Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the AF_INET socket handler.
   7 *
   8 * Version:	@(#)sock.h	1.0.4	05/13/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Volatiles in skbuff pointers. See
  17 *					skbuff comments. May be overdone,
  18 *					better to prove they can be removed
  19 *					than the reverse.
  20 *		Alan Cox	:	Added a zapped field for tcp to note
  21 *					a socket is reset and must stay shut up
  22 *		Alan Cox	:	New fields for options
  23 *	Pauline Middelink	:	identd support
  24 *		Alan Cox	:	Eliminate low level recv/recvfrom
  25 *		David S. Miller	:	New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  28 *              			protinfo be just a void pointer, as the
  29 *              			protocol specific parts were moved to
  30 *              			respective headers and ipv4/v6, etc now
  31 *              			use private slabcaches for its socks
  32 *              Pedro Hortas	:	New flags field for socket options
  33 *
  34 *
  35 *		This program is free software; you can redistribute it and/or
  36 *		modify it under the terms of the GNU General Public License
  37 *		as published by the Free Software Foundation; either version
  38 *		2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/module.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>	/* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
 
 
 
 
 
 
  57
  58#include <linux/filter.h>
  59#include <linux/rculist_nulls.h>
  60#include <linux/poll.h>
  61
  62#include <linux/atomic.h>
  63#include <net/dst.h>
  64#include <net/checksum.h>
 
 
  65
  66/*
  67 * This structure really needs to be cleaned up.
  68 * Most of it is for TCP, and not used by any of
  69 * the other protocols.
  70 */
  71
  72/* Define this to get the SOCK_DBG debugging facility. */
  73#define SOCK_DEBUGGING
  74#ifdef SOCK_DEBUGGING
  75#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  76					printk(KERN_DEBUG msg); } while (0)
  77#else
  78/* Validate arguments and do nothing */
  79static inline void __attribute__ ((format (printf, 2, 3)))
  80SOCK_DEBUG(struct sock *sk, const char *msg, ...)
  81{
  82}
  83#endif
  84
  85/* This is the per-socket lock.  The spinlock provides a synchronization
  86 * between user contexts and software interrupt processing, whereas the
  87 * mini-semaphore synchronizes multiple users amongst themselves.
  88 */
  89typedef struct {
  90	spinlock_t		slock;
  91	int			owned;
  92	wait_queue_head_t	wq;
  93	/*
  94	 * We express the mutex-alike socket_lock semantics
  95	 * to the lock validator by explicitly managing
  96	 * the slock as a lock variant (in addition to
  97	 * the slock itself):
  98	 */
  99#ifdef CONFIG_DEBUG_LOCK_ALLOC
 100	struct lockdep_map dep_map;
 101#endif
 102} socket_lock_t;
 103
 104struct sock;
 105struct proto;
 106struct net;
 107
 
 
 
 108/**
 109 *	struct sock_common - minimal network layer representation of sockets
 110 *	@skc_daddr: Foreign IPv4 addr
 111 *	@skc_rcv_saddr: Bound local IPv4 addr
 112 *	@skc_hash: hash value used with various protocol lookup tables
 113 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 
 
 114 *	@skc_family: network address family
 115 *	@skc_state: Connection state
 116 *	@skc_reuse: %SO_REUSEADDR setting
 
 117 *	@skc_bound_dev_if: bound device index if != 0
 118 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 119 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 120 *	@skc_prot: protocol handlers inside a network family
 121 *	@skc_net: reference to the network namespace of this socket
 122 *	@skc_node: main hash linkage for various protocol lookup tables
 123 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 124 *	@skc_tx_queue_mapping: tx queue number for this connection
 
 
 
 
 125 *	@skc_refcnt: reference count
 126 *
 127 *	This is the minimal network layer representation of sockets, the header
 128 *	for struct sock and struct inet_timewait_sock.
 129 */
 130struct sock_common {
 131	/* skc_daddr and skc_rcv_saddr must be grouped :
 132	 * cf INET_MATCH() and INET_TW_MATCH()
 133	 */
 134	__be32			skc_daddr;
 135	__be32			skc_rcv_saddr;
 136
 
 
 
 
 137	union  {
 138		unsigned int	skc_hash;
 139		__u16		skc_u16hashes[2];
 140	};
 
 
 
 
 
 
 
 
 
 141	unsigned short		skc_family;
 142	volatile unsigned char	skc_state;
 143	unsigned char		skc_reuse;
 
 
 
 144	int			skc_bound_dev_if;
 145	union {
 146		struct hlist_node	skc_bind_node;
 147		struct hlist_nulls_node skc_portaddr_node;
 148	};
 149	struct proto		*skc_prot;
 150#ifdef CONFIG_NET_NS
 151	struct net	 	*skc_net;
 
 
 
 152#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	/*
 154	 * fields between dontcopy_begin/dontcopy_end
 155	 * are not copied in sock_copy()
 156	 */
 157	/* private: */
 158	int			skc_dontcopy_begin[0];
 159	/* public: */
 160	union {
 161		struct hlist_node	skc_node;
 162		struct hlist_nulls_node skc_nulls_node;
 163	};
 164	int			skc_tx_queue_mapping;
 
 
 
 
 
 
 165	atomic_t		skc_refcnt;
 166	/* private: */
 167	int                     skc_dontcopy_end[0];
 
 
 
 
 
 168	/* public: */
 169};
 170
 171/**
 172  *	struct sock - network layer representation of sockets
 173  *	@__sk_common: shared layout with inet_timewait_sock
 174  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 175  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 176  *	@sk_lock:	synchronizer
 177  *	@sk_rcvbuf: size of receive buffer in bytes
 178  *	@sk_wq: sock wait queue and async head
 
 179  *	@sk_dst_cache: destination cache
 180  *	@sk_dst_lock: destination cache lock
 181  *	@sk_policy: flow policy
 182  *	@sk_receive_queue: incoming packets
 183  *	@sk_wmem_alloc: transmit queue bytes committed
 184  *	@sk_write_queue: Packet sending queue
 185  *	@sk_async_wait_queue: DMA copied packets
 186  *	@sk_omem_alloc: "o" is "option" or "other"
 187  *	@sk_wmem_queued: persistent queue size
 188  *	@sk_forward_alloc: space allocated forward
 
 
 189  *	@sk_allocation: allocation mode
 
 
 190  *	@sk_sndbuf: size of send buffer in bytes
 191  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 192  *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 193  *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 194  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 195  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 196  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 197  *	@sk_gso_max_size: Maximum GSO segment size to build
 
 198  *	@sk_lingertime: %SO_LINGER l_linger setting
 199  *	@sk_backlog: always used with the per-socket spinlock held
 200  *	@sk_callback_lock: used with the callbacks in the end of this struct
 201  *	@sk_error_queue: rarely used
 202  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 203  *			  IPV6_ADDRFORM for instance)
 204  *	@sk_err: last error
 205  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 206  *		      persistent failure not just 'timed out'
 207  *	@sk_drops: raw/udp drops counter
 208  *	@sk_ack_backlog: current listen backlog
 209  *	@sk_max_ack_backlog: listen backlog set in listen()
 210  *	@sk_priority: %SO_PRIORITY setting
 211  *	@sk_type: socket type (%SOCK_STREAM, etc)
 212  *	@sk_protocol: which protocol this socket belongs in this network family
 213  *	@sk_peer_pid: &struct pid for this socket's peer
 214  *	@sk_peer_cred: %SO_PEERCRED setting
 215  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 216  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 217  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 218  *	@sk_rxhash: flow hash received from netif layer
 219  *	@sk_filter: socket filtering instructions
 220  *	@sk_protinfo: private area, net family specific, when not using slab
 221  *	@sk_timer: sock cleanup timer
 222  *	@sk_stamp: time stamp of last packet received
 
 
 223  *	@sk_socket: Identd and reporting IO signals
 224  *	@sk_user_data: RPC layer private data
 225  *	@sk_sndmsg_page: cached page for sendmsg
 226  *	@sk_sndmsg_off: cached offset for sendmsg
 227  *	@sk_send_head: front of stuff to transmit
 228  *	@sk_security: used by security modules
 229  *	@sk_mark: generic packet mark
 230  *	@sk_classid: this socket's cgroup classid
 
 231  *	@sk_write_pending: a write to stream socket waits to start
 232  *	@sk_state_change: callback to indicate change in the state of the sock
 233  *	@sk_data_ready: callback to indicate there is data to be processed
 234  *	@sk_write_space: callback to indicate there is bf sending space available
 235  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 236  *	@sk_backlog_rcv: callback to process the backlog
 237  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 238 */
 
 
 239struct sock {
 240	/*
 241	 * Now struct inet_timewait_sock also uses sock_common, so please just
 242	 * don't add nothing before this first member (__sk_common) --acme
 243	 */
 244	struct sock_common	__sk_common;
 245#define sk_node			__sk_common.skc_node
 246#define sk_nulls_node		__sk_common.skc_nulls_node
 247#define sk_refcnt		__sk_common.skc_refcnt
 248#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 249
 250#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 251#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 252#define sk_hash			__sk_common.skc_hash
 
 
 
 
 
 
 253#define sk_family		__sk_common.skc_family
 254#define sk_state		__sk_common.skc_state
 255#define sk_reuse		__sk_common.skc_reuse
 
 
 
 256#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 257#define sk_bind_node		__sk_common.skc_bind_node
 258#define sk_prot			__sk_common.skc_prot
 259#define sk_net			__sk_common.skc_net
 
 
 
 
 
 
 
 260	socket_lock_t		sk_lock;
 
 
 
 261	struct sk_buff_head	sk_receive_queue;
 262	/*
 263	 * The backlog queue is special, it is always used with
 264	 * the per-socket spinlock held and requires low latency
 265	 * access. Therefore we special case it's implementation.
 266	 * Note : rmem_alloc is in this structure to fill a hole
 267	 * on 64bit arches, not because its logically part of
 268	 * backlog.
 269	 */
 270	struct {
 271		atomic_t	rmem_alloc;
 272		int		len;
 273		struct sk_buff	*head;
 274		struct sk_buff	*tail;
 275	} sk_backlog;
 276#define sk_rmem_alloc sk_backlog.rmem_alloc
 
 277	int			sk_forward_alloc;
 278#ifdef CONFIG_RPS
 279	__u32			sk_rxhash;
 
 
 280#endif
 281	atomic_t		sk_drops;
 282	int			sk_rcvbuf;
 283
 284	struct sk_filter __rcu	*sk_filter;
 285	struct socket_wq __rcu	*sk_wq;
 286
 287#ifdef CONFIG_NET_DMA
 288	struct sk_buff_head	sk_async_wait_queue;
 289#endif
 290
 291#ifdef CONFIG_XFRM
 292	struct xfrm_policy	*sk_policy[2];
 293#endif
 294	unsigned long 		sk_flags;
 295	struct dst_entry	*sk_dst_cache;
 296	spinlock_t		sk_dst_lock;
 297	atomic_t		sk_wmem_alloc;
 298	atomic_t		sk_omem_alloc;
 299	int			sk_sndbuf;
 
 
 
 
 
 
 300	struct sk_buff_head	sk_write_queue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301	kmemcheck_bitfield_begin(flags);
 302	unsigned int		sk_shutdown  : 2,
 303				sk_no_check  : 2,
 
 304				sk_userlocks : 4,
 305				sk_protocol  : 8,
 306				sk_type      : 16;
 
 307	kmemcheck_bitfield_end(flags);
 308	int			sk_wmem_queued;
 309	gfp_t			sk_allocation;
 310	int			sk_route_caps;
 311	int			sk_route_nocaps;
 312	int			sk_gso_type;
 313	unsigned int		sk_gso_max_size;
 314	int			sk_rcvlowat;
 315	unsigned long	        sk_lingertime;
 316	struct sk_buff_head	sk_error_queue;
 317	struct proto		*sk_prot_creator;
 318	rwlock_t		sk_callback_lock;
 319	int			sk_err,
 320				sk_err_soft;
 321	unsigned short		sk_ack_backlog;
 322	unsigned short		sk_max_ack_backlog;
 323	__u32			sk_priority;
 324	struct pid		*sk_peer_pid;
 325	const struct cred	*sk_peer_cred;
 326	long			sk_rcvtimeo;
 327	long			sk_sndtimeo;
 328	void			*sk_protinfo;
 329	struct timer_list	sk_timer;
 330	ktime_t			sk_stamp;
 
 
 
 331	struct socket		*sk_socket;
 332	void			*sk_user_data;
 333	struct page		*sk_sndmsg_page;
 334	struct sk_buff		*sk_send_head;
 335	__u32			sk_sndmsg_off;
 336	int			sk_write_pending;
 337#ifdef CONFIG_SECURITY
 338	void			*sk_security;
 339#endif
 340	__u32			sk_mark;
 341	u32			sk_classid;
 342	void			(*sk_state_change)(struct sock *sk);
 343	void			(*sk_data_ready)(struct sock *sk, int bytes);
 344	void			(*sk_write_space)(struct sock *sk);
 345	void			(*sk_error_report)(struct sock *sk);
 346  	int			(*sk_backlog_rcv)(struct sock *sk,
 347						  struct sk_buff *skb);  
 348	void                    (*sk_destruct)(struct sock *sk);
 
 
 349};
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351/*
 352 * Hashed lists helper routines
 353 */
 354static inline struct sock *sk_entry(const struct hlist_node *node)
 355{
 356	return hlist_entry(node, struct sock, sk_node);
 357}
 358
 359static inline struct sock *__sk_head(const struct hlist_head *head)
 360{
 361	return hlist_entry(head->first, struct sock, sk_node);
 362}
 363
 364static inline struct sock *sk_head(const struct hlist_head *head)
 365{
 366	return hlist_empty(head) ? NULL : __sk_head(head);
 367}
 368
 369static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 370{
 371	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 372}
 373
 374static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 375{
 376	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 377}
 378
 379static inline struct sock *sk_next(const struct sock *sk)
 380{
 381	return sk->sk_node.next ?
 382		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 383}
 384
 385static inline struct sock *sk_nulls_next(const struct sock *sk)
 386{
 387	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 388		hlist_nulls_entry(sk->sk_nulls_node.next,
 389				  struct sock, sk_nulls_node) :
 390		NULL;
 391}
 392
 393static inline int sk_unhashed(const struct sock *sk)
 394{
 395	return hlist_unhashed(&sk->sk_node);
 396}
 397
 398static inline int sk_hashed(const struct sock *sk)
 399{
 400	return !sk_unhashed(sk);
 401}
 402
 403static __inline__ void sk_node_init(struct hlist_node *node)
 404{
 405	node->pprev = NULL;
 406}
 407
 408static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
 409{
 410	node->pprev = NULL;
 411}
 412
 413static __inline__ void __sk_del_node(struct sock *sk)
 414{
 415	__hlist_del(&sk->sk_node);
 416}
 417
 418/* NB: equivalent to hlist_del_init_rcu */
 419static __inline__ int __sk_del_node_init(struct sock *sk)
 420{
 421	if (sk_hashed(sk)) {
 422		__sk_del_node(sk);
 423		sk_node_init(&sk->sk_node);
 424		return 1;
 425	}
 426	return 0;
 427}
 428
 429/* Grab socket reference count. This operation is valid only
 430   when sk is ALREADY grabbed f.e. it is found in hash table
 431   or a list and the lookup is made under lock preventing hash table
 432   modifications.
 433 */
 434
 435static inline void sock_hold(struct sock *sk)
 436{
 437	atomic_inc(&sk->sk_refcnt);
 438}
 439
 440/* Ungrab socket in the context, which assumes that socket refcnt
 441   cannot hit zero, f.e. it is true in context of any socketcall.
 442 */
 443static inline void __sock_put(struct sock *sk)
 444{
 445	atomic_dec(&sk->sk_refcnt);
 446}
 447
 448static __inline__ int sk_del_node_init(struct sock *sk)
 449{
 450	int rc = __sk_del_node_init(sk);
 451
 452	if (rc) {
 453		/* paranoid for a while -acme */
 454		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 455		__sock_put(sk);
 456	}
 457	return rc;
 458}
 459#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 460
 461static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
 462{
 463	if (sk_hashed(sk)) {
 464		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 465		return 1;
 466	}
 467	return 0;
 468}
 469
 470static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
 471{
 472	int rc = __sk_nulls_del_node_init_rcu(sk);
 473
 474	if (rc) {
 475		/* paranoid for a while -acme */
 476		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 477		__sock_put(sk);
 478	}
 479	return rc;
 480}
 481
 482static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
 483{
 484	hlist_add_head(&sk->sk_node, list);
 485}
 486
 487static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
 488{
 489	sock_hold(sk);
 490	__sk_add_node(sk, list);
 491}
 492
 493static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 494{
 495	sock_hold(sk);
 496	hlist_add_head_rcu(&sk->sk_node, list);
 
 
 
 
 497}
 498
 499static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 500{
 501	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 
 
 
 
 502}
 503
 504static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 505{
 506	sock_hold(sk);
 507	__sk_nulls_add_node_rcu(sk, list);
 508}
 509
 510static __inline__ void __sk_del_bind_node(struct sock *sk)
 511{
 512	__hlist_del(&sk->sk_bind_node);
 513}
 514
 515static __inline__ void sk_add_bind_node(struct sock *sk,
 516					struct hlist_head *list)
 517{
 518	hlist_add_head(&sk->sk_bind_node, list);
 519}
 520
 521#define sk_for_each(__sk, node, list) \
 522	hlist_for_each_entry(__sk, node, list, sk_node)
 523#define sk_for_each_rcu(__sk, node, list) \
 524	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
 525#define sk_nulls_for_each(__sk, node, list) \
 526	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 527#define sk_nulls_for_each_rcu(__sk, node, list) \
 528	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 529#define sk_for_each_from(__sk, node) \
 530	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 531		hlist_for_each_entry_from(__sk, node, sk_node)
 532#define sk_nulls_for_each_from(__sk, node) \
 533	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 534		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 535#define sk_for_each_safe(__sk, node, tmp, list) \
 536	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 537#define sk_for_each_bound(__sk, node, list) \
 538	hlist_for_each_entry(__sk, node, list, sk_bind_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539
 540/* Sock flags */
 541enum sock_flags {
 542	SOCK_DEAD,
 543	SOCK_DONE,
 544	SOCK_URGINLINE,
 545	SOCK_KEEPOPEN,
 546	SOCK_LINGER,
 547	SOCK_DESTROY,
 548	SOCK_BROADCAST,
 549	SOCK_TIMESTAMP,
 550	SOCK_ZAPPED,
 551	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 552	SOCK_DBG, /* %SO_DEBUG setting */
 553	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 554	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 555	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 556	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 557	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 558	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 559	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 560	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 561	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 562	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 563	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 564	SOCK_FASYNC, /* fasync() active */
 565	SOCK_RXQ_OVFL,
 566	SOCK_ZEROCOPY, /* buffers from userspace */
 
 
 
 
 
 
 
 
 567};
 568
 
 
 569static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 570{
 571	nsk->sk_flags = osk->sk_flags;
 572}
 573
 574static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 575{
 576	__set_bit(flag, &sk->sk_flags);
 577}
 578
 579static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 580{
 581	__clear_bit(flag, &sk->sk_flags);
 582}
 583
 584static inline int sock_flag(struct sock *sk, enum sock_flags flag)
 585{
 586	return test_bit(flag, &sk->sk_flags);
 587}
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589static inline void sk_acceptq_removed(struct sock *sk)
 590{
 591	sk->sk_ack_backlog--;
 592}
 593
 594static inline void sk_acceptq_added(struct sock *sk)
 595{
 596	sk->sk_ack_backlog++;
 597}
 598
 599static inline int sk_acceptq_is_full(struct sock *sk)
 600{
 601	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 602}
 603
 604/*
 605 * Compute minimal free write space needed to queue new packets.
 606 */
 607static inline int sk_stream_min_wspace(struct sock *sk)
 608{
 609	return sk->sk_wmem_queued >> 1;
 610}
 611
 612static inline int sk_stream_wspace(struct sock *sk)
 613{
 614	return sk->sk_sndbuf - sk->sk_wmem_queued;
 615}
 616
 617extern void sk_stream_write_space(struct sock *sk);
 618
 619static inline int sk_stream_memory_free(struct sock *sk)
 620{
 621	return sk->sk_wmem_queued < sk->sk_sndbuf;
 622}
 623
 624/* OOB backlog add */
 625static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 626{
 627	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 628	skb_dst_force(skb);
 629
 630	if (!sk->sk_backlog.tail)
 631		sk->sk_backlog.head = skb;
 632	else
 633		sk->sk_backlog.tail->next = skb;
 634
 635	sk->sk_backlog.tail = skb;
 636	skb->next = NULL;
 637}
 638
 639/*
 640 * Take into account size of receive queue and backlog queue
 
 
 641 */
 642static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
 643{
 644	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 645
 646	return qsize + skb->truesize > sk->sk_rcvbuf;
 647}
 648
 649/* The per-socket spinlock must be held here. */
 650static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 
 651{
 652	if (sk_rcvqueues_full(sk, skb))
 653		return -ENOBUFS;
 654
 
 
 
 
 
 
 
 
 655	__sk_add_backlog(sk, skb);
 656	sk->sk_backlog.len += skb->truesize;
 657	return 0;
 658}
 659
 
 
 660static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 661{
 
 
 
 662	return sk->sk_backlog_rcv(sk, skb);
 663}
 664
 665static inline void sock_rps_record_flow(const struct sock *sk)
 
 
 
 
 
 666{
 667#ifdef CONFIG_RPS
 668	struct rps_sock_flow_table *sock_flow_table;
 669
 670	rcu_read_lock();
 671	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 672	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 673	rcu_read_unlock();
 674#endif
 675}
 676
 677static inline void sock_rps_reset_flow(const struct sock *sk)
 678{
 679#ifdef CONFIG_RPS
 680	struct rps_sock_flow_table *sock_flow_table;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	rcu_read_lock();
 683	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 684	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 685	rcu_read_unlock();
 
 
 686#endif
 687}
 688
 689static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
 690{
 691#ifdef CONFIG_RPS
 692	if (unlikely(sk->sk_rxhash != rxhash)) {
 693		sock_rps_reset_flow(sk);
 694		sk->sk_rxhash = rxhash;
 695	}
 696#endif
 697}
 698
 699#define sk_wait_event(__sk, __timeo, __condition)			\
 700	({	int __rc;						\
 701		release_sock(__sk);					\
 702		__rc = __condition;					\
 703		if (!__rc) {						\
 704			*(__timeo) = schedule_timeout(*(__timeo));	\
 
 
 705		}							\
 
 706		lock_sock(__sk);					\
 707		__rc = __condition;					\
 708		__rc;							\
 709	})
 710
 711extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 712extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 713extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 714extern int sk_stream_error(struct sock *sk, int flags, int err);
 715extern void sk_stream_kill_queues(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717extern int sk_wait_data(struct sock *sk, long *timeo);
 718
 719struct request_sock_ops;
 720struct timewait_sock_ops;
 721struct inet_hashinfo;
 722struct raw_hashinfo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724/* Networking protocol blocks we attach to sockets.
 725 * socket layer -> transport layer interface
 726 * transport -> network interface is defined by struct inet_proto
 727 */
 728struct proto {
 729	void			(*close)(struct sock *sk, 
 730					long timeout);
 731	int			(*connect)(struct sock *sk,
 732				        struct sockaddr *uaddr, 
 733					int addr_len);
 734	int			(*disconnect)(struct sock *sk, int flags);
 735
 736	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
 737
 738	int			(*ioctl)(struct sock *sk, int cmd,
 739					 unsigned long arg);
 740	int			(*init)(struct sock *sk);
 741	void			(*destroy)(struct sock *sk);
 742	void			(*shutdown)(struct sock *sk, int how);
 743	int			(*setsockopt)(struct sock *sk, int level, 
 744					int optname, char __user *optval,
 745					unsigned int optlen);
 746	int			(*getsockopt)(struct sock *sk, int level, 
 747					int optname, char __user *optval, 
 748					int __user *option);  	 
 749#ifdef CONFIG_COMPAT
 750	int			(*compat_setsockopt)(struct sock *sk,
 751					int level,
 752					int optname, char __user *optval,
 753					unsigned int optlen);
 754	int			(*compat_getsockopt)(struct sock *sk,
 755					int level,
 756					int optname, char __user *optval,
 757					int __user *option);
 758	int			(*compat_ioctl)(struct sock *sk,
 759					unsigned int cmd, unsigned long arg);
 760#endif
 761	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
 762					   struct msghdr *msg, size_t len);
 763	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
 764					   struct msghdr *msg,
 765					size_t len, int noblock, int flags, 
 766					int *addr_len);
 767	int			(*sendpage)(struct sock *sk, struct page *page,
 768					int offset, size_t size, int flags);
 769	int			(*bind)(struct sock *sk, 
 770					struct sockaddr *uaddr, int addr_len);
 771
 772	int			(*backlog_rcv) (struct sock *sk, 
 773						struct sk_buff *skb);
 774
 
 
 775	/* Keeping track of sk's, looking them up, and port selection methods. */
 776	void			(*hash)(struct sock *sk);
 777	void			(*unhash)(struct sock *sk);
 778	void			(*rehash)(struct sock *sk);
 779	int			(*get_port)(struct sock *sk, unsigned short snum);
 780	void			(*clear_sk)(struct sock *sk, int size);
 781
 782	/* Keeping track of sockets in use */
 783#ifdef CONFIG_PROC_FS
 784	unsigned int		inuse_idx;
 785#endif
 786
 
 787	/* Memory pressure */
 788	void			(*enter_memory_pressure)(struct sock *sk);
 789	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
 790	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 791	/*
 792	 * Pressure flag: try to collapse.
 793	 * Technical note: it is used by multiple contexts non atomically.
 794	 * All the __sk_mem_schedule() is of this nature: accounting
 795	 * is strict, actions are advisory and have some latency.
 796	 */
 797	int			*memory_pressure;
 798	long			*sysctl_mem;
 799	int			*sysctl_wmem;
 800	int			*sysctl_rmem;
 801	int			max_header;
 802	bool			no_autobind;
 803
 804	struct kmem_cache	*slab;
 805	unsigned int		obj_size;
 806	int			slab_flags;
 807
 808	struct percpu_counter	*orphan_count;
 809
 810	struct request_sock_ops	*rsk_prot;
 811	struct timewait_sock_ops *twsk_prot;
 812
 813	union {
 814		struct inet_hashinfo	*hashinfo;
 815		struct udp_table	*udp_table;
 816		struct raw_hashinfo	*raw_hash;
 817	} h;
 818
 819	struct module		*owner;
 820
 821	char			name[32];
 822
 823	struct list_head	node;
 824#ifdef SOCK_REFCNT_DEBUG
 825	atomic_t		socks;
 826#endif
 
 827};
 828
 829extern int proto_register(struct proto *prot, int alloc_slab);
 830extern void proto_unregister(struct proto *prot);
 831
 832#ifdef SOCK_REFCNT_DEBUG
 833static inline void sk_refcnt_debug_inc(struct sock *sk)
 834{
 835	atomic_inc(&sk->sk_prot->socks);
 836}
 837
 838static inline void sk_refcnt_debug_dec(struct sock *sk)
 839{
 840	atomic_dec(&sk->sk_prot->socks);
 841	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 842	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 843}
 844
 845static inline void sk_refcnt_debug_release(const struct sock *sk)
 846{
 847	if (atomic_read(&sk->sk_refcnt) != 1)
 848		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 849		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 850}
 851#else /* SOCK_REFCNT_DEBUG */
 852#define sk_refcnt_debug_inc(sk) do { } while (0)
 853#define sk_refcnt_debug_dec(sk) do { } while (0)
 854#define sk_refcnt_debug_release(sk) do { } while (0)
 855#endif /* SOCK_REFCNT_DEBUG */
 856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858#ifdef CONFIG_PROC_FS
 859/* Called with local bh disabled */
 860extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
 861extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
 862#else
 863static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
 864		int inc)
 865{
 866}
 867#endif
 868
 869
 870/* With per-bucket locks this operation is not-atomic, so that
 871 * this version is not worse.
 872 */
 873static inline void __sk_prot_rehash(struct sock *sk)
 874{
 875	sk->sk_prot->unhash(sk);
 876	sk->sk_prot->hash(sk);
 877}
 878
 879void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
 880
 881/* About 10 seconds */
 882#define SOCK_DESTROY_TIME (10*HZ)
 883
 884/* Sockets 0-1023 can't be bound to unless you are superuser */
 885#define PROT_SOCK	1024
 886
 887#define SHUTDOWN_MASK	3
 888#define RCV_SHUTDOWN	1
 889#define SEND_SHUTDOWN	2
 890
 891#define SOCK_SNDBUF_LOCK	1
 892#define SOCK_RCVBUF_LOCK	2
 893#define SOCK_BINDADDR_LOCK	4
 894#define SOCK_BINDPORT_LOCK	8
 895
 896/* sock_iocb: used to kick off async processing of socket ios */
 897struct sock_iocb {
 898	struct list_head	list;
 899
 900	int			flags;
 901	int			size;
 902	struct socket		*sock;
 903	struct sock		*sk;
 904	struct scm_cookie	*scm;
 905	struct msghdr		*msg, async_msg;
 906	struct kiocb		*kiocb;
 907};
 908
 909static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
 910{
 911	return (struct sock_iocb *)iocb->private;
 912}
 913
 914static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
 915{
 916	return si->kiocb;
 917}
 918
 919struct socket_alloc {
 920	struct socket socket;
 921	struct inode vfs_inode;
 922};
 923
 924static inline struct socket *SOCKET_I(struct inode *inode)
 925{
 926	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
 927}
 928
 929static inline struct inode *SOCK_INODE(struct socket *socket)
 930{
 931	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
 932}
 933
 934/*
 935 * Functions for memory accounting
 936 */
 937extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
 938extern void __sk_mem_reclaim(struct sock *sk);
 
 
 939
 940#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 
 
 
 941#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
 942#define SK_MEM_SEND	0
 943#define SK_MEM_RECV	1
 944
 
 
 
 
 
 
 
 
 
 
 
 
 
 945static inline int sk_mem_pages(int amt)
 946{
 947	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
 948}
 949
 950static inline int sk_has_account(struct sock *sk)
 951{
 952	/* return true if protocol supports memory accounting */
 953	return !!sk->sk_prot->memory_allocated;
 954}
 955
 956static inline int sk_wmem_schedule(struct sock *sk, int size)
 957{
 958	if (!sk_has_account(sk))
 959		return 1;
 960	return size <= sk->sk_forward_alloc ||
 961		__sk_mem_schedule(sk, size, SK_MEM_SEND);
 962}
 963
 964static inline int sk_rmem_schedule(struct sock *sk, int size)
 
 965{
 966	if (!sk_has_account(sk))
 967		return 1;
 968	return size <= sk->sk_forward_alloc ||
 969		__sk_mem_schedule(sk, size, SK_MEM_RECV);
 
 970}
 971
 972static inline void sk_mem_reclaim(struct sock *sk)
 973{
 974	if (!sk_has_account(sk))
 975		return;
 976	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
 977		__sk_mem_reclaim(sk);
 978}
 979
 980static inline void sk_mem_reclaim_partial(struct sock *sk)
 981{
 982	if (!sk_has_account(sk))
 983		return;
 984	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
 985		__sk_mem_reclaim(sk);
 986}
 987
 988static inline void sk_mem_charge(struct sock *sk, int size)
 989{
 990	if (!sk_has_account(sk))
 991		return;
 992	sk->sk_forward_alloc -= size;
 993}
 994
 995static inline void sk_mem_uncharge(struct sock *sk, int size)
 996{
 997	if (!sk_has_account(sk))
 998		return;
 999	sk->sk_forward_alloc += size;
 
 
 
 
 
 
 
 
 
 
1000}
1001
1002static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1003{
1004	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1005	sk->sk_wmem_queued -= skb->truesize;
1006	sk_mem_uncharge(sk, skb->truesize);
1007	__kfree_skb(skb);
1008}
1009
1010/* Used by processes to "lock" a socket state, so that
1011 * interrupts and bottom half handlers won't change it
1012 * from under us. It essentially blocks any incoming
1013 * packets, so that we won't get any new data or any
1014 * packets that change the state of the socket.
1015 *
1016 * While locked, BH processing will add new packets to
1017 * the backlog queue.  This queue is processed by the
1018 * owner of the socket lock right before it is released.
1019 *
1020 * Since ~2.3.5 it is also exclusive sleep lock serializing
1021 * accesses from user process context.
1022 */
1023#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1024
1025/*
1026 * Macro so as to not evaluate some arguments when
1027 * lockdep is not enabled.
1028 *
1029 * Mark both the sk_lock and the sk_lock.slock as a
1030 * per-address-family lock class.
1031 */
1032#define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1033do {									\
1034	sk->sk_lock.owned = 0;						\
1035	init_waitqueue_head(&sk->sk_lock.wq);				\
1036	spin_lock_init(&(sk)->sk_lock.slock);				\
1037	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1038			sizeof((sk)->sk_lock));				\
1039	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1040		       	(skey), (sname));				\
1041	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1042} while (0)
1043
1044extern void lock_sock_nested(struct sock *sk, int subclass);
 
 
 
 
 
 
 
 
 
 
1045
1046static inline void lock_sock(struct sock *sk)
1047{
1048	lock_sock_nested(sk, 0);
1049}
1050
1051extern void release_sock(struct sock *sk);
1052
1053/* BH context may only use the following locking interface. */
1054#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1055#define bh_lock_sock_nested(__sk) \
1056				spin_lock_nested(&((__sk)->sk_lock.slock), \
1057				SINGLE_DEPTH_NESTING)
1058#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1059
1060extern bool lock_sock_fast(struct sock *sk);
1061/**
1062 * unlock_sock_fast - complement of lock_sock_fast
1063 * @sk: socket
1064 * @slow: slow mode
1065 *
1066 * fast unlock socket for user context.
1067 * If slow mode is on, we call regular release_sock()
1068 */
1069static inline void unlock_sock_fast(struct sock *sk, bool slow)
1070{
1071	if (slow)
1072		release_sock(sk);
1073	else
1074		spin_unlock_bh(&sk->sk_lock.slock);
1075}
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078extern struct sock		*sk_alloc(struct net *net, int family,
1079					  gfp_t priority,
1080					  struct proto *prot);
1081extern void			sk_free(struct sock *sk);
1082extern void			sk_release_kernel(struct sock *sk);
1083extern struct sock		*sk_clone(const struct sock *sk,
1084					  const gfp_t priority);
1085
1086extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1087					      unsigned long size, int force,
1088					      gfp_t priority);
1089extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1090					      unsigned long size, int force,
1091					      gfp_t priority);
1092extern void			sock_wfree(struct sk_buff *skb);
1093extern void			sock_rfree(struct sk_buff *skb);
1094
1095extern int			sock_setsockopt(struct socket *sock, int level,
1096						int op, char __user *optval,
1097						unsigned int optlen);
1098
1099extern int			sock_getsockopt(struct socket *sock, int level,
1100						int op, char __user *optval, 
1101						int __user *optlen);
1102extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1103						     unsigned long size,
1104						     int noblock,
1105						     int *errcode);
1106extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1107						      unsigned long header_len,
1108						      unsigned long data_len,
1109						      int noblock,
1110						      int *errcode);
1111extern void *sock_kmalloc(struct sock *sk, int size,
1112			  gfp_t priority);
1113extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1114extern void sk_send_sigurg(struct sock *sk);
1115
1116#ifdef CONFIG_CGROUPS
1117extern void sock_update_classid(struct sock *sk);
1118#else
1119static inline void sock_update_classid(struct sock *sk)
1120{
 
 
1121}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122#endif
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124/*
1125 * Functions to fill in entries in struct proto_ops when a protocol
1126 * does not implement a particular function.
1127 */
1128extern int                      sock_no_bind(struct socket *, 
1129					     struct sockaddr *, int);
1130extern int                      sock_no_connect(struct socket *,
1131						struct sockaddr *, int, int);
1132extern int                      sock_no_socketpair(struct socket *,
1133						   struct socket *);
1134extern int                      sock_no_accept(struct socket *,
1135					       struct socket *, int);
1136extern int                      sock_no_getname(struct socket *,
1137						struct sockaddr *, int *, int);
1138extern unsigned int             sock_no_poll(struct file *, struct socket *,
1139					     struct poll_table_struct *);
1140extern int                      sock_no_ioctl(struct socket *, unsigned int,
1141					      unsigned long);
1142extern int			sock_no_listen(struct socket *, int);
1143extern int                      sock_no_shutdown(struct socket *, int);
1144extern int			sock_no_getsockopt(struct socket *, int , int,
1145						   char __user *, int __user *);
1146extern int			sock_no_setsockopt(struct socket *, int, int,
1147						   char __user *, unsigned int);
1148extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1149						struct msghdr *, size_t);
1150extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1151						struct msghdr *, size_t, int);
1152extern int			sock_no_mmap(struct file *file,
1153					     struct socket *sock,
1154					     struct vm_area_struct *vma);
1155extern ssize_t			sock_no_sendpage(struct socket *sock,
1156						struct page *page,
1157						int offset, size_t size, 
1158						int flags);
1159
1160/*
1161 * Functions to fill in entries in struct proto_ops when a protocol
1162 * uses the inet style.
1163 */
1164extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1165				  char __user *optval, int __user *optlen);
1166extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1167			       struct msghdr *msg, size_t size, int flags);
1168extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1169				  char __user *optval, unsigned int optlen);
1170extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1171		int optname, char __user *optval, int __user *optlen);
1172extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1173		int optname, char __user *optval, unsigned int optlen);
1174
1175extern void sk_common_release(struct sock *sk);
1176
1177/*
1178 *	Default socket callbacks and setup code
1179 */
1180 
1181/* Initialise core socket variables */
1182extern void sock_init_data(struct socket *sock, struct sock *sk);
1183
1184extern void sk_filter_release_rcu(struct rcu_head *rcu);
1185
1186/**
1187 *	sk_filter_release - release a socket filter
1188 *	@fp: filter to remove
1189 *
1190 *	Remove a filter from a socket and release its resources.
1191 */
1192
1193static inline void sk_filter_release(struct sk_filter *fp)
1194{
1195	if (atomic_dec_and_test(&fp->refcnt))
1196		call_rcu(&fp->rcu, sk_filter_release_rcu);
1197}
1198
1199static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1200{
1201	unsigned int size = sk_filter_len(fp);
1202
1203	atomic_sub(size, &sk->sk_omem_alloc);
1204	sk_filter_release(fp);
1205}
1206
1207static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1208{
1209	atomic_inc(&fp->refcnt);
1210	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1211}
1212
1213/*
1214 * Socket reference counting postulates.
1215 *
1216 * * Each user of socket SHOULD hold a reference count.
1217 * * Each access point to socket (an hash table bucket, reference from a list,
1218 *   running timer, skb in flight MUST hold a reference count.
1219 * * When reference count hits 0, it means it will never increase back.
1220 * * When reference count hits 0, it means that no references from
1221 *   outside exist to this socket and current process on current CPU
1222 *   is last user and may/should destroy this socket.
1223 * * sk_free is called from any context: process, BH, IRQ. When
1224 *   it is called, socket has no references from outside -> sk_free
1225 *   may release descendant resources allocated by the socket, but
1226 *   to the time when it is called, socket is NOT referenced by any
1227 *   hash tables, lists etc.
1228 * * Packets, delivered from outside (from network or from another process)
1229 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1230 *   when they sit in queue. Otherwise, packets will leak to hole, when
1231 *   socket is looked up by one cpu and unhasing is made by another CPU.
1232 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1233 *   (leak to backlog). Packet socket does all the processing inside
1234 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1235 *   use separate SMP lock, so that they are prone too.
1236 */
1237
1238/* Ungrab socket and destroy it, if it was the last reference. */
1239static inline void sock_put(struct sock *sk)
1240{
1241	if (atomic_dec_and_test(&sk->sk_refcnt))
1242		sk_free(sk);
1243}
 
 
 
 
1244
1245extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1246			  const int nested);
 
 
 
 
 
1247
1248static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1249{
1250	sk->sk_tx_queue_mapping = tx_queue;
1251}
1252
1253static inline void sk_tx_queue_clear(struct sock *sk)
1254{
1255	sk->sk_tx_queue_mapping = -1;
1256}
1257
1258static inline int sk_tx_queue_get(const struct sock *sk)
1259{
1260	return sk ? sk->sk_tx_queue_mapping : -1;
1261}
1262
1263static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1264{
1265	sk_tx_queue_clear(sk);
1266	sk->sk_socket = sock;
1267}
1268
1269static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1270{
1271	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1272	return &rcu_dereference_raw(sk->sk_wq)->wait;
1273}
1274/* Detach socket from process context.
1275 * Announce socket dead, detach it from wait queue and inode.
1276 * Note that parent inode held reference count on this struct sock,
1277 * we do not release it in this function, because protocol
1278 * probably wants some additional cleanups or even continuing
1279 * to work with this socket (TCP).
1280 */
1281static inline void sock_orphan(struct sock *sk)
1282{
1283	write_lock_bh(&sk->sk_callback_lock);
1284	sock_set_flag(sk, SOCK_DEAD);
1285	sk_set_socket(sk, NULL);
1286	sk->sk_wq  = NULL;
1287	write_unlock_bh(&sk->sk_callback_lock);
1288}
1289
1290static inline void sock_graft(struct sock *sk, struct socket *parent)
1291{
1292	write_lock_bh(&sk->sk_callback_lock);
1293	sk->sk_wq = parent->wq;
1294	parent->sk = sk;
1295	sk_set_socket(sk, parent);
 
1296	security_sock_graft(sk, parent);
1297	write_unlock_bh(&sk->sk_callback_lock);
1298}
1299
1300extern int sock_i_uid(struct sock *sk);
1301extern unsigned long sock_i_ino(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302
1303static inline struct dst_entry *
1304__sk_dst_get(struct sock *sk)
1305{
1306	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1307						       lockdep_is_held(&sk->sk_lock.slock));
1308}
1309
1310static inline struct dst_entry *
1311sk_dst_get(struct sock *sk)
1312{
1313	struct dst_entry *dst;
1314
1315	rcu_read_lock();
1316	dst = rcu_dereference(sk->sk_dst_cache);
1317	if (dst)
1318		dst_hold(dst);
1319	rcu_read_unlock();
1320	return dst;
1321}
1322
1323extern void sk_reset_txq(struct sock *sk);
1324
1325static inline void dst_negative_advice(struct sock *sk)
1326{
1327	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1328
 
 
1329	if (dst && dst->ops->negative_advice) {
1330		ndst = dst->ops->negative_advice(dst);
1331
1332		if (ndst != dst) {
1333			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1334			sk_reset_txq(sk);
1335		}
1336	}
1337}
1338
1339static inline void
1340__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1341{
1342	struct dst_entry *old_dst;
1343
1344	sk_tx_queue_clear(sk);
1345	/*
1346	 * This can be called while sk is owned by the caller only,
1347	 * with no state that can be checked in a rcu_dereference_check() cond
1348	 */
1349	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1350	rcu_assign_pointer(sk->sk_dst_cache, dst);
1351	dst_release(old_dst);
1352}
1353
1354static inline void
1355sk_dst_set(struct sock *sk, struct dst_entry *dst)
1356{
1357	spin_lock(&sk->sk_dst_lock);
1358	__sk_dst_set(sk, dst);
1359	spin_unlock(&sk->sk_dst_lock);
 
 
1360}
1361
1362static inline void
1363__sk_dst_reset(struct sock *sk)
1364{
1365	__sk_dst_set(sk, NULL);
1366}
1367
1368static inline void
1369sk_dst_reset(struct sock *sk)
1370{
1371	spin_lock(&sk->sk_dst_lock);
1372	__sk_dst_reset(sk);
1373	spin_unlock(&sk->sk_dst_lock);
1374}
1375
1376extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1377
1378extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1379
1380static inline int sk_can_gso(const struct sock *sk)
 
 
1381{
1382	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1383}
1384
1385extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1386
1387static inline void sk_nocaps_add(struct sock *sk, int flags)
1388{
1389	sk->sk_route_nocaps |= flags;
1390	sk->sk_route_caps &= ~flags;
1391}
1392
 
 
 
 
 
 
 
 
 
1393static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1394					   char __user *from, char *to,
1395					   int copy, int offset)
1396{
1397	if (skb->ip_summed == CHECKSUM_NONE) {
1398		int err = 0;
1399		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1400		if (err)
1401			return err;
1402		skb->csum = csum_block_add(skb->csum, csum, offset);
1403	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1404		if (!access_ok(VERIFY_READ, from, copy) ||
1405		    __copy_from_user_nocache(to, from, copy))
1406			return -EFAULT;
1407	} else if (copy_from_user(to, from, copy))
1408		return -EFAULT;
1409
1410	return 0;
1411}
1412
1413static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1414				       char __user *from, int copy)
1415{
1416	int err, offset = skb->len;
1417
1418	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1419				       copy, offset);
1420	if (err)
1421		__skb_trim(skb, offset);
1422
1423	return err;
1424}
1425
1426static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1427					   struct sk_buff *skb,
1428					   struct page *page,
1429					   int off, int copy)
1430{
1431	int err;
1432
1433	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1434				       copy, skb->len);
1435	if (err)
1436		return err;
1437
1438	skb->len	     += copy;
1439	skb->data_len	     += copy;
1440	skb->truesize	     += copy;
1441	sk->sk_wmem_queued   += copy;
1442	sk_mem_charge(sk, copy);
1443	return 0;
1444}
1445
1446static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1447				   struct sk_buff *skb, struct page *page,
1448				   int off, int copy)
1449{
1450	if (skb->ip_summed == CHECKSUM_NONE) {
1451		int err = 0;
1452		__wsum csum = csum_and_copy_from_user(from,
1453						     page_address(page) + off,
1454							    copy, 0, &err);
1455		if (err)
1456			return err;
1457		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1458	} else if (copy_from_user(page_address(page) + off, from, copy))
1459		return -EFAULT;
1460
1461	skb->len	     += copy;
1462	skb->data_len	     += copy;
1463	skb->truesize	     += copy;
1464	sk->sk_wmem_queued   += copy;
1465	sk_mem_charge(sk, copy);
1466	return 0;
1467}
1468
1469/**
1470 * sk_wmem_alloc_get - returns write allocations
1471 * @sk: socket
1472 *
1473 * Returns sk_wmem_alloc minus initial offset of one
1474 */
1475static inline int sk_wmem_alloc_get(const struct sock *sk)
1476{
1477	return atomic_read(&sk->sk_wmem_alloc) - 1;
1478}
1479
1480/**
1481 * sk_rmem_alloc_get - returns read allocations
1482 * @sk: socket
1483 *
1484 * Returns sk_rmem_alloc
1485 */
1486static inline int sk_rmem_alloc_get(const struct sock *sk)
1487{
1488	return atomic_read(&sk->sk_rmem_alloc);
1489}
1490
1491/**
1492 * sk_has_allocations - check if allocations are outstanding
1493 * @sk: socket
1494 *
1495 * Returns true if socket has write or read allocations
1496 */
1497static inline int sk_has_allocations(const struct sock *sk)
1498{
1499	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1500}
1501
1502/**
1503 * wq_has_sleeper - check if there are any waiting processes
1504 * @wq: struct socket_wq
1505 *
1506 * Returns true if socket_wq has waiting processes
1507 *
1508 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1509 * barrier call. They were added due to the race found within the tcp code.
1510 *
1511 * Consider following tcp code paths:
1512 *
1513 * CPU1                  CPU2
1514 *
1515 * sys_select            receive packet
1516 *   ...                 ...
1517 *   __add_wait_queue    update tp->rcv_nxt
1518 *   ...                 ...
1519 *   tp->rcv_nxt check   sock_def_readable
1520 *   ...                 {
1521 *   schedule               rcu_read_lock();
1522 *                          wq = rcu_dereference(sk->sk_wq);
1523 *                          if (wq && waitqueue_active(&wq->wait))
1524 *                              wake_up_interruptible(&wq->wait)
1525 *                          ...
1526 *                       }
1527 *
1528 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1529 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1530 * could then endup calling schedule and sleep forever if there are no more
1531 * data on the socket.
1532 *
1533 */
1534static inline bool wq_has_sleeper(struct socket_wq *wq)
1535{
1536
1537	/*
1538	 * We need to be sure we are in sync with the
1539	 * add_wait_queue modifications to the wait queue.
1540	 *
1541	 * This memory barrier is paired in the sock_poll_wait.
1542	 */
1543	smp_mb();
1544	return wq && waitqueue_active(&wq->wait);
1545}
1546
1547/**
1548 * sock_poll_wait - place memory barrier behind the poll_wait call.
1549 * @filp:           file
1550 * @wait_address:   socket wait queue
1551 * @p:              poll_table
1552 *
1553 * See the comments in the wq_has_sleeper function.
1554 */
1555static inline void sock_poll_wait(struct file *filp,
1556		wait_queue_head_t *wait_address, poll_table *p)
1557{
1558	if (p && wait_address) {
1559		poll_wait(filp, wait_address, p);
1560		/*
1561		 * We need to be sure we are in sync with the
1562		 * socket flags modification.
1563		 *
1564		 * This memory barrier is paired in the wq_has_sleeper.
1565		*/
1566		smp_mb();
1567	}
1568}
1569
 
 
 
 
 
 
 
 
 
 
1570/*
1571 * 	Queue a received datagram if it will fit. Stream and sequenced
1572 *	protocols can't normally use this as they need to fit buffers in
1573 *	and play with them.
1574 *
1575 * 	Inlined as it's very short and called for pretty much every
1576 *	packet ever received.
1577 */
1578
1579static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1580{
1581	skb_orphan(skb);
1582	skb->sk = sk;
1583	skb->destructor = sock_wfree;
1584	/*
1585	 * We used to take a refcount on sk, but following operation
1586	 * is enough to guarantee sk_free() wont free this sock until
1587	 * all in-flight packets are completed
1588	 */
1589	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1590}
1591
1592static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1593{
1594	skb_orphan(skb);
1595	skb->sk = sk;
1596	skb->destructor = sock_rfree;
1597	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1598	sk_mem_charge(sk, skb->truesize);
1599}
1600
1601extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1602			   unsigned long expires);
1603
1604extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1605
1606extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
1607
1608extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
 
1609
1610/*
1611 *	Recover an error report and clear atomically
1612 */
1613 
1614static inline int sock_error(struct sock *sk)
1615{
1616	int err;
1617	if (likely(!sk->sk_err))
1618		return 0;
1619	err = xchg(&sk->sk_err, 0);
1620	return -err;
1621}
1622
1623static inline unsigned long sock_wspace(struct sock *sk)
1624{
1625	int amt = 0;
1626
1627	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1628		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1629		if (amt < 0) 
1630			amt = 0;
1631	}
1632	return amt;
1633}
1634
1635static inline void sk_wake_async(struct sock *sk, int how, int band)
 
 
 
 
1636{
1637	if (sock_flag(sk, SOCK_FASYNC))
1638		sock_wake_async(sk->sk_socket, how, band);
 
 
 
1639}
1640
1641#define SOCK_MIN_SNDBUF 2048
1642/*
1643 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1644 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645 */
1646#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
 
 
 
1647
1648static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1649{
1650	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1651		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1652		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1653	}
1654}
1655
1656struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
 
1657
1658static inline struct page *sk_stream_alloc_page(struct sock *sk)
 
 
 
 
 
 
 
1659{
1660	struct page *page = NULL;
 
1661
1662	page = alloc_pages(sk->sk_allocation, 0);
1663	if (!page) {
1664		sk->sk_prot->enter_memory_pressure(sk);
1665		sk_stream_moderate_sndbuf(sk);
1666	}
1667	return page;
1668}
1669
 
 
1670/*
1671 *	Default write policy as shown to user space via poll/select/SIGIO
1672 */
1673static inline int sock_writeable(const struct sock *sk) 
1674{
1675	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1676}
1677
1678static inline gfp_t gfp_any(void)
1679{
1680	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1681}
1682
1683static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1684{
1685	return noblock ? 0 : sk->sk_rcvtimeo;
1686}
1687
1688static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1689{
1690	return noblock ? 0 : sk->sk_sndtimeo;
1691}
1692
1693static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1694{
1695	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1696}
1697
1698/* Alas, with timeout socket operations are not restartable.
1699 * Compare this to poll().
1700 */
1701static inline int sock_intr_errno(long timeo)
1702{
1703	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1704}
1705
1706extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1707	struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708
1709static __inline__ void
 
 
 
 
 
1710sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1711{
1712	ktime_t kt = skb->tstamp;
1713	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1714
1715	/*
1716	 * generate control messages if
1717	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1718	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1719	 * - software time stamp available and wanted
1720	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1721	 * - hardware time stamps available and wanted
1722	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1723	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1724	 */
1725	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1726	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1727	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1728	    (hwtstamps->hwtstamp.tv64 &&
1729	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1730	    (hwtstamps->syststamp.tv64 &&
1731	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1732		__sock_recv_timestamp(msg, sk, skb);
1733	else
1734		sk->sk_stamp = kt;
 
 
 
1735}
1736
1737extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1738				     struct sk_buff *skb);
1739
1740static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1741					  struct sk_buff *skb)
1742{
1743#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1744			   (1UL << SOCK_RCVTSTAMP)			| \
1745			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1746			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1747			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1748			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1749
1750	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1751		__sock_recv_ts_and_drops(msg, sk, skb);
1752	else
1753		sk->sk_stamp = skb->tstamp;
1754}
1755
 
 
1756/**
1757 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1758 * @sk:		socket sending this packet
1759 * @tx_flags:	filled with instructions for time stamping
 
1760 *
1761 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1762 * parameters are invalid.
1763 */
1764extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
 
 
 
 
 
 
 
1765
1766/**
1767 * sk_eat_skb - Release a skb if it is no longer needed
1768 * @sk: socket to eat this skb from
1769 * @skb: socket buffer to eat
1770 * @copied_early: flag indicating whether DMA operations copied this data early
1771 *
1772 * This routine must be called with interrupts disabled or with the socket
1773 * locked so that the sk_buff queue operation is ok.
1774*/
1775#ifdef CONFIG_NET_DMA
1776static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1777{
1778	__skb_unlink(skb, &sk->sk_receive_queue);
1779	if (!copied_early)
1780		__kfree_skb(skb);
1781	else
1782		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1783}
1784#else
1785static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1786{
1787	__skb_unlink(skb, &sk->sk_receive_queue);
1788	__kfree_skb(skb);
1789}
1790#endif
1791
1792static inline
1793struct net *sock_net(const struct sock *sk)
1794{
1795	return read_pnet(&sk->sk_net);
1796}
1797
1798static inline
1799void sock_net_set(struct sock *sk, struct net *net)
1800{
1801	write_pnet(&sk->sk_net, net);
1802}
1803
1804/*
1805 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1806 * They should not hold a reference to a namespace in order to allow
1807 * to stop it.
1808 * Sockets after sk_change_net should be released using sk_release_kernel
1809 */
1810static inline void sk_change_net(struct sock *sk, struct net *net)
1811{
1812	put_net(sock_net(sk));
1813	sock_net_set(sk, hold_net(net));
1814}
1815
1816static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1817{
1818	if (unlikely(skb->sk)) {
1819		struct sock *sk = skb->sk;
1820
1821		skb->destructor = NULL;
1822		skb->sk = NULL;
1823		return sk;
1824	}
1825	return NULL;
1826}
1827
1828extern void sock_enable_timestamp(struct sock *sk, int flag);
1829extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1830extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1831
1832/* 
1833 *	Enable debug/info messages 
1834 */
1835extern int net_msg_warn;
1836#define NETDEBUG(fmt, args...) \
1837	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1838
1839#define LIMIT_NETDEBUG(fmt, args...) \
1840	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841
1842extern __u32 sysctl_wmem_max;
1843extern __u32 sysctl_rmem_max;
1844
1845extern void sk_init(void);
1846
1847extern int sysctl_optmem_max;
1848
1849extern __u32 sysctl_wmem_default;
1850extern __u32 sysctl_rmem_default;
1851
1852#endif	/* _SOCK_H */
v4.10.11
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the AF_INET socket handler.
   7 *
   8 * Version:	@(#)sock.h	1.0.4	05/13/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Volatiles in skbuff pointers. See
  17 *					skbuff comments. May be overdone,
  18 *					better to prove they can be removed
  19 *					than the reverse.
  20 *		Alan Cox	:	Added a zapped field for tcp to note
  21 *					a socket is reset and must stay shut up
  22 *		Alan Cox	:	New fields for options
  23 *	Pauline Middelink	:	identd support
  24 *		Alan Cox	:	Eliminate low level recv/recvfrom
  25 *		David S. Miller	:	New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  28 *              			protinfo be just a void pointer, as the
  29 *              			protocol specific parts were moved to
  30 *              			respective headers and ipv4/v6, etc now
  31 *              			use private slabcaches for its socks
  32 *              Pedro Hortas	:	New flags field for socket options
  33 *
  34 *
  35 *		This program is free software; you can redistribute it and/or
  36 *		modify it under the terms of the GNU General Public License
  37 *		as published by the Free Software Foundation; either version
  38 *		2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>	/* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
  67
  68#include <linux/atomic.h>
  69#include <net/dst.h>
  70#include <net/checksum.h>
  71#include <net/tcp_states.h>
  72#include <linux/net_tstamp.h>
  73
  74/*
  75 * This structure really needs to be cleaned up.
  76 * Most of it is for TCP, and not used by any of
  77 * the other protocols.
  78 */
  79
  80/* Define this to get the SOCK_DBG debugging facility. */
  81#define SOCK_DEBUGGING
  82#ifdef SOCK_DEBUGGING
  83#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  84					printk(KERN_DEBUG msg); } while (0)
  85#else
  86/* Validate arguments and do nothing */
  87static inline __printf(2, 3)
  88void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  89{
  90}
  91#endif
  92
  93/* This is the per-socket lock.  The spinlock provides a synchronization
  94 * between user contexts and software interrupt processing, whereas the
  95 * mini-semaphore synchronizes multiple users amongst themselves.
  96 */
  97typedef struct {
  98	spinlock_t		slock;
  99	int			owned;
 100	wait_queue_head_t	wq;
 101	/*
 102	 * We express the mutex-alike socket_lock semantics
 103	 * to the lock validator by explicitly managing
 104	 * the slock as a lock variant (in addition to
 105	 * the slock itself):
 106	 */
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108	struct lockdep_map dep_map;
 109#endif
 110} socket_lock_t;
 111
 112struct sock;
 113struct proto;
 114struct net;
 115
 116typedef __u32 __bitwise __portpair;
 117typedef __u64 __bitwise __addrpair;
 118
 119/**
 120 *	struct sock_common - minimal network layer representation of sockets
 121 *	@skc_daddr: Foreign IPv4 addr
 122 *	@skc_rcv_saddr: Bound local IPv4 addr
 123 *	@skc_hash: hash value used with various protocol lookup tables
 124 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 125 *	@skc_dport: placeholder for inet_dport/tw_dport
 126 *	@skc_num: placeholder for inet_num/tw_num
 127 *	@skc_family: network address family
 128 *	@skc_state: Connection state
 129 *	@skc_reuse: %SO_REUSEADDR setting
 130 *	@skc_reuseport: %SO_REUSEPORT setting
 131 *	@skc_bound_dev_if: bound device index if != 0
 132 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 133 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 134 *	@skc_prot: protocol handlers inside a network family
 135 *	@skc_net: reference to the network namespace of this socket
 136 *	@skc_node: main hash linkage for various protocol lookup tables
 137 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 138 *	@skc_tx_queue_mapping: tx queue number for this connection
 139 *	@skc_flags: place holder for sk_flags
 140 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 141 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 142 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 143 *	@skc_refcnt: reference count
 144 *
 145 *	This is the minimal network layer representation of sockets, the header
 146 *	for struct sock and struct inet_timewait_sock.
 147 */
 148struct sock_common {
 149	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 150	 * address on 64bit arches : cf INET_MATCH()
 151	 */
 152	union {
 153		__addrpair	skc_addrpair;
 154		struct {
 155			__be32	skc_daddr;
 156			__be32	skc_rcv_saddr;
 157		};
 158	};
 159	union  {
 160		unsigned int	skc_hash;
 161		__u16		skc_u16hashes[2];
 162	};
 163	/* skc_dport && skc_num must be grouped as well */
 164	union {
 165		__portpair	skc_portpair;
 166		struct {
 167			__be16	skc_dport;
 168			__u16	skc_num;
 169		};
 170	};
 171
 172	unsigned short		skc_family;
 173	volatile unsigned char	skc_state;
 174	unsigned char		skc_reuse:4;
 175	unsigned char		skc_reuseport:1;
 176	unsigned char		skc_ipv6only:1;
 177	unsigned char		skc_net_refcnt:1;
 178	int			skc_bound_dev_if;
 179	union {
 180		struct hlist_node	skc_bind_node;
 181		struct hlist_node	skc_portaddr_node;
 182	};
 183	struct proto		*skc_prot;
 184	possible_net_t		skc_net;
 185
 186#if IS_ENABLED(CONFIG_IPV6)
 187	struct in6_addr		skc_v6_daddr;
 188	struct in6_addr		skc_v6_rcv_saddr;
 189#endif
 190
 191	atomic64_t		skc_cookie;
 192
 193	/* following fields are padding to force
 194	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 195	 * assuming IPV6 is enabled. We use this padding differently
 196	 * for different kind of 'sockets'
 197	 */
 198	union {
 199		unsigned long	skc_flags;
 200		struct sock	*skc_listener; /* request_sock */
 201		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 202	};
 203	/*
 204	 * fields between dontcopy_begin/dontcopy_end
 205	 * are not copied in sock_copy()
 206	 */
 207	/* private: */
 208	int			skc_dontcopy_begin[0];
 209	/* public: */
 210	union {
 211		struct hlist_node	skc_node;
 212		struct hlist_nulls_node skc_nulls_node;
 213	};
 214	int			skc_tx_queue_mapping;
 215	union {
 216		int		skc_incoming_cpu;
 217		u32		skc_rcv_wnd;
 218		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 219	};
 220
 221	atomic_t		skc_refcnt;
 222	/* private: */
 223	int                     skc_dontcopy_end[0];
 224	union {
 225		u32		skc_rxhash;
 226		u32		skc_window_clamp;
 227		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 228	};
 229	/* public: */
 230};
 231
 232/**
 233  *	struct sock - network layer representation of sockets
 234  *	@__sk_common: shared layout with inet_timewait_sock
 235  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 236  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 237  *	@sk_lock:	synchronizer
 238  *	@sk_rcvbuf: size of receive buffer in bytes
 239  *	@sk_wq: sock wait queue and async head
 240  *	@sk_rx_dst: receive input route used by early demux
 241  *	@sk_dst_cache: destination cache
 
 242  *	@sk_policy: flow policy
 243  *	@sk_receive_queue: incoming packets
 244  *	@sk_wmem_alloc: transmit queue bytes committed
 245  *	@sk_write_queue: Packet sending queue
 
 246  *	@sk_omem_alloc: "o" is "option" or "other"
 247  *	@sk_wmem_queued: persistent queue size
 248  *	@sk_forward_alloc: space allocated forward
 249  *	@sk_napi_id: id of the last napi context to receive data for sk
 250  *	@sk_ll_usec: usecs to busypoll when there is no data
 251  *	@sk_allocation: allocation mode
 252  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 253  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 254  *	@sk_sndbuf: size of send buffer in bytes
 255  *	@sk_padding: unused element for alignment
 256  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 257  *	@sk_no_check_rx: allow zero checksum in RX packets
 258  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 259  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 260  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 261  *	@sk_gso_max_size: Maximum GSO segment size to build
 262  *	@sk_gso_max_segs: Maximum number of GSO segments
 263  *	@sk_lingertime: %SO_LINGER l_linger setting
 264  *	@sk_backlog: always used with the per-socket spinlock held
 265  *	@sk_callback_lock: used with the callbacks in the end of this struct
 266  *	@sk_error_queue: rarely used
 267  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 268  *			  IPV6_ADDRFORM for instance)
 269  *	@sk_err: last error
 270  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 271  *		      persistent failure not just 'timed out'
 272  *	@sk_drops: raw/udp drops counter
 273  *	@sk_ack_backlog: current listen backlog
 274  *	@sk_max_ack_backlog: listen backlog set in listen()
 275  *	@sk_priority: %SO_PRIORITY setting
 276  *	@sk_type: socket type (%SOCK_STREAM, etc)
 277  *	@sk_protocol: which protocol this socket belongs in this network family
 278  *	@sk_peer_pid: &struct pid for this socket's peer
 279  *	@sk_peer_cred: %SO_PEERCRED setting
 280  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 281  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 282  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 283  *	@sk_txhash: computed flow hash for use on transmit
 284  *	@sk_filter: socket filtering instructions
 
 285  *	@sk_timer: sock cleanup timer
 286  *	@sk_stamp: time stamp of last packet received
 287  *	@sk_tsflags: SO_TIMESTAMPING socket options
 288  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 289  *	@sk_socket: Identd and reporting IO signals
 290  *	@sk_user_data: RPC layer private data
 291  *	@sk_frag: cached page frag
 292  *	@sk_peek_off: current peek_offset value
 293  *	@sk_send_head: front of stuff to transmit
 294  *	@sk_security: used by security modules
 295  *	@sk_mark: generic packet mark
 296  *	@sk_cgrp_data: cgroup data for this cgroup
 297  *	@sk_memcg: this socket's memory cgroup association
 298  *	@sk_write_pending: a write to stream socket waits to start
 299  *	@sk_state_change: callback to indicate change in the state of the sock
 300  *	@sk_data_ready: callback to indicate there is data to be processed
 301  *	@sk_write_space: callback to indicate there is bf sending space available
 302  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 303  *	@sk_backlog_rcv: callback to process the backlog
 304  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 305  *	@sk_reuseport_cb: reuseport group container
 306  *	@sk_rcu: used during RCU grace period
 307  */
 308struct sock {
 309	/*
 310	 * Now struct inet_timewait_sock also uses sock_common, so please just
 311	 * don't add nothing before this first member (__sk_common) --acme
 312	 */
 313	struct sock_common	__sk_common;
 314#define sk_node			__sk_common.skc_node
 315#define sk_nulls_node		__sk_common.skc_nulls_node
 316#define sk_refcnt		__sk_common.skc_refcnt
 317#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 318
 319#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 320#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 321#define sk_hash			__sk_common.skc_hash
 322#define sk_portpair		__sk_common.skc_portpair
 323#define sk_num			__sk_common.skc_num
 324#define sk_dport		__sk_common.skc_dport
 325#define sk_addrpair		__sk_common.skc_addrpair
 326#define sk_daddr		__sk_common.skc_daddr
 327#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 328#define sk_family		__sk_common.skc_family
 329#define sk_state		__sk_common.skc_state
 330#define sk_reuse		__sk_common.skc_reuse
 331#define sk_reuseport		__sk_common.skc_reuseport
 332#define sk_ipv6only		__sk_common.skc_ipv6only
 333#define sk_net_refcnt		__sk_common.skc_net_refcnt
 334#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 335#define sk_bind_node		__sk_common.skc_bind_node
 336#define sk_prot			__sk_common.skc_prot
 337#define sk_net			__sk_common.skc_net
 338#define sk_v6_daddr		__sk_common.skc_v6_daddr
 339#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 340#define sk_cookie		__sk_common.skc_cookie
 341#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 342#define sk_flags		__sk_common.skc_flags
 343#define sk_rxhash		__sk_common.skc_rxhash
 344
 345	socket_lock_t		sk_lock;
 346	atomic_t		sk_drops;
 347	int			sk_rcvlowat;
 348	struct sk_buff_head	sk_error_queue;
 349	struct sk_buff_head	sk_receive_queue;
 350	/*
 351	 * The backlog queue is special, it is always used with
 352	 * the per-socket spinlock held and requires low latency
 353	 * access. Therefore we special case it's implementation.
 354	 * Note : rmem_alloc is in this structure to fill a hole
 355	 * on 64bit arches, not because its logically part of
 356	 * backlog.
 357	 */
 358	struct {
 359		atomic_t	rmem_alloc;
 360		int		len;
 361		struct sk_buff	*head;
 362		struct sk_buff	*tail;
 363	} sk_backlog;
 364#define sk_rmem_alloc sk_backlog.rmem_alloc
 365
 366	int			sk_forward_alloc;
 367#ifdef CONFIG_NET_RX_BUSY_POLL
 368	unsigned int		sk_ll_usec;
 369	/* ===== mostly read cache line ===== */
 370	unsigned int		sk_napi_id;
 371#endif
 
 372	int			sk_rcvbuf;
 373
 374	struct sk_filter __rcu	*sk_filter;
 375	union {
 376		struct socket_wq __rcu	*sk_wq;
 377		struct socket_wq	*sk_wq_raw;
 378	};
 
 
 379#ifdef CONFIG_XFRM
 380	struct xfrm_policy __rcu *sk_policy[2];
 381#endif
 382	struct dst_entry	*sk_rx_dst;
 383	struct dst_entry __rcu	*sk_dst_cache;
 
 
 384	atomic_t		sk_omem_alloc;
 385	int			sk_sndbuf;
 386
 387	/* ===== cache line for TX ===== */
 388	int			sk_wmem_queued;
 389	atomic_t		sk_wmem_alloc;
 390	unsigned long		sk_tsq_flags;
 391	struct sk_buff		*sk_send_head;
 392	struct sk_buff_head	sk_write_queue;
 393	__s32			sk_peek_off;
 394	int			sk_write_pending;
 395	long			sk_sndtimeo;
 396	struct timer_list	sk_timer;
 397	__u32			sk_priority;
 398	__u32			sk_mark;
 399	u32			sk_pacing_rate; /* bytes per second */
 400	u32			sk_max_pacing_rate;
 401	struct page_frag	sk_frag;
 402	netdev_features_t	sk_route_caps;
 403	netdev_features_t	sk_route_nocaps;
 404	int			sk_gso_type;
 405	unsigned int		sk_gso_max_size;
 406	gfp_t			sk_allocation;
 407	__u32			sk_txhash;
 408
 409	/*
 410	 * Because of non atomicity rules, all
 411	 * changes are protected by socket lock.
 412	 */
 413	unsigned int		__sk_flags_offset[0];
 414#ifdef __BIG_ENDIAN_BITFIELD
 415#define SK_FL_PROTO_SHIFT  16
 416#define SK_FL_PROTO_MASK   0x00ff0000
 417
 418#define SK_FL_TYPE_SHIFT   0
 419#define SK_FL_TYPE_MASK    0x0000ffff
 420#else
 421#define SK_FL_PROTO_SHIFT  8
 422#define SK_FL_PROTO_MASK   0x0000ff00
 423
 424#define SK_FL_TYPE_SHIFT   16
 425#define SK_FL_TYPE_MASK    0xffff0000
 426#endif
 427
 428	kmemcheck_bitfield_begin(flags);
 429	unsigned int		sk_padding : 2,
 430				sk_no_check_tx : 1,
 431				sk_no_check_rx : 1,
 432				sk_userlocks : 4,
 433				sk_protocol  : 8,
 434				sk_type      : 16;
 435#define SK_PROTOCOL_MAX U8_MAX
 436	kmemcheck_bitfield_end(flags);
 437
 438	u16			sk_gso_max_segs;
 
 
 
 
 
 439	unsigned long	        sk_lingertime;
 
 440	struct proto		*sk_prot_creator;
 441	rwlock_t		sk_callback_lock;
 442	int			sk_err,
 443				sk_err_soft;
 444	u32			sk_ack_backlog;
 445	u32			sk_max_ack_backlog;
 446	kuid_t			sk_uid;
 447	struct pid		*sk_peer_pid;
 448	const struct cred	*sk_peer_cred;
 449	long			sk_rcvtimeo;
 
 
 
 450	ktime_t			sk_stamp;
 451	u16			sk_tsflags;
 452	u8			sk_shutdown;
 453	u32			sk_tskey;
 454	struct socket		*sk_socket;
 455	void			*sk_user_data;
 
 
 
 
 456#ifdef CONFIG_SECURITY
 457	void			*sk_security;
 458#endif
 459	struct sock_cgroup_data	sk_cgrp_data;
 460	struct mem_cgroup	*sk_memcg;
 461	void			(*sk_state_change)(struct sock *sk);
 462	void			(*sk_data_ready)(struct sock *sk);
 463	void			(*sk_write_space)(struct sock *sk);
 464	void			(*sk_error_report)(struct sock *sk);
 465	int			(*sk_backlog_rcv)(struct sock *sk,
 466						  struct sk_buff *skb);
 467	void                    (*sk_destruct)(struct sock *sk);
 468	struct sock_reuseport __rcu	*sk_reuseport_cb;
 469	struct rcu_head		sk_rcu;
 470};
 471
 472#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 473
 474#define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
 475#define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
 476
 477/*
 478 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 479 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 480 * on a socket means that the socket will reuse everybody else's port
 481 * without looking at the other's sk_reuse value.
 482 */
 483
 484#define SK_NO_REUSE	0
 485#define SK_CAN_REUSE	1
 486#define SK_FORCE_REUSE	2
 487
 488int sk_set_peek_off(struct sock *sk, int val);
 489
 490static inline int sk_peek_offset(struct sock *sk, int flags)
 491{
 492	if (unlikely(flags & MSG_PEEK)) {
 493		s32 off = READ_ONCE(sk->sk_peek_off);
 494		if (off >= 0)
 495			return off;
 496	}
 497
 498	return 0;
 499}
 500
 501static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 502{
 503	s32 off = READ_ONCE(sk->sk_peek_off);
 504
 505	if (unlikely(off >= 0)) {
 506		off = max_t(s32, off - val, 0);
 507		WRITE_ONCE(sk->sk_peek_off, off);
 508	}
 509}
 510
 511static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 512{
 513	sk_peek_offset_bwd(sk, -val);
 514}
 515
 516/*
 517 * Hashed lists helper routines
 518 */
 519static inline struct sock *sk_entry(const struct hlist_node *node)
 520{
 521	return hlist_entry(node, struct sock, sk_node);
 522}
 523
 524static inline struct sock *__sk_head(const struct hlist_head *head)
 525{
 526	return hlist_entry(head->first, struct sock, sk_node);
 527}
 528
 529static inline struct sock *sk_head(const struct hlist_head *head)
 530{
 531	return hlist_empty(head) ? NULL : __sk_head(head);
 532}
 533
 534static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 535{
 536	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 537}
 538
 539static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 540{
 541	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 542}
 543
 544static inline struct sock *sk_next(const struct sock *sk)
 545{
 546	return sk->sk_node.next ?
 547		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 548}
 549
 550static inline struct sock *sk_nulls_next(const struct sock *sk)
 551{
 552	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 553		hlist_nulls_entry(sk->sk_nulls_node.next,
 554				  struct sock, sk_nulls_node) :
 555		NULL;
 556}
 557
 558static inline bool sk_unhashed(const struct sock *sk)
 559{
 560	return hlist_unhashed(&sk->sk_node);
 561}
 562
 563static inline bool sk_hashed(const struct sock *sk)
 564{
 565	return !sk_unhashed(sk);
 566}
 567
 568static inline void sk_node_init(struct hlist_node *node)
 569{
 570	node->pprev = NULL;
 571}
 572
 573static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 574{
 575	node->pprev = NULL;
 576}
 577
 578static inline void __sk_del_node(struct sock *sk)
 579{
 580	__hlist_del(&sk->sk_node);
 581}
 582
 583/* NB: equivalent to hlist_del_init_rcu */
 584static inline bool __sk_del_node_init(struct sock *sk)
 585{
 586	if (sk_hashed(sk)) {
 587		__sk_del_node(sk);
 588		sk_node_init(&sk->sk_node);
 589		return true;
 590	}
 591	return false;
 592}
 593
 594/* Grab socket reference count. This operation is valid only
 595   when sk is ALREADY grabbed f.e. it is found in hash table
 596   or a list and the lookup is made under lock preventing hash table
 597   modifications.
 598 */
 599
 600static __always_inline void sock_hold(struct sock *sk)
 601{
 602	atomic_inc(&sk->sk_refcnt);
 603}
 604
 605/* Ungrab socket in the context, which assumes that socket refcnt
 606   cannot hit zero, f.e. it is true in context of any socketcall.
 607 */
 608static __always_inline void __sock_put(struct sock *sk)
 609{
 610	atomic_dec(&sk->sk_refcnt);
 611}
 612
 613static inline bool sk_del_node_init(struct sock *sk)
 614{
 615	bool rc = __sk_del_node_init(sk);
 616
 617	if (rc) {
 618		/* paranoid for a while -acme */
 619		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 620		__sock_put(sk);
 621	}
 622	return rc;
 623}
 624#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 625
 626static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 627{
 628	if (sk_hashed(sk)) {
 629		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 630		return true;
 631	}
 632	return false;
 633}
 634
 635static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 636{
 637	bool rc = __sk_nulls_del_node_init_rcu(sk);
 638
 639	if (rc) {
 640		/* paranoid for a while -acme */
 641		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 642		__sock_put(sk);
 643	}
 644	return rc;
 645}
 646
 647static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 648{
 649	hlist_add_head(&sk->sk_node, list);
 650}
 651
 652static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 653{
 654	sock_hold(sk);
 655	__sk_add_node(sk, list);
 656}
 657
 658static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 659{
 660	sock_hold(sk);
 661	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 662	    sk->sk_family == AF_INET6)
 663		hlist_add_tail_rcu(&sk->sk_node, list);
 664	else
 665		hlist_add_head_rcu(&sk->sk_node, list);
 666}
 667
 668static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 669{
 670	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 671	    sk->sk_family == AF_INET6)
 672		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 673	else
 674		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 675}
 676
 677static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 678{
 679	sock_hold(sk);
 680	__sk_nulls_add_node_rcu(sk, list);
 681}
 682
 683static inline void __sk_del_bind_node(struct sock *sk)
 684{
 685	__hlist_del(&sk->sk_bind_node);
 686}
 687
 688static inline void sk_add_bind_node(struct sock *sk,
 689					struct hlist_head *list)
 690{
 691	hlist_add_head(&sk->sk_bind_node, list);
 692}
 693
 694#define sk_for_each(__sk, list) \
 695	hlist_for_each_entry(__sk, list, sk_node)
 696#define sk_for_each_rcu(__sk, list) \
 697	hlist_for_each_entry_rcu(__sk, list, sk_node)
 698#define sk_nulls_for_each(__sk, node, list) \
 699	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 700#define sk_nulls_for_each_rcu(__sk, node, list) \
 701	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 702#define sk_for_each_from(__sk) \
 703	hlist_for_each_entry_from(__sk, sk_node)
 
 704#define sk_nulls_for_each_from(__sk, node) \
 705	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 706		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 707#define sk_for_each_safe(__sk, tmp, list) \
 708	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 709#define sk_for_each_bound(__sk, list) \
 710	hlist_for_each_entry(__sk, list, sk_bind_node)
 711
 712/**
 713 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 714 * @tpos:	the type * to use as a loop cursor.
 715 * @pos:	the &struct hlist_node to use as a loop cursor.
 716 * @head:	the head for your list.
 717 * @offset:	offset of hlist_node within the struct.
 718 *
 719 */
 720#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 721	for (pos = rcu_dereference((head)->first);			       \
 722	     pos != NULL &&						       \
 723		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 724	     pos = rcu_dereference(pos->next))
 725
 726static inline struct user_namespace *sk_user_ns(struct sock *sk)
 727{
 728	/* Careful only use this in a context where these parameters
 729	 * can not change and must all be valid, such as recvmsg from
 730	 * userspace.
 731	 */
 732	return sk->sk_socket->file->f_cred->user_ns;
 733}
 734
 735/* Sock flags */
 736enum sock_flags {
 737	SOCK_DEAD,
 738	SOCK_DONE,
 739	SOCK_URGINLINE,
 740	SOCK_KEEPOPEN,
 741	SOCK_LINGER,
 742	SOCK_DESTROY,
 743	SOCK_BROADCAST,
 744	SOCK_TIMESTAMP,
 745	SOCK_ZAPPED,
 746	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 747	SOCK_DBG, /* %SO_DEBUG setting */
 748	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 749	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 750	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 751	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 752	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 
 
 753	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 
 
 
 754	SOCK_FASYNC, /* fasync() active */
 755	SOCK_RXQ_OVFL,
 756	SOCK_ZEROCOPY, /* buffers from userspace */
 757	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 758	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 759		     * Will use last 4 bytes of packet sent from
 760		     * user-space instead.
 761		     */
 762	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 763	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 764	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 765};
 766
 767#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 768
 769static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 770{
 771	nsk->sk_flags = osk->sk_flags;
 772}
 773
 774static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 775{
 776	__set_bit(flag, &sk->sk_flags);
 777}
 778
 779static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 780{
 781	__clear_bit(flag, &sk->sk_flags);
 782}
 783
 784static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 785{
 786	return test_bit(flag, &sk->sk_flags);
 787}
 788
 789#ifdef CONFIG_NET
 790extern struct static_key memalloc_socks;
 791static inline int sk_memalloc_socks(void)
 792{
 793	return static_key_false(&memalloc_socks);
 794}
 795#else
 796
 797static inline int sk_memalloc_socks(void)
 798{
 799	return 0;
 800}
 801
 802#endif
 803
 804static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 805{
 806	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 807}
 808
 809static inline void sk_acceptq_removed(struct sock *sk)
 810{
 811	sk->sk_ack_backlog--;
 812}
 813
 814static inline void sk_acceptq_added(struct sock *sk)
 815{
 816	sk->sk_ack_backlog++;
 817}
 818
 819static inline bool sk_acceptq_is_full(const struct sock *sk)
 820{
 821	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 822}
 823
 824/*
 825 * Compute minimal free write space needed to queue new packets.
 826 */
 827static inline int sk_stream_min_wspace(const struct sock *sk)
 828{
 829	return sk->sk_wmem_queued >> 1;
 830}
 831
 832static inline int sk_stream_wspace(const struct sock *sk)
 833{
 834	return sk->sk_sndbuf - sk->sk_wmem_queued;
 835}
 836
 837void sk_stream_write_space(struct sock *sk);
 
 
 
 
 
 838
 839/* OOB backlog add */
 840static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 841{
 842	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 843	skb_dst_force_safe(skb);
 844
 845	if (!sk->sk_backlog.tail)
 846		sk->sk_backlog.head = skb;
 847	else
 848		sk->sk_backlog.tail->next = skb;
 849
 850	sk->sk_backlog.tail = skb;
 851	skb->next = NULL;
 852}
 853
 854/*
 855 * Take into account size of receive queue and backlog queue
 856 * Do not take into account this skb truesize,
 857 * to allow even a single big packet to come.
 858 */
 859static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 860{
 861	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 862
 863	return qsize > limit;
 864}
 865
 866/* The per-socket spinlock must be held here. */
 867static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 868					      unsigned int limit)
 869{
 870	if (sk_rcvqueues_full(sk, limit))
 871		return -ENOBUFS;
 872
 873	/*
 874	 * If the skb was allocated from pfmemalloc reserves, only
 875	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 876	 * helping free memory
 877	 */
 878	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 879		return -ENOMEM;
 880
 881	__sk_add_backlog(sk, skb);
 882	sk->sk_backlog.len += skb->truesize;
 883	return 0;
 884}
 885
 886int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 887
 888static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 889{
 890	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 891		return __sk_backlog_rcv(sk, skb);
 892
 893	return sk->sk_backlog_rcv(sk, skb);
 894}
 895
 896static inline void sk_incoming_cpu_update(struct sock *sk)
 897{
 898	sk->sk_incoming_cpu = raw_smp_processor_id();
 899}
 900
 901static inline void sock_rps_record_flow_hash(__u32 hash)
 902{
 903#ifdef CONFIG_RPS
 904	struct rps_sock_flow_table *sock_flow_table;
 905
 906	rcu_read_lock();
 907	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 908	rps_record_sock_flow(sock_flow_table, hash);
 909	rcu_read_unlock();
 910#endif
 911}
 912
 913static inline void sock_rps_record_flow(const struct sock *sk)
 914{
 915#ifdef CONFIG_RPS
 916	if (static_key_false(&rfs_needed)) {
 917		/* Reading sk->sk_rxhash might incur an expensive cache line
 918		 * miss.
 919		 *
 920		 * TCP_ESTABLISHED does cover almost all states where RFS
 921		 * might be useful, and is cheaper [1] than testing :
 922		 *	IPv4: inet_sk(sk)->inet_daddr
 923		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 924		 * OR	an additional socket flag
 925		 * [1] : sk_state and sk_prot are in the same cache line.
 926		 */
 927		if (sk->sk_state == TCP_ESTABLISHED)
 928			sock_rps_record_flow_hash(sk->sk_rxhash);
 929	}
 930#endif
 931}
 932
 933static inline void sock_rps_save_rxhash(struct sock *sk,
 934					const struct sk_buff *skb)
 935{
 936#ifdef CONFIG_RPS
 937	if (unlikely(sk->sk_rxhash != skb->hash))
 938		sk->sk_rxhash = skb->hash;
 939#endif
 940}
 941
 942static inline void sock_rps_reset_rxhash(struct sock *sk)
 943{
 944#ifdef CONFIG_RPS
 945	sk->sk_rxhash = 0;
 
 
 
 946#endif
 947}
 948
 949#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
 950	({	int __rc;						\
 951		release_sock(__sk);					\
 952		__rc = __condition;					\
 953		if (!__rc) {						\
 954			*(__timeo) = wait_woken(__wait,			\
 955						TASK_INTERRUPTIBLE,	\
 956						*(__timeo));		\
 957		}							\
 958		sched_annotate_sleep();					\
 959		lock_sock(__sk);					\
 960		__rc = __condition;					\
 961		__rc;							\
 962	})
 963
 964int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 965int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 966void sk_stream_wait_close(struct sock *sk, long timeo_p);
 967int sk_stream_error(struct sock *sk, int flags, int err);
 968void sk_stream_kill_queues(struct sock *sk);
 969void sk_set_memalloc(struct sock *sk);
 970void sk_clear_memalloc(struct sock *sk);
 971
 972void __sk_flush_backlog(struct sock *sk);
 973
 974static inline bool sk_flush_backlog(struct sock *sk)
 975{
 976	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
 977		__sk_flush_backlog(sk);
 978		return true;
 979	}
 980	return false;
 981}
 982
 983int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 984
 985struct request_sock_ops;
 986struct timewait_sock_ops;
 987struct inet_hashinfo;
 988struct raw_hashinfo;
 989struct module;
 990
 991/*
 992 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 993 * un-modified. Special care is taken when initializing object to zero.
 994 */
 995static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 996{
 997	if (offsetof(struct sock, sk_node.next) != 0)
 998		memset(sk, 0, offsetof(struct sock, sk_node.next));
 999	memset(&sk->sk_node.pprev, 0,
1000	       size - offsetof(struct sock, sk_node.pprev));
1001}
1002
1003/* Networking protocol blocks we attach to sockets.
1004 * socket layer -> transport layer interface
 
1005 */
1006struct proto {
1007	void			(*close)(struct sock *sk,
1008					long timeout);
1009	int			(*connect)(struct sock *sk,
1010					struct sockaddr *uaddr,
1011					int addr_len);
1012	int			(*disconnect)(struct sock *sk, int flags);
1013
1014	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
1015
1016	int			(*ioctl)(struct sock *sk, int cmd,
1017					 unsigned long arg);
1018	int			(*init)(struct sock *sk);
1019	void			(*destroy)(struct sock *sk);
1020	void			(*shutdown)(struct sock *sk, int how);
1021	int			(*setsockopt)(struct sock *sk, int level,
1022					int optname, char __user *optval,
1023					unsigned int optlen);
1024	int			(*getsockopt)(struct sock *sk, int level,
1025					int optname, char __user *optval,
1026					int __user *option);
1027#ifdef CONFIG_COMPAT
1028	int			(*compat_setsockopt)(struct sock *sk,
1029					int level,
1030					int optname, char __user *optval,
1031					unsigned int optlen);
1032	int			(*compat_getsockopt)(struct sock *sk,
1033					int level,
1034					int optname, char __user *optval,
1035					int __user *option);
1036	int			(*compat_ioctl)(struct sock *sk,
1037					unsigned int cmd, unsigned long arg);
1038#endif
1039	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1040					   size_t len);
1041	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1042					   size_t len, int noblock, int flags,
1043					   int *addr_len);
 
1044	int			(*sendpage)(struct sock *sk, struct page *page,
1045					int offset, size_t size, int flags);
1046	int			(*bind)(struct sock *sk,
1047					struct sockaddr *uaddr, int addr_len);
1048
1049	int			(*backlog_rcv) (struct sock *sk,
1050						struct sk_buff *skb);
1051
1052	void		(*release_cb)(struct sock *sk);
1053
1054	/* Keeping track of sk's, looking them up, and port selection methods. */
1055	int			(*hash)(struct sock *sk);
1056	void			(*unhash)(struct sock *sk);
1057	void			(*rehash)(struct sock *sk);
1058	int			(*get_port)(struct sock *sk, unsigned short snum);
 
1059
1060	/* Keeping track of sockets in use */
1061#ifdef CONFIG_PROC_FS
1062	unsigned int		inuse_idx;
1063#endif
1064
1065	bool			(*stream_memory_free)(const struct sock *sk);
1066	/* Memory pressure */
1067	void			(*enter_memory_pressure)(struct sock *sk);
1068	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1069	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1070	/*
1071	 * Pressure flag: try to collapse.
1072	 * Technical note: it is used by multiple contexts non atomically.
1073	 * All the __sk_mem_schedule() is of this nature: accounting
1074	 * is strict, actions are advisory and have some latency.
1075	 */
1076	int			*memory_pressure;
1077	long			*sysctl_mem;
1078	int			*sysctl_wmem;
1079	int			*sysctl_rmem;
1080	int			max_header;
1081	bool			no_autobind;
1082
1083	struct kmem_cache	*slab;
1084	unsigned int		obj_size;
1085	int			slab_flags;
1086
1087	struct percpu_counter	*orphan_count;
1088
1089	struct request_sock_ops	*rsk_prot;
1090	struct timewait_sock_ops *twsk_prot;
1091
1092	union {
1093		struct inet_hashinfo	*hashinfo;
1094		struct udp_table	*udp_table;
1095		struct raw_hashinfo	*raw_hash;
1096	} h;
1097
1098	struct module		*owner;
1099
1100	char			name[32];
1101
1102	struct list_head	node;
1103#ifdef SOCK_REFCNT_DEBUG
1104	atomic_t		socks;
1105#endif
1106	int			(*diag_destroy)(struct sock *sk, int err);
1107};
1108
1109int proto_register(struct proto *prot, int alloc_slab);
1110void proto_unregister(struct proto *prot);
1111
1112#ifdef SOCK_REFCNT_DEBUG
1113static inline void sk_refcnt_debug_inc(struct sock *sk)
1114{
1115	atomic_inc(&sk->sk_prot->socks);
1116}
1117
1118static inline void sk_refcnt_debug_dec(struct sock *sk)
1119{
1120	atomic_dec(&sk->sk_prot->socks);
1121	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1122	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1123}
1124
1125static inline void sk_refcnt_debug_release(const struct sock *sk)
1126{
1127	if (atomic_read(&sk->sk_refcnt) != 1)
1128		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1129		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1130}
1131#else /* SOCK_REFCNT_DEBUG */
1132#define sk_refcnt_debug_inc(sk) do { } while (0)
1133#define sk_refcnt_debug_dec(sk) do { } while (0)
1134#define sk_refcnt_debug_release(sk) do { } while (0)
1135#endif /* SOCK_REFCNT_DEBUG */
1136
1137static inline bool sk_stream_memory_free(const struct sock *sk)
1138{
1139	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1140		return false;
1141
1142	return sk->sk_prot->stream_memory_free ?
1143		sk->sk_prot->stream_memory_free(sk) : true;
1144}
1145
1146static inline bool sk_stream_is_writeable(const struct sock *sk)
1147{
1148	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1149	       sk_stream_memory_free(sk);
1150}
1151
1152static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1153					    struct cgroup *ancestor)
1154{
1155#ifdef CONFIG_SOCK_CGROUP_DATA
1156	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1157				    ancestor);
1158#else
1159	return -ENOTSUPP;
1160#endif
1161}
1162
1163static inline bool sk_has_memory_pressure(const struct sock *sk)
1164{
1165	return sk->sk_prot->memory_pressure != NULL;
1166}
1167
1168static inline bool sk_under_memory_pressure(const struct sock *sk)
1169{
1170	if (!sk->sk_prot->memory_pressure)
1171		return false;
1172
1173	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1174	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1175		return true;
1176
1177	return !!*sk->sk_prot->memory_pressure;
1178}
1179
1180static inline void sk_leave_memory_pressure(struct sock *sk)
1181{
1182	int *memory_pressure = sk->sk_prot->memory_pressure;
1183
1184	if (!memory_pressure)
1185		return;
1186
1187	if (*memory_pressure)
1188		*memory_pressure = 0;
1189}
1190
1191static inline void sk_enter_memory_pressure(struct sock *sk)
1192{
1193	if (!sk->sk_prot->enter_memory_pressure)
1194		return;
1195
1196	sk->sk_prot->enter_memory_pressure(sk);
1197}
1198
1199static inline long
1200sk_memory_allocated(const struct sock *sk)
1201{
1202	return atomic_long_read(sk->sk_prot->memory_allocated);
1203}
1204
1205static inline long
1206sk_memory_allocated_add(struct sock *sk, int amt)
1207{
1208	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1209}
1210
1211static inline void
1212sk_memory_allocated_sub(struct sock *sk, int amt)
1213{
1214	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1215}
1216
1217static inline void sk_sockets_allocated_dec(struct sock *sk)
1218{
1219	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1220}
1221
1222static inline void sk_sockets_allocated_inc(struct sock *sk)
1223{
1224	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1225}
1226
1227static inline int
1228sk_sockets_allocated_read_positive(struct sock *sk)
1229{
1230	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1231}
1232
1233static inline int
1234proto_sockets_allocated_sum_positive(struct proto *prot)
1235{
1236	return percpu_counter_sum_positive(prot->sockets_allocated);
1237}
1238
1239static inline long
1240proto_memory_allocated(struct proto *prot)
1241{
1242	return atomic_long_read(prot->memory_allocated);
1243}
1244
1245static inline bool
1246proto_memory_pressure(struct proto *prot)
1247{
1248	if (!prot->memory_pressure)
1249		return false;
1250	return !!*prot->memory_pressure;
1251}
1252
1253
1254#ifdef CONFIG_PROC_FS
1255/* Called with local bh disabled */
1256void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1257int sock_prot_inuse_get(struct net *net, struct proto *proto);
1258#else
1259static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1260		int inc)
1261{
1262}
1263#endif
1264
1265
1266/* With per-bucket locks this operation is not-atomic, so that
1267 * this version is not worse.
1268 */
1269static inline int __sk_prot_rehash(struct sock *sk)
1270{
1271	sk->sk_prot->unhash(sk);
1272	return sk->sk_prot->hash(sk);
1273}
1274
 
 
1275/* About 10 seconds */
1276#define SOCK_DESTROY_TIME (10*HZ)
1277
1278/* Sockets 0-1023 can't be bound to unless you are superuser */
1279#define PROT_SOCK	1024
1280
1281#define SHUTDOWN_MASK	3
1282#define RCV_SHUTDOWN	1
1283#define SEND_SHUTDOWN	2
1284
1285#define SOCK_SNDBUF_LOCK	1
1286#define SOCK_RCVBUF_LOCK	2
1287#define SOCK_BINDADDR_LOCK	4
1288#define SOCK_BINDPORT_LOCK	8
1289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290struct socket_alloc {
1291	struct socket socket;
1292	struct inode vfs_inode;
1293};
1294
1295static inline struct socket *SOCKET_I(struct inode *inode)
1296{
1297	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1298}
1299
1300static inline struct inode *SOCK_INODE(struct socket *socket)
1301{
1302	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1303}
1304
1305/*
1306 * Functions for memory accounting
1307 */
1308int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1309int __sk_mem_schedule(struct sock *sk, int size, int kind);
1310void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1311void __sk_mem_reclaim(struct sock *sk, int amount);
1312
1313/* We used to have PAGE_SIZE here, but systems with 64KB pages
1314 * do not necessarily have 16x time more memory than 4KB ones.
1315 */
1316#define SK_MEM_QUANTUM 4096
1317#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1318#define SK_MEM_SEND	0
1319#define SK_MEM_RECV	1
1320
1321/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1322static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1323{
1324	long val = sk->sk_prot->sysctl_mem[index];
1325
1326#if PAGE_SIZE > SK_MEM_QUANTUM
1327	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1328#elif PAGE_SIZE < SK_MEM_QUANTUM
1329	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1330#endif
1331	return val;
1332}
1333
1334static inline int sk_mem_pages(int amt)
1335{
1336	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1337}
1338
1339static inline bool sk_has_account(struct sock *sk)
1340{
1341	/* return true if protocol supports memory accounting */
1342	return !!sk->sk_prot->memory_allocated;
1343}
1344
1345static inline bool sk_wmem_schedule(struct sock *sk, int size)
1346{
1347	if (!sk_has_account(sk))
1348		return true;
1349	return size <= sk->sk_forward_alloc ||
1350		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1351}
1352
1353static inline bool
1354sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1355{
1356	if (!sk_has_account(sk))
1357		return true;
1358	return size<= sk->sk_forward_alloc ||
1359		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1360		skb_pfmemalloc(skb);
1361}
1362
1363static inline void sk_mem_reclaim(struct sock *sk)
1364{
1365	if (!sk_has_account(sk))
1366		return;
1367	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1368		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1369}
1370
1371static inline void sk_mem_reclaim_partial(struct sock *sk)
1372{
1373	if (!sk_has_account(sk))
1374		return;
1375	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1376		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1377}
1378
1379static inline void sk_mem_charge(struct sock *sk, int size)
1380{
1381	if (!sk_has_account(sk))
1382		return;
1383	sk->sk_forward_alloc -= size;
1384}
1385
1386static inline void sk_mem_uncharge(struct sock *sk, int size)
1387{
1388	if (!sk_has_account(sk))
1389		return;
1390	sk->sk_forward_alloc += size;
1391
1392	/* Avoid a possible overflow.
1393	 * TCP send queues can make this happen, if sk_mem_reclaim()
1394	 * is not called and more than 2 GBytes are released at once.
1395	 *
1396	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1397	 * no need to hold that much forward allocation anyway.
1398	 */
1399	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1400		__sk_mem_reclaim(sk, 1 << 20);
1401}
1402
1403static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1404{
1405	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1406	sk->sk_wmem_queued -= skb->truesize;
1407	sk_mem_uncharge(sk, skb->truesize);
1408	__kfree_skb(skb);
1409}
1410
1411static inline void sock_release_ownership(struct sock *sk)
1412{
1413	if (sk->sk_lock.owned) {
1414		sk->sk_lock.owned = 0;
1415
1416		/* The sk_lock has mutex_unlock() semantics: */
1417		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1418	}
1419}
 
 
 
 
 
1420
1421/*
1422 * Macro so as to not evaluate some arguments when
1423 * lockdep is not enabled.
1424 *
1425 * Mark both the sk_lock and the sk_lock.slock as a
1426 * per-address-family lock class.
1427 */
1428#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1429do {									\
1430	sk->sk_lock.owned = 0;						\
1431	init_waitqueue_head(&sk->sk_lock.wq);				\
1432	spin_lock_init(&(sk)->sk_lock.slock);				\
1433	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1434			sizeof((sk)->sk_lock));				\
1435	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1436				(skey), (sname));				\
1437	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1438} while (0)
1439
1440#ifdef CONFIG_LOCKDEP
1441static inline bool lockdep_sock_is_held(const struct sock *csk)
1442{
1443	struct sock *sk = (struct sock *)csk;
1444
1445	return lockdep_is_held(&sk->sk_lock) ||
1446	       lockdep_is_held(&sk->sk_lock.slock);
1447}
1448#endif
1449
1450void lock_sock_nested(struct sock *sk, int subclass);
1451
1452static inline void lock_sock(struct sock *sk)
1453{
1454	lock_sock_nested(sk, 0);
1455}
1456
1457void release_sock(struct sock *sk);
1458
1459/* BH context may only use the following locking interface. */
1460#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1461#define bh_lock_sock_nested(__sk) \
1462				spin_lock_nested(&((__sk)->sk_lock.slock), \
1463				SINGLE_DEPTH_NESTING)
1464#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1465
1466bool lock_sock_fast(struct sock *sk);
1467/**
1468 * unlock_sock_fast - complement of lock_sock_fast
1469 * @sk: socket
1470 * @slow: slow mode
1471 *
1472 * fast unlock socket for user context.
1473 * If slow mode is on, we call regular release_sock()
1474 */
1475static inline void unlock_sock_fast(struct sock *sk, bool slow)
1476{
1477	if (slow)
1478		release_sock(sk);
1479	else
1480		spin_unlock_bh(&sk->sk_lock.slock);
1481}
1482
1483/* Used by processes to "lock" a socket state, so that
1484 * interrupts and bottom half handlers won't change it
1485 * from under us. It essentially blocks any incoming
1486 * packets, so that we won't get any new data or any
1487 * packets that change the state of the socket.
1488 *
1489 * While locked, BH processing will add new packets to
1490 * the backlog queue.  This queue is processed by the
1491 * owner of the socket lock right before it is released.
1492 *
1493 * Since ~2.3.5 it is also exclusive sleep lock serializing
1494 * accesses from user process context.
1495 */
1496
1497static inline void sock_owned_by_me(const struct sock *sk)
1498{
1499#ifdef CONFIG_LOCKDEP
1500	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1501#endif
1502}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503
1504static inline bool sock_owned_by_user(const struct sock *sk)
 
 
 
1505{
1506	sock_owned_by_me(sk);
1507	return sk->sk_lock.owned;
1508}
1509
1510/* no reclassification while locks are held */
1511static inline bool sock_allow_reclassification(const struct sock *csk)
1512{
1513	struct sock *sk = (struct sock *)csk;
1514
1515	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1516}
1517
1518struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1519		      struct proto *prot, int kern);
1520void sk_free(struct sock *sk);
1521void sk_destruct(struct sock *sk);
1522struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1523
1524struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1525			     gfp_t priority);
1526void __sock_wfree(struct sk_buff *skb);
1527void sock_wfree(struct sk_buff *skb);
1528void skb_orphan_partial(struct sk_buff *skb);
1529void sock_rfree(struct sk_buff *skb);
1530void sock_efree(struct sk_buff *skb);
1531#ifdef CONFIG_INET
1532void sock_edemux(struct sk_buff *skb);
1533#else
1534#define sock_edemux(skb) sock_efree(skb)
1535#endif
1536
1537int sock_setsockopt(struct socket *sock, int level, int op,
1538		    char __user *optval, unsigned int optlen);
1539
1540int sock_getsockopt(struct socket *sock, int level, int op,
1541		    char __user *optval, int __user *optlen);
1542struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1543				    int noblock, int *errcode);
1544struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1545				     unsigned long data_len, int noblock,
1546				     int *errcode, int max_page_order);
1547void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1548void sock_kfree_s(struct sock *sk, void *mem, int size);
1549void sock_kzfree_s(struct sock *sk, void *mem, int size);
1550void sk_send_sigurg(struct sock *sk);
1551
1552struct sockcm_cookie {
1553	u32 mark;
1554	u16 tsflags;
1555};
1556
1557int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1558		     struct sockcm_cookie *sockc);
1559int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1560		   struct sockcm_cookie *sockc);
1561
1562/*
1563 * Functions to fill in entries in struct proto_ops when a protocol
1564 * does not implement a particular function.
1565 */
1566int sock_no_bind(struct socket *, struct sockaddr *, int);
1567int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1568int sock_no_socketpair(struct socket *, struct socket *);
1569int sock_no_accept(struct socket *, struct socket *, int);
1570int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1571unsigned int sock_no_poll(struct file *, struct socket *,
1572			  struct poll_table_struct *);
1573int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1574int sock_no_listen(struct socket *, int);
1575int sock_no_shutdown(struct socket *, int);
1576int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1577int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1578int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1579int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1580int sock_no_mmap(struct file *file, struct socket *sock,
1581		 struct vm_area_struct *vma);
1582ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1583			 size_t size, int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1584
1585/*
1586 * Functions to fill in entries in struct proto_ops when a protocol
1587 * uses the inet style.
1588 */
1589int sock_common_getsockopt(struct socket *sock, int level, int optname,
1590				  char __user *optval, int __user *optlen);
1591int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1592			int flags);
1593int sock_common_setsockopt(struct socket *sock, int level, int optname,
1594				  char __user *optval, unsigned int optlen);
1595int compat_sock_common_getsockopt(struct socket *sock, int level,
1596		int optname, char __user *optval, int __user *optlen);
1597int compat_sock_common_setsockopt(struct socket *sock, int level,
1598		int optname, char __user *optval, unsigned int optlen);
1599
1600void sk_common_release(struct sock *sk);
1601
1602/*
1603 *	Default socket callbacks and setup code
1604 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605
1606/* Initialise core socket variables */
1607void sock_init_data(struct socket *sock, struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
1608
1609/*
1610 * Socket reference counting postulates.
1611 *
1612 * * Each user of socket SHOULD hold a reference count.
1613 * * Each access point to socket (an hash table bucket, reference from a list,
1614 *   running timer, skb in flight MUST hold a reference count.
1615 * * When reference count hits 0, it means it will never increase back.
1616 * * When reference count hits 0, it means that no references from
1617 *   outside exist to this socket and current process on current CPU
1618 *   is last user and may/should destroy this socket.
1619 * * sk_free is called from any context: process, BH, IRQ. When
1620 *   it is called, socket has no references from outside -> sk_free
1621 *   may release descendant resources allocated by the socket, but
1622 *   to the time when it is called, socket is NOT referenced by any
1623 *   hash tables, lists etc.
1624 * * Packets, delivered from outside (from network or from another process)
1625 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1626 *   when they sit in queue. Otherwise, packets will leak to hole, when
1627 *   socket is looked up by one cpu and unhasing is made by another CPU.
1628 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1629 *   (leak to backlog). Packet socket does all the processing inside
1630 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1631 *   use separate SMP lock, so that they are prone too.
1632 */
1633
1634/* Ungrab socket and destroy it, if it was the last reference. */
1635static inline void sock_put(struct sock *sk)
1636{
1637	if (atomic_dec_and_test(&sk->sk_refcnt))
1638		sk_free(sk);
1639}
1640/* Generic version of sock_put(), dealing with all sockets
1641 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1642 */
1643void sock_gen_put(struct sock *sk);
1644
1645int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1646		     unsigned int trim_cap, bool refcounted);
1647static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1648				 const int nested)
1649{
1650	return __sk_receive_skb(sk, skb, nested, 1, true);
1651}
1652
1653static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1654{
1655	sk->sk_tx_queue_mapping = tx_queue;
1656}
1657
1658static inline void sk_tx_queue_clear(struct sock *sk)
1659{
1660	sk->sk_tx_queue_mapping = -1;
1661}
1662
1663static inline int sk_tx_queue_get(const struct sock *sk)
1664{
1665	return sk ? sk->sk_tx_queue_mapping : -1;
1666}
1667
1668static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1669{
1670	sk_tx_queue_clear(sk);
1671	sk->sk_socket = sock;
1672}
1673
1674static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1675{
1676	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1677	return &rcu_dereference_raw(sk->sk_wq)->wait;
1678}
1679/* Detach socket from process context.
1680 * Announce socket dead, detach it from wait queue and inode.
1681 * Note that parent inode held reference count on this struct sock,
1682 * we do not release it in this function, because protocol
1683 * probably wants some additional cleanups or even continuing
1684 * to work with this socket (TCP).
1685 */
1686static inline void sock_orphan(struct sock *sk)
1687{
1688	write_lock_bh(&sk->sk_callback_lock);
1689	sock_set_flag(sk, SOCK_DEAD);
1690	sk_set_socket(sk, NULL);
1691	sk->sk_wq  = NULL;
1692	write_unlock_bh(&sk->sk_callback_lock);
1693}
1694
1695static inline void sock_graft(struct sock *sk, struct socket *parent)
1696{
1697	write_lock_bh(&sk->sk_callback_lock);
1698	sk->sk_wq = parent->wq;
1699	parent->sk = sk;
1700	sk_set_socket(sk, parent);
1701	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1702	security_sock_graft(sk, parent);
1703	write_unlock_bh(&sk->sk_callback_lock);
1704}
1705
1706kuid_t sock_i_uid(struct sock *sk);
1707unsigned long sock_i_ino(struct sock *sk);
1708
1709static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1710{
1711	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1712}
1713
1714static inline u32 net_tx_rndhash(void)
1715{
1716	u32 v = prandom_u32();
1717
1718	return v ?: 1;
1719}
1720
1721static inline void sk_set_txhash(struct sock *sk)
1722{
1723	sk->sk_txhash = net_tx_rndhash();
1724}
1725
1726static inline void sk_rethink_txhash(struct sock *sk)
1727{
1728	if (sk->sk_txhash)
1729		sk_set_txhash(sk);
1730}
1731
1732static inline struct dst_entry *
1733__sk_dst_get(struct sock *sk)
1734{
1735	return rcu_dereference_check(sk->sk_dst_cache,
1736				     lockdep_sock_is_held(sk));
1737}
1738
1739static inline struct dst_entry *
1740sk_dst_get(struct sock *sk)
1741{
1742	struct dst_entry *dst;
1743
1744	rcu_read_lock();
1745	dst = rcu_dereference(sk->sk_dst_cache);
1746	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1747		dst = NULL;
1748	rcu_read_unlock();
1749	return dst;
1750}
1751
 
 
1752static inline void dst_negative_advice(struct sock *sk)
1753{
1754	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1755
1756	sk_rethink_txhash(sk);
1757
1758	if (dst && dst->ops->negative_advice) {
1759		ndst = dst->ops->negative_advice(dst);
1760
1761		if (ndst != dst) {
1762			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1763			sk_tx_queue_clear(sk);
1764		}
1765	}
1766}
1767
1768static inline void
1769__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1770{
1771	struct dst_entry *old_dst;
1772
1773	sk_tx_queue_clear(sk);
1774	/*
1775	 * This can be called while sk is owned by the caller only,
1776	 * with no state that can be checked in a rcu_dereference_check() cond
1777	 */
1778	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1779	rcu_assign_pointer(sk->sk_dst_cache, dst);
1780	dst_release(old_dst);
1781}
1782
1783static inline void
1784sk_dst_set(struct sock *sk, struct dst_entry *dst)
1785{
1786	struct dst_entry *old_dst;
1787
1788	sk_tx_queue_clear(sk);
1789	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1790	dst_release(old_dst);
1791}
1792
1793static inline void
1794__sk_dst_reset(struct sock *sk)
1795{
1796	__sk_dst_set(sk, NULL);
1797}
1798
1799static inline void
1800sk_dst_reset(struct sock *sk)
1801{
1802	sk_dst_set(sk, NULL);
 
 
1803}
1804
1805struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1806
1807struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1808
1809bool sk_mc_loop(struct sock *sk);
1810
1811static inline bool sk_can_gso(const struct sock *sk)
1812{
1813	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1814}
1815
1816void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1817
1818static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1819{
1820	sk->sk_route_nocaps |= flags;
1821	sk->sk_route_caps &= ~flags;
1822}
1823
1824static inline bool sk_check_csum_caps(struct sock *sk)
1825{
1826	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1827	       (sk->sk_family == PF_INET &&
1828		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1829	       (sk->sk_family == PF_INET6 &&
1830		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1831}
1832
1833static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1834					   struct iov_iter *from, char *to,
1835					   int copy, int offset)
1836{
1837	if (skb->ip_summed == CHECKSUM_NONE) {
1838		__wsum csum = 0;
1839		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1840			return -EFAULT;
 
1841		skb->csum = csum_block_add(skb->csum, csum, offset);
1842	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1843		if (!copy_from_iter_full_nocache(to, copy, from))
 
1844			return -EFAULT;
1845	} else if (!copy_from_iter_full(to, copy, from))
1846		return -EFAULT;
1847
1848	return 0;
1849}
1850
1851static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1852				       struct iov_iter *from, int copy)
1853{
1854	int err, offset = skb->len;
1855
1856	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1857				       copy, offset);
1858	if (err)
1859		__skb_trim(skb, offset);
1860
1861	return err;
1862}
1863
1864static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1865					   struct sk_buff *skb,
1866					   struct page *page,
1867					   int off, int copy)
1868{
1869	int err;
1870
1871	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1872				       copy, skb->len);
1873	if (err)
1874		return err;
1875
1876	skb->len	     += copy;
1877	skb->data_len	     += copy;
1878	skb->truesize	     += copy;
1879	sk->sk_wmem_queued   += copy;
1880	sk_mem_charge(sk, copy);
1881	return 0;
1882}
1883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884/**
1885 * sk_wmem_alloc_get - returns write allocations
1886 * @sk: socket
1887 *
1888 * Returns sk_wmem_alloc minus initial offset of one
1889 */
1890static inline int sk_wmem_alloc_get(const struct sock *sk)
1891{
1892	return atomic_read(&sk->sk_wmem_alloc) - 1;
1893}
1894
1895/**
1896 * sk_rmem_alloc_get - returns read allocations
1897 * @sk: socket
1898 *
1899 * Returns sk_rmem_alloc
1900 */
1901static inline int sk_rmem_alloc_get(const struct sock *sk)
1902{
1903	return atomic_read(&sk->sk_rmem_alloc);
1904}
1905
1906/**
1907 * sk_has_allocations - check if allocations are outstanding
1908 * @sk: socket
1909 *
1910 * Returns true if socket has write or read allocations
1911 */
1912static inline bool sk_has_allocations(const struct sock *sk)
1913{
1914	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1915}
1916
1917/**
1918 * skwq_has_sleeper - check if there are any waiting processes
1919 * @wq: struct socket_wq
1920 *
1921 * Returns true if socket_wq has waiting processes
1922 *
1923 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1924 * barrier call. They were added due to the race found within the tcp code.
1925 *
1926 * Consider following tcp code paths:
1927 *
1928 * CPU1                  CPU2
1929 *
1930 * sys_select            receive packet
1931 *   ...                 ...
1932 *   __add_wait_queue    update tp->rcv_nxt
1933 *   ...                 ...
1934 *   tp->rcv_nxt check   sock_def_readable
1935 *   ...                 {
1936 *   schedule               rcu_read_lock();
1937 *                          wq = rcu_dereference(sk->sk_wq);
1938 *                          if (wq && waitqueue_active(&wq->wait))
1939 *                              wake_up_interruptible(&wq->wait)
1940 *                          ...
1941 *                       }
1942 *
1943 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1944 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1945 * could then endup calling schedule and sleep forever if there are no more
1946 * data on the socket.
1947 *
1948 */
1949static inline bool skwq_has_sleeper(struct socket_wq *wq)
1950{
1951	return wq && wq_has_sleeper(&wq->wait);
 
 
 
 
 
 
 
 
1952}
1953
1954/**
1955 * sock_poll_wait - place memory barrier behind the poll_wait call.
1956 * @filp:           file
1957 * @wait_address:   socket wait queue
1958 * @p:              poll_table
1959 *
1960 * See the comments in the wq_has_sleeper function.
1961 */
1962static inline void sock_poll_wait(struct file *filp,
1963		wait_queue_head_t *wait_address, poll_table *p)
1964{
1965	if (!poll_does_not_wait(p) && wait_address) {
1966		poll_wait(filp, wait_address, p);
1967		/* We need to be sure we are in sync with the
 
1968		 * socket flags modification.
1969		 *
1970		 * This memory barrier is paired in the wq_has_sleeper.
1971		 */
1972		smp_mb();
1973	}
1974}
1975
1976static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1977{
1978	if (sk->sk_txhash) {
1979		skb->l4_hash = 1;
1980		skb->hash = sk->sk_txhash;
1981	}
1982}
1983
1984void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1985
1986/*
1987 *	Queue a received datagram if it will fit. Stream and sequenced
1988 *	protocols can't normally use this as they need to fit buffers in
1989 *	and play with them.
1990 *
1991 *	Inlined as it's very short and called for pretty much every
1992 *	packet ever received.
1993 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1995{
1996	skb_orphan(skb);
1997	skb->sk = sk;
1998	skb->destructor = sock_rfree;
1999	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2000	sk_mem_charge(sk, skb->truesize);
2001}
2002
2003void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2004		    unsigned long expires);
2005
2006void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2007
2008int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2009			unsigned int flags,
2010			void (*destructor)(struct sock *sk,
2011					   struct sk_buff *skb));
2012int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2013int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2014
2015int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2016struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2017
2018/*
2019 *	Recover an error report and clear atomically
2020 */
2021
2022static inline int sock_error(struct sock *sk)
2023{
2024	int err;
2025	if (likely(!sk->sk_err))
2026		return 0;
2027	err = xchg(&sk->sk_err, 0);
2028	return -err;
2029}
2030
2031static inline unsigned long sock_wspace(struct sock *sk)
2032{
2033	int amt = 0;
2034
2035	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2036		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2037		if (amt < 0)
2038			amt = 0;
2039	}
2040	return amt;
2041}
2042
2043/* Note:
2044 *  We use sk->sk_wq_raw, from contexts knowing this
2045 *  pointer is not NULL and cannot disappear/change.
2046 */
2047static inline void sk_set_bit(int nr, struct sock *sk)
2048{
2049	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2050	    !sock_flag(sk, SOCK_FASYNC))
2051		return;
2052
2053	set_bit(nr, &sk->sk_wq_raw->flags);
2054}
2055
2056static inline void sk_clear_bit(int nr, struct sock *sk)
2057{
2058	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2059	    !sock_flag(sk, SOCK_FASYNC))
2060		return;
2061
2062	clear_bit(nr, &sk->sk_wq_raw->flags);
2063}
2064
2065static inline void sk_wake_async(const struct sock *sk, int how, int band)
2066{
2067	if (sock_flag(sk, SOCK_FASYNC)) {
2068		rcu_read_lock();
2069		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2070		rcu_read_unlock();
2071	}
2072}
2073
2074/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2075 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2076 * Note: for send buffers, TCP works better if we can build two skbs at
2077 * minimum.
2078 */
2079#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2080
2081#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2082#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2083
2084static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2085{
2086	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2087		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2088		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2089	}
2090}
2091
2092struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2093				    bool force_schedule);
2094
2095/**
2096 * sk_page_frag - return an appropriate page_frag
2097 * @sk: socket
2098 *
2099 * If socket allocation mode allows current thread to sleep, it means its
2100 * safe to use the per task page_frag instead of the per socket one.
2101 */
2102static inline struct page_frag *sk_page_frag(struct sock *sk)
2103{
2104	if (gfpflags_allow_blocking(sk->sk_allocation))
2105		return &current->task_frag;
2106
2107	return &sk->sk_frag;
 
 
 
 
 
2108}
2109
2110bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2111
2112/*
2113 *	Default write policy as shown to user space via poll/select/SIGIO
2114 */
2115static inline bool sock_writeable(const struct sock *sk)
2116{
2117	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2118}
2119
2120static inline gfp_t gfp_any(void)
2121{
2122	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2123}
2124
2125static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2126{
2127	return noblock ? 0 : sk->sk_rcvtimeo;
2128}
2129
2130static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2131{
2132	return noblock ? 0 : sk->sk_sndtimeo;
2133}
2134
2135static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2136{
2137	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2138}
2139
2140/* Alas, with timeout socket operations are not restartable.
2141 * Compare this to poll().
2142 */
2143static inline int sock_intr_errno(long timeo)
2144{
2145	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2146}
2147
2148struct sock_skb_cb {
2149	u32 dropcount;
2150};
2151
2152/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2153 * using skb->cb[] would keep using it directly and utilize its
2154 * alignement guarantee.
2155 */
2156#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2157			    sizeof(struct sock_skb_cb)))
2158
2159#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2160			    SOCK_SKB_CB_OFFSET))
2161
2162#define sock_skb_cb_check_size(size) \
2163	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2164
2165static inline void
2166sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2167{
2168	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2169						atomic_read(&sk->sk_drops) : 0;
2170}
2171
2172static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2173{
2174	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2175
2176	atomic_add(segs, &sk->sk_drops);
2177}
2178
2179void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2180			   struct sk_buff *skb);
2181void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2182			     struct sk_buff *skb);
2183
2184static inline void
2185sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2186{
2187	ktime_t kt = skb->tstamp;
2188	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2189
2190	/*
2191	 * generate control messages if
2192	 * - receive time stamping in software requested
 
2193	 * - software time stamp available and wanted
 
2194	 * - hardware time stamps available and wanted
 
 
2195	 */
2196	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2197	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2198	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2199	    (hwtstamps->hwtstamp &&
2200	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
 
 
2201		__sock_recv_timestamp(msg, sk, skb);
2202	else
2203		sk->sk_stamp = kt;
2204
2205	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2206		__sock_recv_wifi_status(msg, sk, skb);
2207}
2208
2209void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2210			      struct sk_buff *skb);
2211
2212static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2213					  struct sk_buff *skb)
2214{
2215#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2216			   (1UL << SOCK_RCVTSTAMP))
2217#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2218			   SOF_TIMESTAMPING_RAW_HARDWARE)
 
 
2219
2220	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2221		__sock_recv_ts_and_drops(msg, sk, skb);
2222	else
2223		sk->sk_stamp = skb->tstamp;
2224}
2225
2226void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2227
2228/**
2229 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2230 * @sk:		socket sending this packet
2231 * @tsflags:	timestamping flags to use
2232 * @tx_flags:	completed with instructions for time stamping
2233 *
2234 * Note : callers should take care of initial *tx_flags value (usually 0)
 
2235 */
2236static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2237				     __u8 *tx_flags)
2238{
2239	if (unlikely(tsflags))
2240		__sock_tx_timestamp(tsflags, tx_flags);
2241	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2242		*tx_flags |= SKBTX_WIFI_STATUS;
2243}
2244
2245/**
2246 * sk_eat_skb - Release a skb if it is no longer needed
2247 * @sk: socket to eat this skb from
2248 * @skb: socket buffer to eat
 
2249 *
2250 * This routine must be called with interrupts disabled or with the socket
2251 * locked so that the sk_buff queue operation is ok.
2252*/
2253static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
2254{
2255	__skb_unlink(skb, &sk->sk_receive_queue);
2256	__kfree_skb(skb);
2257}
 
2258
2259static inline
2260struct net *sock_net(const struct sock *sk)
2261{
2262	return read_pnet(&sk->sk_net);
2263}
2264
2265static inline
2266void sock_net_set(struct sock *sk, struct net *net)
2267{
2268	write_pnet(&sk->sk_net, net);
2269}
2270
 
 
 
 
 
 
 
 
 
 
 
 
2271static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2272{
2273	if (skb->sk) {
2274		struct sock *sk = skb->sk;
2275
2276		skb->destructor = NULL;
2277		skb->sk = NULL;
2278		return sk;
2279	}
2280	return NULL;
2281}
2282
2283/* This helper checks if a socket is a full socket,
2284 * ie _not_ a timewait or request socket.
2285 */
2286static inline bool sk_fullsock(const struct sock *sk)
2287{
2288	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2289}
 
 
 
2290
2291/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2292 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2293 */
2294static inline bool sk_listener(const struct sock *sk)
2295{
2296	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2297}
2298
2299/**
2300 * sk_state_load - read sk->sk_state for lockless contexts
2301 * @sk: socket pointer
2302 *
2303 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2304 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2305 */
2306static inline int sk_state_load(const struct sock *sk)
2307{
2308	return smp_load_acquire(&sk->sk_state);
2309}
2310
2311/**
2312 * sk_state_store - update sk->sk_state
2313 * @sk: socket pointer
2314 * @newstate: new state
2315 *
2316 * Paired with sk_state_load(). Should be used in contexts where
2317 * state change might impact lockless readers.
2318 */
2319static inline void sk_state_store(struct sock *sk, int newstate)
2320{
2321	smp_store_release(&sk->sk_state, newstate);
2322}
2323
2324void sock_enable_timestamp(struct sock *sk, int flag);
2325int sock_get_timestamp(struct sock *, struct timeval __user *);
2326int sock_get_timestampns(struct sock *, struct timespec __user *);
2327int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2328		       int type);
2329
2330bool sk_ns_capable(const struct sock *sk,
2331		   struct user_namespace *user_ns, int cap);
2332bool sk_capable(const struct sock *sk, int cap);
2333bool sk_net_capable(const struct sock *sk, int cap);
2334
2335extern __u32 sysctl_wmem_max;
2336extern __u32 sysctl_rmem_max;
2337
2338extern int sysctl_tstamp_allow_data;
 
2339extern int sysctl_optmem_max;
2340
2341extern __u32 sysctl_wmem_default;
2342extern __u32 sysctl_rmem_default;
2343
2344#endif	/* _SOCK_H */