Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the AF_INET socket handler.
   7 *
   8 * Version:	@(#)sock.h	1.0.4	05/13/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Volatiles in skbuff pointers. See
  17 *					skbuff comments. May be overdone,
  18 *					better to prove they can be removed
  19 *					than the reverse.
  20 *		Alan Cox	:	Added a zapped field for tcp to note
  21 *					a socket is reset and must stay shut up
  22 *		Alan Cox	:	New fields for options
  23 *	Pauline Middelink	:	identd support
  24 *		Alan Cox	:	Eliminate low level recv/recvfrom
  25 *		David S. Miller	:	New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  28 *              			protinfo be just a void pointer, as the
  29 *              			protocol specific parts were moved to
  30 *              			respective headers and ipv4/v6, etc now
  31 *              			use private slabcaches for its socks
  32 *              Pedro Hortas	:	New flags field for socket options
  33 *
  34 *
  35 *		This program is free software; you can redistribute it and/or
  36 *		modify it under the terms of the GNU General Public License
  37 *		as published by the Free Software Foundation; either version
  38 *		2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/module.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>	/* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57
  58#include <linux/filter.h>
 
 
 
 
 
  59#include <linux/rculist_nulls.h>
  60#include <linux/poll.h>
  61
 
  62#include <linux/atomic.h>
 
 
  63#include <net/dst.h>
  64#include <net/checksum.h>
 
 
 
 
  65
  66/*
  67 * This structure really needs to be cleaned up.
  68 * Most of it is for TCP, and not used by any of
  69 * the other protocols.
  70 */
  71
  72/* Define this to get the SOCK_DBG debugging facility. */
  73#define SOCK_DEBUGGING
  74#ifdef SOCK_DEBUGGING
  75#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  76					printk(KERN_DEBUG msg); } while (0)
  77#else
  78/* Validate arguments and do nothing */
  79static inline void __attribute__ ((format (printf, 2, 3)))
  80SOCK_DEBUG(struct sock *sk, const char *msg, ...)
  81{
  82}
  83#endif
  84
  85/* This is the per-socket lock.  The spinlock provides a synchronization
  86 * between user contexts and software interrupt processing, whereas the
  87 * mini-semaphore synchronizes multiple users amongst themselves.
  88 */
  89typedef struct {
  90	spinlock_t		slock;
  91	int			owned;
  92	wait_queue_head_t	wq;
  93	/*
  94	 * We express the mutex-alike socket_lock semantics
  95	 * to the lock validator by explicitly managing
  96	 * the slock as a lock variant (in addition to
  97	 * the slock itself):
  98	 */
  99#ifdef CONFIG_DEBUG_LOCK_ALLOC
 100	struct lockdep_map dep_map;
 101#endif
 102} socket_lock_t;
 103
 104struct sock;
 105struct proto;
 106struct net;
 107
 
 
 
 108/**
 109 *	struct sock_common - minimal network layer representation of sockets
 110 *	@skc_daddr: Foreign IPv4 addr
 111 *	@skc_rcv_saddr: Bound local IPv4 addr
 
 112 *	@skc_hash: hash value used with various protocol lookup tables
 113 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 
 
 
 114 *	@skc_family: network address family
 115 *	@skc_state: Connection state
 116 *	@skc_reuse: %SO_REUSEADDR setting
 
 
 
 117 *	@skc_bound_dev_if: bound device index if != 0
 118 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 119 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 120 *	@skc_prot: protocol handlers inside a network family
 121 *	@skc_net: reference to the network namespace of this socket
 
 
 
 122 *	@skc_node: main hash linkage for various protocol lookup tables
 123 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 124 *	@skc_tx_queue_mapping: tx queue number for this connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 125 *	@skc_refcnt: reference count
 126 *
 127 *	This is the minimal network layer representation of sockets, the header
 128 *	for struct sock and struct inet_timewait_sock.
 129 */
 130struct sock_common {
 131	/* skc_daddr and skc_rcv_saddr must be grouped :
 132	 * cf INET_MATCH() and INET_TW_MATCH()
 133	 */
 134	__be32			skc_daddr;
 135	__be32			skc_rcv_saddr;
 136
 
 137	union  {
 138		unsigned int	skc_hash;
 139		__u16		skc_u16hashes[2];
 140	};
 
 
 
 
 
 
 
 
 
 141	unsigned short		skc_family;
 142	volatile unsigned char	skc_state;
 143	unsigned char		skc_reuse;
 
 
 
 144	int			skc_bound_dev_if;
 145	union {
 146		struct hlist_node	skc_bind_node;
 147		struct hlist_nulls_node skc_portaddr_node;
 148	};
 149	struct proto		*skc_prot;
 150#ifdef CONFIG_NET_NS
 151	struct net	 	*skc_net;
 
 
 
 152#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 153	/*
 154	 * fields between dontcopy_begin/dontcopy_end
 155	 * are not copied in sock_copy()
 156	 */
 157	/* private: */
 158	int			skc_dontcopy_begin[0];
 159	/* public: */
 160	union {
 161		struct hlist_node	skc_node;
 162		struct hlist_nulls_node skc_nulls_node;
 163	};
 164	int			skc_tx_queue_mapping;
 165	atomic_t		skc_refcnt;
 
 
 
 
 
 
 
 
 
 166	/* private: */
 167	int                     skc_dontcopy_end[0];
 
 
 
 
 
 168	/* public: */
 169};
 170
 
 
 
 171/**
 172  *	struct sock - network layer representation of sockets
 173  *	@__sk_common: shared layout with inet_timewait_sock
 174  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 175  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 176  *	@sk_lock:	synchronizer
 
 177  *	@sk_rcvbuf: size of receive buffer in bytes
 178  *	@sk_wq: sock wait queue and async head
 
 
 
 179  *	@sk_dst_cache: destination cache
 180  *	@sk_dst_lock: destination cache lock
 181  *	@sk_policy: flow policy
 182  *	@sk_receive_queue: incoming packets
 183  *	@sk_wmem_alloc: transmit queue bytes committed
 
 184  *	@sk_write_queue: Packet sending queue
 185  *	@sk_async_wait_queue: DMA copied packets
 186  *	@sk_omem_alloc: "o" is "option" or "other"
 187  *	@sk_wmem_queued: persistent queue size
 188  *	@sk_forward_alloc: space allocated forward
 
 
 
 189  *	@sk_allocation: allocation mode
 
 
 
 190  *	@sk_sndbuf: size of send buffer in bytes
 191  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 192  *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 193  *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
 194  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 195  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 196  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 197  *	@sk_gso_max_size: Maximum GSO segment size to build
 
 
 198  *	@sk_lingertime: %SO_LINGER l_linger setting
 199  *	@sk_backlog: always used with the per-socket spinlock held
 200  *	@sk_callback_lock: used with the callbacks in the end of this struct
 201  *	@sk_error_queue: rarely used
 202  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 203  *			  IPV6_ADDRFORM for instance)
 204  *	@sk_err: last error
 205  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 206  *		      persistent failure not just 'timed out'
 207  *	@sk_drops: raw/udp drops counter
 208  *	@sk_ack_backlog: current listen backlog
 209  *	@sk_max_ack_backlog: listen backlog set in listen()
 
 
 
 210  *	@sk_priority: %SO_PRIORITY setting
 211  *	@sk_type: socket type (%SOCK_STREAM, etc)
 212  *	@sk_protocol: which protocol this socket belongs in this network family
 
 213  *	@sk_peer_pid: &struct pid for this socket's peer
 214  *	@sk_peer_cred: %SO_PEERCRED setting
 215  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 216  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 217  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 218  *	@sk_rxhash: flow hash received from netif layer
 
 219  *	@sk_filter: socket filtering instructions
 220  *	@sk_protinfo: private area, net family specific, when not using slab
 221  *	@sk_timer: sock cleanup timer
 222  *	@sk_stamp: time stamp of last packet received
 
 
 
 
 
 
 
 
 
 223  *	@sk_socket: Identd and reporting IO signals
 224  *	@sk_user_data: RPC layer private data
 225  *	@sk_sndmsg_page: cached page for sendmsg
 226  *	@sk_sndmsg_off: cached offset for sendmsg
 227  *	@sk_send_head: front of stuff to transmit
 
 228  *	@sk_security: used by security modules
 229  *	@sk_mark: generic packet mark
 230  *	@sk_classid: this socket's cgroup classid
 
 231  *	@sk_write_pending: a write to stream socket waits to start
 
 232  *	@sk_state_change: callback to indicate change in the state of the sock
 233  *	@sk_data_ready: callback to indicate there is data to be processed
 234  *	@sk_write_space: callback to indicate there is bf sending space available
 235  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 236  *	@sk_backlog_rcv: callback to process the backlog
 
 237  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 238 */
 
 
 
 
 
 
 
 
 239struct sock {
 240	/*
 241	 * Now struct inet_timewait_sock also uses sock_common, so please just
 242	 * don't add nothing before this first member (__sk_common) --acme
 243	 */
 244	struct sock_common	__sk_common;
 245#define sk_node			__sk_common.skc_node
 246#define sk_nulls_node		__sk_common.skc_nulls_node
 247#define sk_refcnt		__sk_common.skc_refcnt
 248#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 
 
 
 249
 250#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 251#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 252#define sk_hash			__sk_common.skc_hash
 
 
 
 
 
 
 253#define sk_family		__sk_common.skc_family
 254#define sk_state		__sk_common.skc_state
 255#define sk_reuse		__sk_common.skc_reuse
 
 
 
 256#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 257#define sk_bind_node		__sk_common.skc_bind_node
 258#define sk_prot			__sk_common.skc_prot
 259#define sk_net			__sk_common.skc_net
 260	socket_lock_t		sk_lock;
 
 
 
 
 
 
 
 
 
 
 
 261	struct sk_buff_head	sk_receive_queue;
 262	/*
 263	 * The backlog queue is special, it is always used with
 264	 * the per-socket spinlock held and requires low latency
 265	 * access. Therefore we special case it's implementation.
 266	 * Note : rmem_alloc is in this structure to fill a hole
 267	 * on 64bit arches, not because its logically part of
 268	 * backlog.
 269	 */
 270	struct {
 271		atomic_t	rmem_alloc;
 272		int		len;
 273		struct sk_buff	*head;
 274		struct sk_buff	*tail;
 275	} sk_backlog;
 276#define sk_rmem_alloc sk_backlog.rmem_alloc
 277	int			sk_forward_alloc;
 278#ifdef CONFIG_RPS
 279	__u32			sk_rxhash;
 
 
 
 
 
 
 
 
 
 
 
 280#endif
 281	atomic_t		sk_drops;
 282	int			sk_rcvbuf;
 283
 284	struct sk_filter __rcu	*sk_filter;
 285	struct socket_wq __rcu	*sk_wq;
 
 
 
 
 
 286
 287#ifdef CONFIG_NET_DMA
 288	struct sk_buff_head	sk_async_wait_queue;
 289#endif
 
 290
 
 
 
 
 291#ifdef CONFIG_XFRM
 292	struct xfrm_policy	*sk_policy[2];
 293#endif
 294	unsigned long 		sk_flags;
 295	struct dst_entry	*sk_dst_cache;
 296	spinlock_t		sk_dst_lock;
 297	atomic_t		sk_wmem_alloc;
 
 
 
 
 
 
 
 298	atomic_t		sk_omem_alloc;
 299	int			sk_sndbuf;
 300	struct sk_buff_head	sk_write_queue;
 301	kmemcheck_bitfield_begin(flags);
 302	unsigned int		sk_shutdown  : 2,
 303				sk_no_check  : 2,
 304				sk_userlocks : 4,
 305				sk_protocol  : 8,
 306				sk_type      : 16;
 307	kmemcheck_bitfield_end(flags);
 308	int			sk_wmem_queued;
 309	gfp_t			sk_allocation;
 310	int			sk_route_caps;
 311	int			sk_route_nocaps;
 312	int			sk_gso_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	unsigned int		sk_gso_max_size;
 314	int			sk_rcvlowat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315	unsigned long	        sk_lingertime;
 316	struct sk_buff_head	sk_error_queue;
 317	struct proto		*sk_prot_creator;
 318	rwlock_t		sk_callback_lock;
 319	int			sk_err,
 320				sk_err_soft;
 321	unsigned short		sk_ack_backlog;
 322	unsigned short		sk_max_ack_backlog;
 323	__u32			sk_priority;
 
 324	struct pid		*sk_peer_pid;
 325	const struct cred	*sk_peer_cred;
 326	long			sk_rcvtimeo;
 327	long			sk_sndtimeo;
 328	void			*sk_protinfo;
 329	struct timer_list	sk_timer;
 330	ktime_t			sk_stamp;
 331	struct socket		*sk_socket;
 
 
 
 
 
 
 
 
 
 
 332	void			*sk_user_data;
 333	struct page		*sk_sndmsg_page;
 334	struct sk_buff		*sk_send_head;
 335	__u32			sk_sndmsg_off;
 336	int			sk_write_pending;
 337#ifdef CONFIG_SECURITY
 338	void			*sk_security;
 339#endif
 340	__u32			sk_mark;
 341	u32			sk_classid;
 342	void			(*sk_state_change)(struct sock *sk);
 343	void			(*sk_data_ready)(struct sock *sk, int bytes);
 344	void			(*sk_write_space)(struct sock *sk);
 345	void			(*sk_error_report)(struct sock *sk);
 346  	int			(*sk_backlog_rcv)(struct sock *sk,
 347						  struct sk_buff *skb);  
 348	void                    (*sk_destruct)(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 349};
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351/*
 352 * Hashed lists helper routines
 353 */
 354static inline struct sock *sk_entry(const struct hlist_node *node)
 355{
 356	return hlist_entry(node, struct sock, sk_node);
 357}
 358
 359static inline struct sock *__sk_head(const struct hlist_head *head)
 360{
 361	return hlist_entry(head->first, struct sock, sk_node);
 362}
 363
 364static inline struct sock *sk_head(const struct hlist_head *head)
 365{
 366	return hlist_empty(head) ? NULL : __sk_head(head);
 367}
 368
 369static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 370{
 371	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 372}
 373
 374static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 375{
 376	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 377}
 378
 379static inline struct sock *sk_next(const struct sock *sk)
 380{
 381	return sk->sk_node.next ?
 382		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 383}
 384
 385static inline struct sock *sk_nulls_next(const struct sock *sk)
 386{
 387	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 388		hlist_nulls_entry(sk->sk_nulls_node.next,
 389				  struct sock, sk_nulls_node) :
 390		NULL;
 391}
 392
 393static inline int sk_unhashed(const struct sock *sk)
 394{
 395	return hlist_unhashed(&sk->sk_node);
 396}
 397
 398static inline int sk_hashed(const struct sock *sk)
 399{
 400	return !sk_unhashed(sk);
 401}
 402
 403static __inline__ void sk_node_init(struct hlist_node *node)
 404{
 405	node->pprev = NULL;
 406}
 407
 408static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
 409{
 410	node->pprev = NULL;
 411}
 412
 413static __inline__ void __sk_del_node(struct sock *sk)
 414{
 415	__hlist_del(&sk->sk_node);
 416}
 417
 418/* NB: equivalent to hlist_del_init_rcu */
 419static __inline__ int __sk_del_node_init(struct sock *sk)
 420{
 421	if (sk_hashed(sk)) {
 422		__sk_del_node(sk);
 423		sk_node_init(&sk->sk_node);
 424		return 1;
 425	}
 426	return 0;
 427}
 428
 429/* Grab socket reference count. This operation is valid only
 430   when sk is ALREADY grabbed f.e. it is found in hash table
 431   or a list and the lookup is made under lock preventing hash table
 432   modifications.
 433 */
 434
 435static inline void sock_hold(struct sock *sk)
 436{
 437	atomic_inc(&sk->sk_refcnt);
 438}
 439
 440/* Ungrab socket in the context, which assumes that socket refcnt
 441   cannot hit zero, f.e. it is true in context of any socketcall.
 442 */
 443static inline void __sock_put(struct sock *sk)
 444{
 445	atomic_dec(&sk->sk_refcnt);
 446}
 447
 448static __inline__ int sk_del_node_init(struct sock *sk)
 449{
 450	int rc = __sk_del_node_init(sk);
 451
 452	if (rc) {
 453		/* paranoid for a while -acme */
 454		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 455		__sock_put(sk);
 456	}
 457	return rc;
 458}
 459#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 460
 461static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
 462{
 463	if (sk_hashed(sk)) {
 464		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 465		return 1;
 466	}
 467	return 0;
 468}
 469
 470static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
 471{
 472	int rc = __sk_nulls_del_node_init_rcu(sk);
 473
 474	if (rc) {
 475		/* paranoid for a while -acme */
 476		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 477		__sock_put(sk);
 478	}
 479	return rc;
 480}
 481
 482static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
 483{
 484	hlist_add_head(&sk->sk_node, list);
 485}
 486
 487static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
 488{
 489	sock_hold(sk);
 490	__sk_add_node(sk, list);
 491}
 492
 493static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 494{
 495	sock_hold(sk);
 496	hlist_add_head_rcu(&sk->sk_node, list);
 
 
 
 
 497}
 498
 499static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 
 
 
 
 
 
 500{
 501	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 502}
 503
 504static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 
 
 
 
 
 505{
 506	sock_hold(sk);
 507	__sk_nulls_add_node_rcu(sk, list);
 508}
 509
 510static __inline__ void __sk_del_bind_node(struct sock *sk)
 511{
 512	__hlist_del(&sk->sk_bind_node);
 513}
 514
 515static __inline__ void sk_add_bind_node(struct sock *sk,
 516					struct hlist_head *list)
 517{
 518	hlist_add_head(&sk->sk_bind_node, list);
 519}
 520
 521#define sk_for_each(__sk, node, list) \
 522	hlist_for_each_entry(__sk, node, list, sk_node)
 523#define sk_for_each_rcu(__sk, node, list) \
 524	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
 525#define sk_nulls_for_each(__sk, node, list) \
 526	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 527#define sk_nulls_for_each_rcu(__sk, node, list) \
 528	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 529#define sk_for_each_from(__sk, node) \
 530	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
 531		hlist_for_each_entry_from(__sk, node, sk_node)
 532#define sk_nulls_for_each_from(__sk, node) \
 533	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 534		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 535#define sk_for_each_safe(__sk, node, tmp, list) \
 536	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
 537#define sk_for_each_bound(__sk, node, list) \
 538	hlist_for_each_entry(__sk, node, list, sk_bind_node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539
 540/* Sock flags */
 541enum sock_flags {
 542	SOCK_DEAD,
 543	SOCK_DONE,
 544	SOCK_URGINLINE,
 545	SOCK_KEEPOPEN,
 546	SOCK_LINGER,
 547	SOCK_DESTROY,
 548	SOCK_BROADCAST,
 549	SOCK_TIMESTAMP,
 550	SOCK_ZAPPED,
 551	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 552	SOCK_DBG, /* %SO_DEBUG setting */
 553	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 554	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 555	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 556	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 557	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 558	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 559	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 560	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 561	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 562	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 563	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 564	SOCK_FASYNC, /* fasync() active */
 565	SOCK_RXQ_OVFL,
 566	SOCK_ZEROCOPY, /* buffers from userspace */
 
 
 
 
 
 
 
 
 
 
 
 
 567};
 568
 569static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 
 
 570{
 571	nsk->sk_flags = osk->sk_flags;
 572}
 573
 574static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 575{
 576	__set_bit(flag, &sk->sk_flags);
 577}
 578
 579static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 580{
 581	__clear_bit(flag, &sk->sk_flags);
 582}
 583
 584static inline int sock_flag(struct sock *sk, enum sock_flags flag)
 
 
 
 
 
 
 
 
 
 585{
 586	return test_bit(flag, &sk->sk_flags);
 587}
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589static inline void sk_acceptq_removed(struct sock *sk)
 590{
 591	sk->sk_ack_backlog--;
 592}
 593
 594static inline void sk_acceptq_added(struct sock *sk)
 595{
 596	sk->sk_ack_backlog++;
 597}
 598
 599static inline int sk_acceptq_is_full(struct sock *sk)
 
 
 
 
 600{
 601	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 602}
 603
 604/*
 605 * Compute minimal free write space needed to queue new packets.
 606 */
 607static inline int sk_stream_min_wspace(struct sock *sk)
 608{
 609	return sk->sk_wmem_queued >> 1;
 610}
 611
 612static inline int sk_stream_wspace(struct sock *sk)
 613{
 614	return sk->sk_sndbuf - sk->sk_wmem_queued;
 615}
 616
 617extern void sk_stream_write_space(struct sock *sk);
 
 
 
 618
 619static inline int sk_stream_memory_free(struct sock *sk)
 620{
 621	return sk->sk_wmem_queued < sk->sk_sndbuf;
 
 622}
 623
 
 
 624/* OOB backlog add */
 625static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 626{
 627	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 628	skb_dst_force(skb);
 629
 630	if (!sk->sk_backlog.tail)
 631		sk->sk_backlog.head = skb;
 632	else
 633		sk->sk_backlog.tail->next = skb;
 634
 635	sk->sk_backlog.tail = skb;
 636	skb->next = NULL;
 637}
 638
 639/*
 640 * Take into account size of receive queue and backlog queue
 
 
 641 */
 642static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
 643{
 644	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 645
 646	return qsize + skb->truesize > sk->sk_rcvbuf;
 647}
 648
 649/* The per-socket spinlock must be held here. */
 650static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 
 651{
 652	if (sk_rcvqueues_full(sk, skb))
 653		return -ENOBUFS;
 654
 
 
 
 
 
 
 
 
 655	__sk_add_backlog(sk, skb);
 656	sk->sk_backlog.len += skb->truesize;
 657	return 0;
 658}
 659
 
 
 
 
 
 660static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 661{
 662	return sk->sk_backlog_rcv(sk, skb);
 
 
 
 
 
 
 663}
 664
 665static inline void sock_rps_record_flow(const struct sock *sk)
 666{
 667#ifdef CONFIG_RPS
 668	struct rps_sock_flow_table *sock_flow_table;
 669
 670	rcu_read_lock();
 671	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 672	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 673	rcu_read_unlock();
 674#endif
 675}
 676
 677static inline void sock_rps_reset_flow(const struct sock *sk)
 
 
 678{
 679#ifdef CONFIG_RPS
 680	struct rps_sock_flow_table *sock_flow_table;
 681
 682	rcu_read_lock();
 683	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 684	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 685	rcu_read_unlock();
 686#endif
 687}
 688
 689static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
 690{
 691#ifdef CONFIG_RPS
 692	if (unlikely(sk->sk_rxhash != rxhash)) {
 693		sock_rps_reset_flow(sk);
 694		sk->sk_rxhash = rxhash;
 695	}
 696#endif
 697}
 698
 699#define sk_wait_event(__sk, __timeo, __condition)			\
 700	({	int __rc;						\
 701		release_sock(__sk);					\
 702		__rc = __condition;					\
 703		if (!__rc) {						\
 704			*(__timeo) = schedule_timeout(*(__timeo));	\
 
 
 705		}							\
 
 706		lock_sock(__sk);					\
 707		__rc = __condition;					\
 708		__rc;							\
 709	})
 710
 711extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 712extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 713extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 714extern int sk_stream_error(struct sock *sk, int flags, int err);
 715extern void sk_stream_kill_queues(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717extern int sk_wait_data(struct sock *sk, long *timeo);
 718
 719struct request_sock_ops;
 720struct timewait_sock_ops;
 721struct inet_hashinfo;
 722struct raw_hashinfo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724/* Networking protocol blocks we attach to sockets.
 725 * socket layer -> transport layer interface
 726 * transport -> network interface is defined by struct inet_proto
 727 */
 728struct proto {
 729	void			(*close)(struct sock *sk, 
 730					long timeout);
 
 
 
 731	int			(*connect)(struct sock *sk,
 732				        struct sockaddr *uaddr, 
 733					int addr_len);
 734	int			(*disconnect)(struct sock *sk, int flags);
 735
 736	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
 
 737
 738	int			(*ioctl)(struct sock *sk, int cmd,
 739					 unsigned long arg);
 740	int			(*init)(struct sock *sk);
 741	void			(*destroy)(struct sock *sk);
 742	void			(*shutdown)(struct sock *sk, int how);
 743	int			(*setsockopt)(struct sock *sk, int level, 
 744					int optname, char __user *optval,
 745					unsigned int optlen);
 746	int			(*getsockopt)(struct sock *sk, int level, 
 747					int optname, char __user *optval, 
 748					int __user *option);  	 
 749#ifdef CONFIG_COMPAT
 750	int			(*compat_setsockopt)(struct sock *sk,
 751					int level,
 752					int optname, char __user *optval,
 753					unsigned int optlen);
 754	int			(*compat_getsockopt)(struct sock *sk,
 755					int level,
 756					int optname, char __user *optval,
 757					int __user *option);
 
 
 758	int			(*compat_ioctl)(struct sock *sk,
 759					unsigned int cmd, unsigned long arg);
 760#endif
 761	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
 762					   struct msghdr *msg, size_t len);
 763	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
 764					   struct msghdr *msg,
 765					size_t len, int noblock, int flags, 
 766					int *addr_len);
 767	int			(*sendpage)(struct sock *sk, struct page *page,
 768					int offset, size_t size, int flags);
 769	int			(*bind)(struct sock *sk, 
 770					struct sockaddr *uaddr, int addr_len);
 771
 772	int			(*backlog_rcv) (struct sock *sk, 
 773						struct sk_buff *skb);
 
 
 
 
 774
 775	/* Keeping track of sk's, looking them up, and port selection methods. */
 776	void			(*hash)(struct sock *sk);
 777	void			(*unhash)(struct sock *sk);
 778	void			(*rehash)(struct sock *sk);
 779	int			(*get_port)(struct sock *sk, unsigned short snum);
 780	void			(*clear_sk)(struct sock *sk, int size);
 
 
 
 
 
 781
 782	/* Keeping track of sockets in use */
 783#ifdef CONFIG_PROC_FS
 784	unsigned int		inuse_idx;
 785#endif
 786
 
 
 
 
 
 
 787	/* Memory pressure */
 788	void			(*enter_memory_pressure)(struct sock *sk);
 
 789	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
 
 790	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
 
 791	/*
 792	 * Pressure flag: try to collapse.
 793	 * Technical note: it is used by multiple contexts non atomically.
 
 794	 * All the __sk_mem_schedule() is of this nature: accounting
 795	 * is strict, actions are advisory and have some latency.
 796	 */
 797	int			*memory_pressure;
 798	long			*sysctl_mem;
 
 799	int			*sysctl_wmem;
 800	int			*sysctl_rmem;
 
 
 
 801	int			max_header;
 802	bool			no_autobind;
 803
 804	struct kmem_cache	*slab;
 805	unsigned int		obj_size;
 806	int			slab_flags;
 
 
 
 807
 808	struct percpu_counter	*orphan_count;
 809
 810	struct request_sock_ops	*rsk_prot;
 811	struct timewait_sock_ops *twsk_prot;
 812
 813	union {
 814		struct inet_hashinfo	*hashinfo;
 815		struct udp_table	*udp_table;
 816		struct raw_hashinfo	*raw_hash;
 
 817	} h;
 818
 819	struct module		*owner;
 820
 821	char			name[32];
 822
 823	struct list_head	node;
 824#ifdef SOCK_REFCNT_DEBUG
 825	atomic_t		socks;
 
 
 
 
 
 
 
 
 
 
 
 
 826#endif
 827};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829extern int proto_register(struct proto *prot, int alloc_slab);
 830extern void proto_unregister(struct proto *prot);
 
 831
 832#ifdef SOCK_REFCNT_DEBUG
 833static inline void sk_refcnt_debug_inc(struct sock *sk)
 834{
 835	atomic_inc(&sk->sk_prot->socks);
 
 
 
 
 
 836}
 837
 838static inline void sk_refcnt_debug_dec(struct sock *sk)
 
 
 839{
 840	atomic_dec(&sk->sk_prot->socks);
 841	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
 842	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
 843}
 844
 845static inline void sk_refcnt_debug_release(const struct sock *sk)
 846{
 847	if (atomic_read(&sk->sk_refcnt) != 1)
 848		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
 849		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850}
 851#else /* SOCK_REFCNT_DEBUG */
 852#define sk_refcnt_debug_inc(sk) do { } while (0)
 853#define sk_refcnt_debug_dec(sk) do { } while (0)
 854#define sk_refcnt_debug_release(sk) do { } while (0)
 855#endif /* SOCK_REFCNT_DEBUG */
 856
 857
 858#ifdef CONFIG_PROC_FS
 859/* Called with local bh disabled */
 860extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
 861extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862#else
 863static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
 864		int inc)
 
 
 
 
 865{
 866}
 867#endif
 868
 869
 870/* With per-bucket locks this operation is not-atomic, so that
 871 * this version is not worse.
 872 */
 873static inline void __sk_prot_rehash(struct sock *sk)
 874{
 875	sk->sk_prot->unhash(sk);
 876	sk->sk_prot->hash(sk);
 877}
 878
 879void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
 880
 881/* About 10 seconds */
 882#define SOCK_DESTROY_TIME (10*HZ)
 883
 884/* Sockets 0-1023 can't be bound to unless you are superuser */
 885#define PROT_SOCK	1024
 886
 887#define SHUTDOWN_MASK	3
 888#define RCV_SHUTDOWN	1
 889#define SEND_SHUTDOWN	2
 890
 891#define SOCK_SNDBUF_LOCK	1
 892#define SOCK_RCVBUF_LOCK	2
 893#define SOCK_BINDADDR_LOCK	4
 894#define SOCK_BINDPORT_LOCK	8
 895
 896/* sock_iocb: used to kick off async processing of socket ios */
 897struct sock_iocb {
 898	struct list_head	list;
 899
 900	int			flags;
 901	int			size;
 902	struct socket		*sock;
 903	struct sock		*sk;
 904	struct scm_cookie	*scm;
 905	struct msghdr		*msg, async_msg;
 906	struct kiocb		*kiocb;
 907};
 908
 909static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
 910{
 911	return (struct sock_iocb *)iocb->private;
 912}
 913
 914static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
 915{
 916	return si->kiocb;
 917}
 918
 919struct socket_alloc {
 920	struct socket socket;
 921	struct inode vfs_inode;
 922};
 923
 924static inline struct socket *SOCKET_I(struct inode *inode)
 925{
 926	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
 927}
 928
 929static inline struct inode *SOCK_INODE(struct socket *socket)
 930{
 931	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
 932}
 933
 934/*
 935 * Functions for memory accounting
 936 */
 937extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
 938extern void __sk_mem_reclaim(struct sock *sk);
 
 
 939
 940#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 941#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
 942#define SK_MEM_SEND	0
 943#define SK_MEM_RECV	1
 944
 
 
 
 
 
 
 945static inline int sk_mem_pages(int amt)
 946{
 947	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
 948}
 949
 950static inline int sk_has_account(struct sock *sk)
 951{
 952	/* return true if protocol supports memory accounting */
 953	return !!sk->sk_prot->memory_allocated;
 954}
 955
 956static inline int sk_wmem_schedule(struct sock *sk, int size)
 957{
 
 
 958	if (!sk_has_account(sk))
 959		return 1;
 960	return size <= sk->sk_forward_alloc ||
 961		__sk_mem_schedule(sk, size, SK_MEM_SEND);
 962}
 963
 964static inline int sk_rmem_schedule(struct sock *sk, int size)
 
 965{
 
 
 966	if (!sk_has_account(sk))
 967		return 1;
 968	return size <= sk->sk_forward_alloc ||
 969		__sk_mem_schedule(sk, size, SK_MEM_RECV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970}
 971
 972static inline void sk_mem_reclaim(struct sock *sk)
 973{
 
 
 974	if (!sk_has_account(sk))
 975		return;
 976	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
 977		__sk_mem_reclaim(sk);
 
 
 
 978}
 979
 980static inline void sk_mem_reclaim_partial(struct sock *sk)
 981{
 982	if (!sk_has_account(sk))
 983		return;
 984	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
 985		__sk_mem_reclaim(sk);
 986}
 987
 988static inline void sk_mem_charge(struct sock *sk, int size)
 989{
 990	if (!sk_has_account(sk))
 991		return;
 992	sk->sk_forward_alloc -= size;
 993}
 994
 995static inline void sk_mem_uncharge(struct sock *sk, int size)
 996{
 997	if (!sk_has_account(sk))
 998		return;
 999	sk->sk_forward_alloc += size;
 
1000}
1001
1002static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1003{
1004	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1005	sk->sk_wmem_queued -= skb->truesize;
1006	sk_mem_uncharge(sk, skb->truesize);
1007	__kfree_skb(skb);
1008}
1009
1010/* Used by processes to "lock" a socket state, so that
1011 * interrupts and bottom half handlers won't change it
1012 * from under us. It essentially blocks any incoming
1013 * packets, so that we won't get any new data or any
1014 * packets that change the state of the socket.
1015 *
1016 * While locked, BH processing will add new packets to
1017 * the backlog queue.  This queue is processed by the
1018 * owner of the socket lock right before it is released.
1019 *
1020 * Since ~2.3.5 it is also exclusive sleep lock serializing
1021 * accesses from user process context.
1022 */
1023#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1024
1025/*
1026 * Macro so as to not evaluate some arguments when
1027 * lockdep is not enabled.
1028 *
1029 * Mark both the sk_lock and the sk_lock.slock as a
1030 * per-address-family lock class.
1031 */
1032#define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1033do {									\
1034	sk->sk_lock.owned = 0;						\
1035	init_waitqueue_head(&sk->sk_lock.wq);				\
1036	spin_lock_init(&(sk)->sk_lock.slock);				\
1037	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1038			sizeof((sk)->sk_lock));				\
1039	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1040		       	(skey), (sname));				\
1041	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1042} while (0)
1043
1044extern void lock_sock_nested(struct sock *sk, int subclass);
 
 
 
 
 
 
1045
1046static inline void lock_sock(struct sock *sk)
1047{
1048	lock_sock_nested(sk, 0);
1049}
1050
1051extern void release_sock(struct sock *sk);
 
 
1052
1053/* BH context may only use the following locking interface. */
1054#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1055#define bh_lock_sock_nested(__sk) \
1056				spin_lock_nested(&((__sk)->sk_lock.slock), \
1057				SINGLE_DEPTH_NESTING)
1058#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1059
1060extern bool lock_sock_fast(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061/**
1062 * unlock_sock_fast - complement of lock_sock_fast
1063 * @sk: socket
1064 * @slow: slow mode
1065 *
1066 * fast unlock socket for user context.
1067 * If slow mode is on, we call regular release_sock()
1068 */
1069static inline void unlock_sock_fast(struct sock *sk, bool slow)
 
1070{
1071	if (slow)
1072		release_sock(sk);
1073	else
 
 
1074		spin_unlock_bh(&sk->sk_lock.slock);
 
1075}
1076
 
 
 
 
1077
1078extern struct sock		*sk_alloc(struct net *net, int family,
1079					  gfp_t priority,
1080					  struct proto *prot);
1081extern void			sk_free(struct sock *sk);
1082extern void			sk_release_kernel(struct sock *sk);
1083extern struct sock		*sk_clone(const struct sock *sk,
1084					  const gfp_t priority);
1085
1086extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1087					      unsigned long size, int force,
1088					      gfp_t priority);
1089extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1090					      unsigned long size, int force,
1091					      gfp_t priority);
1092extern void			sock_wfree(struct sk_buff *skb);
1093extern void			sock_rfree(struct sk_buff *skb);
1094
1095extern int			sock_setsockopt(struct socket *sock, int level,
1096						int op, char __user *optval,
1097						unsigned int optlen);
1098
1099extern int			sock_getsockopt(struct socket *sock, int level,
1100						int op, char __user *optval, 
1101						int __user *optlen);
1102extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1103						     unsigned long size,
1104						     int noblock,
1105						     int *errcode);
1106extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1107						      unsigned long header_len,
1108						      unsigned long data_len,
1109						      int noblock,
1110						      int *errcode);
1111extern void *sock_kmalloc(struct sock *sk, int size,
1112			  gfp_t priority);
1113extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1114extern void sk_send_sigurg(struct sock *sk);
1115
1116#ifdef CONFIG_CGROUPS
1117extern void sock_update_classid(struct sock *sk);
1118#else
1119static inline void sock_update_classid(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120{
 
 
 
 
 
1121}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122#endif
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124/*
1125 * Functions to fill in entries in struct proto_ops when a protocol
1126 * does not implement a particular function.
1127 */
1128extern int                      sock_no_bind(struct socket *, 
1129					     struct sockaddr *, int);
1130extern int                      sock_no_connect(struct socket *,
1131						struct sockaddr *, int, int);
1132extern int                      sock_no_socketpair(struct socket *,
1133						   struct socket *);
1134extern int                      sock_no_accept(struct socket *,
1135					       struct socket *, int);
1136extern int                      sock_no_getname(struct socket *,
1137						struct sockaddr *, int *, int);
1138extern unsigned int             sock_no_poll(struct file *, struct socket *,
1139					     struct poll_table_struct *);
1140extern int                      sock_no_ioctl(struct socket *, unsigned int,
1141					      unsigned long);
1142extern int			sock_no_listen(struct socket *, int);
1143extern int                      sock_no_shutdown(struct socket *, int);
1144extern int			sock_no_getsockopt(struct socket *, int , int,
1145						   char __user *, int __user *);
1146extern int			sock_no_setsockopt(struct socket *, int, int,
1147						   char __user *, unsigned int);
1148extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1149						struct msghdr *, size_t);
1150extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1151						struct msghdr *, size_t, int);
1152extern int			sock_no_mmap(struct file *file,
1153					     struct socket *sock,
1154					     struct vm_area_struct *vma);
1155extern ssize_t			sock_no_sendpage(struct socket *sock,
1156						struct page *page,
1157						int offset, size_t size, 
1158						int flags);
1159
1160/*
1161 * Functions to fill in entries in struct proto_ops when a protocol
1162 * uses the inet style.
1163 */
1164extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1165				  char __user *optval, int __user *optlen);
1166extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1167			       struct msghdr *msg, size_t size, int flags);
1168extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1169				  char __user *optval, unsigned int optlen);
1170extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1171		int optname, char __user *optval, int __user *optlen);
1172extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1173		int optname, char __user *optval, unsigned int optlen);
1174
1175extern void sk_common_release(struct sock *sk);
1176
1177/*
1178 *	Default socket callbacks and setup code
1179 */
1180 
1181/* Initialise core socket variables */
1182extern void sock_init_data(struct socket *sock, struct sock *sk);
1183
1184extern void sk_filter_release_rcu(struct rcu_head *rcu);
 
1185
1186/**
1187 *	sk_filter_release - release a socket filter
1188 *	@fp: filter to remove
1189 *
1190 *	Remove a filter from a socket and release its resources.
1191 */
1192
1193static inline void sk_filter_release(struct sk_filter *fp)
1194{
1195	if (atomic_dec_and_test(&fp->refcnt))
1196		call_rcu(&fp->rcu, sk_filter_release_rcu);
1197}
1198
1199static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1200{
1201	unsigned int size = sk_filter_len(fp);
1202
1203	atomic_sub(size, &sk->sk_omem_alloc);
1204	sk_filter_release(fp);
1205}
1206
1207static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1208{
1209	atomic_inc(&fp->refcnt);
1210	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1211}
1212
1213/*
1214 * Socket reference counting postulates.
1215 *
1216 * * Each user of socket SHOULD hold a reference count.
1217 * * Each access point to socket (an hash table bucket, reference from a list,
1218 *   running timer, skb in flight MUST hold a reference count.
1219 * * When reference count hits 0, it means it will never increase back.
1220 * * When reference count hits 0, it means that no references from
1221 *   outside exist to this socket and current process on current CPU
1222 *   is last user and may/should destroy this socket.
1223 * * sk_free is called from any context: process, BH, IRQ. When
1224 *   it is called, socket has no references from outside -> sk_free
1225 *   may release descendant resources allocated by the socket, but
1226 *   to the time when it is called, socket is NOT referenced by any
1227 *   hash tables, lists etc.
1228 * * Packets, delivered from outside (from network or from another process)
1229 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1230 *   when they sit in queue. Otherwise, packets will leak to hole, when
1231 *   socket is looked up by one cpu and unhasing is made by another CPU.
1232 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1233 *   (leak to backlog). Packet socket does all the processing inside
1234 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1235 *   use separate SMP lock, so that they are prone too.
1236 */
1237
1238/* Ungrab socket and destroy it, if it was the last reference. */
1239static inline void sock_put(struct sock *sk)
1240{
1241	if (atomic_dec_and_test(&sk->sk_refcnt))
1242		sk_free(sk);
1243}
 
 
 
 
1244
1245extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1246			  const int nested);
 
 
 
 
 
1247
1248static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1249{
1250	sk->sk_tx_queue_mapping = tx_queue;
 
 
 
 
 
 
1251}
1252
 
 
1253static inline void sk_tx_queue_clear(struct sock *sk)
1254{
1255	sk->sk_tx_queue_mapping = -1;
 
 
 
1256}
1257
1258static inline int sk_tx_queue_get(const struct sock *sk)
1259{
1260	return sk ? sk->sk_tx_queue_mapping : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261}
1262
1263static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1264{
1265	sk_tx_queue_clear(sk);
1266	sk->sk_socket = sock;
1267}
1268
1269static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1270{
1271	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1272	return &rcu_dereference_raw(sk->sk_wq)->wait;
1273}
1274/* Detach socket from process context.
1275 * Announce socket dead, detach it from wait queue and inode.
1276 * Note that parent inode held reference count on this struct sock,
1277 * we do not release it in this function, because protocol
1278 * probably wants some additional cleanups or even continuing
1279 * to work with this socket (TCP).
1280 */
1281static inline void sock_orphan(struct sock *sk)
1282{
1283	write_lock_bh(&sk->sk_callback_lock);
1284	sock_set_flag(sk, SOCK_DEAD);
1285	sk_set_socket(sk, NULL);
1286	sk->sk_wq  = NULL;
1287	write_unlock_bh(&sk->sk_callback_lock);
1288}
1289
1290static inline void sock_graft(struct sock *sk, struct socket *parent)
1291{
 
1292	write_lock_bh(&sk->sk_callback_lock);
1293	sk->sk_wq = parent->wq;
1294	parent->sk = sk;
1295	sk_set_socket(sk, parent);
 
1296	security_sock_graft(sk, parent);
1297	write_unlock_bh(&sk->sk_callback_lock);
1298}
1299
1300extern int sock_i_uid(struct sock *sk);
1301extern unsigned long sock_i_ino(struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302
1303static inline struct dst_entry *
1304__sk_dst_get(struct sock *sk)
1305{
1306	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1307						       lockdep_is_held(&sk->sk_lock.slock));
1308}
1309
1310static inline struct dst_entry *
1311sk_dst_get(struct sock *sk)
1312{
1313	struct dst_entry *dst;
1314
1315	rcu_read_lock();
1316	dst = rcu_dereference(sk->sk_dst_cache);
1317	if (dst)
1318		dst_hold(dst);
1319	rcu_read_unlock();
1320	return dst;
1321}
1322
1323extern void sk_reset_txq(struct sock *sk);
1324
1325static inline void dst_negative_advice(struct sock *sk)
1326{
1327	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1328
1329	if (dst && dst->ops->negative_advice) {
1330		ndst = dst->ops->negative_advice(dst);
 
1331
1332		if (ndst != dst) {
1333			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1334			sk_reset_txq(sk);
1335		}
1336	}
1337}
1338
1339static inline void
1340__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1341{
1342	struct dst_entry *old_dst;
1343
1344	sk_tx_queue_clear(sk);
1345	/*
1346	 * This can be called while sk is owned by the caller only,
1347	 * with no state that can be checked in a rcu_dereference_check() cond
1348	 */
1349	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1350	rcu_assign_pointer(sk->sk_dst_cache, dst);
1351	dst_release(old_dst);
1352}
1353
1354static inline void
1355sk_dst_set(struct sock *sk, struct dst_entry *dst)
1356{
1357	spin_lock(&sk->sk_dst_lock);
1358	__sk_dst_set(sk, dst);
1359	spin_unlock(&sk->sk_dst_lock);
 
 
 
1360}
1361
1362static inline void
1363__sk_dst_reset(struct sock *sk)
1364{
1365	__sk_dst_set(sk, NULL);
1366}
1367
1368static inline void
1369sk_dst_reset(struct sock *sk)
1370{
1371	spin_lock(&sk->sk_dst_lock);
1372	__sk_dst_reset(sk);
1373	spin_unlock(&sk->sk_dst_lock);
1374}
1375
1376extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1379
1380static inline int sk_can_gso(const struct sock *sk)
1381{
1382	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1383}
1384
1385extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1386
1387static inline void sk_nocaps_add(struct sock *sk, int flags)
1388{
1389	sk->sk_route_nocaps |= flags;
1390	sk->sk_route_caps &= ~flags;
1391}
1392
1393static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1394					   char __user *from, char *to,
1395					   int copy, int offset)
1396{
1397	if (skb->ip_summed == CHECKSUM_NONE) {
1398		int err = 0;
1399		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1400		if (err)
1401			return err;
1402		skb->csum = csum_block_add(skb->csum, csum, offset);
1403	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1404		if (!access_ok(VERIFY_READ, from, copy) ||
1405		    __copy_from_user_nocache(to, from, copy))
1406			return -EFAULT;
1407	} else if (copy_from_user(to, from, copy))
1408		return -EFAULT;
1409
1410	return 0;
1411}
1412
1413static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1414				       char __user *from, int copy)
1415{
1416	int err, offset = skb->len;
1417
1418	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1419				       copy, offset);
1420	if (err)
1421		__skb_trim(skb, offset);
1422
1423	return err;
1424}
1425
1426static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1427					   struct sk_buff *skb,
1428					   struct page *page,
1429					   int off, int copy)
1430{
1431	int err;
1432
1433	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1434				       copy, skb->len);
1435	if (err)
1436		return err;
1437
1438	skb->len	     += copy;
1439	skb->data_len	     += copy;
1440	skb->truesize	     += copy;
1441	sk->sk_wmem_queued   += copy;
1442	sk_mem_charge(sk, copy);
1443	return 0;
1444}
1445
1446static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1447				   struct sk_buff *skb, struct page *page,
1448				   int off, int copy)
1449{
1450	if (skb->ip_summed == CHECKSUM_NONE) {
1451		int err = 0;
1452		__wsum csum = csum_and_copy_from_user(from,
1453						     page_address(page) + off,
1454							    copy, 0, &err);
1455		if (err)
1456			return err;
1457		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1458	} else if (copy_from_user(page_address(page) + off, from, copy))
1459		return -EFAULT;
1460
1461	skb->len	     += copy;
1462	skb->data_len	     += copy;
1463	skb->truesize	     += copy;
1464	sk->sk_wmem_queued   += copy;
1465	sk_mem_charge(sk, copy);
1466	return 0;
1467}
1468
1469/**
1470 * sk_wmem_alloc_get - returns write allocations
1471 * @sk: socket
1472 *
1473 * Returns sk_wmem_alloc minus initial offset of one
1474 */
1475static inline int sk_wmem_alloc_get(const struct sock *sk)
1476{
1477	return atomic_read(&sk->sk_wmem_alloc) - 1;
1478}
1479
1480/**
1481 * sk_rmem_alloc_get - returns read allocations
1482 * @sk: socket
1483 *
1484 * Returns sk_rmem_alloc
1485 */
1486static inline int sk_rmem_alloc_get(const struct sock *sk)
1487{
1488	return atomic_read(&sk->sk_rmem_alloc);
1489}
1490
1491/**
1492 * sk_has_allocations - check if allocations are outstanding
1493 * @sk: socket
1494 *
1495 * Returns true if socket has write or read allocations
1496 */
1497static inline int sk_has_allocations(const struct sock *sk)
1498{
1499	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1500}
1501
1502/**
1503 * wq_has_sleeper - check if there are any waiting processes
1504 * @wq: struct socket_wq
1505 *
1506 * Returns true if socket_wq has waiting processes
1507 *
1508 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1509 * barrier call. They were added due to the race found within the tcp code.
1510 *
1511 * Consider following tcp code paths:
1512 *
1513 * CPU1                  CPU2
1514 *
1515 * sys_select            receive packet
1516 *   ...                 ...
1517 *   __add_wait_queue    update tp->rcv_nxt
1518 *   ...                 ...
1519 *   tp->rcv_nxt check   sock_def_readable
1520 *   ...                 {
1521 *   schedule               rcu_read_lock();
1522 *                          wq = rcu_dereference(sk->sk_wq);
1523 *                          if (wq && waitqueue_active(&wq->wait))
1524 *                              wake_up_interruptible(&wq->wait)
1525 *                          ...
1526 *                       }
1527 *
1528 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1529 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1530 * could then endup calling schedule and sleep forever if there are no more
1531 * data on the socket.
1532 *
1533 */
1534static inline bool wq_has_sleeper(struct socket_wq *wq)
1535{
1536
1537	/*
1538	 * We need to be sure we are in sync with the
1539	 * add_wait_queue modifications to the wait queue.
1540	 *
1541	 * This memory barrier is paired in the sock_poll_wait.
1542	 */
1543	smp_mb();
1544	return wq && waitqueue_active(&wq->wait);
1545}
1546
1547/**
1548 * sock_poll_wait - place memory barrier behind the poll_wait call.
1549 * @filp:           file
1550 * @wait_address:   socket wait queue
1551 * @p:              poll_table
1552 *
1553 * See the comments in the wq_has_sleeper function.
1554 */
1555static inline void sock_poll_wait(struct file *filp,
1556		wait_queue_head_t *wait_address, poll_table *p)
1557{
1558	if (p && wait_address) {
1559		poll_wait(filp, wait_address, p);
1560		/*
1561		 * We need to be sure we are in sync with the
1562		 * socket flags modification.
1563		 *
1564		 * This memory barrier is paired in the wq_has_sleeper.
1565		*/
1566		smp_mb();
1567	}
1568}
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
1570/*
1571 * 	Queue a received datagram if it will fit. Stream and sequenced
1572 *	protocols can't normally use this as they need to fit buffers in
1573 *	and play with them.
1574 *
1575 * 	Inlined as it's very short and called for pretty much every
1576 *	packet ever received.
1577 */
1578
1579static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1580{
1581	skb_orphan(skb);
1582	skb->sk = sk;
1583	skb->destructor = sock_wfree;
1584	/*
1585	 * We used to take a refcount on sk, but following operation
1586	 * is enough to guarantee sk_free() wont free this sock until
1587	 * all in-flight packets are completed
1588	 */
1589	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1590}
1591
1592static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1593{
1594	skb_orphan(skb);
1595	skb->sk = sk;
1596	skb->destructor = sock_rfree;
1597	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1598	sk_mem_charge(sk, skb->truesize);
1599}
1600
1601extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1602			   unsigned long expires);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603
1604extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1605
1606extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 
 
 
 
1607
1608extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
1609
1610/*
1611 *	Recover an error report and clear atomically
1612 */
1613 
1614static inline int sock_error(struct sock *sk)
1615{
1616	int err;
1617	if (likely(!sk->sk_err))
 
 
 
 
1618		return 0;
 
1619	err = xchg(&sk->sk_err, 0);
1620	return -err;
1621}
1622
 
 
1623static inline unsigned long sock_wspace(struct sock *sk)
1624{
1625	int amt = 0;
1626
1627	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1628		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1629		if (amt < 0) 
1630			amt = 0;
1631	}
1632	return amt;
1633}
1634
1635static inline void sk_wake_async(struct sock *sk, int how, int band)
 
 
 
 
1636{
1637	if (sock_flag(sk, SOCK_FASYNC))
1638		sock_wake_async(sk->sk_socket, how, band);
 
 
 
1639}
1640
1641#define SOCK_MIN_SNDBUF 2048
1642/*
1643 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1644 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1645 */
1646#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1647
1648static inline void sk_stream_moderate_sndbuf(struct sock *sk)
 
 
 
1649{
1650	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1651		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1652		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
 
1653	}
1654}
1655
1656struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
 
 
 
 
 
 
 
 
1657
1658static inline struct page *sk_stream_alloc_page(struct sock *sk)
1659{
1660	struct page *page = NULL;
1661
1662	page = alloc_pages(sk->sk_allocation, 0);
1663	if (!page) {
1664		sk->sk_prot->enter_memory_pressure(sk);
1665		sk_stream_moderate_sndbuf(sk);
1666	}
1667	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1668}
1669
 
 
1670/*
1671 *	Default write policy as shown to user space via poll/select/SIGIO
1672 */
1673static inline int sock_writeable(const struct sock *sk) 
1674{
1675	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1676}
1677
1678static inline gfp_t gfp_any(void)
1679{
1680	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1681}
1682
1683static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
 
 
 
 
 
1684{
1685	return noblock ? 0 : sk->sk_rcvtimeo;
1686}
1687
1688static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1689{
1690	return noblock ? 0 : sk->sk_sndtimeo;
1691}
1692
1693static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1694{
1695	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
 
 
1696}
1697
1698/* Alas, with timeout socket operations are not restartable.
1699 * Compare this to poll().
1700 */
1701static inline int sock_intr_errno(long timeo)
1702{
1703	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1704}
1705
1706extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1707	struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708
1709static __inline__ void
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1711{
1712	ktime_t kt = skb->tstamp;
1713	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1714
 
1715	/*
1716	 * generate control messages if
1717	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1718	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1719	 * - software time stamp available and wanted
1720	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1721	 * - hardware time stamps available and wanted
1722	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1723	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1724	 */
1725	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1726	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1727	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1728	    (hwtstamps->hwtstamp.tv64 &&
1729	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1730	    (hwtstamps->syststamp.tv64 &&
1731	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1732		__sock_recv_timestamp(msg, sk, skb);
1733	else
1734		sk->sk_stamp = kt;
 
 
 
1735}
1736
1737extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1738				     struct sk_buff *skb);
1739
1740static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1741					  struct sk_buff *skb)
 
1742{
1743#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1744			   (1UL << SOCK_RCVTSTAMP)			| \
1745			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1746			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1747			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1748			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1749
1750	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1751		__sock_recv_ts_and_drops(msg, sk, skb);
1752	else
1753		sk->sk_stamp = skb->tstamp;
 
 
1754}
1755
 
 
1756/**
1757 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1758 * @sk:		socket sending this packet
1759 * @tx_flags:	filled with instructions for time stamping
1760 *
1761 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1762 * parameters are invalid.
1763 */
1764extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765
1766/**
1767 * sk_eat_skb - Release a skb if it is no longer needed
1768 * @sk: socket to eat this skb from
1769 * @skb: socket buffer to eat
1770 * @copied_early: flag indicating whether DMA operations copied this data early
1771 *
1772 * This routine must be called with interrupts disabled or with the socket
1773 * locked so that the sk_buff queue operation is ok.
1774*/
1775#ifdef CONFIG_NET_DMA
1776static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1777{
1778	__skb_unlink(skb, &sk->sk_receive_queue);
1779	if (!copied_early)
1780		__kfree_skb(skb);
1781	else
1782		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1783}
1784#else
1785static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1786{
1787	__skb_unlink(skb, &sk->sk_receive_queue);
1788	__kfree_skb(skb);
1789}
1790#endif
1791
1792static inline
1793struct net *sock_net(const struct sock *sk)
1794{
1795	return read_pnet(&sk->sk_net);
 
 
 
 
1796}
1797
1798static inline
1799void sock_net_set(struct sock *sk, struct net *net)
 
 
1800{
1801	write_pnet(&sk->sk_net, net);
1802}
1803
1804/*
1805 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1806 * They should not hold a reference to a namespace in order to allow
1807 * to stop it.
1808 * Sockets after sk_change_net should be released using sk_release_kernel
1809 */
1810static inline void sk_change_net(struct sock *sk, struct net *net)
1811{
1812	put_net(sock_net(sk));
1813	sock_net_set(sk, hold_net(net));
1814}
1815
1816static inline struct sock *skb_steal_sock(struct sk_buff *skb)
 
 
 
 
 
1817{
1818	if (unlikely(skb->sk)) {
1819		struct sock *sk = skb->sk;
1820
1821		skb->destructor = NULL;
1822		skb->sk = NULL;
1823		return sk;
 
 
 
 
 
1824	}
1825	return NULL;
 
 
 
 
 
 
 
 
 
 
1826}
1827
1828extern void sock_enable_timestamp(struct sock *sk, int flag);
1829extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1830extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1831
1832/* 
1833 *	Enable debug/info messages 
1834 */
1835extern int net_msg_warn;
1836#define NETDEBUG(fmt, args...) \
1837	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1838
1839#define LIMIT_NETDEBUG(fmt, args...) \
1840	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841
1842extern __u32 sysctl_wmem_max;
1843extern __u32 sysctl_rmem_max;
1844
1845extern void sk_init(void);
1846
1847extern int sysctl_optmem_max;
1848
1849extern __u32 sysctl_wmem_default;
1850extern __u32 sysctl_rmem_default;
1851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852#endif	/* _SOCK_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
 
 
 
 
 
 
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/rculist_nulls.h>
  60#include <linux/poll.h>
  61#include <linux/sockptr.h>
  62#include <linux/indirect_call_wrapper.h>
  63#include <linux/atomic.h>
  64#include <linux/refcount.h>
  65#include <linux/llist.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71#include <uapi/linux/socket.h>
  72
  73/*
  74 * This structure really needs to be cleaned up.
  75 * Most of it is for TCP, and not used by any of
  76 * the other protocols.
  77 */
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
  79/* This is the per-socket lock.  The spinlock provides a synchronization
  80 * between user contexts and software interrupt processing, whereas the
  81 * mini-semaphore synchronizes multiple users amongst themselves.
  82 */
  83typedef struct {
  84	spinlock_t		slock;
  85	int			owned;
  86	wait_queue_head_t	wq;
  87	/*
  88	 * We express the mutex-alike socket_lock semantics
  89	 * to the lock validator by explicitly managing
  90	 * the slock as a lock variant (in addition to
  91	 * the slock itself):
  92	 */
  93#ifdef CONFIG_DEBUG_LOCK_ALLOC
  94	struct lockdep_map dep_map;
  95#endif
  96} socket_lock_t;
  97
  98struct sock;
  99struct proto;
 100struct net;
 101
 102typedef __u32 __bitwise __portpair;
 103typedef __u64 __bitwise __addrpair;
 104
 105/**
 106 *	struct sock_common - minimal network layer representation of sockets
 107 *	@skc_daddr: Foreign IPv4 addr
 108 *	@skc_rcv_saddr: Bound local IPv4 addr
 109 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 110 *	@skc_hash: hash value used with various protocol lookup tables
 111 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 112 *	@skc_dport: placeholder for inet_dport/tw_dport
 113 *	@skc_num: placeholder for inet_num/tw_num
 114 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 115 *	@skc_family: network address family
 116 *	@skc_state: Connection state
 117 *	@skc_reuse: %SO_REUSEADDR setting
 118 *	@skc_reuseport: %SO_REUSEPORT setting
 119 *	@skc_ipv6only: socket is IPV6 only
 120 *	@skc_net_refcnt: socket is using net ref counting
 121 *	@skc_bound_dev_if: bound device index if != 0
 122 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 123 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 124 *	@skc_prot: protocol handlers inside a network family
 125 *	@skc_net: reference to the network namespace of this socket
 126 *	@skc_v6_daddr: IPV6 destination address
 127 *	@skc_v6_rcv_saddr: IPV6 source address
 128 *	@skc_cookie: socket's cookie value
 129 *	@skc_node: main hash linkage for various protocol lookup tables
 130 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 131 *	@skc_tx_queue_mapping: tx queue number for this connection
 132 *	@skc_rx_queue_mapping: rx queue number for this connection
 133 *	@skc_flags: place holder for sk_flags
 134 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 135 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 136 *	@skc_listener: connection request listener socket (aka rsk_listener)
 137 *		[union with @skc_flags]
 138 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 139 *		[union with @skc_flags]
 140 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 141 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 142 *		[union with @skc_incoming_cpu]
 143 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 144 *		[union with @skc_incoming_cpu]
 145 *	@skc_refcnt: reference count
 146 *
 147 *	This is the minimal network layer representation of sockets, the header
 148 *	for struct sock and struct inet_timewait_sock.
 149 */
 150struct sock_common {
 151	union {
 152		__addrpair	skc_addrpair;
 153		struct {
 154			__be32	skc_daddr;
 155			__be32	skc_rcv_saddr;
 156		};
 157	};
 158	union  {
 159		unsigned int	skc_hash;
 160		__u16		skc_u16hashes[2];
 161	};
 162	/* skc_dport && skc_num must be grouped as well */
 163	union {
 164		__portpair	skc_portpair;
 165		struct {
 166			__be16	skc_dport;
 167			__u16	skc_num;
 168		};
 169	};
 170
 171	unsigned short		skc_family;
 172	volatile unsigned char	skc_state;
 173	unsigned char		skc_reuse:4;
 174	unsigned char		skc_reuseport:1;
 175	unsigned char		skc_ipv6only:1;
 176	unsigned char		skc_net_refcnt:1;
 177	int			skc_bound_dev_if;
 178	union {
 179		struct hlist_node	skc_bind_node;
 180		struct hlist_node	skc_portaddr_node;
 181	};
 182	struct proto		*skc_prot;
 183	possible_net_t		skc_net;
 184
 185#if IS_ENABLED(CONFIG_IPV6)
 186	struct in6_addr		skc_v6_daddr;
 187	struct in6_addr		skc_v6_rcv_saddr;
 188#endif
 189
 190	atomic64_t		skc_cookie;
 191
 192	/* following fields are padding to force
 193	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 194	 * assuming IPV6 is enabled. We use this padding differently
 195	 * for different kind of 'sockets'
 196	 */
 197	union {
 198		unsigned long	skc_flags;
 199		struct sock	*skc_listener; /* request_sock */
 200		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 201	};
 202	/*
 203	 * fields between dontcopy_begin/dontcopy_end
 204	 * are not copied in sock_copy()
 205	 */
 206	/* private: */
 207	int			skc_dontcopy_begin[0];
 208	/* public: */
 209	union {
 210		struct hlist_node	skc_node;
 211		struct hlist_nulls_node skc_nulls_node;
 212	};
 213	unsigned short		skc_tx_queue_mapping;
 214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 215	unsigned short		skc_rx_queue_mapping;
 216#endif
 217	union {
 218		int		skc_incoming_cpu;
 219		u32		skc_rcv_wnd;
 220		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 221	};
 222
 223	refcount_t		skc_refcnt;
 224	/* private: */
 225	int                     skc_dontcopy_end[0];
 226	union {
 227		u32		skc_rxhash;
 228		u32		skc_window_clamp;
 229		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 230	};
 231	/* public: */
 232};
 233
 234struct bpf_local_storage;
 235struct sk_filter;
 236
 237/**
 238  *	struct sock - network layer representation of sockets
 239  *	@__sk_common: shared layout with inet_timewait_sock
 240  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 241  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 242  *	@sk_lock:	synchronizer
 243  *	@sk_kern_sock: True if sock is using kernel lock classes
 244  *	@sk_rcvbuf: size of receive buffer in bytes
 245  *	@sk_wq: sock wait queue and async head
 246  *	@sk_rx_dst: receive input route used by early demux
 247  *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
 248  *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
 249  *	@sk_dst_cache: destination cache
 250  *	@sk_dst_pending_confirm: need to confirm neighbour
 251  *	@sk_policy: flow policy
 252  *	@sk_receive_queue: incoming packets
 253  *	@sk_wmem_alloc: transmit queue bytes committed
 254  *	@sk_tsq_flags: TCP Small Queues flags
 255  *	@sk_write_queue: Packet sending queue
 
 256  *	@sk_omem_alloc: "o" is "option" or "other"
 257  *	@sk_wmem_queued: persistent queue size
 258  *	@sk_forward_alloc: space allocated forward
 259  *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
 260  *	@sk_napi_id: id of the last napi context to receive data for sk
 261  *	@sk_ll_usec: usecs to busypoll when there is no data
 262  *	@sk_allocation: allocation mode
 263  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 264  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 265  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 266  *	@sk_sndbuf: size of send buffer in bytes
 267  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 268  *	@sk_no_check_rx: allow zero checksum in RX packets
 
 269  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 270  *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
 271  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 272  *	@sk_gso_max_size: Maximum GSO segment size to build
 273  *	@sk_gso_max_segs: Maximum number of GSO segments
 274  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 275  *	@sk_lingertime: %SO_LINGER l_linger setting
 276  *	@sk_backlog: always used with the per-socket spinlock held
 277  *	@sk_callback_lock: used with the callbacks in the end of this struct
 278  *	@sk_error_queue: rarely used
 279  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 280  *			  IPV6_ADDRFORM for instance)
 281  *	@sk_err: last error
 282  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 283  *		      persistent failure not just 'timed out'
 284  *	@sk_drops: raw/udp drops counter
 285  *	@sk_ack_backlog: current listen backlog
 286  *	@sk_max_ack_backlog: listen backlog set in listen()
 287  *	@sk_uid: user id of owner
 288  *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
 289  *	@sk_busy_poll_budget: napi processing budget when busypolling
 290  *	@sk_priority: %SO_PRIORITY setting
 291  *	@sk_type: socket type (%SOCK_STREAM, etc)
 292  *	@sk_protocol: which protocol this socket belongs in this network family
 293  *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
 294  *	@sk_peer_pid: &struct pid for this socket's peer
 295  *	@sk_peer_cred: %SO_PEERCRED setting
 296  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 297  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 298  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 299  *	@sk_txhash: computed flow hash for use on transmit
 300  *	@sk_txrehash: enable TX hash rethink
 301  *	@sk_filter: socket filtering instructions
 
 302  *	@sk_timer: sock cleanup timer
 303  *	@sk_stamp: time stamp of last packet received
 304  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 305  *	@sk_tsflags: SO_TIMESTAMPING flags
 306  *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
 307  *			   Sockets that can be used under memory reclaim should
 308  *			   set this to false.
 309  *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
 310  *	              for timestamping
 311  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 312  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 313  *	@sk_socket: Identd and reporting IO signals
 314  *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
 315  *	@sk_frag: cached page frag
 316  *	@sk_peek_off: current peek_offset value
 317  *	@sk_send_head: front of stuff to transmit
 318  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 319  *	@sk_security: used by security modules
 320  *	@sk_mark: generic packet mark
 321  *	@sk_cgrp_data: cgroup data for this cgroup
 322  *	@sk_memcg: this socket's memory cgroup association
 323  *	@sk_write_pending: a write to stream socket waits to start
 324  *	@sk_disconnects: number of disconnect operations performed on this sock
 325  *	@sk_state_change: callback to indicate change in the state of the sock
 326  *	@sk_data_ready: callback to indicate there is data to be processed
 327  *	@sk_write_space: callback to indicate there is bf sending space available
 328  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 329  *	@sk_backlog_rcv: callback to process the backlog
 330  *	@sk_validate_xmit_skb: ptr to an optional validate function
 331  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 332  *	@sk_reuseport_cb: reuseport group container
 333  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 334  *	@sk_rcu: used during RCU grace period
 335  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 336  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 337  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
 338  *	@sk_txtime_unused: unused txtime flags
 339  *	@ns_tracker: tracker for netns reference
 340  */
 341struct sock {
 342	/*
 343	 * Now struct inet_timewait_sock also uses sock_common, so please just
 344	 * don't add nothing before this first member (__sk_common) --acme
 345	 */
 346	struct sock_common	__sk_common;
 347#define sk_node			__sk_common.skc_node
 348#define sk_nulls_node		__sk_common.skc_nulls_node
 349#define sk_refcnt		__sk_common.skc_refcnt
 350#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 351#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 352#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 353#endif
 354
 355#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 356#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 357#define sk_hash			__sk_common.skc_hash
 358#define sk_portpair		__sk_common.skc_portpair
 359#define sk_num			__sk_common.skc_num
 360#define sk_dport		__sk_common.skc_dport
 361#define sk_addrpair		__sk_common.skc_addrpair
 362#define sk_daddr		__sk_common.skc_daddr
 363#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 364#define sk_family		__sk_common.skc_family
 365#define sk_state		__sk_common.skc_state
 366#define sk_reuse		__sk_common.skc_reuse
 367#define sk_reuseport		__sk_common.skc_reuseport
 368#define sk_ipv6only		__sk_common.skc_ipv6only
 369#define sk_net_refcnt		__sk_common.skc_net_refcnt
 370#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 371#define sk_bind_node		__sk_common.skc_bind_node
 372#define sk_prot			__sk_common.skc_prot
 373#define sk_net			__sk_common.skc_net
 374#define sk_v6_daddr		__sk_common.skc_v6_daddr
 375#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 376#define sk_cookie		__sk_common.skc_cookie
 377#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 378#define sk_flags		__sk_common.skc_flags
 379#define sk_rxhash		__sk_common.skc_rxhash
 380
 381	__cacheline_group_begin(sock_write_rx);
 382
 383	atomic_t		sk_drops;
 384	__s32			sk_peek_off;
 385	struct sk_buff_head	sk_error_queue;
 386	struct sk_buff_head	sk_receive_queue;
 387	/*
 388	 * The backlog queue is special, it is always used with
 389	 * the per-socket spinlock held and requires low latency
 390	 * access. Therefore we special case it's implementation.
 391	 * Note : rmem_alloc is in this structure to fill a hole
 392	 * on 64bit arches, not because its logically part of
 393	 * backlog.
 394	 */
 395	struct {
 396		atomic_t	rmem_alloc;
 397		int		len;
 398		struct sk_buff	*head;
 399		struct sk_buff	*tail;
 400	} sk_backlog;
 401#define sk_rmem_alloc sk_backlog.rmem_alloc
 402
 403	__cacheline_group_end(sock_write_rx);
 404
 405	__cacheline_group_begin(sock_read_rx);
 406	/* early demux fields */
 407	struct dst_entry __rcu	*sk_rx_dst;
 408	int			sk_rx_dst_ifindex;
 409	u32			sk_rx_dst_cookie;
 410
 411#ifdef CONFIG_NET_RX_BUSY_POLL
 412	unsigned int		sk_ll_usec;
 413	unsigned int		sk_napi_id;
 414	u16			sk_busy_poll_budget;
 415	u8			sk_prefer_busy_poll;
 416#endif
 417	u8			sk_userlocks;
 418	int			sk_rcvbuf;
 419
 420	struct sk_filter __rcu	*sk_filter;
 421	union {
 422		struct socket_wq __rcu	*sk_wq;
 423		/* private: */
 424		struct socket_wq	*sk_wq_raw;
 425		/* public: */
 426	};
 427
 428	void			(*sk_data_ready)(struct sock *sk);
 429	long			sk_rcvtimeo;
 430	int			sk_rcvlowat;
 431	__cacheline_group_end(sock_read_rx);
 432
 433	__cacheline_group_begin(sock_read_rxtx);
 434	int			sk_err;
 435	struct socket		*sk_socket;
 436	struct mem_cgroup	*sk_memcg;
 437#ifdef CONFIG_XFRM
 438	struct xfrm_policy __rcu *sk_policy[2];
 439#endif
 440	__cacheline_group_end(sock_read_rxtx);
 441
 442	__cacheline_group_begin(sock_write_rxtx);
 443	socket_lock_t		sk_lock;
 444	u32			sk_reserved_mem;
 445	int			sk_forward_alloc;
 446	u32			sk_tsflags;
 447	__cacheline_group_end(sock_write_rxtx);
 448
 449	__cacheline_group_begin(sock_write_tx);
 450	int			sk_write_pending;
 451	atomic_t		sk_omem_alloc;
 452	int			sk_sndbuf;
 453
 
 
 
 
 
 
 
 454	int			sk_wmem_queued;
 455	refcount_t		sk_wmem_alloc;
 456	unsigned long		sk_tsq_flags;
 457	union {
 458		struct sk_buff	*sk_send_head;
 459		struct rb_root	tcp_rtx_queue;
 460	};
 461	struct sk_buff_head	sk_write_queue;
 462	u32			sk_dst_pending_confirm;
 463	u32			sk_pacing_status; /* see enum sk_pacing */
 464	struct page_frag	sk_frag;
 465	struct timer_list	sk_timer;
 466
 467	unsigned long		sk_pacing_rate; /* bytes per second */
 468	atomic_t		sk_zckey;
 469	atomic_t		sk_tskey;
 470	__cacheline_group_end(sock_write_tx);
 471
 472	__cacheline_group_begin(sock_read_tx);
 473	unsigned long		sk_max_pacing_rate;
 474	long			sk_sndtimeo;
 475	u32			sk_priority;
 476	u32			sk_mark;
 477	struct dst_entry __rcu	*sk_dst_cache;
 478	netdev_features_t	sk_route_caps;
 479#ifdef CONFIG_SOCK_VALIDATE_XMIT
 480	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 481							struct net_device *dev,
 482							struct sk_buff *skb);
 483#endif
 484	u16			sk_gso_type;
 485	u16			sk_gso_max_segs;
 486	unsigned int		sk_gso_max_size;
 487	gfp_t			sk_allocation;
 488	u32			sk_txhash;
 489	u8			sk_pacing_shift;
 490	bool			sk_use_task_frag;
 491	__cacheline_group_end(sock_read_tx);
 492
 493	/*
 494	 * Because of non atomicity rules, all
 495	 * changes are protected by socket lock.
 496	 */
 497	u8			sk_gso_disabled : 1,
 498				sk_kern_sock : 1,
 499				sk_no_check_tx : 1,
 500				sk_no_check_rx : 1;
 501	u8			sk_shutdown;
 502	u16			sk_type;
 503	u16			sk_protocol;
 504	unsigned long	        sk_lingertime;
 
 505	struct proto		*sk_prot_creator;
 506	rwlock_t		sk_callback_lock;
 507	int			sk_err_soft;
 508	u32			sk_ack_backlog;
 509	u32			sk_max_ack_backlog;
 510	kuid_t			sk_uid;
 511	spinlock_t		sk_peer_lock;
 512	int			sk_bind_phc;
 513	struct pid		*sk_peer_pid;
 514	const struct cred	*sk_peer_cred;
 515
 
 
 
 516	ktime_t			sk_stamp;
 517#if BITS_PER_LONG==32
 518	seqlock_t		sk_stamp_seq;
 519#endif
 520	int			sk_disconnects;
 521
 522	u8			sk_txrehash;
 523	u8			sk_clockid;
 524	u8			sk_txtime_deadline_mode : 1,
 525				sk_txtime_report_errors : 1,
 526				sk_txtime_unused : 6;
 527
 528	void			*sk_user_data;
 
 
 
 
 529#ifdef CONFIG_SECURITY
 530	void			*sk_security;
 531#endif
 532	struct sock_cgroup_data	sk_cgrp_data;
 
 533	void			(*sk_state_change)(struct sock *sk);
 
 534	void			(*sk_write_space)(struct sock *sk);
 535	void			(*sk_error_report)(struct sock *sk);
 536	int			(*sk_backlog_rcv)(struct sock *sk,
 537						  struct sk_buff *skb);
 538	void                    (*sk_destruct)(struct sock *sk);
 539	struct sock_reuseport __rcu	*sk_reuseport_cb;
 540#ifdef CONFIG_BPF_SYSCALL
 541	struct bpf_local_storage __rcu	*sk_bpf_storage;
 542#endif
 543	struct rcu_head		sk_rcu;
 544	netns_tracker		ns_tracker;
 545};
 546
 547enum sk_pacing {
 548	SK_PACING_NONE		= 0,
 549	SK_PACING_NEEDED	= 1,
 550	SK_PACING_FQ		= 2,
 551};
 552
 553/* flag bits in sk_user_data
 554 *
 555 * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
 556 *   not be suitable for copying when cloning the socket. For instance,
 557 *   it can point to a reference counted object. sk_user_data bottom
 558 *   bit is set if pointer must not be copied.
 559 *
 560 * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
 561 *   managed/owned by a BPF reuseport array. This bit should be set
 562 *   when sk_user_data's sk is added to the bpf's reuseport_array.
 563 *
 564 * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
 565 *   sk_user_data points to psock type. This bit should be set
 566 *   when sk_user_data is assigned to a psock object.
 567 */
 568#define SK_USER_DATA_NOCOPY	1UL
 569#define SK_USER_DATA_BPF	2UL
 570#define SK_USER_DATA_PSOCK	4UL
 571#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
 572				  SK_USER_DATA_PSOCK)
 573
 574/**
 575 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 576 * @sk: socket
 577 */
 578static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 579{
 580	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 581}
 582
 583#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 584
 585/**
 586 * __locked_read_sk_user_data_with_flags - return the pointer
 587 * only if argument flags all has been set in sk_user_data. Otherwise
 588 * return NULL
 589 *
 590 * @sk: socket
 591 * @flags: flag bits
 592 *
 593 * The caller must be holding sk->sk_callback_lock.
 594 */
 595static inline void *
 596__locked_read_sk_user_data_with_flags(const struct sock *sk,
 597				      uintptr_t flags)
 598{
 599	uintptr_t sk_user_data =
 600		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
 601						 lockdep_is_held(&sk->sk_callback_lock));
 602
 603	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
 604
 605	if ((sk_user_data & flags) == flags)
 606		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
 607	return NULL;
 608}
 609
 610/**
 611 * __rcu_dereference_sk_user_data_with_flags - return the pointer
 612 * only if argument flags all has been set in sk_user_data. Otherwise
 613 * return NULL
 614 *
 615 * @sk: socket
 616 * @flags: flag bits
 617 */
 618static inline void *
 619__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
 620					  uintptr_t flags)
 621{
 622	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
 623
 624	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
 625
 626	if ((sk_user_data & flags) == flags)
 627		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
 628	return NULL;
 629}
 630
 631#define rcu_dereference_sk_user_data(sk)				\
 632	__rcu_dereference_sk_user_data_with_flags(sk, 0)
 633#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
 634({									\
 635	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
 636		  __tmp2 = (uintptr_t)(flags);				\
 637	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
 638	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
 639	rcu_assign_pointer(__sk_user_data((sk)),			\
 640			   __tmp1 | __tmp2);				\
 641})
 642#define rcu_assign_sk_user_data(sk, ptr)				\
 643	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
 644
 645static inline
 646struct net *sock_net(const struct sock *sk)
 647{
 648	return read_pnet(&sk->sk_net);
 649}
 650
 651static inline
 652void sock_net_set(struct sock *sk, struct net *net)
 653{
 654	write_pnet(&sk->sk_net, net);
 655}
 656
 657/*
 658 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 659 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 660 * on a socket means that the socket will reuse everybody else's port
 661 * without looking at the other's sk_reuse value.
 662 */
 663
 664#define SK_NO_REUSE	0
 665#define SK_CAN_REUSE	1
 666#define SK_FORCE_REUSE	2
 667
 668int sk_set_peek_off(struct sock *sk, int val);
 669
 670static inline int sk_peek_offset(const struct sock *sk, int flags)
 671{
 672	if (unlikely(flags & MSG_PEEK)) {
 673		return READ_ONCE(sk->sk_peek_off);
 674	}
 675
 676	return 0;
 677}
 678
 679static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 680{
 681	s32 off = READ_ONCE(sk->sk_peek_off);
 682
 683	if (unlikely(off >= 0)) {
 684		off = max_t(s32, off - val, 0);
 685		WRITE_ONCE(sk->sk_peek_off, off);
 686	}
 687}
 688
 689static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 690{
 691	sk_peek_offset_bwd(sk, -val);
 692}
 693
 694/*
 695 * Hashed lists helper routines
 696 */
 697static inline struct sock *sk_entry(const struct hlist_node *node)
 698{
 699	return hlist_entry(node, struct sock, sk_node);
 700}
 701
 702static inline struct sock *__sk_head(const struct hlist_head *head)
 703{
 704	return hlist_entry(head->first, struct sock, sk_node);
 705}
 706
 707static inline struct sock *sk_head(const struct hlist_head *head)
 708{
 709	return hlist_empty(head) ? NULL : __sk_head(head);
 710}
 711
 712static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 713{
 714	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 715}
 716
 717static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 718{
 719	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 720}
 721
 722static inline struct sock *sk_next(const struct sock *sk)
 723{
 724	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 
 725}
 726
 727static inline struct sock *sk_nulls_next(const struct sock *sk)
 728{
 729	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 730		hlist_nulls_entry(sk->sk_nulls_node.next,
 731				  struct sock, sk_nulls_node) :
 732		NULL;
 733}
 734
 735static inline bool sk_unhashed(const struct sock *sk)
 736{
 737	return hlist_unhashed(&sk->sk_node);
 738}
 739
 740static inline bool sk_hashed(const struct sock *sk)
 741{
 742	return !sk_unhashed(sk);
 743}
 744
 745static inline void sk_node_init(struct hlist_node *node)
 746{
 747	node->pprev = NULL;
 748}
 749
 750static inline void __sk_del_node(struct sock *sk)
 
 
 
 
 
 751{
 752	__hlist_del(&sk->sk_node);
 753}
 754
 755/* NB: equivalent to hlist_del_init_rcu */
 756static inline bool __sk_del_node_init(struct sock *sk)
 757{
 758	if (sk_hashed(sk)) {
 759		__sk_del_node(sk);
 760		sk_node_init(&sk->sk_node);
 761		return true;
 762	}
 763	return false;
 764}
 765
 766/* Grab socket reference count. This operation is valid only
 767   when sk is ALREADY grabbed f.e. it is found in hash table
 768   or a list and the lookup is made under lock preventing hash table
 769   modifications.
 770 */
 771
 772static __always_inline void sock_hold(struct sock *sk)
 773{
 774	refcount_inc(&sk->sk_refcnt);
 775}
 776
 777/* Ungrab socket in the context, which assumes that socket refcnt
 778   cannot hit zero, f.e. it is true in context of any socketcall.
 779 */
 780static __always_inline void __sock_put(struct sock *sk)
 781{
 782	refcount_dec(&sk->sk_refcnt);
 783}
 784
 785static inline bool sk_del_node_init(struct sock *sk)
 786{
 787	bool rc = __sk_del_node_init(sk);
 788
 789	if (rc) {
 790		/* paranoid for a while -acme */
 791		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 792		__sock_put(sk);
 793	}
 794	return rc;
 795}
 796#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 797
 798static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 799{
 800	if (sk_hashed(sk)) {
 801		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 802		return true;
 803	}
 804	return false;
 805}
 806
 807static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 808{
 809	bool rc = __sk_nulls_del_node_init_rcu(sk);
 810
 811	if (rc) {
 812		/* paranoid for a while -acme */
 813		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 814		__sock_put(sk);
 815	}
 816	return rc;
 817}
 818
 819static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 820{
 821	hlist_add_head(&sk->sk_node, list);
 822}
 823
 824static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 825{
 826	sock_hold(sk);
 827	__sk_add_node(sk, list);
 828}
 829
 830static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 831{
 832	sock_hold(sk);
 833	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 834	    sk->sk_family == AF_INET6)
 835		hlist_add_tail_rcu(&sk->sk_node, list);
 836	else
 837		hlist_add_head_rcu(&sk->sk_node, list);
 838}
 839
 840static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 841{
 842	sock_hold(sk);
 843	hlist_add_tail_rcu(&sk->sk_node, list);
 844}
 845
 846static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 847{
 848	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 849}
 850
 851static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 852{
 853	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 854}
 855
 856static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 857{
 858	sock_hold(sk);
 859	__sk_nulls_add_node_rcu(sk, list);
 860}
 861
 862static inline void __sk_del_bind_node(struct sock *sk)
 863{
 864	__hlist_del(&sk->sk_bind_node);
 865}
 866
 867static inline void sk_add_bind_node(struct sock *sk,
 868					struct hlist_head *list)
 869{
 870	hlist_add_head(&sk->sk_bind_node, list);
 871}
 872
 873#define sk_for_each(__sk, list) \
 874	hlist_for_each_entry(__sk, list, sk_node)
 875#define sk_for_each_rcu(__sk, list) \
 876	hlist_for_each_entry_rcu(__sk, list, sk_node)
 877#define sk_nulls_for_each(__sk, node, list) \
 878	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 879#define sk_nulls_for_each_rcu(__sk, node, list) \
 880	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 881#define sk_for_each_from(__sk) \
 882	hlist_for_each_entry_from(__sk, sk_node)
 
 883#define sk_nulls_for_each_from(__sk, node) \
 884	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 885		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 886#define sk_for_each_safe(__sk, tmp, list) \
 887	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 888#define sk_for_each_bound(__sk, list) \
 889	hlist_for_each_entry(__sk, list, sk_bind_node)
 890
 891/**
 892 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 893 * @tpos:	the type * to use as a loop cursor.
 894 * @pos:	the &struct hlist_node to use as a loop cursor.
 895 * @head:	the head for your list.
 896 * @offset:	offset of hlist_node within the struct.
 897 *
 898 */
 899#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 900	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 901	     pos != NULL &&						       \
 902		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 903	     pos = rcu_dereference(hlist_next_rcu(pos)))
 904
 905static inline struct user_namespace *sk_user_ns(const struct sock *sk)
 906{
 907	/* Careful only use this in a context where these parameters
 908	 * can not change and must all be valid, such as recvmsg from
 909	 * userspace.
 910	 */
 911	return sk->sk_socket->file->f_cred->user_ns;
 912}
 913
 914/* Sock flags */
 915enum sock_flags {
 916	SOCK_DEAD,
 917	SOCK_DONE,
 918	SOCK_URGINLINE,
 919	SOCK_KEEPOPEN,
 920	SOCK_LINGER,
 921	SOCK_DESTROY,
 922	SOCK_BROADCAST,
 923	SOCK_TIMESTAMP,
 924	SOCK_ZAPPED,
 925	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 926	SOCK_DBG, /* %SO_DEBUG setting */
 927	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 928	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 929	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 930	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 
 
 
 931	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 
 
 
 932	SOCK_FASYNC, /* fasync() active */
 933	SOCK_RXQ_OVFL,
 934	SOCK_ZEROCOPY, /* buffers from userspace */
 935	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 936	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 937		     * Will use last 4 bytes of packet sent from
 938		     * user-space instead.
 939		     */
 940	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 941	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 942	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 943	SOCK_TXTIME,
 944	SOCK_XDP, /* XDP is attached */
 945	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 946	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
 947};
 948
 949#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 950
 951static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
 952{
 953	nsk->sk_flags = osk->sk_flags;
 954}
 955
 956static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 957{
 958	__set_bit(flag, &sk->sk_flags);
 959}
 960
 961static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 962{
 963	__clear_bit(flag, &sk->sk_flags);
 964}
 965
 966static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 967				     int valbool)
 968{
 969	if (valbool)
 970		sock_set_flag(sk, bit);
 971	else
 972		sock_reset_flag(sk, bit);
 973}
 974
 975static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 976{
 977	return test_bit(flag, &sk->sk_flags);
 978}
 979
 980#ifdef CONFIG_NET
 981DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 982static inline int sk_memalloc_socks(void)
 983{
 984	return static_branch_unlikely(&memalloc_socks_key);
 985}
 986
 987void __receive_sock(struct file *file);
 988#else
 989
 990static inline int sk_memalloc_socks(void)
 991{
 992	return 0;
 993}
 994
 995static inline void __receive_sock(struct file *file)
 996{ }
 997#endif
 998
 999static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1000{
1001	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1002}
1003
1004static inline void sk_acceptq_removed(struct sock *sk)
1005{
1006	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1007}
1008
1009static inline void sk_acceptq_added(struct sock *sk)
1010{
1011	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1012}
1013
1014/* Note: If you think the test should be:
1015 *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1017 */
1018static inline bool sk_acceptq_is_full(const struct sock *sk)
1019{
1020	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1021}
1022
1023/*
1024 * Compute minimal free write space needed to queue new packets.
1025 */
1026static inline int sk_stream_min_wspace(const struct sock *sk)
1027{
1028	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1029}
1030
1031static inline int sk_stream_wspace(const struct sock *sk)
1032{
1033	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1034}
1035
1036static inline void sk_wmem_queued_add(struct sock *sk, int val)
1037{
1038	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1039}
1040
1041static inline void sk_forward_alloc_add(struct sock *sk, int val)
1042{
1043	/* Paired with lockless reads of sk->sk_forward_alloc */
1044	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1045}
1046
1047void sk_stream_write_space(struct sock *sk);
1048
1049/* OOB backlog add */
1050static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1051{
1052	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1053	skb_dst_force(skb);
1054
1055	if (!sk->sk_backlog.tail)
1056		WRITE_ONCE(sk->sk_backlog.head, skb);
1057	else
1058		sk->sk_backlog.tail->next = skb;
1059
1060	WRITE_ONCE(sk->sk_backlog.tail, skb);
1061	skb->next = NULL;
1062}
1063
1064/*
1065 * Take into account size of receive queue and backlog queue
1066 * Do not take into account this skb truesize,
1067 * to allow even a single big packet to come.
1068 */
1069static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1070{
1071	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1072
1073	return qsize > limit;
1074}
1075
1076/* The per-socket spinlock must be held here. */
1077static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1078					      unsigned int limit)
1079{
1080	if (sk_rcvqueues_full(sk, limit))
1081		return -ENOBUFS;
1082
1083	/*
1084	 * If the skb was allocated from pfmemalloc reserves, only
1085	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1086	 * helping free memory
1087	 */
1088	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1089		return -ENOMEM;
1090
1091	__sk_add_backlog(sk, skb);
1092	sk->sk_backlog.len += skb->truesize;
1093	return 0;
1094}
1095
1096int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1097
1098INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1099INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1100
1101static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1102{
1103	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1104		return __sk_backlog_rcv(sk, skb);
1105
1106	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1107				  tcp_v6_do_rcv,
1108				  tcp_v4_do_rcv,
1109				  sk, skb);
1110}
1111
1112static inline void sk_incoming_cpu_update(struct sock *sk)
1113{
1114	int cpu = raw_smp_processor_id();
 
1115
1116	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1117		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
 
 
 
1118}
1119
1120
1121static inline void sock_rps_save_rxhash(struct sock *sk,
1122					const struct sk_buff *skb)
1123{
1124#ifdef CONFIG_RPS
1125	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1126	 * here, and another one in sock_rps_record_flow().
1127	 */
1128	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1129		WRITE_ONCE(sk->sk_rxhash, skb->hash);
 
1130#endif
1131}
1132
1133static inline void sock_rps_reset_rxhash(struct sock *sk)
1134{
1135#ifdef CONFIG_RPS
1136	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1137	WRITE_ONCE(sk->sk_rxhash, 0);
 
 
1138#endif
1139}
1140
1141#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1142	({	int __rc, __dis = __sk->sk_disconnects;			\
1143		release_sock(__sk);					\
1144		__rc = __condition;					\
1145		if (!__rc) {						\
1146			*(__timeo) = wait_woken(__wait,			\
1147						TASK_INTERRUPTIBLE,	\
1148						*(__timeo));		\
1149		}							\
1150		sched_annotate_sleep();					\
1151		lock_sock(__sk);					\
1152		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1153		__rc;							\
1154	})
1155
1156int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1157int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1158void sk_stream_wait_close(struct sock *sk, long timeo_p);
1159int sk_stream_error(struct sock *sk, int flags, int err);
1160void sk_stream_kill_queues(struct sock *sk);
1161void sk_set_memalloc(struct sock *sk);
1162void sk_clear_memalloc(struct sock *sk);
1163
1164void __sk_flush_backlog(struct sock *sk);
1165
1166static inline bool sk_flush_backlog(struct sock *sk)
1167{
1168	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1169		__sk_flush_backlog(sk);
1170		return true;
1171	}
1172	return false;
1173}
1174
1175int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1176
1177struct request_sock_ops;
1178struct timewait_sock_ops;
1179struct inet_hashinfo;
1180struct raw_hashinfo;
1181struct smc_hashinfo;
1182struct module;
1183struct sk_psock;
1184
1185/*
1186 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1187 * un-modified. Special care is taken when initializing object to zero.
1188 */
1189static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1190{
1191	if (offsetof(struct sock, sk_node.next) != 0)
1192		memset(sk, 0, offsetof(struct sock, sk_node.next));
1193	memset(&sk->sk_node.pprev, 0,
1194	       size - offsetof(struct sock, sk_node.pprev));
1195}
1196
1197/* Networking protocol blocks we attach to sockets.
1198 * socket layer -> transport layer interface
 
1199 */
1200struct proto {
1201	void			(*close)(struct sock *sk,
1202					long timeout);
1203	int			(*pre_connect)(struct sock *sk,
1204					struct sockaddr *uaddr,
1205					int addr_len);
1206	int			(*connect)(struct sock *sk,
1207					struct sockaddr *uaddr,
1208					int addr_len);
1209	int			(*disconnect)(struct sock *sk, int flags);
1210
1211	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1212					  bool kern);
1213
1214	int			(*ioctl)(struct sock *sk, int cmd,
1215					 int *karg);
1216	int			(*init)(struct sock *sk);
1217	void			(*destroy)(struct sock *sk);
1218	void			(*shutdown)(struct sock *sk, int how);
1219	int			(*setsockopt)(struct sock *sk, int level,
1220					int optname, sockptr_t optval,
1221					unsigned int optlen);
1222	int			(*getsockopt)(struct sock *sk, int level,
 
 
 
 
 
 
 
 
 
1223					int optname, char __user *optval,
1224					int __user *option);
1225	void			(*keepalive)(struct sock *sk, int valbool);
1226#ifdef CONFIG_COMPAT
1227	int			(*compat_ioctl)(struct sock *sk,
1228					unsigned int cmd, unsigned long arg);
1229#endif
1230	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1231					   size_t len);
1232	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1233					   size_t len, int flags, int *addr_len);
1234	void			(*splice_eof)(struct socket *sock);
1235	int			(*bind)(struct sock *sk,
1236					struct sockaddr *addr, int addr_len);
1237	int			(*bind_add)(struct sock *sk,
1238					struct sockaddr *addr, int addr_len);
 
1239
1240	int			(*backlog_rcv) (struct sock *sk,
1241						struct sk_buff *skb);
1242	bool			(*bpf_bypass_getsockopt)(int level,
1243							 int optname);
1244
1245	void		(*release_cb)(struct sock *sk);
1246
1247	/* Keeping track of sk's, looking them up, and port selection methods. */
1248	int			(*hash)(struct sock *sk);
1249	void			(*unhash)(struct sock *sk);
1250	void			(*rehash)(struct sock *sk);
1251	int			(*get_port)(struct sock *sk, unsigned short snum);
1252	void			(*put_port)(struct sock *sk);
1253#ifdef CONFIG_BPF_SYSCALL
1254	int			(*psock_update_sk_prot)(struct sock *sk,
1255							struct sk_psock *psock,
1256							bool restore);
1257#endif
1258
1259	/* Keeping track of sockets in use */
1260#ifdef CONFIG_PROC_FS
1261	unsigned int		inuse_idx;
1262#endif
1263
1264#if IS_ENABLED(CONFIG_MPTCP)
1265	int			(*forward_alloc_get)(const struct sock *sk);
1266#endif
1267
1268	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1269	bool			(*sock_is_readable)(struct sock *sk);
1270	/* Memory pressure */
1271	void			(*enter_memory_pressure)(struct sock *sk);
1272	void			(*leave_memory_pressure)(struct sock *sk);
1273	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1274	int  __percpu		*per_cpu_fw_alloc;
1275	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1276
1277	/*
1278	 * Pressure flag: try to collapse.
1279	 * Technical note: it is used by multiple contexts non atomically.
1280	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1281	 * All the __sk_mem_schedule() is of this nature: accounting
1282	 * is strict, actions are advisory and have some latency.
1283	 */
1284	unsigned long		*memory_pressure;
1285	long			*sysctl_mem;
1286
1287	int			*sysctl_wmem;
1288	int			*sysctl_rmem;
1289	u32			sysctl_wmem_offset;
1290	u32			sysctl_rmem_offset;
1291
1292	int			max_header;
1293	bool			no_autobind;
1294
1295	struct kmem_cache	*slab;
1296	unsigned int		obj_size;
1297	unsigned int		ipv6_pinfo_offset;
1298	slab_flags_t		slab_flags;
1299	unsigned int		useroffset;	/* Usercopy region offset */
1300	unsigned int		usersize;	/* Usercopy region size */
1301
1302	unsigned int __percpu	*orphan_count;
1303
1304	struct request_sock_ops	*rsk_prot;
1305	struct timewait_sock_ops *twsk_prot;
1306
1307	union {
1308		struct inet_hashinfo	*hashinfo;
1309		struct udp_table	*udp_table;
1310		struct raw_hashinfo	*raw_hash;
1311		struct smc_hashinfo	*smc_hash;
1312	} h;
1313
1314	struct module		*owner;
1315
1316	char			name[32];
1317
1318	struct list_head	node;
1319	int			(*diag_destroy)(struct sock *sk, int err);
1320} __randomize_layout;
1321
1322int proto_register(struct proto *prot, int alloc_slab);
1323void proto_unregister(struct proto *prot);
1324int sock_load_diag_module(int family, int protocol);
1325
1326INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1327
1328static inline int sk_forward_alloc_get(const struct sock *sk)
1329{
1330#if IS_ENABLED(CONFIG_MPTCP)
1331	if (sk->sk_prot->forward_alloc_get)
1332		return sk->sk_prot->forward_alloc_get(sk);
1333#endif
1334	return READ_ONCE(sk->sk_forward_alloc);
1335}
1336
1337static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1338{
1339	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1340		return false;
1341
1342	return sk->sk_prot->stream_memory_free ?
1343		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1344				     tcp_stream_memory_free, sk, wake) : true;
1345}
1346
1347static inline bool sk_stream_memory_free(const struct sock *sk)
1348{
1349	return __sk_stream_memory_free(sk, 0);
1350}
1351
1352static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1353{
1354	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1355	       __sk_stream_memory_free(sk, wake);
1356}
1357
1358static inline bool sk_stream_is_writeable(const struct sock *sk)
1359{
1360	return __sk_stream_is_writeable(sk, 0);
1361}
1362
1363static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1364					    struct cgroup *ancestor)
1365{
1366#ifdef CONFIG_SOCK_CGROUP_DATA
1367	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1368				    ancestor);
1369#else
1370	return -ENOTSUPP;
1371#endif
1372}
1373
1374static inline bool sk_has_memory_pressure(const struct sock *sk)
1375{
1376	return sk->sk_prot->memory_pressure != NULL;
1377}
1378
1379static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1380{
1381	return sk->sk_prot->memory_pressure &&
1382		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1383}
1384
1385static inline bool sk_under_memory_pressure(const struct sock *sk)
1386{
1387	if (!sk->sk_prot->memory_pressure)
1388		return false;
1389
1390	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1391	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1392		return true;
1393
1394	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1395}
1396
1397static inline long
1398proto_memory_allocated(const struct proto *prot)
1399{
1400	return max(0L, atomic_long_read(prot->memory_allocated));
1401}
1402
1403static inline long
1404sk_memory_allocated(const struct sock *sk)
1405{
1406	return proto_memory_allocated(sk->sk_prot);
1407}
1408
1409/* 1 MB per cpu, in page units */
1410#define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1411extern int sysctl_mem_pcpu_rsv;
1412
1413static inline void proto_memory_pcpu_drain(struct proto *proto)
1414{
1415	int val = this_cpu_xchg(*proto->per_cpu_fw_alloc, 0);
1416
1417	if (val)
1418		atomic_long_add(val, proto->memory_allocated);
1419}
1420
1421static inline void
1422sk_memory_allocated_add(const struct sock *sk, int val)
1423{
1424	struct proto *proto = sk->sk_prot;
1425
1426	val = this_cpu_add_return(*proto->per_cpu_fw_alloc, val);
1427
1428	if (unlikely(val >= READ_ONCE(sysctl_mem_pcpu_rsv)))
1429		proto_memory_pcpu_drain(proto);
1430}
1431
1432static inline void
1433sk_memory_allocated_sub(const struct sock *sk, int val)
1434{
1435	struct proto *proto = sk->sk_prot;
1436
1437	val = this_cpu_sub_return(*proto->per_cpu_fw_alloc, val);
1438
1439	if (unlikely(val <= -READ_ONCE(sysctl_mem_pcpu_rsv)))
1440		proto_memory_pcpu_drain(proto);
1441}
1442
1443#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1444
1445static inline void sk_sockets_allocated_dec(struct sock *sk)
1446{
1447	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1448				 SK_ALLOC_PERCPU_COUNTER_BATCH);
 
1449}
1450
1451static inline void sk_sockets_allocated_inc(struct sock *sk)
1452{
1453	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1454				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1455}
1456
1457static inline u64
1458sk_sockets_allocated_read_positive(struct sock *sk)
1459{
1460	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1461}
1462
1463static inline int
1464proto_sockets_allocated_sum_positive(struct proto *prot)
1465{
1466	return percpu_counter_sum_positive(prot->sockets_allocated);
1467}
1468
1469static inline bool
1470proto_memory_pressure(struct proto *prot)
1471{
1472	if (!prot->memory_pressure)
1473		return false;
1474	return !!READ_ONCE(*prot->memory_pressure);
1475}
 
 
 
 
 
1476
1477
1478#ifdef CONFIG_PROC_FS
1479#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1480struct prot_inuse {
1481	int all;
1482	int val[PROTO_INUSE_NR];
1483};
1484
1485static inline void sock_prot_inuse_add(const struct net *net,
1486				       const struct proto *prot, int val)
1487{
1488	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1489}
1490
1491static inline void sock_inuse_add(const struct net *net, int val)
1492{
1493	this_cpu_add(net->core.prot_inuse->all, val);
1494}
1495
1496int sock_prot_inuse_get(struct net *net, struct proto *proto);
1497int sock_inuse_get(struct net *net);
1498#else
1499static inline void sock_prot_inuse_add(const struct net *net,
1500				       const struct proto *prot, int val)
1501{
1502}
1503
1504static inline void sock_inuse_add(const struct net *net, int val)
1505{
1506}
1507#endif
1508
1509
1510/* With per-bucket locks this operation is not-atomic, so that
1511 * this version is not worse.
1512 */
1513static inline int __sk_prot_rehash(struct sock *sk)
1514{
1515	sk->sk_prot->unhash(sk);
1516	return sk->sk_prot->hash(sk);
1517}
1518
 
 
1519/* About 10 seconds */
1520#define SOCK_DESTROY_TIME (10*HZ)
1521
1522/* Sockets 0-1023 can't be bound to unless you are superuser */
1523#define PROT_SOCK	1024
1524
1525#define SHUTDOWN_MASK	3
1526#define RCV_SHUTDOWN	1
1527#define SEND_SHUTDOWN	2
1528
 
 
1529#define SOCK_BINDADDR_LOCK	4
1530#define SOCK_BINDPORT_LOCK	8
1531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532struct socket_alloc {
1533	struct socket socket;
1534	struct inode vfs_inode;
1535};
1536
1537static inline struct socket *SOCKET_I(struct inode *inode)
1538{
1539	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1540}
1541
1542static inline struct inode *SOCK_INODE(struct socket *socket)
1543{
1544	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1545}
1546
1547/*
1548 * Functions for memory accounting
1549 */
1550int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1551int __sk_mem_schedule(struct sock *sk, int size, int kind);
1552void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1553void __sk_mem_reclaim(struct sock *sk, int amount);
1554
 
 
1555#define SK_MEM_SEND	0
1556#define SK_MEM_RECV	1
1557
1558/* sysctl_mem values are in pages */
1559static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1560{
1561	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1562}
1563
1564static inline int sk_mem_pages(int amt)
1565{
1566	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1567}
1568
1569static inline bool sk_has_account(struct sock *sk)
1570{
1571	/* return true if protocol supports memory accounting */
1572	return !!sk->sk_prot->memory_allocated;
1573}
1574
1575static inline bool sk_wmem_schedule(struct sock *sk, int size)
1576{
1577	int delta;
1578
1579	if (!sk_has_account(sk))
1580		return true;
1581	delta = size - sk->sk_forward_alloc;
1582	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1583}
1584
1585static inline bool
1586sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1587{
1588	int delta;
1589
1590	if (!sk_has_account(sk))
1591		return true;
1592	delta = size - sk->sk_forward_alloc;
1593	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1594		skb_pfmemalloc(skb);
1595}
1596
1597static inline int sk_unused_reserved_mem(const struct sock *sk)
1598{
1599	int unused_mem;
1600
1601	if (likely(!sk->sk_reserved_mem))
1602		return 0;
1603
1604	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1605			atomic_read(&sk->sk_rmem_alloc);
1606
1607	return unused_mem > 0 ? unused_mem : 0;
1608}
1609
1610static inline void sk_mem_reclaim(struct sock *sk)
1611{
1612	int reclaimable;
1613
1614	if (!sk_has_account(sk))
1615		return;
1616
1617	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1618
1619	if (reclaimable >= (int)PAGE_SIZE)
1620		__sk_mem_reclaim(sk, reclaimable);
1621}
1622
1623static inline void sk_mem_reclaim_final(struct sock *sk)
1624{
1625	sk->sk_reserved_mem = 0;
1626	sk_mem_reclaim(sk);
 
 
1627}
1628
1629static inline void sk_mem_charge(struct sock *sk, int size)
1630{
1631	if (!sk_has_account(sk))
1632		return;
1633	sk_forward_alloc_add(sk, -size);
1634}
1635
1636static inline void sk_mem_uncharge(struct sock *sk, int size)
1637{
1638	if (!sk_has_account(sk))
1639		return;
1640	sk_forward_alloc_add(sk, size);
1641	sk_mem_reclaim(sk);
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644/*
1645 * Macro so as to not evaluate some arguments when
1646 * lockdep is not enabled.
1647 *
1648 * Mark both the sk_lock and the sk_lock.slock as a
1649 * per-address-family lock class.
1650 */
1651#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1652do {									\
1653	sk->sk_lock.owned = 0;						\
1654	init_waitqueue_head(&sk->sk_lock.wq);				\
1655	spin_lock_init(&(sk)->sk_lock.slock);				\
1656	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1657			sizeof((sk)->sk_lock));				\
1658	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1659				(skey), (sname));				\
1660	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1661} while (0)
1662
1663static inline bool lockdep_sock_is_held(const struct sock *sk)
1664{
1665	return lockdep_is_held(&sk->sk_lock) ||
1666	       lockdep_is_held(&sk->sk_lock.slock);
1667}
1668
1669void lock_sock_nested(struct sock *sk, int subclass);
1670
1671static inline void lock_sock(struct sock *sk)
1672{
1673	lock_sock_nested(sk, 0);
1674}
1675
1676void __lock_sock(struct sock *sk);
1677void __release_sock(struct sock *sk);
1678void release_sock(struct sock *sk);
1679
1680/* BH context may only use the following locking interface. */
1681#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1682#define bh_lock_sock_nested(__sk) \
1683				spin_lock_nested(&((__sk)->sk_lock.slock), \
1684				SINGLE_DEPTH_NESTING)
1685#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1686
1687bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1688
1689/**
1690 * lock_sock_fast - fast version of lock_sock
1691 * @sk: socket
1692 *
1693 * This version should be used for very small section, where process wont block
1694 * return false if fast path is taken:
1695 *
1696 *   sk_lock.slock locked, owned = 0, BH disabled
1697 *
1698 * return true if slow path is taken:
1699 *
1700 *   sk_lock.slock unlocked, owned = 1, BH enabled
1701 */
1702static inline bool lock_sock_fast(struct sock *sk)
1703{
1704	/* The sk_lock has mutex_lock() semantics here. */
1705	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1706
1707	return __lock_sock_fast(sk);
1708}
1709
1710/* fast socket lock variant for caller already holding a [different] socket lock */
1711static inline bool lock_sock_fast_nested(struct sock *sk)
1712{
1713	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1714
1715	return __lock_sock_fast(sk);
1716}
1717
1718/**
1719 * unlock_sock_fast - complement of lock_sock_fast
1720 * @sk: socket
1721 * @slow: slow mode
1722 *
1723 * fast unlock socket for user context.
1724 * If slow mode is on, we call regular release_sock()
1725 */
1726static inline void unlock_sock_fast(struct sock *sk, bool slow)
1727	__releases(&sk->sk_lock.slock)
1728{
1729	if (slow) {
1730		release_sock(sk);
1731		__release(&sk->sk_lock.slock);
1732	} else {
1733		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1734		spin_unlock_bh(&sk->sk_lock.slock);
1735	}
1736}
1737
1738void sockopt_lock_sock(struct sock *sk);
1739void sockopt_release_sock(struct sock *sk);
1740bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1741bool sockopt_capable(int cap);
1742
1743/* Used by processes to "lock" a socket state, so that
1744 * interrupts and bottom half handlers won't change it
1745 * from under us. It essentially blocks any incoming
1746 * packets, so that we won't get any new data or any
1747 * packets that change the state of the socket.
1748 *
1749 * While locked, BH processing will add new packets to
1750 * the backlog queue.  This queue is processed by the
1751 * owner of the socket lock right before it is released.
1752 *
1753 * Since ~2.3.5 it is also exclusive sleep lock serializing
1754 * accesses from user process context.
1755 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756
1757static inline void sock_owned_by_me(const struct sock *sk)
1758{
1759#ifdef CONFIG_LOCKDEP
1760	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1761#endif
1762}
1763
1764static inline void sock_not_owned_by_me(const struct sock *sk)
1765{
1766#ifdef CONFIG_LOCKDEP
1767	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1768#endif
1769}
1770
1771static inline bool sock_owned_by_user(const struct sock *sk)
1772{
1773	sock_owned_by_me(sk);
1774	return sk->sk_lock.owned;
1775}
1776
1777static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1778{
1779	return sk->sk_lock.owned;
1780}
1781
1782static inline void sock_release_ownership(struct sock *sk)
1783{
1784	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1785	sk->sk_lock.owned = 0;
1786
1787	/* The sk_lock has mutex_unlock() semantics: */
1788	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1789}
1790
1791/* no reclassification while locks are held */
1792static inline bool sock_allow_reclassification(const struct sock *csk)
1793{
1794	struct sock *sk = (struct sock *)csk;
1795
1796	return !sock_owned_by_user_nocheck(sk) &&
1797		!spin_is_locked(&sk->sk_lock.slock);
1798}
1799
1800struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1801		      struct proto *prot, int kern);
1802void sk_free(struct sock *sk);
1803void sk_destruct(struct sock *sk);
1804struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1805void sk_free_unlock_clone(struct sock *sk);
1806
1807struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1808			     gfp_t priority);
1809void __sock_wfree(struct sk_buff *skb);
1810void sock_wfree(struct sk_buff *skb);
1811struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1812			     gfp_t priority);
1813void skb_orphan_partial(struct sk_buff *skb);
1814void sock_rfree(struct sk_buff *skb);
1815void sock_efree(struct sk_buff *skb);
1816#ifdef CONFIG_INET
1817void sock_edemux(struct sk_buff *skb);
1818void sock_pfree(struct sk_buff *skb);
1819#else
1820#define sock_edemux sock_efree
1821#endif
1822
1823int sk_setsockopt(struct sock *sk, int level, int optname,
1824		  sockptr_t optval, unsigned int optlen);
1825int sock_setsockopt(struct socket *sock, int level, int op,
1826		    sockptr_t optval, unsigned int optlen);
1827int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1828		       int optname, sockptr_t optval, int optlen);
1829int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1830		       int optname, sockptr_t optval, sockptr_t optlen);
1831
1832int sk_getsockopt(struct sock *sk, int level, int optname,
1833		  sockptr_t optval, sockptr_t optlen);
1834int sock_gettstamp(struct socket *sock, void __user *userstamp,
1835		   bool timeval, bool time32);
1836struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1837				     unsigned long data_len, int noblock,
1838				     int *errcode, int max_page_order);
1839
1840static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1841						  unsigned long size,
1842						  int noblock, int *errcode)
1843{
1844	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1845}
1846
1847void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1848void sock_kfree_s(struct sock *sk, void *mem, int size);
1849void sock_kzfree_s(struct sock *sk, void *mem, int size);
1850void sk_send_sigurg(struct sock *sk);
1851
1852static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1853{
1854	if (sk->sk_socket)
1855		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1856	WRITE_ONCE(sk->sk_prot, proto);
1857}
1858
1859struct sockcm_cookie {
1860	u64 transmit_time;
1861	u32 mark;
1862	u32 tsflags;
1863};
1864
1865static inline void sockcm_init(struct sockcm_cookie *sockc,
1866			       const struct sock *sk)
1867{
1868	*sockc = (struct sockcm_cookie) {
1869		.tsflags = READ_ONCE(sk->sk_tsflags)
1870	};
1871}
1872
1873int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1874		     struct sockcm_cookie *sockc);
1875int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1876		   struct sockcm_cookie *sockc);
1877
1878/*
1879 * Functions to fill in entries in struct proto_ops when a protocol
1880 * does not implement a particular function.
1881 */
1882int sock_no_bind(struct socket *, struct sockaddr *, int);
1883int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1884int sock_no_socketpair(struct socket *, struct socket *);
1885int sock_no_accept(struct socket *, struct socket *, int, bool);
1886int sock_no_getname(struct socket *, struct sockaddr *, int);
1887int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1888int sock_no_listen(struct socket *, int);
1889int sock_no_shutdown(struct socket *, int);
1890int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1891int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1892int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1893int sock_no_mmap(struct file *file, struct socket *sock,
1894		 struct vm_area_struct *vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895
1896/*
1897 * Functions to fill in entries in struct proto_ops when a protocol
1898 * uses the inet style.
1899 */
1900int sock_common_getsockopt(struct socket *sock, int level, int optname,
1901				  char __user *optval, int __user *optlen);
1902int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1903			int flags);
1904int sock_common_setsockopt(struct socket *sock, int level, int optname,
1905			   sockptr_t optval, unsigned int optlen);
 
 
 
 
1906
1907void sk_common_release(struct sock *sk);
1908
1909/*
1910 *	Default socket callbacks and setup code
1911 */
 
 
 
1912
1913/* Initialise core socket variables using an explicit uid. */
1914void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1915
1916/* Initialise core socket variables.
1917 * Assumes struct socket *sock is embedded in a struct socket_alloc.
 
 
 
1918 */
1919void sock_init_data(struct socket *sock, struct sock *sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920
1921/*
1922 * Socket reference counting postulates.
1923 *
1924 * * Each user of socket SHOULD hold a reference count.
1925 * * Each access point to socket (an hash table bucket, reference from a list,
1926 *   running timer, skb in flight MUST hold a reference count.
1927 * * When reference count hits 0, it means it will never increase back.
1928 * * When reference count hits 0, it means that no references from
1929 *   outside exist to this socket and current process on current CPU
1930 *   is last user and may/should destroy this socket.
1931 * * sk_free is called from any context: process, BH, IRQ. When
1932 *   it is called, socket has no references from outside -> sk_free
1933 *   may release descendant resources allocated by the socket, but
1934 *   to the time when it is called, socket is NOT referenced by any
1935 *   hash tables, lists etc.
1936 * * Packets, delivered from outside (from network or from another process)
1937 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1938 *   when they sit in queue. Otherwise, packets will leak to hole, when
1939 *   socket is looked up by one cpu and unhasing is made by another CPU.
1940 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1941 *   (leak to backlog). Packet socket does all the processing inside
1942 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1943 *   use separate SMP lock, so that they are prone too.
1944 */
1945
1946/* Ungrab socket and destroy it, if it was the last reference. */
1947static inline void sock_put(struct sock *sk)
1948{
1949	if (refcount_dec_and_test(&sk->sk_refcnt))
1950		sk_free(sk);
1951}
1952/* Generic version of sock_put(), dealing with all sockets
1953 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1954 */
1955void sock_gen_put(struct sock *sk);
1956
1957int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1958		     unsigned int trim_cap, bool refcounted);
1959static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1960				 const int nested)
1961{
1962	return __sk_receive_skb(sk, skb, nested, 1, true);
1963}
1964
1965static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1966{
1967	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1968	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1969		return;
1970	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1971	 * other WRITE_ONCE() because socket lock might be not held.
1972	 */
1973	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1974}
1975
1976#define NO_QUEUE_MAPPING	USHRT_MAX
1977
1978static inline void sk_tx_queue_clear(struct sock *sk)
1979{
1980	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1981	 * other WRITE_ONCE() because socket lock might be not held.
1982	 */
1983	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1984}
1985
1986static inline int sk_tx_queue_get(const struct sock *sk)
1987{
1988	if (sk) {
1989		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1990		 * and sk_tx_queue_set().
1991		 */
1992		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1993
1994		if (val != NO_QUEUE_MAPPING)
1995			return val;
1996	}
1997	return -1;
1998}
1999
2000static inline void __sk_rx_queue_set(struct sock *sk,
2001				     const struct sk_buff *skb,
2002				     bool force_set)
2003{
2004#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005	if (skb_rx_queue_recorded(skb)) {
2006		u16 rx_queue = skb_get_rx_queue(skb);
2007
2008		if (force_set ||
2009		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2011	}
2012#endif
2013}
2014
2015static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2016{
2017	__sk_rx_queue_set(sk, skb, true);
2018}
2019
2020static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2021{
2022	__sk_rx_queue_set(sk, skb, false);
2023}
2024
2025static inline void sk_rx_queue_clear(struct sock *sk)
2026{
2027#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2029#endif
2030}
2031
2032static inline int sk_rx_queue_get(const struct sock *sk)
2033{
2034#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2035	if (sk) {
2036		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2037
2038		if (res != NO_QUEUE_MAPPING)
2039			return res;
2040	}
2041#endif
2042
2043	return -1;
2044}
2045
2046static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2047{
 
2048	sk->sk_socket = sock;
2049}
2050
2051static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2052{
2053	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054	return &rcu_dereference_raw(sk->sk_wq)->wait;
2055}
2056/* Detach socket from process context.
2057 * Announce socket dead, detach it from wait queue and inode.
2058 * Note that parent inode held reference count on this struct sock,
2059 * we do not release it in this function, because protocol
2060 * probably wants some additional cleanups or even continuing
2061 * to work with this socket (TCP).
2062 */
2063static inline void sock_orphan(struct sock *sk)
2064{
2065	write_lock_bh(&sk->sk_callback_lock);
2066	sock_set_flag(sk, SOCK_DEAD);
2067	sk_set_socket(sk, NULL);
2068	sk->sk_wq  = NULL;
2069	write_unlock_bh(&sk->sk_callback_lock);
2070}
2071
2072static inline void sock_graft(struct sock *sk, struct socket *parent)
2073{
2074	WARN_ON(parent->sk);
2075	write_lock_bh(&sk->sk_callback_lock);
2076	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2077	parent->sk = sk;
2078	sk_set_socket(sk, parent);
2079	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080	security_sock_graft(sk, parent);
2081	write_unlock_bh(&sk->sk_callback_lock);
2082}
2083
2084kuid_t sock_i_uid(struct sock *sk);
2085unsigned long __sock_i_ino(struct sock *sk);
2086unsigned long sock_i_ino(struct sock *sk);
2087
2088static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2089{
2090	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2091}
2092
2093static inline u32 net_tx_rndhash(void)
2094{
2095	u32 v = get_random_u32();
2096
2097	return v ?: 1;
2098}
2099
2100static inline void sk_set_txhash(struct sock *sk)
2101{
2102	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2103	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2104}
2105
2106static inline bool sk_rethink_txhash(struct sock *sk)
2107{
2108	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2109		sk_set_txhash(sk);
2110		return true;
2111	}
2112	return false;
2113}
2114
2115static inline struct dst_entry *
2116__sk_dst_get(const struct sock *sk)
2117{
2118	return rcu_dereference_check(sk->sk_dst_cache,
2119				     lockdep_sock_is_held(sk));
2120}
2121
2122static inline struct dst_entry *
2123sk_dst_get(const struct sock *sk)
2124{
2125	struct dst_entry *dst;
2126
2127	rcu_read_lock();
2128	dst = rcu_dereference(sk->sk_dst_cache);
2129	if (dst && !rcuref_get(&dst->__rcuref))
2130		dst = NULL;
2131	rcu_read_unlock();
2132	return dst;
2133}
2134
2135static inline void __dst_negative_advice(struct sock *sk)
 
 
2136{
2137	struct dst_entry *dst = __sk_dst_get(sk);
2138
2139	if (dst && dst->ops->negative_advice)
2140		dst->ops->negative_advice(sk, dst);
2141}
2142
2143static inline void dst_negative_advice(struct sock *sk)
2144{
2145	sk_rethink_txhash(sk);
2146	__dst_negative_advice(sk);
 
2147}
2148
2149static inline void
2150__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2151{
2152	struct dst_entry *old_dst;
2153
2154	sk_tx_queue_clear(sk);
2155	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2156	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2157					    lockdep_sock_is_held(sk));
 
 
2158	rcu_assign_pointer(sk->sk_dst_cache, dst);
2159	dst_release(old_dst);
2160}
2161
2162static inline void
2163sk_dst_set(struct sock *sk, struct dst_entry *dst)
2164{
2165	struct dst_entry *old_dst;
2166
2167	sk_tx_queue_clear(sk);
2168	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2169	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2170	dst_release(old_dst);
2171}
2172
2173static inline void
2174__sk_dst_reset(struct sock *sk)
2175{
2176	__sk_dst_set(sk, NULL);
2177}
2178
2179static inline void
2180sk_dst_reset(struct sock *sk)
2181{
2182	sk_dst_set(sk, NULL);
 
 
2183}
2184
2185struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2186
2187struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2188
2189static inline void sk_dst_confirm(struct sock *sk)
2190{
2191	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2192		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2193}
2194
2195static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2196{
2197	if (skb_get_dst_pending_confirm(skb)) {
2198		struct sock *sk = skb->sk;
2199
2200		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2201			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2202		neigh_confirm(n);
2203	}
2204}
2205
2206bool sk_mc_loop(const struct sock *sk);
2207
2208static inline bool sk_can_gso(const struct sock *sk)
2209{
2210	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2211}
2212
2213void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2214
2215static inline void sk_gso_disable(struct sock *sk)
2216{
2217	sk->sk_gso_disabled = 1;
2218	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2219}
2220
2221static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2222					   struct iov_iter *from, char *to,
2223					   int copy, int offset)
2224{
2225	if (skb->ip_summed == CHECKSUM_NONE) {
2226		__wsum csum = 0;
2227		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2228			return -EFAULT;
 
2229		skb->csum = csum_block_add(skb->csum, csum, offset);
2230	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2231		if (!copy_from_iter_full_nocache(to, copy, from))
 
2232			return -EFAULT;
2233	} else if (!copy_from_iter_full(to, copy, from))
2234		return -EFAULT;
2235
2236	return 0;
2237}
2238
2239static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2240				       struct iov_iter *from, int copy)
2241{
2242	int err, offset = skb->len;
2243
2244	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2245				       copy, offset);
2246	if (err)
2247		__skb_trim(skb, offset);
2248
2249	return err;
2250}
2251
2252static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2253					   struct sk_buff *skb,
2254					   struct page *page,
2255					   int off, int copy)
2256{
2257	int err;
2258
2259	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2260				       copy, skb->len);
2261	if (err)
2262		return err;
2263
2264	skb_len_add(skb, copy);
2265	sk_wmem_queued_add(sk, copy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2266	sk_mem_charge(sk, copy);
2267	return 0;
2268}
2269
2270/**
2271 * sk_wmem_alloc_get - returns write allocations
2272 * @sk: socket
2273 *
2274 * Return: sk_wmem_alloc minus initial offset of one
2275 */
2276static inline int sk_wmem_alloc_get(const struct sock *sk)
2277{
2278	return refcount_read(&sk->sk_wmem_alloc) - 1;
2279}
2280
2281/**
2282 * sk_rmem_alloc_get - returns read allocations
2283 * @sk: socket
2284 *
2285 * Return: sk_rmem_alloc
2286 */
2287static inline int sk_rmem_alloc_get(const struct sock *sk)
2288{
2289	return atomic_read(&sk->sk_rmem_alloc);
2290}
2291
2292/**
2293 * sk_has_allocations - check if allocations are outstanding
2294 * @sk: socket
2295 *
2296 * Return: true if socket has write or read allocations
2297 */
2298static inline bool sk_has_allocations(const struct sock *sk)
2299{
2300	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2301}
2302
2303/**
2304 * skwq_has_sleeper - check if there are any waiting processes
2305 * @wq: struct socket_wq
2306 *
2307 * Return: true if socket_wq has waiting processes
2308 *
2309 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2310 * barrier call. They were added due to the race found within the tcp code.
2311 *
2312 * Consider following tcp code paths::
2313 *
2314 *   CPU1                CPU2
2315 *   sys_select          receive packet
 
2316 *   ...                 ...
2317 *   __add_wait_queue    update tp->rcv_nxt
2318 *   ...                 ...
2319 *   tp->rcv_nxt check   sock_def_readable
2320 *   ...                 {
2321 *   schedule               rcu_read_lock();
2322 *                          wq = rcu_dereference(sk->sk_wq);
2323 *                          if (wq && waitqueue_active(&wq->wait))
2324 *                              wake_up_interruptible(&wq->wait)
2325 *                          ...
2326 *                       }
2327 *
2328 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2329 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2330 * could then endup calling schedule and sleep forever if there are no more
2331 * data on the socket.
2332 *
2333 */
2334static inline bool skwq_has_sleeper(struct socket_wq *wq)
2335{
2336	return wq && wq_has_sleeper(&wq->wait);
 
 
 
 
 
 
 
 
2337}
2338
2339/**
2340 * sock_poll_wait - place memory barrier behind the poll_wait call.
2341 * @filp:           file
2342 * @sock:           socket to wait on
2343 * @p:              poll_table
2344 *
2345 * See the comments in the wq_has_sleeper function.
2346 */
2347static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2348				  poll_table *p)
2349{
2350	if (!poll_does_not_wait(p)) {
2351		poll_wait(filp, &sock->wq.wait, p);
2352		/* We need to be sure we are in sync with the
 
2353		 * socket flags modification.
2354		 *
2355		 * This memory barrier is paired in the wq_has_sleeper.
2356		 */
2357		smp_mb();
2358	}
2359}
2360
2361static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2362{
2363	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2364	u32 txhash = READ_ONCE(sk->sk_txhash);
2365
2366	if (txhash) {
2367		skb->l4_hash = 1;
2368		skb->hash = txhash;
2369	}
2370}
2371
2372void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2373
2374/*
2375 *	Queue a received datagram if it will fit. Stream and sequenced
2376 *	protocols can't normally use this as they need to fit buffers in
2377 *	and play with them.
2378 *
2379 *	Inlined as it's very short and called for pretty much every
2380 *	packet ever received.
2381 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2383{
2384	skb_orphan(skb);
2385	skb->sk = sk;
2386	skb->destructor = sock_rfree;
2387	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2388	sk_mem_charge(sk, skb->truesize);
2389}
2390
2391static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2392{
2393	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2394		skb_orphan(skb);
2395		skb->destructor = sock_efree;
2396		skb->sk = sk;
2397		return true;
2398	}
2399	return false;
2400}
2401
2402static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2403{
2404	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2405	if (skb) {
2406		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2407			skb_set_owner_r(skb, sk);
2408			return skb;
2409		}
2410		__kfree_skb(skb);
2411	}
2412	return NULL;
2413}
2414
2415static inline void skb_prepare_for_gro(struct sk_buff *skb)
2416{
2417	if (skb->destructor != sock_wfree) {
2418		skb_orphan(skb);
2419		return;
2420	}
2421	skb->slow_gro = 1;
2422}
2423
2424void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2425		    unsigned long expires);
2426
2427void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2428
2429void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2430
2431int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2432			struct sk_buff *skb, unsigned int flags,
2433			void (*destructor)(struct sock *sk,
2434					   struct sk_buff *skb));
2435int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2436
2437int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2438			      enum skb_drop_reason *reason);
2439
2440static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2441{
2442	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2443}
2444
2445int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2446struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2447
2448/*
2449 *	Recover an error report and clear atomically
2450 */
2451
2452static inline int sock_error(struct sock *sk)
2453{
2454	int err;
2455
2456	/* Avoid an atomic operation for the common case.
2457	 * This is racy since another cpu/thread can change sk_err under us.
2458	 */
2459	if (likely(data_race(!sk->sk_err)))
2460		return 0;
2461
2462	err = xchg(&sk->sk_err, 0);
2463	return -err;
2464}
2465
2466void sk_error_report(struct sock *sk);
2467
2468static inline unsigned long sock_wspace(struct sock *sk)
2469{
2470	int amt = 0;
2471
2472	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2473		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2474		if (amt < 0)
2475			amt = 0;
2476	}
2477	return amt;
2478}
2479
2480/* Note:
2481 *  We use sk->sk_wq_raw, from contexts knowing this
2482 *  pointer is not NULL and cannot disappear/change.
2483 */
2484static inline void sk_set_bit(int nr, struct sock *sk)
2485{
2486	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2487	    !sock_flag(sk, SOCK_FASYNC))
2488		return;
2489
2490	set_bit(nr, &sk->sk_wq_raw->flags);
2491}
2492
2493static inline void sk_clear_bit(int nr, struct sock *sk)
2494{
2495	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2496	    !sock_flag(sk, SOCK_FASYNC))
2497		return;
 
2498
2499	clear_bit(nr, &sk->sk_wq_raw->flags);
2500}
2501
2502static inline void sk_wake_async(const struct sock *sk, int how, int band)
2503{
2504	if (sock_flag(sk, SOCK_FASYNC)) {
2505		rcu_read_lock();
2506		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2507		rcu_read_unlock();
2508	}
2509}
2510
2511/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2512 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2513 * Note: for send buffers, TCP works better if we can build two skbs at
2514 * minimum.
2515 */
2516#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2517
2518#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2519#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2520
2521static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2522{
2523	u32 val;
2524
2525	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2526		return;
2527
2528	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2529	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2530
2531	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2532}
2533
2534/**
2535 * sk_page_frag - return an appropriate page_frag
2536 * @sk: socket
2537 *
2538 * Use the per task page_frag instead of the per socket one for
2539 * optimization when we know that we're in process context and own
2540 * everything that's associated with %current.
2541 *
2542 * Both direct reclaim and page faults can nest inside other
2543 * socket operations and end up recursing into sk_page_frag()
2544 * while it's already in use: explicitly avoid task page_frag
2545 * when users disable sk_use_task_frag.
2546 *
2547 * Return: a per task page_frag if context allows that,
2548 * otherwise a per socket one.
2549 */
2550static inline struct page_frag *sk_page_frag(struct sock *sk)
2551{
2552	if (sk->sk_use_task_frag)
2553		return &current->task_frag;
2554
2555	return &sk->sk_frag;
2556}
2557
2558bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2559
2560/*
2561 *	Default write policy as shown to user space via poll/select/SIGIO
2562 */
2563static inline bool sock_writeable(const struct sock *sk)
2564{
2565	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2566}
2567
2568static inline gfp_t gfp_any(void)
2569{
2570	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2571}
2572
2573static inline gfp_t gfp_memcg_charge(void)
2574{
2575	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2576}
2577
2578static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2579{
2580	return noblock ? 0 : sk->sk_rcvtimeo;
2581}
2582
2583static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2584{
2585	return noblock ? 0 : sk->sk_sndtimeo;
2586}
2587
2588static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2589{
2590	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2591
2592	return v ?: 1;
2593}
2594
2595/* Alas, with timeout socket operations are not restartable.
2596 * Compare this to poll().
2597 */
2598static inline int sock_intr_errno(long timeo)
2599{
2600	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2601}
2602
2603struct sock_skb_cb {
2604	u32 dropcount;
2605};
2606
2607/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2608 * using skb->cb[] would keep using it directly and utilize its
2609 * alignement guarantee.
2610 */
2611#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2612			    sizeof(struct sock_skb_cb)))
2613
2614#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2615			    SOCK_SKB_CB_OFFSET))
2616
2617#define sock_skb_cb_check_size(size) \
2618	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2619
2620static inline void
2621sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2622{
2623	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2624						atomic_read(&sk->sk_drops) : 0;
2625}
2626
2627static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2628{
2629	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2630
2631	atomic_add(segs, &sk->sk_drops);
2632}
2633
2634static inline ktime_t sock_read_timestamp(struct sock *sk)
2635{
2636#if BITS_PER_LONG==32
2637	unsigned int seq;
2638	ktime_t kt;
2639
2640	do {
2641		seq = read_seqbegin(&sk->sk_stamp_seq);
2642		kt = sk->sk_stamp;
2643	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2644
2645	return kt;
2646#else
2647	return READ_ONCE(sk->sk_stamp);
2648#endif
2649}
2650
2651static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2652{
2653#if BITS_PER_LONG==32
2654	write_seqlock(&sk->sk_stamp_seq);
2655	sk->sk_stamp = kt;
2656	write_sequnlock(&sk->sk_stamp_seq);
2657#else
2658	WRITE_ONCE(sk->sk_stamp, kt);
2659#endif
2660}
2661
2662void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2663			   struct sk_buff *skb);
2664void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2665			     struct sk_buff *skb);
2666
2667static inline void
2668sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2669{
 
2670	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2671	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2672	ktime_t kt = skb->tstamp;
2673	/*
2674	 * generate control messages if
2675	 * - receive time stamping in software requested
 
2676	 * - software time stamp available and wanted
 
2677	 * - hardware time stamps available and wanted
 
 
2678	 */
2679	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2680	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2681	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2682	    (hwtstamps->hwtstamp &&
2683	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
 
 
2684		__sock_recv_timestamp(msg, sk, skb);
2685	else
2686		sock_write_timestamp(sk, kt);
2687
2688	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2689		__sock_recv_wifi_status(msg, sk, skb);
2690}
2691
2692void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2693		       struct sk_buff *skb);
2694
2695#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2696static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2697				   struct sk_buff *skb)
2698{
2699#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2700			   (1UL << SOCK_RCVTSTAMP)			| \
2701			   (1UL << SOCK_RCVMARK))
2702#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2703			   SOF_TIMESTAMPING_RAW_HARDWARE)
2704
2705	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2706	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2707		__sock_recv_cmsgs(msg, sk, skb);
2708	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2709		sock_write_timestamp(sk, skb->tstamp);
2710	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2711		sock_write_timestamp(sk, 0);
2712}
2713
2714void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2715
2716/**
2717 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2718 * @sk:		socket sending this packet
2719 * @tsflags:	timestamping flags to use
2720 * @tx_flags:	completed with instructions for time stamping
2721 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2722 *
2723 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2724 */
2725static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2726				      __u8 *tx_flags, __u32 *tskey)
2727{
2728	if (unlikely(tsflags)) {
2729		__sock_tx_timestamp(tsflags, tx_flags);
2730		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2731		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2732			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2733	}
2734	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2735		*tx_flags |= SKBTX_WIFI_STATUS;
2736}
2737
2738static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2739				     __u8 *tx_flags)
2740{
2741	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2742}
2743
2744static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2745{
2746	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2747			   &skb_shinfo(skb)->tskey);
2748}
2749
2750static inline bool sk_is_inet(const struct sock *sk)
2751{
2752	int family = READ_ONCE(sk->sk_family);
2753
2754	return family == AF_INET || family == AF_INET6;
2755}
2756
2757static inline bool sk_is_tcp(const struct sock *sk)
2758{
2759	return sk_is_inet(sk) &&
2760	       sk->sk_type == SOCK_STREAM &&
2761	       sk->sk_protocol == IPPROTO_TCP;
2762}
2763
2764static inline bool sk_is_udp(const struct sock *sk)
2765{
2766	return sk_is_inet(sk) &&
2767	       sk->sk_type == SOCK_DGRAM &&
2768	       sk->sk_protocol == IPPROTO_UDP;
2769}
2770
2771static inline bool sk_is_stream_unix(const struct sock *sk)
2772{
2773	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2774}
2775
2776/**
2777 * sk_eat_skb - Release a skb if it is no longer needed
2778 * @sk: socket to eat this skb from
2779 * @skb: socket buffer to eat
 
2780 *
2781 * This routine must be called with interrupts disabled or with the socket
2782 * locked so that the sk_buff queue operation is ok.
2783*/
2784static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
2785{
2786	__skb_unlink(skb, &sk->sk_receive_queue);
2787	__kfree_skb(skb);
2788}
 
2789
2790static inline bool
2791skb_sk_is_prefetched(struct sk_buff *skb)
2792{
2793#ifdef CONFIG_INET
2794	return skb->destructor == sock_pfree;
2795#else
2796	return false;
2797#endif /* CONFIG_INET */
2798}
2799
2800/* This helper checks if a socket is a full socket,
2801 * ie _not_ a timewait or request socket.
2802 */
2803static inline bool sk_fullsock(const struct sock *sk)
2804{
2805	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2806}
2807
2808static inline bool
2809sk_is_refcounted(struct sock *sk)
 
 
 
 
 
2810{
2811	/* Only full sockets have sk->sk_flags. */
2812	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2813}
2814
2815/* Checks if this SKB belongs to an HW offloaded socket
2816 * and whether any SW fallbacks are required based on dev.
2817 * Check decrypted mark in case skb_orphan() cleared socket.
2818 */
2819static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2820						   struct net_device *dev)
2821{
2822#ifdef CONFIG_SOCK_VALIDATE_XMIT
2823	struct sock *sk = skb->sk;
2824
2825	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2826		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2827#ifdef CONFIG_TLS_DEVICE
2828	} else if (unlikely(skb->decrypted)) {
2829		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2830		kfree_skb(skb);
2831		skb = NULL;
2832#endif
2833	}
2834#endif
2835
2836	return skb;
2837}
2838
2839/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2840 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2841 */
2842static inline bool sk_listener(const struct sock *sk)
2843{
2844	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2845}
2846
2847void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2848int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2849		       int type);
 
 
 
 
 
 
 
2850
2851bool sk_ns_capable(const struct sock *sk,
2852		   struct user_namespace *user_ns, int cap);
2853bool sk_capable(const struct sock *sk, int cap);
2854bool sk_net_capable(const struct sock *sk, int cap);
2855
2856void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2857
2858/* Take into consideration the size of the struct sk_buff overhead in the
2859 * determination of these values, since that is non-constant across
2860 * platforms.  This makes socket queueing behavior and performance
2861 * not depend upon such differences.
2862 */
2863#define _SK_MEM_PACKETS		256
2864#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2865#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2866#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2867
2868extern __u32 sysctl_wmem_max;
2869extern __u32 sysctl_rmem_max;
2870
2871extern int sysctl_tstamp_allow_data;
 
 
2872
2873extern __u32 sysctl_wmem_default;
2874extern __u32 sysctl_rmem_default;
2875
2876#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2877DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2878
2879static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2880{
2881	/* Does this proto have per netns sysctl_wmem ? */
2882	if (proto->sysctl_wmem_offset)
2883		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2884
2885	return READ_ONCE(*proto->sysctl_wmem);
2886}
2887
2888static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2889{
2890	/* Does this proto have per netns sysctl_rmem ? */
2891	if (proto->sysctl_rmem_offset)
2892		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2893
2894	return READ_ONCE(*proto->sysctl_rmem);
2895}
2896
2897/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2898 * Some wifi drivers need to tweak it to get more chunks.
2899 * They can use this helper from their ndo_start_xmit()
2900 */
2901static inline void sk_pacing_shift_update(struct sock *sk, int val)
2902{
2903	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2904		return;
2905	WRITE_ONCE(sk->sk_pacing_shift, val);
2906}
2907
2908/* if a socket is bound to a device, check that the given device
2909 * index is either the same or that the socket is bound to an L3
2910 * master device and the given device index is also enslaved to
2911 * that L3 master
2912 */
2913static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2914{
2915	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2916	int mdif;
2917
2918	if (!bound_dev_if || bound_dev_if == dif)
2919		return true;
2920
2921	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2922	if (mdif && mdif == bound_dev_if)
2923		return true;
2924
2925	return false;
2926}
2927
2928void sock_def_readable(struct sock *sk);
2929
2930int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2931void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2932int sock_set_timestamping(struct sock *sk, int optname,
2933			  struct so_timestamping timestamping);
2934
2935void sock_enable_timestamps(struct sock *sk);
2936void sock_no_linger(struct sock *sk);
2937void sock_set_keepalive(struct sock *sk);
2938void sock_set_priority(struct sock *sk, u32 priority);
2939void sock_set_rcvbuf(struct sock *sk, int val);
2940void sock_set_mark(struct sock *sk, u32 val);
2941void sock_set_reuseaddr(struct sock *sk);
2942void sock_set_reuseport(struct sock *sk);
2943void sock_set_sndtimeo(struct sock *sk, s64 secs);
2944
2945int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2946
2947int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2948int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2949			   sockptr_t optval, int optlen, bool old_timeval);
2950
2951int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2952		     void __user *arg, void *karg, size_t size);
2953int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2954static inline bool sk_is_readable(struct sock *sk)
2955{
2956	if (sk->sk_prot->sock_is_readable)
2957		return sk->sk_prot->sock_is_readable(sk);
2958	return false;
2959}
2960#endif	/* _SOCK_H */