
270 *
271 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
272 * have to convert them into an offset in a page-aligned mapping, but the
273 * caller shouldn't need to know that small detail.
274 */
275void __iomem *
276__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
277 unsigned int mtype)
278{
279 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
280 __builtin_return_address(0));
281}
282EXPORT_SYMBOL(__arm_ioremap_pfn);
283
284void __iomem *
285__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
286{
287 return __arm_ioremap_caller(phys_addr, size, mtype,
288 __builtin_return_address(0));
289}
290EXPORT_SYMBOL(__arm_ioremap);
291
292void __iounmap(volatile void __iomem *io_addr)
293{
294 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
295#ifndef CONFIG_SMP
296 struct vm_struct **p, *tmp;
297
298 /*
299 * If this is a section based mapping we need to handle it
300 * specially as the VM subsystem does not know how to handle
301 * such a beast. We need the lock here b/c we need to clear
302 * all the mappings before the area can be reclaimed
303 * by someone else.
304 */
305 write_lock(&vmlist_lock);
306 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
307 if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
308 if (tmp->flags & VM_ARM_SECTION_MAPPING) {
309 unmap_area_sections((unsigned long)tmp->addr,
310 tmp->size);
311 }
312 break;
313 }
314 }
315 write_unlock(&vmlist_lock);
316#endif
317
318 vunmap(addr);
319}
320EXPORT_SYMBOL(__iounmap);
1/*
2 * linux/arch/arm/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 *
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
11 *
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
15 *
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
22 */
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/vmalloc.h>
27#include <linux/io.h>
28#include <linux/sizes.h>
29
30#include <asm/cp15.h>
31#include <asm/cputype.h>
32#include <asm/cacheflush.h>
33#include <asm/mmu_context.h>
34#include <asm/pgalloc.h>
35#include <asm/tlbflush.h>
36#include <asm/system_info.h>
37
38#include <asm/mach/map.h>
39#include <asm/mach/pci.h>
40#include "mm.h"
41
42
43LIST_HEAD(static_vmlist);
44
45static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
46 size_t size, unsigned int mtype)
47{
48 struct static_vm *svm;
49 struct vm_struct *vm;
50
51 list_for_each_entry(svm, &static_vmlist, list) {
52 vm = &svm->vm;
53 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
54 continue;
55 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
56 continue;
57
58 if (vm->phys_addr > paddr ||
59 paddr + size - 1 > vm->phys_addr + vm->size - 1)
60 continue;
61
62 return svm;
63 }
64
65 return NULL;
66}
67
68struct static_vm *find_static_vm_vaddr(void *vaddr)
69{
70 struct static_vm *svm;
71 struct vm_struct *vm;
72
73 list_for_each_entry(svm, &static_vmlist, list) {
74 vm = &svm->vm;
75
76 /* static_vmlist is ascending order */
77 if (vm->addr > vaddr)
78 break;
79
80 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
81 return svm;
82 }
83
84 return NULL;
85}
86
87void __init add_static_vm_early(struct static_vm *svm)
88{
89 struct static_vm *curr_svm;
90 struct vm_struct *vm;
91 void *vaddr;
92
93 vm = &svm->vm;
94 vm_area_add_early(vm);
95 vaddr = vm->addr;
96
97 list_for_each_entry(curr_svm, &static_vmlist, list) {
98 vm = &curr_svm->vm;
99
100 if (vm->addr > vaddr)
101 break;
102 }
103 list_add_tail(&svm->list, &curr_svm->list);
104}
105
106int ioremap_page(unsigned long virt, unsigned long phys,
107 const struct mem_type *mtype)
108{
109 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
110 __pgprot(mtype->prot_pte));
111}
112EXPORT_SYMBOL(ioremap_page);
113
114void __check_vmalloc_seq(struct mm_struct *mm)
115{
116 unsigned int seq;
117
118 do {
119 seq = init_mm.context.vmalloc_seq;
120 memcpy(pgd_offset(mm, VMALLOC_START),
121 pgd_offset_k(VMALLOC_START),
122 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
123 pgd_index(VMALLOC_START)));
124 mm->context.vmalloc_seq = seq;
125 } while (seq != init_mm.context.vmalloc_seq);
126}
127
128#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
129/*
130 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
131 * the other CPUs will not see this change until their next context switch.
132 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
133 * which requires the new ioremap'd region to be referenced, the CPU will
134 * reference the _old_ region.
135 *
136 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
137 * mask the size back to 1MB aligned or we will overflow in the loop below.
138 */
139static void unmap_area_sections(unsigned long virt, unsigned long size)
140{
141 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
142 pgd_t *pgd;
143 pud_t *pud;
144 pmd_t *pmdp;
145
146 flush_cache_vunmap(addr, end);
147 pgd = pgd_offset_k(addr);
148 pud = pud_offset(pgd, addr);
149 pmdp = pmd_offset(pud, addr);
150 do {
151 pmd_t pmd = *pmdp;
152
153 if (!pmd_none(pmd)) {
154 /*
155 * Clear the PMD from the page table, and
156 * increment the vmalloc sequence so others
157 * notice this change.
158 *
159 * Note: this is still racy on SMP machines.
160 */
161 pmd_clear(pmdp);
162 init_mm.context.vmalloc_seq++;
163
164 /*
165 * Free the page table, if there was one.
166 */
167 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
168 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
169 }
170
171 addr += PMD_SIZE;
172 pmdp += 2;
173 } while (addr < end);
174
175 /*
176 * Ensure that the active_mm is up to date - we want to
177 * catch any use-after-iounmap cases.
178 */
179 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
180 __check_vmalloc_seq(current->active_mm);
181
182 flush_tlb_kernel_range(virt, end);
183}
184
185static int
186remap_area_sections(unsigned long virt, unsigned long pfn,
187 size_t size, const struct mem_type *type)
188{
189 unsigned long addr = virt, end = virt + size;
190 pgd_t *pgd;
191 pud_t *pud;
192 pmd_t *pmd;
193
194 /*
195 * Remove and free any PTE-based mapping, and
196 * sync the current kernel mapping.
197 */
198 unmap_area_sections(virt, size);
199
200 pgd = pgd_offset_k(addr);
201 pud = pud_offset(pgd, addr);
202 pmd = pmd_offset(pud, addr);
203 do {
204 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
205 pfn += SZ_1M >> PAGE_SHIFT;
206 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
207 pfn += SZ_1M >> PAGE_SHIFT;
208 flush_pmd_entry(pmd);
209
210 addr += PMD_SIZE;
211 pmd += 2;
212 } while (addr < end);
213
214 return 0;
215}
216
217static int
218remap_area_supersections(unsigned long virt, unsigned long pfn,
219 size_t size, const struct mem_type *type)
220{
221 unsigned long addr = virt, end = virt + size;
222 pgd_t *pgd;
223 pud_t *pud;
224 pmd_t *pmd;
225
226 /*
227 * Remove and free any PTE-based mapping, and
228 * sync the current kernel mapping.
229 */
230 unmap_area_sections(virt, size);
231
232 pgd = pgd_offset_k(virt);
233 pud = pud_offset(pgd, addr);
234 pmd = pmd_offset(pud, addr);
235 do {
236 unsigned long super_pmd_val, i;
237
238 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
239 PMD_SECT_SUPER;
240 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
241
242 for (i = 0; i < 8; i++) {
243 pmd[0] = __pmd(super_pmd_val);
244 pmd[1] = __pmd(super_pmd_val);
245 flush_pmd_entry(pmd);
246
247 addr += PMD_SIZE;
248 pmd += 2;
249 }
250
251 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
252 } while (addr < end);
253
254 return 0;
255}
256#endif
257
258void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
259 unsigned long offset, size_t size, unsigned int mtype, void *caller)
260{
261 const struct mem_type *type;
262 int err;
263 unsigned long addr;
264 struct vm_struct *area;
265 phys_addr_t paddr = __pfn_to_phys(pfn);
266
267#ifndef CONFIG_ARM_LPAE
268 /*
269 * High mappings must be supersection aligned
270 */
271 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
272 return NULL;
273#endif
274
275 type = get_mem_type(mtype);
276 if (!type)
277 return NULL;
278
279 /*
280 * Page align the mapping size, taking account of any offset.
281 */
282 size = PAGE_ALIGN(offset + size);
283
284 /*
285 * Try to reuse one of the static mapping whenever possible.
286 */
287 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
288 struct static_vm *svm;
289
290 svm = find_static_vm_paddr(paddr, size, mtype);
291 if (svm) {
292 addr = (unsigned long)svm->vm.addr;
293 addr += paddr - svm->vm.phys_addr;
294 return (void __iomem *) (offset + addr);
295 }
296 }
297
298 /*
299 * Don't allow RAM to be mapped - this causes problems with ARMv6+
300 */
301 if (WARN_ON(pfn_valid(pfn)))
302 return NULL;
303
304 area = get_vm_area_caller(size, VM_IOREMAP, caller);
305 if (!area)
306 return NULL;
307 addr = (unsigned long)area->addr;
308 area->phys_addr = paddr;
309
310#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
311 if (DOMAIN_IO == 0 &&
312 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
313 cpu_is_xsc3()) && pfn >= 0x100000 &&
314 !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
315 area->flags |= VM_ARM_SECTION_MAPPING;
316 err = remap_area_supersections(addr, pfn, size, type);
317 } else if (!((paddr | size | addr) & ~PMD_MASK)) {
318 area->flags |= VM_ARM_SECTION_MAPPING;
319 err = remap_area_sections(addr, pfn, size, type);
320 } else
321#endif
322 err = ioremap_page_range(addr, addr + size, paddr,
323 __pgprot(type->prot_pte));
324
325 if (err) {
326 vunmap((void *)addr);
327 return NULL;
328 }
329
330 flush_cache_vmap(addr, addr + size);
331 return (void __iomem *) (offset + addr);
332}
333
334void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
335 unsigned int mtype, void *caller)
336{
337 phys_addr_t last_addr;
338 unsigned long offset = phys_addr & ~PAGE_MASK;
339 unsigned long pfn = __phys_to_pfn(phys_addr);
340
341 /*
342 * Don't allow wraparound or zero size
343 */
344 last_addr = phys_addr + size - 1;
345 if (!size || last_addr < phys_addr)
346 return NULL;
347
348 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
349 caller);
350}
351
352/*
353 * Remap an arbitrary physical address space into the kernel virtual
354 * address space. Needed when the kernel wants to access high addresses
355 * directly.
356 *
357 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
358 * have to convert them into an offset in a page-aligned mapping, but the
359 * caller shouldn't need to know that small detail.
360 */
361void __iomem *
362__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
363 unsigned int mtype)
364{
365 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
366 __builtin_return_address(0));
367}
368EXPORT_SYMBOL(__arm_ioremap_pfn);
369
370void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
371 unsigned int, void *) =
372 __arm_ioremap_caller;
373
374void __iomem *
375__arm_ioremap(phys_addr_t phys_addr, size_t size, unsigned int mtype)
376{
377 return arch_ioremap_caller(phys_addr, size, mtype,
378 __builtin_return_address(0));
379}
380EXPORT_SYMBOL(__arm_ioremap);
381
382/*
383 * Remap an arbitrary physical address space into the kernel virtual
384 * address space as memory. Needed when the kernel wants to execute
385 * code in external memory. This is needed for reprogramming source
386 * clocks that would affect normal memory for example. Please see
387 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
388 */
389void __iomem *
390__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
391{
392 unsigned int mtype;
393
394 if (cached)
395 mtype = MT_MEMORY_RWX;
396 else
397 mtype = MT_MEMORY_RWX_NONCACHED;
398
399 return __arm_ioremap_caller(phys_addr, size, mtype,
400 __builtin_return_address(0));
401}
402
403void __iounmap(volatile void __iomem *io_addr)
404{
405 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
406 struct static_vm *svm;
407
408 /* If this is a static mapping, we must leave it alone */
409 svm = find_static_vm_vaddr(addr);
410 if (svm)
411 return;
412
413#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
414 {
415 struct vm_struct *vm;
416
417 vm = find_vm_area(addr);
418
419 /*
420 * If this is a section based mapping we need to handle it
421 * specially as the VM subsystem does not know how to handle
422 * such a beast.
423 */
424 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
425 unmap_area_sections((unsigned long)vm->addr, vm->size);
426 }
427#endif
428
429 vunmap(addr);
430}
431
432void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
433
434void __arm_iounmap(volatile void __iomem *io_addr)
435{
436 arch_iounmap(io_addr);
437}
438EXPORT_SYMBOL(__arm_iounmap);
439
440#ifdef CONFIG_PCI
441int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
442{
443 BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
444
445 return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
446 PCI_IO_VIRT_BASE + offset + SZ_64K,
447 phys_addr,
448 __pgprot(get_mem_type(MT_DEVICE)->prot_pte));
449}
450EXPORT_SYMBOL_GPL(pci_ioremap_io);
451#endif