Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.1
 
   1/*
   2 *	Linux INET6 implementation
   3 *	Forwarding Information Database
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
 
  12 */
  13
  14/*
  15 * 	Changes:
  16 * 	Yuji SEKIYA @USAGI:	Support default route on router node;
  17 * 				remove ip6_null_entry from the top of
  18 * 				routing table.
  19 * 	Ville Nuorvala:		Fixed routing subtrees.
  20 */
  21#include <linux/errno.h>
  22#include <linux/types.h>
  23#include <linux/net.h>
  24#include <linux/route.h>
  25#include <linux/netdevice.h>
  26#include <linux/in6.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30
  31#ifdef 	CONFIG_PROC_FS
  32#include <linux/proc_fs.h>
  33#endif
  34
  35#include <net/ipv6.h>
  36#include <net/ndisc.h>
  37#include <net/addrconf.h>
 
 
  38
  39#include <net/ip6_fib.h>
  40#include <net/ip6_route.h>
  41
  42#define RT6_DEBUG 2
  43
  44#if RT6_DEBUG >= 3
  45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
  46#else
  47#define RT6_TRACE(x...) do { ; } while (0)
  48#endif
  49
  50static struct kmem_cache * fib6_node_kmem __read_mostly;
  51
  52enum fib_walk_state_t
  53{
  54#ifdef CONFIG_IPV6_SUBTREES
  55	FWS_S,
  56#endif
  57	FWS_L,
  58	FWS_R,
  59	FWS_C,
  60	FWS_U
  61};
  62
  63struct fib6_cleaner_t
  64{
  65	struct fib6_walker_t w;
  66	struct net *net;
  67	int (*func)(struct rt6_info *, void *arg);
 
  68	void *arg;
 
  69};
  70
  71static DEFINE_RWLOCK(fib6_walker_lock);
  72
  73#ifdef CONFIG_IPV6_SUBTREES
  74#define FWS_INIT FWS_S
  75#else
  76#define FWS_INIT FWS_L
  77#endif
  78
  79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  80			      struct rt6_info *rt);
  81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  83static int fib6_walk(struct fib6_walker_t *w);
  84static int fib6_walk_continue(struct fib6_walker_t *w);
 
 
  85
  86/*
  87 *	A routing update causes an increase of the serial number on the
  88 *	affected subtree. This allows for cached routes to be asynchronously
  89 *	tested when modifications are made to the destination cache as a
  90 *	result of redirects, path MTU changes, etc.
  91 */
  92
  93static __u32 rt_sernum;
  94
  95static void fib6_gc_timer_cb(unsigned long arg);
  96
  97static LIST_HEAD(fib6_walkers);
  98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  99
 100static inline void fib6_walker_link(struct fib6_walker_t *w)
 101{
 102	write_lock_bh(&fib6_walker_lock);
 103	list_add(&w->lh, &fib6_walkers);
 104	write_unlock_bh(&fib6_walker_lock);
 105}
 106
 107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 108{
 109	write_lock_bh(&fib6_walker_lock);
 110	list_del(&w->lh);
 111	write_unlock_bh(&fib6_walker_lock);
 112}
 113static __inline__ u32 fib6_new_sernum(void)
 
 114{
 115	u32 n = ++rt_sernum;
 116	if ((__s32)n <= 0)
 117		rt_sernum = n = 1;
 118	return n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119}
 120
 121/*
 122 *	Auxiliary address test functions for the radix tree.
 123 *
 124 *	These assume a 32bit processor (although it will work on
 125 *	64bit processors)
 126 */
 127
 128/*
 129 *	test bit
 130 */
 131#if defined(__LITTLE_ENDIAN)
 132# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 133#else
 134# define BITOP_BE32_SWIZZLE	0
 135#endif
 136
 137static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
 138{
 139	const __be32 *addr = token;
 140	/*
 141	 * Here,
 142	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 143	 * is optimized version of
 144	 *	htonl(1 << ((~fn_bit)&0x1F))
 145	 * See include/asm-generic/bitops/le.h.
 146	 */
 147	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 148	       addr[fn_bit >> 5];
 149}
 150
 151static __inline__ struct fib6_node * node_alloc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	struct fib6_node *fn;
 154
 155	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 
 
 156
 157	return fn;
 158}
 159
 160static __inline__ void node_free(struct fib6_node * fn)
 161{
 162	kmem_cache_free(fib6_node_kmem, fn);
 
 163}
 164
 165static __inline__ void rt6_release(struct rt6_info *rt)
 166{
 167	if (atomic_dec_and_test(&rt->rt6i_ref))
 168		dst_free(&rt->dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 169}
 170
 171static void fib6_link_table(struct net *net, struct fib6_table *tb)
 172{
 173	unsigned int h;
 174
 175	/*
 176	 * Initialize table lock at a single place to give lockdep a key,
 177	 * tables aren't visible prior to being linked to the list.
 178	 */
 179	rwlock_init(&tb->tb6_lock);
 180
 181	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 182
 183	/*
 184	 * No protection necessary, this is the only list mutatation
 185	 * operation, tables never disappear once they exist.
 186	 */
 187	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 188}
 189
 190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 191
 192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 193{
 194	struct fib6_table *table;
 195
 196	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 197	if (table != NULL) {
 198		table->tb6_id = id;
 199		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
 200		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
 201	}
 202
 203	return table;
 204}
 205
 206struct fib6_table *fib6_new_table(struct net *net, u32 id)
 207{
 208	struct fib6_table *tb;
 209
 210	if (id == 0)
 211		id = RT6_TABLE_MAIN;
 212	tb = fib6_get_table(net, id);
 213	if (tb)
 214		return tb;
 215
 216	tb = fib6_alloc_table(net, id);
 217	if (tb != NULL)
 218		fib6_link_table(net, tb);
 219
 220	return tb;
 221}
 
 222
 223struct fib6_table *fib6_get_table(struct net *net, u32 id)
 224{
 225	struct fib6_table *tb;
 226	struct hlist_head *head;
 227	struct hlist_node *node;
 228	unsigned int h;
 229
 230	if (id == 0)
 231		id = RT6_TABLE_MAIN;
 232	h = id & (FIB6_TABLE_HASHSZ - 1);
 233	rcu_read_lock();
 234	head = &net->ipv6.fib_table_hash[h];
 235	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 236		if (tb->tb6_id == id) {
 237			rcu_read_unlock();
 238			return tb;
 239		}
 240	}
 241	rcu_read_unlock();
 242
 243	return NULL;
 244}
 
 245
 246static void __net_init fib6_tables_init(struct net *net)
 247{
 248	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 249	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 250}
 251#else
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255	return fib6_get_table(net, id);
 256}
 257
 258struct fib6_table *fib6_get_table(struct net *net, u32 id)
 259{
 260	  return net->ipv6.fib6_main_tbl;
 261}
 262
 263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 
 264				   int flags, pol_lookup_t lookup)
 265{
 266	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269static void __net_init fib6_tables_init(struct net *net)
 270{
 271	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 272}
 273
 274#endif
 275
 276static int fib6_dump_node(struct fib6_walker_t *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277{
 278	int res;
 279	struct rt6_info *rt;
 280
 281	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 282		res = rt6_dump_route(rt, w->args);
 283		if (res < 0) {
 284			/* Frame is full, suspend walking */
 285			w->leaf = rt;
 
 
 
 
 
 
 286			return 1;
 287		}
 288		WARN_ON(res == 0);
 
 
 
 
 
 
 
 
 
 
 289	}
 290	w->leaf = NULL;
 291	return 0;
 292}
 293
 294static void fib6_dump_end(struct netlink_callback *cb)
 295{
 296	struct fib6_walker_t *w = (void*)cb->args[2];
 
 297
 298	if (w) {
 299		if (cb->args[4]) {
 300			cb->args[4] = 0;
 301			fib6_walker_unlink(w);
 302		}
 303		cb->args[2] = 0;
 304		kfree(w);
 305	}
 306	cb->done = (void*)cb->args[3];
 307	cb->args[1] = 3;
 308}
 309
 310static int fib6_dump_done(struct netlink_callback *cb)
 311{
 312	fib6_dump_end(cb);
 313	return cb->done ? cb->done(cb) : 0;
 314}
 315
 316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 317			   struct netlink_callback *cb)
 318{
 319	struct fib6_walker_t *w;
 
 320	int res;
 321
 322	w = (void *)cb->args[2];
 323	w->root = &table->tb6_root;
 324
 325	if (cb->args[4] == 0) {
 326		w->count = 0;
 327		w->skip = 0;
 
 328
 329		read_lock_bh(&table->tb6_lock);
 330		res = fib6_walk(w);
 331		read_unlock_bh(&table->tb6_lock);
 332		if (res > 0) {
 333			cb->args[4] = 1;
 334			cb->args[5] = w->root->fn_sernum;
 335		}
 336	} else {
 337		if (cb->args[5] != w->root->fn_sernum) {
 338			/* Begin at the root if the tree changed */
 339			cb->args[5] = w->root->fn_sernum;
 340			w->state = FWS_INIT;
 341			w->node = w->root;
 342			w->skip = w->count;
 
 343		} else
 344			w->skip = 0;
 345
 346		read_lock_bh(&table->tb6_lock);
 347		res = fib6_walk_continue(w);
 348		read_unlock_bh(&table->tb6_lock);
 349		if (res <= 0) {
 350			fib6_walker_unlink(w);
 351			cb->args[4] = 0;
 352		}
 353	}
 354
 355	return res;
 356}
 357
 358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 359{
 
 
 
 360	struct net *net = sock_net(skb->sk);
 361	unsigned int h, s_h;
 362	unsigned int e = 0, s_e;
 363	struct rt6_rtnl_dump_arg arg;
 364	struct fib6_walker_t *w;
 365	struct fib6_table *tb;
 366	struct hlist_node *node;
 367	struct hlist_head *head;
 368	int res = 0;
 369
 370	s_h = cb->args[0];
 371	s_e = cb->args[1];
 
 
 
 
 
 
 
 
 
 
 372
 373	w = (void *)cb->args[2];
 374	if (w == NULL) {
 375		/* New dump:
 376		 *
 377		 * 1. hook callback destructor.
 378		 */
 379		cb->args[3] = (long)cb->done;
 380		cb->done = fib6_dump_done;
 381
 382		/*
 383		 * 2. allocate and initialize walker.
 384		 */
 385		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 386		if (w == NULL)
 387			return -ENOMEM;
 388		w->func = fib6_dump_node;
 389		cb->args[2] = (long)w;
 390	}
 391
 392	arg.skb = skb;
 393	arg.cb = cb;
 394	arg.net = net;
 395	w->args = &arg;
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397	rcu_read_lock();
 398	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 399		e = 0;
 400		head = &net->ipv6.fib_table_hash[h];
 401		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 402			if (e < s_e)
 403				goto next;
 404			res = fib6_dump_table(tb, skb, cb);
 405			if (res != 0)
 406				goto out;
 407next:
 408			e++;
 409		}
 410	}
 411out:
 412	rcu_read_unlock();
 413	cb->args[1] = e;
 414	cb->args[0] = h;
 415
 416	res = res < 0 ? res : skb->len;
 417	if (res <= 0)
 418		fib6_dump_end(cb);
 419	return res;
 420}
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422/*
 423 *	Routing Table
 424 *
 425 *	return the appropriate node for a routing tree "add" operation
 426 *	by either creating and inserting or by returning an existing
 427 *	node.
 428 */
 429
 430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 431				     int addrlen, int plen,
 432				     int offset)
 
 
 
 
 433{
 434	struct fib6_node *fn, *in, *ln;
 435	struct fib6_node *pn = NULL;
 436	struct rt6key *key;
 437	int	bit;
 438	__be32	dir = 0;
 439	__u32	sernum = fib6_new_sernum();
 440
 441	RT6_TRACE("fib6_add_1\n");
 442
 443	/* insert node in tree */
 444
 445	fn = root;
 446
 447	do {
 448		key = (struct rt6key *)((u8 *)fn->leaf + offset);
 
 
 449
 450		/*
 451		 *	Prefix match
 452		 */
 453		if (plen < fn->fn_bit ||
 454		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 
 
 
 
 
 
 
 
 
 455			goto insert_above;
 
 456
 457		/*
 458		 *	Exact match ?
 459		 */
 460
 461		if (plen == fn->fn_bit) {
 462			/* clean up an intermediate node */
 463			if ((fn->fn_flags & RTN_RTINFO) == 0) {
 464				rt6_release(fn->leaf);
 465				fn->leaf = NULL;
 
 
 
 
 
 466			}
 467
 468			fn->fn_sernum = sernum;
 469
 470			return fn;
 471		}
 472
 473		/*
 474		 *	We have more bits to go
 475		 */
 476
 477		/* Try to walk down on tree. */
 478		fn->fn_sernum = sernum;
 479		dir = addr_bit_set(addr, fn->fn_bit);
 480		pn = fn;
 481		fn = dir ? fn->right: fn->left;
 
 
 
 
 482	} while (fn);
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	/*
 485	 *	We walked to the bottom of tree.
 486	 *	Create new leaf node without children.
 487	 */
 488
 489	ln = node_alloc();
 490
 491	if (ln == NULL)
 492		return NULL;
 493	ln->fn_bit = plen;
 494
 495	ln->parent = pn;
 496	ln->fn_sernum = sernum;
 497
 498	if (dir)
 499		pn->right = ln;
 500	else
 501		pn->left  = ln;
 502
 503	return ln;
 504
 505
 506insert_above:
 507	/*
 508	 * split since we don't have a common prefix anymore or
 509	 * we have a less significant route.
 510	 * we've to insert an intermediate node on the list
 511	 * this new node will point to the one we need to create
 512	 * and the current
 513	 */
 514
 515	pn = fn->parent;
 
 516
 517	/* find 1st bit in difference between the 2 addrs.
 518
 519	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 520	   but if it is >= plen, the value is ignored in any case.
 521	 */
 522
 523	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 524
 525	/*
 526	 *		(intermediate)[in]
 527	 *	          /	   \
 528	 *	(new leaf node)[ln] (old node)[fn]
 529	 */
 530	if (plen > bit) {
 531		in = node_alloc();
 532		ln = node_alloc();
 533
 534		if (in == NULL || ln == NULL) {
 535			if (in)
 536				node_free(in);
 537			if (ln)
 538				node_free(ln);
 539			return NULL;
 540		}
 541
 542		/*
 543		 * new intermediate node.
 544		 * RTN_RTINFO will
 545		 * be off since that an address that chooses one of
 546		 * the branches would not match less specific routes
 547		 * in the other branch
 548		 */
 549
 550		in->fn_bit = bit;
 551
 552		in->parent = pn;
 553		in->leaf = fn->leaf;
 554		atomic_inc(&in->leaf->rt6i_ref);
 555
 556		in->fn_sernum = sernum;
 557
 558		/* update parent pointer */
 559		if (dir)
 560			pn->right = in;
 561		else
 562			pn->left  = in;
 563
 564		ln->fn_bit = plen;
 565
 566		ln->parent = in;
 567		fn->parent = in;
 568
 569		ln->fn_sernum = sernum;
 570
 571		if (addr_bit_set(addr, bit)) {
 572			in->right = ln;
 573			in->left  = fn;
 574		} else {
 575			in->left  = ln;
 576			in->right = fn;
 577		}
 578	} else { /* plen <= bit */
 579
 580		/*
 581		 *		(new leaf node)[ln]
 582		 *	          /	   \
 583		 *	     (old node)[fn] NULL
 584		 */
 585
 586		ln = node_alloc();
 587
 588		if (ln == NULL)
 589			return NULL;
 590
 591		ln->fn_bit = plen;
 592
 593		ln->parent = pn;
 594
 595		ln->fn_sernum = sernum;
 
 
 
 
 
 596
 597		if (dir)
 598			pn->right = ln;
 599		else
 600			pn->left  = ln;
 
 
 
 601
 602		if (addr_bit_set(&key->addr, plen))
 603			ln->right = fn;
 604		else
 605			ln->left  = fn;
 
 606
 607		fn->parent = ln;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608	}
 609	return ln;
 610}
 611
 612/*
 613 *	Insert routing information in a node.
 614 */
 615
 616static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 617			    struct nl_info *info)
 618{
 619	struct rt6_info *iter = NULL;
 620	struct rt6_info **ins;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	ins = &fn->leaf;
 623
 624	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
 
 
 625		/*
 626		 *	Search for duplicates
 627		 */
 628
 629		if (iter->rt6i_metric == rt->rt6i_metric) {
 630			/*
 631			 *	Same priority level
 632			 */
 
 
 
 633
 634			if (iter->rt6i_dev == rt->rt6i_dev &&
 635			    iter->rt6i_idev == rt->rt6i_idev &&
 636			    ipv6_addr_equal(&iter->rt6i_gateway,
 637					    &rt->rt6i_gateway)) {
 638				if (!(iter->rt6i_flags&RTF_EXPIRES))
 639					return -EEXIST;
 640				iter->rt6i_expires = rt->rt6i_expires;
 641				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
 642					iter->rt6i_flags &= ~RTF_EXPIRES;
 643					iter->rt6i_expires = 0;
 644				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645				return -EEXIST;
 646			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647		}
 648
 649		if (iter->rt6i_metric > rt->rt6i_metric)
 650			break;
 651
 652		ins = &iter->dst.rt6_next;
 
 
 
 
 
 
 
 
 
 
 
 653	}
 654
 655	/* Reset round-robin state, if necessary */
 656	if (ins == &fn->leaf)
 657		fn->rr_ptr = NULL;
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659	/*
 660	 *	insert node
 661	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	rt->dst.rt6_next = iter;
 664	*ins = rt;
 665	rt->rt6i_node = fn;
 666	atomic_inc(&rt->rt6i_ref);
 667	inet6_rt_notify(RTM_NEWROUTE, rt, info);
 668	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 669
 670	if ((fn->fn_flags & RTN_RTINFO) == 0) {
 671		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 672		fn->fn_flags |= RTN_RTINFO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673	}
 674
 675	return 0;
 676}
 677
 678static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 679{
 680	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 681	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
 682		mod_timer(&net->ipv6.ip6_fib_timer,
 683			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 684}
 685
 686void fib6_force_start_gc(struct net *net)
 687{
 688	if (!timer_pending(&net->ipv6.ip6_fib_timer))
 689		mod_timer(&net->ipv6.ip6_fib_timer,
 690			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 691}
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693/*
 694 *	Add routing information to the routing tree.
 695 *	<destination addr>/<source addr>
 696 *	with source addr info in sub-trees
 
 697 */
 698
 699int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 
 700{
 
 701	struct fib6_node *fn, *pn = NULL;
 702	int err = -ENOMEM;
 703
 704	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 705			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
 706
 707	if (fn == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708		goto out;
 
 709
 710	pn = fn;
 711
 712#ifdef CONFIG_IPV6_SUBTREES
 713	if (rt->rt6i_src.plen) {
 714		struct fib6_node *sn;
 715
 716		if (fn->subtree == NULL) {
 717			struct fib6_node *sfn;
 718
 719			/*
 720			 * Create subtree.
 721			 *
 722			 *		fn[main tree]
 723			 *		|
 724			 *		sfn[subtree root]
 725			 *		   \
 726			 *		    sn[new leaf node]
 727			 */
 728
 729			/* Create subtree root node */
 730			sfn = node_alloc();
 731			if (sfn == NULL)
 732				goto st_failure;
 733
 734			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 735			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 
 736			sfn->fn_flags = RTN_ROOT;
 737			sfn->fn_sernum = fib6_new_sernum();
 738
 739			/* Now add the first leaf node to new subtree */
 740
 741			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 742					sizeof(struct in6_addr), rt->rt6i_src.plen,
 743					offsetof(struct rt6_info, rt6i_src));
 
 744
 745			if (sn == NULL) {
 746				/* If it is failed, discard just allocated
 747				   root, and then (in st_failure) stale node
 748				   in main tree.
 749				 */
 750				node_free(sfn);
 751				goto st_failure;
 
 752			}
 753
 754			/* Now link new subtree to main tree */
 755			sfn->parent = fn;
 756			fn->subtree = sfn;
 757		} else {
 758			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 759					sizeof(struct in6_addr), rt->rt6i_src.plen,
 760					offsetof(struct rt6_info, rt6i_src));
 761
 762			if (sn == NULL)
 763				goto st_failure;
 
 
 
 764		}
 765
 766		if (fn->leaf == NULL) {
 767			fn->leaf = rt;
 768			atomic_inc(&rt->rt6i_ref);
 
 
 
 
 
 
 769		}
 770		fn = sn;
 771	}
 772#endif
 773
 774	err = fib6_add_rt2node(fn, rt, info);
 775
 776	if (err == 0) {
 
 
 777		fib6_start_gc(info->nl_net, rt);
 778		if (!(rt->rt6i_flags&RTF_CACHE))
 779			fib6_prune_clones(info->nl_net, pn, rt);
 780	}
 781
 782out:
 783	if (err) {
 784#ifdef CONFIG_IPV6_SUBTREES
 785		/*
 786		 * If fib6_add_1 has cleared the old leaf pointer in the
 787		 * super-tree leaf node we have to find a new one for it.
 788		 */
 789		if (pn != fn && pn->leaf == rt) {
 790			pn->leaf = NULL;
 791			atomic_dec(&rt->rt6i_ref);
 792		}
 793		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 794			pn->leaf = fib6_find_prefix(info->nl_net, pn);
 795#if RT6_DEBUG >= 2
 796			if (!pn->leaf) {
 797				WARN_ON(pn->leaf == NULL);
 798				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 799			}
 
 
 
 
 
 
 
 
 
 800#endif
 801			atomic_inc(&pn->leaf->rt6i_ref);
 
 
 802		}
 803#endif
 804		dst_free(&rt->dst);
 
 
 805	}
 806	return err;
 807
 808#ifdef CONFIG_IPV6_SUBTREES
 809	/* Subtree creation failed, probably main tree node
 810	   is orphan. If it is, shoot it.
 
 
 
 
 811	 */
 812st_failure:
 813	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 814		fib6_repair_tree(info->nl_net, fn);
 815	dst_free(&rt->dst);
 
 816	return err;
 817#endif
 818}
 819
 820/*
 821 *	Routing tree lookup
 822 *
 823 */
 824
 825struct lookup_args {
 826	int		offset;		/* key offset on rt6_info	*/
 827	const struct in6_addr	*addr;		/* search key			*/
 828};
 829
 830static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 831					struct lookup_args *args)
 832{
 833	struct fib6_node *fn;
 834	__be32 dir;
 835
 836	if (unlikely(args->offset == 0))
 837		return NULL;
 838
 839	/*
 840	 *	Descend on a tree
 841	 */
 842
 843	fn = root;
 844
 845	for (;;) {
 846		struct fib6_node *next;
 847
 848		dir = addr_bit_set(args->addr, fn->fn_bit);
 849
 850		next = dir ? fn->right : fn->left;
 
 851
 852		if (next) {
 853			fn = next;
 854			continue;
 855		}
 856
 857		break;
 858	}
 859
 860	while(fn) {
 861		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 
 
 
 862			struct rt6key *key;
 863
 864			key = (struct rt6key *) ((u8 *) fn->leaf +
 865						 args->offset);
 
 
 866
 867			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 868#ifdef CONFIG_IPV6_SUBTREES
 869				if (fn->subtree)
 870					fn = fib6_lookup_1(fn->subtree, args + 1);
 
 
 
 
 
 
 871#endif
 872				if (!fn || fn->fn_flags & RTN_RTINFO)
 873					return fn;
 874			}
 875		}
 876
 877		if (fn->fn_flags & RTN_ROOT)
 878			break;
 879
 880		fn = fn->parent;
 881	}
 882
 883	return NULL;
 884}
 885
 886struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
 887			       const struct in6_addr *saddr)
 
 
 
 888{
 889	struct fib6_node *fn;
 890	struct lookup_args args[] = {
 891		{
 892			.offset = offsetof(struct rt6_info, rt6i_dst),
 893			.addr = daddr,
 894		},
 895#ifdef CONFIG_IPV6_SUBTREES
 896		{
 897			.offset = offsetof(struct rt6_info, rt6i_src),
 898			.addr = saddr,
 899		},
 900#endif
 901		{
 902			.offset = 0,	/* sentinel */
 903		}
 904	};
 905
 906	fn = fib6_lookup_1(root, daddr ? args : args + 1);
 907
 908	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
 909		fn = root;
 910
 911	return fn;
 912}
 913
 914/*
 915 *	Get node with specified destination prefix (and source prefix,
 916 *	if subtrees are used)
 
 
 
 
 
 
 917 */
 918
 919
 920static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 921					const struct in6_addr *addr,
 922					int plen, int offset)
 
 923{
 924	struct fib6_node *fn;
 925
 926	for (fn = root; fn ; ) {
 927		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
 
 
 
 
 
 
 
 
 
 
 
 928
 929		/*
 930		 *	Prefix match
 931		 */
 932		if (plen < fn->fn_bit ||
 933		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 934			return NULL;
 935
 936		if (plen == fn->fn_bit)
 937			return fn;
 938
 
 
 
 
 939		/*
 940		 *	We have more bits to go
 941		 */
 942		if (addr_bit_set(addr, fn->fn_bit))
 943			fn = fn->right;
 944		else
 945			fn = fn->left;
 946	}
 947	return NULL;
 
 
 
 
 948}
 949
 950struct fib6_node * fib6_locate(struct fib6_node *root,
 951			       const struct in6_addr *daddr, int dst_len,
 952			       const struct in6_addr *saddr, int src_len)
 
 953{
 954	struct fib6_node *fn;
 955
 956	fn = fib6_locate_1(root, daddr, dst_len,
 957			   offsetof(struct rt6_info, rt6i_dst));
 
 958
 959#ifdef CONFIG_IPV6_SUBTREES
 960	if (src_len) {
 961		WARN_ON(saddr == NULL);
 962		if (fn && fn->subtree)
 963			fn = fib6_locate_1(fn->subtree, saddr, src_len,
 964					   offsetof(struct rt6_info, rt6i_src));
 
 
 
 
 
 
 965	}
 966#endif
 967
 968	if (fn && fn->fn_flags&RTN_RTINFO)
 969		return fn;
 970
 971	return NULL;
 972}
 973
 974
 975/*
 976 *	Deletion
 977 *
 978 */
 979
 980static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
 981{
 982	if (fn->fn_flags&RTN_ROOT)
 983		return net->ipv6.ip6_null_entry;
 984
 985	while(fn) {
 986		if(fn->left)
 987			return fn->left->leaf;
 988
 989		if(fn->right)
 990			return fn->right->leaf;
 
 
 
 
 
 
 
 
 
 991
 992		fn = FIB6_SUBTREE(fn);
 993	}
 994	return NULL;
 995}
 996
 997/*
 998 *	Called to trim the tree of intermediate nodes when possible. "fn"
 999 *	is the node we want to try and remove.
 
1000 */
1001
1002static struct fib6_node *fib6_repair_tree(struct net *net,
1003					   struct fib6_node *fn)
 
1004{
1005	int children;
1006	int nstate;
1007	struct fib6_node *child, *pn;
1008	struct fib6_walker_t *w;
1009	int iter = 0;
1010
 
 
 
 
 
 
1011	for (;;) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013		iter++;
1014
1015		WARN_ON(fn->fn_flags & RTN_RTINFO);
1016		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017		WARN_ON(fn->leaf != NULL);
1018
1019		children = 0;
1020		child = NULL;
1021		if (fn->right) child = fn->right, children |= 1;
1022		if (fn->left) child = fn->left, children |= 2;
 
 
1023
1024		if (children == 3 || FIB6_SUBTREE(fn)
1025#ifdef CONFIG_IPV6_SUBTREES
1026		    /* Subtree root (i.e. fn) may have one child */
1027		    || (children && fn->fn_flags&RTN_ROOT)
1028#endif
1029		    ) {
1030			fn->leaf = fib6_find_prefix(net, fn);
1031#if RT6_DEBUG >= 2
1032			if (fn->leaf==NULL) {
1033				WARN_ON(!fn->leaf);
1034				fn->leaf = net->ipv6.ip6_null_entry;
1035			}
1036#endif
1037			atomic_inc(&fn->leaf->rt6i_ref);
1038			return fn->parent;
 
1039		}
1040
1041		pn = fn->parent;
1042#ifdef CONFIG_IPV6_SUBTREES
1043		if (FIB6_SUBTREE(pn) == fn) {
1044			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045			FIB6_SUBTREE(pn) = NULL;
1046			nstate = FWS_L;
1047		} else {
1048			WARN_ON(fn->fn_flags & RTN_ROOT);
1049#endif
1050			if (pn->right == fn) pn->right = child;
1051			else if (pn->left == fn) pn->left = child;
 
 
1052#if RT6_DEBUG >= 2
1053			else
1054				WARN_ON(1);
1055#endif
1056			if (child)
1057				child->parent = pn;
1058			nstate = FWS_R;
1059#ifdef CONFIG_IPV6_SUBTREES
1060		}
1061#endif
1062
1063		read_lock(&fib6_walker_lock);
1064		FOR_WALKERS(w) {
1065			if (child == NULL) {
1066				if (w->root == fn) {
1067					w->root = w->node = NULL;
1068					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069				} else if (w->node == fn) {
1070					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071					w->node = pn;
1072					w->state = nstate;
1073				}
1074			} else {
1075				if (w->root == fn) {
1076					w->root = child;
1077					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078				}
1079				if (w->node == fn) {
1080					w->node = child;
1081					if (children&2) {
1082						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084					} else {
1085						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087					}
1088				}
1089			}
1090		}
1091		read_unlock(&fib6_walker_lock);
1092
1093		node_free(fn);
1094		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095			return pn;
1096
1097		rt6_release(pn->leaf);
1098		pn->leaf = NULL;
1099		fn = pn;
1100	}
1101}
1102
1103static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104			   struct nl_info *info)
1105{
1106	struct fib6_walker_t *w;
1107	struct rt6_info *rt = *rtp;
 
 
1108	struct net *net = info->nl_net;
 
1109
1110	RT6_TRACE("fib6_del_route\n");
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112	/* Unlink it */
1113	*rtp = rt->dst.rt6_next;
1114	rt->rt6i_node = NULL;
1115	net->ipv6.rt6_stats->fib_rt_entries--;
1116	net->ipv6.rt6_stats->fib_discarded_routes++;
1117
 
 
 
1118	/* Reset round-robin state, if necessary */
1119	if (fn->rr_ptr == rt)
1120		fn->rr_ptr = NULL;
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	/* Adjust walkers */
1123	read_lock(&fib6_walker_lock);
1124	FOR_WALKERS(w) {
1125		if (w->state == FWS_C && w->leaf == rt) {
1126			RT6_TRACE("walker %p adjusted by delroute\n", w);
1127			w->leaf = rt->dst.rt6_next;
1128			if (w->leaf == NULL)
 
1129				w->state = FWS_U;
1130		}
1131	}
1132	read_unlock(&fib6_walker_lock);
1133
1134	rt->dst.rt6_next = NULL;
1135
1136	/* If it was last route, expunge its radix tree node */
1137	if (fn->leaf == NULL) {
1138		fn->fn_flags &= ~RTN_RTINFO;
1139		net->ipv6.rt6_stats->fib_route_nodes--;
1140		fn = fib6_repair_tree(net, fn);
 
 
 
1141	}
1142
1143	if (atomic_read(&rt->rt6i_ref) != 1) {
1144		/* This route is used as dummy address holder in some split
1145		 * nodes. It is not leaked, but it still holds other resources,
1146		 * which must be released in time. So, scan ascendant nodes
1147		 * and replace dummy references to this route with references
1148		 * to still alive ones.
1149		 */
1150		while (fn) {
1151			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152				fn->leaf = fib6_find_prefix(net, fn);
1153				atomic_inc(&fn->leaf->rt6i_ref);
1154				rt6_release(rt);
1155			}
1156			fn = fn->parent;
1157		}
1158		/* No more references are possible at this point. */
1159		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160	}
 
 
1161
1162	inet6_rt_notify(RTM_DELROUTE, rt, info);
1163	rt6_release(rt);
1164}
1165
1166int fib6_del(struct rt6_info *rt, struct nl_info *info)
 
1167{
1168	struct net *net = info->nl_net;
1169	struct fib6_node *fn = rt->rt6i_node;
1170	struct rt6_info **rtp;
 
 
1171
1172#if RT6_DEBUG >= 2
1173	if (rt->dst.obsolete>0) {
1174		WARN_ON(fn != NULL);
1175		return -ENOENT;
1176	}
1177#endif
1178	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
 
 
1179		return -ENOENT;
1180
1181	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183	if (!(rt->rt6i_flags&RTF_CACHE)) {
1184		struct fib6_node *pn = fn;
1185#ifdef CONFIG_IPV6_SUBTREES
1186		/* clones of this route might be in another subtree */
1187		if (rt->rt6i_src.plen) {
1188			while (!(pn->fn_flags&RTN_ROOT))
1189				pn = pn->parent;
1190			pn = pn->parent;
1191		}
1192#endif
1193		fib6_prune_clones(info->nl_net, pn, rt);
1194	}
1195
1196	/*
1197	 *	Walk the leaf entries looking for ourself
1198	 */
1199
1200	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201		if (*rtp == rt) {
1202			fib6_del_route(fn, rtp, info);
 
 
 
 
1203			return 0;
1204		}
 
1205	}
1206	return -ENOENT;
1207}
1208
1209/*
1210 *	Tree traversal function.
1211 *
1212 *	Certainly, it is not interrupt safe.
1213 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 *	It means, that we can modify tree during walking
1215 *	and use this function for garbage collection, clone pruning,
1216 *	cleaning tree when a device goes down etc. etc.
1217 *
1218 *	It guarantees that every node will be traversed,
1219 *	and that it will be traversed only once.
1220 *
1221 *	Callback function w->func may return:
1222 *	0 -> continue walking.
1223 *	positive value -> walking is suspended (used by tree dumps,
1224 *	and probably by gc, if it will be split to several slices)
1225 *	negative value -> terminate walking.
1226 *
1227 *	The function itself returns:
1228 *	0   -> walk is complete.
1229 *	>0  -> walk is incomplete (i.e. suspended)
1230 *	<0  -> walk is terminated by an error.
 
 
1231 */
1232
1233static int fib6_walk_continue(struct fib6_walker_t *w)
1234{
1235	struct fib6_node *fn, *pn;
 
 
 
1236
1237	for (;;) {
1238		fn = w->node;
1239		if (fn == NULL)
1240			return 0;
1241
1242		if (w->prune && fn != w->root &&
1243		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244			w->state = FWS_C;
1245			w->leaf = fn->leaf;
1246		}
1247		switch (w->state) {
1248#ifdef CONFIG_IPV6_SUBTREES
1249		case FWS_S:
1250			if (FIB6_SUBTREE(fn)) {
1251				w->node = FIB6_SUBTREE(fn);
1252				continue;
1253			}
1254			w->state = FWS_L;
 
1255#endif
1256		case FWS_L:
1257			if (fn->left) {
1258				w->node = fn->left;
 
1259				w->state = FWS_INIT;
1260				continue;
1261			}
1262			w->state = FWS_R;
 
1263		case FWS_R:
1264			if (fn->right) {
1265				w->node = fn->right;
 
1266				w->state = FWS_INIT;
1267				continue;
1268			}
1269			w->state = FWS_C;
1270			w->leaf = fn->leaf;
 
1271		case FWS_C:
1272			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273				int err;
1274
1275				if (w->count < w->skip) {
1276					w->count++;
1277					continue;
1278				}
1279
1280				err = w->func(w);
1281				if (err)
1282					return err;
1283
1284				w->count++;
1285				continue;
1286			}
 
1287			w->state = FWS_U;
 
1288		case FWS_U:
1289			if (fn == w->root)
1290				return 0;
1291			pn = fn->parent;
 
 
1292			w->node = pn;
1293#ifdef CONFIG_IPV6_SUBTREES
1294			if (FIB6_SUBTREE(pn) == fn) {
1295				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296				w->state = FWS_L;
1297				continue;
1298			}
1299#endif
1300			if (pn->left == fn) {
1301				w->state = FWS_R;
1302				continue;
1303			}
1304			if (pn->right == fn) {
1305				w->state = FWS_C;
1306				w->leaf = w->node->leaf;
1307				continue;
1308			}
1309#if RT6_DEBUG >= 2
1310			WARN_ON(1);
1311#endif
1312		}
1313	}
1314}
1315
1316static int fib6_walk(struct fib6_walker_t *w)
1317{
1318	int res;
1319
1320	w->state = FWS_INIT;
1321	w->node = w->root;
1322
1323	fib6_walker_link(w);
1324	res = fib6_walk_continue(w);
1325	if (res <= 0)
1326		fib6_walker_unlink(w);
1327	return res;
1328}
1329
1330static int fib6_clean_node(struct fib6_walker_t *w)
1331{
1332	int res;
1333	struct rt6_info *rt;
1334	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335	struct nl_info info = {
1336		.nl_net = c->net,
 
1337	};
1338
1339	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 
 
 
 
 
 
 
 
 
 
1340		res = c->func(rt, c->arg);
1341		if (res < 0) {
1342			w->leaf = rt;
1343			res = fib6_del(rt, &info);
1344			if (res) {
1345#if RT6_DEBUG >= 2
1346				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
 
 
 
1347#endif
1348				continue;
1349			}
1350			return 0;
 
 
 
 
 
 
1351		}
1352		WARN_ON(res != 0);
1353	}
1354	w->leaf = rt;
1355	return 0;
1356}
1357
1358/*
1359 *	Convenient frontend to tree walker.
1360 *
1361 *	func is called on each route.
1362 *		It may return -1 -> delete this route.
 
1363 *		              0  -> continue walking
1364 *
1365 *	prune==1 -> only immediate children of node (certainly,
1366 *	ignoring pure split nodes) will be scanned.
1367 */
1368
1369static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370			    int (*func)(struct rt6_info *, void *arg),
1371			    int prune, void *arg)
1372{
1373	struct fib6_cleaner_t c;
1374
1375	c.w.root = root;
1376	c.w.func = fib6_clean_node;
1377	c.w.prune = prune;
1378	c.w.count = 0;
1379	c.w.skip = 0;
 
1380	c.func = func;
 
1381	c.arg = arg;
1382	c.net = net;
 
1383
1384	fib6_walk(&c.w);
1385}
1386
1387void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388		    int prune, void *arg)
 
1389{
1390	struct fib6_table *table;
1391	struct hlist_node *node;
1392	struct hlist_head *head;
1393	unsigned int h;
1394
1395	rcu_read_lock();
1396	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397		head = &net->ipv6.fib_table_hash[h];
1398		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399			write_lock_bh(&table->tb6_lock);
1400			fib6_clean_tree(net, &table->tb6_root,
1401					func, prune, arg);
1402			write_unlock_bh(&table->tb6_lock);
1403		}
1404	}
1405	rcu_read_unlock();
1406}
1407
1408static int fib6_prune_clone(struct rt6_info *rt, void *arg)
 
1409{
1410	if (rt->rt6i_flags & RTF_CACHE) {
1411		RT6_TRACE("pruning clone %p\n", rt);
1412		return -1;
1413	}
1414
1415	return 0;
 
 
 
 
1416}
1417
1418static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419			      struct rt6_info *rt)
1420{
1421	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
 
 
1422}
1423
1424/*
1425 *	Garbage collection
1426 */
1427
1428static struct fib6_gc_args
1429{
1430	int			timeout;
1431	int			more;
1432} gc_args;
1433
1434static int fib6_age(struct rt6_info *rt, void *arg)
1435{
 
1436	unsigned long now = jiffies;
1437
1438	/*
1439	 *	check addrconf expiration here.
1440	 *	Routes are expired even if they are in use.
1441	 *
1442	 *	Also age clones. Note, that clones are aged out
1443	 *	only if they are not in use now.
1444	 */
1445
1446	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447		if (time_after(now, rt->rt6i_expires)) {
1448			RT6_TRACE("expiring %p\n", rt);
1449			return -1;
1450		}
1451		gc_args.more++;
1452	} else if (rt->rt6i_flags & RTF_CACHE) {
1453		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455			RT6_TRACE("aging clone %p\n", rt);
1456			return -1;
1457		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458			   (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1459			RT6_TRACE("purging route %p via non-router but gateway\n",
1460				  rt);
1461			return -1;
1462		}
1463		gc_args.more++;
1464	}
1465
 
 
 
 
 
 
1466	return 0;
1467}
1468
1469static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471void fib6_run_gc(unsigned long expires, struct net *net)
1472{
1473	if (expires != ~0UL) {
1474		spin_lock_bh(&fib6_gc_lock);
1475		gc_args.timeout = expires ? (int)expires :
1476			net->ipv6.sysctl.ip6_rt_gc_interval;
1477	} else {
1478		if (!spin_trylock_bh(&fib6_gc_lock)) {
1479			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480			return;
1481		}
1482		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483	}
1484
1485	gc_args.more = icmp6_dst_gc();
1486
1487	fib6_clean_all(net, fib6_age, 0, NULL);
 
 
 
 
 
 
 
 
 
 
1488
1489	if (gc_args.more)
1490		mod_timer(&net->ipv6.ip6_fib_timer,
1491			  round_jiffies(jiffies
1492					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1493	else
1494		del_timer(&net->ipv6.ip6_fib_timer);
1495	spin_unlock_bh(&fib6_gc_lock);
1496}
1497
1498static void fib6_gc_timer_cb(unsigned long arg)
1499{
1500	fib6_run_gc(0, (struct net *)arg);
 
 
1501}
1502
1503static int __net_init fib6_net_init(struct net *net)
1504{
1505	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
 
1506
1507	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
 
 
 
 
 
 
 
1508
1509	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510	if (!net->ipv6.rt6_stats)
1511		goto out_timer;
1512
1513	/* Avoid false sharing : Use at least a full cache line */
1514	size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517	if (!net->ipv6.fib_table_hash)
1518		goto out_rt6_stats;
1519
1520	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521					  GFP_KERNEL);
1522	if (!net->ipv6.fib6_main_tbl)
1523		goto out_fib_table_hash;
1524
1525	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
1527	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
1529
1530#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532					   GFP_KERNEL);
1533	if (!net->ipv6.fib6_local_tbl)
1534		goto out_fib6_main_tbl;
1535	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
1537	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
1539#endif
1540	fib6_tables_init(net);
1541
1542	return 0;
1543
1544#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545out_fib6_main_tbl:
1546	kfree(net->ipv6.fib6_main_tbl);
1547#endif
1548out_fib_table_hash:
1549	kfree(net->ipv6.fib_table_hash);
1550out_rt6_stats:
1551	kfree(net->ipv6.rt6_stats);
1552out_timer:
 
1553	return -ENOMEM;
1554 }
1555
1556static void fib6_net_exit(struct net *net)
1557{
1558	rt6_ifdown(net, NULL);
 
1559	del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562	kfree(net->ipv6.fib6_local_tbl);
1563#endif
1564	kfree(net->ipv6.fib6_main_tbl);
 
 
 
 
 
 
 
1565	kfree(net->ipv6.fib_table_hash);
1566	kfree(net->ipv6.rt6_stats);
 
1567}
1568
1569static struct pernet_operations fib6_net_ops = {
1570	.init = fib6_net_init,
1571	.exit = fib6_net_exit,
1572};
1573
1574int __init fib6_init(void)
1575{
1576	int ret = -ENOMEM;
1577
1578	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579					   sizeof(struct fib6_node),
1580					   0, SLAB_HWCACHE_ALIGN,
1581					   NULL);
1582	if (!fib6_node_kmem)
1583		goto out;
1584
1585	ret = register_pernet_subsys(&fib6_net_ops);
1586	if (ret)
1587		goto out_kmem_cache_create;
1588
1589	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1590			      NULL);
1591	if (ret)
1592		goto out_unregister_subsys;
 
 
1593out:
1594	return ret;
1595
1596out_unregister_subsys:
1597	unregister_pernet_subsys(&fib6_net_ops);
1598out_kmem_cache_create:
1599	kmem_cache_destroy(fib6_node_kmem);
1600	goto out;
1601}
1602
1603void fib6_gc_cleanup(void)
1604{
1605	unregister_pernet_subsys(&fib6_net_ops);
1606	kmem_cache_destroy(fib6_node_kmem);
1607}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Linux INET6 implementation
   4 *	Forwarding Information Database
   5 *
   6 *	Authors:
   7 *	Pedro Roque		<roque@di.fc.ul.pt>
   8 *
   9 *	Changes:
  10 *	Yuji SEKIYA @USAGI:	Support default route on router node;
  11 *				remove ip6_null_entry from the top of
  12 *				routing table.
  13 *	Ville Nuorvala:		Fixed routing subtrees.
  14 */
  15
  16#define pr_fmt(fmt) "IPv6: " fmt
  17
 
 
 
 
 
  18#include <linux/errno.h>
  19#include <linux/types.h>
  20#include <linux/net.h>
  21#include <linux/route.h>
  22#include <linux/netdevice.h>
  23#include <linux/in6.h>
  24#include <linux/init.h>
  25#include <linux/list.h>
  26#include <linux/slab.h>
  27
  28#include <net/ip.h>
 
 
 
  29#include <net/ipv6.h>
  30#include <net/ndisc.h>
  31#include <net/addrconf.h>
  32#include <net/lwtunnel.h>
  33#include <net/fib_notifier.h>
  34
  35#include <net/ip6_fib.h>
  36#include <net/ip6_route.h>
  37
  38static struct kmem_cache *fib6_node_kmem __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40struct fib6_cleaner {
  41	struct fib6_walker w;
 
  42	struct net *net;
  43	int (*func)(struct fib6_info *, void *arg);
  44	int sernum;
  45	void *arg;
  46	bool skip_notify;
  47};
  48
 
 
  49#ifdef CONFIG_IPV6_SUBTREES
  50#define FWS_INIT FWS_S
  51#else
  52#define FWS_INIT FWS_L
  53#endif
  54
  55static struct fib6_info *fib6_find_prefix(struct net *net,
  56					 struct fib6_table *table,
  57					 struct fib6_node *fn);
  58static struct fib6_node *fib6_repair_tree(struct net *net,
  59					  struct fib6_table *table,
  60					  struct fib6_node *fn);
  61static int fib6_walk(struct net *net, struct fib6_walker *w);
  62static int fib6_walk_continue(struct fib6_walker *w);
  63
  64/*
  65 *	A routing update causes an increase of the serial number on the
  66 *	affected subtree. This allows for cached routes to be asynchronously
  67 *	tested when modifications are made to the destination cache as a
  68 *	result of redirects, path MTU changes, etc.
  69 */
  70
  71static void fib6_gc_timer_cb(struct timer_list *t);
 
 
  72
  73#define FOR_WALKERS(net, w) \
  74	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
  75
  76static void fib6_walker_link(struct net *net, struct fib6_walker *w)
  77{
  78	write_lock_bh(&net->ipv6.fib6_walker_lock);
  79	list_add(&w->lh, &net->ipv6.fib6_walkers);
  80	write_unlock_bh(&net->ipv6.fib6_walker_lock);
  81}
  82
  83static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
  84{
  85	write_lock_bh(&net->ipv6.fib6_walker_lock);
  86	list_del(&w->lh);
  87	write_unlock_bh(&net->ipv6.fib6_walker_lock);
  88}
  89
  90static int fib6_new_sernum(struct net *net)
  91{
  92	int new, old;
  93
  94	do {
  95		old = atomic_read(&net->ipv6.fib6_sernum);
  96		new = old < INT_MAX ? old + 1 : 1;
  97	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
  98				old, new) != old);
  99	return new;
 100}
 101
 102enum {
 103	FIB6_NO_SERNUM_CHANGE = 0,
 104};
 105
 106void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
 107{
 108	struct fib6_node *fn;
 109
 110	fn = rcu_dereference_protected(f6i->fib6_node,
 111			lockdep_is_held(&f6i->fib6_table->tb6_lock));
 112	if (fn)
 113		fn->fn_sernum = fib6_new_sernum(net);
 114}
 115
 116/*
 117 *	Auxiliary address test functions for the radix tree.
 118 *
 119 *	These assume a 32bit processor (although it will work on
 120 *	64bit processors)
 121 */
 122
 123/*
 124 *	test bit
 125 */
 126#if defined(__LITTLE_ENDIAN)
 127# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 128#else
 129# define BITOP_BE32_SWIZZLE	0
 130#endif
 131
 132static __be32 addr_bit_set(const void *token, int fn_bit)
 133{
 134	const __be32 *addr = token;
 135	/*
 136	 * Here,
 137	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 138	 * is optimized version of
 139	 *	htonl(1 << ((~fn_bit)&0x1F))
 140	 * See include/asm-generic/bitops/le.h.
 141	 */
 142	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 143	       addr[fn_bit >> 5];
 144}
 145
 146struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
 147{
 148	struct fib6_info *f6i;
 149	size_t sz = sizeof(*f6i);
 150
 151	if (with_fib6_nh)
 152		sz += sizeof(struct fib6_nh);
 153
 154	f6i = kzalloc(sz, gfp_flags);
 155	if (!f6i)
 156		return NULL;
 157
 158	/* fib6_siblings is a union with nh_list, so this initializes both */
 159	INIT_LIST_HEAD(&f6i->fib6_siblings);
 160	refcount_set(&f6i->fib6_ref, 1);
 161
 162	return f6i;
 163}
 164
 165void fib6_info_destroy_rcu(struct rcu_head *head)
 166{
 167	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
 168
 169	WARN_ON(f6i->fib6_node);
 170
 171	if (f6i->nh)
 172		nexthop_put(f6i->nh);
 173	else
 174		fib6_nh_release(f6i->fib6_nh);
 175
 176	ip_fib_metrics_put(f6i->fib6_metrics);
 177	kfree(f6i);
 178}
 179EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
 180
 181static struct fib6_node *node_alloc(struct net *net)
 182{
 183	struct fib6_node *fn;
 184
 185	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 186	if (fn)
 187		net->ipv6.rt6_stats->fib_nodes++;
 188
 189	return fn;
 190}
 191
 192static void node_free_immediate(struct net *net, struct fib6_node *fn)
 193{
 194	kmem_cache_free(fib6_node_kmem, fn);
 195	net->ipv6.rt6_stats->fib_nodes--;
 196}
 197
 198static void node_free_rcu(struct rcu_head *head)
 199{
 200	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
 201
 202	kmem_cache_free(fib6_node_kmem, fn);
 203}
 204
 205static void node_free(struct net *net, struct fib6_node *fn)
 206{
 207	call_rcu(&fn->rcu, node_free_rcu);
 208	net->ipv6.rt6_stats->fib_nodes--;
 209}
 210
 211static void fib6_free_table(struct fib6_table *table)
 212{
 213	inetpeer_invalidate_tree(&table->tb6_peers);
 214	kfree(table);
 215}
 216
 217static void fib6_link_table(struct net *net, struct fib6_table *tb)
 218{
 219	unsigned int h;
 220
 221	/*
 222	 * Initialize table lock at a single place to give lockdep a key,
 223	 * tables aren't visible prior to being linked to the list.
 224	 */
 225	spin_lock_init(&tb->tb6_lock);
 
 226	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 227
 228	/*
 229	 * No protection necessary, this is the only list mutatation
 230	 * operation, tables never disappear once they exist.
 231	 */
 232	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 233}
 234
 235#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 236
 237static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 238{
 239	struct fib6_table *table;
 240
 241	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 242	if (table) {
 243		table->tb6_id = id;
 244		rcu_assign_pointer(table->tb6_root.leaf,
 245				   net->ipv6.fib6_null_entry);
 246		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 247		inet_peer_base_init(&table->tb6_peers);
 248	}
 249
 250	return table;
 251}
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255	struct fib6_table *tb;
 256
 257	if (id == 0)
 258		id = RT6_TABLE_MAIN;
 259	tb = fib6_get_table(net, id);
 260	if (tb)
 261		return tb;
 262
 263	tb = fib6_alloc_table(net, id);
 264	if (tb)
 265		fib6_link_table(net, tb);
 266
 267	return tb;
 268}
 269EXPORT_SYMBOL_GPL(fib6_new_table);
 270
 271struct fib6_table *fib6_get_table(struct net *net, u32 id)
 272{
 273	struct fib6_table *tb;
 274	struct hlist_head *head;
 
 275	unsigned int h;
 276
 277	if (id == 0)
 278		id = RT6_TABLE_MAIN;
 279	h = id & (FIB6_TABLE_HASHSZ - 1);
 280	rcu_read_lock();
 281	head = &net->ipv6.fib_table_hash[h];
 282	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 283		if (tb->tb6_id == id) {
 284			rcu_read_unlock();
 285			return tb;
 286		}
 287	}
 288	rcu_read_unlock();
 289
 290	return NULL;
 291}
 292EXPORT_SYMBOL_GPL(fib6_get_table);
 293
 294static void __net_init fib6_tables_init(struct net *net)
 295{
 296	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 297	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 298}
 299#else
 300
 301struct fib6_table *fib6_new_table(struct net *net, u32 id)
 302{
 303	return fib6_get_table(net, id);
 304}
 305
 306struct fib6_table *fib6_get_table(struct net *net, u32 id)
 307{
 308	  return net->ipv6.fib6_main_tbl;
 309}
 310
 311struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 312				   const struct sk_buff *skb,
 313				   int flags, pol_lookup_t lookup)
 314{
 315	struct rt6_info *rt;
 316
 317	rt = pol_lookup_func(lookup,
 318			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
 319	if (rt->dst.error == -EAGAIN) {
 320		ip6_rt_put_flags(rt, flags);
 321		rt = net->ipv6.ip6_null_entry;
 322		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
 323			dst_hold(&rt->dst);
 324	}
 325
 326	return &rt->dst;
 327}
 328
 329/* called with rcu lock held; no reference taken on fib6_info */
 330int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
 331		struct fib6_result *res, int flags)
 332{
 333	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
 334				 res, flags);
 335}
 336
 337static void __net_init fib6_tables_init(struct net *net)
 338{
 339	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 340}
 341
 342#endif
 343
 344unsigned int fib6_tables_seq_read(struct net *net)
 345{
 346	unsigned int h, fib_seq = 0;
 347
 348	rcu_read_lock();
 349	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
 350		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
 351		struct fib6_table *tb;
 352
 353		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
 354			fib_seq += tb->fib_seq;
 355	}
 356	rcu_read_unlock();
 357
 358	return fib_seq;
 359}
 360
 361static int call_fib6_entry_notifier(struct notifier_block *nb,
 362				    enum fib_event_type event_type,
 363				    struct fib6_info *rt,
 364				    struct netlink_ext_ack *extack)
 365{
 366	struct fib6_entry_notifier_info info = {
 367		.info.extack = extack,
 368		.rt = rt,
 369	};
 370
 371	return call_fib6_notifier(nb, event_type, &info.info);
 372}
 373
 374static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
 375					      enum fib_event_type event_type,
 376					      struct fib6_info *rt,
 377					      unsigned int nsiblings,
 378					      struct netlink_ext_ack *extack)
 379{
 380	struct fib6_entry_notifier_info info = {
 381		.info.extack = extack,
 382		.rt = rt,
 383		.nsiblings = nsiblings,
 384	};
 385
 386	return call_fib6_notifier(nb, event_type, &info.info);
 387}
 388
 389int call_fib6_entry_notifiers(struct net *net,
 390			      enum fib_event_type event_type,
 391			      struct fib6_info *rt,
 392			      struct netlink_ext_ack *extack)
 393{
 394	struct fib6_entry_notifier_info info = {
 395		.info.extack = extack,
 396		.rt = rt,
 397	};
 398
 399	rt->fib6_table->fib_seq++;
 400	return call_fib6_notifiers(net, event_type, &info.info);
 401}
 402
 403int call_fib6_multipath_entry_notifiers(struct net *net,
 404					enum fib_event_type event_type,
 405					struct fib6_info *rt,
 406					unsigned int nsiblings,
 407					struct netlink_ext_ack *extack)
 408{
 409	struct fib6_entry_notifier_info info = {
 410		.info.extack = extack,
 411		.rt = rt,
 412		.nsiblings = nsiblings,
 413	};
 414
 415	rt->fib6_table->fib_seq++;
 416	return call_fib6_notifiers(net, event_type, &info.info);
 417}
 418
 419int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
 420{
 421	struct fib6_entry_notifier_info info = {
 422		.rt = rt,
 423		.nsiblings = rt->fib6_nsiblings,
 424	};
 425
 426	rt->fib6_table->fib_seq++;
 427	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
 428}
 429
 430struct fib6_dump_arg {
 431	struct net *net;
 432	struct notifier_block *nb;
 433	struct netlink_ext_ack *extack;
 434};
 435
 436static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
 437{
 438	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
 439	int err;
 440
 441	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
 442		return 0;
 443
 444	if (rt->fib6_nsiblings)
 445		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
 446							 rt,
 447							 rt->fib6_nsiblings,
 448							 arg->extack);
 449	else
 450		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
 451					       arg->extack);
 452
 453	return err;
 454}
 455
 456static int fib6_node_dump(struct fib6_walker *w)
 457{
 458	int err;
 459
 460	err = fib6_rt_dump(w->leaf, w->args);
 461	w->leaf = NULL;
 462	return err;
 463}
 464
 465static int fib6_table_dump(struct net *net, struct fib6_table *tb,
 466			   struct fib6_walker *w)
 467{
 468	int err;
 469
 470	w->root = &tb->tb6_root;
 471	spin_lock_bh(&tb->tb6_lock);
 472	err = fib6_walk(net, w);
 473	spin_unlock_bh(&tb->tb6_lock);
 474	return err;
 475}
 476
 477/* Called with rcu_read_lock() */
 478int fib6_tables_dump(struct net *net, struct notifier_block *nb,
 479		     struct netlink_ext_ack *extack)
 480{
 481	struct fib6_dump_arg arg;
 482	struct fib6_walker *w;
 483	unsigned int h;
 484	int err = 0;
 485
 486	w = kzalloc(sizeof(*w), GFP_ATOMIC);
 487	if (!w)
 488		return -ENOMEM;
 489
 490	w->func = fib6_node_dump;
 491	arg.net = net;
 492	arg.nb = nb;
 493	arg.extack = extack;
 494	w->args = &arg;
 495
 496	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
 497		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
 498		struct fib6_table *tb;
 499
 500		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 501			err = fib6_table_dump(net, tb, w);
 502			if (err < 0)
 503				goto out;
 504		}
 505	}
 506
 507out:
 508	kfree(w);
 509
 510	return err;
 511}
 512
 513static int fib6_dump_node(struct fib6_walker *w)
 514{
 515	int res;
 516	struct fib6_info *rt;
 517
 518	for_each_fib6_walker_rt(w) {
 519		res = rt6_dump_route(rt, w->args, w->skip_in_node);
 520		if (res >= 0) {
 521			/* Frame is full, suspend walking */
 522			w->leaf = rt;
 523
 524			/* We'll restart from this node, so if some routes were
 525			 * already dumped, skip them next time.
 526			 */
 527			w->skip_in_node += res;
 528
 529			return 1;
 530		}
 531		w->skip_in_node = 0;
 532
 533		/* Multipath routes are dumped in one route with the
 534		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
 535		 * last sibling of this route (no need to dump the
 536		 * sibling routes again)
 537		 */
 538		if (rt->fib6_nsiblings)
 539			rt = list_last_entry(&rt->fib6_siblings,
 540					     struct fib6_info,
 541					     fib6_siblings);
 542	}
 543	w->leaf = NULL;
 544	return 0;
 545}
 546
 547static void fib6_dump_end(struct netlink_callback *cb)
 548{
 549	struct net *net = sock_net(cb->skb->sk);
 550	struct fib6_walker *w = (void *)cb->args[2];
 551
 552	if (w) {
 553		if (cb->args[4]) {
 554			cb->args[4] = 0;
 555			fib6_walker_unlink(net, w);
 556		}
 557		cb->args[2] = 0;
 558		kfree(w);
 559	}
 560	cb->done = (void *)cb->args[3];
 561	cb->args[1] = 3;
 562}
 563
 564static int fib6_dump_done(struct netlink_callback *cb)
 565{
 566	fib6_dump_end(cb);
 567	return cb->done ? cb->done(cb) : 0;
 568}
 569
 570static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 571			   struct netlink_callback *cb)
 572{
 573	struct net *net = sock_net(skb->sk);
 574	struct fib6_walker *w;
 575	int res;
 576
 577	w = (void *)cb->args[2];
 578	w->root = &table->tb6_root;
 579
 580	if (cb->args[4] == 0) {
 581		w->count = 0;
 582		w->skip = 0;
 583		w->skip_in_node = 0;
 584
 585		spin_lock_bh(&table->tb6_lock);
 586		res = fib6_walk(net, w);
 587		spin_unlock_bh(&table->tb6_lock);
 588		if (res > 0) {
 589			cb->args[4] = 1;
 590			cb->args[5] = w->root->fn_sernum;
 591		}
 592	} else {
 593		if (cb->args[5] != w->root->fn_sernum) {
 594			/* Begin at the root if the tree changed */
 595			cb->args[5] = w->root->fn_sernum;
 596			w->state = FWS_INIT;
 597			w->node = w->root;
 598			w->skip = w->count;
 599			w->skip_in_node = 0;
 600		} else
 601			w->skip = 0;
 602
 603		spin_lock_bh(&table->tb6_lock);
 604		res = fib6_walk_continue(w);
 605		spin_unlock_bh(&table->tb6_lock);
 606		if (res <= 0) {
 607			fib6_walker_unlink(net, w);
 608			cb->args[4] = 0;
 609		}
 610	}
 611
 612	return res;
 613}
 614
 615static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 616{
 617	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
 618					 .filter.dump_routes = true };
 619	const struct nlmsghdr *nlh = cb->nlh;
 620	struct net *net = sock_net(skb->sk);
 621	unsigned int h, s_h;
 622	unsigned int e = 0, s_e;
 623	struct fib6_walker *w;
 
 624	struct fib6_table *tb;
 
 625	struct hlist_head *head;
 626	int res = 0;
 627
 628	if (cb->strict_check) {
 629		int err;
 630
 631		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
 632		if (err < 0)
 633			return err;
 634	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
 635		struct rtmsg *rtm = nlmsg_data(nlh);
 636
 637		if (rtm->rtm_flags & RTM_F_PREFIX)
 638			arg.filter.flags = RTM_F_PREFIX;
 639	}
 640
 641	w = (void *)cb->args[2];
 642	if (!w) {
 643		/* New dump:
 644		 *
 645		 * 1. hook callback destructor.
 646		 */
 647		cb->args[3] = (long)cb->done;
 648		cb->done = fib6_dump_done;
 649
 650		/*
 651		 * 2. allocate and initialize walker.
 652		 */
 653		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 654		if (!w)
 655			return -ENOMEM;
 656		w->func = fib6_dump_node;
 657		cb->args[2] = (long)w;
 658	}
 659
 660	arg.skb = skb;
 661	arg.cb = cb;
 662	arg.net = net;
 663	w->args = &arg;
 664
 665	if (arg.filter.table_id) {
 666		tb = fib6_get_table(net, arg.filter.table_id);
 667		if (!tb) {
 668			if (rtnl_msg_family(cb->nlh) != PF_INET6)
 669				goto out;
 670
 671			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
 672			return -ENOENT;
 673		}
 674
 675		if (!cb->args[0]) {
 676			res = fib6_dump_table(tb, skb, cb);
 677			if (!res)
 678				cb->args[0] = 1;
 679		}
 680		goto out;
 681	}
 682
 683	s_h = cb->args[0];
 684	s_e = cb->args[1];
 685
 686	rcu_read_lock();
 687	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 688		e = 0;
 689		head = &net->ipv6.fib_table_hash[h];
 690		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 691			if (e < s_e)
 692				goto next;
 693			res = fib6_dump_table(tb, skb, cb);
 694			if (res != 0)
 695				goto out_unlock;
 696next:
 697			e++;
 698		}
 699	}
 700out_unlock:
 701	rcu_read_unlock();
 702	cb->args[1] = e;
 703	cb->args[0] = h;
 704out:
 705	res = res < 0 ? res : skb->len;
 706	if (res <= 0)
 707		fib6_dump_end(cb);
 708	return res;
 709}
 710
 711void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
 712{
 713	if (!f6i)
 714		return;
 715
 716	if (f6i->fib6_metrics == &dst_default_metrics) {
 717		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
 718
 719		if (!p)
 720			return;
 721
 722		refcount_set(&p->refcnt, 1);
 723		f6i->fib6_metrics = p;
 724	}
 725
 726	f6i->fib6_metrics->metrics[metric - 1] = val;
 727}
 728
 729/*
 730 *	Routing Table
 731 *
 732 *	return the appropriate node for a routing tree "add" operation
 733 *	by either creating and inserting or by returning an existing
 734 *	node.
 735 */
 736
 737static struct fib6_node *fib6_add_1(struct net *net,
 738				    struct fib6_table *table,
 739				    struct fib6_node *root,
 740				    struct in6_addr *addr, int plen,
 741				    int offset, int allow_create,
 742				    int replace_required,
 743				    struct netlink_ext_ack *extack)
 744{
 745	struct fib6_node *fn, *in, *ln;
 746	struct fib6_node *pn = NULL;
 747	struct rt6key *key;
 748	int	bit;
 749	__be32	dir = 0;
 
 750
 751	RT6_TRACE("fib6_add_1\n");
 752
 753	/* insert node in tree */
 754
 755	fn = root;
 756
 757	do {
 758		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
 759					    lockdep_is_held(&table->tb6_lock));
 760		key = (struct rt6key *)((u8 *)leaf + offset);
 761
 762		/*
 763		 *	Prefix match
 764		 */
 765		if (plen < fn->fn_bit ||
 766		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 767			if (!allow_create) {
 768				if (replace_required) {
 769					NL_SET_ERR_MSG(extack,
 770						       "Can not replace route - no match found");
 771					pr_warn("Can't replace route, no match found\n");
 772					return ERR_PTR(-ENOENT);
 773				}
 774				pr_warn("NLM_F_CREATE should be set when creating new route\n");
 775			}
 776			goto insert_above;
 777		}
 778
 779		/*
 780		 *	Exact match ?
 781		 */
 782
 783		if (plen == fn->fn_bit) {
 784			/* clean up an intermediate node */
 785			if (!(fn->fn_flags & RTN_RTINFO)) {
 786				RCU_INIT_POINTER(fn->leaf, NULL);
 787				fib6_info_release(leaf);
 788			/* remove null_entry in the root node */
 789			} else if (fn->fn_flags & RTN_TL_ROOT &&
 790				   rcu_access_pointer(fn->leaf) ==
 791				   net->ipv6.fib6_null_entry) {
 792				RCU_INIT_POINTER(fn->leaf, NULL);
 793			}
 794
 
 
 795			return fn;
 796		}
 797
 798		/*
 799		 *	We have more bits to go
 800		 */
 801
 802		/* Try to walk down on tree. */
 
 803		dir = addr_bit_set(addr, fn->fn_bit);
 804		pn = fn;
 805		fn = dir ?
 806		     rcu_dereference_protected(fn->right,
 807					lockdep_is_held(&table->tb6_lock)) :
 808		     rcu_dereference_protected(fn->left,
 809					lockdep_is_held(&table->tb6_lock));
 810	} while (fn);
 811
 812	if (!allow_create) {
 813		/* We should not create new node because
 814		 * NLM_F_REPLACE was specified without NLM_F_CREATE
 815		 * I assume it is safe to require NLM_F_CREATE when
 816		 * REPLACE flag is used! Later we may want to remove the
 817		 * check for replace_required, because according
 818		 * to netlink specification, NLM_F_CREATE
 819		 * MUST be specified if new route is created.
 820		 * That would keep IPv6 consistent with IPv4
 821		 */
 822		if (replace_required) {
 823			NL_SET_ERR_MSG(extack,
 824				       "Can not replace route - no match found");
 825			pr_warn("Can't replace route, no match found\n");
 826			return ERR_PTR(-ENOENT);
 827		}
 828		pr_warn("NLM_F_CREATE should be set when creating new route\n");
 829	}
 830	/*
 831	 *	We walked to the bottom of tree.
 832	 *	Create new leaf node without children.
 833	 */
 834
 835	ln = node_alloc(net);
 836
 837	if (!ln)
 838		return ERR_PTR(-ENOMEM);
 839	ln->fn_bit = plen;
 840	RCU_INIT_POINTER(ln->parent, pn);
 
 
 841
 842	if (dir)
 843		rcu_assign_pointer(pn->right, ln);
 844	else
 845		rcu_assign_pointer(pn->left, ln);
 846
 847	return ln;
 848
 849
 850insert_above:
 851	/*
 852	 * split since we don't have a common prefix anymore or
 853	 * we have a less significant route.
 854	 * we've to insert an intermediate node on the list
 855	 * this new node will point to the one we need to create
 856	 * and the current
 857	 */
 858
 859	pn = rcu_dereference_protected(fn->parent,
 860				       lockdep_is_held(&table->tb6_lock));
 861
 862	/* find 1st bit in difference between the 2 addrs.
 863
 864	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 865	   but if it is >= plen, the value is ignored in any case.
 866	 */
 867
 868	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
 869
 870	/*
 871	 *		(intermediate)[in]
 872	 *	          /	   \
 873	 *	(new leaf node)[ln] (old node)[fn]
 874	 */
 875	if (plen > bit) {
 876		in = node_alloc(net);
 877		ln = node_alloc(net);
 878
 879		if (!in || !ln) {
 880			if (in)
 881				node_free_immediate(net, in);
 882			if (ln)
 883				node_free_immediate(net, ln);
 884			return ERR_PTR(-ENOMEM);
 885		}
 886
 887		/*
 888		 * new intermediate node.
 889		 * RTN_RTINFO will
 890		 * be off since that an address that chooses one of
 891		 * the branches would not match less specific routes
 892		 * in the other branch
 893		 */
 894
 895		in->fn_bit = bit;
 896
 897		RCU_INIT_POINTER(in->parent, pn);
 898		in->leaf = fn->leaf;
 899		fib6_info_hold(rcu_dereference_protected(in->leaf,
 900				lockdep_is_held(&table->tb6_lock)));
 
 901
 902		/* update parent pointer */
 903		if (dir)
 904			rcu_assign_pointer(pn->right, in);
 905		else
 906			rcu_assign_pointer(pn->left, in);
 907
 908		ln->fn_bit = plen;
 909
 910		RCU_INIT_POINTER(ln->parent, in);
 911		rcu_assign_pointer(fn->parent, in);
 
 
 912
 913		if (addr_bit_set(addr, bit)) {
 914			rcu_assign_pointer(in->right, ln);
 915			rcu_assign_pointer(in->left, fn);
 916		} else {
 917			rcu_assign_pointer(in->left, ln);
 918			rcu_assign_pointer(in->right, fn);
 919		}
 920	} else { /* plen <= bit */
 921
 922		/*
 923		 *		(new leaf node)[ln]
 924		 *	          /	   \
 925		 *	     (old node)[fn] NULL
 926		 */
 927
 928		ln = node_alloc(net);
 929
 930		if (!ln)
 931			return ERR_PTR(-ENOMEM);
 932
 933		ln->fn_bit = plen;
 934
 935		RCU_INIT_POINTER(ln->parent, pn);
 936
 937		if (addr_bit_set(&key->addr, plen))
 938			RCU_INIT_POINTER(ln->right, fn);
 939		else
 940			RCU_INIT_POINTER(ln->left, fn);
 941
 942		rcu_assign_pointer(fn->parent, ln);
 943
 944		if (dir)
 945			rcu_assign_pointer(pn->right, ln);
 946		else
 947			rcu_assign_pointer(pn->left, ln);
 948	}
 949	return ln;
 950}
 951
 952static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
 953				  const struct fib6_info *match,
 954				  const struct fib6_table *table)
 955{
 956	int cpu;
 957
 958	if (!fib6_nh->rt6i_pcpu)
 959		return;
 960
 961	/* release the reference to this fib entry from
 962	 * all of its cached pcpu routes
 963	 */
 964	for_each_possible_cpu(cpu) {
 965		struct rt6_info **ppcpu_rt;
 966		struct rt6_info *pcpu_rt;
 967
 968		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
 969		pcpu_rt = *ppcpu_rt;
 970
 971		/* only dropping the 'from' reference if the cached route
 972		 * is using 'match'. The cached pcpu_rt->from only changes
 973		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
 974		 * change from one fib6_info reference to another
 975		 */
 976		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
 977			struct fib6_info *from;
 978
 979			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
 980			fib6_info_release(from);
 981		}
 982	}
 983}
 984
 985struct fib6_nh_pcpu_arg {
 986	struct fib6_info	*from;
 987	const struct fib6_table *table;
 988};
 989
 990static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
 991{
 992	struct fib6_nh_pcpu_arg *arg = _arg;
 993
 994	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
 995	return 0;
 996}
 997
 998static void fib6_drop_pcpu_from(struct fib6_info *f6i,
 999				const struct fib6_table *table)
1000{
1001	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1002	 * while we are cleaning them here.
1003	 */
1004	f6i->fib6_destroying = 1;
1005	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1006
1007	if (f6i->nh) {
1008		struct fib6_nh_pcpu_arg arg = {
1009			.from = f6i,
1010			.table = table
1011		};
1012
1013		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1014					 &arg);
1015	} else {
1016		struct fib6_nh *fib6_nh;
1017
1018		fib6_nh = f6i->fib6_nh;
1019		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1020	}
1021}
1022
1023static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1024			  struct net *net)
1025{
1026	struct fib6_table *table = rt->fib6_table;
1027
1028	fib6_drop_pcpu_from(rt, table);
1029
1030	if (rt->nh && !list_empty(&rt->nh_list))
1031		list_del_init(&rt->nh_list);
1032
1033	if (refcount_read(&rt->fib6_ref) != 1) {
1034		/* This route is used as dummy address holder in some split
1035		 * nodes. It is not leaked, but it still holds other resources,
1036		 * which must be released in time. So, scan ascendant nodes
1037		 * and replace dummy references to this route with references
1038		 * to still alive ones.
1039		 */
1040		while (fn) {
1041			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1042					    lockdep_is_held(&table->tb6_lock));
1043			struct fib6_info *new_leaf;
1044			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1045				new_leaf = fib6_find_prefix(net, table, fn);
1046				fib6_info_hold(new_leaf);
1047
1048				rcu_assign_pointer(fn->leaf, new_leaf);
1049				fib6_info_release(rt);
1050			}
1051			fn = rcu_dereference_protected(fn->parent,
1052				    lockdep_is_held(&table->tb6_lock));
1053		}
1054	}
 
1055}
1056
1057/*
1058 *	Insert routing information in a node.
1059 */
1060
1061static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1062			    struct nl_info *info,
1063			    struct netlink_ext_ack *extack)
1064{
1065	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1066				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1067	struct fib6_info *iter = NULL;
1068	struct fib6_info __rcu **ins;
1069	struct fib6_info __rcu **fallback_ins = NULL;
1070	int replace = (info->nlh &&
1071		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1072	int add = (!info->nlh ||
1073		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1074	int found = 0;
1075	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1076	bool notify_sibling_rt = false;
1077	u16 nlflags = NLM_F_EXCL;
1078	int err;
1079
1080	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1081		nlflags |= NLM_F_APPEND;
1082
1083	ins = &fn->leaf;
1084
1085	for (iter = leaf; iter;
1086	     iter = rcu_dereference_protected(iter->fib6_next,
1087				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1088		/*
1089		 *	Search for duplicates
1090		 */
1091
1092		if (iter->fib6_metric == rt->fib6_metric) {
1093			/*
1094			 *	Same priority level
1095			 */
1096			if (info->nlh &&
1097			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1098				return -EEXIST;
1099
1100			nlflags &= ~NLM_F_EXCL;
1101			if (replace) {
1102				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1103					found++;
1104					break;
 
 
 
 
 
1105				}
1106				fallback_ins = fallback_ins ?: ins;
1107				goto next_iter;
1108			}
1109
1110			if (rt6_duplicate_nexthop(iter, rt)) {
1111				if (rt->fib6_nsiblings)
1112					rt->fib6_nsiblings = 0;
1113				if (!(iter->fib6_flags & RTF_EXPIRES))
1114					return -EEXIST;
1115				if (!(rt->fib6_flags & RTF_EXPIRES))
1116					fib6_clean_expires(iter);
1117				else
1118					fib6_set_expires(iter, rt->expires);
1119
1120				if (rt->fib6_pmtu)
1121					fib6_metric_set(iter, RTAX_MTU,
1122							rt->fib6_pmtu);
1123				return -EEXIST;
1124			}
1125			/* If we have the same destination and the same metric,
1126			 * but not the same gateway, then the route we try to
1127			 * add is sibling to this route, increment our counter
1128			 * of siblings, and later we will add our route to the
1129			 * list.
1130			 * Only static routes (which don't have flag
1131			 * RTF_EXPIRES) are used for ECMPv6.
1132			 *
1133			 * To avoid long list, we only had siblings if the
1134			 * route have a gateway.
1135			 */
1136			if (rt_can_ecmp &&
1137			    rt6_qualify_for_ecmp(iter))
1138				rt->fib6_nsiblings++;
1139		}
1140
1141		if (iter->fib6_metric > rt->fib6_metric)
1142			break;
1143
1144next_iter:
1145		ins = &iter->fib6_next;
1146	}
1147
1148	if (fallback_ins && !found) {
1149		/* No matching route with same ecmp-able-ness found, replace
1150		 * first matching route
1151		 */
1152		ins = fallback_ins;
1153		iter = rcu_dereference_protected(*ins,
1154				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1155		found++;
1156	}
1157
1158	/* Reset round-robin state, if necessary */
1159	if (ins == &fn->leaf)
1160		fn->rr_ptr = NULL;
1161
1162	/* Link this route to others same route. */
1163	if (rt->fib6_nsiblings) {
1164		unsigned int fib6_nsiblings;
1165		struct fib6_info *sibling, *temp_sibling;
1166
1167		/* Find the first route that have the same metric */
1168		sibling = leaf;
1169		notify_sibling_rt = true;
1170		while (sibling) {
1171			if (sibling->fib6_metric == rt->fib6_metric &&
1172			    rt6_qualify_for_ecmp(sibling)) {
1173				list_add_tail(&rt->fib6_siblings,
1174					      &sibling->fib6_siblings);
1175				break;
1176			}
1177			sibling = rcu_dereference_protected(sibling->fib6_next,
1178				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1179			notify_sibling_rt = false;
1180		}
1181		/* For each sibling in the list, increment the counter of
1182		 * siblings. BUG() if counters does not match, list of siblings
1183		 * is broken!
1184		 */
1185		fib6_nsiblings = 0;
1186		list_for_each_entry_safe(sibling, temp_sibling,
1187					 &rt->fib6_siblings, fib6_siblings) {
1188			sibling->fib6_nsiblings++;
1189			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1190			fib6_nsiblings++;
1191		}
1192		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1193		rt6_multipath_rebalance(temp_sibling);
1194	}
1195
1196	/*
1197	 *	insert node
1198	 */
1199	if (!replace) {
1200		if (!add)
1201			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1202
1203add:
1204		nlflags |= NLM_F_CREATE;
1205
1206		/* The route should only be notified if it is the first
1207		 * route in the node or if it is added as a sibling
1208		 * route to the first route in the node.
1209		 */
1210		if (!info->skip_notify_kernel &&
1211		    (notify_sibling_rt || ins == &fn->leaf)) {
1212			enum fib_event_type fib_event;
1213
1214			if (notify_sibling_rt)
1215				fib_event = FIB_EVENT_ENTRY_APPEND;
1216			else
1217				fib_event = FIB_EVENT_ENTRY_REPLACE;
1218			err = call_fib6_entry_notifiers(info->nl_net,
1219							fib_event, rt,
1220							extack);
1221			if (err) {
1222				struct fib6_info *sibling, *next_sibling;
1223
1224				/* If the route has siblings, then it first
1225				 * needs to be unlinked from them.
1226				 */
1227				if (!rt->fib6_nsiblings)
1228					return err;
1229
1230				list_for_each_entry_safe(sibling, next_sibling,
1231							 &rt->fib6_siblings,
1232							 fib6_siblings)
1233					sibling->fib6_nsiblings--;
1234				rt->fib6_nsiblings = 0;
1235				list_del_init(&rt->fib6_siblings);
1236				rt6_multipath_rebalance(next_sibling);
1237				return err;
1238			}
1239		}
1240
1241		rcu_assign_pointer(rt->fib6_next, iter);
1242		fib6_info_hold(rt);
1243		rcu_assign_pointer(rt->fib6_node, fn);
1244		rcu_assign_pointer(*ins, rt);
1245		if (!info->skip_notify)
1246			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1247		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1248
1249		if (!(fn->fn_flags & RTN_RTINFO)) {
1250			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1251			fn->fn_flags |= RTN_RTINFO;
1252		}
1253
1254	} else {
1255		int nsiblings;
1256
1257		if (!found) {
1258			if (add)
1259				goto add;
1260			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1261			return -ENOENT;
1262		}
1263
1264		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1265			err = call_fib6_entry_notifiers(info->nl_net,
1266							FIB_EVENT_ENTRY_REPLACE,
1267							rt, extack);
1268			if (err)
1269				return err;
1270		}
1271
1272		fib6_info_hold(rt);
1273		rcu_assign_pointer(rt->fib6_node, fn);
1274		rt->fib6_next = iter->fib6_next;
1275		rcu_assign_pointer(*ins, rt);
1276		if (!info->skip_notify)
1277			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1278		if (!(fn->fn_flags & RTN_RTINFO)) {
1279			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1280			fn->fn_flags |= RTN_RTINFO;
1281		}
1282		nsiblings = iter->fib6_nsiblings;
1283		iter->fib6_node = NULL;
1284		fib6_purge_rt(iter, fn, info->nl_net);
1285		if (rcu_access_pointer(fn->rr_ptr) == iter)
1286			fn->rr_ptr = NULL;
1287		fib6_info_release(iter);
1288
1289		if (nsiblings) {
1290			/* Replacing an ECMP route, remove all siblings */
1291			ins = &rt->fib6_next;
1292			iter = rcu_dereference_protected(*ins,
1293				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1294			while (iter) {
1295				if (iter->fib6_metric > rt->fib6_metric)
1296					break;
1297				if (rt6_qualify_for_ecmp(iter)) {
1298					*ins = iter->fib6_next;
1299					iter->fib6_node = NULL;
1300					fib6_purge_rt(iter, fn, info->nl_net);
1301					if (rcu_access_pointer(fn->rr_ptr) == iter)
1302						fn->rr_ptr = NULL;
1303					fib6_info_release(iter);
1304					nsiblings--;
1305					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1306				} else {
1307					ins = &iter->fib6_next;
1308				}
1309				iter = rcu_dereference_protected(*ins,
1310					lockdep_is_held(&rt->fib6_table->tb6_lock));
1311			}
1312			WARN_ON(nsiblings != 0);
1313		}
1314	}
1315
1316	return 0;
1317}
1318
1319static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1320{
1321	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1322	    (rt->fib6_flags & RTF_EXPIRES))
1323		mod_timer(&net->ipv6.ip6_fib_timer,
1324			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1325}
1326
1327void fib6_force_start_gc(struct net *net)
1328{
1329	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1330		mod_timer(&net->ipv6.ip6_fib_timer,
1331			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1332}
1333
1334static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1335					   int sernum)
1336{
1337	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1338				lockdep_is_held(&rt->fib6_table->tb6_lock));
1339
1340	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1341	smp_wmb();
1342	while (fn) {
1343		fn->fn_sernum = sernum;
1344		fn = rcu_dereference_protected(fn->parent,
1345				lockdep_is_held(&rt->fib6_table->tb6_lock));
1346	}
1347}
1348
1349void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1350{
1351	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1352}
1353
1354/* allow ipv4 to update sernum via ipv6_stub */
1355void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1356{
1357	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1358	fib6_update_sernum_upto_root(net, f6i);
1359	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1360}
1361
1362/*
1363 *	Add routing information to the routing tree.
1364 *	<destination addr>/<source addr>
1365 *	with source addr info in sub-trees
1366 *	Need to own table->tb6_lock
1367 */
1368
1369int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1370	     struct nl_info *info, struct netlink_ext_ack *extack)
1371{
1372	struct fib6_table *table = rt->fib6_table;
1373	struct fib6_node *fn, *pn = NULL;
1374	int err = -ENOMEM;
1375	int allow_create = 1;
1376	int replace_required = 0;
1377	int sernum = fib6_new_sernum(info->nl_net);
1378
1379	if (info->nlh) {
1380		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1381			allow_create = 0;
1382		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1383			replace_required = 1;
1384	}
1385	if (!allow_create && !replace_required)
1386		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1387
1388	fn = fib6_add_1(info->nl_net, table, root,
1389			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1390			offsetof(struct fib6_info, fib6_dst), allow_create,
1391			replace_required, extack);
1392	if (IS_ERR(fn)) {
1393		err = PTR_ERR(fn);
1394		fn = NULL;
1395		goto out;
1396	}
1397
1398	pn = fn;
1399
1400#ifdef CONFIG_IPV6_SUBTREES
1401	if (rt->fib6_src.plen) {
1402		struct fib6_node *sn;
1403
1404		if (!rcu_access_pointer(fn->subtree)) {
1405			struct fib6_node *sfn;
1406
1407			/*
1408			 * Create subtree.
1409			 *
1410			 *		fn[main tree]
1411			 *		|
1412			 *		sfn[subtree root]
1413			 *		   \
1414			 *		    sn[new leaf node]
1415			 */
1416
1417			/* Create subtree root node */
1418			sfn = node_alloc(info->nl_net);
1419			if (!sfn)
1420				goto failure;
1421
1422			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1423			rcu_assign_pointer(sfn->leaf,
1424					   info->nl_net->ipv6.fib6_null_entry);
1425			sfn->fn_flags = RTN_ROOT;
 
1426
1427			/* Now add the first leaf node to new subtree */
1428
1429			sn = fib6_add_1(info->nl_net, table, sfn,
1430					&rt->fib6_src.addr, rt->fib6_src.plen,
1431					offsetof(struct fib6_info, fib6_src),
1432					allow_create, replace_required, extack);
1433
1434			if (IS_ERR(sn)) {
1435				/* If it is failed, discard just allocated
1436				   root, and then (in failure) stale node
1437				   in main tree.
1438				 */
1439				node_free_immediate(info->nl_net, sfn);
1440				err = PTR_ERR(sn);
1441				goto failure;
1442			}
1443
1444			/* Now link new subtree to main tree */
1445			rcu_assign_pointer(sfn->parent, fn);
1446			rcu_assign_pointer(fn->subtree, sfn);
1447		} else {
1448			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1449					&rt->fib6_src.addr, rt->fib6_src.plen,
1450					offsetof(struct fib6_info, fib6_src),
1451					allow_create, replace_required, extack);
1452
1453			if (IS_ERR(sn)) {
1454				err = PTR_ERR(sn);
1455				goto failure;
1456			}
1457		}
1458
1459		if (!rcu_access_pointer(fn->leaf)) {
1460			if (fn->fn_flags & RTN_TL_ROOT) {
1461				/* put back null_entry for root node */
1462				rcu_assign_pointer(fn->leaf,
1463					    info->nl_net->ipv6.fib6_null_entry);
1464			} else {
1465				fib6_info_hold(rt);
1466				rcu_assign_pointer(fn->leaf, rt);
1467			}
1468		}
1469		fn = sn;
1470	}
1471#endif
1472
1473	err = fib6_add_rt2node(fn, rt, info, extack);
1474	if (!err) {
1475		if (rt->nh)
1476			list_add(&rt->nh_list, &rt->nh->f6i_list);
1477		__fib6_update_sernum_upto_root(rt, sernum);
1478		fib6_start_gc(info->nl_net, rt);
 
 
1479	}
1480
1481out:
1482	if (err) {
1483#ifdef CONFIG_IPV6_SUBTREES
1484		/*
1485		 * If fib6_add_1 has cleared the old leaf pointer in the
1486		 * super-tree leaf node we have to find a new one for it.
1487		 */
1488		if (pn != fn) {
1489			struct fib6_info *pn_leaf =
1490				rcu_dereference_protected(pn->leaf,
1491				    lockdep_is_held(&table->tb6_lock));
1492			if (pn_leaf == rt) {
1493				pn_leaf = NULL;
1494				RCU_INIT_POINTER(pn->leaf, NULL);
1495				fib6_info_release(rt);
 
 
1496			}
1497			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1498				pn_leaf = fib6_find_prefix(info->nl_net, table,
1499							   pn);
1500#if RT6_DEBUG >= 2
1501				if (!pn_leaf) {
1502					WARN_ON(!pn_leaf);
1503					pn_leaf =
1504					    info->nl_net->ipv6.fib6_null_entry;
1505				}
1506#endif
1507				fib6_info_hold(pn_leaf);
1508				rcu_assign_pointer(pn->leaf, pn_leaf);
1509			}
1510		}
1511#endif
1512		goto failure;
1513	} else if (fib6_requires_src(rt)) {
1514		fib6_routes_require_src_inc(info->nl_net);
1515	}
1516	return err;
1517
1518failure:
1519	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520	 * 1. fn is an intermediate node and we failed to add the new
1521	 * route to it in both subtree creation failure and fib6_add_rt2node()
1522	 * failure case.
1523	 * 2. fn is the root node in the table and we fail to add the first
1524	 * default route to it.
1525	 */
1526	if (fn &&
1527	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528	     (fn->fn_flags & RTN_TL_ROOT &&
1529	      !rcu_access_pointer(fn->leaf))))
1530		fib6_repair_tree(info->nl_net, table, fn);
1531	return err;
 
1532}
1533
1534/*
1535 *	Routing tree lookup
1536 *
1537 */
1538
1539struct lookup_args {
1540	int			offset;		/* key offset on fib6_info */
1541	const struct in6_addr	*addr;		/* search key			*/
1542};
1543
1544static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545					    struct lookup_args *args)
1546{
1547	struct fib6_node *fn;
1548	__be32 dir;
1549
1550	if (unlikely(args->offset == 0))
1551		return NULL;
1552
1553	/*
1554	 *	Descend on a tree
1555	 */
1556
1557	fn = root;
1558
1559	for (;;) {
1560		struct fib6_node *next;
1561
1562		dir = addr_bit_set(args->addr, fn->fn_bit);
1563
1564		next = dir ? rcu_dereference(fn->right) :
1565			     rcu_dereference(fn->left);
1566
1567		if (next) {
1568			fn = next;
1569			continue;
1570		}
 
1571		break;
1572	}
1573
1574	while (fn) {
1575		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576
1577		if (subtree || fn->fn_flags & RTN_RTINFO) {
1578			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579			struct rt6key *key;
1580
1581			if (!leaf)
1582				goto backtrack;
1583
1584			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585
1586			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587#ifdef CONFIG_IPV6_SUBTREES
1588				if (subtree) {
1589					struct fib6_node *sfn;
1590					sfn = fib6_node_lookup_1(subtree,
1591								 args + 1);
1592					if (!sfn)
1593						goto backtrack;
1594					fn = sfn;
1595				}
1596#endif
1597				if (fn->fn_flags & RTN_RTINFO)
1598					return fn;
1599			}
1600		}
1601backtrack:
1602		if (fn->fn_flags & RTN_ROOT)
1603			break;
1604
1605		fn = rcu_dereference(fn->parent);
1606	}
1607
1608	return NULL;
1609}
1610
1611/* called with rcu_read_lock() held
1612 */
1613struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614				   const struct in6_addr *daddr,
1615				   const struct in6_addr *saddr)
1616{
1617	struct fib6_node *fn;
1618	struct lookup_args args[] = {
1619		{
1620			.offset = offsetof(struct fib6_info, fib6_dst),
1621			.addr = daddr,
1622		},
1623#ifdef CONFIG_IPV6_SUBTREES
1624		{
1625			.offset = offsetof(struct fib6_info, fib6_src),
1626			.addr = saddr,
1627		},
1628#endif
1629		{
1630			.offset = 0,	/* sentinel */
1631		}
1632	};
1633
1634	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635	if (!fn || fn->fn_flags & RTN_TL_ROOT)
 
1636		fn = root;
1637
1638	return fn;
1639}
1640
1641/*
1642 *	Get node with specified destination prefix (and source prefix,
1643 *	if subtrees are used)
1644 *	exact_match == true means we try to find fn with exact match of
1645 *	the passed in prefix addr
1646 *	exact_match == false means we try to find fn with longest prefix
1647 *	match of the passed in prefix addr. This is useful for finding fn
1648 *	for cached route as it will be stored in the exception table under
1649 *	the node with longest prefix length.
1650 */
1651
1652
1653static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654				       const struct in6_addr *addr,
1655				       int plen, int offset,
1656				       bool exact_match)
1657{
1658	struct fib6_node *fn, *prev = NULL;
1659
1660	for (fn = root; fn ; ) {
1661		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662		struct rt6key *key;
1663
1664		/* This node is being deleted */
1665		if (!leaf) {
1666			if (plen <= fn->fn_bit)
1667				goto out;
1668			else
1669				goto next;
1670		}
1671
1672		key = (struct rt6key *)((u8 *)leaf + offset);
1673
1674		/*
1675		 *	Prefix match
1676		 */
1677		if (plen < fn->fn_bit ||
1678		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679			goto out;
1680
1681		if (plen == fn->fn_bit)
1682			return fn;
1683
1684		if (fn->fn_flags & RTN_RTINFO)
1685			prev = fn;
1686
1687next:
1688		/*
1689		 *	We have more bits to go
1690		 */
1691		if (addr_bit_set(addr, fn->fn_bit))
1692			fn = rcu_dereference(fn->right);
1693		else
1694			fn = rcu_dereference(fn->left);
1695	}
1696out:
1697	if (exact_match)
1698		return NULL;
1699	else
1700		return prev;
1701}
1702
1703struct fib6_node *fib6_locate(struct fib6_node *root,
1704			      const struct in6_addr *daddr, int dst_len,
1705			      const struct in6_addr *saddr, int src_len,
1706			      bool exact_match)
1707{
1708	struct fib6_node *fn;
1709
1710	fn = fib6_locate_1(root, daddr, dst_len,
1711			   offsetof(struct fib6_info, fib6_dst),
1712			   exact_match);
1713
1714#ifdef CONFIG_IPV6_SUBTREES
1715	if (src_len) {
1716		WARN_ON(saddr == NULL);
1717		if (fn) {
1718			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719
1720			if (subtree) {
1721				fn = fib6_locate_1(subtree, saddr, src_len,
1722					   offsetof(struct fib6_info, fib6_src),
1723					   exact_match);
1724			}
1725		}
1726	}
1727#endif
1728
1729	if (fn && fn->fn_flags & RTN_RTINFO)
1730		return fn;
1731
1732	return NULL;
1733}
1734
1735
1736/*
1737 *	Deletion
1738 *
1739 */
1740
1741static struct fib6_info *fib6_find_prefix(struct net *net,
1742					 struct fib6_table *table,
1743					 struct fib6_node *fn)
1744{
1745	struct fib6_node *child_left, *child_right;
1746
1747	if (fn->fn_flags & RTN_ROOT)
1748		return net->ipv6.fib6_null_entry;
1749
1750	while (fn) {
1751		child_left = rcu_dereference_protected(fn->left,
1752				    lockdep_is_held(&table->tb6_lock));
1753		child_right = rcu_dereference_protected(fn->right,
1754				    lockdep_is_held(&table->tb6_lock));
1755		if (child_left)
1756			return rcu_dereference_protected(child_left->leaf,
1757					lockdep_is_held(&table->tb6_lock));
1758		if (child_right)
1759			return rcu_dereference_protected(child_right->leaf,
1760					lockdep_is_held(&table->tb6_lock));
1761
1762		fn = FIB6_SUBTREE(fn);
1763	}
1764	return NULL;
1765}
1766
1767/*
1768 *	Called to trim the tree of intermediate nodes when possible. "fn"
1769 *	is the node we want to try and remove.
1770 *	Need to own table->tb6_lock
1771 */
1772
1773static struct fib6_node *fib6_repair_tree(struct net *net,
1774					  struct fib6_table *table,
1775					  struct fib6_node *fn)
1776{
1777	int children;
1778	int nstate;
1779	struct fib6_node *child;
1780	struct fib6_walker *w;
1781	int iter = 0;
1782
1783	/* Set fn->leaf to null_entry for root node. */
1784	if (fn->fn_flags & RTN_TL_ROOT) {
1785		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786		return fn;
1787	}
1788
1789	for (;;) {
1790		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791					    lockdep_is_held(&table->tb6_lock));
1792		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793					    lockdep_is_held(&table->tb6_lock));
1794		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795					    lockdep_is_held(&table->tb6_lock));
1796		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797					    lockdep_is_held(&table->tb6_lock));
1798		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799					    lockdep_is_held(&table->tb6_lock));
1800		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801					    lockdep_is_held(&table->tb6_lock));
1802		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803					    lockdep_is_held(&table->tb6_lock));
1804		struct fib6_info *new_fn_leaf;
1805
1806		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807		iter++;
1808
1809		WARN_ON(fn->fn_flags & RTN_RTINFO);
1810		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811		WARN_ON(fn_leaf);
1812
1813		children = 0;
1814		child = NULL;
1815		if (fn_r)
1816			child = fn_r, children |= 1;
1817		if (fn_l)
1818			child = fn_l, children |= 2;
1819
1820		if (children == 3 || FIB6_SUBTREE(fn)
1821#ifdef CONFIG_IPV6_SUBTREES
1822		    /* Subtree root (i.e. fn) may have one child */
1823		    || (children && fn->fn_flags & RTN_ROOT)
1824#endif
1825		    ) {
1826			new_fn_leaf = fib6_find_prefix(net, table, fn);
1827#if RT6_DEBUG >= 2
1828			if (!new_fn_leaf) {
1829				WARN_ON(!new_fn_leaf);
1830				new_fn_leaf = net->ipv6.fib6_null_entry;
1831			}
1832#endif
1833			fib6_info_hold(new_fn_leaf);
1834			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1835			return pn;
1836		}
1837
 
1838#ifdef CONFIG_IPV6_SUBTREES
1839		if (FIB6_SUBTREE(pn) == fn) {
1840			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1841			RCU_INIT_POINTER(pn->subtree, NULL);
1842			nstate = FWS_L;
1843		} else {
1844			WARN_ON(fn->fn_flags & RTN_ROOT);
1845#endif
1846			if (pn_r == fn)
1847				rcu_assign_pointer(pn->right, child);
1848			else if (pn_l == fn)
1849				rcu_assign_pointer(pn->left, child);
1850#if RT6_DEBUG >= 2
1851			else
1852				WARN_ON(1);
1853#endif
1854			if (child)
1855				rcu_assign_pointer(child->parent, pn);
1856			nstate = FWS_R;
1857#ifdef CONFIG_IPV6_SUBTREES
1858		}
1859#endif
1860
1861		read_lock(&net->ipv6.fib6_walker_lock);
1862		FOR_WALKERS(net, w) {
1863			if (!child) {
1864				if (w->node == fn) {
 
 
 
1865					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1866					w->node = pn;
1867					w->state = nstate;
1868				}
1869			} else {
 
 
 
 
1870				if (w->node == fn) {
1871					w->node = child;
1872					if (children&2) {
1873						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1874						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1875					} else {
1876						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1877						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1878					}
1879				}
1880			}
1881		}
1882		read_unlock(&net->ipv6.fib6_walker_lock);
1883
1884		node_free(net, fn);
1885		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1886			return pn;
1887
1888		RCU_INIT_POINTER(pn->leaf, NULL);
1889		fib6_info_release(pn_leaf);
1890		fn = pn;
1891	}
1892}
1893
1894static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1895			   struct fib6_info __rcu **rtp, struct nl_info *info)
1896{
1897	struct fib6_info *leaf, *replace_rt = NULL;
1898	struct fib6_walker *w;
1899	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1900				    lockdep_is_held(&table->tb6_lock));
1901	struct net *net = info->nl_net;
1902	bool notify_del = false;
1903
1904	RT6_TRACE("fib6_del_route\n");
1905
1906	/* If the deleted route is the first in the node and it is not part of
1907	 * a multipath route, then we need to replace it with the next route
1908	 * in the node, if exists.
1909	 */
1910	leaf = rcu_dereference_protected(fn->leaf,
1911					 lockdep_is_held(&table->tb6_lock));
1912	if (leaf == rt && !rt->fib6_nsiblings) {
1913		if (rcu_access_pointer(rt->fib6_next))
1914			replace_rt = rcu_dereference_protected(rt->fib6_next,
1915					    lockdep_is_held(&table->tb6_lock));
1916		else
1917			notify_del = true;
1918	}
1919
1920	/* Unlink it */
1921	*rtp = rt->fib6_next;
1922	rt->fib6_node = NULL;
1923	net->ipv6.rt6_stats->fib_rt_entries--;
1924	net->ipv6.rt6_stats->fib_discarded_routes++;
1925
1926	/* Flush all cached dst in exception table */
1927	rt6_flush_exceptions(rt);
1928
1929	/* Reset round-robin state, if necessary */
1930	if (rcu_access_pointer(fn->rr_ptr) == rt)
1931		fn->rr_ptr = NULL;
1932
1933	/* Remove this entry from other siblings */
1934	if (rt->fib6_nsiblings) {
1935		struct fib6_info *sibling, *next_sibling;
1936
1937		/* The route is deleted from a multipath route. If this
1938		 * multipath route is the first route in the node, then we need
1939		 * to emit a delete notification. Otherwise, we need to skip
1940		 * the notification.
1941		 */
1942		if (rt->fib6_metric == leaf->fib6_metric &&
1943		    rt6_qualify_for_ecmp(leaf))
1944			notify_del = true;
1945		list_for_each_entry_safe(sibling, next_sibling,
1946					 &rt->fib6_siblings, fib6_siblings)
1947			sibling->fib6_nsiblings--;
1948		rt->fib6_nsiblings = 0;
1949		list_del_init(&rt->fib6_siblings);
1950		rt6_multipath_rebalance(next_sibling);
1951	}
1952
1953	/* Adjust walkers */
1954	read_lock(&net->ipv6.fib6_walker_lock);
1955	FOR_WALKERS(net, w) {
1956		if (w->state == FWS_C && w->leaf == rt) {
1957			RT6_TRACE("walker %p adjusted by delroute\n", w);
1958			w->leaf = rcu_dereference_protected(rt->fib6_next,
1959					    lockdep_is_held(&table->tb6_lock));
1960			if (!w->leaf)
1961				w->state = FWS_U;
1962		}
1963	}
1964	read_unlock(&net->ipv6.fib6_walker_lock);
1965
1966	/* If it was last route, call fib6_repair_tree() to:
1967	 * 1. For root node, put back null_entry as how the table was created.
1968	 * 2. For other nodes, expunge its radix tree node.
1969	 */
1970	if (!rcu_access_pointer(fn->leaf)) {
1971		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1972			fn->fn_flags &= ~RTN_RTINFO;
1973			net->ipv6.rt6_stats->fib_route_nodes--;
1974		}
1975		fn = fib6_repair_tree(net, table, fn);
1976	}
1977
1978	fib6_purge_rt(rt, fn, net);
1979
1980	if (!info->skip_notify_kernel) {
1981		if (notify_del)
1982			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1983						  rt, NULL);
1984		else if (replace_rt)
1985			call_fib6_entry_notifiers_replace(net, replace_rt);
 
 
 
 
 
 
 
 
 
1986	}
1987	if (!info->skip_notify)
1988		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1989
1990	fib6_info_release(rt);
 
1991}
1992
1993/* Need to own table->tb6_lock */
1994int fib6_del(struct fib6_info *rt, struct nl_info *info)
1995{
1996	struct net *net = info->nl_net;
1997	struct fib6_info __rcu **rtp;
1998	struct fib6_info __rcu **rtp_next;
1999	struct fib6_table *table;
2000	struct fib6_node *fn;
2001
2002	if (rt == net->ipv6.fib6_null_entry)
 
 
2003		return -ENOENT;
2004
2005	table = rt->fib6_table;
2006	fn = rcu_dereference_protected(rt->fib6_node,
2007				       lockdep_is_held(&table->tb6_lock));
2008	if (!fn)
2009		return -ENOENT;
2010
2011	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2012
 
 
 
 
 
 
 
 
 
 
 
 
 
2013	/*
2014	 *	Walk the leaf entries looking for ourself
2015	 */
2016
2017	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2018		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2019					lockdep_is_held(&table->tb6_lock));
2020		if (rt == cur) {
2021			if (fib6_requires_src(cur))
2022				fib6_routes_require_src_dec(info->nl_net);
2023			fib6_del_route(table, fn, rtp, info);
2024			return 0;
2025		}
2026		rtp_next = &cur->fib6_next;
2027	}
2028	return -ENOENT;
2029}
2030
2031/*
2032 *	Tree traversal function.
2033 *
2034 *	Certainly, it is not interrupt safe.
2035 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2036 *	It means, that we can modify tree during walking
2037 *	and use this function for garbage collection, clone pruning,
2038 *	cleaning tree when a device goes down etc. etc.
2039 *
2040 *	It guarantees that every node will be traversed,
2041 *	and that it will be traversed only once.
2042 *
2043 *	Callback function w->func may return:
2044 *	0 -> continue walking.
2045 *	positive value -> walking is suspended (used by tree dumps,
2046 *	and probably by gc, if it will be split to several slices)
2047 *	negative value -> terminate walking.
2048 *
2049 *	The function itself returns:
2050 *	0   -> walk is complete.
2051 *	>0  -> walk is incomplete (i.e. suspended)
2052 *	<0  -> walk is terminated by an error.
2053 *
2054 *	This function is called with tb6_lock held.
2055 */
2056
2057static int fib6_walk_continue(struct fib6_walker *w)
2058{
2059	struct fib6_node *fn, *pn, *left, *right;
2060
2061	/* w->root should always be table->tb6_root */
2062	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2063
2064	for (;;) {
2065		fn = w->node;
2066		if (!fn)
2067			return 0;
2068
 
 
 
 
 
2069		switch (w->state) {
2070#ifdef CONFIG_IPV6_SUBTREES
2071		case FWS_S:
2072			if (FIB6_SUBTREE(fn)) {
2073				w->node = FIB6_SUBTREE(fn);
2074				continue;
2075			}
2076			w->state = FWS_L;
2077			fallthrough;
2078#endif
2079		case FWS_L:
2080			left = rcu_dereference_protected(fn->left, 1);
2081			if (left) {
2082				w->node = left;
2083				w->state = FWS_INIT;
2084				continue;
2085			}
2086			w->state = FWS_R;
2087			fallthrough;
2088		case FWS_R:
2089			right = rcu_dereference_protected(fn->right, 1);
2090			if (right) {
2091				w->node = right;
2092				w->state = FWS_INIT;
2093				continue;
2094			}
2095			w->state = FWS_C;
2096			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2097			fallthrough;
2098		case FWS_C:
2099			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2100				int err;
2101
2102				if (w->skip) {
2103					w->skip--;
2104					goto skip;
2105				}
2106
2107				err = w->func(w);
2108				if (err)
2109					return err;
2110
2111				w->count++;
2112				continue;
2113			}
2114skip:
2115			w->state = FWS_U;
2116			fallthrough;
2117		case FWS_U:
2118			if (fn == w->root)
2119				return 0;
2120			pn = rcu_dereference_protected(fn->parent, 1);
2121			left = rcu_dereference_protected(pn->left, 1);
2122			right = rcu_dereference_protected(pn->right, 1);
2123			w->node = pn;
2124#ifdef CONFIG_IPV6_SUBTREES
2125			if (FIB6_SUBTREE(pn) == fn) {
2126				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2127				w->state = FWS_L;
2128				continue;
2129			}
2130#endif
2131			if (left == fn) {
2132				w->state = FWS_R;
2133				continue;
2134			}
2135			if (right == fn) {
2136				w->state = FWS_C;
2137				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2138				continue;
2139			}
2140#if RT6_DEBUG >= 2
2141			WARN_ON(1);
2142#endif
2143		}
2144	}
2145}
2146
2147static int fib6_walk(struct net *net, struct fib6_walker *w)
2148{
2149	int res;
2150
2151	w->state = FWS_INIT;
2152	w->node = w->root;
2153
2154	fib6_walker_link(net, w);
2155	res = fib6_walk_continue(w);
2156	if (res <= 0)
2157		fib6_walker_unlink(net, w);
2158	return res;
2159}
2160
2161static int fib6_clean_node(struct fib6_walker *w)
2162{
2163	int res;
2164	struct fib6_info *rt;
2165	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2166	struct nl_info info = {
2167		.nl_net = c->net,
2168		.skip_notify = c->skip_notify,
2169	};
2170
2171	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2172	    w->node->fn_sernum != c->sernum)
2173		w->node->fn_sernum = c->sernum;
2174
2175	if (!c->func) {
2176		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2177		w->leaf = NULL;
2178		return 0;
2179	}
2180
2181	for_each_fib6_walker_rt(w) {
2182		res = c->func(rt, c->arg);
2183		if (res == -1) {
2184			w->leaf = rt;
2185			res = fib6_del(rt, &info);
2186			if (res) {
2187#if RT6_DEBUG >= 2
2188				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2189					 __func__, rt,
2190					 rcu_access_pointer(rt->fib6_node),
2191					 res);
2192#endif
2193				continue;
2194			}
2195			return 0;
2196		} else if (res == -2) {
2197			if (WARN_ON(!rt->fib6_nsiblings))
2198				continue;
2199			rt = list_last_entry(&rt->fib6_siblings,
2200					     struct fib6_info, fib6_siblings);
2201			continue;
2202		}
2203		WARN_ON(res != 0);
2204	}
2205	w->leaf = rt;
2206	return 0;
2207}
2208
2209/*
2210 *	Convenient frontend to tree walker.
2211 *
2212 *	func is called on each route.
2213 *		It may return -2 -> skip multipath route.
2214 *			      -1 -> delete this route.
2215 *		              0  -> continue walking
 
 
 
2216 */
2217
2218static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2219			    int (*func)(struct fib6_info *, void *arg),
2220			    int sernum, void *arg, bool skip_notify)
2221{
2222	struct fib6_cleaner c;
2223
2224	c.w.root = root;
2225	c.w.func = fib6_clean_node;
 
2226	c.w.count = 0;
2227	c.w.skip = 0;
2228	c.w.skip_in_node = 0;
2229	c.func = func;
2230	c.sernum = sernum;
2231	c.arg = arg;
2232	c.net = net;
2233	c.skip_notify = skip_notify;
2234
2235	fib6_walk(net, &c.w);
2236}
2237
2238static void __fib6_clean_all(struct net *net,
2239			     int (*func)(struct fib6_info *, void *),
2240			     int sernum, void *arg, bool skip_notify)
2241{
2242	struct fib6_table *table;
 
2243	struct hlist_head *head;
2244	unsigned int h;
2245
2246	rcu_read_lock();
2247	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2248		head = &net->ipv6.fib_table_hash[h];
2249		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2250			spin_lock_bh(&table->tb6_lock);
2251			fib6_clean_tree(net, &table->tb6_root,
2252					func, sernum, arg, skip_notify);
2253			spin_unlock_bh(&table->tb6_lock);
2254		}
2255	}
2256	rcu_read_unlock();
2257}
2258
2259void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2260		    void *arg)
2261{
2262	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2263}
 
 
2264
2265void fib6_clean_all_skip_notify(struct net *net,
2266				int (*func)(struct fib6_info *, void *),
2267				void *arg)
2268{
2269	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2270}
2271
2272static void fib6_flush_trees(struct net *net)
 
2273{
2274	int new_sernum = fib6_new_sernum(net);
2275
2276	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2277}
2278
2279/*
2280 *	Garbage collection
2281 */
2282
2283static int fib6_age(struct fib6_info *rt, void *arg)
 
 
 
 
 
 
2284{
2285	struct fib6_gc_args *gc_args = arg;
2286	unsigned long now = jiffies;
2287
2288	/*
2289	 *	check addrconf expiration here.
2290	 *	Routes are expired even if they are in use.
 
 
 
2291	 */
2292
2293	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2294		if (time_after(now, rt->expires)) {
2295			RT6_TRACE("expiring %p\n", rt);
2296			return -1;
2297		}
2298		gc_args->more++;
 
 
 
 
 
 
 
 
 
 
 
 
2299	}
2300
2301	/*	Also age clones in the exception table.
2302	 *	Note, that clones are aged out
2303	 *	only if they are not in use now.
2304	 */
2305	rt6_age_exceptions(rt, gc_args, now);
2306
2307	return 0;
2308}
2309
2310void fib6_run_gc(unsigned long expires, struct net *net, bool force)
 
 
2311{
2312	struct fib6_gc_args gc_args;
2313	unsigned long now;
 
 
 
 
 
 
 
 
 
2314
2315	if (force) {
2316		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2317	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2318		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2319		return;
2320	}
2321	gc_args.timeout = expires ? (int)expires :
2322			  net->ipv6.sysctl.ip6_rt_gc_interval;
2323	gc_args.more = 0;
2324
2325	fib6_clean_all(net, fib6_age, &gc_args);
2326	now = jiffies;
2327	net->ipv6.ip6_rt_last_gc = now;
2328
2329	if (gc_args.more)
2330		mod_timer(&net->ipv6.ip6_fib_timer,
2331			  round_jiffies(now
2332					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2333	else
2334		del_timer(&net->ipv6.ip6_fib_timer);
2335	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2336}
2337
2338static void fib6_gc_timer_cb(struct timer_list *t)
2339{
2340	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2341
2342	fib6_run_gc(0, arg, true);
2343}
2344
2345static int __net_init fib6_net_init(struct net *net)
2346{
2347	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2348	int err;
2349
2350	err = fib6_notifier_init(net);
2351	if (err)
2352		return err;
2353
2354	spin_lock_init(&net->ipv6.fib6_gc_lock);
2355	rwlock_init(&net->ipv6.fib6_walker_lock);
2356	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2357	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2358
2359	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2360	if (!net->ipv6.rt6_stats)
2361		goto out_timer;
2362
2363	/* Avoid false sharing : Use at least a full cache line */
2364	size = max_t(size_t, size, L1_CACHE_BYTES);
2365
2366	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2367	if (!net->ipv6.fib_table_hash)
2368		goto out_rt6_stats;
2369
2370	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2371					  GFP_KERNEL);
2372	if (!net->ipv6.fib6_main_tbl)
2373		goto out_fib_table_hash;
2374
2375	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2376	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2377			   net->ipv6.fib6_null_entry);
2378	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2379		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2380	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2381
2382#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2383	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2384					   GFP_KERNEL);
2385	if (!net->ipv6.fib6_local_tbl)
2386		goto out_fib6_main_tbl;
2387	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2388	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2389			   net->ipv6.fib6_null_entry);
2390	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2391		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2392	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2393#endif
2394	fib6_tables_init(net);
2395
2396	return 0;
2397
2398#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2399out_fib6_main_tbl:
2400	kfree(net->ipv6.fib6_main_tbl);
2401#endif
2402out_fib_table_hash:
2403	kfree(net->ipv6.fib_table_hash);
2404out_rt6_stats:
2405	kfree(net->ipv6.rt6_stats);
2406out_timer:
2407	fib6_notifier_exit(net);
2408	return -ENOMEM;
2409}
2410
2411static void fib6_net_exit(struct net *net)
2412{
2413	unsigned int i;
2414
2415	del_timer_sync(&net->ipv6.ip6_fib_timer);
2416
2417	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2418		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2419		struct hlist_node *tmp;
2420		struct fib6_table *tb;
2421
2422		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2423			hlist_del(&tb->tb6_hlist);
2424			fib6_free_table(tb);
2425		}
2426	}
2427
2428	kfree(net->ipv6.fib_table_hash);
2429	kfree(net->ipv6.rt6_stats);
2430	fib6_notifier_exit(net);
2431}
2432
2433static struct pernet_operations fib6_net_ops = {
2434	.init = fib6_net_init,
2435	.exit = fib6_net_exit,
2436};
2437
2438int __init fib6_init(void)
2439{
2440	int ret = -ENOMEM;
2441
2442	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2443					   sizeof(struct fib6_node),
2444					   0, SLAB_HWCACHE_ALIGN,
2445					   NULL);
2446	if (!fib6_node_kmem)
2447		goto out;
2448
2449	ret = register_pernet_subsys(&fib6_net_ops);
2450	if (ret)
2451		goto out_kmem_cache_create;
2452
2453	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2454				   inet6_dump_fib, 0);
2455	if (ret)
2456		goto out_unregister_subsys;
2457
2458	__fib6_flush_trees = fib6_flush_trees;
2459out:
2460	return ret;
2461
2462out_unregister_subsys:
2463	unregister_pernet_subsys(&fib6_net_ops);
2464out_kmem_cache_create:
2465	kmem_cache_destroy(fib6_node_kmem);
2466	goto out;
2467}
2468
2469void fib6_gc_cleanup(void)
2470{
2471	unregister_pernet_subsys(&fib6_net_ops);
2472	kmem_cache_destroy(fib6_node_kmem);
2473}
2474
2475#ifdef CONFIG_PROC_FS
2476static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2477{
2478	struct fib6_info *rt = v;
2479	struct ipv6_route_iter *iter = seq->private;
2480	struct fib6_nh *fib6_nh = rt->fib6_nh;
2481	unsigned int flags = rt->fib6_flags;
2482	const struct net_device *dev;
2483
2484	if (rt->nh)
2485		fib6_nh = nexthop_fib6_nh(rt->nh);
2486
2487	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2488
2489#ifdef CONFIG_IPV6_SUBTREES
2490	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2491#else
2492	seq_puts(seq, "00000000000000000000000000000000 00 ");
2493#endif
2494	if (fib6_nh->fib_nh_gw_family) {
2495		flags |= RTF_GATEWAY;
2496		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2497	} else {
2498		seq_puts(seq, "00000000000000000000000000000000");
2499	}
2500
2501	dev = fib6_nh->fib_nh_dev;
2502	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2503		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2504		   flags, dev ? dev->name : "");
2505	iter->w.leaf = NULL;
2506	return 0;
2507}
2508
2509static int ipv6_route_yield(struct fib6_walker *w)
2510{
2511	struct ipv6_route_iter *iter = w->args;
2512
2513	if (!iter->skip)
2514		return 1;
2515
2516	do {
2517		iter->w.leaf = rcu_dereference_protected(
2518				iter->w.leaf->fib6_next,
2519				lockdep_is_held(&iter->tbl->tb6_lock));
2520		iter->skip--;
2521		if (!iter->skip && iter->w.leaf)
2522			return 1;
2523	} while (iter->w.leaf);
2524
2525	return 0;
2526}
2527
2528static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2529				      struct net *net)
2530{
2531	memset(&iter->w, 0, sizeof(iter->w));
2532	iter->w.func = ipv6_route_yield;
2533	iter->w.root = &iter->tbl->tb6_root;
2534	iter->w.state = FWS_INIT;
2535	iter->w.node = iter->w.root;
2536	iter->w.args = iter;
2537	iter->sernum = iter->w.root->fn_sernum;
2538	INIT_LIST_HEAD(&iter->w.lh);
2539	fib6_walker_link(net, &iter->w);
2540}
2541
2542static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2543						    struct net *net)
2544{
2545	unsigned int h;
2546	struct hlist_node *node;
2547
2548	if (tbl) {
2549		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2550		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2551	} else {
2552		h = 0;
2553		node = NULL;
2554	}
2555
2556	while (!node && h < FIB6_TABLE_HASHSZ) {
2557		node = rcu_dereference_bh(
2558			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2559	}
2560	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2561}
2562
2563static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2564{
2565	if (iter->sernum != iter->w.root->fn_sernum) {
2566		iter->sernum = iter->w.root->fn_sernum;
2567		iter->w.state = FWS_INIT;
2568		iter->w.node = iter->w.root;
2569		WARN_ON(iter->w.skip);
2570		iter->w.skip = iter->w.count;
2571	}
2572}
2573
2574static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2575{
2576	int r;
2577	struct fib6_info *n;
2578	struct net *net = seq_file_net(seq);
2579	struct ipv6_route_iter *iter = seq->private;
2580
2581	++(*pos);
2582	if (!v)
2583		goto iter_table;
2584
2585	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2586	if (n)
2587		return n;
2588
2589iter_table:
2590	ipv6_route_check_sernum(iter);
2591	spin_lock_bh(&iter->tbl->tb6_lock);
2592	r = fib6_walk_continue(&iter->w);
2593	spin_unlock_bh(&iter->tbl->tb6_lock);
2594	if (r > 0) {
2595		return iter->w.leaf;
2596	} else if (r < 0) {
2597		fib6_walker_unlink(net, &iter->w);
2598		return NULL;
2599	}
2600	fib6_walker_unlink(net, &iter->w);
2601
2602	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2603	if (!iter->tbl)
2604		return NULL;
2605
2606	ipv6_route_seq_setup_walk(iter, net);
2607	goto iter_table;
2608}
2609
2610static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2611	__acquires(RCU_BH)
2612{
2613	struct net *net = seq_file_net(seq);
2614	struct ipv6_route_iter *iter = seq->private;
2615
2616	rcu_read_lock_bh();
2617	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2618	iter->skip = *pos;
2619
2620	if (iter->tbl) {
2621		ipv6_route_seq_setup_walk(iter, net);
2622		return ipv6_route_seq_next(seq, NULL, pos);
2623	} else {
2624		return NULL;
2625	}
2626}
2627
2628static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2629{
2630	struct fib6_walker *w = &iter->w;
2631	return w->node && !(w->state == FWS_U && w->node == w->root);
2632}
2633
2634static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2635	__releases(RCU_BH)
2636{
2637	struct net *net = seq_file_net(seq);
2638	struct ipv6_route_iter *iter = seq->private;
2639
2640	if (ipv6_route_iter_active(iter))
2641		fib6_walker_unlink(net, &iter->w);
2642
2643	rcu_read_unlock_bh();
2644}
2645
2646#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2647static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2648				    struct bpf_iter_meta *meta,
2649				    void *v)
2650{
2651	struct bpf_iter__ipv6_route ctx;
2652
2653	ctx.meta = meta;
2654	ctx.rt = v;
2655	return bpf_iter_run_prog(prog, &ctx);
2656}
2657
2658static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2659{
2660	struct ipv6_route_iter *iter = seq->private;
2661	struct bpf_iter_meta meta;
2662	struct bpf_prog *prog;
2663	int ret;
2664
2665	meta.seq = seq;
2666	prog = bpf_iter_get_info(&meta, false);
2667	if (!prog)
2668		return ipv6_route_native_seq_show(seq, v);
2669
2670	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2671	iter->w.leaf = NULL;
2672
2673	return ret;
2674}
2675
2676static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2677{
2678	struct bpf_iter_meta meta;
2679	struct bpf_prog *prog;
2680
2681	if (!v) {
2682		meta.seq = seq;
2683		prog = bpf_iter_get_info(&meta, true);
2684		if (prog)
2685			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2686	}
2687
2688	ipv6_route_native_seq_stop(seq, v);
2689}
2690#else
2691static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2692{
2693	return ipv6_route_native_seq_show(seq, v);
2694}
2695
2696static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2697{
2698	ipv6_route_native_seq_stop(seq, v);
2699}
2700#endif
2701
2702const struct seq_operations ipv6_route_seq_ops = {
2703	.start	= ipv6_route_seq_start,
2704	.next	= ipv6_route_seq_next,
2705	.stop	= ipv6_route_seq_stop,
2706	.show	= ipv6_route_seq_show
2707};
2708#endif /* CONFIG_PROC_FS */