Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the AF_INET socket handler.
   7 *
   8 * Version:	@(#)sock.h	1.0.4	05/13/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Volatiles in skbuff pointers. See
  17 *					skbuff comments. May be overdone,
  18 *					better to prove they can be removed
  19 *					than the reverse.
  20 *		Alan Cox	:	Added a zapped field for tcp to note
  21 *					a socket is reset and must stay shut up
  22 *		Alan Cox	:	New fields for options
  23 *	Pauline Middelink	:	identd support
  24 *		Alan Cox	:	Eliminate low level recv/recvfrom
  25 *		David S. Miller	:	New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  28 *              			protinfo be just a void pointer, as the
  29 *              			protocol specific parts were moved to
  30 *              			respective headers and ipv4/v6, etc now
  31 *              			use private slabcaches for its socks
  32 *              Pedro Hortas	:	New flags field for socket options
  33 *
  34 *
  35 *		This program is free software; you can redistribute it and/or
  36 *		modify it under the terms of the GNU General Public License
  37 *		as published by the Free Software Foundation; either version
  38 *		2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/module.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>	/* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57
 
 
 
 
 
 
  58#include <linux/filter.h>
  59#include <linux/rculist_nulls.h>
  60#include <linux/poll.h>
 
  61
  62#include <linux/atomic.h>
 
  63#include <net/dst.h>
  64#include <net/checksum.h>
 
 
 
  65
  66/*
  67 * This structure really needs to be cleaned up.
  68 * Most of it is for TCP, and not used by any of
  69 * the other protocols.
  70 */
  71
  72/* Define this to get the SOCK_DBG debugging facility. */
  73#define SOCK_DEBUGGING
  74#ifdef SOCK_DEBUGGING
  75#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  76					printk(KERN_DEBUG msg); } while (0)
  77#else
  78/* Validate arguments and do nothing */
  79static inline void __attribute__ ((format (printf, 2, 3)))
  80SOCK_DEBUG(struct sock *sk, const char *msg, ...)
  81{
  82}
  83#endif
  84
  85/* This is the per-socket lock.  The spinlock provides a synchronization
  86 * between user contexts and software interrupt processing, whereas the
  87 * mini-semaphore synchronizes multiple users amongst themselves.
  88 */
  89typedef struct {
  90	spinlock_t		slock;
  91	int			owned;
  92	wait_queue_head_t	wq;
  93	/*
  94	 * We express the mutex-alike socket_lock semantics
  95	 * to the lock validator by explicitly managing
  96	 * the slock as a lock variant (in addition to
  97	 * the slock itself):
  98	 */
  99#ifdef CONFIG_DEBUG_LOCK_ALLOC
 100	struct lockdep_map dep_map;
 101#endif
 102} socket_lock_t;
 103
 104struct sock;
 105struct proto;
 106struct net;
 107
 
 
 
 108/**
 109 *	struct sock_common - minimal network layer representation of sockets
 110 *	@skc_daddr: Foreign IPv4 addr
 111 *	@skc_rcv_saddr: Bound local IPv4 addr
 
 112 *	@skc_hash: hash value used with various protocol lookup tables
 113 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 
 
 
 114 *	@skc_family: network address family
 115 *	@skc_state: Connection state
 116 *	@skc_reuse: %SO_REUSEADDR setting
 
 
 
 117 *	@skc_bound_dev_if: bound device index if != 0
 118 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 119 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 120 *	@skc_prot: protocol handlers inside a network family
 121 *	@skc_net: reference to the network namespace of this socket
 
 
 
 122 *	@skc_node: main hash linkage for various protocol lookup tables
 123 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 124 *	@skc_tx_queue_mapping: tx queue number for this connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 125 *	@skc_refcnt: reference count
 126 *
 127 *	This is the minimal network layer representation of sockets, the header
 128 *	for struct sock and struct inet_timewait_sock.
 129 */
 130struct sock_common {
 131	/* skc_daddr and skc_rcv_saddr must be grouped :
 132	 * cf INET_MATCH() and INET_TW_MATCH()
 133	 */
 134	__be32			skc_daddr;
 135	__be32			skc_rcv_saddr;
 136
 
 
 
 
 137	union  {
 138		unsigned int	skc_hash;
 139		__u16		skc_u16hashes[2];
 140	};
 
 
 
 
 
 
 
 
 
 141	unsigned short		skc_family;
 142	volatile unsigned char	skc_state;
 143	unsigned char		skc_reuse;
 
 
 
 144	int			skc_bound_dev_if;
 145	union {
 146		struct hlist_node	skc_bind_node;
 147		struct hlist_nulls_node skc_portaddr_node;
 148	};
 149	struct proto		*skc_prot;
 150#ifdef CONFIG_NET_NS
 151	struct net	 	*skc_net;
 
 
 
 152#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	/*
 154	 * fields between dontcopy_begin/dontcopy_end
 155	 * are not copied in sock_copy()
 156	 */
 157	/* private: */
 158	int			skc_dontcopy_begin[0];
 159	/* public: */
 160	union {
 161		struct hlist_node	skc_node;
 162		struct hlist_nulls_node skc_nulls_node;
 163	};
 164	int			skc_tx_queue_mapping;
 165	atomic_t		skc_refcnt;
 
 
 
 
 
 
 
 
 
 166	/* private: */
 167	int                     skc_dontcopy_end[0];
 
 
 
 
 
 168	/* public: */
 169};
 170
 
 
 171/**
 172  *	struct sock - network layer representation of sockets
 173  *	@__sk_common: shared layout with inet_timewait_sock
 174  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 175  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 176  *	@sk_lock:	synchronizer
 
 177  *	@sk_rcvbuf: size of receive buffer in bytes
 178  *	@sk_wq: sock wait queue and async head
 
 179  *	@sk_dst_cache: destination cache
 180  *	@sk_dst_lock: destination cache lock
 181  *	@sk_policy: flow policy
 
 182  *	@sk_receive_queue: incoming packets
 183  *	@sk_wmem_alloc: transmit queue bytes committed
 
 184  *	@sk_write_queue: Packet sending queue
 185  *	@sk_async_wait_queue: DMA copied packets
 186  *	@sk_omem_alloc: "o" is "option" or "other"
 187  *	@sk_wmem_queued: persistent queue size
 188  *	@sk_forward_alloc: space allocated forward
 
 
 189  *	@sk_allocation: allocation mode
 
 
 
 190  *	@sk_sndbuf: size of send buffer in bytes
 191  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 192  *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 193  *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 
 194  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 195  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 
 
 196  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 197  *	@sk_gso_max_size: Maximum GSO segment size to build
 
 
 198  *	@sk_lingertime: %SO_LINGER l_linger setting
 199  *	@sk_backlog: always used with the per-socket spinlock held
 200  *	@sk_callback_lock: used with the callbacks in the end of this struct
 201  *	@sk_error_queue: rarely used
 202  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 203  *			  IPV6_ADDRFORM for instance)
 204  *	@sk_err: last error
 205  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 206  *		      persistent failure not just 'timed out'
 207  *	@sk_drops: raw/udp drops counter
 208  *	@sk_ack_backlog: current listen backlog
 209  *	@sk_max_ack_backlog: listen backlog set in listen()
 
 210  *	@sk_priority: %SO_PRIORITY setting
 211  *	@sk_type: socket type (%SOCK_STREAM, etc)
 212  *	@sk_protocol: which protocol this socket belongs in this network family
 213  *	@sk_peer_pid: &struct pid for this socket's peer
 214  *	@sk_peer_cred: %SO_PEERCRED setting
 215  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 216  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 217  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 218  *	@sk_rxhash: flow hash received from netif layer
 219  *	@sk_filter: socket filtering instructions
 220  *	@sk_protinfo: private area, net family specific, when not using slab
 221  *	@sk_timer: sock cleanup timer
 222  *	@sk_stamp: time stamp of last packet received
 
 
 
 
 223  *	@sk_socket: Identd and reporting IO signals
 224  *	@sk_user_data: RPC layer private data
 225  *	@sk_sndmsg_page: cached page for sendmsg
 226  *	@sk_sndmsg_off: cached offset for sendmsg
 227  *	@sk_send_head: front of stuff to transmit
 
 
 228  *	@sk_security: used by security modules
 229  *	@sk_mark: generic packet mark
 230  *	@sk_classid: this socket's cgroup classid
 
 231  *	@sk_write_pending: a write to stream socket waits to start
 232  *	@sk_state_change: callback to indicate change in the state of the sock
 233  *	@sk_data_ready: callback to indicate there is data to be processed
 234  *	@sk_write_space: callback to indicate there is bf sending space available
 235  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 236  *	@sk_backlog_rcv: callback to process the backlog
 
 237  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 238 */
 
 
 
 
 
 
 
 239struct sock {
 240	/*
 241	 * Now struct inet_timewait_sock also uses sock_common, so please just
 242	 * don't add nothing before this first member (__sk_common) --acme
 243	 */
 244	struct sock_common	__sk_common;
 245#define sk_node			__sk_common.skc_node
 246#define sk_nulls_node		__sk_common.skc_nulls_node
 247#define sk_refcnt		__sk_common.skc_refcnt
 248#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 
 
 
 249
 250#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 251#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 252#define sk_hash			__sk_common.skc_hash
 
 
 
 
 
 
 253#define sk_family		__sk_common.skc_family
 254#define sk_state		__sk_common.skc_state
 255#define sk_reuse		__sk_common.skc_reuse
 
 
 
 256#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 257#define sk_bind_node		__sk_common.skc_bind_node
 258#define sk_prot			__sk_common.skc_prot
 259#define sk_net			__sk_common.skc_net
 
 
 
 
 
 
 
 260	socket_lock_t		sk_lock;
 
 
 
 
 261	struct sk_buff_head	sk_receive_queue;
 262	/*
 263	 * The backlog queue is special, it is always used with
 264	 * the per-socket spinlock held and requires low latency
 265	 * access. Therefore we special case it's implementation.
 266	 * Note : rmem_alloc is in this structure to fill a hole
 267	 * on 64bit arches, not because its logically part of
 268	 * backlog.
 269	 */
 270	struct {
 271		atomic_t	rmem_alloc;
 272		int		len;
 273		struct sk_buff	*head;
 274		struct sk_buff	*tail;
 275	} sk_backlog;
 276#define sk_rmem_alloc sk_backlog.rmem_alloc
 
 277	int			sk_forward_alloc;
 278#ifdef CONFIG_RPS
 279	__u32			sk_rxhash;
 
 
 280#endif
 281	atomic_t		sk_drops;
 282	int			sk_rcvbuf;
 283
 284	struct sk_filter __rcu	*sk_filter;
 285	struct socket_wq __rcu	*sk_wq;
 286
 287#ifdef CONFIG_NET_DMA
 288	struct sk_buff_head	sk_async_wait_queue;
 289#endif
 290
 291#ifdef CONFIG_XFRM
 292	struct xfrm_policy	*sk_policy[2];
 293#endif
 294	unsigned long 		sk_flags;
 295	struct dst_entry	*sk_dst_cache;
 296	spinlock_t		sk_dst_lock;
 297	atomic_t		sk_wmem_alloc;
 298	atomic_t		sk_omem_alloc;
 299	int			sk_sndbuf;
 300	struct sk_buff_head	sk_write_queue;
 301	kmemcheck_bitfield_begin(flags);
 302	unsigned int		sk_shutdown  : 2,
 303				sk_no_check  : 2,
 304				sk_userlocks : 4,
 305				sk_protocol  : 8,
 306				sk_type      : 16;
 307	kmemcheck_bitfield_end(flags);
 308	int			sk_wmem_queued;
 309	gfp_t			sk_allocation;
 310	int			sk_route_caps;
 311	int			sk_route_nocaps;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312	int			sk_gso_type;
 313	unsigned int		sk_gso_max_size;
 314	int			sk_rcvlowat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315	unsigned long	        sk_lingertime;
 316	struct sk_buff_head	sk_error_queue;
 317	struct proto		*sk_prot_creator;
 318	rwlock_t		sk_callback_lock;
 319	int			sk_err,
 320				sk_err_soft;
 321	unsigned short		sk_ack_backlog;
 322	unsigned short		sk_max_ack_backlog;
 323	__u32			sk_priority;
 324	struct pid		*sk_peer_pid;
 325	const struct cred	*sk_peer_cred;
 326	long			sk_rcvtimeo;
 327	long			sk_sndtimeo;
 328	void			*sk_protinfo;
 329	struct timer_list	sk_timer;
 330	ktime_t			sk_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 331	struct socket		*sk_socket;
 332	void			*sk_user_data;
 333	struct page		*sk_sndmsg_page;
 334	struct sk_buff		*sk_send_head;
 335	__u32			sk_sndmsg_off;
 336	int			sk_write_pending;
 337#ifdef CONFIG_SECURITY
 338	void			*sk_security;
 339#endif
 340	__u32			sk_mark;
 341	u32			sk_classid;
 342	void			(*sk_state_change)(struct sock *sk);
 343	void			(*sk_data_ready)(struct sock *sk, int bytes);
 344	void			(*sk_write_space)(struct sock *sk);
 345	void			(*sk_error_report)(struct sock *sk);
 346  	int			(*sk_backlog_rcv)(struct sock *sk,
 347						  struct sk_buff *skb);  
 
 
 
 
 
 348	void                    (*sk_destruct)(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 349};
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351/*
 352 * Hashed lists helper routines
 353 */
 354static inline struct sock *sk_entry(const struct hlist_node *node)
 355{
 356	return hlist_entry(node, struct sock, sk_node);
 357}
 358
 359static inline struct sock *__sk_head(const struct hlist_head *head)
 360{
 361	return hlist_entry(head->first, struct sock, sk_node);
 362}
 363
 364static inline struct sock *sk_head(const struct hlist_head *head)
 365{
 366	return hlist_empty(head) ? NULL : __sk_head(head);
 367}
 368
 369static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 370{
 371	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 372}
 373
 374static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 375{
 376	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 377}
 378
 379static inline struct sock *sk_next(const struct sock *sk)
 380{
 381	return sk->sk_node.next ?
 382		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 383}
 384
 385static inline struct sock *sk_nulls_next(const struct sock *sk)
 386{
 387	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 388		hlist_nulls_entry(sk->sk_nulls_node.next,
 389				  struct sock, sk_nulls_node) :
 390		NULL;
 391}
 392
 393static inline int sk_unhashed(const struct sock *sk)
 394{
 395	return hlist_unhashed(&sk->sk_node);
 396}
 397
 398static inline int sk_hashed(const struct sock *sk)
 399{
 400	return !sk_unhashed(sk);
 401}
 402
 403static __inline__ void sk_node_init(struct hlist_node *node)
 404{
 405	node->pprev = NULL;
 406}
 407
 408static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
 409{
 410	node->pprev = NULL;
 411}
 412
 413static __inline__ void __sk_del_node(struct sock *sk)
 414{
 415	__hlist_del(&sk->sk_node);
 416}
 417
 418/* NB: equivalent to hlist_del_init_rcu */
 419static __inline__ int __sk_del_node_init(struct sock *sk)
 420{
 421	if (sk_hashed(sk)) {
 422		__sk_del_node(sk);
 423		sk_node_init(&sk->sk_node);
 424		return 1;
 425	}
 426	return 0;
 427}
 428
 429/* Grab socket reference count. This operation is valid only
 430   when sk is ALREADY grabbed f.e. it is found in hash table
 431   or a list and the lookup is made under lock preventing hash table
 432   modifications.
 433 */
 434
 435static inline void sock_hold(struct sock *sk)
 436{
 437	atomic_inc(&sk->sk_refcnt);
 438}
 439
 440/* Ungrab socket in the context, which assumes that socket refcnt
 441   cannot hit zero, f.e. it is true in context of any socketcall.
 442 */
 443static inline void __sock_put(struct sock *sk)
 444{
 445	atomic_dec(&sk->sk_refcnt);
 446}
 447
 448static __inline__ int sk_del_node_init(struct sock *sk)
 449{
 450	int rc = __sk_del_node_init(sk);
 451
 452	if (rc) {
 453		/* paranoid for a while -acme */
 454		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 455		__sock_put(sk);
 456	}
 457	return rc;
 458}
 459#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 460
 461static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
 462{
 463	if (sk_hashed(sk)) {
 464		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 465		return 1;
 466	}
 467	return 0;
 468}
 469
 470static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
 471{
 472	int rc = __sk_nulls_del_node_init_rcu(sk);
 473
 474	if (rc) {
 475		/* paranoid for a while -acme */
 476		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 477		__sock_put(sk);
 478	}
 479	return rc;
 480}
 481
 482static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
 483{
 484	hlist_add_head(&sk->sk_node, list);
 485}
 486
 487static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
 488{
 489	sock_hold(sk);
 490	__sk_add_node(sk, list);
 491}
 492
 493static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 494{
 495	sock_hold(sk);
 496	hlist_add_head_rcu(&sk->sk_node, list);
 
 
 
 
 497}
 498
 499static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 
 
 
 
 
 
 500{
 501	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 502}
 503
 504static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 
 
 
 
 
 505{
 506	sock_hold(sk);
 507	__sk_nulls_add_node_rcu(sk, list);
 508}
 509
 510static __inline__ void __sk_del_bind_node(struct sock *sk)
 511{
 512	__hlist_del(&sk->sk_bind_node);
 513}
 514
 515static __inline__ void sk_add_bind_node(struct sock *sk,
 516					struct hlist_head *list)
 517{
 518	hlist_add_head(&sk->sk_bind_node, list);
 519}
 520
 521#define sk_for_each(__sk, node, list) \
 522	hlist_for_each_entry(__sk, node, list, sk_node)
 523#define sk_for_each_rcu(__sk, node, list) \
 524	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
 525#define sk_nulls_for_each(__sk, node, list) \
 526	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 527#define sk_nulls_for_each_rcu(__sk, node, list) \
 528	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 529#define sk_for_each_from(__sk, node) \
 530	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 531		hlist_for_each_entry_from(__sk, node, sk_node)
 532#define sk_nulls_for_each_from(__sk, node) \
 533	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 534		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 535#define sk_for_each_safe(__sk, node, tmp, list) \
 536	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 537#define sk_for_each_bound(__sk, node, list) \
 538	hlist_for_each_entry(__sk, node, list, sk_bind_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539
 540/* Sock flags */
 541enum sock_flags {
 542	SOCK_DEAD,
 543	SOCK_DONE,
 544	SOCK_URGINLINE,
 545	SOCK_KEEPOPEN,
 546	SOCK_LINGER,
 547	SOCK_DESTROY,
 548	SOCK_BROADCAST,
 549	SOCK_TIMESTAMP,
 550	SOCK_ZAPPED,
 551	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 552	SOCK_DBG, /* %SO_DEBUG setting */
 553	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 554	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 555	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 556	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 557	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 558	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 559	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 560	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 561	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 562	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 563	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 564	SOCK_FASYNC, /* fasync() active */
 565	SOCK_RXQ_OVFL,
 566	SOCK_ZEROCOPY, /* buffers from userspace */
 
 
 
 
 
 
 
 
 
 
 
 567};
 568
 
 
 569static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 570{
 571	nsk->sk_flags = osk->sk_flags;
 572}
 573
 574static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 575{
 576	__set_bit(flag, &sk->sk_flags);
 577}
 578
 579static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 580{
 581	__clear_bit(flag, &sk->sk_flags);
 582}
 583
 584static inline int sock_flag(struct sock *sk, enum sock_flags flag)
 
 
 
 
 
 
 
 
 
 585{
 586	return test_bit(flag, &sk->sk_flags);
 587}
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589static inline void sk_acceptq_removed(struct sock *sk)
 590{
 591	sk->sk_ack_backlog--;
 592}
 593
 594static inline void sk_acceptq_added(struct sock *sk)
 595{
 596	sk->sk_ack_backlog++;
 597}
 598
 599static inline int sk_acceptq_is_full(struct sock *sk)
 600{
 601	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 602}
 603
 604/*
 605 * Compute minimal free write space needed to queue new packets.
 606 */
 607static inline int sk_stream_min_wspace(struct sock *sk)
 608{
 609	return sk->sk_wmem_queued >> 1;
 610}
 611
 612static inline int sk_stream_wspace(struct sock *sk)
 613{
 614	return sk->sk_sndbuf - sk->sk_wmem_queued;
 615}
 616
 617extern void sk_stream_write_space(struct sock *sk);
 618
 619static inline int sk_stream_memory_free(struct sock *sk)
 620{
 621	return sk->sk_wmem_queued < sk->sk_sndbuf;
 622}
 623
 
 
 624/* OOB backlog add */
 625static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 626{
 627	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 628	skb_dst_force(skb);
 629
 630	if (!sk->sk_backlog.tail)
 631		sk->sk_backlog.head = skb;
 632	else
 633		sk->sk_backlog.tail->next = skb;
 634
 635	sk->sk_backlog.tail = skb;
 636	skb->next = NULL;
 637}
 638
 639/*
 640 * Take into account size of receive queue and backlog queue
 
 
 641 */
 642static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
 643{
 644	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 645
 646	return qsize + skb->truesize > sk->sk_rcvbuf;
 647}
 648
 649/* The per-socket spinlock must be held here. */
 650static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 
 651{
 652	if (sk_rcvqueues_full(sk, skb))
 653		return -ENOBUFS;
 654
 
 
 
 
 
 
 
 
 655	__sk_add_backlog(sk, skb);
 656	sk->sk_backlog.len += skb->truesize;
 657	return 0;
 658}
 659
 
 
 660static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 661{
 
 
 
 662	return sk->sk_backlog_rcv(sk, skb);
 663}
 664
 665static inline void sock_rps_record_flow(const struct sock *sk)
 
 
 
 
 
 
 
 
 666{
 667#ifdef CONFIG_RPS
 668	struct rps_sock_flow_table *sock_flow_table;
 669
 670	rcu_read_lock();
 671	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 672	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 673	rcu_read_unlock();
 674#endif
 675}
 676
 677static inline void sock_rps_reset_flow(const struct sock *sk)
 678{
 679#ifdef CONFIG_RPS
 680	struct rps_sock_flow_table *sock_flow_table;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	rcu_read_lock();
 683	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 684	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 685	rcu_read_unlock();
 
 
 686#endif
 687}
 688
 689static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
 690{
 691#ifdef CONFIG_RPS
 692	if (unlikely(sk->sk_rxhash != rxhash)) {
 693		sock_rps_reset_flow(sk);
 694		sk->sk_rxhash = rxhash;
 695	}
 696#endif
 697}
 698
 699#define sk_wait_event(__sk, __timeo, __condition)			\
 700	({	int __rc;						\
 701		release_sock(__sk);					\
 702		__rc = __condition;					\
 703		if (!__rc) {						\
 704			*(__timeo) = schedule_timeout(*(__timeo));	\
 
 
 705		}							\
 
 706		lock_sock(__sk);					\
 707		__rc = __condition;					\
 708		__rc;							\
 709	})
 710
 711extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 712extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 713extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 714extern int sk_stream_error(struct sock *sk, int flags, int err);
 715extern void sk_stream_kill_queues(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717extern int sk_wait_data(struct sock *sk, long *timeo);
 718
 719struct request_sock_ops;
 720struct timewait_sock_ops;
 721struct inet_hashinfo;
 722struct raw_hashinfo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724/* Networking protocol blocks we attach to sockets.
 725 * socket layer -> transport layer interface
 726 * transport -> network interface is defined by struct inet_proto
 727 */
 728struct proto {
 729	void			(*close)(struct sock *sk, 
 730					long timeout);
 
 
 
 731	int			(*connect)(struct sock *sk,
 732				        struct sockaddr *uaddr, 
 733					int addr_len);
 734	int			(*disconnect)(struct sock *sk, int flags);
 735
 736	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
 
 737
 738	int			(*ioctl)(struct sock *sk, int cmd,
 739					 unsigned long arg);
 740	int			(*init)(struct sock *sk);
 741	void			(*destroy)(struct sock *sk);
 742	void			(*shutdown)(struct sock *sk, int how);
 743	int			(*setsockopt)(struct sock *sk, int level, 
 744					int optname, char __user *optval,
 745					unsigned int optlen);
 746	int			(*getsockopt)(struct sock *sk, int level, 
 747					int optname, char __user *optval, 
 748					int __user *option);  	 
 749#ifdef CONFIG_COMPAT
 750	int			(*compat_setsockopt)(struct sock *sk,
 751					int level,
 752					int optname, char __user *optval,
 753					unsigned int optlen);
 754	int			(*compat_getsockopt)(struct sock *sk,
 755					int level,
 756					int optname, char __user *optval,
 757					int __user *option);
 
 
 758	int			(*compat_ioctl)(struct sock *sk,
 759					unsigned int cmd, unsigned long arg);
 760#endif
 761	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
 762					   struct msghdr *msg, size_t len);
 763	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
 764					   struct msghdr *msg,
 765					size_t len, int noblock, int flags, 
 766					int *addr_len);
 767	int			(*sendpage)(struct sock *sk, struct page *page,
 768					int offset, size_t size, int flags);
 769	int			(*bind)(struct sock *sk, 
 770					struct sockaddr *uaddr, int addr_len);
 
 
 771
 772	int			(*backlog_rcv) (struct sock *sk, 
 773						struct sk_buff *skb);
 774
 
 
 775	/* Keeping track of sk's, looking them up, and port selection methods. */
 776	void			(*hash)(struct sock *sk);
 777	void			(*unhash)(struct sock *sk);
 778	void			(*rehash)(struct sock *sk);
 779	int			(*get_port)(struct sock *sk, unsigned short snum);
 780	void			(*clear_sk)(struct sock *sk, int size);
 781
 782	/* Keeping track of sockets in use */
 783#ifdef CONFIG_PROC_FS
 784	unsigned int		inuse_idx;
 785#endif
 786
 
 
 787	/* Memory pressure */
 788	void			(*enter_memory_pressure)(struct sock *sk);
 
 789	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
 790	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 791	/*
 792	 * Pressure flag: try to collapse.
 793	 * Technical note: it is used by multiple contexts non atomically.
 794	 * All the __sk_mem_schedule() is of this nature: accounting
 795	 * is strict, actions are advisory and have some latency.
 796	 */
 797	int			*memory_pressure;
 798	long			*sysctl_mem;
 
 799	int			*sysctl_wmem;
 800	int			*sysctl_rmem;
 
 
 
 801	int			max_header;
 802	bool			no_autobind;
 803
 804	struct kmem_cache	*slab;
 805	unsigned int		obj_size;
 806	int			slab_flags;
 
 
 807
 808	struct percpu_counter	*orphan_count;
 809
 810	struct request_sock_ops	*rsk_prot;
 811	struct timewait_sock_ops *twsk_prot;
 812
 813	union {
 814		struct inet_hashinfo	*hashinfo;
 815		struct udp_table	*udp_table;
 816		struct raw_hashinfo	*raw_hash;
 
 817	} h;
 818
 819	struct module		*owner;
 820
 821	char			name[32];
 822
 823	struct list_head	node;
 824#ifdef SOCK_REFCNT_DEBUG
 825	atomic_t		socks;
 826#endif
 827};
 
 828
 829extern int proto_register(struct proto *prot, int alloc_slab);
 830extern void proto_unregister(struct proto *prot);
 
 831
 832#ifdef SOCK_REFCNT_DEBUG
 833static inline void sk_refcnt_debug_inc(struct sock *sk)
 834{
 835	atomic_inc(&sk->sk_prot->socks);
 836}
 837
 838static inline void sk_refcnt_debug_dec(struct sock *sk)
 839{
 840	atomic_dec(&sk->sk_prot->socks);
 841	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 842	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 843}
 844
 845static inline void sk_refcnt_debug_release(const struct sock *sk)
 846{
 847	if (atomic_read(&sk->sk_refcnt) != 1)
 848		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 849		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 850}
 851#else /* SOCK_REFCNT_DEBUG */
 852#define sk_refcnt_debug_inc(sk) do { } while (0)
 853#define sk_refcnt_debug_dec(sk) do { } while (0)
 854#define sk_refcnt_debug_release(sk) do { } while (0)
 855#endif /* SOCK_REFCNT_DEBUG */
 856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858#ifdef CONFIG_PROC_FS
 859/* Called with local bh disabled */
 860extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
 861extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
 
 862#else
 863static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
 864		int inc)
 865{
 866}
 867#endif
 868
 869
 870/* With per-bucket locks this operation is not-atomic, so that
 871 * this version is not worse.
 872 */
 873static inline void __sk_prot_rehash(struct sock *sk)
 874{
 875	sk->sk_prot->unhash(sk);
 876	sk->sk_prot->hash(sk);
 877}
 878
 879void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
 880
 881/* About 10 seconds */
 882#define SOCK_DESTROY_TIME (10*HZ)
 883
 884/* Sockets 0-1023 can't be bound to unless you are superuser */
 885#define PROT_SOCK	1024
 886
 887#define SHUTDOWN_MASK	3
 888#define RCV_SHUTDOWN	1
 889#define SEND_SHUTDOWN	2
 890
 891#define SOCK_SNDBUF_LOCK	1
 892#define SOCK_RCVBUF_LOCK	2
 893#define SOCK_BINDADDR_LOCK	4
 894#define SOCK_BINDPORT_LOCK	8
 895
 896/* sock_iocb: used to kick off async processing of socket ios */
 897struct sock_iocb {
 898	struct list_head	list;
 899
 900	int			flags;
 901	int			size;
 902	struct socket		*sock;
 903	struct sock		*sk;
 904	struct scm_cookie	*scm;
 905	struct msghdr		*msg, async_msg;
 906	struct kiocb		*kiocb;
 907};
 908
 909static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
 910{
 911	return (struct sock_iocb *)iocb->private;
 912}
 913
 914static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
 915{
 916	return si->kiocb;
 917}
 918
 919struct socket_alloc {
 920	struct socket socket;
 921	struct inode vfs_inode;
 922};
 923
 924static inline struct socket *SOCKET_I(struct inode *inode)
 925{
 926	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
 927}
 928
 929static inline struct inode *SOCK_INODE(struct socket *socket)
 930{
 931	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
 932}
 933
 934/*
 935 * Functions for memory accounting
 936 */
 937extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
 938extern void __sk_mem_reclaim(struct sock *sk);
 
 
 939
 940#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 
 
 
 941#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
 942#define SK_MEM_SEND	0
 943#define SK_MEM_RECV	1
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 945static inline int sk_mem_pages(int amt)
 946{
 947	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
 948}
 949
 950static inline int sk_has_account(struct sock *sk)
 951{
 952	/* return true if protocol supports memory accounting */
 953	return !!sk->sk_prot->memory_allocated;
 954}
 955
 956static inline int sk_wmem_schedule(struct sock *sk, int size)
 957{
 958	if (!sk_has_account(sk))
 959		return 1;
 960	return size <= sk->sk_forward_alloc ||
 961		__sk_mem_schedule(sk, size, SK_MEM_SEND);
 962}
 963
 964static inline int sk_rmem_schedule(struct sock *sk, int size)
 
 965{
 966	if (!sk_has_account(sk))
 967		return 1;
 968	return size <= sk->sk_forward_alloc ||
 969		__sk_mem_schedule(sk, size, SK_MEM_RECV);
 
 970}
 971
 972static inline void sk_mem_reclaim(struct sock *sk)
 973{
 974	if (!sk_has_account(sk))
 975		return;
 976	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
 977		__sk_mem_reclaim(sk);
 978}
 979
 980static inline void sk_mem_reclaim_partial(struct sock *sk)
 981{
 982	if (!sk_has_account(sk))
 983		return;
 984	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
 985		__sk_mem_reclaim(sk);
 986}
 987
 988static inline void sk_mem_charge(struct sock *sk, int size)
 989{
 990	if (!sk_has_account(sk))
 991		return;
 992	sk->sk_forward_alloc -= size;
 993}
 994
 995static inline void sk_mem_uncharge(struct sock *sk, int size)
 996{
 997	if (!sk_has_account(sk))
 998		return;
 999	sk->sk_forward_alloc += size;
 
 
 
 
 
 
 
 
 
 
1000}
1001
 
1002static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1003{
1004	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1005	sk->sk_wmem_queued -= skb->truesize;
1006	sk_mem_uncharge(sk, skb->truesize);
 
 
 
 
 
 
 
1007	__kfree_skb(skb);
1008}
1009
1010/* Used by processes to "lock" a socket state, so that
1011 * interrupts and bottom half handlers won't change it
1012 * from under us. It essentially blocks any incoming
1013 * packets, so that we won't get any new data or any
1014 * packets that change the state of the socket.
1015 *
1016 * While locked, BH processing will add new packets to
1017 * the backlog queue.  This queue is processed by the
1018 * owner of the socket lock right before it is released.
1019 *
1020 * Since ~2.3.5 it is also exclusive sleep lock serializing
1021 * accesses from user process context.
1022 */
1023#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1024
1025/*
1026 * Macro so as to not evaluate some arguments when
1027 * lockdep is not enabled.
1028 *
1029 * Mark both the sk_lock and the sk_lock.slock as a
1030 * per-address-family lock class.
1031 */
1032#define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1033do {									\
1034	sk->sk_lock.owned = 0;						\
1035	init_waitqueue_head(&sk->sk_lock.wq);				\
1036	spin_lock_init(&(sk)->sk_lock.slock);				\
1037	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1038			sizeof((sk)->sk_lock));				\
1039	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1040		       	(skey), (sname));				\
1041	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1042} while (0)
1043
1044extern void lock_sock_nested(struct sock *sk, int subclass);
 
 
 
 
 
 
 
 
1045
1046static inline void lock_sock(struct sock *sk)
1047{
1048	lock_sock_nested(sk, 0);
1049}
1050
1051extern void release_sock(struct sock *sk);
 
1052
1053/* BH context may only use the following locking interface. */
1054#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1055#define bh_lock_sock_nested(__sk) \
1056				spin_lock_nested(&((__sk)->sk_lock.slock), \
1057				SINGLE_DEPTH_NESTING)
1058#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1059
1060extern bool lock_sock_fast(struct sock *sk);
1061/**
1062 * unlock_sock_fast - complement of lock_sock_fast
1063 * @sk: socket
1064 * @slow: slow mode
1065 *
1066 * fast unlock socket for user context.
1067 * If slow mode is on, we call regular release_sock()
1068 */
1069static inline void unlock_sock_fast(struct sock *sk, bool slow)
1070{
1071	if (slow)
1072		release_sock(sk);
1073	else
1074		spin_unlock_bh(&sk->sk_lock.slock);
1075}
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078extern struct sock		*sk_alloc(struct net *net, int family,
1079					  gfp_t priority,
1080					  struct proto *prot);
1081extern void			sk_free(struct sock *sk);
1082extern void			sk_release_kernel(struct sock *sk);
1083extern struct sock		*sk_clone(const struct sock *sk,
1084					  const gfp_t priority);
1085
1086extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1087					      unsigned long size, int force,
1088					      gfp_t priority);
1089extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1090					      unsigned long size, int force,
1091					      gfp_t priority);
1092extern void			sock_wfree(struct sk_buff *skb);
1093extern void			sock_rfree(struct sk_buff *skb);
1094
1095extern int			sock_setsockopt(struct socket *sock, int level,
1096						int op, char __user *optval,
1097						unsigned int optlen);
1098
1099extern int			sock_getsockopt(struct socket *sock, int level,
1100						int op, char __user *optval, 
1101						int __user *optlen);
1102extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1103						     unsigned long size,
1104						     int noblock,
1105						     int *errcode);
1106extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1107						      unsigned long header_len,
1108						      unsigned long data_len,
1109						      int noblock,
1110						      int *errcode);
1111extern void *sock_kmalloc(struct sock *sk, int size,
1112			  gfp_t priority);
1113extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1114extern void sk_send_sigurg(struct sock *sk);
1115
1116#ifdef CONFIG_CGROUPS
1117extern void sock_update_classid(struct sock *sk);
1118#else
1119static inline void sock_update_classid(struct sock *sk)
 
 
 
 
 
 
 
 
 
1120{
 
 
 
1121}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122#endif
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124/*
1125 * Functions to fill in entries in struct proto_ops when a protocol
1126 * does not implement a particular function.
1127 */
1128extern int                      sock_no_bind(struct socket *, 
1129					     struct sockaddr *, int);
1130extern int                      sock_no_connect(struct socket *,
1131						struct sockaddr *, int, int);
1132extern int                      sock_no_socketpair(struct socket *,
1133						   struct socket *);
1134extern int                      sock_no_accept(struct socket *,
1135					       struct socket *, int);
1136extern int                      sock_no_getname(struct socket *,
1137						struct sockaddr *, int *, int);
1138extern unsigned int             sock_no_poll(struct file *, struct socket *,
1139					     struct poll_table_struct *);
1140extern int                      sock_no_ioctl(struct socket *, unsigned int,
1141					      unsigned long);
1142extern int			sock_no_listen(struct socket *, int);
1143extern int                      sock_no_shutdown(struct socket *, int);
1144extern int			sock_no_getsockopt(struct socket *, int , int,
1145						   char __user *, int __user *);
1146extern int			sock_no_setsockopt(struct socket *, int, int,
1147						   char __user *, unsigned int);
1148extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1149						struct msghdr *, size_t);
1150extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1151						struct msghdr *, size_t, int);
1152extern int			sock_no_mmap(struct file *file,
1153					     struct socket *sock,
1154					     struct vm_area_struct *vma);
1155extern ssize_t			sock_no_sendpage(struct socket *sock,
1156						struct page *page,
1157						int offset, size_t size, 
1158						int flags);
1159
1160/*
1161 * Functions to fill in entries in struct proto_ops when a protocol
1162 * uses the inet style.
1163 */
1164extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1165				  char __user *optval, int __user *optlen);
1166extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1167			       struct msghdr *msg, size_t size, int flags);
1168extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1169				  char __user *optval, unsigned int optlen);
1170extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1171		int optname, char __user *optval, int __user *optlen);
1172extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1173		int optname, char __user *optval, unsigned int optlen);
1174
1175extern void sk_common_release(struct sock *sk);
1176
1177/*
1178 *	Default socket callbacks and setup code
1179 */
1180 
1181/* Initialise core socket variables */
1182extern void sock_init_data(struct socket *sock, struct sock *sk);
1183
1184extern void sk_filter_release_rcu(struct rcu_head *rcu);
1185
1186/**
1187 *	sk_filter_release - release a socket filter
1188 *	@fp: filter to remove
1189 *
1190 *	Remove a filter from a socket and release its resources.
1191 */
1192
1193static inline void sk_filter_release(struct sk_filter *fp)
1194{
1195	if (atomic_dec_and_test(&fp->refcnt))
1196		call_rcu(&fp->rcu, sk_filter_release_rcu);
1197}
1198
1199static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1200{
1201	unsigned int size = sk_filter_len(fp);
1202
1203	atomic_sub(size, &sk->sk_omem_alloc);
1204	sk_filter_release(fp);
1205}
1206
1207static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1208{
1209	atomic_inc(&fp->refcnt);
1210	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1211}
1212
1213/*
1214 * Socket reference counting postulates.
1215 *
1216 * * Each user of socket SHOULD hold a reference count.
1217 * * Each access point to socket (an hash table bucket, reference from a list,
1218 *   running timer, skb in flight MUST hold a reference count.
1219 * * When reference count hits 0, it means it will never increase back.
1220 * * When reference count hits 0, it means that no references from
1221 *   outside exist to this socket and current process on current CPU
1222 *   is last user and may/should destroy this socket.
1223 * * sk_free is called from any context: process, BH, IRQ. When
1224 *   it is called, socket has no references from outside -> sk_free
1225 *   may release descendant resources allocated by the socket, but
1226 *   to the time when it is called, socket is NOT referenced by any
1227 *   hash tables, lists etc.
1228 * * Packets, delivered from outside (from network or from another process)
1229 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1230 *   when they sit in queue. Otherwise, packets will leak to hole, when
1231 *   socket is looked up by one cpu and unhasing is made by another CPU.
1232 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1233 *   (leak to backlog). Packet socket does all the processing inside
1234 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1235 *   use separate SMP lock, so that they are prone too.
1236 */
1237
1238/* Ungrab socket and destroy it, if it was the last reference. */
1239static inline void sock_put(struct sock *sk)
1240{
1241	if (atomic_dec_and_test(&sk->sk_refcnt))
1242		sk_free(sk);
1243}
 
 
 
 
1244
1245extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1246			  const int nested);
 
 
 
 
 
1247
1248static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1249{
 
 
 
1250	sk->sk_tx_queue_mapping = tx_queue;
1251}
1252
 
 
1253static inline void sk_tx_queue_clear(struct sock *sk)
1254{
1255	sk->sk_tx_queue_mapping = -1;
1256}
1257
1258static inline int sk_tx_queue_get(const struct sock *sk)
1259{
1260	return sk ? sk->sk_tx_queue_mapping : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1264{
1265	sk_tx_queue_clear(sk);
1266	sk->sk_socket = sock;
1267}
1268
1269static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1270{
1271	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1272	return &rcu_dereference_raw(sk->sk_wq)->wait;
1273}
1274/* Detach socket from process context.
1275 * Announce socket dead, detach it from wait queue and inode.
1276 * Note that parent inode held reference count on this struct sock,
1277 * we do not release it in this function, because protocol
1278 * probably wants some additional cleanups or even continuing
1279 * to work with this socket (TCP).
1280 */
1281static inline void sock_orphan(struct sock *sk)
1282{
1283	write_lock_bh(&sk->sk_callback_lock);
1284	sock_set_flag(sk, SOCK_DEAD);
1285	sk_set_socket(sk, NULL);
1286	sk->sk_wq  = NULL;
1287	write_unlock_bh(&sk->sk_callback_lock);
1288}
1289
1290static inline void sock_graft(struct sock *sk, struct socket *parent)
1291{
 
1292	write_lock_bh(&sk->sk_callback_lock);
1293	sk->sk_wq = parent->wq;
1294	parent->sk = sk;
1295	sk_set_socket(sk, parent);
 
1296	security_sock_graft(sk, parent);
1297	write_unlock_bh(&sk->sk_callback_lock);
1298}
1299
1300extern int sock_i_uid(struct sock *sk);
1301extern unsigned long sock_i_ino(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302
1303static inline struct dst_entry *
1304__sk_dst_get(struct sock *sk)
1305{
1306	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1307						       lockdep_is_held(&sk->sk_lock.slock));
1308}
1309
1310static inline struct dst_entry *
1311sk_dst_get(struct sock *sk)
1312{
1313	struct dst_entry *dst;
1314
1315	rcu_read_lock();
1316	dst = rcu_dereference(sk->sk_dst_cache);
1317	if (dst)
1318		dst_hold(dst);
1319	rcu_read_unlock();
1320	return dst;
1321}
1322
1323extern void sk_reset_txq(struct sock *sk);
1324
1325static inline void dst_negative_advice(struct sock *sk)
1326{
1327	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1328
 
 
1329	if (dst && dst->ops->negative_advice) {
1330		ndst = dst->ops->negative_advice(dst);
1331
1332		if (ndst != dst) {
1333			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1334			sk_reset_txq(sk);
 
1335		}
1336	}
1337}
1338
1339static inline void
1340__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1341{
1342	struct dst_entry *old_dst;
1343
1344	sk_tx_queue_clear(sk);
1345	/*
1346	 * This can be called while sk is owned by the caller only,
1347	 * with no state that can be checked in a rcu_dereference_check() cond
1348	 */
1349	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1350	rcu_assign_pointer(sk->sk_dst_cache, dst);
1351	dst_release(old_dst);
1352}
1353
1354static inline void
1355sk_dst_set(struct sock *sk, struct dst_entry *dst)
1356{
1357	spin_lock(&sk->sk_dst_lock);
1358	__sk_dst_set(sk, dst);
1359	spin_unlock(&sk->sk_dst_lock);
 
 
 
1360}
1361
1362static inline void
1363__sk_dst_reset(struct sock *sk)
1364{
1365	__sk_dst_set(sk, NULL);
1366}
1367
1368static inline void
1369sk_dst_reset(struct sock *sk)
1370{
1371	spin_lock(&sk->sk_dst_lock);
1372	__sk_dst_reset(sk);
1373	spin_unlock(&sk->sk_dst_lock);
1374}
1375
1376extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
 
 
1377
1378extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
 
 
 
 
1379
1380static inline int sk_can_gso(const struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381{
1382	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1383}
1384
1385extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1386
1387static inline void sk_nocaps_add(struct sock *sk, int flags)
1388{
1389	sk->sk_route_nocaps |= flags;
1390	sk->sk_route_caps &= ~flags;
1391}
1392
1393static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1394					   char __user *from, char *to,
1395					   int copy, int offset)
1396{
1397	if (skb->ip_summed == CHECKSUM_NONE) {
1398		int err = 0;
1399		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1400		if (err)
1401			return err;
1402		skb->csum = csum_block_add(skb->csum, csum, offset);
1403	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1404		if (!access_ok(VERIFY_READ, from, copy) ||
1405		    __copy_from_user_nocache(to, from, copy))
1406			return -EFAULT;
1407	} else if (copy_from_user(to, from, copy))
1408		return -EFAULT;
1409
1410	return 0;
1411}
1412
1413static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1414				       char __user *from, int copy)
1415{
1416	int err, offset = skb->len;
1417
1418	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1419				       copy, offset);
1420	if (err)
1421		__skb_trim(skb, offset);
1422
1423	return err;
1424}
1425
1426static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1427					   struct sk_buff *skb,
1428					   struct page *page,
1429					   int off, int copy)
1430{
1431	int err;
1432
1433	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1434				       copy, skb->len);
1435	if (err)
1436		return err;
1437
1438	skb->len	     += copy;
1439	skb->data_len	     += copy;
1440	skb->truesize	     += copy;
1441	sk->sk_wmem_queued   += copy;
1442	sk_mem_charge(sk, copy);
1443	return 0;
1444}
1445
1446static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1447				   struct sk_buff *skb, struct page *page,
1448				   int off, int copy)
1449{
1450	if (skb->ip_summed == CHECKSUM_NONE) {
1451		int err = 0;
1452		__wsum csum = csum_and_copy_from_user(from,
1453						     page_address(page) + off,
1454							    copy, 0, &err);
1455		if (err)
1456			return err;
1457		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1458	} else if (copy_from_user(page_address(page) + off, from, copy))
1459		return -EFAULT;
1460
1461	skb->len	     += copy;
1462	skb->data_len	     += copy;
1463	skb->truesize	     += copy;
1464	sk->sk_wmem_queued   += copy;
1465	sk_mem_charge(sk, copy);
1466	return 0;
1467}
1468
1469/**
1470 * sk_wmem_alloc_get - returns write allocations
1471 * @sk: socket
1472 *
1473 * Returns sk_wmem_alloc minus initial offset of one
1474 */
1475static inline int sk_wmem_alloc_get(const struct sock *sk)
1476{
1477	return atomic_read(&sk->sk_wmem_alloc) - 1;
1478}
1479
1480/**
1481 * sk_rmem_alloc_get - returns read allocations
1482 * @sk: socket
1483 *
1484 * Returns sk_rmem_alloc
1485 */
1486static inline int sk_rmem_alloc_get(const struct sock *sk)
1487{
1488	return atomic_read(&sk->sk_rmem_alloc);
1489}
1490
1491/**
1492 * sk_has_allocations - check if allocations are outstanding
1493 * @sk: socket
1494 *
1495 * Returns true if socket has write or read allocations
1496 */
1497static inline int sk_has_allocations(const struct sock *sk)
1498{
1499	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1500}
1501
1502/**
1503 * wq_has_sleeper - check if there are any waiting processes
1504 * @wq: struct socket_wq
1505 *
1506 * Returns true if socket_wq has waiting processes
1507 *
1508 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1509 * barrier call. They were added due to the race found within the tcp code.
1510 *
1511 * Consider following tcp code paths:
1512 *
1513 * CPU1                  CPU2
1514 *
1515 * sys_select            receive packet
 
1516 *   ...                 ...
1517 *   __add_wait_queue    update tp->rcv_nxt
1518 *   ...                 ...
1519 *   tp->rcv_nxt check   sock_def_readable
1520 *   ...                 {
1521 *   schedule               rcu_read_lock();
1522 *                          wq = rcu_dereference(sk->sk_wq);
1523 *                          if (wq && waitqueue_active(&wq->wait))
1524 *                              wake_up_interruptible(&wq->wait)
1525 *                          ...
1526 *                       }
1527 *
1528 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1529 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1530 * could then endup calling schedule and sleep forever if there are no more
1531 * data on the socket.
1532 *
1533 */
1534static inline bool wq_has_sleeper(struct socket_wq *wq)
1535{
1536
1537	/*
1538	 * We need to be sure we are in sync with the
1539	 * add_wait_queue modifications to the wait queue.
1540	 *
1541	 * This memory barrier is paired in the sock_poll_wait.
1542	 */
1543	smp_mb();
1544	return wq && waitqueue_active(&wq->wait);
1545}
1546
1547/**
1548 * sock_poll_wait - place memory barrier behind the poll_wait call.
1549 * @filp:           file
1550 * @wait_address:   socket wait queue
1551 * @p:              poll_table
1552 *
1553 * See the comments in the wq_has_sleeper function.
1554 */
1555static inline void sock_poll_wait(struct file *filp,
1556		wait_queue_head_t *wait_address, poll_table *p)
1557{
1558	if (p && wait_address) {
1559		poll_wait(filp, wait_address, p);
1560		/*
1561		 * We need to be sure we are in sync with the
1562		 * socket flags modification.
1563		 *
1564		 * This memory barrier is paired in the wq_has_sleeper.
1565		*/
1566		smp_mb();
1567	}
1568}
1569
 
 
 
 
 
 
 
 
 
 
1570/*
1571 * 	Queue a received datagram if it will fit. Stream and sequenced
1572 *	protocols can't normally use this as they need to fit buffers in
1573 *	and play with them.
1574 *
1575 * 	Inlined as it's very short and called for pretty much every
1576 *	packet ever received.
1577 */
1578
1579static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1580{
1581	skb_orphan(skb);
1582	skb->sk = sk;
1583	skb->destructor = sock_wfree;
1584	/*
1585	 * We used to take a refcount on sk, but following operation
1586	 * is enough to guarantee sk_free() wont free this sock until
1587	 * all in-flight packets are completed
1588	 */
1589	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1590}
1591
1592static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1593{
1594	skb_orphan(skb);
1595	skb->sk = sk;
1596	skb->destructor = sock_rfree;
1597	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1598	sk_mem_charge(sk, skb->truesize);
1599}
1600
1601extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1602			   unsigned long expires);
1603
1604extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1605
1606extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
1607
1608extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
 
1609
1610/*
1611 *	Recover an error report and clear atomically
1612 */
1613 
1614static inline int sock_error(struct sock *sk)
1615{
1616	int err;
1617	if (likely(!sk->sk_err))
1618		return 0;
1619	err = xchg(&sk->sk_err, 0);
1620	return -err;
1621}
1622
1623static inline unsigned long sock_wspace(struct sock *sk)
1624{
1625	int amt = 0;
1626
1627	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1628		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1629		if (amt < 0) 
1630			amt = 0;
1631	}
1632	return amt;
1633}
1634
1635static inline void sk_wake_async(struct sock *sk, int how, int band)
 
 
 
 
1636{
1637	if (sock_flag(sk, SOCK_FASYNC))
1638		sock_wake_async(sk->sk_socket, how, band);
 
 
 
1639}
1640
1641#define SOCK_MIN_SNDBUF 2048
1642/*
1643 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1644 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645 */
1646#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
 
 
 
1647
1648static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1649{
1650	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1651		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1652		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1653	}
 
 
 
 
1654}
1655
1656struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
 
1657
1658static inline struct page *sk_stream_alloc_page(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659{
1660	struct page *page = NULL;
 
1661
1662	page = alloc_pages(sk->sk_allocation, 0);
1663	if (!page) {
1664		sk->sk_prot->enter_memory_pressure(sk);
1665		sk_stream_moderate_sndbuf(sk);
1666	}
1667	return page;
1668}
1669
 
 
1670/*
1671 *	Default write policy as shown to user space via poll/select/SIGIO
1672 */
1673static inline int sock_writeable(const struct sock *sk) 
1674{
1675	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1676}
1677
1678static inline gfp_t gfp_any(void)
1679{
1680	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1681}
1682
1683static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1684{
1685	return noblock ? 0 : sk->sk_rcvtimeo;
1686}
1687
1688static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1689{
1690	return noblock ? 0 : sk->sk_sndtimeo;
1691}
1692
1693static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1694{
1695	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
 
 
1696}
1697
1698/* Alas, with timeout socket operations are not restartable.
1699 * Compare this to poll().
1700 */
1701static inline int sock_intr_errno(long timeo)
1702{
1703	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1704}
1705
1706extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1707	struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708
1709static __inline__ void
1710sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1711{
1712	ktime_t kt = skb->tstamp;
1713	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1714
1715	/*
1716	 * generate control messages if
1717	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1718	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1719	 * - software time stamp available and wanted
1720	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1721	 * - hardware time stamps available and wanted
1722	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1723	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1724	 */
1725	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1726	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1727	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1728	    (hwtstamps->hwtstamp.tv64 &&
1729	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1730	    (hwtstamps->syststamp.tv64 &&
1731	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1732		__sock_recv_timestamp(msg, sk, skb);
1733	else
1734		sk->sk_stamp = kt;
 
 
 
1735}
1736
1737extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1738				     struct sk_buff *skb);
1739
 
1740static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1741					  struct sk_buff *skb)
1742{
1743#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1744			   (1UL << SOCK_RCVTSTAMP)			| \
1745			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1746			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1747			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1748			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1749
1750	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1751		__sock_recv_ts_and_drops(msg, sk, skb);
1752	else
1753		sk->sk_stamp = skb->tstamp;
 
 
1754}
1755
 
 
1756/**
1757 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1758 * @sk:		socket sending this packet
1759 * @tx_flags:	filled with instructions for time stamping
1760 *
1761 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1762 * parameters are invalid.
1763 */
1764extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765
 
1766/**
1767 * sk_eat_skb - Release a skb if it is no longer needed
1768 * @sk: socket to eat this skb from
1769 * @skb: socket buffer to eat
1770 * @copied_early: flag indicating whether DMA operations copied this data early
1771 *
1772 * This routine must be called with interrupts disabled or with the socket
1773 * locked so that the sk_buff queue operation is ok.
1774*/
1775#ifdef CONFIG_NET_DMA
1776static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1777{
1778	__skb_unlink(skb, &sk->sk_receive_queue);
1779	if (!copied_early)
1780		__kfree_skb(skb);
1781	else
1782		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1783}
1784#else
1785static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1786{
1787	__skb_unlink(skb, &sk->sk_receive_queue);
 
 
 
 
 
 
1788	__kfree_skb(skb);
1789}
1790#endif
1791
1792static inline
1793struct net *sock_net(const struct sock *sk)
1794{
1795	return read_pnet(&sk->sk_net);
1796}
1797
1798static inline
1799void sock_net_set(struct sock *sk, struct net *net)
1800{
1801	write_pnet(&sk->sk_net, net);
1802}
1803
1804/*
1805 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1806 * They should not hold a reference to a namespace in order to allow
1807 * to stop it.
1808 * Sockets after sk_change_net should be released using sk_release_kernel
 
 
 
 
 
 
 
1809 */
1810static inline void sk_change_net(struct sock *sk, struct net *net)
 
 
 
 
 
 
1811{
1812	put_net(sock_net(sk));
1813	sock_net_set(sk, hold_net(net));
1814}
1815
1816static inline struct sock *skb_steal_sock(struct sk_buff *skb)
 
 
 
 
 
 
1817{
1818	if (unlikely(skb->sk)) {
1819		struct sock *sk = skb->sk;
1820
 
 
 
1821		skb->destructor = NULL;
1822		skb->sk = NULL;
1823		return sk;
1824	}
 
1825	return NULL;
1826}
1827
1828extern void sock_enable_timestamp(struct sock *sk, int flag);
1829extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1830extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1831
1832/* 
1833 *	Enable debug/info messages 
1834 */
1835extern int net_msg_warn;
1836#define NETDEBUG(fmt, args...) \
1837	do { if (net_msg_warn) printk(fmt,##args); } while (0)
 
 
 
 
 
 
 
 
 
 
1838
1839#define LIMIT_NETDEBUG(fmt, args...) \
1840	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841
1842extern __u32 sysctl_wmem_max;
1843extern __u32 sysctl_rmem_max;
1844
1845extern void sk_init(void);
1846
1847extern int sysctl_optmem_max;
1848
1849extern __u32 sysctl_wmem_default;
1850extern __u32 sysctl_rmem_default;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851
1852#endif	/* _SOCK_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
 
 
 
 
 
 
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82					printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96	spinlock_t		slock;
  97	int			owned;
  98	wait_queue_head_t	wq;
  99	/*
 100	 * We express the mutex-alike socket_lock semantics
 101	 * to the lock validator by explicitly managing
 102	 * the slock as a lock variant (in addition to
 103	 * the slock itself):
 104	 */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106	struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *	struct sock_common - minimal network layer representation of sockets
 119 *	@skc_daddr: Foreign IPv4 addr
 120 *	@skc_rcv_saddr: Bound local IPv4 addr
 121 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 122 *	@skc_hash: hash value used with various protocol lookup tables
 123 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 124 *	@skc_dport: placeholder for inet_dport/tw_dport
 125 *	@skc_num: placeholder for inet_num/tw_num
 126 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 127 *	@skc_family: network address family
 128 *	@skc_state: Connection state
 129 *	@skc_reuse: %SO_REUSEADDR setting
 130 *	@skc_reuseport: %SO_REUSEPORT setting
 131 *	@skc_ipv6only: socket is IPV6 only
 132 *	@skc_net_refcnt: socket is using net ref counting
 133 *	@skc_bound_dev_if: bound device index if != 0
 134 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *	@skc_prot: protocol handlers inside a network family
 137 *	@skc_net: reference to the network namespace of this socket
 138 *	@skc_v6_daddr: IPV6 destination address
 139 *	@skc_v6_rcv_saddr: IPV6 source address
 140 *	@skc_cookie: socket's cookie value
 141 *	@skc_node: main hash linkage for various protocol lookup tables
 142 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 143 *	@skc_tx_queue_mapping: tx queue number for this connection
 144 *	@skc_rx_queue_mapping: rx queue number for this connection
 145 *	@skc_flags: place holder for sk_flags
 146 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 147 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 148 *	@skc_listener: connection request listener socket (aka rsk_listener)
 149 *		[union with @skc_flags]
 150 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 151 *		[union with @skc_flags]
 152 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 153 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 154 *		[union with @skc_incoming_cpu]
 155 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 156 *		[union with @skc_incoming_cpu]
 157 *	@skc_refcnt: reference count
 158 *
 159 *	This is the minimal network layer representation of sockets, the header
 160 *	for struct sock and struct inet_timewait_sock.
 161 */
 162struct sock_common {
 163	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 164	 * address on 64bit arches : cf INET_MATCH()
 165	 */
 166	union {
 167		__addrpair	skc_addrpair;
 168		struct {
 169			__be32	skc_daddr;
 170			__be32	skc_rcv_saddr;
 171		};
 172	};
 173	union  {
 174		unsigned int	skc_hash;
 175		__u16		skc_u16hashes[2];
 176	};
 177	/* skc_dport && skc_num must be grouped as well */
 178	union {
 179		__portpair	skc_portpair;
 180		struct {
 181			__be16	skc_dport;
 182			__u16	skc_num;
 183		};
 184	};
 185
 186	unsigned short		skc_family;
 187	volatile unsigned char	skc_state;
 188	unsigned char		skc_reuse:4;
 189	unsigned char		skc_reuseport:1;
 190	unsigned char		skc_ipv6only:1;
 191	unsigned char		skc_net_refcnt:1;
 192	int			skc_bound_dev_if;
 193	union {
 194		struct hlist_node	skc_bind_node;
 195		struct hlist_node	skc_portaddr_node;
 196	};
 197	struct proto		*skc_prot;
 198	possible_net_t		skc_net;
 199
 200#if IS_ENABLED(CONFIG_IPV6)
 201	struct in6_addr		skc_v6_daddr;
 202	struct in6_addr		skc_v6_rcv_saddr;
 203#endif
 204
 205	atomic64_t		skc_cookie;
 206
 207	/* following fields are padding to force
 208	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 209	 * assuming IPV6 is enabled. We use this padding differently
 210	 * for different kind of 'sockets'
 211	 */
 212	union {
 213		unsigned long	skc_flags;
 214		struct sock	*skc_listener; /* request_sock */
 215		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 216	};
 217	/*
 218	 * fields between dontcopy_begin/dontcopy_end
 219	 * are not copied in sock_copy()
 220	 */
 221	/* private: */
 222	int			skc_dontcopy_begin[0];
 223	/* public: */
 224	union {
 225		struct hlist_node	skc_node;
 226		struct hlist_nulls_node skc_nulls_node;
 227	};
 228	unsigned short		skc_tx_queue_mapping;
 229#ifdef CONFIG_XPS
 230	unsigned short		skc_rx_queue_mapping;
 231#endif
 232	union {
 233		int		skc_incoming_cpu;
 234		u32		skc_rcv_wnd;
 235		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 236	};
 237
 238	refcount_t		skc_refcnt;
 239	/* private: */
 240	int                     skc_dontcopy_end[0];
 241	union {
 242		u32		skc_rxhash;
 243		u32		skc_window_clamp;
 244		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 245	};
 246	/* public: */
 247};
 248
 249struct bpf_sk_storage;
 250
 251/**
 252  *	struct sock - network layer representation of sockets
 253  *	@__sk_common: shared layout with inet_timewait_sock
 254  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 255  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 256  *	@sk_lock:	synchronizer
 257  *	@sk_kern_sock: True if sock is using kernel lock classes
 258  *	@sk_rcvbuf: size of receive buffer in bytes
 259  *	@sk_wq: sock wait queue and async head
 260  *	@sk_rx_dst: receive input route used by early demux
 261  *	@sk_dst_cache: destination cache
 262  *	@sk_dst_pending_confirm: need to confirm neighbour
 263  *	@sk_policy: flow policy
 264  *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
 265  *	@sk_receive_queue: incoming packets
 266  *	@sk_wmem_alloc: transmit queue bytes committed
 267  *	@sk_tsq_flags: TCP Small Queues flags
 268  *	@sk_write_queue: Packet sending queue
 
 269  *	@sk_omem_alloc: "o" is "option" or "other"
 270  *	@sk_wmem_queued: persistent queue size
 271  *	@sk_forward_alloc: space allocated forward
 272  *	@sk_napi_id: id of the last napi context to receive data for sk
 273  *	@sk_ll_usec: usecs to busypoll when there is no data
 274  *	@sk_allocation: allocation mode
 275  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 276  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 277  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 278  *	@sk_sndbuf: size of send buffer in bytes
 279  *	@__sk_flags_offset: empty field used to determine location of bitfield
 280  *	@sk_padding: unused element for alignment
 281  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 282  *	@sk_no_check_rx: allow zero checksum in RX packets
 283  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 284  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 285  *	@sk_route_forced_caps: static, forced route capabilities
 286  *		(set in tcp_init_sock())
 287  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 288  *	@sk_gso_max_size: Maximum GSO segment size to build
 289  *	@sk_gso_max_segs: Maximum number of GSO segments
 290  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 291  *	@sk_lingertime: %SO_LINGER l_linger setting
 292  *	@sk_backlog: always used with the per-socket spinlock held
 293  *	@sk_callback_lock: used with the callbacks in the end of this struct
 294  *	@sk_error_queue: rarely used
 295  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 296  *			  IPV6_ADDRFORM for instance)
 297  *	@sk_err: last error
 298  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 299  *		      persistent failure not just 'timed out'
 300  *	@sk_drops: raw/udp drops counter
 301  *	@sk_ack_backlog: current listen backlog
 302  *	@sk_max_ack_backlog: listen backlog set in listen()
 303  *	@sk_uid: user id of owner
 304  *	@sk_priority: %SO_PRIORITY setting
 305  *	@sk_type: socket type (%SOCK_STREAM, etc)
 306  *	@sk_protocol: which protocol this socket belongs in this network family
 307  *	@sk_peer_pid: &struct pid for this socket's peer
 308  *	@sk_peer_cred: %SO_PEERCRED setting
 309  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 310  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 311  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 312  *	@sk_txhash: computed flow hash for use on transmit
 313  *	@sk_filter: socket filtering instructions
 
 314  *	@sk_timer: sock cleanup timer
 315  *	@sk_stamp: time stamp of last packet received
 316  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 317  *	@sk_tsflags: SO_TIMESTAMPING socket options
 318  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 319  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 320  *	@sk_socket: Identd and reporting IO signals
 321  *	@sk_user_data: RPC layer private data
 322  *	@sk_frag: cached page frag
 323  *	@sk_peek_off: current peek_offset value
 324  *	@sk_send_head: front of stuff to transmit
 325  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 326  *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
 327  *	@sk_security: used by security modules
 328  *	@sk_mark: generic packet mark
 329  *	@sk_cgrp_data: cgroup data for this cgroup
 330  *	@sk_memcg: this socket's memory cgroup association
 331  *	@sk_write_pending: a write to stream socket waits to start
 332  *	@sk_state_change: callback to indicate change in the state of the sock
 333  *	@sk_data_ready: callback to indicate there is data to be processed
 334  *	@sk_write_space: callback to indicate there is bf sending space available
 335  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 336  *	@sk_backlog_rcv: callback to process the backlog
 337  *	@sk_validate_xmit_skb: ptr to an optional validate function
 338  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 339  *	@sk_reuseport_cb: reuseport group container
 340  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 341  *	@sk_rcu: used during RCU grace period
 342  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 343  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 344  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
 345  *	@sk_txtime_unused: unused txtime flags
 346  */
 347struct sock {
 348	/*
 349	 * Now struct inet_timewait_sock also uses sock_common, so please just
 350	 * don't add nothing before this first member (__sk_common) --acme
 351	 */
 352	struct sock_common	__sk_common;
 353#define sk_node			__sk_common.skc_node
 354#define sk_nulls_node		__sk_common.skc_nulls_node
 355#define sk_refcnt		__sk_common.skc_refcnt
 356#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 357#ifdef CONFIG_XPS
 358#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 359#endif
 360
 361#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 362#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 363#define sk_hash			__sk_common.skc_hash
 364#define sk_portpair		__sk_common.skc_portpair
 365#define sk_num			__sk_common.skc_num
 366#define sk_dport		__sk_common.skc_dport
 367#define sk_addrpair		__sk_common.skc_addrpair
 368#define sk_daddr		__sk_common.skc_daddr
 369#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 370#define sk_family		__sk_common.skc_family
 371#define sk_state		__sk_common.skc_state
 372#define sk_reuse		__sk_common.skc_reuse
 373#define sk_reuseport		__sk_common.skc_reuseport
 374#define sk_ipv6only		__sk_common.skc_ipv6only
 375#define sk_net_refcnt		__sk_common.skc_net_refcnt
 376#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 377#define sk_bind_node		__sk_common.skc_bind_node
 378#define sk_prot			__sk_common.skc_prot
 379#define sk_net			__sk_common.skc_net
 380#define sk_v6_daddr		__sk_common.skc_v6_daddr
 381#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 382#define sk_cookie		__sk_common.skc_cookie
 383#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 384#define sk_flags		__sk_common.skc_flags
 385#define sk_rxhash		__sk_common.skc_rxhash
 386
 387	socket_lock_t		sk_lock;
 388	atomic_t		sk_drops;
 389	int			sk_rcvlowat;
 390	struct sk_buff_head	sk_error_queue;
 391	struct sk_buff		*sk_rx_skb_cache;
 392	struct sk_buff_head	sk_receive_queue;
 393	/*
 394	 * The backlog queue is special, it is always used with
 395	 * the per-socket spinlock held and requires low latency
 396	 * access. Therefore we special case it's implementation.
 397	 * Note : rmem_alloc is in this structure to fill a hole
 398	 * on 64bit arches, not because its logically part of
 399	 * backlog.
 400	 */
 401	struct {
 402		atomic_t	rmem_alloc;
 403		int		len;
 404		struct sk_buff	*head;
 405		struct sk_buff	*tail;
 406	} sk_backlog;
 407#define sk_rmem_alloc sk_backlog.rmem_alloc
 408
 409	int			sk_forward_alloc;
 410#ifdef CONFIG_NET_RX_BUSY_POLL
 411	unsigned int		sk_ll_usec;
 412	/* ===== mostly read cache line ===== */
 413	unsigned int		sk_napi_id;
 414#endif
 
 415	int			sk_rcvbuf;
 416
 417	struct sk_filter __rcu	*sk_filter;
 418	union {
 419		struct socket_wq __rcu	*sk_wq;
 420		/* private: */
 421		struct socket_wq	*sk_wq_raw;
 422		/* public: */
 423	};
 424#ifdef CONFIG_XFRM
 425	struct xfrm_policy __rcu *sk_policy[2];
 426#endif
 427	struct dst_entry	*sk_rx_dst;
 428	struct dst_entry __rcu	*sk_dst_cache;
 
 
 429	atomic_t		sk_omem_alloc;
 430	int			sk_sndbuf;
 431
 432	/* ===== cache line for TX ===== */
 
 
 
 
 
 
 433	int			sk_wmem_queued;
 434	refcount_t		sk_wmem_alloc;
 435	unsigned long		sk_tsq_flags;
 436	union {
 437		struct sk_buff	*sk_send_head;
 438		struct rb_root	tcp_rtx_queue;
 439	};
 440	struct sk_buff		*sk_tx_skb_cache;
 441	struct sk_buff_head	sk_write_queue;
 442	__s32			sk_peek_off;
 443	int			sk_write_pending;
 444	__u32			sk_dst_pending_confirm;
 445	u32			sk_pacing_status; /* see enum sk_pacing */
 446	long			sk_sndtimeo;
 447	struct timer_list	sk_timer;
 448	__u32			sk_priority;
 449	__u32			sk_mark;
 450	unsigned long		sk_pacing_rate; /* bytes per second */
 451	unsigned long		sk_max_pacing_rate;
 452	struct page_frag	sk_frag;
 453	netdev_features_t	sk_route_caps;
 454	netdev_features_t	sk_route_nocaps;
 455	netdev_features_t	sk_route_forced_caps;
 456	int			sk_gso_type;
 457	unsigned int		sk_gso_max_size;
 458	gfp_t			sk_allocation;
 459	__u32			sk_txhash;
 460
 461	/*
 462	 * Because of non atomicity rules, all
 463	 * changes are protected by socket lock.
 464	 */
 465	u8			sk_padding : 1,
 466				sk_kern_sock : 1,
 467				sk_no_check_tx : 1,
 468				sk_no_check_rx : 1,
 469				sk_userlocks : 4;
 470	u8			sk_pacing_shift;
 471	u16			sk_type;
 472	u16			sk_protocol;
 473	u16			sk_gso_max_segs;
 474	unsigned long	        sk_lingertime;
 
 475	struct proto		*sk_prot_creator;
 476	rwlock_t		sk_callback_lock;
 477	int			sk_err,
 478				sk_err_soft;
 479	u32			sk_ack_backlog;
 480	u32			sk_max_ack_backlog;
 481	kuid_t			sk_uid;
 482	struct pid		*sk_peer_pid;
 483	const struct cred	*sk_peer_cred;
 484	long			sk_rcvtimeo;
 
 
 
 485	ktime_t			sk_stamp;
 486#if BITS_PER_LONG==32
 487	seqlock_t		sk_stamp_seq;
 488#endif
 489	u16			sk_tsflags;
 490	u8			sk_shutdown;
 491	u32			sk_tskey;
 492	atomic_t		sk_zckey;
 493
 494	u8			sk_clockid;
 495	u8			sk_txtime_deadline_mode : 1,
 496				sk_txtime_report_errors : 1,
 497				sk_txtime_unused : 6;
 498
 499	struct socket		*sk_socket;
 500	void			*sk_user_data;
 
 
 
 
 501#ifdef CONFIG_SECURITY
 502	void			*sk_security;
 503#endif
 504	struct sock_cgroup_data	sk_cgrp_data;
 505	struct mem_cgroup	*sk_memcg;
 506	void			(*sk_state_change)(struct sock *sk);
 507	void			(*sk_data_ready)(struct sock *sk);
 508	void			(*sk_write_space)(struct sock *sk);
 509	void			(*sk_error_report)(struct sock *sk);
 510	int			(*sk_backlog_rcv)(struct sock *sk,
 511						  struct sk_buff *skb);
 512#ifdef CONFIG_SOCK_VALIDATE_XMIT
 513	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 514							struct net_device *dev,
 515							struct sk_buff *skb);
 516#endif
 517	void                    (*sk_destruct)(struct sock *sk);
 518	struct sock_reuseport __rcu	*sk_reuseport_cb;
 519#ifdef CONFIG_BPF_SYSCALL
 520	struct bpf_sk_storage __rcu	*sk_bpf_storage;
 521#endif
 522	struct rcu_head		sk_rcu;
 523};
 524
 525enum sk_pacing {
 526	SK_PACING_NONE		= 0,
 527	SK_PACING_NEEDED	= 1,
 528	SK_PACING_FQ		= 2,
 529};
 530
 531/* Pointer stored in sk_user_data might not be suitable for copying
 532 * when cloning the socket. For instance, it can point to a reference
 533 * counted object. sk_user_data bottom bit is set if pointer must not
 534 * be copied.
 535 */
 536#define SK_USER_DATA_NOCOPY	1UL
 537#define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
 538#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 539
 540/**
 541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 542 * @sk: socket
 543 */
 544static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 545{
 546	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 547}
 548
 549#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 550
 551#define rcu_dereference_sk_user_data(sk)				\
 552({									\
 553	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
 554	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
 555})
 556#define rcu_assign_sk_user_data(sk, ptr)				\
 557({									\
 558	uintptr_t __tmp = (uintptr_t)(ptr);				\
 559	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 560	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
 561})
 562#define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
 563({									\
 564	uintptr_t __tmp = (uintptr_t)(ptr);				\
 565	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 566	rcu_assign_pointer(__sk_user_data((sk)),			\
 567			   __tmp | SK_USER_DATA_NOCOPY);		\
 568})
 569
 570/*
 571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 573 * on a socket means that the socket will reuse everybody else's port
 574 * without looking at the other's sk_reuse value.
 575 */
 576
 577#define SK_NO_REUSE	0
 578#define SK_CAN_REUSE	1
 579#define SK_FORCE_REUSE	2
 580
 581int sk_set_peek_off(struct sock *sk, int val);
 582
 583static inline int sk_peek_offset(struct sock *sk, int flags)
 584{
 585	if (unlikely(flags & MSG_PEEK)) {
 586		return READ_ONCE(sk->sk_peek_off);
 587	}
 588
 589	return 0;
 590}
 591
 592static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 593{
 594	s32 off = READ_ONCE(sk->sk_peek_off);
 595
 596	if (unlikely(off >= 0)) {
 597		off = max_t(s32, off - val, 0);
 598		WRITE_ONCE(sk->sk_peek_off, off);
 599	}
 600}
 601
 602static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 603{
 604	sk_peek_offset_bwd(sk, -val);
 605}
 606
 607/*
 608 * Hashed lists helper routines
 609 */
 610static inline struct sock *sk_entry(const struct hlist_node *node)
 611{
 612	return hlist_entry(node, struct sock, sk_node);
 613}
 614
 615static inline struct sock *__sk_head(const struct hlist_head *head)
 616{
 617	return hlist_entry(head->first, struct sock, sk_node);
 618}
 619
 620static inline struct sock *sk_head(const struct hlist_head *head)
 621{
 622	return hlist_empty(head) ? NULL : __sk_head(head);
 623}
 624
 625static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 626{
 627	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 628}
 629
 630static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 631{
 632	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 633}
 634
 635static inline struct sock *sk_next(const struct sock *sk)
 636{
 637	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 
 638}
 639
 640static inline struct sock *sk_nulls_next(const struct sock *sk)
 641{
 642	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 643		hlist_nulls_entry(sk->sk_nulls_node.next,
 644				  struct sock, sk_nulls_node) :
 645		NULL;
 646}
 647
 648static inline bool sk_unhashed(const struct sock *sk)
 649{
 650	return hlist_unhashed(&sk->sk_node);
 651}
 652
 653static inline bool sk_hashed(const struct sock *sk)
 654{
 655	return !sk_unhashed(sk);
 656}
 657
 658static inline void sk_node_init(struct hlist_node *node)
 659{
 660	node->pprev = NULL;
 661}
 662
 663static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 664{
 665	node->pprev = NULL;
 666}
 667
 668static inline void __sk_del_node(struct sock *sk)
 669{
 670	__hlist_del(&sk->sk_node);
 671}
 672
 673/* NB: equivalent to hlist_del_init_rcu */
 674static inline bool __sk_del_node_init(struct sock *sk)
 675{
 676	if (sk_hashed(sk)) {
 677		__sk_del_node(sk);
 678		sk_node_init(&sk->sk_node);
 679		return true;
 680	}
 681	return false;
 682}
 683
 684/* Grab socket reference count. This operation is valid only
 685   when sk is ALREADY grabbed f.e. it is found in hash table
 686   or a list and the lookup is made under lock preventing hash table
 687   modifications.
 688 */
 689
 690static __always_inline void sock_hold(struct sock *sk)
 691{
 692	refcount_inc(&sk->sk_refcnt);
 693}
 694
 695/* Ungrab socket in the context, which assumes that socket refcnt
 696   cannot hit zero, f.e. it is true in context of any socketcall.
 697 */
 698static __always_inline void __sock_put(struct sock *sk)
 699{
 700	refcount_dec(&sk->sk_refcnt);
 701}
 702
 703static inline bool sk_del_node_init(struct sock *sk)
 704{
 705	bool rc = __sk_del_node_init(sk);
 706
 707	if (rc) {
 708		/* paranoid for a while -acme */
 709		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 710		__sock_put(sk);
 711	}
 712	return rc;
 713}
 714#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 715
 716static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 717{
 718	if (sk_hashed(sk)) {
 719		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 720		return true;
 721	}
 722	return false;
 723}
 724
 725static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 726{
 727	bool rc = __sk_nulls_del_node_init_rcu(sk);
 728
 729	if (rc) {
 730		/* paranoid for a while -acme */
 731		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 732		__sock_put(sk);
 733	}
 734	return rc;
 735}
 736
 737static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 738{
 739	hlist_add_head(&sk->sk_node, list);
 740}
 741
 742static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 743{
 744	sock_hold(sk);
 745	__sk_add_node(sk, list);
 746}
 747
 748static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 749{
 750	sock_hold(sk);
 751	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 752	    sk->sk_family == AF_INET6)
 753		hlist_add_tail_rcu(&sk->sk_node, list);
 754	else
 755		hlist_add_head_rcu(&sk->sk_node, list);
 756}
 757
 758static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 759{
 760	sock_hold(sk);
 761	hlist_add_tail_rcu(&sk->sk_node, list);
 762}
 763
 764static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 765{
 766	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 767}
 768
 769static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 770{
 771	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 772}
 773
 774static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 775{
 776	sock_hold(sk);
 777	__sk_nulls_add_node_rcu(sk, list);
 778}
 779
 780static inline void __sk_del_bind_node(struct sock *sk)
 781{
 782	__hlist_del(&sk->sk_bind_node);
 783}
 784
 785static inline void sk_add_bind_node(struct sock *sk,
 786					struct hlist_head *list)
 787{
 788	hlist_add_head(&sk->sk_bind_node, list);
 789}
 790
 791#define sk_for_each(__sk, list) \
 792	hlist_for_each_entry(__sk, list, sk_node)
 793#define sk_for_each_rcu(__sk, list) \
 794	hlist_for_each_entry_rcu(__sk, list, sk_node)
 795#define sk_nulls_for_each(__sk, node, list) \
 796	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 797#define sk_nulls_for_each_rcu(__sk, node, list) \
 798	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 799#define sk_for_each_from(__sk) \
 800	hlist_for_each_entry_from(__sk, sk_node)
 
 801#define sk_nulls_for_each_from(__sk, node) \
 802	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 803		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 804#define sk_for_each_safe(__sk, tmp, list) \
 805	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 806#define sk_for_each_bound(__sk, list) \
 807	hlist_for_each_entry(__sk, list, sk_bind_node)
 808
 809/**
 810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 811 * @tpos:	the type * to use as a loop cursor.
 812 * @pos:	the &struct hlist_node to use as a loop cursor.
 813 * @head:	the head for your list.
 814 * @offset:	offset of hlist_node within the struct.
 815 *
 816 */
 817#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 818	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 819	     pos != NULL &&						       \
 820		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 821	     pos = rcu_dereference(hlist_next_rcu(pos)))
 822
 823static inline struct user_namespace *sk_user_ns(struct sock *sk)
 824{
 825	/* Careful only use this in a context where these parameters
 826	 * can not change and must all be valid, such as recvmsg from
 827	 * userspace.
 828	 */
 829	return sk->sk_socket->file->f_cred->user_ns;
 830}
 831
 832/* Sock flags */
 833enum sock_flags {
 834	SOCK_DEAD,
 835	SOCK_DONE,
 836	SOCK_URGINLINE,
 837	SOCK_KEEPOPEN,
 838	SOCK_LINGER,
 839	SOCK_DESTROY,
 840	SOCK_BROADCAST,
 841	SOCK_TIMESTAMP,
 842	SOCK_ZAPPED,
 843	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 844	SOCK_DBG, /* %SO_DEBUG setting */
 845	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 846	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 847	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 848	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 849	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 
 
 850	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 
 
 
 851	SOCK_FASYNC, /* fasync() active */
 852	SOCK_RXQ_OVFL,
 853	SOCK_ZEROCOPY, /* buffers from userspace */
 854	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 855	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 856		     * Will use last 4 bytes of packet sent from
 857		     * user-space instead.
 858		     */
 859	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 860	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 861	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 862	SOCK_TXTIME,
 863	SOCK_XDP, /* XDP is attached */
 864	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 865};
 866
 867#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 868
 869static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 870{
 871	nsk->sk_flags = osk->sk_flags;
 872}
 873
 874static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 875{
 876	__set_bit(flag, &sk->sk_flags);
 877}
 878
 879static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 880{
 881	__clear_bit(flag, &sk->sk_flags);
 882}
 883
 884static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 885				     int valbool)
 886{
 887	if (valbool)
 888		sock_set_flag(sk, bit);
 889	else
 890		sock_reset_flag(sk, bit);
 891}
 892
 893static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 894{
 895	return test_bit(flag, &sk->sk_flags);
 896}
 897
 898#ifdef CONFIG_NET
 899DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 900static inline int sk_memalloc_socks(void)
 901{
 902	return static_branch_unlikely(&memalloc_socks_key);
 903}
 904
 905void __receive_sock(struct file *file);
 906#else
 907
 908static inline int sk_memalloc_socks(void)
 909{
 910	return 0;
 911}
 912
 913static inline void __receive_sock(struct file *file)
 914{ }
 915#endif
 916
 917static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 918{
 919	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 920}
 921
 922static inline void sk_acceptq_removed(struct sock *sk)
 923{
 924	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 925}
 926
 927static inline void sk_acceptq_added(struct sock *sk)
 928{
 929	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 930}
 931
 932static inline bool sk_acceptq_is_full(const struct sock *sk)
 933{
 934	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 935}
 936
 937/*
 938 * Compute minimal free write space needed to queue new packets.
 939 */
 940static inline int sk_stream_min_wspace(const struct sock *sk)
 941{
 942	return READ_ONCE(sk->sk_wmem_queued) >> 1;
 943}
 944
 945static inline int sk_stream_wspace(const struct sock *sk)
 946{
 947	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 948}
 949
 950static inline void sk_wmem_queued_add(struct sock *sk, int val)
 
 
 951{
 952	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 953}
 954
 955void sk_stream_write_space(struct sock *sk);
 956
 957/* OOB backlog add */
 958static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 959{
 960	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 961	skb_dst_force(skb);
 962
 963	if (!sk->sk_backlog.tail)
 964		WRITE_ONCE(sk->sk_backlog.head, skb);
 965	else
 966		sk->sk_backlog.tail->next = skb;
 967
 968	WRITE_ONCE(sk->sk_backlog.tail, skb);
 969	skb->next = NULL;
 970}
 971
 972/*
 973 * Take into account size of receive queue and backlog queue
 974 * Do not take into account this skb truesize,
 975 * to allow even a single big packet to come.
 976 */
 977static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 978{
 979	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 980
 981	return qsize > limit;
 982}
 983
 984/* The per-socket spinlock must be held here. */
 985static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 986					      unsigned int limit)
 987{
 988	if (sk_rcvqueues_full(sk, limit))
 989		return -ENOBUFS;
 990
 991	/*
 992	 * If the skb was allocated from pfmemalloc reserves, only
 993	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 994	 * helping free memory
 995	 */
 996	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 997		return -ENOMEM;
 998
 999	__sk_add_backlog(sk, skb);
1000	sk->sk_backlog.len += skb->truesize;
1001	return 0;
1002}
1003
1004int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1005
1006static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1007{
1008	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1009		return __sk_backlog_rcv(sk, skb);
1010
1011	return sk->sk_backlog_rcv(sk, skb);
1012}
1013
1014static inline void sk_incoming_cpu_update(struct sock *sk)
1015{
1016	int cpu = raw_smp_processor_id();
1017
1018	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1019		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1020}
1021
1022static inline void sock_rps_record_flow_hash(__u32 hash)
1023{
1024#ifdef CONFIG_RPS
1025	struct rps_sock_flow_table *sock_flow_table;
1026
1027	rcu_read_lock();
1028	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1029	rps_record_sock_flow(sock_flow_table, hash);
1030	rcu_read_unlock();
1031#endif
1032}
1033
1034static inline void sock_rps_record_flow(const struct sock *sk)
1035{
1036#ifdef CONFIG_RPS
1037	if (static_branch_unlikely(&rfs_needed)) {
1038		/* Reading sk->sk_rxhash might incur an expensive cache line
1039		 * miss.
1040		 *
1041		 * TCP_ESTABLISHED does cover almost all states where RFS
1042		 * might be useful, and is cheaper [1] than testing :
1043		 *	IPv4: inet_sk(sk)->inet_daddr
1044		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1045		 * OR	an additional socket flag
1046		 * [1] : sk_state and sk_prot are in the same cache line.
1047		 */
1048		if (sk->sk_state == TCP_ESTABLISHED)
1049			sock_rps_record_flow_hash(sk->sk_rxhash);
1050	}
1051#endif
1052}
1053
1054static inline void sock_rps_save_rxhash(struct sock *sk,
1055					const struct sk_buff *skb)
1056{
1057#ifdef CONFIG_RPS
1058	if (unlikely(sk->sk_rxhash != skb->hash))
1059		sk->sk_rxhash = skb->hash;
1060#endif
1061}
1062
1063static inline void sock_rps_reset_rxhash(struct sock *sk)
1064{
1065#ifdef CONFIG_RPS
1066	sk->sk_rxhash = 0;
 
 
 
1067#endif
1068}
1069
1070#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1071	({	int __rc;						\
1072		release_sock(__sk);					\
1073		__rc = __condition;					\
1074		if (!__rc) {						\
1075			*(__timeo) = wait_woken(__wait,			\
1076						TASK_INTERRUPTIBLE,	\
1077						*(__timeo));		\
1078		}							\
1079		sched_annotate_sleep();					\
1080		lock_sock(__sk);					\
1081		__rc = __condition;					\
1082		__rc;							\
1083	})
1084
1085int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1086int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1087void sk_stream_wait_close(struct sock *sk, long timeo_p);
1088int sk_stream_error(struct sock *sk, int flags, int err);
1089void sk_stream_kill_queues(struct sock *sk);
1090void sk_set_memalloc(struct sock *sk);
1091void sk_clear_memalloc(struct sock *sk);
1092
1093void __sk_flush_backlog(struct sock *sk);
1094
1095static inline bool sk_flush_backlog(struct sock *sk)
1096{
1097	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1098		__sk_flush_backlog(sk);
1099		return true;
1100	}
1101	return false;
1102}
1103
1104int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1105
1106struct request_sock_ops;
1107struct timewait_sock_ops;
1108struct inet_hashinfo;
1109struct raw_hashinfo;
1110struct smc_hashinfo;
1111struct module;
1112
1113/*
1114 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1115 * un-modified. Special care is taken when initializing object to zero.
1116 */
1117static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1118{
1119	if (offsetof(struct sock, sk_node.next) != 0)
1120		memset(sk, 0, offsetof(struct sock, sk_node.next));
1121	memset(&sk->sk_node.pprev, 0,
1122	       size - offsetof(struct sock, sk_node.pprev));
1123}
1124
1125/* Networking protocol blocks we attach to sockets.
1126 * socket layer -> transport layer interface
 
1127 */
1128struct proto {
1129	void			(*close)(struct sock *sk,
1130					long timeout);
1131	int			(*pre_connect)(struct sock *sk,
1132					struct sockaddr *uaddr,
1133					int addr_len);
1134	int			(*connect)(struct sock *sk,
1135					struct sockaddr *uaddr,
1136					int addr_len);
1137	int			(*disconnect)(struct sock *sk, int flags);
1138
1139	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1140					  bool kern);
1141
1142	int			(*ioctl)(struct sock *sk, int cmd,
1143					 unsigned long arg);
1144	int			(*init)(struct sock *sk);
1145	void			(*destroy)(struct sock *sk);
1146	void			(*shutdown)(struct sock *sk, int how);
1147	int			(*setsockopt)(struct sock *sk, int level,
1148					int optname, sockptr_t optval,
 
 
 
 
 
 
 
 
1149					unsigned int optlen);
1150	int			(*getsockopt)(struct sock *sk, int level,
 
1151					int optname, char __user *optval,
1152					int __user *option);
1153	void			(*keepalive)(struct sock *sk, int valbool);
1154#ifdef CONFIG_COMPAT
1155	int			(*compat_ioctl)(struct sock *sk,
1156					unsigned int cmd, unsigned long arg);
1157#endif
1158	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1159					   size_t len);
1160	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1161					   size_t len, int noblock, int flags,
1162					   int *addr_len);
 
1163	int			(*sendpage)(struct sock *sk, struct page *page,
1164					int offset, size_t size, int flags);
1165	int			(*bind)(struct sock *sk,
1166					struct sockaddr *addr, int addr_len);
1167	int			(*bind_add)(struct sock *sk,
1168					struct sockaddr *addr, int addr_len);
1169
1170	int			(*backlog_rcv) (struct sock *sk,
1171						struct sk_buff *skb);
1172
1173	void		(*release_cb)(struct sock *sk);
1174
1175	/* Keeping track of sk's, looking them up, and port selection methods. */
1176	int			(*hash)(struct sock *sk);
1177	void			(*unhash)(struct sock *sk);
1178	void			(*rehash)(struct sock *sk);
1179	int			(*get_port)(struct sock *sk, unsigned short snum);
 
1180
1181	/* Keeping track of sockets in use */
1182#ifdef CONFIG_PROC_FS
1183	unsigned int		inuse_idx;
1184#endif
1185
1186	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1187	bool			(*stream_memory_read)(const struct sock *sk);
1188	/* Memory pressure */
1189	void			(*enter_memory_pressure)(struct sock *sk);
1190	void			(*leave_memory_pressure)(struct sock *sk);
1191	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1192	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1193	/*
1194	 * Pressure flag: try to collapse.
1195	 * Technical note: it is used by multiple contexts non atomically.
1196	 * All the __sk_mem_schedule() is of this nature: accounting
1197	 * is strict, actions are advisory and have some latency.
1198	 */
1199	unsigned long		*memory_pressure;
1200	long			*sysctl_mem;
1201
1202	int			*sysctl_wmem;
1203	int			*sysctl_rmem;
1204	u32			sysctl_wmem_offset;
1205	u32			sysctl_rmem_offset;
1206
1207	int			max_header;
1208	bool			no_autobind;
1209
1210	struct kmem_cache	*slab;
1211	unsigned int		obj_size;
1212	slab_flags_t		slab_flags;
1213	unsigned int		useroffset;	/* Usercopy region offset */
1214	unsigned int		usersize;	/* Usercopy region size */
1215
1216	struct percpu_counter	*orphan_count;
1217
1218	struct request_sock_ops	*rsk_prot;
1219	struct timewait_sock_ops *twsk_prot;
1220
1221	union {
1222		struct inet_hashinfo	*hashinfo;
1223		struct udp_table	*udp_table;
1224		struct raw_hashinfo	*raw_hash;
1225		struct smc_hashinfo	*smc_hash;
1226	} h;
1227
1228	struct module		*owner;
1229
1230	char			name[32];
1231
1232	struct list_head	node;
1233#ifdef SOCK_REFCNT_DEBUG
1234	atomic_t		socks;
1235#endif
1236	int			(*diag_destroy)(struct sock *sk, int err);
1237} __randomize_layout;
1238
1239int proto_register(struct proto *prot, int alloc_slab);
1240void proto_unregister(struct proto *prot);
1241int sock_load_diag_module(int family, int protocol);
1242
1243#ifdef SOCK_REFCNT_DEBUG
1244static inline void sk_refcnt_debug_inc(struct sock *sk)
1245{
1246	atomic_inc(&sk->sk_prot->socks);
1247}
1248
1249static inline void sk_refcnt_debug_dec(struct sock *sk)
1250{
1251	atomic_dec(&sk->sk_prot->socks);
1252	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1253	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1254}
1255
1256static inline void sk_refcnt_debug_release(const struct sock *sk)
1257{
1258	if (refcount_read(&sk->sk_refcnt) != 1)
1259		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1260		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1261}
1262#else /* SOCK_REFCNT_DEBUG */
1263#define sk_refcnt_debug_inc(sk) do { } while (0)
1264#define sk_refcnt_debug_dec(sk) do { } while (0)
1265#define sk_refcnt_debug_release(sk) do { } while (0)
1266#endif /* SOCK_REFCNT_DEBUG */
1267
1268static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1269{
1270	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1271		return false;
1272
1273	return sk->sk_prot->stream_memory_free ?
1274		sk->sk_prot->stream_memory_free(sk, wake) : true;
1275}
1276
1277static inline bool sk_stream_memory_free(const struct sock *sk)
1278{
1279	return __sk_stream_memory_free(sk, 0);
1280}
1281
1282static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1283{
1284	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1285	       __sk_stream_memory_free(sk, wake);
1286}
1287
1288static inline bool sk_stream_is_writeable(const struct sock *sk)
1289{
1290	return __sk_stream_is_writeable(sk, 0);
1291}
1292
1293static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1294					    struct cgroup *ancestor)
1295{
1296#ifdef CONFIG_SOCK_CGROUP_DATA
1297	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1298				    ancestor);
1299#else
1300	return -ENOTSUPP;
1301#endif
1302}
1303
1304static inline bool sk_has_memory_pressure(const struct sock *sk)
1305{
1306	return sk->sk_prot->memory_pressure != NULL;
1307}
1308
1309static inline bool sk_under_memory_pressure(const struct sock *sk)
1310{
1311	if (!sk->sk_prot->memory_pressure)
1312		return false;
1313
1314	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1315	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1316		return true;
1317
1318	return !!*sk->sk_prot->memory_pressure;
1319}
1320
1321static inline long
1322sk_memory_allocated(const struct sock *sk)
1323{
1324	return atomic_long_read(sk->sk_prot->memory_allocated);
1325}
1326
1327static inline long
1328sk_memory_allocated_add(struct sock *sk, int amt)
1329{
1330	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1331}
1332
1333static inline void
1334sk_memory_allocated_sub(struct sock *sk, int amt)
1335{
1336	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1337}
1338
1339static inline void sk_sockets_allocated_dec(struct sock *sk)
1340{
1341	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1342}
1343
1344static inline void sk_sockets_allocated_inc(struct sock *sk)
1345{
1346	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1347}
1348
1349static inline u64
1350sk_sockets_allocated_read_positive(struct sock *sk)
1351{
1352	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1353}
1354
1355static inline int
1356proto_sockets_allocated_sum_positive(struct proto *prot)
1357{
1358	return percpu_counter_sum_positive(prot->sockets_allocated);
1359}
1360
1361static inline long
1362proto_memory_allocated(struct proto *prot)
1363{
1364	return atomic_long_read(prot->memory_allocated);
1365}
1366
1367static inline bool
1368proto_memory_pressure(struct proto *prot)
1369{
1370	if (!prot->memory_pressure)
1371		return false;
1372	return !!*prot->memory_pressure;
1373}
1374
1375
1376#ifdef CONFIG_PROC_FS
1377/* Called with local bh disabled */
1378void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1379int sock_prot_inuse_get(struct net *net, struct proto *proto);
1380int sock_inuse_get(struct net *net);
1381#else
1382static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1383		int inc)
1384{
1385}
1386#endif
1387
1388
1389/* With per-bucket locks this operation is not-atomic, so that
1390 * this version is not worse.
1391 */
1392static inline int __sk_prot_rehash(struct sock *sk)
1393{
1394	sk->sk_prot->unhash(sk);
1395	return sk->sk_prot->hash(sk);
1396}
1397
 
 
1398/* About 10 seconds */
1399#define SOCK_DESTROY_TIME (10*HZ)
1400
1401/* Sockets 0-1023 can't be bound to unless you are superuser */
1402#define PROT_SOCK	1024
1403
1404#define SHUTDOWN_MASK	3
1405#define RCV_SHUTDOWN	1
1406#define SEND_SHUTDOWN	2
1407
1408#define SOCK_SNDBUF_LOCK	1
1409#define SOCK_RCVBUF_LOCK	2
1410#define SOCK_BINDADDR_LOCK	4
1411#define SOCK_BINDPORT_LOCK	8
1412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413struct socket_alloc {
1414	struct socket socket;
1415	struct inode vfs_inode;
1416};
1417
1418static inline struct socket *SOCKET_I(struct inode *inode)
1419{
1420	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1421}
1422
1423static inline struct inode *SOCK_INODE(struct socket *socket)
1424{
1425	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1426}
1427
1428/*
1429 * Functions for memory accounting
1430 */
1431int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1432int __sk_mem_schedule(struct sock *sk, int size, int kind);
1433void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1434void __sk_mem_reclaim(struct sock *sk, int amount);
1435
1436/* We used to have PAGE_SIZE here, but systems with 64KB pages
1437 * do not necessarily have 16x time more memory than 4KB ones.
1438 */
1439#define SK_MEM_QUANTUM 4096
1440#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1441#define SK_MEM_SEND	0
1442#define SK_MEM_RECV	1
1443
1444/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1445static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1446{
1447	long val = sk->sk_prot->sysctl_mem[index];
1448
1449#if PAGE_SIZE > SK_MEM_QUANTUM
1450	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1451#elif PAGE_SIZE < SK_MEM_QUANTUM
1452	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1453#endif
1454	return val;
1455}
1456
1457static inline int sk_mem_pages(int amt)
1458{
1459	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1460}
1461
1462static inline bool sk_has_account(struct sock *sk)
1463{
1464	/* return true if protocol supports memory accounting */
1465	return !!sk->sk_prot->memory_allocated;
1466}
1467
1468static inline bool sk_wmem_schedule(struct sock *sk, int size)
1469{
1470	if (!sk_has_account(sk))
1471		return true;
1472	return size <= sk->sk_forward_alloc ||
1473		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1474}
1475
1476static inline bool
1477sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1478{
1479	if (!sk_has_account(sk))
1480		return true;
1481	return size<= sk->sk_forward_alloc ||
1482		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1483		skb_pfmemalloc(skb);
1484}
1485
1486static inline void sk_mem_reclaim(struct sock *sk)
1487{
1488	if (!sk_has_account(sk))
1489		return;
1490	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1491		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1492}
1493
1494static inline void sk_mem_reclaim_partial(struct sock *sk)
1495{
1496	if (!sk_has_account(sk))
1497		return;
1498	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1499		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1500}
1501
1502static inline void sk_mem_charge(struct sock *sk, int size)
1503{
1504	if (!sk_has_account(sk))
1505		return;
1506	sk->sk_forward_alloc -= size;
1507}
1508
1509static inline void sk_mem_uncharge(struct sock *sk, int size)
1510{
1511	if (!sk_has_account(sk))
1512		return;
1513	sk->sk_forward_alloc += size;
1514
1515	/* Avoid a possible overflow.
1516	 * TCP send queues can make this happen, if sk_mem_reclaim()
1517	 * is not called and more than 2 GBytes are released at once.
1518	 *
1519	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1520	 * no need to hold that much forward allocation anyway.
1521	 */
1522	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1523		__sk_mem_reclaim(sk, 1 << 20);
1524}
1525
1526DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1527static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1528{
1529	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530	sk_wmem_queued_add(sk, -skb->truesize);
1531	sk_mem_uncharge(sk, skb->truesize);
1532	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534		skb_ext_reset(skb);
1535		skb_zcopy_clear(skb, true);
1536		sk->sk_tx_skb_cache = skb;
1537		return;
1538	}
1539	__kfree_skb(skb);
1540}
1541
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544	if (sk->sk_lock.owned) {
1545		sk->sk_lock.owned = 0;
1546
1547		/* The sk_lock has mutex_unlock() semantics: */
1548		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549	}
1550}
 
 
 
 
 
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1560do {									\
1561	sk->sk_lock.owned = 0;						\
1562	init_waitqueue_head(&sk->sk_lock.wq);				\
1563	spin_lock_init(&(sk)->sk_lock.slock);				\
1564	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1565			sizeof((sk)->sk_lock));				\
1566	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1567				(skey), (sname));				\
1568	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574	return lockdep_is_held(&sk->sk_lock) ||
1575	       lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583	lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592				spin_lock_nested(&((__sk)->sk_lock.slock), \
1593				SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607	if (slow)
1608		release_sock(sk);
1609	else
1610		spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue.  This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636	sock_owned_by_me(sk);
1637	return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642	return sk->sk_lock.owned;
1643}
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
1647{
1648	struct sock *sk = (struct sock *)csk;
1649
1650	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654		      struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661			     gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665			     gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
1671void sock_pfree(struct sk_buff *skb);
1672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
1677		    sockptr_t optval, unsigned int optlen);
1678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680		    char __user *optval, int __user *optlen);
1681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682		   bool timeval, bool time32);
1683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684				    int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686				     unsigned long data_len, int noblock,
1687				     int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694	u64 transmit_time;
1695	u32 mark;
1696	u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700			       const struct sock *sk)
1701{
1702	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706		     struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708		   struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
1722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726		 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728			 size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730				int offset, size_t size, int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737				  char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739			int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741			   sockptr_t optval, unsigned int optlen);
 
 
 
 
1742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 *	Default socket callbacks and setup code
1747 */
 
 
 
 
 
 
 
 
 
 
 
 
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 *   running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 *   outside exist to this socket and current process on current CPU
1761 *   is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 *   it is called, socket has no references from outside -> sk_free
1764 *   may release descendant resources allocated by the socket, but
1765 *   to the time when it is called, socket is NOT referenced by any
1766 *   hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 *   when they sit in queue. Otherwise, packets will leak to hole, when
1770 *   socket is looked up by one cpu and unhasing is made by another CPU.
1771 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 *   (leak to backlog). Packet socket does all the processing inside
1773 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 *   use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780	if (refcount_dec_and_test(&sk->sk_refcnt))
1781		sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789		     unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791				 const int nested)
1792{
1793	return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1799	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800		return;
1801	sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING	USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814		return sk->sk_tx_queue_mapping;
1815
1816	return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822	if (skb_rx_queue_recorded(skb)) {
1823		u16 rx_queue = skb_get_rx_queue(skb);
1824
1825		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826			return;
1827
1828		sk->sk_rx_queue_mapping = rx_queue;
1829	}
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844		return sk->sk_rx_queue_mapping;
1845
1846	return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
 
1852	sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858	return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869	write_lock_bh(&sk->sk_callback_lock);
1870	sock_set_flag(sk, SOCK_DEAD);
1871	sk_set_socket(sk, NULL);
1872	sk->sk_wq  = NULL;
1873	write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878	WARN_ON(parent->sk);
1879	write_lock_bh(&sk->sk_callback_lock);
1880	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881	parent->sk = sk;
1882	sk_set_socket(sk, parent);
1883	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884	security_sock_graft(sk, parent);
1885	write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898	u32 v = prandom_u32();
1899
1900	return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
1905	sk->sk_txhash = net_tx_rndhash();
1906}
1907
1908static inline void sk_rethink_txhash(struct sock *sk)
1909{
1910	if (sk->sk_txhash)
1911		sk_set_txhash(sk);
1912}
1913
1914static inline struct dst_entry *
1915__sk_dst_get(struct sock *sk)
1916{
1917	return rcu_dereference_check(sk->sk_dst_cache,
1918				     lockdep_sock_is_held(sk));
1919}
1920
1921static inline struct dst_entry *
1922sk_dst_get(struct sock *sk)
1923{
1924	struct dst_entry *dst;
1925
1926	rcu_read_lock();
1927	dst = rcu_dereference(sk->sk_dst_cache);
1928	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1929		dst = NULL;
1930	rcu_read_unlock();
1931	return dst;
1932}
1933
 
 
1934static inline void dst_negative_advice(struct sock *sk)
1935{
1936	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1937
1938	sk_rethink_txhash(sk);
1939
1940	if (dst && dst->ops->negative_advice) {
1941		ndst = dst->ops->negative_advice(dst);
1942
1943		if (ndst != dst) {
1944			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1945			sk_tx_queue_clear(sk);
1946			sk->sk_dst_pending_confirm = 0;
1947		}
1948	}
1949}
1950
1951static inline void
1952__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1953{
1954	struct dst_entry *old_dst;
1955
1956	sk_tx_queue_clear(sk);
1957	sk->sk_dst_pending_confirm = 0;
1958	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1959					    lockdep_sock_is_held(sk));
 
 
1960	rcu_assign_pointer(sk->sk_dst_cache, dst);
1961	dst_release(old_dst);
1962}
1963
1964static inline void
1965sk_dst_set(struct sock *sk, struct dst_entry *dst)
1966{
1967	struct dst_entry *old_dst;
1968
1969	sk_tx_queue_clear(sk);
1970	sk->sk_dst_pending_confirm = 0;
1971	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1972	dst_release(old_dst);
1973}
1974
1975static inline void
1976__sk_dst_reset(struct sock *sk)
1977{
1978	__sk_dst_set(sk, NULL);
1979}
1980
1981static inline void
1982sk_dst_reset(struct sock *sk)
1983{
1984	sk_dst_set(sk, NULL);
 
 
1985}
1986
1987struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1988
1989struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1990
1991static inline void sk_dst_confirm(struct sock *sk)
1992{
1993	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1994		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1995}
1996
1997static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1998{
1999	if (skb_get_dst_pending_confirm(skb)) {
2000		struct sock *sk = skb->sk;
2001		unsigned long now = jiffies;
2002
2003		/* avoid dirtying neighbour */
2004		if (READ_ONCE(n->confirmed) != now)
2005			WRITE_ONCE(n->confirmed, now);
2006		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2007			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2008	}
2009}
2010
2011bool sk_mc_loop(struct sock *sk);
2012
2013static inline bool sk_can_gso(const struct sock *sk)
2014{
2015	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2016}
2017
2018void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2019
2020static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2021{
2022	sk->sk_route_nocaps |= flags;
2023	sk->sk_route_caps &= ~flags;
2024}
2025
2026static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2027					   struct iov_iter *from, char *to,
2028					   int copy, int offset)
2029{
2030	if (skb->ip_summed == CHECKSUM_NONE) {
2031		__wsum csum = 0;
2032		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2033			return -EFAULT;
 
2034		skb->csum = csum_block_add(skb->csum, csum, offset);
2035	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2036		if (!copy_from_iter_full_nocache(to, copy, from))
 
2037			return -EFAULT;
2038	} else if (!copy_from_iter_full(to, copy, from))
2039		return -EFAULT;
2040
2041	return 0;
2042}
2043
2044static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2045				       struct iov_iter *from, int copy)
2046{
2047	int err, offset = skb->len;
2048
2049	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2050				       copy, offset);
2051	if (err)
2052		__skb_trim(skb, offset);
2053
2054	return err;
2055}
2056
2057static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2058					   struct sk_buff *skb,
2059					   struct page *page,
2060					   int off, int copy)
2061{
2062	int err;
2063
2064	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2065				       copy, skb->len);
2066	if (err)
2067		return err;
2068
2069	skb->len	     += copy;
2070	skb->data_len	     += copy;
2071	skb->truesize	     += copy;
2072	sk_wmem_queued_add(sk, copy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073	sk_mem_charge(sk, copy);
2074	return 0;
2075}
2076
2077/**
2078 * sk_wmem_alloc_get - returns write allocations
2079 * @sk: socket
2080 *
2081 * Return: sk_wmem_alloc minus initial offset of one
2082 */
2083static inline int sk_wmem_alloc_get(const struct sock *sk)
2084{
2085	return refcount_read(&sk->sk_wmem_alloc) - 1;
2086}
2087
2088/**
2089 * sk_rmem_alloc_get - returns read allocations
2090 * @sk: socket
2091 *
2092 * Return: sk_rmem_alloc
2093 */
2094static inline int sk_rmem_alloc_get(const struct sock *sk)
2095{
2096	return atomic_read(&sk->sk_rmem_alloc);
2097}
2098
2099/**
2100 * sk_has_allocations - check if allocations are outstanding
2101 * @sk: socket
2102 *
2103 * Return: true if socket has write or read allocations
2104 */
2105static inline bool sk_has_allocations(const struct sock *sk)
2106{
2107	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2108}
2109
2110/**
2111 * skwq_has_sleeper - check if there are any waiting processes
2112 * @wq: struct socket_wq
2113 *
2114 * Return: true if socket_wq has waiting processes
2115 *
2116 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2117 * barrier call. They were added due to the race found within the tcp code.
2118 *
2119 * Consider following tcp code paths::
 
 
2120 *
2121 *   CPU1                CPU2
2122 *   sys_select          receive packet
2123 *   ...                 ...
2124 *   __add_wait_queue    update tp->rcv_nxt
2125 *   ...                 ...
2126 *   tp->rcv_nxt check   sock_def_readable
2127 *   ...                 {
2128 *   schedule               rcu_read_lock();
2129 *                          wq = rcu_dereference(sk->sk_wq);
2130 *                          if (wq && waitqueue_active(&wq->wait))
2131 *                              wake_up_interruptible(&wq->wait)
2132 *                          ...
2133 *                       }
2134 *
2135 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2136 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2137 * could then endup calling schedule and sleep forever if there are no more
2138 * data on the socket.
2139 *
2140 */
2141static inline bool skwq_has_sleeper(struct socket_wq *wq)
2142{
2143	return wq && wq_has_sleeper(&wq->wait);
 
 
 
 
 
 
 
 
2144}
2145
2146/**
2147 * sock_poll_wait - place memory barrier behind the poll_wait call.
2148 * @filp:           file
2149 * @sock:           socket to wait on
2150 * @p:              poll_table
2151 *
2152 * See the comments in the wq_has_sleeper function.
2153 */
2154static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2155				  poll_table *p)
2156{
2157	if (!poll_does_not_wait(p)) {
2158		poll_wait(filp, &sock->wq.wait, p);
2159		/* We need to be sure we are in sync with the
 
2160		 * socket flags modification.
2161		 *
2162		 * This memory barrier is paired in the wq_has_sleeper.
2163		 */
2164		smp_mb();
2165	}
2166}
2167
2168static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2169{
2170	if (sk->sk_txhash) {
2171		skb->l4_hash = 1;
2172		skb->hash = sk->sk_txhash;
2173	}
2174}
2175
2176void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2177
2178/*
2179 *	Queue a received datagram if it will fit. Stream and sequenced
2180 *	protocols can't normally use this as they need to fit buffers in
2181 *	and play with them.
2182 *
2183 *	Inlined as it's very short and called for pretty much every
2184 *	packet ever received.
2185 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2187{
2188	skb_orphan(skb);
2189	skb->sk = sk;
2190	skb->destructor = sock_rfree;
2191	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2192	sk_mem_charge(sk, skb->truesize);
2193}
2194
2195void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2196		    unsigned long expires);
2197
2198void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2199
2200int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201			struct sk_buff *skb, unsigned int flags,
2202			void (*destructor)(struct sock *sk,
2203					   struct sk_buff *skb));
2204int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210/*
2211 *	Recover an error report and clear atomically
2212 */
2213
2214static inline int sock_error(struct sock *sk)
2215{
2216	int err;
2217	if (likely(!sk->sk_err))
2218		return 0;
2219	err = xchg(&sk->sk_err, 0);
2220	return -err;
2221}
2222
2223static inline unsigned long sock_wspace(struct sock *sk)
2224{
2225	int amt = 0;
2226
2227	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229		if (amt < 0)
2230			amt = 0;
2231	}
2232	return amt;
2233}
2234
2235/* Note:
2236 *  We use sk->sk_wq_raw, from contexts knowing this
2237 *  pointer is not NULL and cannot disappear/change.
2238 */
2239static inline void sk_set_bit(int nr, struct sock *sk)
2240{
2241	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242	    !sock_flag(sk, SOCK_FASYNC))
2243		return;
2244
2245	set_bit(nr, &sk->sk_wq_raw->flags);
2246}
2247
2248static inline void sk_clear_bit(int nr, struct sock *sk)
2249{
2250	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251	    !sock_flag(sk, SOCK_FASYNC))
2252		return;
2253
2254	clear_bit(nr, &sk->sk_wq_raw->flags);
2255}
2256
2257static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258{
2259	if (sock_flag(sk, SOCK_FASYNC)) {
2260		rcu_read_lock();
2261		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262		rcu_read_unlock();
2263	}
2264}
2265
2266/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2274#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2275
2276static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277{
2278	u32 val;
2279
2280	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281		return;
2282
2283	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286}
2287
2288struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289				    bool force_schedule);
2290
2291/**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
2306static inline struct page_frag *sk_page_frag(struct sock *sk)
2307{
2308	if (gfpflags_normal_context(sk->sk_allocation))
2309		return &current->task_frag;
2310
2311	return &sk->sk_frag;
 
 
 
 
 
2312}
2313
2314bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316/*
2317 *	Default write policy as shown to user space via poll/select/SIGIO
2318 */
2319static inline bool sock_writeable(const struct sock *sk)
2320{
2321	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322}
2323
2324static inline gfp_t gfp_any(void)
2325{
2326	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327}
2328
2329static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330{
2331	return noblock ? 0 : sk->sk_rcvtimeo;
2332}
2333
2334static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335{
2336	return noblock ? 0 : sk->sk_sndtimeo;
2337}
2338
2339static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340{
2341	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343	return v ?: 1;
2344}
2345
2346/* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
2349static inline int sock_intr_errno(long timeo)
2350{
2351	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352}
2353
2354struct sock_skb_cb {
2355	u32 dropcount;
2356};
2357
2358/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363			    sizeof(struct sock_skb_cb)))
2364
2365#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366			    SOCK_SKB_CB_OFFSET))
2367
2368#define sock_skb_cb_check_size(size) \
2369	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371static inline void
2372sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373{
2374	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375						atomic_read(&sk->sk_drops) : 0;
2376}
2377
2378static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379{
2380	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382	atomic_add(segs, &sk->sk_drops);
2383}
2384
2385static inline ktime_t sock_read_timestamp(struct sock *sk)
2386{
2387#if BITS_PER_LONG==32
2388	unsigned int seq;
2389	ktime_t kt;
2390
2391	do {
2392		seq = read_seqbegin(&sk->sk_stamp_seq);
2393		kt = sk->sk_stamp;
2394	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396	return kt;
2397#else
2398	return READ_ONCE(sk->sk_stamp);
2399#endif
2400}
2401
2402static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403{
2404#if BITS_PER_LONG==32
2405	write_seqlock(&sk->sk_stamp_seq);
2406	sk->sk_stamp = kt;
2407	write_sequnlock(&sk->sk_stamp_seq);
2408#else
2409	WRITE_ONCE(sk->sk_stamp, kt);
2410#endif
2411}
2412
2413void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414			   struct sk_buff *skb);
2415void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416			     struct sk_buff *skb);
2417
2418static inline void
2419sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420{
2421	ktime_t kt = skb->tstamp;
2422	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424	/*
2425	 * generate control messages if
2426	 * - receive time stamping in software requested
 
2427	 * - software time stamp available and wanted
 
2428	 * - hardware time stamps available and wanted
 
 
2429	 */
2430	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433	    (hwtstamps->hwtstamp &&
2434	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
 
 
2435		__sock_recv_timestamp(msg, sk, skb);
2436	else
2437		sock_write_timestamp(sk, kt);
2438
2439	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440		__sock_recv_wifi_status(msg, sk, skb);
2441}
2442
2443void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444			      struct sk_buff *skb);
2445
2446#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2447static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448					  struct sk_buff *skb)
2449{
2450#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2451			   (1UL << SOCK_RCVTSTAMP))
2452#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2453			   SOF_TIMESTAMPING_RAW_HARDWARE)
 
 
2454
2455	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456		__sock_recv_ts_and_drops(msg, sk, skb);
2457	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458		sock_write_timestamp(sk, skb->tstamp);
2459	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460		sock_write_timestamp(sk, 0);
2461}
2462
2463void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465/**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk:		socket sending this packet
2468 * @tsflags:	timestamping flags to use
2469 * @tx_flags:	completed with instructions for time stamping
2470 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
2474static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475				      __u8 *tx_flags, __u32 *tskey)
2476{
2477	if (unlikely(tsflags)) {
2478		__sock_tx_timestamp(tsflags, tx_flags);
2479		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481			*tskey = sk->sk_tskey++;
2482	}
2483	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484		*tx_flags |= SKBTX_WIFI_STATUS;
2485}
2486
2487static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488				     __u8 *tx_flags)
2489{
2490	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491}
2492
2493static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494{
2495	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496			   &skb_shinfo(skb)->tskey);
2497}
2498
2499DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500/**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
 
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507*/
2508static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
2509{
2510	__skb_unlink(skb, &sk->sk_receive_queue);
2511	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512	    !sk->sk_rx_skb_cache) {
2513		sk->sk_rx_skb_cache = skb;
2514		skb_orphan(skb);
2515		return;
2516	}
2517	__kfree_skb(skb);
2518}
 
2519
2520static inline
2521struct net *sock_net(const struct sock *sk)
2522{
2523	return read_pnet(&sk->sk_net);
2524}
2525
2526static inline
2527void sock_net_set(struct sock *sk, struct net *net)
2528{
2529	write_pnet(&sk->sk_net, net);
2530}
2531
2532static inline bool
2533skb_sk_is_prefetched(struct sk_buff *skb)
2534{
2535#ifdef CONFIG_INET
2536	return skb->destructor == sock_pfree;
2537#else
2538	return false;
2539#endif /* CONFIG_INET */
2540}
2541
2542/* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
2545static inline bool sk_fullsock(const struct sock *sk)
2546{
2547	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2548}
2549
2550static inline bool
2551sk_is_refcounted(struct sock *sk)
2552{
2553	/* Only full sockets have sk->sk_flags. */
2554	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555}
2556
2557/**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
2561 */
2562static inline struct sock *
2563skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564{
2565	if (skb->sk) {
2566		struct sock *sk = skb->sk;
2567
2568		*refcounted = true;
2569		if (skb_sk_is_prefetched(skb))
2570			*refcounted = sk_is_refcounted(sk);
2571		skb->destructor = NULL;
2572		skb->sk = NULL;
2573		return sk;
2574	}
2575	*refcounted = false;
2576	return NULL;
2577}
2578
2579/* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
2583static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584						   struct net_device *dev)
2585{
2586#ifdef CONFIG_SOCK_VALIDATE_XMIT
2587	struct sock *sk = skb->sk;
2588
2589	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591#ifdef CONFIG_TLS_DEVICE
2592	} else if (unlikely(skb->decrypted)) {
2593		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594		kfree_skb(skb);
2595		skb = NULL;
2596#endif
2597	}
2598#endif
2599
2600	return skb;
2601}
2602
2603/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
2606static inline bool sk_listener(const struct sock *sk)
2607{
2608	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609}
2610
2611void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2612int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613		       int type);
2614
2615bool sk_ns_capable(const struct sock *sk,
2616		   struct user_namespace *user_ns, int cap);
2617bool sk_capable(const struct sock *sk, int cap);
2618bool sk_net_capable(const struct sock *sk, int cap);
2619
2620void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622/* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms.  This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627#define _SK_MEM_PACKETS		256
2628#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2629#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632extern __u32 sysctl_wmem_max;
2633extern __u32 sysctl_rmem_max;
2634
2635extern int sysctl_tstamp_allow_data;
 
2636extern int sysctl_optmem_max;
2637
2638extern __u32 sysctl_wmem_default;
2639extern __u32 sysctl_rmem_default;
2640
2641DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
2643static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644{
2645	/* Does this proto have per netns sysctl_wmem ? */
2646	if (proto->sysctl_wmem_offset)
2647		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649	return *proto->sysctl_wmem;
2650}
2651
2652static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653{
2654	/* Does this proto have per netns sysctl_rmem ? */
2655	if (proto->sysctl_rmem_offset)
2656		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658	return *proto->sysctl_rmem;
2659}
2660
2661/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
2665static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666{
2667	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668		return;
2669	WRITE_ONCE(sk->sk_pacing_shift, val);
2670}
2671
2672/* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
2677static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678{
2679	int mdif;
2680
2681	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682		return true;
2683
2684	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685	if (mdif && mdif == sk->sk_bound_dev_if)
2686		return true;
2687
2688	return false;
2689}
2690
2691void sock_def_readable(struct sock *sk);
2692
2693int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694void sock_enable_timestamps(struct sock *sk);
2695void sock_no_linger(struct sock *sk);
2696void sock_set_keepalive(struct sock *sk);
2697void sock_set_priority(struct sock *sk, u32 priority);
2698void sock_set_rcvbuf(struct sock *sk, int val);
2699void sock_set_mark(struct sock *sk, u32 val);
2700void sock_set_reuseaddr(struct sock *sk);
2701void sock_set_reuseport(struct sock *sk);
2702void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706#endif	/* _SOCK_H */