Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100#include <asm/system.h>
101
102#include <linux/kbd_kern.h>
103#include <linux/vt_kern.h>
104#include <linux/selection.h>
105
106#include <linux/kmod.h>
107#include <linux/nsproxy.h>
108
109#undef TTY_DEBUG_HANGUP
110
111#define TTY_PARANOIA_CHECK 1
112#define CHECK_TTY_COUNT 1
113
114struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
115 .c_iflag = ICRNL | IXON,
116 .c_oflag = OPOST | ONLCR,
117 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119 ECHOCTL | ECHOKE | IEXTEN,
120 .c_cc = INIT_C_CC,
121 .c_ispeed = 38400,
122 .c_ospeed = 38400
123};
124
125EXPORT_SYMBOL(tty_std_termios);
126
127/* This list gets poked at by procfs and various bits of boot up code. This
128 could do with some rationalisation such as pulling the tty proc function
129 into this file */
130
131LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132
133/* Mutex to protect creating and releasing a tty. This is shared with
134 vt.c for deeply disgusting hack reasons */
135DEFINE_MUTEX(tty_mutex);
136EXPORT_SYMBOL(tty_mutex);
137
138/* Spinlock to protect the tty->tty_files list */
139DEFINE_SPINLOCK(tty_files_lock);
140
141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143ssize_t redirected_tty_write(struct file *, const char __user *,
144 size_t, loff_t *);
145static unsigned int tty_poll(struct file *, poll_table *);
146static int tty_open(struct inode *, struct file *);
147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148#ifdef CONFIG_COMPAT
149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 unsigned long arg);
151#else
152#define tty_compat_ioctl NULL
153#endif
154static int __tty_fasync(int fd, struct file *filp, int on);
155static int tty_fasync(int fd, struct file *filp, int on);
156static void release_tty(struct tty_struct *tty, int idx);
157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160/**
161 * alloc_tty_struct - allocate a tty object
162 *
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
165 *
166 * Locking: none
167 */
168
169struct tty_struct *alloc_tty_struct(void)
170{
171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172}
173
174/**
175 * free_tty_struct - free a disused tty
176 * @tty: tty struct to free
177 *
178 * Free the write buffers, tty queue and tty memory itself.
179 *
180 * Locking: none. Must be called after tty is definitely unused
181 */
182
183void free_tty_struct(struct tty_struct *tty)
184{
185 if (tty->dev)
186 put_device(tty->dev);
187 kfree(tty->write_buf);
188 tty_buffer_free_all(tty);
189 kfree(tty);
190}
191
192static inline struct tty_struct *file_tty(struct file *file)
193{
194 return ((struct tty_file_private *)file->private_data)->tty;
195}
196
197/* Associate a new file with the tty structure */
198int tty_add_file(struct tty_struct *tty, struct file *file)
199{
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 priv->tty = tty;
207 priv->file = file;
208 file->private_data = priv;
209
210 spin_lock(&tty_files_lock);
211 list_add(&priv->list, &tty->tty_files);
212 spin_unlock(&tty_files_lock);
213
214 return 0;
215}
216
217/* Delete file from its tty */
218void tty_del_file(struct file *file)
219{
220 struct tty_file_private *priv = file->private_data;
221
222 spin_lock(&tty_files_lock);
223 list_del(&priv->list);
224 spin_unlock(&tty_files_lock);
225 file->private_data = NULL;
226 kfree(priv);
227}
228
229
230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
231
232/**
233 * tty_name - return tty naming
234 * @tty: tty structure
235 * @buf: buffer for output
236 *
237 * Convert a tty structure into a name. The name reflects the kernel
238 * naming policy and if udev is in use may not reflect user space
239 *
240 * Locking: none
241 */
242
243char *tty_name(struct tty_struct *tty, char *buf)
244{
245 if (!tty) /* Hmm. NULL pointer. That's fun. */
246 strcpy(buf, "NULL tty");
247 else
248 strcpy(buf, tty->name);
249 return buf;
250}
251
252EXPORT_SYMBOL(tty_name);
253
254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255 const char *routine)
256{
257#ifdef TTY_PARANOIA_CHECK
258 if (!tty) {
259 printk(KERN_WARNING
260 "null TTY for (%d:%d) in %s\n",
261 imajor(inode), iminor(inode), routine);
262 return 1;
263 }
264 if (tty->magic != TTY_MAGIC) {
265 printk(KERN_WARNING
266 "bad magic number for tty struct (%d:%d) in %s\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270#endif
271 return 0;
272}
273
274static int check_tty_count(struct tty_struct *tty, const char *routine)
275{
276#ifdef CHECK_TTY_COUNT
277 struct list_head *p;
278 int count = 0;
279
280 spin_lock(&tty_files_lock);
281 list_for_each(p, &tty->tty_files) {
282 count++;
283 }
284 spin_unlock(&tty_files_lock);
285 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
286 tty->driver->subtype == PTY_TYPE_SLAVE &&
287 tty->link && tty->link->count)
288 count++;
289 if (tty->count != count) {
290 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
291 "!= #fd's(%d) in %s\n",
292 tty->name, tty->count, count, routine);
293 return count;
294 }
295#endif
296 return 0;
297}
298
299/**
300 * get_tty_driver - find device of a tty
301 * @dev_t: device identifier
302 * @index: returns the index of the tty
303 *
304 * This routine returns a tty driver structure, given a device number
305 * and also passes back the index number.
306 *
307 * Locking: caller must hold tty_mutex
308 */
309
310static struct tty_driver *get_tty_driver(dev_t device, int *index)
311{
312 struct tty_driver *p;
313
314 list_for_each_entry(p, &tty_drivers, tty_drivers) {
315 dev_t base = MKDEV(p->major, p->minor_start);
316 if (device < base || device >= base + p->num)
317 continue;
318 *index = device - base;
319 return tty_driver_kref_get(p);
320 }
321 return NULL;
322}
323
324#ifdef CONFIG_CONSOLE_POLL
325
326/**
327 * tty_find_polling_driver - find device of a polled tty
328 * @name: name string to match
329 * @line: pointer to resulting tty line nr
330 *
331 * This routine returns a tty driver structure, given a name
332 * and the condition that the tty driver is capable of polled
333 * operation.
334 */
335struct tty_driver *tty_find_polling_driver(char *name, int *line)
336{
337 struct tty_driver *p, *res = NULL;
338 int tty_line = 0;
339 int len;
340 char *str, *stp;
341
342 for (str = name; *str; str++)
343 if ((*str >= '0' && *str <= '9') || *str == ',')
344 break;
345 if (!*str)
346 return NULL;
347
348 len = str - name;
349 tty_line = simple_strtoul(str, &str, 10);
350
351 mutex_lock(&tty_mutex);
352 /* Search through the tty devices to look for a match */
353 list_for_each_entry(p, &tty_drivers, tty_drivers) {
354 if (strncmp(name, p->name, len) != 0)
355 continue;
356 stp = str;
357 if (*stp == ',')
358 stp++;
359 if (*stp == '\0')
360 stp = NULL;
361
362 if (tty_line >= 0 && tty_line < p->num && p->ops &&
363 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
364 res = tty_driver_kref_get(p);
365 *line = tty_line;
366 break;
367 }
368 }
369 mutex_unlock(&tty_mutex);
370
371 return res;
372}
373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
374#endif
375
376/**
377 * tty_check_change - check for POSIX terminal changes
378 * @tty: tty to check
379 *
380 * If we try to write to, or set the state of, a terminal and we're
381 * not in the foreground, send a SIGTTOU. If the signal is blocked or
382 * ignored, go ahead and perform the operation. (POSIX 7.2)
383 *
384 * Locking: ctrl_lock
385 */
386
387int tty_check_change(struct tty_struct *tty)
388{
389 unsigned long flags;
390 int ret = 0;
391
392 if (current->signal->tty != tty)
393 return 0;
394
395 spin_lock_irqsave(&tty->ctrl_lock, flags);
396
397 if (!tty->pgrp) {
398 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
399 goto out_unlock;
400 }
401 if (task_pgrp(current) == tty->pgrp)
402 goto out_unlock;
403 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
404 if (is_ignored(SIGTTOU))
405 goto out;
406 if (is_current_pgrp_orphaned()) {
407 ret = -EIO;
408 goto out;
409 }
410 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
411 set_thread_flag(TIF_SIGPENDING);
412 ret = -ERESTARTSYS;
413out:
414 return ret;
415out_unlock:
416 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
417 return ret;
418}
419
420EXPORT_SYMBOL(tty_check_change);
421
422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
423 size_t count, loff_t *ppos)
424{
425 return 0;
426}
427
428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
429 size_t count, loff_t *ppos)
430{
431 return -EIO;
432}
433
434/* No kernel lock held - none needed ;) */
435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
436{
437 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
438}
439
440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441 unsigned long arg)
442{
443 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444}
445
446static long hung_up_tty_compat_ioctl(struct file *file,
447 unsigned int cmd, unsigned long arg)
448{
449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450}
451
452static const struct file_operations tty_fops = {
453 .llseek = no_llseek,
454 .read = tty_read,
455 .write = tty_write,
456 .poll = tty_poll,
457 .unlocked_ioctl = tty_ioctl,
458 .compat_ioctl = tty_compat_ioctl,
459 .open = tty_open,
460 .release = tty_release,
461 .fasync = tty_fasync,
462};
463
464static const struct file_operations console_fops = {
465 .llseek = no_llseek,
466 .read = tty_read,
467 .write = redirected_tty_write,
468 .poll = tty_poll,
469 .unlocked_ioctl = tty_ioctl,
470 .compat_ioctl = tty_compat_ioctl,
471 .open = tty_open,
472 .release = tty_release,
473 .fasync = tty_fasync,
474};
475
476static const struct file_operations hung_up_tty_fops = {
477 .llseek = no_llseek,
478 .read = hung_up_tty_read,
479 .write = hung_up_tty_write,
480 .poll = hung_up_tty_poll,
481 .unlocked_ioctl = hung_up_tty_ioctl,
482 .compat_ioctl = hung_up_tty_compat_ioctl,
483 .release = tty_release,
484};
485
486static DEFINE_SPINLOCK(redirect_lock);
487static struct file *redirect;
488
489/**
490 * tty_wakeup - request more data
491 * @tty: terminal
492 *
493 * Internal and external helper for wakeups of tty. This function
494 * informs the line discipline if present that the driver is ready
495 * to receive more output data.
496 */
497
498void tty_wakeup(struct tty_struct *tty)
499{
500 struct tty_ldisc *ld;
501
502 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
503 ld = tty_ldisc_ref(tty);
504 if (ld) {
505 if (ld->ops->write_wakeup)
506 ld->ops->write_wakeup(tty);
507 tty_ldisc_deref(ld);
508 }
509 }
510 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
511}
512
513EXPORT_SYMBOL_GPL(tty_wakeup);
514
515/**
516 * __tty_hangup - actual handler for hangup events
517 * @work: tty device
518 *
519 * This can be called by the "eventd" kernel thread. That is process
520 * synchronous but doesn't hold any locks, so we need to make sure we
521 * have the appropriate locks for what we're doing.
522 *
523 * The hangup event clears any pending redirections onto the hung up
524 * device. It ensures future writes will error and it does the needed
525 * line discipline hangup and signal delivery. The tty object itself
526 * remains intact.
527 *
528 * Locking:
529 * BTM
530 * redirect lock for undoing redirection
531 * file list lock for manipulating list of ttys
532 * tty_ldisc_lock from called functions
533 * termios_mutex resetting termios data
534 * tasklist_lock to walk task list for hangup event
535 * ->siglock to protect ->signal/->sighand
536 */
537void __tty_hangup(struct tty_struct *tty)
538{
539 struct file *cons_filp = NULL;
540 struct file *filp, *f = NULL;
541 struct task_struct *p;
542 struct tty_file_private *priv;
543 int closecount = 0, n;
544 unsigned long flags;
545 int refs = 0;
546
547 if (!tty)
548 return;
549
550
551 spin_lock(&redirect_lock);
552 if (redirect && file_tty(redirect) == tty) {
553 f = redirect;
554 redirect = NULL;
555 }
556 spin_unlock(&redirect_lock);
557
558 tty_lock();
559
560 /* some functions below drop BTM, so we need this bit */
561 set_bit(TTY_HUPPING, &tty->flags);
562
563 /* inuse_filps is protected by the single tty lock,
564 this really needs to change if we want to flush the
565 workqueue with the lock held */
566 check_tty_count(tty, "tty_hangup");
567
568 spin_lock(&tty_files_lock);
569 /* This breaks for file handles being sent over AF_UNIX sockets ? */
570 list_for_each_entry(priv, &tty->tty_files, list) {
571 filp = priv->file;
572 if (filp->f_op->write == redirected_tty_write)
573 cons_filp = filp;
574 if (filp->f_op->write != tty_write)
575 continue;
576 closecount++;
577 __tty_fasync(-1, filp, 0); /* can't block */
578 filp->f_op = &hung_up_tty_fops;
579 }
580 spin_unlock(&tty_files_lock);
581
582 /*
583 * it drops BTM and thus races with reopen
584 * we protect the race by TTY_HUPPING
585 */
586 tty_ldisc_hangup(tty);
587
588 read_lock(&tasklist_lock);
589 if (tty->session) {
590 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
591 spin_lock_irq(&p->sighand->siglock);
592 if (p->signal->tty == tty) {
593 p->signal->tty = NULL;
594 /* We defer the dereferences outside fo
595 the tasklist lock */
596 refs++;
597 }
598 if (!p->signal->leader) {
599 spin_unlock_irq(&p->sighand->siglock);
600 continue;
601 }
602 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
603 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
604 put_pid(p->signal->tty_old_pgrp); /* A noop */
605 spin_lock_irqsave(&tty->ctrl_lock, flags);
606 if (tty->pgrp)
607 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
608 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
609 spin_unlock_irq(&p->sighand->siglock);
610 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
611 }
612 read_unlock(&tasklist_lock);
613
614 spin_lock_irqsave(&tty->ctrl_lock, flags);
615 clear_bit(TTY_THROTTLED, &tty->flags);
616 clear_bit(TTY_PUSH, &tty->flags);
617 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618 put_pid(tty->session);
619 put_pid(tty->pgrp);
620 tty->session = NULL;
621 tty->pgrp = NULL;
622 tty->ctrl_status = 0;
623 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
624
625 /* Account for the p->signal references we killed */
626 while (refs--)
627 tty_kref_put(tty);
628
629 /*
630 * If one of the devices matches a console pointer, we
631 * cannot just call hangup() because that will cause
632 * tty->count and state->count to go out of sync.
633 * So we just call close() the right number of times.
634 */
635 if (cons_filp) {
636 if (tty->ops->close)
637 for (n = 0; n < closecount; n++)
638 tty->ops->close(tty, cons_filp);
639 } else if (tty->ops->hangup)
640 (tty->ops->hangup)(tty);
641 /*
642 * We don't want to have driver/ldisc interactions beyond
643 * the ones we did here. The driver layer expects no
644 * calls after ->hangup() from the ldisc side. However we
645 * can't yet guarantee all that.
646 */
647 set_bit(TTY_HUPPED, &tty->flags);
648 clear_bit(TTY_HUPPING, &tty->flags);
649 tty_ldisc_enable(tty);
650
651 tty_unlock();
652
653 if (f)
654 fput(f);
655}
656
657static void do_tty_hangup(struct work_struct *work)
658{
659 struct tty_struct *tty =
660 container_of(work, struct tty_struct, hangup_work);
661
662 __tty_hangup(tty);
663}
664
665/**
666 * tty_hangup - trigger a hangup event
667 * @tty: tty to hangup
668 *
669 * A carrier loss (virtual or otherwise) has occurred on this like
670 * schedule a hangup sequence to run after this event.
671 */
672
673void tty_hangup(struct tty_struct *tty)
674{
675#ifdef TTY_DEBUG_HANGUP
676 char buf[64];
677 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
678#endif
679 schedule_work(&tty->hangup_work);
680}
681
682EXPORT_SYMBOL(tty_hangup);
683
684/**
685 * tty_vhangup - process vhangup
686 * @tty: tty to hangup
687 *
688 * The user has asked via system call for the terminal to be hung up.
689 * We do this synchronously so that when the syscall returns the process
690 * is complete. That guarantee is necessary for security reasons.
691 */
692
693void tty_vhangup(struct tty_struct *tty)
694{
695#ifdef TTY_DEBUG_HANGUP
696 char buf[64];
697
698 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
699#endif
700 __tty_hangup(tty);
701}
702
703EXPORT_SYMBOL(tty_vhangup);
704
705
706/**
707 * tty_vhangup_self - process vhangup for own ctty
708 *
709 * Perform a vhangup on the current controlling tty
710 */
711
712void tty_vhangup_self(void)
713{
714 struct tty_struct *tty;
715
716 tty = get_current_tty();
717 if (tty) {
718 tty_vhangup(tty);
719 tty_kref_put(tty);
720 }
721}
722
723/**
724 * tty_hung_up_p - was tty hung up
725 * @filp: file pointer of tty
726 *
727 * Return true if the tty has been subject to a vhangup or a carrier
728 * loss
729 */
730
731int tty_hung_up_p(struct file *filp)
732{
733 return (filp->f_op == &hung_up_tty_fops);
734}
735
736EXPORT_SYMBOL(tty_hung_up_p);
737
738static void session_clear_tty(struct pid *session)
739{
740 struct task_struct *p;
741 do_each_pid_task(session, PIDTYPE_SID, p) {
742 proc_clear_tty(p);
743 } while_each_pid_task(session, PIDTYPE_SID, p);
744}
745
746/**
747 * disassociate_ctty - disconnect controlling tty
748 * @on_exit: true if exiting so need to "hang up" the session
749 *
750 * This function is typically called only by the session leader, when
751 * it wants to disassociate itself from its controlling tty.
752 *
753 * It performs the following functions:
754 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
755 * (2) Clears the tty from being controlling the session
756 * (3) Clears the controlling tty for all processes in the
757 * session group.
758 *
759 * The argument on_exit is set to 1 if called when a process is
760 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
761 *
762 * Locking:
763 * BTM is taken for hysterical raisins, and held when
764 * called from no_tty().
765 * tty_mutex is taken to protect tty
766 * ->siglock is taken to protect ->signal/->sighand
767 * tasklist_lock is taken to walk process list for sessions
768 * ->siglock is taken to protect ->signal/->sighand
769 */
770
771void disassociate_ctty(int on_exit)
772{
773 struct tty_struct *tty;
774 struct pid *tty_pgrp = NULL;
775
776 if (!current->signal->leader)
777 return;
778
779 tty = get_current_tty();
780 if (tty) {
781 tty_pgrp = get_pid(tty->pgrp);
782 if (on_exit) {
783 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
784 tty_vhangup(tty);
785 }
786 tty_kref_put(tty);
787 } else if (on_exit) {
788 struct pid *old_pgrp;
789 spin_lock_irq(¤t->sighand->siglock);
790 old_pgrp = current->signal->tty_old_pgrp;
791 current->signal->tty_old_pgrp = NULL;
792 spin_unlock_irq(¤t->sighand->siglock);
793 if (old_pgrp) {
794 kill_pgrp(old_pgrp, SIGHUP, on_exit);
795 kill_pgrp(old_pgrp, SIGCONT, on_exit);
796 put_pid(old_pgrp);
797 }
798 return;
799 }
800 if (tty_pgrp) {
801 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
802 if (!on_exit)
803 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
804 put_pid(tty_pgrp);
805 }
806
807 spin_lock_irq(¤t->sighand->siglock);
808 put_pid(current->signal->tty_old_pgrp);
809 current->signal->tty_old_pgrp = NULL;
810 spin_unlock_irq(¤t->sighand->siglock);
811
812 tty = get_current_tty();
813 if (tty) {
814 unsigned long flags;
815 spin_lock_irqsave(&tty->ctrl_lock, flags);
816 put_pid(tty->session);
817 put_pid(tty->pgrp);
818 tty->session = NULL;
819 tty->pgrp = NULL;
820 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
821 tty_kref_put(tty);
822 } else {
823#ifdef TTY_DEBUG_HANGUP
824 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
825 " = NULL", tty);
826#endif
827 }
828
829 /* Now clear signal->tty under the lock */
830 read_lock(&tasklist_lock);
831 session_clear_tty(task_session(current));
832 read_unlock(&tasklist_lock);
833}
834
835/**
836 *
837 * no_tty - Ensure the current process does not have a controlling tty
838 */
839void no_tty(void)
840{
841 struct task_struct *tsk = current;
842 tty_lock();
843 disassociate_ctty(0);
844 tty_unlock();
845 proc_clear_tty(tsk);
846}
847
848
849/**
850 * stop_tty - propagate flow control
851 * @tty: tty to stop
852 *
853 * Perform flow control to the driver. For PTY/TTY pairs we
854 * must also propagate the TIOCKPKT status. May be called
855 * on an already stopped device and will not re-call the driver
856 * method.
857 *
858 * This functionality is used by both the line disciplines for
859 * halting incoming flow and by the driver. It may therefore be
860 * called from any context, may be under the tty atomic_write_lock
861 * but not always.
862 *
863 * Locking:
864 * Uses the tty control lock internally
865 */
866
867void stop_tty(struct tty_struct *tty)
868{
869 unsigned long flags;
870 spin_lock_irqsave(&tty->ctrl_lock, flags);
871 if (tty->stopped) {
872 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
873 return;
874 }
875 tty->stopped = 1;
876 if (tty->link && tty->link->packet) {
877 tty->ctrl_status &= ~TIOCPKT_START;
878 tty->ctrl_status |= TIOCPKT_STOP;
879 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
880 }
881 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
882 if (tty->ops->stop)
883 (tty->ops->stop)(tty);
884}
885
886EXPORT_SYMBOL(stop_tty);
887
888/**
889 * start_tty - propagate flow control
890 * @tty: tty to start
891 *
892 * Start a tty that has been stopped if at all possible. Perform
893 * any necessary wakeups and propagate the TIOCPKT status. If this
894 * is the tty was previous stopped and is being started then the
895 * driver start method is invoked and the line discipline woken.
896 *
897 * Locking:
898 * ctrl_lock
899 */
900
901void start_tty(struct tty_struct *tty)
902{
903 unsigned long flags;
904 spin_lock_irqsave(&tty->ctrl_lock, flags);
905 if (!tty->stopped || tty->flow_stopped) {
906 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
907 return;
908 }
909 tty->stopped = 0;
910 if (tty->link && tty->link->packet) {
911 tty->ctrl_status &= ~TIOCPKT_STOP;
912 tty->ctrl_status |= TIOCPKT_START;
913 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
914 }
915 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
916 if (tty->ops->start)
917 (tty->ops->start)(tty);
918 /* If we have a running line discipline it may need kicking */
919 tty_wakeup(tty);
920}
921
922EXPORT_SYMBOL(start_tty);
923
924/**
925 * tty_read - read method for tty device files
926 * @file: pointer to tty file
927 * @buf: user buffer
928 * @count: size of user buffer
929 * @ppos: unused
930 *
931 * Perform the read system call function on this terminal device. Checks
932 * for hung up devices before calling the line discipline method.
933 *
934 * Locking:
935 * Locks the line discipline internally while needed. Multiple
936 * read calls may be outstanding in parallel.
937 */
938
939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
940 loff_t *ppos)
941{
942 int i;
943 struct inode *inode = file->f_path.dentry->d_inode;
944 struct tty_struct *tty = file_tty(file);
945 struct tty_ldisc *ld;
946
947 if (tty_paranoia_check(tty, inode, "tty_read"))
948 return -EIO;
949 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
950 return -EIO;
951
952 /* We want to wait for the line discipline to sort out in this
953 situation */
954 ld = tty_ldisc_ref_wait(tty);
955 if (ld->ops->read)
956 i = (ld->ops->read)(tty, file, buf, count);
957 else
958 i = -EIO;
959 tty_ldisc_deref(ld);
960 if (i > 0)
961 inode->i_atime = current_fs_time(inode->i_sb);
962 return i;
963}
964
965void tty_write_unlock(struct tty_struct *tty)
966 __releases(&tty->atomic_write_lock)
967{
968 mutex_unlock(&tty->atomic_write_lock);
969 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970}
971
972int tty_write_lock(struct tty_struct *tty, int ndelay)
973 __acquires(&tty->atomic_write_lock)
974{
975 if (!mutex_trylock(&tty->atomic_write_lock)) {
976 if (ndelay)
977 return -EAGAIN;
978 if (mutex_lock_interruptible(&tty->atomic_write_lock))
979 return -ERESTARTSYS;
980 }
981 return 0;
982}
983
984/*
985 * Split writes up in sane blocksizes to avoid
986 * denial-of-service type attacks
987 */
988static inline ssize_t do_tty_write(
989 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990 struct tty_struct *tty,
991 struct file *file,
992 const char __user *buf,
993 size_t count)
994{
995 ssize_t ret, written = 0;
996 unsigned int chunk;
997
998 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999 if (ret < 0)
1000 return ret;
1001
1002 /*
1003 * We chunk up writes into a temporary buffer. This
1004 * simplifies low-level drivers immensely, since they
1005 * don't have locking issues and user mode accesses.
1006 *
1007 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008 * big chunk-size..
1009 *
1010 * The default chunk-size is 2kB, because the NTTY
1011 * layer has problems with bigger chunks. It will
1012 * claim to be able to handle more characters than
1013 * it actually does.
1014 *
1015 * FIXME: This can probably go away now except that 64K chunks
1016 * are too likely to fail unless switched to vmalloc...
1017 */
1018 chunk = 2048;
1019 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020 chunk = 65536;
1021 if (count < chunk)
1022 chunk = count;
1023
1024 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025 if (tty->write_cnt < chunk) {
1026 unsigned char *buf_chunk;
1027
1028 if (chunk < 1024)
1029 chunk = 1024;
1030
1031 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032 if (!buf_chunk) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
1036 kfree(tty->write_buf);
1037 tty->write_cnt = chunk;
1038 tty->write_buf = buf_chunk;
1039 }
1040
1041 /* Do the write .. */
1042 for (;;) {
1043 size_t size = count;
1044 if (size > chunk)
1045 size = chunk;
1046 ret = -EFAULT;
1047 if (copy_from_user(tty->write_buf, buf, size))
1048 break;
1049 ret = write(tty, file, tty->write_buf, size);
1050 if (ret <= 0)
1051 break;
1052 written += ret;
1053 buf += ret;
1054 count -= ret;
1055 if (!count)
1056 break;
1057 ret = -ERESTARTSYS;
1058 if (signal_pending(current))
1059 break;
1060 cond_resched();
1061 }
1062 if (written) {
1063 struct inode *inode = file->f_path.dentry->d_inode;
1064 inode->i_mtime = current_fs_time(inode->i_sb);
1065 ret = written;
1066 }
1067out:
1068 tty_write_unlock(tty);
1069 return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086 if (tty) {
1087 mutex_lock(&tty->atomic_write_lock);
1088 tty_lock();
1089 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090 tty_unlock();
1091 tty->ops->write(tty, msg, strlen(msg));
1092 } else
1093 tty_unlock();
1094 tty_write_unlock(tty);
1095 }
1096 return;
1097}
1098
1099
1100/**
1101 * tty_write - write method for tty device file
1102 * @file: tty file pointer
1103 * @buf: user data to write
1104 * @count: bytes to write
1105 * @ppos: unused
1106 *
1107 * Write data to a tty device via the line discipline.
1108 *
1109 * Locking:
1110 * Locks the line discipline as required
1111 * Writes to the tty driver are serialized by the atomic_write_lock
1112 * and are then processed in chunks to the device. The line discipline
1113 * write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117 size_t count, loff_t *ppos)
1118{
1119 struct inode *inode = file->f_path.dentry->d_inode;
1120 struct tty_struct *tty = file_tty(file);
1121 struct tty_ldisc *ld;
1122 ssize_t ret;
1123
1124 if (tty_paranoia_check(tty, inode, "tty_write"))
1125 return -EIO;
1126 if (!tty || !tty->ops->write ||
1127 (test_bit(TTY_IO_ERROR, &tty->flags)))
1128 return -EIO;
1129 /* Short term debug to catch buggy drivers */
1130 if (tty->ops->write_room == NULL)
1131 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132 tty->driver->name);
1133 ld = tty_ldisc_ref_wait(tty);
1134 if (!ld->ops->write)
1135 ret = -EIO;
1136 else
1137 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138 tty_ldisc_deref(ld);
1139 return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143 size_t count, loff_t *ppos)
1144{
1145 struct file *p = NULL;
1146
1147 spin_lock(&redirect_lock);
1148 if (redirect) {
1149 get_file(redirect);
1150 p = redirect;
1151 }
1152 spin_unlock(&redirect_lock);
1153
1154 if (p) {
1155 ssize_t res;
1156 res = vfs_write(p, buf, count, &p->f_pos);
1157 fput(p);
1158 return res;
1159 }
1160 return tty_write(file, buf, count, ppos);
1161}
1162
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 * pty_line_name - generate name for a pty
1167 * @driver: the tty driver in use
1168 * @index: the minor number
1169 * @p: output buffer of at least 6 bytes
1170 *
1171 * Generate a name from a driver reference and write it to the output
1172 * buffer.
1173 *
1174 * Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178 int i = index + driver->name_base;
1179 /* ->name is initialized to "ttyp", but "tty" is expected */
1180 sprintf(p, "%s%c%x",
1181 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182 ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 * tty_line_name - generate name for a tty
1187 * @driver: the tty driver in use
1188 * @index: the minor number
1189 * @p: output buffer of at least 7 bytes
1190 *
1191 * Generate a name from a driver reference and write it to the output
1192 * buffer.
1193 *
1194 * Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199}
1200
1201/**
1202 * tty_driver_lookup_tty() - find an existing tty, if any
1203 * @driver: the driver for the tty
1204 * @idx: the minor number
1205 *
1206 * Return the tty, if found or ERR_PTR() otherwise.
1207 *
1208 * Locking: tty_mutex must be held. If tty is found, the mutex must
1209 * be held until the 'fast-open' is also done. Will change once we
1210 * have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213 struct inode *inode, int idx)
1214{
1215 struct tty_struct *tty;
1216
1217 if (driver->ops->lookup)
1218 return driver->ops->lookup(driver, inode, idx);
1219
1220 tty = driver->ttys[idx];
1221 return tty;
1222}
1223
1224/**
1225 * tty_init_termios - helper for termios setup
1226 * @tty: the tty to set up
1227 *
1228 * Initialise the termios structures for this tty. Thus runs under
1229 * the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234 struct ktermios *tp;
1235 int idx = tty->index;
1236
1237 tp = tty->driver->termios[idx];
1238 if (tp == NULL) {
1239 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240 if (tp == NULL)
1241 return -ENOMEM;
1242 memcpy(tp, &tty->driver->init_termios,
1243 sizeof(struct ktermios));
1244 tty->driver->termios[idx] = tp;
1245 }
1246 tty->termios = tp;
1247 tty->termios_locked = tp + 1;
1248
1249 /* Compatibility until drivers always set this */
1250 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252 return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256/**
1257 * tty_driver_install_tty() - install a tty entry in the driver
1258 * @driver: the driver for the tty
1259 * @tty: the tty
1260 *
1261 * Install a tty object into the driver tables. The tty->index field
1262 * will be set by the time this is called. This method is responsible
1263 * for ensuring any need additional structures are allocated and
1264 * configured.
1265 *
1266 * Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269 struct tty_struct *tty)
1270{
1271 int idx = tty->index;
1272 int ret;
1273
1274 if (driver->ops->install) {
1275 ret = driver->ops->install(driver, tty);
1276 return ret;
1277 }
1278
1279 if (tty_init_termios(tty) == 0) {
1280 tty_driver_kref_get(driver);
1281 tty->count++;
1282 driver->ttys[idx] = tty;
1283 return 0;
1284 }
1285 return -ENOMEM;
1286}
1287
1288/**
1289 * tty_driver_remove_tty() - remove a tty from the driver tables
1290 * @driver: the driver for the tty
1291 * @idx: the minor number
1292 *
1293 * Remvoe a tty object from the driver tables. The tty->index field
1294 * will be set by the time this is called.
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300 if (driver->ops->remove)
1301 driver->ops->remove(driver, tty);
1302 else
1303 driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * tty_reopen() - fast re-open of an open tty
1308 * @tty - the tty to open
1309 *
1310 * Return 0 on success, -errno on error.
1311 *
1312 * Locking: tty_mutex must be held from the time the tty was found
1313 * till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317 struct tty_driver *driver = tty->driver;
1318
1319 if (test_bit(TTY_CLOSING, &tty->flags) ||
1320 test_bit(TTY_HUPPING, &tty->flags) ||
1321 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322 return -EIO;
1323
1324 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325 driver->subtype == PTY_TYPE_MASTER) {
1326 /*
1327 * special case for PTY masters: only one open permitted,
1328 * and the slave side open count is incremented as well.
1329 */
1330 if (tty->count)
1331 return -EIO;
1332
1333 tty->link->count++;
1334 }
1335 tty->count++;
1336 tty->driver = driver; /* N.B. why do this every time?? */
1337
1338 mutex_lock(&tty->ldisc_mutex);
1339 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340 mutex_unlock(&tty->ldisc_mutex);
1341
1342 return 0;
1343}
1344
1345/**
1346 * tty_init_dev - initialise a tty device
1347 * @driver: tty driver we are opening a device on
1348 * @idx: device index
1349 * @ret_tty: returned tty structure
1350 * @first_ok: ok to open a new device (used by ptmx)
1351 *
1352 * Prepare a tty device. This may not be a "new" clean device but
1353 * could also be an active device. The pty drivers require special
1354 * handling because of this.
1355 *
1356 * Locking:
1357 * The function is called under the tty_mutex, which
1358 * protects us from the tty struct or driver itself going away.
1359 *
1360 * On exit the tty device has the line discipline attached and
1361 * a reference count of 1. If a pair was created for pty/tty use
1362 * and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open. The new code protects the open with a mutex, so it's
1366 * really quite straightforward. The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371 int first_ok)
1372{
1373 struct tty_struct *tty;
1374 int retval;
1375
1376 /* Check if pty master is being opened multiple times */
1377 if (driver->subtype == PTY_TYPE_MASTER &&
1378 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379 return ERR_PTR(-EIO);
1380 }
1381
1382 /*
1383 * First time open is complex, especially for PTY devices.
1384 * This code guarantees that either everything succeeds and the
1385 * TTY is ready for operation, or else the table slots are vacated
1386 * and the allocated memory released. (Except that the termios
1387 * and locked termios may be retained.)
1388 */
1389
1390 if (!try_module_get(driver->owner))
1391 return ERR_PTR(-ENODEV);
1392
1393 tty = alloc_tty_struct();
1394 if (!tty) {
1395 retval = -ENOMEM;
1396 goto err_module_put;
1397 }
1398 initialize_tty_struct(tty, driver, idx);
1399
1400 retval = tty_driver_install_tty(driver, tty);
1401 if (retval < 0)
1402 goto err_deinit_tty;
1403
1404 /*
1405 * Structures all installed ... call the ldisc open routines.
1406 * If we fail here just call release_tty to clean up. No need
1407 * to decrement the use counts, as release_tty doesn't care.
1408 */
1409 retval = tty_ldisc_setup(tty, tty->link);
1410 if (retval)
1411 goto err_release_tty;
1412 return tty;
1413
1414err_deinit_tty:
1415 deinitialize_tty_struct(tty);
1416 free_tty_struct(tty);
1417err_module_put:
1418 module_put(driver->owner);
1419 return ERR_PTR(retval);
1420
1421 /* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424 "clearing slot %d\n", idx);
1425 release_tty(tty, idx);
1426 return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
1430{
1431 struct ktermios *tp;
1432 int idx = tty->index;
1433 /* Kill this flag and push into drivers for locking etc */
1434 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435 /* FIXME: Locking on ->termios array */
1436 tp = tty->termios;
1437 tty->driver->termios[idx] = NULL;
1438 kfree(tp);
1439 }
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
1444{
1445 tty_driver_remove_tty(tty->driver, tty);
1446 tty_free_termios(tty);
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 * release_one_tty - release tty structure memory
1452 * @kref: kref of tty we are obliterating
1453 *
1454 * Releases memory associated with a tty structure, and clears out the
1455 * driver table slots. This function is called when a device is no longer
1456 * in use. It also gets called when setup of a device fails.
1457 *
1458 * Locking:
1459 * tty_mutex - sometimes only
1460 * takes the file list lock internally when working on the list
1461 * of ttys that the driver keeps.
1462 *
1463 * This method gets called from a work queue so that the driver private
1464 * cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468 struct tty_struct *tty =
1469 container_of(work, struct tty_struct, hangup_work);
1470 struct tty_driver *driver = tty->driver;
1471
1472 if (tty->ops->cleanup)
1473 tty->ops->cleanup(tty);
1474
1475 tty->magic = 0;
1476 tty_driver_kref_put(driver);
1477 module_put(driver->owner);
1478
1479 spin_lock(&tty_files_lock);
1480 list_del_init(&tty->tty_files);
1481 spin_unlock(&tty_files_lock);
1482
1483 put_pid(tty->pgrp);
1484 put_pid(tty->session);
1485 free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492 if (tty->ops->shutdown)
1493 tty->ops->shutdown(tty);
1494 else
1495 tty_shutdown(tty);
1496
1497 /* The hangup queue is now free so we can reuse it rather than
1498 waste a chunk of memory for each port */
1499 INIT_WORK(&tty->hangup_work, release_one_tty);
1500 schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 * tty_kref_put - release a tty kref
1505 * @tty: tty device
1506 *
1507 * Release a reference to a tty device and if need be let the kref
1508 * layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513 if (tty)
1514 kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 * release_tty - release tty structure memory
1520 *
1521 * Release both @tty and a possible linked partner (think pty pair),
1522 * and decrement the refcount of the backing module.
1523 *
1524 * Locking:
1525 * tty_mutex - sometimes only
1526 * takes the file list lock internally when working on the list
1527 * of ttys that the driver keeps.
1528 * FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533 /* This should always be true but check for the moment */
1534 WARN_ON(tty->index != idx);
1535
1536 if (tty->link)
1537 tty_kref_put(tty->link);
1538 tty_kref_put(tty);
1539}
1540
1541/**
1542 * tty_release - vfs callback for close
1543 * @inode: inode of tty
1544 * @filp: file pointer for handle to tty
1545 *
1546 * Called the last time each file handle is closed that references
1547 * this tty. There may however be several such references.
1548 *
1549 * Locking:
1550 * Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562 struct tty_struct *tty = file_tty(filp);
1563 struct tty_struct *o_tty;
1564 int pty_master, tty_closing, o_tty_closing, do_sleep;
1565 int devpts;
1566 int idx;
1567 char buf[64];
1568
1569 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570 return 0;
1571
1572 tty_lock();
1573 check_tty_count(tty, "tty_release_dev");
1574
1575 __tty_fasync(-1, filp, 0);
1576
1577 idx = tty->index;
1578 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579 tty->driver->subtype == PTY_TYPE_MASTER);
1580 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581 o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584 if (idx < 0 || idx >= tty->driver->num) {
1585 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586 "free (%s)\n", tty->name);
1587 tty_unlock();
1588 return 0;
1589 }
1590 if (!devpts) {
1591 if (tty != tty->driver->ttys[idx]) {
1592 tty_unlock();
1593 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594 "for (%s)\n", idx, tty->name);
1595 return 0;
1596 }
1597 if (tty->termios != tty->driver->termios[idx]) {
1598 tty_unlock();
1599 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600 "for (%s)\n",
1601 idx, tty->name);
1602 return 0;
1603 }
1604 }
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609 tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613 if (tty->driver->other &&
1614 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615 if (o_tty != tty->driver->other->ttys[idx]) {
1616 tty_unlock();
1617 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618 "not o_tty for (%s)\n",
1619 idx, tty->name);
1620 return 0 ;
1621 }
1622 if (o_tty->termios != tty->driver->other->termios[idx]) {
1623 tty_unlock();
1624 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625 "not o_termios for (%s)\n",
1626 idx, tty->name);
1627 return 0;
1628 }
1629 if (o_tty->link != tty) {
1630 tty_unlock();
1631 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632 return 0;
1633 }
1634 }
1635#endif
1636 if (tty->ops->close)
1637 tty->ops->close(tty, filp);
1638
1639 tty_unlock();
1640 /*
1641 * Sanity check: if tty->count is going to zero, there shouldn't be
1642 * any waiters on tty->read_wait or tty->write_wait. We test the
1643 * wait queues and kick everyone out _before_ actually starting to
1644 * close. This ensures that we won't block while releasing the tty
1645 * structure.
1646 *
1647 * The test for the o_tty closing is necessary, since the master and
1648 * slave sides may close in any order. If the slave side closes out
1649 * first, its count will be one, since the master side holds an open.
1650 * Thus this test wouldn't be triggered at the time the slave closes,
1651 * so we do it now.
1652 *
1653 * Note that it's possible for the tty to be opened again while we're
1654 * flushing out waiters. By recalculating the closing flags before
1655 * each iteration we avoid any problems.
1656 */
1657 while (1) {
1658 /* Guard against races with tty->count changes elsewhere and
1659 opens on /dev/tty */
1660
1661 mutex_lock(&tty_mutex);
1662 tty_lock();
1663 tty_closing = tty->count <= 1;
1664 o_tty_closing = o_tty &&
1665 (o_tty->count <= (pty_master ? 1 : 0));
1666 do_sleep = 0;
1667
1668 if (tty_closing) {
1669 if (waitqueue_active(&tty->read_wait)) {
1670 wake_up_poll(&tty->read_wait, POLLIN);
1671 do_sleep++;
1672 }
1673 if (waitqueue_active(&tty->write_wait)) {
1674 wake_up_poll(&tty->write_wait, POLLOUT);
1675 do_sleep++;
1676 }
1677 }
1678 if (o_tty_closing) {
1679 if (waitqueue_active(&o_tty->read_wait)) {
1680 wake_up_poll(&o_tty->read_wait, POLLIN);
1681 do_sleep++;
1682 }
1683 if (waitqueue_active(&o_tty->write_wait)) {
1684 wake_up_poll(&o_tty->write_wait, POLLOUT);
1685 do_sleep++;
1686 }
1687 }
1688 if (!do_sleep)
1689 break;
1690
1691 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692 "active!\n", tty_name(tty, buf));
1693 tty_unlock();
1694 mutex_unlock(&tty_mutex);
1695 schedule();
1696 }
1697
1698 /*
1699 * The closing flags are now consistent with the open counts on
1700 * both sides, and we've completed the last operation that could
1701 * block, so it's safe to proceed with closing.
1702 */
1703 if (pty_master) {
1704 if (--o_tty->count < 0) {
1705 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706 "(%d) for %s\n",
1707 o_tty->count, tty_name(o_tty, buf));
1708 o_tty->count = 0;
1709 }
1710 }
1711 if (--tty->count < 0) {
1712 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713 tty->count, tty_name(tty, buf));
1714 tty->count = 0;
1715 }
1716
1717 /*
1718 * We've decremented tty->count, so we need to remove this file
1719 * descriptor off the tty->tty_files list; this serves two
1720 * purposes:
1721 * - check_tty_count sees the correct number of file descriptors
1722 * associated with this tty.
1723 * - do_tty_hangup no longer sees this file descriptor as
1724 * something that needs to be handled for hangups.
1725 */
1726 tty_del_file(filp);
1727
1728 /*
1729 * Perform some housekeeping before deciding whether to return.
1730 *
1731 * Set the TTY_CLOSING flag if this was the last open. In the
1732 * case of a pty we may have to wait around for the other side
1733 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734 */
1735 if (tty_closing)
1736 set_bit(TTY_CLOSING, &tty->flags);
1737 if (o_tty_closing)
1738 set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740 /*
1741 * If _either_ side is closing, make sure there aren't any
1742 * processes that still think tty or o_tty is their controlling
1743 * tty.
1744 */
1745 if (tty_closing || o_tty_closing) {
1746 read_lock(&tasklist_lock);
1747 session_clear_tty(tty->session);
1748 if (o_tty)
1749 session_clear_tty(o_tty->session);
1750 read_unlock(&tasklist_lock);
1751 }
1752
1753 mutex_unlock(&tty_mutex);
1754
1755 /* check whether both sides are closing ... */
1756 if (!tty_closing || (o_tty && !o_tty_closing)) {
1757 tty_unlock();
1758 return 0;
1759 }
1760
1761#ifdef TTY_DEBUG_HANGUP
1762 printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764 /*
1765 * Ask the line discipline code to release its structures
1766 */
1767 tty_ldisc_release(tty, o_tty);
1768 /*
1769 * The release_tty function takes care of the details of clearing
1770 * the slots and preserving the termios structure.
1771 */
1772 release_tty(tty, idx);
1773
1774 /* Make this pty number available for reallocation */
1775 if (devpts)
1776 devpts_kill_index(inode, idx);
1777 tty_unlock();
1778 return 0;
1779}
1780
1781/**
1782 * tty_open - open a tty device
1783 * @inode: inode of device file
1784 * @filp: file pointer to tty
1785 *
1786 * tty_open and tty_release keep up the tty count that contains the
1787 * number of opens done on a tty. We cannot use the inode-count, as
1788 * different inodes might point to the same tty.
1789 *
1790 * Open-counting is needed for pty masters, as well as for keeping
1791 * track of serial lines: DTR is dropped when the last close happens.
1792 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1793 *
1794 * The termios state of a pty is reset on first open so that
1795 * settings don't persist across reuse.
1796 *
1797 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 * tty->count should protect the rest.
1799 * ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804 struct tty_struct *tty = NULL;
1805 int noctty, retval;
1806 struct tty_driver *driver;
1807 int index;
1808 dev_t device = inode->i_rdev;
1809 unsigned saved_flags = filp->f_flags;
1810
1811 nonseekable_open(inode, filp);
1812
1813retry_open:
1814 noctty = filp->f_flags & O_NOCTTY;
1815 index = -1;
1816 retval = 0;
1817
1818 mutex_lock(&tty_mutex);
1819 tty_lock();
1820
1821 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822 tty = get_current_tty();
1823 if (!tty) {
1824 tty_unlock();
1825 mutex_unlock(&tty_mutex);
1826 return -ENXIO;
1827 }
1828 driver = tty_driver_kref_get(tty->driver);
1829 index = tty->index;
1830 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831 /* noctty = 1; */
1832 /* FIXME: Should we take a driver reference ? */
1833 tty_kref_put(tty);
1834 goto got_driver;
1835 }
1836#ifdef CONFIG_VT
1837 if (device == MKDEV(TTY_MAJOR, 0)) {
1838 extern struct tty_driver *console_driver;
1839 driver = tty_driver_kref_get(console_driver);
1840 index = fg_console;
1841 noctty = 1;
1842 goto got_driver;
1843 }
1844#endif
1845 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846 struct tty_driver *console_driver = console_device(&index);
1847 if (console_driver) {
1848 driver = tty_driver_kref_get(console_driver);
1849 if (driver) {
1850 /* Don't let /dev/console block */
1851 filp->f_flags |= O_NONBLOCK;
1852 noctty = 1;
1853 goto got_driver;
1854 }
1855 }
1856 tty_unlock();
1857 mutex_unlock(&tty_mutex);
1858 return -ENODEV;
1859 }
1860
1861 driver = get_tty_driver(device, &index);
1862 if (!driver) {
1863 tty_unlock();
1864 mutex_unlock(&tty_mutex);
1865 return -ENODEV;
1866 }
1867got_driver:
1868 if (!tty) {
1869 /* check whether we're reopening an existing tty */
1870 tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872 if (IS_ERR(tty)) {
1873 tty_unlock();
1874 mutex_unlock(&tty_mutex);
1875 return PTR_ERR(tty);
1876 }
1877 }
1878
1879 if (tty) {
1880 retval = tty_reopen(tty);
1881 if (retval)
1882 tty = ERR_PTR(retval);
1883 } else
1884 tty = tty_init_dev(driver, index, 0);
1885
1886 mutex_unlock(&tty_mutex);
1887 tty_driver_kref_put(driver);
1888 if (IS_ERR(tty)) {
1889 tty_unlock();
1890 return PTR_ERR(tty);
1891 }
1892
1893 retval = tty_add_file(tty, filp);
1894 if (retval) {
1895 tty_unlock();
1896 tty_release(inode, filp);
1897 return retval;
1898 }
1899
1900 check_tty_count(tty, "tty_open");
1901 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902 tty->driver->subtype == PTY_TYPE_MASTER)
1903 noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905 printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907 if (tty->ops->open)
1908 retval = tty->ops->open(tty, filp);
1909 else
1910 retval = -ENODEV;
1911 filp->f_flags = saved_flags;
1912
1913 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914 !capable(CAP_SYS_ADMIN))
1915 retval = -EBUSY;
1916
1917 if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919 printk(KERN_DEBUG "error %d in opening %s...", retval,
1920 tty->name);
1921#endif
1922 tty_unlock(); /* need to call tty_release without BTM */
1923 tty_release(inode, filp);
1924 if (retval != -ERESTARTSYS)
1925 return retval;
1926
1927 if (signal_pending(current))
1928 return retval;
1929
1930 schedule();
1931 /*
1932 * Need to reset f_op in case a hangup happened.
1933 */
1934 tty_lock();
1935 if (filp->f_op == &hung_up_tty_fops)
1936 filp->f_op = &tty_fops;
1937 tty_unlock();
1938 goto retry_open;
1939 }
1940 tty_unlock();
1941
1942
1943 mutex_lock(&tty_mutex);
1944 tty_lock();
1945 spin_lock_irq(¤t->sighand->siglock);
1946 if (!noctty &&
1947 current->signal->leader &&
1948 !current->signal->tty &&
1949 tty->session == NULL)
1950 __proc_set_tty(current, tty);
1951 spin_unlock_irq(¤t->sighand->siglock);
1952 tty_unlock();
1953 mutex_unlock(&tty_mutex);
1954 return 0;
1955}
1956
1957
1958
1959/**
1960 * tty_poll - check tty status
1961 * @filp: file being polled
1962 * @wait: poll wait structures to update
1963 *
1964 * Call the line discipline polling method to obtain the poll
1965 * status of the device.
1966 *
1967 * Locking: locks called line discipline but ldisc poll method
1968 * may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973 struct tty_struct *tty = file_tty(filp);
1974 struct tty_ldisc *ld;
1975 int ret = 0;
1976
1977 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978 return 0;
1979
1980 ld = tty_ldisc_ref_wait(tty);
1981 if (ld->ops->poll)
1982 ret = (ld->ops->poll)(tty, filp, wait);
1983 tty_ldisc_deref(ld);
1984 return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989 struct tty_struct *tty = file_tty(filp);
1990 unsigned long flags;
1991 int retval = 0;
1992
1993 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994 goto out;
1995
1996 retval = fasync_helper(fd, filp, on, &tty->fasync);
1997 if (retval <= 0)
1998 goto out;
1999
2000 if (on) {
2001 enum pid_type type;
2002 struct pid *pid;
2003 if (!waitqueue_active(&tty->read_wait))
2004 tty->minimum_to_wake = 1;
2005 spin_lock_irqsave(&tty->ctrl_lock, flags);
2006 if (tty->pgrp) {
2007 pid = tty->pgrp;
2008 type = PIDTYPE_PGID;
2009 } else {
2010 pid = task_pid(current);
2011 type = PIDTYPE_PID;
2012 }
2013 get_pid(pid);
2014 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015 retval = __f_setown(filp, pid, type, 0);
2016 put_pid(pid);
2017 if (retval)
2018 goto out;
2019 } else {
2020 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022 }
2023 retval = 0;
2024out:
2025 return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030 int retval;
2031 tty_lock();
2032 retval = __tty_fasync(fd, filp, on);
2033 tty_unlock();
2034 return retval;
2035}
2036
2037/**
2038 * tiocsti - fake input character
2039 * @tty: tty to fake input into
2040 * @p: pointer to character
2041 *
2042 * Fake input to a tty device. Does the necessary locking and
2043 * input management.
2044 *
2045 * FIXME: does not honour flow control ??
2046 *
2047 * Locking:
2048 * Called functions take tty_ldisc_lock
2049 * current->signal->tty check is safe without locks
2050 *
2051 * FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056 char ch, mbz = 0;
2057 struct tty_ldisc *ld;
2058
2059 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060 return -EPERM;
2061 if (get_user(ch, p))
2062 return -EFAULT;
2063 tty_audit_tiocsti(tty, ch);
2064 ld = tty_ldisc_ref_wait(tty);
2065 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066 tty_ldisc_deref(ld);
2067 return 0;
2068}
2069
2070/**
2071 * tiocgwinsz - implement window query ioctl
2072 * @tty; tty
2073 * @arg: user buffer for result
2074 *
2075 * Copies the kernel idea of the window size into the user buffer.
2076 *
2077 * Locking: tty->termios_mutex is taken to ensure the winsize data
2078 * is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083 int err;
2084
2085 mutex_lock(&tty->termios_mutex);
2086 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087 mutex_unlock(&tty->termios_mutex);
2088
2089 return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 * tty_do_resize - resize event
2094 * @tty: tty being resized
2095 * @rows: rows (character)
2096 * @cols: cols (character)
2097 *
2098 * Update the termios variables and send the necessary signals to
2099 * peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104 struct pid *pgrp;
2105 unsigned long flags;
2106
2107 /* Lock the tty */
2108 mutex_lock(&tty->termios_mutex);
2109 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110 goto done;
2111 /* Get the PID values and reference them so we can
2112 avoid holding the tty ctrl lock while sending signals */
2113 spin_lock_irqsave(&tty->ctrl_lock, flags);
2114 pgrp = get_pid(tty->pgrp);
2115 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
2117 if (pgrp)
2118 kill_pgrp(pgrp, SIGWINCH, 1);
2119 put_pid(pgrp);
2120
2121 tty->winsize = *ws;
2122done:
2123 mutex_unlock(&tty->termios_mutex);
2124 return 0;
2125}
2126
2127/**
2128 * tiocswinsz - implement window size set ioctl
2129 * @tty; tty side of tty
2130 * @arg: user buffer for result
2131 *
2132 * Copies the user idea of the window size to the kernel. Traditionally
2133 * this is just advisory information but for the Linux console it
2134 * actually has driver level meaning and triggers a VC resize.
2135 *
2136 * Locking:
2137 * Driver dependent. The default do_resize method takes the
2138 * tty termios mutex and ctrl_lock. The console takes its own lock
2139 * then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144 struct winsize tmp_ws;
2145 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146 return -EFAULT;
2147
2148 if (tty->ops->resize)
2149 return tty->ops->resize(tty, &tmp_ws);
2150 else
2151 return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 * tioccons - allow admin to move logical console
2156 * @file: the file to become console
2157 *
2158 * Allow the administrator to move the redirected console device
2159 *
2160 * Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165 if (!capable(CAP_SYS_ADMIN))
2166 return -EPERM;
2167 if (file->f_op->write == redirected_tty_write) {
2168 struct file *f;
2169 spin_lock(&redirect_lock);
2170 f = redirect;
2171 redirect = NULL;
2172 spin_unlock(&redirect_lock);
2173 if (f)
2174 fput(f);
2175 return 0;
2176 }
2177 spin_lock(&redirect_lock);
2178 if (redirect) {
2179 spin_unlock(&redirect_lock);
2180 return -EBUSY;
2181 }
2182 get_file(file);
2183 redirect = file;
2184 spin_unlock(&redirect_lock);
2185 return 0;
2186}
2187
2188/**
2189 * fionbio - non blocking ioctl
2190 * @file: file to set blocking value
2191 * @p: user parameter
2192 *
2193 * Historical tty interfaces had a blocking control ioctl before
2194 * the generic functionality existed. This piece of history is preserved
2195 * in the expected tty API of posix OS's.
2196 *
2197 * Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202 int nonblock;
2203
2204 if (get_user(nonblock, p))
2205 return -EFAULT;
2206
2207 spin_lock(&file->f_lock);
2208 if (nonblock)
2209 file->f_flags |= O_NONBLOCK;
2210 else
2211 file->f_flags &= ~O_NONBLOCK;
2212 spin_unlock(&file->f_lock);
2213 return 0;
2214}
2215
2216/**
2217 * tiocsctty - set controlling tty
2218 * @tty: tty structure
2219 * @arg: user argument
2220 *
2221 * This ioctl is used to manage job control. It permits a session
2222 * leader to set this tty as the controlling tty for the session.
2223 *
2224 * Locking:
2225 * Takes tty_mutex() to protect tty instance
2226 * Takes tasklist_lock internally to walk sessions
2227 * Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232 int ret = 0;
2233 if (current->signal->leader && (task_session(current) == tty->session))
2234 return ret;
2235
2236 mutex_lock(&tty_mutex);
2237 /*
2238 * The process must be a session leader and
2239 * not have a controlling tty already.
2240 */
2241 if (!current->signal->leader || current->signal->tty) {
2242 ret = -EPERM;
2243 goto unlock;
2244 }
2245
2246 if (tty->session) {
2247 /*
2248 * This tty is already the controlling
2249 * tty for another session group!
2250 */
2251 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252 /*
2253 * Steal it away
2254 */
2255 read_lock(&tasklist_lock);
2256 session_clear_tty(tty->session);
2257 read_unlock(&tasklist_lock);
2258 } else {
2259 ret = -EPERM;
2260 goto unlock;
2261 }
2262 }
2263 proc_set_tty(current, tty);
2264unlock:
2265 mutex_unlock(&tty_mutex);
2266 return ret;
2267}
2268
2269/**
2270 * tty_get_pgrp - return a ref counted pgrp pid
2271 * @tty: tty to read
2272 *
2273 * Returns a refcounted instance of the pid struct for the process
2274 * group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279 unsigned long flags;
2280 struct pid *pgrp;
2281
2282 spin_lock_irqsave(&tty->ctrl_lock, flags);
2283 pgrp = get_pid(tty->pgrp);
2284 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286 return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 * tiocgpgrp - get process group
2292 * @tty: tty passed by user
2293 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2294 * @p: returned pid
2295 *
2296 * Obtain the process group of the tty. If there is no process group
2297 * return an error.
2298 *
2299 * Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304 struct pid *pid;
2305 int ret;
2306 /*
2307 * (tty == real_tty) is a cheap way of
2308 * testing if the tty is NOT a master pty.
2309 */
2310 if (tty == real_tty && current->signal->tty != real_tty)
2311 return -ENOTTY;
2312 pid = tty_get_pgrp(real_tty);
2313 ret = put_user(pid_vnr(pid), p);
2314 put_pid(pid);
2315 return ret;
2316}
2317
2318/**
2319 * tiocspgrp - attempt to set process group
2320 * @tty: tty passed by user
2321 * @real_tty: tty side device matching tty passed by user
2322 * @p: pid pointer
2323 *
2324 * Set the process group of the tty to the session passed. Only
2325 * permitted where the tty session is our session.
2326 *
2327 * Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332 struct pid *pgrp;
2333 pid_t pgrp_nr;
2334 int retval = tty_check_change(real_tty);
2335 unsigned long flags;
2336
2337 if (retval == -EIO)
2338 return -ENOTTY;
2339 if (retval)
2340 return retval;
2341 if (!current->signal->tty ||
2342 (current->signal->tty != real_tty) ||
2343 (real_tty->session != task_session(current)))
2344 return -ENOTTY;
2345 if (get_user(pgrp_nr, p))
2346 return -EFAULT;
2347 if (pgrp_nr < 0)
2348 return -EINVAL;
2349 rcu_read_lock();
2350 pgrp = find_vpid(pgrp_nr);
2351 retval = -ESRCH;
2352 if (!pgrp)
2353 goto out_unlock;
2354 retval = -EPERM;
2355 if (session_of_pgrp(pgrp) != task_session(current))
2356 goto out_unlock;
2357 retval = 0;
2358 spin_lock_irqsave(&tty->ctrl_lock, flags);
2359 put_pid(real_tty->pgrp);
2360 real_tty->pgrp = get_pid(pgrp);
2361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363 rcu_read_unlock();
2364 return retval;
2365}
2366
2367/**
2368 * tiocgsid - get session id
2369 * @tty: tty passed by user
2370 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2371 * @p: pointer to returned session id
2372 *
2373 * Obtain the session id of the tty. If there is no session
2374 * return an error.
2375 *
2376 * Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381 /*
2382 * (tty == real_tty) is a cheap way of
2383 * testing if the tty is NOT a master pty.
2384 */
2385 if (tty == real_tty && current->signal->tty != real_tty)
2386 return -ENOTTY;
2387 if (!real_tty->session)
2388 return -ENOTTY;
2389 return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 * tiocsetd - set line discipline
2394 * @tty: tty device
2395 * @p: pointer to user data
2396 *
2397 * Set the line discipline according to user request.
2398 *
2399 * Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404 int ldisc;
2405 int ret;
2406
2407 if (get_user(ldisc, p))
2408 return -EFAULT;
2409
2410 ret = tty_set_ldisc(tty, ldisc);
2411
2412 return ret;
2413}
2414
2415/**
2416 * send_break - performed time break
2417 * @tty: device to break on
2418 * @duration: timeout in mS
2419 *
2420 * Perform a timed break on hardware that lacks its own driver level
2421 * timed break functionality.
2422 *
2423 * Locking:
2424 * atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430 int retval;
2431
2432 if (tty->ops->break_ctl == NULL)
2433 return 0;
2434
2435 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436 retval = tty->ops->break_ctl(tty, duration);
2437 else {
2438 /* Do the work ourselves */
2439 if (tty_write_lock(tty, 0) < 0)
2440 return -EINTR;
2441 retval = tty->ops->break_ctl(tty, -1);
2442 if (retval)
2443 goto out;
2444 if (!signal_pending(current))
2445 msleep_interruptible(duration);
2446 retval = tty->ops->break_ctl(tty, 0);
2447out:
2448 tty_write_unlock(tty);
2449 if (signal_pending(current))
2450 retval = -EINTR;
2451 }
2452 return retval;
2453}
2454
2455/**
2456 * tty_tiocmget - get modem status
2457 * @tty: tty device
2458 * @file: user file pointer
2459 * @p: pointer to result
2460 *
2461 * Obtain the modem status bits from the tty driver if the feature
2462 * is supported. Return -EINVAL if it is not available.
2463 *
2464 * Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469 int retval = -EINVAL;
2470
2471 if (tty->ops->tiocmget) {
2472 retval = tty->ops->tiocmget(tty);
2473
2474 if (retval >= 0)
2475 retval = put_user(retval, p);
2476 }
2477 return retval;
2478}
2479
2480/**
2481 * tty_tiocmset - set modem status
2482 * @tty: tty device
2483 * @cmd: command - clear bits, set bits or set all
2484 * @p: pointer to desired bits
2485 *
2486 * Set the modem status bits from the tty driver if the feature
2487 * is supported. Return -EINVAL if it is not available.
2488 *
2489 * Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493 unsigned __user *p)
2494{
2495 int retval;
2496 unsigned int set, clear, val;
2497
2498 if (tty->ops->tiocmset == NULL)
2499 return -EINVAL;
2500
2501 retval = get_user(val, p);
2502 if (retval)
2503 return retval;
2504 set = clear = 0;
2505 switch (cmd) {
2506 case TIOCMBIS:
2507 set = val;
2508 break;
2509 case TIOCMBIC:
2510 clear = val;
2511 break;
2512 case TIOCMSET:
2513 set = val;
2514 clear = ~val;
2515 break;
2516 }
2517 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519 return tty->ops->tiocmset(tty, set, clear);
2520}
2521
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524 int retval = -EINVAL;
2525 struct serial_icounter_struct icount;
2526 memset(&icount, 0, sizeof(icount));
2527 if (tty->ops->get_icount)
2528 retval = tty->ops->get_icount(tty, &icount);
2529 if (retval != 0)
2530 return retval;
2531 if (copy_to_user(arg, &icount, sizeof(icount)))
2532 return -EFAULT;
2533 return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539 tty->driver->subtype == PTY_TYPE_MASTER)
2540 tty = tty->link;
2541 return tty;
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2546{
2547 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548 tty->driver->subtype == PTY_TYPE_MASTER)
2549 return tty;
2550 return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559 struct tty_struct *tty = file_tty(file);
2560 struct tty_struct *real_tty;
2561 void __user *p = (void __user *)arg;
2562 int retval;
2563 struct tty_ldisc *ld;
2564 struct inode *inode = file->f_dentry->d_inode;
2565
2566 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567 return -EINVAL;
2568
2569 real_tty = tty_pair_get_tty(tty);
2570
2571 /*
2572 * Factor out some common prep work
2573 */
2574 switch (cmd) {
2575 case TIOCSETD:
2576 case TIOCSBRK:
2577 case TIOCCBRK:
2578 case TCSBRK:
2579 case TCSBRKP:
2580 retval = tty_check_change(tty);
2581 if (retval)
2582 return retval;
2583 if (cmd != TIOCCBRK) {
2584 tty_wait_until_sent(tty, 0);
2585 if (signal_pending(current))
2586 return -EINTR;
2587 }
2588 break;
2589 }
2590
2591 /*
2592 * Now do the stuff.
2593 */
2594 switch (cmd) {
2595 case TIOCSTI:
2596 return tiocsti(tty, p);
2597 case TIOCGWINSZ:
2598 return tiocgwinsz(real_tty, p);
2599 case TIOCSWINSZ:
2600 return tiocswinsz(real_tty, p);
2601 case TIOCCONS:
2602 return real_tty != tty ? -EINVAL : tioccons(file);
2603 case FIONBIO:
2604 return fionbio(file, p);
2605 case TIOCEXCL:
2606 set_bit(TTY_EXCLUSIVE, &tty->flags);
2607 return 0;
2608 case TIOCNXCL:
2609 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610 return 0;
2611 case TIOCNOTTY:
2612 if (current->signal->tty != tty)
2613 return -ENOTTY;
2614 no_tty();
2615 return 0;
2616 case TIOCSCTTY:
2617 return tiocsctty(tty, arg);
2618 case TIOCGPGRP:
2619 return tiocgpgrp(tty, real_tty, p);
2620 case TIOCSPGRP:
2621 return tiocspgrp(tty, real_tty, p);
2622 case TIOCGSID:
2623 return tiocgsid(tty, real_tty, p);
2624 case TIOCGETD:
2625 return put_user(tty->ldisc->ops->num, (int __user *)p);
2626 case TIOCSETD:
2627 return tiocsetd(tty, p);
2628 case TIOCVHANGUP:
2629 if (!capable(CAP_SYS_ADMIN))
2630 return -EPERM;
2631 tty_vhangup(tty);
2632 return 0;
2633 case TIOCGDEV:
2634 {
2635 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636 return put_user(ret, (unsigned int __user *)p);
2637 }
2638 /*
2639 * Break handling
2640 */
2641 case TIOCSBRK: /* Turn break on, unconditionally */
2642 if (tty->ops->break_ctl)
2643 return tty->ops->break_ctl(tty, -1);
2644 return 0;
2645 case TIOCCBRK: /* Turn break off, unconditionally */
2646 if (tty->ops->break_ctl)
2647 return tty->ops->break_ctl(tty, 0);
2648 return 0;
2649 case TCSBRK: /* SVID version: non-zero arg --> no break */
2650 /* non-zero arg means wait for all output data
2651 * to be sent (performed above) but don't send break.
2652 * This is used by the tcdrain() termios function.
2653 */
2654 if (!arg)
2655 return send_break(tty, 250);
2656 return 0;
2657 case TCSBRKP: /* support for POSIX tcsendbreak() */
2658 return send_break(tty, arg ? arg*100 : 250);
2659
2660 case TIOCMGET:
2661 return tty_tiocmget(tty, p);
2662 case TIOCMSET:
2663 case TIOCMBIC:
2664 case TIOCMBIS:
2665 return tty_tiocmset(tty, cmd, p);
2666 case TIOCGICOUNT:
2667 retval = tty_tiocgicount(tty, p);
2668 /* For the moment allow fall through to the old method */
2669 if (retval != -EINVAL)
2670 return retval;
2671 break;
2672 case TCFLSH:
2673 switch (arg) {
2674 case TCIFLUSH:
2675 case TCIOFLUSH:
2676 /* flush tty buffer and allow ldisc to process ioctl */
2677 tty_buffer_flush(tty);
2678 break;
2679 }
2680 break;
2681 }
2682 if (tty->ops->ioctl) {
2683 retval = (tty->ops->ioctl)(tty, cmd, arg);
2684 if (retval != -ENOIOCTLCMD)
2685 return retval;
2686 }
2687 ld = tty_ldisc_ref_wait(tty);
2688 retval = -EINVAL;
2689 if (ld->ops->ioctl) {
2690 retval = ld->ops->ioctl(tty, file, cmd, arg);
2691 if (retval == -ENOIOCTLCMD)
2692 retval = -EINVAL;
2693 }
2694 tty_ldisc_deref(ld);
2695 return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700 unsigned long arg)
2701{
2702 struct inode *inode = file->f_dentry->d_inode;
2703 struct tty_struct *tty = file_tty(file);
2704 struct tty_ldisc *ld;
2705 int retval = -ENOIOCTLCMD;
2706
2707 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708 return -EINVAL;
2709
2710 if (tty->ops->compat_ioctl) {
2711 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712 if (retval != -ENOIOCTLCMD)
2713 return retval;
2714 }
2715
2716 ld = tty_ldisc_ref_wait(tty);
2717 if (ld->ops->compat_ioctl)
2718 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2719 tty_ldisc_deref(ld);
2720
2721 return retval;
2722}
2723#endif
2724
2725/*
2726 * This implements the "Secure Attention Key" --- the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key". Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal. But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context. This can
2742 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747 tty_hangup(tty);
2748#else
2749 struct task_struct *g, *p;
2750 struct pid *session;
2751 int i;
2752 struct file *filp;
2753 struct fdtable *fdt;
2754
2755 if (!tty)
2756 return;
2757 session = tty->session;
2758
2759 tty_ldisc_flush(tty);
2760
2761 tty_driver_flush_buffer(tty);
2762
2763 read_lock(&tasklist_lock);
2764 /* Kill the entire session */
2765 do_each_pid_task(session, PIDTYPE_SID, p) {
2766 printk(KERN_NOTICE "SAK: killed process %d"
2767 " (%s): task_session(p)==tty->session\n",
2768 task_pid_nr(p), p->comm);
2769 send_sig(SIGKILL, p, 1);
2770 } while_each_pid_task(session, PIDTYPE_SID, p);
2771 /* Now kill any processes that happen to have the
2772 * tty open.
2773 */
2774 do_each_thread(g, p) {
2775 if (p->signal->tty == tty) {
2776 printk(KERN_NOTICE "SAK: killed process %d"
2777 " (%s): task_session(p)==tty->session\n",
2778 task_pid_nr(p), p->comm);
2779 send_sig(SIGKILL, p, 1);
2780 continue;
2781 }
2782 task_lock(p);
2783 if (p->files) {
2784 /*
2785 * We don't take a ref to the file, so we must
2786 * hold ->file_lock instead.
2787 */
2788 spin_lock(&p->files->file_lock);
2789 fdt = files_fdtable(p->files);
2790 for (i = 0; i < fdt->max_fds; i++) {
2791 filp = fcheck_files(p->files, i);
2792 if (!filp)
2793 continue;
2794 if (filp->f_op->read == tty_read &&
2795 file_tty(filp) == tty) {
2796 printk(KERN_NOTICE "SAK: killed process %d"
2797 " (%s): fd#%d opened to the tty\n",
2798 task_pid_nr(p), p->comm, i);
2799 force_sig(SIGKILL, p);
2800 break;
2801 }
2802 }
2803 spin_unlock(&p->files->file_lock);
2804 }
2805 task_unlock(p);
2806 } while_each_thread(g, p);
2807 read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813 struct tty_struct *tty =
2814 container_of(work, struct tty_struct, SAK_work);
2815 __do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826 if (!tty)
2827 return;
2828 schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835 dev_t *devt = data;
2836 return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842 dev_t devt = tty_devnum(tty);
2843 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844}
2845
2846
2847/**
2848 * initialize_tty_struct
2849 * @tty: tty to initialize
2850 *
2851 * This subroutine initializes a tty structure that has been newly
2852 * allocated.
2853 *
2854 * Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858 struct tty_driver *driver, int idx)
2859{
2860 memset(tty, 0, sizeof(struct tty_struct));
2861 kref_init(&tty->kref);
2862 tty->magic = TTY_MAGIC;
2863 tty_ldisc_init(tty);
2864 tty->session = NULL;
2865 tty->pgrp = NULL;
2866 tty->overrun_time = jiffies;
2867 tty->buf.head = tty->buf.tail = NULL;
2868 tty_buffer_init(tty);
2869 mutex_init(&tty->termios_mutex);
2870 mutex_init(&tty->ldisc_mutex);
2871 init_waitqueue_head(&tty->write_wait);
2872 init_waitqueue_head(&tty->read_wait);
2873 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874 mutex_init(&tty->atomic_read_lock);
2875 mutex_init(&tty->atomic_write_lock);
2876 mutex_init(&tty->output_lock);
2877 mutex_init(&tty->echo_lock);
2878 spin_lock_init(&tty->read_lock);
2879 spin_lock_init(&tty->ctrl_lock);
2880 INIT_LIST_HEAD(&tty->tty_files);
2881 INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883 tty->driver = driver;
2884 tty->ops = driver->ops;
2885 tty->index = idx;
2886 tty_line_name(driver, idx, tty->name);
2887 tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 * deinitialize_tty_struct
2892 * @tty: tty to deinitialize
2893 *
2894 * This subroutine deinitializes a tty structure that has been newly
2895 * allocated but tty_release cannot be called on that yet.
2896 *
2897 * Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901 tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 * tty_put_char - write one character to a tty
2906 * @tty: tty
2907 * @ch: character
2908 *
2909 * Write one byte to the tty using the provided put_char method
2910 * if present. Returns the number of characters successfully output.
2911 *
2912 * Note: the specific put_char operation in the driver layer may go
2913 * away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918 if (tty->ops->put_char)
2919 return tty->ops->put_char(tty, ch);
2920 return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
2926/**
2927 * tty_register_device - register a tty device
2928 * @driver: the tty driver that describes the tty device
2929 * @index: the index in the tty driver for this tty device
2930 * @device: a struct device that is associated with this tty device.
2931 * This field is optional, if there is no known struct device
2932 * for this tty device it can be set to NULL safely.
2933 *
2934 * Returns a pointer to the struct device for this tty device
2935 * (or ERR_PTR(-EFOO) on error).
2936 *
2937 * This call is required to be made to register an individual tty device
2938 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2939 * that bit is not set, this function should not be called by a tty
2940 * driver.
2941 *
2942 * Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946 struct device *device)
2947{
2948 char name[64];
2949 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2950
2951 if (index >= driver->num) {
2952 printk(KERN_ERR "Attempt to register invalid tty line number "
2953 " (%d).\n", index);
2954 return ERR_PTR(-EINVAL);
2955 }
2956
2957 if (driver->type == TTY_DRIVER_TYPE_PTY)
2958 pty_line_name(driver, index, name);
2959 else
2960 tty_line_name(driver, index, name);
2961
2962 return device_create(tty_class, device, dev, NULL, name);
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * tty_unregister_device - unregister a tty device
2968 * @driver: the tty driver that describes the tty device
2969 * @index: the index in the tty driver for this tty device
2970 *
2971 * If a tty device is registered with a call to tty_register_device() then
2972 * this function must be called when the tty device is gone.
2973 *
2974 * Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979 device_destroy(tty_class,
2980 MKDEV(driver->major, driver->minor_start) + index);
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
2985{
2986 struct tty_driver *driver;
2987
2988 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989 if (driver) {
2990 kref_init(&driver->kref);
2991 driver->magic = TTY_DRIVER_MAGIC;
2992 driver->num = lines;
2993 /* later we'll move allocation of tables here */
2994 }
2995 return driver;
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002 int i;
3003 struct ktermios *tp;
3004 void *p;
3005
3006 if (driver->flags & TTY_DRIVER_INSTALLED) {
3007 /*
3008 * Free the termios and termios_locked structures because
3009 * we don't want to get memory leaks when modular tty
3010 * drivers are removed from the kernel.
3011 */
3012 for (i = 0; i < driver->num; i++) {
3013 tp = driver->termios[i];
3014 if (tp) {
3015 driver->termios[i] = NULL;
3016 kfree(tp);
3017 }
3018 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019 tty_unregister_device(driver, i);
3020 }
3021 p = driver->ttys;
3022 proc_tty_unregister_driver(driver);
3023 driver->ttys = NULL;
3024 driver->termios = NULL;
3025 kfree(p);
3026 cdev_del(&driver->cdev);
3027 }
3028 kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033 kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038 const struct tty_operations *op)
3039{
3040 driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046 tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055 int error;
3056 int i;
3057 dev_t dev;
3058 void **p = NULL;
3059 struct device *d;
3060
3061 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063 if (!p)
3064 return -ENOMEM;
3065 }
3066
3067 if (!driver->major) {
3068 error = alloc_chrdev_region(&dev, driver->minor_start,
3069 driver->num, driver->name);
3070 if (!error) {
3071 driver->major = MAJOR(dev);
3072 driver->minor_start = MINOR(dev);
3073 }
3074 } else {
3075 dev = MKDEV(driver->major, driver->minor_start);
3076 error = register_chrdev_region(dev, driver->num, driver->name);
3077 }
3078 if (error < 0) {
3079 kfree(p);
3080 return error;
3081 }
3082
3083 if (p) {
3084 driver->ttys = (struct tty_struct **)p;
3085 driver->termios = (struct ktermios **)(p + driver->num);
3086 } else {
3087 driver->ttys = NULL;
3088 driver->termios = NULL;
3089 }
3090
3091 cdev_init(&driver->cdev, &tty_fops);
3092 driver->cdev.owner = driver->owner;
3093 error = cdev_add(&driver->cdev, dev, driver->num);
3094 if (error) {
3095 unregister_chrdev_region(dev, driver->num);
3096 driver->ttys = NULL;
3097 driver->termios = NULL;
3098 kfree(p);
3099 return error;
3100 }
3101
3102 mutex_lock(&tty_mutex);
3103 list_add(&driver->tty_drivers, &tty_drivers);
3104 mutex_unlock(&tty_mutex);
3105
3106 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107 for (i = 0; i < driver->num; i++) {
3108 d = tty_register_device(driver, i, NULL);
3109 if (IS_ERR(d)) {
3110 error = PTR_ERR(d);
3111 goto err;
3112 }
3113 }
3114 }
3115 proc_tty_register_driver(driver);
3116 driver->flags |= TTY_DRIVER_INSTALLED;
3117 return 0;
3118
3119err:
3120 for (i--; i >= 0; i--)
3121 tty_unregister_device(driver, i);
3122
3123 mutex_lock(&tty_mutex);
3124 list_del(&driver->tty_drivers);
3125 mutex_unlock(&tty_mutex);
3126
3127 unregister_chrdev_region(dev, driver->num);
3128 driver->ttys = NULL;
3129 driver->termios = NULL;
3130 kfree(p);
3131 return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142 /* FIXME */
3143 if (driver->refcount)
3144 return -EBUSY;
3145#endif
3146 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147 driver->num);
3148 mutex_lock(&tty_mutex);
3149 list_del(&driver->tty_drivers);
3150 mutex_unlock(&tty_mutex);
3151 return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164 unsigned long flags;
3165 struct tty_struct *tty;
3166 spin_lock_irqsave(&p->sighand->siglock, flags);
3167 tty = p->signal->tty;
3168 p->signal->tty = NULL;
3169 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170 tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177 if (tty) {
3178 unsigned long flags;
3179 /* We should not have a session or pgrp to put here but.... */
3180 spin_lock_irqsave(&tty->ctrl_lock, flags);
3181 put_pid(tty->session);
3182 put_pid(tty->pgrp);
3183 tty->pgrp = get_pid(task_pgrp(tsk));
3184 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185 tty->session = get_pid(task_session(tsk));
3186 if (tsk->signal->tty) {
3187 printk(KERN_DEBUG "tty not NULL!!\n");
3188 tty_kref_put(tsk->signal->tty);
3189 }
3190 }
3191 put_pid(tsk->signal->tty_old_pgrp);
3192 tsk->signal->tty = tty_kref_get(tty);
3193 tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198 spin_lock_irq(&tsk->sighand->siglock);
3199 __proc_set_tty(tsk, tty);
3200 spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205 struct tty_struct *tty;
3206 unsigned long flags;
3207
3208 spin_lock_irqsave(¤t->sighand->siglock, flags);
3209 tty = tty_kref_get(current->signal->tty);
3210 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3211 return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217 *fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228 initcall_t *call;
3229
3230 /* Setup the default TTY line discipline. */
3231 tty_ldisc_begin();
3232
3233 /*
3234 * set up the console device so that later boot sequences can
3235 * inform about problems etc..
3236 */
3237 call = __con_initcall_start;
3238 while (call < __con_initcall_end) {
3239 (*call)();
3240 call++;
3241 }
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246 if (!mode)
3247 return NULL;
3248 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250 *mode = 0666;
3251 return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256 tty_class = class_create(THIS_MODULE, "tty");
3257 if (IS_ERR(tty_class))
3258 return PTR_ERR(tty_class);
3259 tty_class->devnode = tty_devnode;
3260 return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269 struct device_attribute *attr, char *buf)
3270{
3271 struct console *cs[16];
3272 int i = 0;
3273 struct console *c;
3274 ssize_t count = 0;
3275
3276 console_lock();
3277 for_each_console(c) {
3278 if (!c->device)
3279 continue;
3280 if (!c->write)
3281 continue;
3282 if ((c->flags & CON_ENABLED) == 0)
3283 continue;
3284 cs[i++] = c;
3285 if (i >= ARRAY_SIZE(cs))
3286 break;
3287 }
3288 while (i--)
3289 count += sprintf(buf + count, "%s%d%c",
3290 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3291 console_unlock();
3292
3293 return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301 if (consdev)
3302 sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
3311 cdev_init(&tty_cdev, &tty_fops);
3312 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314 panic("Couldn't register /dev/tty driver\n");
3315 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317 cdev_init(&console_cdev, &console_fops);
3318 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320 panic("Couldn't register /dev/console driver\n");
3321 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322 "console");
3323 if (IS_ERR(consdev))
3324 consdev = NULL;
3325 else
3326 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329 vty_init(&console_fops);
3330#endif
3331 return 0;
3332}
3333
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102
103#include <linux/uaccess.h>
104
105#include <linux/kbd_kern.h>
106#include <linux/vt_kern.h>
107#include <linux/selection.h>
108
109#include <linux/kmod.h>
110#include <linux/nsproxy.h>
111
112#undef TTY_DEBUG_HANGUP
113#ifdef TTY_DEBUG_HANGUP
114# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
115#else
116# define tty_debug_hangup(tty, f, args...) do { } while (0)
117#endif
118
119#define TTY_PARANOIA_CHECK 1
120#define CHECK_TTY_COUNT 1
121
122struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
123 .c_iflag = ICRNL | IXON,
124 .c_oflag = OPOST | ONLCR,
125 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
126 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
127 ECHOCTL | ECHOKE | IEXTEN,
128 .c_cc = INIT_C_CC,
129 .c_ispeed = 38400,
130 .c_ospeed = 38400,
131 /* .c_line = N_TTY, */
132};
133
134EXPORT_SYMBOL(tty_std_termios);
135
136/* This list gets poked at by procfs and various bits of boot up code. This
137 could do with some rationalisation such as pulling the tty proc function
138 into this file */
139
140LIST_HEAD(tty_drivers); /* linked list of tty drivers */
141
142/* Mutex to protect creating and releasing a tty */
143DEFINE_MUTEX(tty_mutex);
144
145static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147ssize_t redirected_tty_write(struct file *, const char __user *,
148 size_t, loff_t *);
149static __poll_t tty_poll(struct file *, poll_table *);
150static int tty_open(struct inode *, struct file *);
151long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152#ifdef CONFIG_COMPAT
153static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 unsigned long arg);
155#else
156#define tty_compat_ioctl NULL
157#endif
158static int __tty_fasync(int fd, struct file *filp, int on);
159static int tty_fasync(int fd, struct file *filp, int on);
160static void release_tty(struct tty_struct *tty, int idx);
161
162/**
163 * free_tty_struct - free a disused tty
164 * @tty: tty struct to free
165 *
166 * Free the write buffers, tty queue and tty memory itself.
167 *
168 * Locking: none. Must be called after tty is definitely unused
169 */
170
171static void free_tty_struct(struct tty_struct *tty)
172{
173 tty_ldisc_deinit(tty);
174 put_device(tty->dev);
175 kfree(tty->write_buf);
176 tty->magic = 0xDEADDEAD;
177 kfree(tty);
178}
179
180static inline struct tty_struct *file_tty(struct file *file)
181{
182 return ((struct tty_file_private *)file->private_data)->tty;
183}
184
185int tty_alloc_file(struct file *file)
186{
187 struct tty_file_private *priv;
188
189 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
190 if (!priv)
191 return -ENOMEM;
192
193 file->private_data = priv;
194
195 return 0;
196}
197
198/* Associate a new file with the tty structure */
199void tty_add_file(struct tty_struct *tty, struct file *file)
200{
201 struct tty_file_private *priv = file->private_data;
202
203 priv->tty = tty;
204 priv->file = file;
205
206 spin_lock(&tty->files_lock);
207 list_add(&priv->list, &tty->tty_files);
208 spin_unlock(&tty->files_lock);
209}
210
211/**
212 * tty_free_file - free file->private_data
213 *
214 * This shall be used only for fail path handling when tty_add_file was not
215 * called yet.
216 */
217void tty_free_file(struct file *file)
218{
219 struct tty_file_private *priv = file->private_data;
220
221 file->private_data = NULL;
222 kfree(priv);
223}
224
225/* Delete file from its tty */
226static void tty_del_file(struct file *file)
227{
228 struct tty_file_private *priv = file->private_data;
229 struct tty_struct *tty = priv->tty;
230
231 spin_lock(&tty->files_lock);
232 list_del(&priv->list);
233 spin_unlock(&tty->files_lock);
234 tty_free_file(file);
235}
236
237/**
238 * tty_name - return tty naming
239 * @tty: tty structure
240 *
241 * Convert a tty structure into a name. The name reflects the kernel
242 * naming policy and if udev is in use may not reflect user space
243 *
244 * Locking: none
245 */
246
247const char *tty_name(const struct tty_struct *tty)
248{
249 if (!tty) /* Hmm. NULL pointer. That's fun. */
250 return "NULL tty";
251 return tty->name;
252}
253
254EXPORT_SYMBOL(tty_name);
255
256const char *tty_driver_name(const struct tty_struct *tty)
257{
258 if (!tty || !tty->driver)
259 return "";
260 return tty->driver->name;
261}
262
263static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
264 const char *routine)
265{
266#ifdef TTY_PARANOIA_CHECK
267 if (!tty) {
268 pr_warn("(%d:%d): %s: NULL tty\n",
269 imajor(inode), iminor(inode), routine);
270 return 1;
271 }
272 if (tty->magic != TTY_MAGIC) {
273 pr_warn("(%d:%d): %s: bad magic number\n",
274 imajor(inode), iminor(inode), routine);
275 return 1;
276 }
277#endif
278 return 0;
279}
280
281/* Caller must hold tty_lock */
282static int check_tty_count(struct tty_struct *tty, const char *routine)
283{
284#ifdef CHECK_TTY_COUNT
285 struct list_head *p;
286 int count = 0, kopen_count = 0;
287
288 spin_lock(&tty->files_lock);
289 list_for_each(p, &tty->tty_files) {
290 count++;
291 }
292 spin_unlock(&tty->files_lock);
293 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
294 tty->driver->subtype == PTY_TYPE_SLAVE &&
295 tty->link && tty->link->count)
296 count++;
297 if (tty_port_kopened(tty->port))
298 kopen_count++;
299 if (tty->count != (count + kopen_count)) {
300 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
301 routine, tty->count, count, kopen_count);
302 return (count + kopen_count);
303 }
304#endif
305 return 0;
306}
307
308/**
309 * get_tty_driver - find device of a tty
310 * @dev_t: device identifier
311 * @index: returns the index of the tty
312 *
313 * This routine returns a tty driver structure, given a device number
314 * and also passes back the index number.
315 *
316 * Locking: caller must hold tty_mutex
317 */
318
319static struct tty_driver *get_tty_driver(dev_t device, int *index)
320{
321 struct tty_driver *p;
322
323 list_for_each_entry(p, &tty_drivers, tty_drivers) {
324 dev_t base = MKDEV(p->major, p->minor_start);
325 if (device < base || device >= base + p->num)
326 continue;
327 *index = device - base;
328 return tty_driver_kref_get(p);
329 }
330 return NULL;
331}
332
333/**
334 * tty_dev_name_to_number - return dev_t for device name
335 * @name: user space name of device under /dev
336 * @number: pointer to dev_t that this function will populate
337 *
338 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
339 * like (4, 64) or (188, 1). If no corresponding driver is registered then
340 * the function returns -ENODEV.
341 *
342 * Locking: this acquires tty_mutex to protect the tty_drivers list from
343 * being modified while we are traversing it, and makes sure to
344 * release it before exiting.
345 */
346int tty_dev_name_to_number(const char *name, dev_t *number)
347{
348 struct tty_driver *p;
349 int ret;
350 int index, prefix_length = 0;
351 const char *str;
352
353 for (str = name; *str && !isdigit(*str); str++)
354 ;
355
356 if (!*str)
357 return -EINVAL;
358
359 ret = kstrtoint(str, 10, &index);
360 if (ret)
361 return ret;
362
363 prefix_length = str - name;
364 mutex_lock(&tty_mutex);
365
366 list_for_each_entry(p, &tty_drivers, tty_drivers)
367 if (prefix_length == strlen(p->name) && strncmp(name,
368 p->name, prefix_length) == 0) {
369 if (index < p->num) {
370 *number = MKDEV(p->major, p->minor_start + index);
371 goto out;
372 }
373 }
374
375 /* if here then driver wasn't found */
376 ret = -ENODEV;
377out:
378 mutex_unlock(&tty_mutex);
379 return ret;
380}
381EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
382
383#ifdef CONFIG_CONSOLE_POLL
384
385/**
386 * tty_find_polling_driver - find device of a polled tty
387 * @name: name string to match
388 * @line: pointer to resulting tty line nr
389 *
390 * This routine returns a tty driver structure, given a name
391 * and the condition that the tty driver is capable of polled
392 * operation.
393 */
394struct tty_driver *tty_find_polling_driver(char *name, int *line)
395{
396 struct tty_driver *p, *res = NULL;
397 int tty_line = 0;
398 int len;
399 char *str, *stp;
400
401 for (str = name; *str; str++)
402 if ((*str >= '0' && *str <= '9') || *str == ',')
403 break;
404 if (!*str)
405 return NULL;
406
407 len = str - name;
408 tty_line = simple_strtoul(str, &str, 10);
409
410 mutex_lock(&tty_mutex);
411 /* Search through the tty devices to look for a match */
412 list_for_each_entry(p, &tty_drivers, tty_drivers) {
413 if (!len || strncmp(name, p->name, len) != 0)
414 continue;
415 stp = str;
416 if (*stp == ',')
417 stp++;
418 if (*stp == '\0')
419 stp = NULL;
420
421 if (tty_line >= 0 && tty_line < p->num && p->ops &&
422 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
423 res = tty_driver_kref_get(p);
424 *line = tty_line;
425 break;
426 }
427 }
428 mutex_unlock(&tty_mutex);
429
430 return res;
431}
432EXPORT_SYMBOL_GPL(tty_find_polling_driver);
433#endif
434
435static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
436 size_t count, loff_t *ppos)
437{
438 return 0;
439}
440
441static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
442 size_t count, loff_t *ppos)
443{
444 return -EIO;
445}
446
447/* No kernel lock held - none needed ;) */
448static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
449{
450 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
451}
452
453static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
454 unsigned long arg)
455{
456 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
457}
458
459static long hung_up_tty_compat_ioctl(struct file *file,
460 unsigned int cmd, unsigned long arg)
461{
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463}
464
465static int hung_up_tty_fasync(int fd, struct file *file, int on)
466{
467 return -ENOTTY;
468}
469
470static void tty_show_fdinfo(struct seq_file *m, struct file *file)
471{
472 struct tty_struct *tty = file_tty(file);
473
474 if (tty && tty->ops && tty->ops->show_fdinfo)
475 tty->ops->show_fdinfo(tty, m);
476}
477
478static const struct file_operations tty_fops = {
479 .llseek = no_llseek,
480 .read = tty_read,
481 .write = tty_write,
482 .poll = tty_poll,
483 .unlocked_ioctl = tty_ioctl,
484 .compat_ioctl = tty_compat_ioctl,
485 .open = tty_open,
486 .release = tty_release,
487 .fasync = tty_fasync,
488 .show_fdinfo = tty_show_fdinfo,
489};
490
491static const struct file_operations console_fops = {
492 .llseek = no_llseek,
493 .read = tty_read,
494 .write = redirected_tty_write,
495 .poll = tty_poll,
496 .unlocked_ioctl = tty_ioctl,
497 .compat_ioctl = tty_compat_ioctl,
498 .open = tty_open,
499 .release = tty_release,
500 .fasync = tty_fasync,
501};
502
503static const struct file_operations hung_up_tty_fops = {
504 .llseek = no_llseek,
505 .read = hung_up_tty_read,
506 .write = hung_up_tty_write,
507 .poll = hung_up_tty_poll,
508 .unlocked_ioctl = hung_up_tty_ioctl,
509 .compat_ioctl = hung_up_tty_compat_ioctl,
510 .release = tty_release,
511 .fasync = hung_up_tty_fasync,
512};
513
514static DEFINE_SPINLOCK(redirect_lock);
515static struct file *redirect;
516
517extern void tty_sysctl_init(void);
518
519/**
520 * tty_wakeup - request more data
521 * @tty: terminal
522 *
523 * Internal and external helper for wakeups of tty. This function
524 * informs the line discipline if present that the driver is ready
525 * to receive more output data.
526 */
527
528void tty_wakeup(struct tty_struct *tty)
529{
530 struct tty_ldisc *ld;
531
532 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
533 ld = tty_ldisc_ref(tty);
534 if (ld) {
535 if (ld->ops->write_wakeup)
536 ld->ops->write_wakeup(tty);
537 tty_ldisc_deref(ld);
538 }
539 }
540 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
541}
542
543EXPORT_SYMBOL_GPL(tty_wakeup);
544
545/**
546 * __tty_hangup - actual handler for hangup events
547 * @work: tty device
548 *
549 * This can be called by a "kworker" kernel thread. That is process
550 * synchronous but doesn't hold any locks, so we need to make sure we
551 * have the appropriate locks for what we're doing.
552 *
553 * The hangup event clears any pending redirections onto the hung up
554 * device. It ensures future writes will error and it does the needed
555 * line discipline hangup and signal delivery. The tty object itself
556 * remains intact.
557 *
558 * Locking:
559 * BTM
560 * redirect lock for undoing redirection
561 * file list lock for manipulating list of ttys
562 * tty_ldiscs_lock from called functions
563 * termios_rwsem resetting termios data
564 * tasklist_lock to walk task list for hangup event
565 * ->siglock to protect ->signal/->sighand
566 */
567static void __tty_hangup(struct tty_struct *tty, int exit_session)
568{
569 struct file *cons_filp = NULL;
570 struct file *filp, *f = NULL;
571 struct tty_file_private *priv;
572 int closecount = 0, n;
573 int refs;
574
575 if (!tty)
576 return;
577
578
579 spin_lock(&redirect_lock);
580 if (redirect && file_tty(redirect) == tty) {
581 f = redirect;
582 redirect = NULL;
583 }
584 spin_unlock(&redirect_lock);
585
586 tty_lock(tty);
587
588 if (test_bit(TTY_HUPPED, &tty->flags)) {
589 tty_unlock(tty);
590 return;
591 }
592
593 /*
594 * Some console devices aren't actually hung up for technical and
595 * historical reasons, which can lead to indefinite interruptible
596 * sleep in n_tty_read(). The following explicitly tells
597 * n_tty_read() to abort readers.
598 */
599 set_bit(TTY_HUPPING, &tty->flags);
600
601 /* inuse_filps is protected by the single tty lock,
602 this really needs to change if we want to flush the
603 workqueue with the lock held */
604 check_tty_count(tty, "tty_hangup");
605
606 spin_lock(&tty->files_lock);
607 /* This breaks for file handles being sent over AF_UNIX sockets ? */
608 list_for_each_entry(priv, &tty->tty_files, list) {
609 filp = priv->file;
610 if (filp->f_op->write == redirected_tty_write)
611 cons_filp = filp;
612 if (filp->f_op->write != tty_write)
613 continue;
614 closecount++;
615 __tty_fasync(-1, filp, 0); /* can't block */
616 filp->f_op = &hung_up_tty_fops;
617 }
618 spin_unlock(&tty->files_lock);
619
620 refs = tty_signal_session_leader(tty, exit_session);
621 /* Account for the p->signal references we killed */
622 while (refs--)
623 tty_kref_put(tty);
624
625 tty_ldisc_hangup(tty, cons_filp != NULL);
626
627 spin_lock_irq(&tty->ctrl_lock);
628 clear_bit(TTY_THROTTLED, &tty->flags);
629 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
630 put_pid(tty->session);
631 put_pid(tty->pgrp);
632 tty->session = NULL;
633 tty->pgrp = NULL;
634 tty->ctrl_status = 0;
635 spin_unlock_irq(&tty->ctrl_lock);
636
637 /*
638 * If one of the devices matches a console pointer, we
639 * cannot just call hangup() because that will cause
640 * tty->count and state->count to go out of sync.
641 * So we just call close() the right number of times.
642 */
643 if (cons_filp) {
644 if (tty->ops->close)
645 for (n = 0; n < closecount; n++)
646 tty->ops->close(tty, cons_filp);
647 } else if (tty->ops->hangup)
648 tty->ops->hangup(tty);
649 /*
650 * We don't want to have driver/ldisc interactions beyond the ones
651 * we did here. The driver layer expects no calls after ->hangup()
652 * from the ldisc side, which is now guaranteed.
653 */
654 set_bit(TTY_HUPPED, &tty->flags);
655 clear_bit(TTY_HUPPING, &tty->flags);
656 tty_unlock(tty);
657
658 if (f)
659 fput(f);
660}
661
662static void do_tty_hangup(struct work_struct *work)
663{
664 struct tty_struct *tty =
665 container_of(work, struct tty_struct, hangup_work);
666
667 __tty_hangup(tty, 0);
668}
669
670/**
671 * tty_hangup - trigger a hangup event
672 * @tty: tty to hangup
673 *
674 * A carrier loss (virtual or otherwise) has occurred on this like
675 * schedule a hangup sequence to run after this event.
676 */
677
678void tty_hangup(struct tty_struct *tty)
679{
680 tty_debug_hangup(tty, "hangup\n");
681 schedule_work(&tty->hangup_work);
682}
683
684EXPORT_SYMBOL(tty_hangup);
685
686/**
687 * tty_vhangup - process vhangup
688 * @tty: tty to hangup
689 *
690 * The user has asked via system call for the terminal to be hung up.
691 * We do this synchronously so that when the syscall returns the process
692 * is complete. That guarantee is necessary for security reasons.
693 */
694
695void tty_vhangup(struct tty_struct *tty)
696{
697 tty_debug_hangup(tty, "vhangup\n");
698 __tty_hangup(tty, 0);
699}
700
701EXPORT_SYMBOL(tty_vhangup);
702
703
704/**
705 * tty_vhangup_self - process vhangup for own ctty
706 *
707 * Perform a vhangup on the current controlling tty
708 */
709
710void tty_vhangup_self(void)
711{
712 struct tty_struct *tty;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_vhangup(tty);
717 tty_kref_put(tty);
718 }
719}
720
721/**
722 * tty_vhangup_session - hangup session leader exit
723 * @tty: tty to hangup
724 *
725 * The session leader is exiting and hanging up its controlling terminal.
726 * Every process in the foreground process group is signalled SIGHUP.
727 *
728 * We do this synchronously so that when the syscall returns the process
729 * is complete. That guarantee is necessary for security reasons.
730 */
731
732void tty_vhangup_session(struct tty_struct *tty)
733{
734 tty_debug_hangup(tty, "session hangup\n");
735 __tty_hangup(tty, 1);
736}
737
738/**
739 * tty_hung_up_p - was tty hung up
740 * @filp: file pointer of tty
741 *
742 * Return true if the tty has been subject to a vhangup or a carrier
743 * loss
744 */
745
746int tty_hung_up_p(struct file *filp)
747{
748 return (filp && filp->f_op == &hung_up_tty_fops);
749}
750
751EXPORT_SYMBOL(tty_hung_up_p);
752
753/**
754 * stop_tty - propagate flow control
755 * @tty: tty to stop
756 *
757 * Perform flow control to the driver. May be called
758 * on an already stopped device and will not re-call the driver
759 * method.
760 *
761 * This functionality is used by both the line disciplines for
762 * halting incoming flow and by the driver. It may therefore be
763 * called from any context, may be under the tty atomic_write_lock
764 * but not always.
765 *
766 * Locking:
767 * flow_lock
768 */
769
770void __stop_tty(struct tty_struct *tty)
771{
772 if (tty->stopped)
773 return;
774 tty->stopped = 1;
775 if (tty->ops->stop)
776 tty->ops->stop(tty);
777}
778
779void stop_tty(struct tty_struct *tty)
780{
781 unsigned long flags;
782
783 spin_lock_irqsave(&tty->flow_lock, flags);
784 __stop_tty(tty);
785 spin_unlock_irqrestore(&tty->flow_lock, flags);
786}
787EXPORT_SYMBOL(stop_tty);
788
789/**
790 * start_tty - propagate flow control
791 * @tty: tty to start
792 *
793 * Start a tty that has been stopped if at all possible. If this
794 * tty was previous stopped and is now being started, the driver
795 * start method is invoked and the line discipline woken.
796 *
797 * Locking:
798 * flow_lock
799 */
800
801void __start_tty(struct tty_struct *tty)
802{
803 if (!tty->stopped || tty->flow_stopped)
804 return;
805 tty->stopped = 0;
806 if (tty->ops->start)
807 tty->ops->start(tty);
808 tty_wakeup(tty);
809}
810
811void start_tty(struct tty_struct *tty)
812{
813 unsigned long flags;
814
815 spin_lock_irqsave(&tty->flow_lock, flags);
816 __start_tty(tty);
817 spin_unlock_irqrestore(&tty->flow_lock, flags);
818}
819EXPORT_SYMBOL(start_tty);
820
821static void tty_update_time(struct timespec64 *time)
822{
823 time64_t sec = ktime_get_real_seconds();
824
825 /*
826 * We only care if the two values differ in anything other than the
827 * lower three bits (i.e every 8 seconds). If so, then we can update
828 * the time of the tty device, otherwise it could be construded as a
829 * security leak to let userspace know the exact timing of the tty.
830 */
831 if ((sec ^ time->tv_sec) & ~7)
832 time->tv_sec = sec;
833}
834
835/**
836 * tty_read - read method for tty device files
837 * @file: pointer to tty file
838 * @buf: user buffer
839 * @count: size of user buffer
840 * @ppos: unused
841 *
842 * Perform the read system call function on this terminal device. Checks
843 * for hung up devices before calling the line discipline method.
844 *
845 * Locking:
846 * Locks the line discipline internally while needed. Multiple
847 * read calls may be outstanding in parallel.
848 */
849
850static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
851 loff_t *ppos)
852{
853 int i;
854 struct inode *inode = file_inode(file);
855 struct tty_struct *tty = file_tty(file);
856 struct tty_ldisc *ld;
857
858 if (tty_paranoia_check(tty, inode, "tty_read"))
859 return -EIO;
860 if (!tty || tty_io_error(tty))
861 return -EIO;
862
863 /* We want to wait for the line discipline to sort out in this
864 situation */
865 ld = tty_ldisc_ref_wait(tty);
866 if (!ld)
867 return hung_up_tty_read(file, buf, count, ppos);
868 if (ld->ops->read)
869 i = ld->ops->read(tty, file, buf, count);
870 else
871 i = -EIO;
872 tty_ldisc_deref(ld);
873
874 if (i > 0)
875 tty_update_time(&inode->i_atime);
876
877 return i;
878}
879
880static void tty_write_unlock(struct tty_struct *tty)
881{
882 mutex_unlock(&tty->atomic_write_lock);
883 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
884}
885
886static int tty_write_lock(struct tty_struct *tty, int ndelay)
887{
888 if (!mutex_trylock(&tty->atomic_write_lock)) {
889 if (ndelay)
890 return -EAGAIN;
891 if (mutex_lock_interruptible(&tty->atomic_write_lock))
892 return -ERESTARTSYS;
893 }
894 return 0;
895}
896
897/*
898 * Split writes up in sane blocksizes to avoid
899 * denial-of-service type attacks
900 */
901static inline ssize_t do_tty_write(
902 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
903 struct tty_struct *tty,
904 struct file *file,
905 const char __user *buf,
906 size_t count)
907{
908 ssize_t ret, written = 0;
909 unsigned int chunk;
910
911 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
912 if (ret < 0)
913 return ret;
914
915 /*
916 * We chunk up writes into a temporary buffer. This
917 * simplifies low-level drivers immensely, since they
918 * don't have locking issues and user mode accesses.
919 *
920 * But if TTY_NO_WRITE_SPLIT is set, we should use a
921 * big chunk-size..
922 *
923 * The default chunk-size is 2kB, because the NTTY
924 * layer has problems with bigger chunks. It will
925 * claim to be able to handle more characters than
926 * it actually does.
927 *
928 * FIXME: This can probably go away now except that 64K chunks
929 * are too likely to fail unless switched to vmalloc...
930 */
931 chunk = 2048;
932 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
933 chunk = 65536;
934 if (count < chunk)
935 chunk = count;
936
937 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
938 if (tty->write_cnt < chunk) {
939 unsigned char *buf_chunk;
940
941 if (chunk < 1024)
942 chunk = 1024;
943
944 buf_chunk = kmalloc(chunk, GFP_KERNEL);
945 if (!buf_chunk) {
946 ret = -ENOMEM;
947 goto out;
948 }
949 kfree(tty->write_buf);
950 tty->write_cnt = chunk;
951 tty->write_buf = buf_chunk;
952 }
953
954 /* Do the write .. */
955 for (;;) {
956 size_t size = count;
957 if (size > chunk)
958 size = chunk;
959 ret = -EFAULT;
960 if (copy_from_user(tty->write_buf, buf, size))
961 break;
962 ret = write(tty, file, tty->write_buf, size);
963 if (ret <= 0)
964 break;
965 written += ret;
966 buf += ret;
967 count -= ret;
968 if (!count)
969 break;
970 ret = -ERESTARTSYS;
971 if (signal_pending(current))
972 break;
973 cond_resched();
974 }
975 if (written) {
976 tty_update_time(&file_inode(file)->i_mtime);
977 ret = written;
978 }
979out:
980 tty_write_unlock(tty);
981 return ret;
982}
983
984/**
985 * tty_write_message - write a message to a certain tty, not just the console.
986 * @tty: the destination tty_struct
987 * @msg: the message to write
988 *
989 * This is used for messages that need to be redirected to a specific tty.
990 * We don't put it into the syslog queue right now maybe in the future if
991 * really needed.
992 *
993 * We must still hold the BTM and test the CLOSING flag for the moment.
994 */
995
996void tty_write_message(struct tty_struct *tty, char *msg)
997{
998 if (tty) {
999 mutex_lock(&tty->atomic_write_lock);
1000 tty_lock(tty);
1001 if (tty->ops->write && tty->count > 0)
1002 tty->ops->write(tty, msg, strlen(msg));
1003 tty_unlock(tty);
1004 tty_write_unlock(tty);
1005 }
1006 return;
1007}
1008
1009
1010/**
1011 * tty_write - write method for tty device file
1012 * @file: tty file pointer
1013 * @buf: user data to write
1014 * @count: bytes to write
1015 * @ppos: unused
1016 *
1017 * Write data to a tty device via the line discipline.
1018 *
1019 * Locking:
1020 * Locks the line discipline as required
1021 * Writes to the tty driver are serialized by the atomic_write_lock
1022 * and are then processed in chunks to the device. The line discipline
1023 * write method will not be invoked in parallel for each device.
1024 */
1025
1026static ssize_t tty_write(struct file *file, const char __user *buf,
1027 size_t count, loff_t *ppos)
1028{
1029 struct tty_struct *tty = file_tty(file);
1030 struct tty_ldisc *ld;
1031 ssize_t ret;
1032
1033 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1034 return -EIO;
1035 if (!tty || !tty->ops->write || tty_io_error(tty))
1036 return -EIO;
1037 /* Short term debug to catch buggy drivers */
1038 if (tty->ops->write_room == NULL)
1039 tty_err(tty, "missing write_room method\n");
1040 ld = tty_ldisc_ref_wait(tty);
1041 if (!ld)
1042 return hung_up_tty_write(file, buf, count, ppos);
1043 if (!ld->ops->write)
1044 ret = -EIO;
1045 else
1046 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1047 tty_ldisc_deref(ld);
1048 return ret;
1049}
1050
1051ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1052 size_t count, loff_t *ppos)
1053{
1054 struct file *p = NULL;
1055
1056 spin_lock(&redirect_lock);
1057 if (redirect)
1058 p = get_file(redirect);
1059 spin_unlock(&redirect_lock);
1060
1061 if (p) {
1062 ssize_t res;
1063 res = vfs_write(p, buf, count, &p->f_pos);
1064 fput(p);
1065 return res;
1066 }
1067 return tty_write(file, buf, count, ppos);
1068}
1069
1070/**
1071 * tty_send_xchar - send priority character
1072 *
1073 * Send a high priority character to the tty even if stopped
1074 *
1075 * Locking: none for xchar method, write ordering for write method.
1076 */
1077
1078int tty_send_xchar(struct tty_struct *tty, char ch)
1079{
1080 int was_stopped = tty->stopped;
1081
1082 if (tty->ops->send_xchar) {
1083 down_read(&tty->termios_rwsem);
1084 tty->ops->send_xchar(tty, ch);
1085 up_read(&tty->termios_rwsem);
1086 return 0;
1087 }
1088
1089 if (tty_write_lock(tty, 0) < 0)
1090 return -ERESTARTSYS;
1091
1092 down_read(&tty->termios_rwsem);
1093 if (was_stopped)
1094 start_tty(tty);
1095 tty->ops->write(tty, &ch, 1);
1096 if (was_stopped)
1097 stop_tty(tty);
1098 up_read(&tty->termios_rwsem);
1099 tty_write_unlock(tty);
1100 return 0;
1101}
1102
1103static char ptychar[] = "pqrstuvwxyzabcde";
1104
1105/**
1106 * pty_line_name - generate name for a pty
1107 * @driver: the tty driver in use
1108 * @index: the minor number
1109 * @p: output buffer of at least 6 bytes
1110 *
1111 * Generate a name from a driver reference and write it to the output
1112 * buffer.
1113 *
1114 * Locking: None
1115 */
1116static void pty_line_name(struct tty_driver *driver, int index, char *p)
1117{
1118 int i = index + driver->name_base;
1119 /* ->name is initialized to "ttyp", but "tty" is expected */
1120 sprintf(p, "%s%c%x",
1121 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1122 ptychar[i >> 4 & 0xf], i & 0xf);
1123}
1124
1125/**
1126 * tty_line_name - generate name for a tty
1127 * @driver: the tty driver in use
1128 * @index: the minor number
1129 * @p: output buffer of at least 7 bytes
1130 *
1131 * Generate a name from a driver reference and write it to the output
1132 * buffer.
1133 *
1134 * Locking: None
1135 */
1136static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1137{
1138 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1139 return sprintf(p, "%s", driver->name);
1140 else
1141 return sprintf(p, "%s%d", driver->name,
1142 index + driver->name_base);
1143}
1144
1145/**
1146 * tty_driver_lookup_tty() - find an existing tty, if any
1147 * @driver: the driver for the tty
1148 * @idx: the minor number
1149 *
1150 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1151 * driver lookup() method returns an error.
1152 *
1153 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1154 */
1155static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1156 struct file *file, int idx)
1157{
1158 struct tty_struct *tty;
1159
1160 if (driver->ops->lookup)
1161 if (!file)
1162 tty = ERR_PTR(-EIO);
1163 else
1164 tty = driver->ops->lookup(driver, file, idx);
1165 else
1166 tty = driver->ttys[idx];
1167
1168 if (!IS_ERR(tty))
1169 tty_kref_get(tty);
1170 return tty;
1171}
1172
1173/**
1174 * tty_init_termios - helper for termios setup
1175 * @tty: the tty to set up
1176 *
1177 * Initialise the termios structure for this tty. This runs under
1178 * the tty_mutex currently so we can be relaxed about ordering.
1179 */
1180
1181void tty_init_termios(struct tty_struct *tty)
1182{
1183 struct ktermios *tp;
1184 int idx = tty->index;
1185
1186 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1187 tty->termios = tty->driver->init_termios;
1188 else {
1189 /* Check for lazy saved data */
1190 tp = tty->driver->termios[idx];
1191 if (tp != NULL) {
1192 tty->termios = *tp;
1193 tty->termios.c_line = tty->driver->init_termios.c_line;
1194 } else
1195 tty->termios = tty->driver->init_termios;
1196 }
1197 /* Compatibility until drivers always set this */
1198 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1199 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1200}
1201EXPORT_SYMBOL_GPL(tty_init_termios);
1202
1203int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1204{
1205 tty_init_termios(tty);
1206 tty_driver_kref_get(driver);
1207 tty->count++;
1208 driver->ttys[tty->index] = tty;
1209 return 0;
1210}
1211EXPORT_SYMBOL_GPL(tty_standard_install);
1212
1213/**
1214 * tty_driver_install_tty() - install a tty entry in the driver
1215 * @driver: the driver for the tty
1216 * @tty: the tty
1217 *
1218 * Install a tty object into the driver tables. The tty->index field
1219 * will be set by the time this is called. This method is responsible
1220 * for ensuring any need additional structures are allocated and
1221 * configured.
1222 *
1223 * Locking: tty_mutex for now
1224 */
1225static int tty_driver_install_tty(struct tty_driver *driver,
1226 struct tty_struct *tty)
1227{
1228 return driver->ops->install ? driver->ops->install(driver, tty) :
1229 tty_standard_install(driver, tty);
1230}
1231
1232/**
1233 * tty_driver_remove_tty() - remove a tty from the driver tables
1234 * @driver: the driver for the tty
1235 * @idx: the minor number
1236 *
1237 * Remvoe a tty object from the driver tables. The tty->index field
1238 * will be set by the time this is called.
1239 *
1240 * Locking: tty_mutex for now
1241 */
1242static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1243{
1244 if (driver->ops->remove)
1245 driver->ops->remove(driver, tty);
1246 else
1247 driver->ttys[tty->index] = NULL;
1248}
1249
1250/*
1251 * tty_reopen() - fast re-open of an open tty
1252 * @tty - the tty to open
1253 *
1254 * Return 0 on success, -errno on error.
1255 * Re-opens on master ptys are not allowed and return -EIO.
1256 *
1257 * Locking: Caller must hold tty_lock
1258 */
1259static int tty_reopen(struct tty_struct *tty)
1260{
1261 struct tty_driver *driver = tty->driver;
1262 struct tty_ldisc *ld;
1263 int retval = 0;
1264
1265 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1266 driver->subtype == PTY_TYPE_MASTER)
1267 return -EIO;
1268
1269 if (!tty->count)
1270 return -EAGAIN;
1271
1272 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1273 return -EBUSY;
1274
1275 ld = tty_ldisc_ref_wait(tty);
1276 if (ld) {
1277 tty_ldisc_deref(ld);
1278 } else {
1279 retval = tty_ldisc_lock(tty, 5 * HZ);
1280 if (retval)
1281 return retval;
1282
1283 if (!tty->ldisc)
1284 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1285 tty_ldisc_unlock(tty);
1286 }
1287
1288 if (retval == 0)
1289 tty->count++;
1290
1291 return retval;
1292}
1293
1294/**
1295 * tty_init_dev - initialise a tty device
1296 * @driver: tty driver we are opening a device on
1297 * @idx: device index
1298 * @ret_tty: returned tty structure
1299 *
1300 * Prepare a tty device. This may not be a "new" clean device but
1301 * could also be an active device. The pty drivers require special
1302 * handling because of this.
1303 *
1304 * Locking:
1305 * The function is called under the tty_mutex, which
1306 * protects us from the tty struct or driver itself going away.
1307 *
1308 * On exit the tty device has the line discipline attached and
1309 * a reference count of 1. If a pair was created for pty/tty use
1310 * and the other was a pty master then it too has a reference count of 1.
1311 *
1312 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1313 * failed open. The new code protects the open with a mutex, so it's
1314 * really quite straightforward. The mutex locking can probably be
1315 * relaxed for the (most common) case of reopening a tty.
1316 */
1317
1318struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1319{
1320 struct tty_struct *tty;
1321 int retval;
1322
1323 /*
1324 * First time open is complex, especially for PTY devices.
1325 * This code guarantees that either everything succeeds and the
1326 * TTY is ready for operation, or else the table slots are vacated
1327 * and the allocated memory released. (Except that the termios
1328 * may be retained.)
1329 */
1330
1331 if (!try_module_get(driver->owner))
1332 return ERR_PTR(-ENODEV);
1333
1334 tty = alloc_tty_struct(driver, idx);
1335 if (!tty) {
1336 retval = -ENOMEM;
1337 goto err_module_put;
1338 }
1339
1340 tty_lock(tty);
1341 retval = tty_driver_install_tty(driver, tty);
1342 if (retval < 0)
1343 goto err_free_tty;
1344
1345 if (!tty->port)
1346 tty->port = driver->ports[idx];
1347
1348 if (WARN_RATELIMIT(!tty->port,
1349 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1350 __func__, tty->driver->name)) {
1351 retval = -EINVAL;
1352 goto err_release_lock;
1353 }
1354
1355 retval = tty_ldisc_lock(tty, 5 * HZ);
1356 if (retval)
1357 goto err_release_lock;
1358 tty->port->itty = tty;
1359
1360 /*
1361 * Structures all installed ... call the ldisc open routines.
1362 * If we fail here just call release_tty to clean up. No need
1363 * to decrement the use counts, as release_tty doesn't care.
1364 */
1365 retval = tty_ldisc_setup(tty, tty->link);
1366 if (retval)
1367 goto err_release_tty;
1368 tty_ldisc_unlock(tty);
1369 /* Return the tty locked so that it cannot vanish under the caller */
1370 return tty;
1371
1372err_free_tty:
1373 tty_unlock(tty);
1374 free_tty_struct(tty);
1375err_module_put:
1376 module_put(driver->owner);
1377 return ERR_PTR(retval);
1378
1379 /* call the tty release_tty routine to clean out this slot */
1380err_release_tty:
1381 tty_ldisc_unlock(tty);
1382 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1383 retval, idx);
1384err_release_lock:
1385 tty_unlock(tty);
1386 release_tty(tty, idx);
1387 return ERR_PTR(retval);
1388}
1389
1390/**
1391 * tty_save_termios() - save tty termios data in driver table
1392 * @tty: tty whose termios data to save
1393 *
1394 * Locking: Caller guarantees serialisation with tty_init_termios().
1395 */
1396void tty_save_termios(struct tty_struct *tty)
1397{
1398 struct ktermios *tp;
1399 int idx = tty->index;
1400
1401 /* If the port is going to reset then it has no termios to save */
1402 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1403 return;
1404
1405 /* Stash the termios data */
1406 tp = tty->driver->termios[idx];
1407 if (tp == NULL) {
1408 tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1409 if (tp == NULL)
1410 return;
1411 tty->driver->termios[idx] = tp;
1412 }
1413 *tp = tty->termios;
1414}
1415EXPORT_SYMBOL_GPL(tty_save_termios);
1416
1417/**
1418 * tty_flush_works - flush all works of a tty/pty pair
1419 * @tty: tty device to flush works for (or either end of a pty pair)
1420 *
1421 * Sync flush all works belonging to @tty (and the 'other' tty).
1422 */
1423static void tty_flush_works(struct tty_struct *tty)
1424{
1425 flush_work(&tty->SAK_work);
1426 flush_work(&tty->hangup_work);
1427 if (tty->link) {
1428 flush_work(&tty->link->SAK_work);
1429 flush_work(&tty->link->hangup_work);
1430 }
1431}
1432
1433/**
1434 * release_one_tty - release tty structure memory
1435 * @kref: kref of tty we are obliterating
1436 *
1437 * Releases memory associated with a tty structure, and clears out the
1438 * driver table slots. This function is called when a device is no longer
1439 * in use. It also gets called when setup of a device fails.
1440 *
1441 * Locking:
1442 * takes the file list lock internally when working on the list
1443 * of ttys that the driver keeps.
1444 *
1445 * This method gets called from a work queue so that the driver private
1446 * cleanup ops can sleep (needed for USB at least)
1447 */
1448static void release_one_tty(struct work_struct *work)
1449{
1450 struct tty_struct *tty =
1451 container_of(work, struct tty_struct, hangup_work);
1452 struct tty_driver *driver = tty->driver;
1453 struct module *owner = driver->owner;
1454
1455 if (tty->ops->cleanup)
1456 tty->ops->cleanup(tty);
1457
1458 tty->magic = 0;
1459 tty_driver_kref_put(driver);
1460 module_put(owner);
1461
1462 spin_lock(&tty->files_lock);
1463 list_del_init(&tty->tty_files);
1464 spin_unlock(&tty->files_lock);
1465
1466 put_pid(tty->pgrp);
1467 put_pid(tty->session);
1468 free_tty_struct(tty);
1469}
1470
1471static void queue_release_one_tty(struct kref *kref)
1472{
1473 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1474
1475 /* The hangup queue is now free so we can reuse it rather than
1476 waste a chunk of memory for each port */
1477 INIT_WORK(&tty->hangup_work, release_one_tty);
1478 schedule_work(&tty->hangup_work);
1479}
1480
1481/**
1482 * tty_kref_put - release a tty kref
1483 * @tty: tty device
1484 *
1485 * Release a reference to a tty device and if need be let the kref
1486 * layer destruct the object for us
1487 */
1488
1489void tty_kref_put(struct tty_struct *tty)
1490{
1491 if (tty)
1492 kref_put(&tty->kref, queue_release_one_tty);
1493}
1494EXPORT_SYMBOL(tty_kref_put);
1495
1496/**
1497 * release_tty - release tty structure memory
1498 *
1499 * Release both @tty and a possible linked partner (think pty pair),
1500 * and decrement the refcount of the backing module.
1501 *
1502 * Locking:
1503 * tty_mutex
1504 * takes the file list lock internally when working on the list
1505 * of ttys that the driver keeps.
1506 *
1507 */
1508static void release_tty(struct tty_struct *tty, int idx)
1509{
1510 /* This should always be true but check for the moment */
1511 WARN_ON(tty->index != idx);
1512 WARN_ON(!mutex_is_locked(&tty_mutex));
1513 if (tty->ops->shutdown)
1514 tty->ops->shutdown(tty);
1515 tty_save_termios(tty);
1516 tty_driver_remove_tty(tty->driver, tty);
1517 tty->port->itty = NULL;
1518 if (tty->link)
1519 tty->link->port->itty = NULL;
1520 tty_buffer_cancel_work(tty->port);
1521 if (tty->link)
1522 tty_buffer_cancel_work(tty->link->port);
1523
1524 tty_kref_put(tty->link);
1525 tty_kref_put(tty);
1526}
1527
1528/**
1529 * tty_release_checks - check a tty before real release
1530 * @tty: tty to check
1531 * @o_tty: link of @tty (if any)
1532 * @idx: index of the tty
1533 *
1534 * Performs some paranoid checking before true release of the @tty.
1535 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1536 */
1537static int tty_release_checks(struct tty_struct *tty, int idx)
1538{
1539#ifdef TTY_PARANOIA_CHECK
1540 if (idx < 0 || idx >= tty->driver->num) {
1541 tty_debug(tty, "bad idx %d\n", idx);
1542 return -1;
1543 }
1544
1545 /* not much to check for devpts */
1546 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1547 return 0;
1548
1549 if (tty != tty->driver->ttys[idx]) {
1550 tty_debug(tty, "bad driver table[%d] = %p\n",
1551 idx, tty->driver->ttys[idx]);
1552 return -1;
1553 }
1554 if (tty->driver->other) {
1555 struct tty_struct *o_tty = tty->link;
1556
1557 if (o_tty != tty->driver->other->ttys[idx]) {
1558 tty_debug(tty, "bad other table[%d] = %p\n",
1559 idx, tty->driver->other->ttys[idx]);
1560 return -1;
1561 }
1562 if (o_tty->link != tty) {
1563 tty_debug(tty, "bad link = %p\n", o_tty->link);
1564 return -1;
1565 }
1566 }
1567#endif
1568 return 0;
1569}
1570
1571/**
1572 * tty_kclose - closes tty opened by tty_kopen
1573 * @tty: tty device
1574 *
1575 * Performs the final steps to release and free a tty device. It is the
1576 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1577 * flag on tty->port.
1578 */
1579void tty_kclose(struct tty_struct *tty)
1580{
1581 /*
1582 * Ask the line discipline code to release its structures
1583 */
1584 tty_ldisc_release(tty);
1585
1586 /* Wait for pending work before tty destruction commmences */
1587 tty_flush_works(tty);
1588
1589 tty_debug_hangup(tty, "freeing structure\n");
1590 /*
1591 * The release_tty function takes care of the details of clearing
1592 * the slots and preserving the termios structure.
1593 */
1594 mutex_lock(&tty_mutex);
1595 tty_port_set_kopened(tty->port, 0);
1596 release_tty(tty, tty->index);
1597 mutex_unlock(&tty_mutex);
1598}
1599EXPORT_SYMBOL_GPL(tty_kclose);
1600
1601/**
1602 * tty_release_struct - release a tty struct
1603 * @tty: tty device
1604 * @idx: index of the tty
1605 *
1606 * Performs the final steps to release and free a tty device. It is
1607 * roughly the reverse of tty_init_dev.
1608 */
1609void tty_release_struct(struct tty_struct *tty, int idx)
1610{
1611 /*
1612 * Ask the line discipline code to release its structures
1613 */
1614 tty_ldisc_release(tty);
1615
1616 /* Wait for pending work before tty destruction commmences */
1617 tty_flush_works(tty);
1618
1619 tty_debug_hangup(tty, "freeing structure\n");
1620 /*
1621 * The release_tty function takes care of the details of clearing
1622 * the slots and preserving the termios structure.
1623 */
1624 mutex_lock(&tty_mutex);
1625 release_tty(tty, idx);
1626 mutex_unlock(&tty_mutex);
1627}
1628EXPORT_SYMBOL_GPL(tty_release_struct);
1629
1630/**
1631 * tty_release - vfs callback for close
1632 * @inode: inode of tty
1633 * @filp: file pointer for handle to tty
1634 *
1635 * Called the last time each file handle is closed that references
1636 * this tty. There may however be several such references.
1637 *
1638 * Locking:
1639 * Takes bkl. See tty_release_dev
1640 *
1641 * Even releasing the tty structures is a tricky business.. We have
1642 * to be very careful that the structures are all released at the
1643 * same time, as interrupts might otherwise get the wrong pointers.
1644 *
1645 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1646 * lead to double frees or releasing memory still in use.
1647 */
1648
1649int tty_release(struct inode *inode, struct file *filp)
1650{
1651 struct tty_struct *tty = file_tty(filp);
1652 struct tty_struct *o_tty = NULL;
1653 int do_sleep, final;
1654 int idx;
1655 long timeout = 0;
1656 int once = 1;
1657
1658 if (tty_paranoia_check(tty, inode, __func__))
1659 return 0;
1660
1661 tty_lock(tty);
1662 check_tty_count(tty, __func__);
1663
1664 __tty_fasync(-1, filp, 0);
1665
1666 idx = tty->index;
1667 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1668 tty->driver->subtype == PTY_TYPE_MASTER)
1669 o_tty = tty->link;
1670
1671 if (tty_release_checks(tty, idx)) {
1672 tty_unlock(tty);
1673 return 0;
1674 }
1675
1676 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1677
1678 if (tty->ops->close)
1679 tty->ops->close(tty, filp);
1680
1681 /* If tty is pty master, lock the slave pty (stable lock order) */
1682 tty_lock_slave(o_tty);
1683
1684 /*
1685 * Sanity check: if tty->count is going to zero, there shouldn't be
1686 * any waiters on tty->read_wait or tty->write_wait. We test the
1687 * wait queues and kick everyone out _before_ actually starting to
1688 * close. This ensures that we won't block while releasing the tty
1689 * structure.
1690 *
1691 * The test for the o_tty closing is necessary, since the master and
1692 * slave sides may close in any order. If the slave side closes out
1693 * first, its count will be one, since the master side holds an open.
1694 * Thus this test wouldn't be triggered at the time the slave closed,
1695 * so we do it now.
1696 */
1697 while (1) {
1698 do_sleep = 0;
1699
1700 if (tty->count <= 1) {
1701 if (waitqueue_active(&tty->read_wait)) {
1702 wake_up_poll(&tty->read_wait, EPOLLIN);
1703 do_sleep++;
1704 }
1705 if (waitqueue_active(&tty->write_wait)) {
1706 wake_up_poll(&tty->write_wait, EPOLLOUT);
1707 do_sleep++;
1708 }
1709 }
1710 if (o_tty && o_tty->count <= 1) {
1711 if (waitqueue_active(&o_tty->read_wait)) {
1712 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1713 do_sleep++;
1714 }
1715 if (waitqueue_active(&o_tty->write_wait)) {
1716 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1717 do_sleep++;
1718 }
1719 }
1720 if (!do_sleep)
1721 break;
1722
1723 if (once) {
1724 once = 0;
1725 tty_warn(tty, "read/write wait queue active!\n");
1726 }
1727 schedule_timeout_killable(timeout);
1728 if (timeout < 120 * HZ)
1729 timeout = 2 * timeout + 1;
1730 else
1731 timeout = MAX_SCHEDULE_TIMEOUT;
1732 }
1733
1734 if (o_tty) {
1735 if (--o_tty->count < 0) {
1736 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1737 o_tty->count = 0;
1738 }
1739 }
1740 if (--tty->count < 0) {
1741 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1742 tty->count = 0;
1743 }
1744
1745 /*
1746 * We've decremented tty->count, so we need to remove this file
1747 * descriptor off the tty->tty_files list; this serves two
1748 * purposes:
1749 * - check_tty_count sees the correct number of file descriptors
1750 * associated with this tty.
1751 * - do_tty_hangup no longer sees this file descriptor as
1752 * something that needs to be handled for hangups.
1753 */
1754 tty_del_file(filp);
1755
1756 /*
1757 * Perform some housekeeping before deciding whether to return.
1758 *
1759 * If _either_ side is closing, make sure there aren't any
1760 * processes that still think tty or o_tty is their controlling
1761 * tty.
1762 */
1763 if (!tty->count) {
1764 read_lock(&tasklist_lock);
1765 session_clear_tty(tty->session);
1766 if (o_tty)
1767 session_clear_tty(o_tty->session);
1768 read_unlock(&tasklist_lock);
1769 }
1770
1771 /* check whether both sides are closing ... */
1772 final = !tty->count && !(o_tty && o_tty->count);
1773
1774 tty_unlock_slave(o_tty);
1775 tty_unlock(tty);
1776
1777 /* At this point, the tty->count == 0 should ensure a dead tty
1778 cannot be re-opened by a racing opener */
1779
1780 if (!final)
1781 return 0;
1782
1783 tty_debug_hangup(tty, "final close\n");
1784
1785 tty_release_struct(tty, idx);
1786 return 0;
1787}
1788
1789/**
1790 * tty_open_current_tty - get locked tty of current task
1791 * @device: device number
1792 * @filp: file pointer to tty
1793 * @return: locked tty of the current task iff @device is /dev/tty
1794 *
1795 * Performs a re-open of the current task's controlling tty.
1796 *
1797 * We cannot return driver and index like for the other nodes because
1798 * devpts will not work then. It expects inodes to be from devpts FS.
1799 */
1800static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1801{
1802 struct tty_struct *tty;
1803 int retval;
1804
1805 if (device != MKDEV(TTYAUX_MAJOR, 0))
1806 return NULL;
1807
1808 tty = get_current_tty();
1809 if (!tty)
1810 return ERR_PTR(-ENXIO);
1811
1812 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1813 /* noctty = 1; */
1814 tty_lock(tty);
1815 tty_kref_put(tty); /* safe to drop the kref now */
1816
1817 retval = tty_reopen(tty);
1818 if (retval < 0) {
1819 tty_unlock(tty);
1820 tty = ERR_PTR(retval);
1821 }
1822 return tty;
1823}
1824
1825/**
1826 * tty_lookup_driver - lookup a tty driver for a given device file
1827 * @device: device number
1828 * @filp: file pointer to tty
1829 * @index: index for the device in the @return driver
1830 * @return: driver for this inode (with increased refcount)
1831 *
1832 * If @return is not erroneous, the caller is responsible to decrement the
1833 * refcount by tty_driver_kref_put.
1834 *
1835 * Locking: tty_mutex protects get_tty_driver
1836 */
1837static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1838 int *index)
1839{
1840 struct tty_driver *driver = NULL;
1841
1842 switch (device) {
1843#ifdef CONFIG_VT
1844 case MKDEV(TTY_MAJOR, 0): {
1845 extern struct tty_driver *console_driver;
1846 driver = tty_driver_kref_get(console_driver);
1847 *index = fg_console;
1848 break;
1849 }
1850#endif
1851 case MKDEV(TTYAUX_MAJOR, 1): {
1852 struct tty_driver *console_driver = console_device(index);
1853 if (console_driver) {
1854 driver = tty_driver_kref_get(console_driver);
1855 if (driver && filp) {
1856 /* Don't let /dev/console block */
1857 filp->f_flags |= O_NONBLOCK;
1858 break;
1859 }
1860 }
1861 if (driver)
1862 tty_driver_kref_put(driver);
1863 return ERR_PTR(-ENODEV);
1864 }
1865 default:
1866 driver = get_tty_driver(device, index);
1867 if (!driver)
1868 return ERR_PTR(-ENODEV);
1869 break;
1870 }
1871 return driver;
1872}
1873
1874/**
1875 * tty_kopen - open a tty device for kernel
1876 * @device: dev_t of device to open
1877 *
1878 * Opens tty exclusively for kernel. Performs the driver lookup,
1879 * makes sure it's not already opened and performs the first-time
1880 * tty initialization.
1881 *
1882 * Returns the locked initialized &tty_struct
1883 *
1884 * Claims the global tty_mutex to serialize:
1885 * - concurrent first-time tty initialization
1886 * - concurrent tty driver removal w/ lookup
1887 * - concurrent tty removal from driver table
1888 */
1889struct tty_struct *tty_kopen(dev_t device)
1890{
1891 struct tty_struct *tty;
1892 struct tty_driver *driver;
1893 int index = -1;
1894
1895 mutex_lock(&tty_mutex);
1896 driver = tty_lookup_driver(device, NULL, &index);
1897 if (IS_ERR(driver)) {
1898 mutex_unlock(&tty_mutex);
1899 return ERR_CAST(driver);
1900 }
1901
1902 /* check whether we're reopening an existing tty */
1903 tty = tty_driver_lookup_tty(driver, NULL, index);
1904 if (IS_ERR(tty))
1905 goto out;
1906
1907 if (tty) {
1908 /* drop kref from tty_driver_lookup_tty() */
1909 tty_kref_put(tty);
1910 tty = ERR_PTR(-EBUSY);
1911 } else { /* tty_init_dev returns tty with the tty_lock held */
1912 tty = tty_init_dev(driver, index);
1913 if (IS_ERR(tty))
1914 goto out;
1915 tty_port_set_kopened(tty->port, 1);
1916 }
1917out:
1918 mutex_unlock(&tty_mutex);
1919 tty_driver_kref_put(driver);
1920 return tty;
1921}
1922EXPORT_SYMBOL_GPL(tty_kopen);
1923
1924/**
1925 * tty_open_by_driver - open a tty device
1926 * @device: dev_t of device to open
1927 * @filp: file pointer to tty
1928 *
1929 * Performs the driver lookup, checks for a reopen, or otherwise
1930 * performs the first-time tty initialization.
1931 *
1932 * Returns the locked initialized or re-opened &tty_struct
1933 *
1934 * Claims the global tty_mutex to serialize:
1935 * - concurrent first-time tty initialization
1936 * - concurrent tty driver removal w/ lookup
1937 * - concurrent tty removal from driver table
1938 */
1939static struct tty_struct *tty_open_by_driver(dev_t device,
1940 struct file *filp)
1941{
1942 struct tty_struct *tty;
1943 struct tty_driver *driver = NULL;
1944 int index = -1;
1945 int retval;
1946
1947 mutex_lock(&tty_mutex);
1948 driver = tty_lookup_driver(device, filp, &index);
1949 if (IS_ERR(driver)) {
1950 mutex_unlock(&tty_mutex);
1951 return ERR_CAST(driver);
1952 }
1953
1954 /* check whether we're reopening an existing tty */
1955 tty = tty_driver_lookup_tty(driver, filp, index);
1956 if (IS_ERR(tty)) {
1957 mutex_unlock(&tty_mutex);
1958 goto out;
1959 }
1960
1961 if (tty) {
1962 if (tty_port_kopened(tty->port)) {
1963 tty_kref_put(tty);
1964 mutex_unlock(&tty_mutex);
1965 tty = ERR_PTR(-EBUSY);
1966 goto out;
1967 }
1968 mutex_unlock(&tty_mutex);
1969 retval = tty_lock_interruptible(tty);
1970 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1971 if (retval) {
1972 if (retval == -EINTR)
1973 retval = -ERESTARTSYS;
1974 tty = ERR_PTR(retval);
1975 goto out;
1976 }
1977 retval = tty_reopen(tty);
1978 if (retval < 0) {
1979 tty_unlock(tty);
1980 tty = ERR_PTR(retval);
1981 }
1982 } else { /* Returns with the tty_lock held for now */
1983 tty = tty_init_dev(driver, index);
1984 mutex_unlock(&tty_mutex);
1985 }
1986out:
1987 tty_driver_kref_put(driver);
1988 return tty;
1989}
1990
1991/**
1992 * tty_open - open a tty device
1993 * @inode: inode of device file
1994 * @filp: file pointer to tty
1995 *
1996 * tty_open and tty_release keep up the tty count that contains the
1997 * number of opens done on a tty. We cannot use the inode-count, as
1998 * different inodes might point to the same tty.
1999 *
2000 * Open-counting is needed for pty masters, as well as for keeping
2001 * track of serial lines: DTR is dropped when the last close happens.
2002 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2003 *
2004 * The termios state of a pty is reset on first open so that
2005 * settings don't persist across reuse.
2006 *
2007 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2008 * tty->count should protect the rest.
2009 * ->siglock protects ->signal/->sighand
2010 *
2011 * Note: the tty_unlock/lock cases without a ref are only safe due to
2012 * tty_mutex
2013 */
2014
2015static int tty_open(struct inode *inode, struct file *filp)
2016{
2017 struct tty_struct *tty;
2018 int noctty, retval;
2019 dev_t device = inode->i_rdev;
2020 unsigned saved_flags = filp->f_flags;
2021
2022 nonseekable_open(inode, filp);
2023
2024retry_open:
2025 retval = tty_alloc_file(filp);
2026 if (retval)
2027 return -ENOMEM;
2028
2029 tty = tty_open_current_tty(device, filp);
2030 if (!tty)
2031 tty = tty_open_by_driver(device, filp);
2032
2033 if (IS_ERR(tty)) {
2034 tty_free_file(filp);
2035 retval = PTR_ERR(tty);
2036 if (retval != -EAGAIN || signal_pending(current))
2037 return retval;
2038 schedule();
2039 goto retry_open;
2040 }
2041
2042 tty_add_file(tty, filp);
2043
2044 check_tty_count(tty, __func__);
2045 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2046
2047 if (tty->ops->open)
2048 retval = tty->ops->open(tty, filp);
2049 else
2050 retval = -ENODEV;
2051 filp->f_flags = saved_flags;
2052
2053 if (retval) {
2054 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2055
2056 tty_unlock(tty); /* need to call tty_release without BTM */
2057 tty_release(inode, filp);
2058 if (retval != -ERESTARTSYS)
2059 return retval;
2060
2061 if (signal_pending(current))
2062 return retval;
2063
2064 schedule();
2065 /*
2066 * Need to reset f_op in case a hangup happened.
2067 */
2068 if (tty_hung_up_p(filp))
2069 filp->f_op = &tty_fops;
2070 goto retry_open;
2071 }
2072 clear_bit(TTY_HUPPED, &tty->flags);
2073
2074 noctty = (filp->f_flags & O_NOCTTY) ||
2075 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2076 device == MKDEV(TTYAUX_MAJOR, 1) ||
2077 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2078 tty->driver->subtype == PTY_TYPE_MASTER);
2079 if (!noctty)
2080 tty_open_proc_set_tty(filp, tty);
2081 tty_unlock(tty);
2082 return 0;
2083}
2084
2085
2086
2087/**
2088 * tty_poll - check tty status
2089 * @filp: file being polled
2090 * @wait: poll wait structures to update
2091 *
2092 * Call the line discipline polling method to obtain the poll
2093 * status of the device.
2094 *
2095 * Locking: locks called line discipline but ldisc poll method
2096 * may be re-entered freely by other callers.
2097 */
2098
2099static __poll_t tty_poll(struct file *filp, poll_table *wait)
2100{
2101 struct tty_struct *tty = file_tty(filp);
2102 struct tty_ldisc *ld;
2103 __poll_t ret = 0;
2104
2105 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2106 return 0;
2107
2108 ld = tty_ldisc_ref_wait(tty);
2109 if (!ld)
2110 return hung_up_tty_poll(filp, wait);
2111 if (ld->ops->poll)
2112 ret = ld->ops->poll(tty, filp, wait);
2113 tty_ldisc_deref(ld);
2114 return ret;
2115}
2116
2117static int __tty_fasync(int fd, struct file *filp, int on)
2118{
2119 struct tty_struct *tty = file_tty(filp);
2120 unsigned long flags;
2121 int retval = 0;
2122
2123 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2124 goto out;
2125
2126 retval = fasync_helper(fd, filp, on, &tty->fasync);
2127 if (retval <= 0)
2128 goto out;
2129
2130 if (on) {
2131 enum pid_type type;
2132 struct pid *pid;
2133
2134 spin_lock_irqsave(&tty->ctrl_lock, flags);
2135 if (tty->pgrp) {
2136 pid = tty->pgrp;
2137 type = PIDTYPE_PGID;
2138 } else {
2139 pid = task_pid(current);
2140 type = PIDTYPE_TGID;
2141 }
2142 get_pid(pid);
2143 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2144 __f_setown(filp, pid, type, 0);
2145 put_pid(pid);
2146 retval = 0;
2147 }
2148out:
2149 return retval;
2150}
2151
2152static int tty_fasync(int fd, struct file *filp, int on)
2153{
2154 struct tty_struct *tty = file_tty(filp);
2155 int retval = -ENOTTY;
2156
2157 tty_lock(tty);
2158 if (!tty_hung_up_p(filp))
2159 retval = __tty_fasync(fd, filp, on);
2160 tty_unlock(tty);
2161
2162 return retval;
2163}
2164
2165/**
2166 * tiocsti - fake input character
2167 * @tty: tty to fake input into
2168 * @p: pointer to character
2169 *
2170 * Fake input to a tty device. Does the necessary locking and
2171 * input management.
2172 *
2173 * FIXME: does not honour flow control ??
2174 *
2175 * Locking:
2176 * Called functions take tty_ldiscs_lock
2177 * current->signal->tty check is safe without locks
2178 *
2179 * FIXME: may race normal receive processing
2180 */
2181
2182static int tiocsti(struct tty_struct *tty, char __user *p)
2183{
2184 char ch, mbz = 0;
2185 struct tty_ldisc *ld;
2186
2187 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2188 return -EPERM;
2189 if (get_user(ch, p))
2190 return -EFAULT;
2191 tty_audit_tiocsti(tty, ch);
2192 ld = tty_ldisc_ref_wait(tty);
2193 if (!ld)
2194 return -EIO;
2195 if (ld->ops->receive_buf)
2196 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2197 tty_ldisc_deref(ld);
2198 return 0;
2199}
2200
2201/**
2202 * tiocgwinsz - implement window query ioctl
2203 * @tty; tty
2204 * @arg: user buffer for result
2205 *
2206 * Copies the kernel idea of the window size into the user buffer.
2207 *
2208 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2209 * is consistent.
2210 */
2211
2212static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2213{
2214 int err;
2215
2216 mutex_lock(&tty->winsize_mutex);
2217 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2218 mutex_unlock(&tty->winsize_mutex);
2219
2220 return err ? -EFAULT: 0;
2221}
2222
2223/**
2224 * tty_do_resize - resize event
2225 * @tty: tty being resized
2226 * @rows: rows (character)
2227 * @cols: cols (character)
2228 *
2229 * Update the termios variables and send the necessary signals to
2230 * peform a terminal resize correctly
2231 */
2232
2233int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2234{
2235 struct pid *pgrp;
2236
2237 /* Lock the tty */
2238 mutex_lock(&tty->winsize_mutex);
2239 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2240 goto done;
2241
2242 /* Signal the foreground process group */
2243 pgrp = tty_get_pgrp(tty);
2244 if (pgrp)
2245 kill_pgrp(pgrp, SIGWINCH, 1);
2246 put_pid(pgrp);
2247
2248 tty->winsize = *ws;
2249done:
2250 mutex_unlock(&tty->winsize_mutex);
2251 return 0;
2252}
2253EXPORT_SYMBOL(tty_do_resize);
2254
2255/**
2256 * tiocswinsz - implement window size set ioctl
2257 * @tty; tty side of tty
2258 * @arg: user buffer for result
2259 *
2260 * Copies the user idea of the window size to the kernel. Traditionally
2261 * this is just advisory information but for the Linux console it
2262 * actually has driver level meaning and triggers a VC resize.
2263 *
2264 * Locking:
2265 * Driver dependent. The default do_resize method takes the
2266 * tty termios mutex and ctrl_lock. The console takes its own lock
2267 * then calls into the default method.
2268 */
2269
2270static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2271{
2272 struct winsize tmp_ws;
2273 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2274 return -EFAULT;
2275
2276 if (tty->ops->resize)
2277 return tty->ops->resize(tty, &tmp_ws);
2278 else
2279 return tty_do_resize(tty, &tmp_ws);
2280}
2281
2282/**
2283 * tioccons - allow admin to move logical console
2284 * @file: the file to become console
2285 *
2286 * Allow the administrator to move the redirected console device
2287 *
2288 * Locking: uses redirect_lock to guard the redirect information
2289 */
2290
2291static int tioccons(struct file *file)
2292{
2293 if (!capable(CAP_SYS_ADMIN))
2294 return -EPERM;
2295 if (file->f_op->write == redirected_tty_write) {
2296 struct file *f;
2297 spin_lock(&redirect_lock);
2298 f = redirect;
2299 redirect = NULL;
2300 spin_unlock(&redirect_lock);
2301 if (f)
2302 fput(f);
2303 return 0;
2304 }
2305 spin_lock(&redirect_lock);
2306 if (redirect) {
2307 spin_unlock(&redirect_lock);
2308 return -EBUSY;
2309 }
2310 redirect = get_file(file);
2311 spin_unlock(&redirect_lock);
2312 return 0;
2313}
2314
2315/**
2316 * tiocsetd - set line discipline
2317 * @tty: tty device
2318 * @p: pointer to user data
2319 *
2320 * Set the line discipline according to user request.
2321 *
2322 * Locking: see tty_set_ldisc, this function is just a helper
2323 */
2324
2325static int tiocsetd(struct tty_struct *tty, int __user *p)
2326{
2327 int disc;
2328 int ret;
2329
2330 if (get_user(disc, p))
2331 return -EFAULT;
2332
2333 ret = tty_set_ldisc(tty, disc);
2334
2335 return ret;
2336}
2337
2338/**
2339 * tiocgetd - get line discipline
2340 * @tty: tty device
2341 * @p: pointer to user data
2342 *
2343 * Retrieves the line discipline id directly from the ldisc.
2344 *
2345 * Locking: waits for ldisc reference (in case the line discipline
2346 * is changing or the tty is being hungup)
2347 */
2348
2349static int tiocgetd(struct tty_struct *tty, int __user *p)
2350{
2351 struct tty_ldisc *ld;
2352 int ret;
2353
2354 ld = tty_ldisc_ref_wait(tty);
2355 if (!ld)
2356 return -EIO;
2357 ret = put_user(ld->ops->num, p);
2358 tty_ldisc_deref(ld);
2359 return ret;
2360}
2361
2362/**
2363 * send_break - performed time break
2364 * @tty: device to break on
2365 * @duration: timeout in mS
2366 *
2367 * Perform a timed break on hardware that lacks its own driver level
2368 * timed break functionality.
2369 *
2370 * Locking:
2371 * atomic_write_lock serializes
2372 *
2373 */
2374
2375static int send_break(struct tty_struct *tty, unsigned int duration)
2376{
2377 int retval;
2378
2379 if (tty->ops->break_ctl == NULL)
2380 return 0;
2381
2382 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2383 retval = tty->ops->break_ctl(tty, duration);
2384 else {
2385 /* Do the work ourselves */
2386 if (tty_write_lock(tty, 0) < 0)
2387 return -EINTR;
2388 retval = tty->ops->break_ctl(tty, -1);
2389 if (retval)
2390 goto out;
2391 if (!signal_pending(current))
2392 msleep_interruptible(duration);
2393 retval = tty->ops->break_ctl(tty, 0);
2394out:
2395 tty_write_unlock(tty);
2396 if (signal_pending(current))
2397 retval = -EINTR;
2398 }
2399 return retval;
2400}
2401
2402/**
2403 * tty_tiocmget - get modem status
2404 * @tty: tty device
2405 * @file: user file pointer
2406 * @p: pointer to result
2407 *
2408 * Obtain the modem status bits from the tty driver if the feature
2409 * is supported. Return -EINVAL if it is not available.
2410 *
2411 * Locking: none (up to the driver)
2412 */
2413
2414static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2415{
2416 int retval = -EINVAL;
2417
2418 if (tty->ops->tiocmget) {
2419 retval = tty->ops->tiocmget(tty);
2420
2421 if (retval >= 0)
2422 retval = put_user(retval, p);
2423 }
2424 return retval;
2425}
2426
2427/**
2428 * tty_tiocmset - set modem status
2429 * @tty: tty device
2430 * @cmd: command - clear bits, set bits or set all
2431 * @p: pointer to desired bits
2432 *
2433 * Set the modem status bits from the tty driver if the feature
2434 * is supported. Return -EINVAL if it is not available.
2435 *
2436 * Locking: none (up to the driver)
2437 */
2438
2439static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2440 unsigned __user *p)
2441{
2442 int retval;
2443 unsigned int set, clear, val;
2444
2445 if (tty->ops->tiocmset == NULL)
2446 return -EINVAL;
2447
2448 retval = get_user(val, p);
2449 if (retval)
2450 return retval;
2451 set = clear = 0;
2452 switch (cmd) {
2453 case TIOCMBIS:
2454 set = val;
2455 break;
2456 case TIOCMBIC:
2457 clear = val;
2458 break;
2459 case TIOCMSET:
2460 set = val;
2461 clear = ~val;
2462 break;
2463 }
2464 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2465 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2466 return tty->ops->tiocmset(tty, set, clear);
2467}
2468
2469static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2470{
2471 int retval = -EINVAL;
2472 struct serial_icounter_struct icount;
2473 memset(&icount, 0, sizeof(icount));
2474 if (tty->ops->get_icount)
2475 retval = tty->ops->get_icount(tty, &icount);
2476 if (retval != 0)
2477 return retval;
2478 if (copy_to_user(arg, &icount, sizeof(icount)))
2479 return -EFAULT;
2480 return 0;
2481}
2482
2483static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2484{
2485 static DEFINE_RATELIMIT_STATE(depr_flags,
2486 DEFAULT_RATELIMIT_INTERVAL,
2487 DEFAULT_RATELIMIT_BURST);
2488 char comm[TASK_COMM_LEN];
2489 struct serial_struct v;
2490 int flags;
2491
2492 if (copy_from_user(&v, ss, sizeof(*ss)))
2493 return -EFAULT;
2494
2495 flags = v.flags & ASYNC_DEPRECATED;
2496
2497 if (flags && __ratelimit(&depr_flags))
2498 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2499 __func__, get_task_comm(comm, current), flags);
2500 if (!tty->ops->set_serial)
2501 return -ENOTTY;
2502 return tty->ops->set_serial(tty, &v);
2503}
2504
2505static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2506{
2507 struct serial_struct v;
2508 int err;
2509
2510 memset(&v, 0, sizeof(v));
2511 if (!tty->ops->get_serial)
2512 return -ENOTTY;
2513 err = tty->ops->get_serial(tty, &v);
2514 if (!err && copy_to_user(ss, &v, sizeof(v)))
2515 err = -EFAULT;
2516 return err;
2517}
2518
2519/*
2520 * if pty, return the slave side (real_tty)
2521 * otherwise, return self
2522 */
2523static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2524{
2525 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2526 tty->driver->subtype == PTY_TYPE_MASTER)
2527 tty = tty->link;
2528 return tty;
2529}
2530
2531/*
2532 * Split this up, as gcc can choke on it otherwise..
2533 */
2534long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2535{
2536 struct tty_struct *tty = file_tty(file);
2537 struct tty_struct *real_tty;
2538 void __user *p = (void __user *)arg;
2539 int retval;
2540 struct tty_ldisc *ld;
2541
2542 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2543 return -EINVAL;
2544
2545 real_tty = tty_pair_get_tty(tty);
2546
2547 /*
2548 * Factor out some common prep work
2549 */
2550 switch (cmd) {
2551 case TIOCSETD:
2552 case TIOCSBRK:
2553 case TIOCCBRK:
2554 case TCSBRK:
2555 case TCSBRKP:
2556 retval = tty_check_change(tty);
2557 if (retval)
2558 return retval;
2559 if (cmd != TIOCCBRK) {
2560 tty_wait_until_sent(tty, 0);
2561 if (signal_pending(current))
2562 return -EINTR;
2563 }
2564 break;
2565 }
2566
2567 /*
2568 * Now do the stuff.
2569 */
2570 switch (cmd) {
2571 case TIOCSTI:
2572 return tiocsti(tty, p);
2573 case TIOCGWINSZ:
2574 return tiocgwinsz(real_tty, p);
2575 case TIOCSWINSZ:
2576 return tiocswinsz(real_tty, p);
2577 case TIOCCONS:
2578 return real_tty != tty ? -EINVAL : tioccons(file);
2579 case TIOCEXCL:
2580 set_bit(TTY_EXCLUSIVE, &tty->flags);
2581 return 0;
2582 case TIOCNXCL:
2583 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2584 return 0;
2585 case TIOCGEXCL:
2586 {
2587 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2588 return put_user(excl, (int __user *)p);
2589 }
2590 case TIOCGETD:
2591 return tiocgetd(tty, p);
2592 case TIOCSETD:
2593 return tiocsetd(tty, p);
2594 case TIOCVHANGUP:
2595 if (!capable(CAP_SYS_ADMIN))
2596 return -EPERM;
2597 tty_vhangup(tty);
2598 return 0;
2599 case TIOCGDEV:
2600 {
2601 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2602 return put_user(ret, (unsigned int __user *)p);
2603 }
2604 /*
2605 * Break handling
2606 */
2607 case TIOCSBRK: /* Turn break on, unconditionally */
2608 if (tty->ops->break_ctl)
2609 return tty->ops->break_ctl(tty, -1);
2610 return 0;
2611 case TIOCCBRK: /* Turn break off, unconditionally */
2612 if (tty->ops->break_ctl)
2613 return tty->ops->break_ctl(tty, 0);
2614 return 0;
2615 case TCSBRK: /* SVID version: non-zero arg --> no break */
2616 /* non-zero arg means wait for all output data
2617 * to be sent (performed above) but don't send break.
2618 * This is used by the tcdrain() termios function.
2619 */
2620 if (!arg)
2621 return send_break(tty, 250);
2622 return 0;
2623 case TCSBRKP: /* support for POSIX tcsendbreak() */
2624 return send_break(tty, arg ? arg*100 : 250);
2625
2626 case TIOCMGET:
2627 return tty_tiocmget(tty, p);
2628 case TIOCMSET:
2629 case TIOCMBIC:
2630 case TIOCMBIS:
2631 return tty_tiocmset(tty, cmd, p);
2632 case TIOCGICOUNT:
2633 return tty_tiocgicount(tty, p);
2634 case TCFLSH:
2635 switch (arg) {
2636 case TCIFLUSH:
2637 case TCIOFLUSH:
2638 /* flush tty buffer and allow ldisc to process ioctl */
2639 tty_buffer_flush(tty, NULL);
2640 break;
2641 }
2642 break;
2643 case TIOCSSERIAL:
2644 return tty_tiocsserial(tty, p);
2645 case TIOCGSERIAL:
2646 return tty_tiocgserial(tty, p);
2647 case TIOCGPTPEER:
2648 /* Special because the struct file is needed */
2649 return ptm_open_peer(file, tty, (int)arg);
2650 default:
2651 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2652 if (retval != -ENOIOCTLCMD)
2653 return retval;
2654 }
2655 if (tty->ops->ioctl) {
2656 retval = tty->ops->ioctl(tty, cmd, arg);
2657 if (retval != -ENOIOCTLCMD)
2658 return retval;
2659 }
2660 ld = tty_ldisc_ref_wait(tty);
2661 if (!ld)
2662 return hung_up_tty_ioctl(file, cmd, arg);
2663 retval = -EINVAL;
2664 if (ld->ops->ioctl) {
2665 retval = ld->ops->ioctl(tty, file, cmd, arg);
2666 if (retval == -ENOIOCTLCMD)
2667 retval = -ENOTTY;
2668 }
2669 tty_ldisc_deref(ld);
2670 return retval;
2671}
2672
2673#ifdef CONFIG_COMPAT
2674
2675struct serial_struct32 {
2676 compat_int_t type;
2677 compat_int_t line;
2678 compat_uint_t port;
2679 compat_int_t irq;
2680 compat_int_t flags;
2681 compat_int_t xmit_fifo_size;
2682 compat_int_t custom_divisor;
2683 compat_int_t baud_base;
2684 unsigned short close_delay;
2685 char io_type;
2686 char reserved_char;
2687 compat_int_t hub6;
2688 unsigned short closing_wait; /* time to wait before closing */
2689 unsigned short closing_wait2; /* no longer used... */
2690 compat_uint_t iomem_base;
2691 unsigned short iomem_reg_shift;
2692 unsigned int port_high;
2693 /* compat_ulong_t iomap_base FIXME */
2694 compat_int_t reserved;
2695};
2696
2697static int compat_tty_tiocsserial(struct tty_struct *tty,
2698 struct serial_struct32 __user *ss)
2699{
2700 static DEFINE_RATELIMIT_STATE(depr_flags,
2701 DEFAULT_RATELIMIT_INTERVAL,
2702 DEFAULT_RATELIMIT_BURST);
2703 char comm[TASK_COMM_LEN];
2704 struct serial_struct32 v32;
2705 struct serial_struct v;
2706 int flags;
2707
2708 if (copy_from_user(&v32, ss, sizeof(*ss)))
2709 return -EFAULT;
2710
2711 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2712 v.iomem_base = compat_ptr(v32.iomem_base);
2713 v.iomem_reg_shift = v32.iomem_reg_shift;
2714 v.port_high = v32.port_high;
2715 v.iomap_base = 0;
2716
2717 flags = v.flags & ASYNC_DEPRECATED;
2718
2719 if (flags && __ratelimit(&depr_flags))
2720 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2721 __func__, get_task_comm(comm, current), flags);
2722 if (!tty->ops->set_serial)
2723 return -ENOTTY;
2724 return tty->ops->set_serial(tty, &v);
2725}
2726
2727static int compat_tty_tiocgserial(struct tty_struct *tty,
2728 struct serial_struct32 __user *ss)
2729{
2730 struct serial_struct32 v32;
2731 struct serial_struct v;
2732 int err;
2733
2734 memset(&v, 0, sizeof(v));
2735 memset(&v32, 0, sizeof(v32));
2736
2737 if (!tty->ops->get_serial)
2738 return -ENOTTY;
2739 err = tty->ops->get_serial(tty, &v);
2740 if (!err) {
2741 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2742 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2743 0xfffffff : ptr_to_compat(v.iomem_base);
2744 v32.iomem_reg_shift = v.iomem_reg_shift;
2745 v32.port_high = v.port_high;
2746 if (copy_to_user(ss, &v32, sizeof(v32)))
2747 err = -EFAULT;
2748 }
2749 return err;
2750}
2751static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2752 unsigned long arg)
2753{
2754 struct tty_struct *tty = file_tty(file);
2755 struct tty_ldisc *ld;
2756 int retval = -ENOIOCTLCMD;
2757
2758 switch (cmd) {
2759 case TIOCOUTQ:
2760 case TIOCSTI:
2761 case TIOCGWINSZ:
2762 case TIOCSWINSZ:
2763 case TIOCGEXCL:
2764 case TIOCGETD:
2765 case TIOCSETD:
2766 case TIOCGDEV:
2767 case TIOCMGET:
2768 case TIOCMSET:
2769 case TIOCMBIC:
2770 case TIOCMBIS:
2771 case TIOCGICOUNT:
2772 case TIOCGPGRP:
2773 case TIOCSPGRP:
2774 case TIOCGSID:
2775 case TIOCSERGETLSR:
2776 case TIOCGRS485:
2777 case TIOCSRS485:
2778#ifdef TIOCGETP
2779 case TIOCGETP:
2780 case TIOCSETP:
2781 case TIOCSETN:
2782#endif
2783#ifdef TIOCGETC
2784 case TIOCGETC:
2785 case TIOCSETC:
2786#endif
2787#ifdef TIOCGLTC
2788 case TIOCGLTC:
2789 case TIOCSLTC:
2790#endif
2791 case TCSETSF:
2792 case TCSETSW:
2793 case TCSETS:
2794 case TCGETS:
2795#ifdef TCGETS2
2796 case TCGETS2:
2797 case TCSETSF2:
2798 case TCSETSW2:
2799 case TCSETS2:
2800#endif
2801 case TCGETA:
2802 case TCSETAF:
2803 case TCSETAW:
2804 case TCSETA:
2805 case TIOCGLCKTRMIOS:
2806 case TIOCSLCKTRMIOS:
2807#ifdef TCGETX
2808 case TCGETX:
2809 case TCSETX:
2810 case TCSETXW:
2811 case TCSETXF:
2812#endif
2813 case TIOCGSOFTCAR:
2814 case TIOCSSOFTCAR:
2815
2816 case PPPIOCGCHAN:
2817 case PPPIOCGUNIT:
2818 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2819 case TIOCCONS:
2820 case TIOCEXCL:
2821 case TIOCNXCL:
2822 case TIOCVHANGUP:
2823 case TIOCSBRK:
2824 case TIOCCBRK:
2825 case TCSBRK:
2826 case TCSBRKP:
2827 case TCFLSH:
2828 case TIOCGPTPEER:
2829 case TIOCNOTTY:
2830 case TIOCSCTTY:
2831 case TCXONC:
2832 case TIOCMIWAIT:
2833 case TIOCSERCONFIG:
2834 return tty_ioctl(file, cmd, arg);
2835 }
2836
2837 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2838 return -EINVAL;
2839
2840 switch (cmd) {
2841 case TIOCSSERIAL:
2842 return compat_tty_tiocsserial(tty, compat_ptr(arg));
2843 case TIOCGSERIAL:
2844 return compat_tty_tiocgserial(tty, compat_ptr(arg));
2845 }
2846 if (tty->ops->compat_ioctl) {
2847 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2848 if (retval != -ENOIOCTLCMD)
2849 return retval;
2850 }
2851
2852 ld = tty_ldisc_ref_wait(tty);
2853 if (!ld)
2854 return hung_up_tty_compat_ioctl(file, cmd, arg);
2855 if (ld->ops->compat_ioctl)
2856 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2857 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2858 retval = ld->ops->ioctl(tty, file,
2859 (unsigned long)compat_ptr(cmd), arg);
2860 tty_ldisc_deref(ld);
2861
2862 return retval;
2863}
2864#endif
2865
2866static int this_tty(const void *t, struct file *file, unsigned fd)
2867{
2868 if (likely(file->f_op->read != tty_read))
2869 return 0;
2870 return file_tty(file) != t ? 0 : fd + 1;
2871}
2872
2873/*
2874 * This implements the "Secure Attention Key" --- the idea is to
2875 * prevent trojan horses by killing all processes associated with this
2876 * tty when the user hits the "Secure Attention Key". Required for
2877 * super-paranoid applications --- see the Orange Book for more details.
2878 *
2879 * This code could be nicer; ideally it should send a HUP, wait a few
2880 * seconds, then send a INT, and then a KILL signal. But you then
2881 * have to coordinate with the init process, since all processes associated
2882 * with the current tty must be dead before the new getty is allowed
2883 * to spawn.
2884 *
2885 * Now, if it would be correct ;-/ The current code has a nasty hole -
2886 * it doesn't catch files in flight. We may send the descriptor to ourselves
2887 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2888 *
2889 * Nasty bug: do_SAK is being called in interrupt context. This can
2890 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2891 */
2892void __do_SAK(struct tty_struct *tty)
2893{
2894#ifdef TTY_SOFT_SAK
2895 tty_hangup(tty);
2896#else
2897 struct task_struct *g, *p;
2898 struct pid *session;
2899 int i;
2900
2901 if (!tty)
2902 return;
2903 session = tty->session;
2904
2905 tty_ldisc_flush(tty);
2906
2907 tty_driver_flush_buffer(tty);
2908
2909 read_lock(&tasklist_lock);
2910 /* Kill the entire session */
2911 do_each_pid_task(session, PIDTYPE_SID, p) {
2912 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2913 task_pid_nr(p), p->comm);
2914 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2915 } while_each_pid_task(session, PIDTYPE_SID, p);
2916
2917 /* Now kill any processes that happen to have the tty open */
2918 do_each_thread(g, p) {
2919 if (p->signal->tty == tty) {
2920 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2921 task_pid_nr(p), p->comm);
2922 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2923 continue;
2924 }
2925 task_lock(p);
2926 i = iterate_fd(p->files, 0, this_tty, tty);
2927 if (i != 0) {
2928 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2929 task_pid_nr(p), p->comm, i - 1);
2930 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2931 }
2932 task_unlock(p);
2933 } while_each_thread(g, p);
2934 read_unlock(&tasklist_lock);
2935#endif
2936}
2937
2938static void do_SAK_work(struct work_struct *work)
2939{
2940 struct tty_struct *tty =
2941 container_of(work, struct tty_struct, SAK_work);
2942 __do_SAK(tty);
2943}
2944
2945/*
2946 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2947 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2948 * the values which we write to it will be identical to the values which it
2949 * already has. --akpm
2950 */
2951void do_SAK(struct tty_struct *tty)
2952{
2953 if (!tty)
2954 return;
2955 schedule_work(&tty->SAK_work);
2956}
2957
2958EXPORT_SYMBOL(do_SAK);
2959
2960/* Must put_device() after it's unused! */
2961static struct device *tty_get_device(struct tty_struct *tty)
2962{
2963 dev_t devt = tty_devnum(tty);
2964 return class_find_device_by_devt(tty_class, devt);
2965}
2966
2967
2968/**
2969 * alloc_tty_struct
2970 *
2971 * This subroutine allocates and initializes a tty structure.
2972 *
2973 * Locking: none - tty in question is not exposed at this point
2974 */
2975
2976struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2977{
2978 struct tty_struct *tty;
2979
2980 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2981 if (!tty)
2982 return NULL;
2983
2984 kref_init(&tty->kref);
2985 tty->magic = TTY_MAGIC;
2986 if (tty_ldisc_init(tty)) {
2987 kfree(tty);
2988 return NULL;
2989 }
2990 tty->session = NULL;
2991 tty->pgrp = NULL;
2992 mutex_init(&tty->legacy_mutex);
2993 mutex_init(&tty->throttle_mutex);
2994 init_rwsem(&tty->termios_rwsem);
2995 mutex_init(&tty->winsize_mutex);
2996 init_ldsem(&tty->ldisc_sem);
2997 init_waitqueue_head(&tty->write_wait);
2998 init_waitqueue_head(&tty->read_wait);
2999 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3000 mutex_init(&tty->atomic_write_lock);
3001 spin_lock_init(&tty->ctrl_lock);
3002 spin_lock_init(&tty->flow_lock);
3003 spin_lock_init(&tty->files_lock);
3004 INIT_LIST_HEAD(&tty->tty_files);
3005 INIT_WORK(&tty->SAK_work, do_SAK_work);
3006
3007 tty->driver = driver;
3008 tty->ops = driver->ops;
3009 tty->index = idx;
3010 tty_line_name(driver, idx, tty->name);
3011 tty->dev = tty_get_device(tty);
3012
3013 return tty;
3014}
3015
3016/**
3017 * tty_put_char - write one character to a tty
3018 * @tty: tty
3019 * @ch: character
3020 *
3021 * Write one byte to the tty using the provided put_char method
3022 * if present. Returns the number of characters successfully output.
3023 *
3024 * Note: the specific put_char operation in the driver layer may go
3025 * away soon. Don't call it directly, use this method
3026 */
3027
3028int tty_put_char(struct tty_struct *tty, unsigned char ch)
3029{
3030 if (tty->ops->put_char)
3031 return tty->ops->put_char(tty, ch);
3032 return tty->ops->write(tty, &ch, 1);
3033}
3034EXPORT_SYMBOL_GPL(tty_put_char);
3035
3036struct class *tty_class;
3037
3038static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3039 unsigned int index, unsigned int count)
3040{
3041 int err;
3042
3043 /* init here, since reused cdevs cause crashes */
3044 driver->cdevs[index] = cdev_alloc();
3045 if (!driver->cdevs[index])
3046 return -ENOMEM;
3047 driver->cdevs[index]->ops = &tty_fops;
3048 driver->cdevs[index]->owner = driver->owner;
3049 err = cdev_add(driver->cdevs[index], dev, count);
3050 if (err)
3051 kobject_put(&driver->cdevs[index]->kobj);
3052 return err;
3053}
3054
3055/**
3056 * tty_register_device - register a tty device
3057 * @driver: the tty driver that describes the tty device
3058 * @index: the index in the tty driver for this tty device
3059 * @device: a struct device that is associated with this tty device.
3060 * This field is optional, if there is no known struct device
3061 * for this tty device it can be set to NULL safely.
3062 *
3063 * Returns a pointer to the struct device for this tty device
3064 * (or ERR_PTR(-EFOO) on error).
3065 *
3066 * This call is required to be made to register an individual tty device
3067 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3068 * that bit is not set, this function should not be called by a tty
3069 * driver.
3070 *
3071 * Locking: ??
3072 */
3073
3074struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3075 struct device *device)
3076{
3077 return tty_register_device_attr(driver, index, device, NULL, NULL);
3078}
3079EXPORT_SYMBOL(tty_register_device);
3080
3081static void tty_device_create_release(struct device *dev)
3082{
3083 dev_dbg(dev, "releasing...\n");
3084 kfree(dev);
3085}
3086
3087/**
3088 * tty_register_device_attr - register a tty device
3089 * @driver: the tty driver that describes the tty device
3090 * @index: the index in the tty driver for this tty device
3091 * @device: a struct device that is associated with this tty device.
3092 * This field is optional, if there is no known struct device
3093 * for this tty device it can be set to NULL safely.
3094 * @drvdata: Driver data to be set to device.
3095 * @attr_grp: Attribute group to be set on device.
3096 *
3097 * Returns a pointer to the struct device for this tty device
3098 * (or ERR_PTR(-EFOO) on error).
3099 *
3100 * This call is required to be made to register an individual tty device
3101 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3102 * that bit is not set, this function should not be called by a tty
3103 * driver.
3104 *
3105 * Locking: ??
3106 */
3107struct device *tty_register_device_attr(struct tty_driver *driver,
3108 unsigned index, struct device *device,
3109 void *drvdata,
3110 const struct attribute_group **attr_grp)
3111{
3112 char name[64];
3113 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3114 struct ktermios *tp;
3115 struct device *dev;
3116 int retval;
3117
3118 if (index >= driver->num) {
3119 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3120 driver->name, index);
3121 return ERR_PTR(-EINVAL);
3122 }
3123
3124 if (driver->type == TTY_DRIVER_TYPE_PTY)
3125 pty_line_name(driver, index, name);
3126 else
3127 tty_line_name(driver, index, name);
3128
3129 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3130 if (!dev)
3131 return ERR_PTR(-ENOMEM);
3132
3133 dev->devt = devt;
3134 dev->class = tty_class;
3135 dev->parent = device;
3136 dev->release = tty_device_create_release;
3137 dev_set_name(dev, "%s", name);
3138 dev->groups = attr_grp;
3139 dev_set_drvdata(dev, drvdata);
3140
3141 dev_set_uevent_suppress(dev, 1);
3142
3143 retval = device_register(dev);
3144 if (retval)
3145 goto err_put;
3146
3147 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3148 /*
3149 * Free any saved termios data so that the termios state is
3150 * reset when reusing a minor number.
3151 */
3152 tp = driver->termios[index];
3153 if (tp) {
3154 driver->termios[index] = NULL;
3155 kfree(tp);
3156 }
3157
3158 retval = tty_cdev_add(driver, devt, index, 1);
3159 if (retval)
3160 goto err_del;
3161 }
3162
3163 dev_set_uevent_suppress(dev, 0);
3164 kobject_uevent(&dev->kobj, KOBJ_ADD);
3165
3166 return dev;
3167
3168err_del:
3169 device_del(dev);
3170err_put:
3171 put_device(dev);
3172
3173 return ERR_PTR(retval);
3174}
3175EXPORT_SYMBOL_GPL(tty_register_device_attr);
3176
3177/**
3178 * tty_unregister_device - unregister a tty device
3179 * @driver: the tty driver that describes the tty device
3180 * @index: the index in the tty driver for this tty device
3181 *
3182 * If a tty device is registered with a call to tty_register_device() then
3183 * this function must be called when the tty device is gone.
3184 *
3185 * Locking: ??
3186 */
3187
3188void tty_unregister_device(struct tty_driver *driver, unsigned index)
3189{
3190 device_destroy(tty_class,
3191 MKDEV(driver->major, driver->minor_start) + index);
3192 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3193 cdev_del(driver->cdevs[index]);
3194 driver->cdevs[index] = NULL;
3195 }
3196}
3197EXPORT_SYMBOL(tty_unregister_device);
3198
3199/**
3200 * __tty_alloc_driver -- allocate tty driver
3201 * @lines: count of lines this driver can handle at most
3202 * @owner: module which is responsible for this driver
3203 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3204 *
3205 * This should not be called directly, some of the provided macros should be
3206 * used instead. Use IS_ERR and friends on @retval.
3207 */
3208struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3209 unsigned long flags)
3210{
3211 struct tty_driver *driver;
3212 unsigned int cdevs = 1;
3213 int err;
3214
3215 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3216 return ERR_PTR(-EINVAL);
3217
3218 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3219 if (!driver)
3220 return ERR_PTR(-ENOMEM);
3221
3222 kref_init(&driver->kref);
3223 driver->magic = TTY_DRIVER_MAGIC;
3224 driver->num = lines;
3225 driver->owner = owner;
3226 driver->flags = flags;
3227
3228 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3229 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3230 GFP_KERNEL);
3231 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3232 GFP_KERNEL);
3233 if (!driver->ttys || !driver->termios) {
3234 err = -ENOMEM;
3235 goto err_free_all;
3236 }
3237 }
3238
3239 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3240 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3241 GFP_KERNEL);
3242 if (!driver->ports) {
3243 err = -ENOMEM;
3244 goto err_free_all;
3245 }
3246 cdevs = lines;
3247 }
3248
3249 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3250 if (!driver->cdevs) {
3251 err = -ENOMEM;
3252 goto err_free_all;
3253 }
3254
3255 return driver;
3256err_free_all:
3257 kfree(driver->ports);
3258 kfree(driver->ttys);
3259 kfree(driver->termios);
3260 kfree(driver->cdevs);
3261 kfree(driver);
3262 return ERR_PTR(err);
3263}
3264EXPORT_SYMBOL(__tty_alloc_driver);
3265
3266static void destruct_tty_driver(struct kref *kref)
3267{
3268 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3269 int i;
3270 struct ktermios *tp;
3271
3272 if (driver->flags & TTY_DRIVER_INSTALLED) {
3273 for (i = 0; i < driver->num; i++) {
3274 tp = driver->termios[i];
3275 if (tp) {
3276 driver->termios[i] = NULL;
3277 kfree(tp);
3278 }
3279 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3280 tty_unregister_device(driver, i);
3281 }
3282 proc_tty_unregister_driver(driver);
3283 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3284 cdev_del(driver->cdevs[0]);
3285 }
3286 kfree(driver->cdevs);
3287 kfree(driver->ports);
3288 kfree(driver->termios);
3289 kfree(driver->ttys);
3290 kfree(driver);
3291}
3292
3293void tty_driver_kref_put(struct tty_driver *driver)
3294{
3295 kref_put(&driver->kref, destruct_tty_driver);
3296}
3297EXPORT_SYMBOL(tty_driver_kref_put);
3298
3299void tty_set_operations(struct tty_driver *driver,
3300 const struct tty_operations *op)
3301{
3302 driver->ops = op;
3303};
3304EXPORT_SYMBOL(tty_set_operations);
3305
3306void put_tty_driver(struct tty_driver *d)
3307{
3308 tty_driver_kref_put(d);
3309}
3310EXPORT_SYMBOL(put_tty_driver);
3311
3312/*
3313 * Called by a tty driver to register itself.
3314 */
3315int tty_register_driver(struct tty_driver *driver)
3316{
3317 int error;
3318 int i;
3319 dev_t dev;
3320 struct device *d;
3321
3322 if (!driver->major) {
3323 error = alloc_chrdev_region(&dev, driver->minor_start,
3324 driver->num, driver->name);
3325 if (!error) {
3326 driver->major = MAJOR(dev);
3327 driver->minor_start = MINOR(dev);
3328 }
3329 } else {
3330 dev = MKDEV(driver->major, driver->minor_start);
3331 error = register_chrdev_region(dev, driver->num, driver->name);
3332 }
3333 if (error < 0)
3334 goto err;
3335
3336 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3337 error = tty_cdev_add(driver, dev, 0, driver->num);
3338 if (error)
3339 goto err_unreg_char;
3340 }
3341
3342 mutex_lock(&tty_mutex);
3343 list_add(&driver->tty_drivers, &tty_drivers);
3344 mutex_unlock(&tty_mutex);
3345
3346 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3347 for (i = 0; i < driver->num; i++) {
3348 d = tty_register_device(driver, i, NULL);
3349 if (IS_ERR(d)) {
3350 error = PTR_ERR(d);
3351 goto err_unreg_devs;
3352 }
3353 }
3354 }
3355 proc_tty_register_driver(driver);
3356 driver->flags |= TTY_DRIVER_INSTALLED;
3357 return 0;
3358
3359err_unreg_devs:
3360 for (i--; i >= 0; i--)
3361 tty_unregister_device(driver, i);
3362
3363 mutex_lock(&tty_mutex);
3364 list_del(&driver->tty_drivers);
3365 mutex_unlock(&tty_mutex);
3366
3367err_unreg_char:
3368 unregister_chrdev_region(dev, driver->num);
3369err:
3370 return error;
3371}
3372EXPORT_SYMBOL(tty_register_driver);
3373
3374/*
3375 * Called by a tty driver to unregister itself.
3376 */
3377int tty_unregister_driver(struct tty_driver *driver)
3378{
3379#if 0
3380 /* FIXME */
3381 if (driver->refcount)
3382 return -EBUSY;
3383#endif
3384 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3385 driver->num);
3386 mutex_lock(&tty_mutex);
3387 list_del(&driver->tty_drivers);
3388 mutex_unlock(&tty_mutex);
3389 return 0;
3390}
3391
3392EXPORT_SYMBOL(tty_unregister_driver);
3393
3394dev_t tty_devnum(struct tty_struct *tty)
3395{
3396 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3397}
3398EXPORT_SYMBOL(tty_devnum);
3399
3400void tty_default_fops(struct file_operations *fops)
3401{
3402 *fops = tty_fops;
3403}
3404
3405static char *tty_devnode(struct device *dev, umode_t *mode)
3406{
3407 if (!mode)
3408 return NULL;
3409 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3410 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3411 *mode = 0666;
3412 return NULL;
3413}
3414
3415static int __init tty_class_init(void)
3416{
3417 tty_class = class_create(THIS_MODULE, "tty");
3418 if (IS_ERR(tty_class))
3419 return PTR_ERR(tty_class);
3420 tty_class->devnode = tty_devnode;
3421 return 0;
3422}
3423
3424postcore_initcall(tty_class_init);
3425
3426/* 3/2004 jmc: why do these devices exist? */
3427static struct cdev tty_cdev, console_cdev;
3428
3429static ssize_t show_cons_active(struct device *dev,
3430 struct device_attribute *attr, char *buf)
3431{
3432 struct console *cs[16];
3433 int i = 0;
3434 struct console *c;
3435 ssize_t count = 0;
3436
3437 console_lock();
3438 for_each_console(c) {
3439 if (!c->device)
3440 continue;
3441 if (!c->write)
3442 continue;
3443 if ((c->flags & CON_ENABLED) == 0)
3444 continue;
3445 cs[i++] = c;
3446 if (i >= ARRAY_SIZE(cs))
3447 break;
3448 }
3449 while (i--) {
3450 int index = cs[i]->index;
3451 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3452
3453 /* don't resolve tty0 as some programs depend on it */
3454 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3455 count += tty_line_name(drv, index, buf + count);
3456 else
3457 count += sprintf(buf + count, "%s%d",
3458 cs[i]->name, cs[i]->index);
3459
3460 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3461 }
3462 console_unlock();
3463
3464 return count;
3465}
3466static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3467
3468static struct attribute *cons_dev_attrs[] = {
3469 &dev_attr_active.attr,
3470 NULL
3471};
3472
3473ATTRIBUTE_GROUPS(cons_dev);
3474
3475static struct device *consdev;
3476
3477void console_sysfs_notify(void)
3478{
3479 if (consdev)
3480 sysfs_notify(&consdev->kobj, NULL, "active");
3481}
3482
3483/*
3484 * Ok, now we can initialize the rest of the tty devices and can count
3485 * on memory allocations, interrupts etc..
3486 */
3487int __init tty_init(void)
3488{
3489 tty_sysctl_init();
3490 cdev_init(&tty_cdev, &tty_fops);
3491 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3492 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3493 panic("Couldn't register /dev/tty driver\n");
3494 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3495
3496 cdev_init(&console_cdev, &console_fops);
3497 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3498 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3499 panic("Couldn't register /dev/console driver\n");
3500 consdev = device_create_with_groups(tty_class, NULL,
3501 MKDEV(TTYAUX_MAJOR, 1), NULL,
3502 cons_dev_groups, "console");
3503 if (IS_ERR(consdev))
3504 consdev = NULL;
3505
3506#ifdef CONFIG_VT
3507 vty_init(&console_fops);
3508#endif
3509 return 0;
3510}
3511