Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
 
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 213
 214	return 0;
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 
 
 
 
 
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 
 
 
 
 
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 
 
 
 
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 
 
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 
 
 
 
 
 559
 560	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 561	set_bit(TTY_HUPPING, &tty->flags);
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 729 */
 730
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 785		}
 786		tty_kref_put(tty);
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 
 
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 
 838 */
 839void no_tty(void)
 
 840{
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 847
 
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 
 
 
 
 
 
 
 
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 
 
 
 
 
 
 
 
 922EXPORT_SYMBOL(start_tty);
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 
 962	return i;
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
1050		if (ret <= 0)
1051			break;
1052		written += ret;
1053		buf += ret;
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
 
 
 
 
 
1219
1220	tty = driver->ttys[idx];
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
 
 
 
 
 
 
 
 
 
 
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
 
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
 
 
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
 
 
 
 
 
 
 
 
 
 
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
 
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
 
 
 
 
 
 
 
 
1536	if (tty->link)
1537		tty_kref_put(tty->link);
 
 
1538	tty_kref_put(tty);
1539}
1540
1541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
 
 
 
 
 
 
 
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
1771	 */
1772	release_tty(tty, idx);
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
 
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	}
 
 
 
 
 
 
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
 
 
1887	tty_driver_kref_put(driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
2264unlock:
2265	mutex_unlock(&tty_mutex);
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
 
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708		return -EINVAL;
2709
 
 
 
 
 
 
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
 
 
 
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
 
 
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
2947{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
2994	}
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
 
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102
 103#include <linux/uaccess.h>
 
 104
 105#include <linux/kbd_kern.h>
 106#include <linux/vt_kern.h>
 107#include <linux/selection.h>
 108
 109#include <linux/kmod.h>
 110#include <linux/nsproxy.h>
 111
 112#undef TTY_DEBUG_HANGUP
 113#ifdef TTY_DEBUG_HANGUP
 114# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 115#else
 116# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 117#endif
 118
 119#define TTY_PARANOIA_CHECK 1
 120#define CHECK_TTY_COUNT 1
 121
 122struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 123	.c_iflag = ICRNL | IXON,
 124	.c_oflag = OPOST | ONLCR,
 125	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 126	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 127		   ECHOCTL | ECHOKE | IEXTEN,
 128	.c_cc = INIT_C_CC,
 129	.c_ispeed = 38400,
 130	.c_ospeed = 38400,
 131	/* .c_line = N_TTY, */
 132};
 133
 134EXPORT_SYMBOL(tty_std_termios);
 135
 136/* This list gets poked at by procfs and various bits of boot up code. This
 137   could do with some rationalisation such as pulling the tty proc function
 138   into this file */
 139
 140LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 141
 142/* Mutex to protect creating and releasing a tty */
 
 143DEFINE_MUTEX(tty_mutex);
 
 
 
 
 144
 145static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 146static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 147ssize_t redirected_tty_write(struct file *, const char __user *,
 148							size_t, loff_t *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 150static int tty_open(struct inode *, struct file *);
 151long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 152#ifdef CONFIG_COMPAT
 153static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 154				unsigned long arg);
 155#else
 156#define tty_compat_ioctl NULL
 157#endif
 158static int __tty_fasync(int fd, struct file *filp, int on);
 159static int tty_fasync(int fd, struct file *filp, int on);
 160static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161
 162/**
 163 *	free_tty_struct		-	free a disused tty
 164 *	@tty: tty struct to free
 165 *
 166 *	Free the write buffers, tty queue and tty memory itself.
 167 *
 168 *	Locking: none. Must be called after tty is definitely unused
 169 */
 170
 171static void free_tty_struct(struct tty_struct *tty)
 172{
 173	tty_ldisc_deinit(tty);
 174	put_device(tty->dev);
 175	kfree(tty->write_buf);
 176	tty->magic = 0xDEADDEAD;
 177	kfree(tty);
 178}
 179
 180static inline struct tty_struct *file_tty(struct file *file)
 181{
 182	return ((struct tty_file_private *)file->private_data)->tty;
 183}
 184
 185int tty_alloc_file(struct file *file)
 
 186{
 187	struct tty_file_private *priv;
 188
 189	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 190	if (!priv)
 191		return -ENOMEM;
 192
 193	file->private_data = priv;
 194
 195	return 0;
 196}
 197
 198/* Associate a new file with the tty structure */
 199void tty_add_file(struct tty_struct *tty, struct file *file)
 200{
 201	struct tty_file_private *priv = file->private_data;
 202
 203	priv->tty = tty;
 204	priv->file = file;
 
 205
 206	spin_lock(&tty->files_lock);
 207	list_add(&priv->list, &tty->tty_files);
 208	spin_unlock(&tty->files_lock);
 
 
 209}
 210
 211/**
 212 * tty_free_file - free file->private_data
 213 *
 214 * This shall be used only for fail path handling when tty_add_file was not
 215 * called yet.
 216 */
 217void tty_free_file(struct file *file)
 218{
 219	struct tty_file_private *priv = file->private_data;
 220
 
 
 
 221	file->private_data = NULL;
 222	kfree(priv);
 223}
 224
 225/* Delete file from its tty */
 226static void tty_del_file(struct file *file)
 227{
 228	struct tty_file_private *priv = file->private_data;
 229	struct tty_struct *tty = priv->tty;
 230
 231	spin_lock(&tty->files_lock);
 232	list_del(&priv->list);
 233	spin_unlock(&tty->files_lock);
 234	tty_free_file(file);
 235}
 236
 237/**
 238 *	tty_name	-	return tty naming
 239 *	@tty: tty structure
 
 240 *
 241 *	Convert a tty structure into a name. The name reflects the kernel
 242 *	naming policy and if udev is in use may not reflect user space
 243 *
 244 *	Locking: none
 245 */
 246
 247const char *tty_name(const struct tty_struct *tty)
 248{
 249	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 250		return "NULL tty";
 251	return tty->name;
 
 
 252}
 253
 254EXPORT_SYMBOL(tty_name);
 255
 256const char *tty_driver_name(const struct tty_struct *tty)
 257{
 258	if (!tty || !tty->driver)
 259		return "";
 260	return tty->driver->name;
 261}
 262
 263static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 264			      const char *routine)
 265{
 266#ifdef TTY_PARANOIA_CHECK
 267	if (!tty) {
 268		pr_warn("(%d:%d): %s: NULL tty\n",
 
 269			imajor(inode), iminor(inode), routine);
 270		return 1;
 271	}
 272	if (tty->magic != TTY_MAGIC) {
 273		pr_warn("(%d:%d): %s: bad magic number\n",
 
 274			imajor(inode), iminor(inode), routine);
 275		return 1;
 276	}
 277#endif
 278	return 0;
 279}
 280
 281/* Caller must hold tty_lock */
 282static int check_tty_count(struct tty_struct *tty, const char *routine)
 283{
 284#ifdef CHECK_TTY_COUNT
 285	struct list_head *p;
 286	int count = 0, kopen_count = 0;
 287
 288	spin_lock(&tty->files_lock);
 289	list_for_each(p, &tty->tty_files) {
 290		count++;
 291	}
 292	spin_unlock(&tty->files_lock);
 293	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 294	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 295	    tty->link && tty->link->count)
 296		count++;
 297	if (tty_port_kopened(tty->port))
 298		kopen_count++;
 299	if (tty->count != (count + kopen_count)) {
 300		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 301			 routine, tty->count, count, kopen_count);
 302		return (count + kopen_count);
 303	}
 304#endif
 305	return 0;
 306}
 307
 308/**
 309 *	get_tty_driver		-	find device of a tty
 310 *	@dev_t: device identifier
 311 *	@index: returns the index of the tty
 312 *
 313 *	This routine returns a tty driver structure, given a device number
 314 *	and also passes back the index number.
 315 *
 316 *	Locking: caller must hold tty_mutex
 317 */
 318
 319static struct tty_driver *get_tty_driver(dev_t device, int *index)
 320{
 321	struct tty_driver *p;
 322
 323	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 324		dev_t base = MKDEV(p->major, p->minor_start);
 325		if (device < base || device >= base + p->num)
 326			continue;
 327		*index = device - base;
 328		return tty_driver_kref_get(p);
 329	}
 330	return NULL;
 331}
 332
 333/**
 334 *	tty_dev_name_to_number	-	return dev_t for device name
 335 *	@name: user space name of device under /dev
 336 *	@number: pointer to dev_t that this function will populate
 337 *
 338 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 339 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 340 *	the function returns -ENODEV.
 341 *
 342 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 343 *		being modified while we are traversing it, and makes sure to
 344 *		release it before exiting.
 345 */
 346int tty_dev_name_to_number(const char *name, dev_t *number)
 347{
 348	struct tty_driver *p;
 349	int ret;
 350	int index, prefix_length = 0;
 351	const char *str;
 352
 353	for (str = name; *str && !isdigit(*str); str++)
 354		;
 355
 356	if (!*str)
 357		return -EINVAL;
 358
 359	ret = kstrtoint(str, 10, &index);
 360	if (ret)
 361		return ret;
 362
 363	prefix_length = str - name;
 364	mutex_lock(&tty_mutex);
 365
 366	list_for_each_entry(p, &tty_drivers, tty_drivers)
 367		if (prefix_length == strlen(p->name) && strncmp(name,
 368					p->name, prefix_length) == 0) {
 369			if (index < p->num) {
 370				*number = MKDEV(p->major, p->minor_start + index);
 371				goto out;
 372			}
 373		}
 374
 375	/* if here then driver wasn't found */
 376	ret = -ENODEV;
 377out:
 378	mutex_unlock(&tty_mutex);
 379	return ret;
 380}
 381EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 382
 383#ifdef CONFIG_CONSOLE_POLL
 384
 385/**
 386 *	tty_find_polling_driver	-	find device of a polled tty
 387 *	@name: name string to match
 388 *	@line: pointer to resulting tty line nr
 389 *
 390 *	This routine returns a tty driver structure, given a name
 391 *	and the condition that the tty driver is capable of polled
 392 *	operation.
 393 */
 394struct tty_driver *tty_find_polling_driver(char *name, int *line)
 395{
 396	struct tty_driver *p, *res = NULL;
 397	int tty_line = 0;
 398	int len;
 399	char *str, *stp;
 400
 401	for (str = name; *str; str++)
 402		if ((*str >= '0' && *str <= '9') || *str == ',')
 403			break;
 404	if (!*str)
 405		return NULL;
 406
 407	len = str - name;
 408	tty_line = simple_strtoul(str, &str, 10);
 409
 410	mutex_lock(&tty_mutex);
 411	/* Search through the tty devices to look for a match */
 412	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 413		if (!len || strncmp(name, p->name, len) != 0)
 414			continue;
 415		stp = str;
 416		if (*stp == ',')
 417			stp++;
 418		if (*stp == '\0')
 419			stp = NULL;
 420
 421		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 422		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 423			res = tty_driver_kref_get(p);
 424			*line = tty_line;
 425			break;
 426		}
 427	}
 428	mutex_unlock(&tty_mutex);
 429
 430	return res;
 431}
 432EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 433#endif
 434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 436				size_t count, loff_t *ppos)
 437{
 438	return 0;
 439}
 440
 441static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 442				 size_t count, loff_t *ppos)
 443{
 444	return -EIO;
 445}
 446
 447/* No kernel lock held - none needed ;) */
 448static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 449{
 450	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 451}
 452
 453static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 454		unsigned long arg)
 455{
 456	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 457}
 458
 459static long hung_up_tty_compat_ioctl(struct file *file,
 460				     unsigned int cmd, unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static int hung_up_tty_fasync(int fd, struct file *file, int on)
 466{
 467	return -ENOTTY;
 468}
 469
 470static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 471{
 472	struct tty_struct *tty = file_tty(file);
 473
 474	if (tty && tty->ops && tty->ops->show_fdinfo)
 475		tty->ops->show_fdinfo(tty, m);
 476}
 477
 478static const struct file_operations tty_fops = {
 479	.llseek		= no_llseek,
 480	.read		= tty_read,
 481	.write		= tty_write,
 482	.poll		= tty_poll,
 483	.unlocked_ioctl	= tty_ioctl,
 484	.compat_ioctl	= tty_compat_ioctl,
 485	.open		= tty_open,
 486	.release	= tty_release,
 487	.fasync		= tty_fasync,
 488	.show_fdinfo	= tty_show_fdinfo,
 489};
 490
 491static const struct file_operations console_fops = {
 492	.llseek		= no_llseek,
 493	.read		= tty_read,
 494	.write		= redirected_tty_write,
 495	.poll		= tty_poll,
 496	.unlocked_ioctl	= tty_ioctl,
 497	.compat_ioctl	= tty_compat_ioctl,
 498	.open		= tty_open,
 499	.release	= tty_release,
 500	.fasync		= tty_fasync,
 501};
 502
 503static const struct file_operations hung_up_tty_fops = {
 504	.llseek		= no_llseek,
 505	.read		= hung_up_tty_read,
 506	.write		= hung_up_tty_write,
 507	.poll		= hung_up_tty_poll,
 508	.unlocked_ioctl	= hung_up_tty_ioctl,
 509	.compat_ioctl	= hung_up_tty_compat_ioctl,
 510	.release	= tty_release,
 511	.fasync		= hung_up_tty_fasync,
 512};
 513
 514static DEFINE_SPINLOCK(redirect_lock);
 515static struct file *redirect;
 516
 517extern void tty_sysctl_init(void);
 518
 519/**
 520 *	tty_wakeup	-	request more data
 521 *	@tty: terminal
 522 *
 523 *	Internal and external helper for wakeups of tty. This function
 524 *	informs the line discipline if present that the driver is ready
 525 *	to receive more output data.
 526 */
 527
 528void tty_wakeup(struct tty_struct *tty)
 529{
 530	struct tty_ldisc *ld;
 531
 532	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 533		ld = tty_ldisc_ref(tty);
 534		if (ld) {
 535			if (ld->ops->write_wakeup)
 536				ld->ops->write_wakeup(tty);
 537			tty_ldisc_deref(ld);
 538		}
 539	}
 540	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 541}
 542
 543EXPORT_SYMBOL_GPL(tty_wakeup);
 544
 545/**
 546 *	__tty_hangup		-	actual handler for hangup events
 547 *	@work: tty device
 548 *
 549 *	This can be called by a "kworker" kernel thread.  That is process
 550 *	synchronous but doesn't hold any locks, so we need to make sure we
 551 *	have the appropriate locks for what we're doing.
 552 *
 553 *	The hangup event clears any pending redirections onto the hung up
 554 *	device. It ensures future writes will error and it does the needed
 555 *	line discipline hangup and signal delivery. The tty object itself
 556 *	remains intact.
 557 *
 558 *	Locking:
 559 *		BTM
 560 *		  redirect lock for undoing redirection
 561 *		  file list lock for manipulating list of ttys
 562 *		  tty_ldiscs_lock from called functions
 563 *		  termios_rwsem resetting termios data
 564 *		  tasklist_lock to walk task list for hangup event
 565 *		    ->siglock to protect ->signal/->sighand
 566 */
 567static void __tty_hangup(struct tty_struct *tty, int exit_session)
 568{
 569	struct file *cons_filp = NULL;
 570	struct file *filp, *f = NULL;
 
 571	struct tty_file_private *priv;
 572	int    closecount = 0, n;
 573	int refs;
 
 574
 575	if (!tty)
 576		return;
 577
 578
 579	spin_lock(&redirect_lock);
 580	if (redirect && file_tty(redirect) == tty) {
 581		f = redirect;
 582		redirect = NULL;
 583	}
 584	spin_unlock(&redirect_lock);
 585
 586	tty_lock(tty);
 587
 588	if (test_bit(TTY_HUPPED, &tty->flags)) {
 589		tty_unlock(tty);
 590		return;
 591	}
 592
 593	/*
 594	 * Some console devices aren't actually hung up for technical and
 595	 * historical reasons, which can lead to indefinite interruptible
 596	 * sleep in n_tty_read().  The following explicitly tells
 597	 * n_tty_read() to abort readers.
 598	 */
 599	set_bit(TTY_HUPPING, &tty->flags);
 600
 601	/* inuse_filps is protected by the single tty lock,
 602	   this really needs to change if we want to flush the
 603	   workqueue with the lock held */
 604	check_tty_count(tty, "tty_hangup");
 605
 606	spin_lock(&tty->files_lock);
 607	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 608	list_for_each_entry(priv, &tty->tty_files, list) {
 609		filp = priv->file;
 610		if (filp->f_op->write == redirected_tty_write)
 611			cons_filp = filp;
 612		if (filp->f_op->write != tty_write)
 613			continue;
 614		closecount++;
 615		__tty_fasync(-1, filp, 0);	/* can't block */
 616		filp->f_op = &hung_up_tty_fops;
 617	}
 618	spin_unlock(&tty->files_lock);
 619
 620	refs = tty_signal_session_leader(tty, exit_session);
 621	/* Account for the p->signal references we killed */
 622	while (refs--)
 623		tty_kref_put(tty);
 
 624
 625	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626
 627	spin_lock_irq(&tty->ctrl_lock);
 628	clear_bit(TTY_THROTTLED, &tty->flags);
 
 629	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 630	put_pid(tty->session);
 631	put_pid(tty->pgrp);
 632	tty->session = NULL;
 633	tty->pgrp = NULL;
 634	tty->ctrl_status = 0;
 635	spin_unlock_irq(&tty->ctrl_lock);
 
 
 
 
 636
 637	/*
 638	 * If one of the devices matches a console pointer, we
 639	 * cannot just call hangup() because that will cause
 640	 * tty->count and state->count to go out of sync.
 641	 * So we just call close() the right number of times.
 642	 */
 643	if (cons_filp) {
 644		if (tty->ops->close)
 645			for (n = 0; n < closecount; n++)
 646				tty->ops->close(tty, cons_filp);
 647	} else if (tty->ops->hangup)
 648		tty->ops->hangup(tty);
 649	/*
 650	 * We don't want to have driver/ldisc interactions beyond the ones
 651	 * we did here. The driver layer expects no calls after ->hangup()
 652	 * from the ldisc side, which is now guaranteed.
 
 653	 */
 654	set_bit(TTY_HUPPED, &tty->flags);
 655	clear_bit(TTY_HUPPING, &tty->flags);
 656	tty_unlock(tty);
 
 
 657
 658	if (f)
 659		fput(f);
 660}
 661
 662static void do_tty_hangup(struct work_struct *work)
 663{
 664	struct tty_struct *tty =
 665		container_of(work, struct tty_struct, hangup_work);
 666
 667	__tty_hangup(tty, 0);
 668}
 669
 670/**
 671 *	tty_hangup		-	trigger a hangup event
 672 *	@tty: tty to hangup
 673 *
 674 *	A carrier loss (virtual or otherwise) has occurred on this like
 675 *	schedule a hangup sequence to run after this event.
 676 */
 677
 678void tty_hangup(struct tty_struct *tty)
 679{
 680	tty_debug_hangup(tty, "hangup\n");
 
 
 
 681	schedule_work(&tty->hangup_work);
 682}
 683
 684EXPORT_SYMBOL(tty_hangup);
 685
 686/**
 687 *	tty_vhangup		-	process vhangup
 688 *	@tty: tty to hangup
 689 *
 690 *	The user has asked via system call for the terminal to be hung up.
 691 *	We do this synchronously so that when the syscall returns the process
 692 *	is complete. That guarantee is necessary for security reasons.
 693 */
 694
 695void tty_vhangup(struct tty_struct *tty)
 696{
 697	tty_debug_hangup(tty, "vhangup\n");
 698	__tty_hangup(tty, 0);
 
 
 
 
 699}
 700
 701EXPORT_SYMBOL(tty_vhangup);
 702
 703
 704/**
 705 *	tty_vhangup_self	-	process vhangup for own ctty
 706 *
 707 *	Perform a vhangup on the current controlling tty
 708 */
 709
 710void tty_vhangup_self(void)
 711{
 712	struct tty_struct *tty;
 713
 714	tty = get_current_tty();
 715	if (tty) {
 716		tty_vhangup(tty);
 717		tty_kref_put(tty);
 718	}
 719}
 720
 721/**
 722 *	tty_vhangup_session		-	hangup session leader exit
 723 *	@tty: tty to hangup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724 *
 725 *	The session leader is exiting and hanging up its controlling terminal.
 726 *	Every process in the foreground process group is signalled SIGHUP.
 727 *
 728 *	We do this synchronously so that when the syscall returns the process
 729 *	is complete. That guarantee is necessary for security reasons.
 
 
 
 
 
 730 */
 731
 732void tty_vhangup_session(struct tty_struct *tty)
 733{
 734	tty_debug_hangup(tty, "session hangup\n");
 735	__tty_hangup(tty, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737
 738/**
 739 *	tty_hung_up_p		-	was tty hung up
 740 *	@filp: file pointer of tty
 741 *
 742 *	Return true if the tty has been subject to a vhangup or a carrier
 743 *	loss
 744 */
 745
 746int tty_hung_up_p(struct file *filp)
 747{
 748	return (filp && filp->f_op == &hung_up_tty_fops);
 
 
 
 
 749}
 750
 751EXPORT_SYMBOL(tty_hung_up_p);
 752
 753/**
 754 *	stop_tty	-	propagate flow control
 755 *	@tty: tty to stop
 756 *
 757 *	Perform flow control to the driver. May be called
 
 758 *	on an already stopped device and will not re-call the driver
 759 *	method.
 760 *
 761 *	This functionality is used by both the line disciplines for
 762 *	halting incoming flow and by the driver. It may therefore be
 763 *	called from any context, may be under the tty atomic_write_lock
 764 *	but not always.
 765 *
 766 *	Locking:
 767 *		flow_lock
 768 */
 769
 770void __stop_tty(struct tty_struct *tty)
 771{
 772	if (tty->stopped)
 
 
 
 773		return;
 
 774	tty->stopped = 1;
 
 
 
 
 
 
 775	if (tty->ops->stop)
 776		tty->ops->stop(tty);
 777}
 778
 779void stop_tty(struct tty_struct *tty)
 780{
 781	unsigned long flags;
 782
 783	spin_lock_irqsave(&tty->flow_lock, flags);
 784	__stop_tty(tty);
 785	spin_unlock_irqrestore(&tty->flow_lock, flags);
 786}
 787EXPORT_SYMBOL(stop_tty);
 788
 789/**
 790 *	start_tty	-	propagate flow control
 791 *	@tty: tty to start
 792 *
 793 *	Start a tty that has been stopped if at all possible. If this
 794 *	tty was previous stopped and is now being started, the driver
 795 *	start method is invoked and the line discipline woken.
 
 796 *
 797 *	Locking:
 798 *		flow_lock
 799 */
 800
 801void __start_tty(struct tty_struct *tty)
 802{
 803	if (!tty->stopped || tty->flow_stopped)
 
 
 
 804		return;
 
 805	tty->stopped = 0;
 
 
 
 
 
 
 806	if (tty->ops->start)
 807		tty->ops->start(tty);
 
 808	tty_wakeup(tty);
 809}
 810
 811void start_tty(struct tty_struct *tty)
 812{
 813	unsigned long flags;
 814
 815	spin_lock_irqsave(&tty->flow_lock, flags);
 816	__start_tty(tty);
 817	spin_unlock_irqrestore(&tty->flow_lock, flags);
 818}
 819EXPORT_SYMBOL(start_tty);
 820
 821static void tty_update_time(struct timespec64 *time)
 822{
 823	time64_t sec = ktime_get_real_seconds();
 824
 825	/*
 826	 * We only care if the two values differ in anything other than the
 827	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 828	 * the time of the tty device, otherwise it could be construded as a
 829	 * security leak to let userspace know the exact timing of the tty.
 830	 */
 831	if ((sec ^ time->tv_sec) & ~7)
 832		time->tv_sec = sec;
 833}
 834
 835/**
 836 *	tty_read	-	read method for tty device files
 837 *	@file: pointer to tty file
 838 *	@buf: user buffer
 839 *	@count: size of user buffer
 840 *	@ppos: unused
 841 *
 842 *	Perform the read system call function on this terminal device. Checks
 843 *	for hung up devices before calling the line discipline method.
 844 *
 845 *	Locking:
 846 *		Locks the line discipline internally while needed. Multiple
 847 *	read calls may be outstanding in parallel.
 848 */
 849
 850static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 851			loff_t *ppos)
 852{
 853	int i;
 854	struct inode *inode = file_inode(file);
 855	struct tty_struct *tty = file_tty(file);
 856	struct tty_ldisc *ld;
 857
 858	if (tty_paranoia_check(tty, inode, "tty_read"))
 859		return -EIO;
 860	if (!tty || tty_io_error(tty))
 861		return -EIO;
 862
 863	/* We want to wait for the line discipline to sort out in this
 864	   situation */
 865	ld = tty_ldisc_ref_wait(tty);
 866	if (!ld)
 867		return hung_up_tty_read(file, buf, count, ppos);
 868	if (ld->ops->read)
 869		i = ld->ops->read(tty, file, buf, count);
 870	else
 871		i = -EIO;
 872	tty_ldisc_deref(ld);
 873
 874	if (i > 0)
 875		tty_update_time(&inode->i_atime);
 876
 877	return i;
 878}
 879
 880static void tty_write_unlock(struct tty_struct *tty)
 
 881{
 882	mutex_unlock(&tty->atomic_write_lock);
 883	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 884}
 885
 886static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
 887{
 888	if (!mutex_trylock(&tty->atomic_write_lock)) {
 889		if (ndelay)
 890			return -EAGAIN;
 891		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 892			return -ERESTARTSYS;
 893	}
 894	return 0;
 895}
 896
 897/*
 898 * Split writes up in sane blocksizes to avoid
 899 * denial-of-service type attacks
 900 */
 901static inline ssize_t do_tty_write(
 902	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 903	struct tty_struct *tty,
 904	struct file *file,
 905	const char __user *buf,
 906	size_t count)
 907{
 908	ssize_t ret, written = 0;
 909	unsigned int chunk;
 910
 911	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 912	if (ret < 0)
 913		return ret;
 914
 915	/*
 916	 * We chunk up writes into a temporary buffer. This
 917	 * simplifies low-level drivers immensely, since they
 918	 * don't have locking issues and user mode accesses.
 919	 *
 920	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 921	 * big chunk-size..
 922	 *
 923	 * The default chunk-size is 2kB, because the NTTY
 924	 * layer has problems with bigger chunks. It will
 925	 * claim to be able to handle more characters than
 926	 * it actually does.
 927	 *
 928	 * FIXME: This can probably go away now except that 64K chunks
 929	 * are too likely to fail unless switched to vmalloc...
 930	 */
 931	chunk = 2048;
 932	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 933		chunk = 65536;
 934	if (count < chunk)
 935		chunk = count;
 936
 937	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 938	if (tty->write_cnt < chunk) {
 939		unsigned char *buf_chunk;
 940
 941		if (chunk < 1024)
 942			chunk = 1024;
 943
 944		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 945		if (!buf_chunk) {
 946			ret = -ENOMEM;
 947			goto out;
 948		}
 949		kfree(tty->write_buf);
 950		tty->write_cnt = chunk;
 951		tty->write_buf = buf_chunk;
 952	}
 953
 954	/* Do the write .. */
 955	for (;;) {
 956		size_t size = count;
 957		if (size > chunk)
 958			size = chunk;
 959		ret = -EFAULT;
 960		if (copy_from_user(tty->write_buf, buf, size))
 961			break;
 962		ret = write(tty, file, tty->write_buf, size);
 963		if (ret <= 0)
 964			break;
 965		written += ret;
 966		buf += ret;
 967		count -= ret;
 968		if (!count)
 969			break;
 970		ret = -ERESTARTSYS;
 971		if (signal_pending(current))
 972			break;
 973		cond_resched();
 974	}
 975	if (written) {
 976		tty_update_time(&file_inode(file)->i_mtime);
 
 977		ret = written;
 978	}
 979out:
 980	tty_write_unlock(tty);
 981	return ret;
 982}
 983
 984/**
 985 * tty_write_message - write a message to a certain tty, not just the console.
 986 * @tty: the destination tty_struct
 987 * @msg: the message to write
 988 *
 989 * This is used for messages that need to be redirected to a specific tty.
 990 * We don't put it into the syslog queue right now maybe in the future if
 991 * really needed.
 992 *
 993 * We must still hold the BTM and test the CLOSING flag for the moment.
 994 */
 995
 996void tty_write_message(struct tty_struct *tty, char *msg)
 997{
 998	if (tty) {
 999		mutex_lock(&tty->atomic_write_lock);
1000		tty_lock(tty);
1001		if (tty->ops->write && tty->count > 0)
 
1002			tty->ops->write(tty, msg, strlen(msg));
1003		tty_unlock(tty);
 
1004		tty_write_unlock(tty);
1005	}
1006	return;
1007}
1008
1009
1010/**
1011 *	tty_write		-	write method for tty device file
1012 *	@file: tty file pointer
1013 *	@buf: user data to write
1014 *	@count: bytes to write
1015 *	@ppos: unused
1016 *
1017 *	Write data to a tty device via the line discipline.
1018 *
1019 *	Locking:
1020 *		Locks the line discipline as required
1021 *		Writes to the tty driver are serialized by the atomic_write_lock
1022 *	and are then processed in chunks to the device. The line discipline
1023 *	write method will not be invoked in parallel for each device.
1024 */
1025
1026static ssize_t tty_write(struct file *file, const char __user *buf,
1027						size_t count, loff_t *ppos)
1028{
 
1029	struct tty_struct *tty = file_tty(file);
1030 	struct tty_ldisc *ld;
1031	ssize_t ret;
1032
1033	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1034		return -EIO;
1035	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1036			return -EIO;
1037	/* Short term debug to catch buggy drivers */
1038	if (tty->ops->write_room == NULL)
1039		tty_err(tty, "missing write_room method\n");
 
1040	ld = tty_ldisc_ref_wait(tty);
1041	if (!ld)
1042		return hung_up_tty_write(file, buf, count, ppos);
1043	if (!ld->ops->write)
1044		ret = -EIO;
1045	else
1046		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1047	tty_ldisc_deref(ld);
1048	return ret;
1049}
1050
1051ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1052						size_t count, loff_t *ppos)
1053{
1054	struct file *p = NULL;
1055
1056	spin_lock(&redirect_lock);
1057	if (redirect)
1058		p = get_file(redirect);
 
 
1059	spin_unlock(&redirect_lock);
1060
1061	if (p) {
1062		ssize_t res;
1063		res = vfs_write(p, buf, count, &p->f_pos);
1064		fput(p);
1065		return res;
1066	}
1067	return tty_write(file, buf, count, ppos);
1068}
1069
1070/**
1071 *	tty_send_xchar	-	send priority character
1072 *
1073 *	Send a high priority character to the tty even if stopped
1074 *
1075 *	Locking: none for xchar method, write ordering for write method.
1076 */
1077
1078int tty_send_xchar(struct tty_struct *tty, char ch)
1079{
1080	int	was_stopped = tty->stopped;
1081
1082	if (tty->ops->send_xchar) {
1083		down_read(&tty->termios_rwsem);
1084		tty->ops->send_xchar(tty, ch);
1085		up_read(&tty->termios_rwsem);
1086		return 0;
1087	}
1088
1089	if (tty_write_lock(tty, 0) < 0)
1090		return -ERESTARTSYS;
1091
1092	down_read(&tty->termios_rwsem);
1093	if (was_stopped)
1094		start_tty(tty);
1095	tty->ops->write(tty, &ch, 1);
1096	if (was_stopped)
1097		stop_tty(tty);
1098	up_read(&tty->termios_rwsem);
1099	tty_write_unlock(tty);
1100	return 0;
1101}
1102
1103static char ptychar[] = "pqrstuvwxyzabcde";
1104
1105/**
1106 *	pty_line_name	-	generate name for a pty
1107 *	@driver: the tty driver in use
1108 *	@index: the minor number
1109 *	@p: output buffer of at least 6 bytes
1110 *
1111 *	Generate a name from a driver reference and write it to the output
1112 *	buffer.
1113 *
1114 *	Locking: None
1115 */
1116static void pty_line_name(struct tty_driver *driver, int index, char *p)
1117{
1118	int i = index + driver->name_base;
1119	/* ->name is initialized to "ttyp", but "tty" is expected */
1120	sprintf(p, "%s%c%x",
1121		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1122		ptychar[i >> 4 & 0xf], i & 0xf);
1123}
1124
1125/**
1126 *	tty_line_name	-	generate name for a tty
1127 *	@driver: the tty driver in use
1128 *	@index: the minor number
1129 *	@p: output buffer of at least 7 bytes
1130 *
1131 *	Generate a name from a driver reference and write it to the output
1132 *	buffer.
1133 *
1134 *	Locking: None
1135 */
1136static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1137{
1138	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1139		return sprintf(p, "%s", driver->name);
1140	else
1141		return sprintf(p, "%s%d", driver->name,
1142			       index + driver->name_base);
1143}
1144
1145/**
1146 *	tty_driver_lookup_tty() - find an existing tty, if any
1147 *	@driver: the driver for the tty
1148 *	@idx:	 the minor number
1149 *
1150 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1151 *	driver lookup() method returns an error.
1152 *
1153 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1154 */
1155static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1156		struct file *file, int idx)
1157{
1158	struct tty_struct *tty;
1159
1160	if (driver->ops->lookup)
1161		if (!file)
1162			tty = ERR_PTR(-EIO);
1163		else
1164			tty = driver->ops->lookup(driver, file, idx);
1165	else
1166		tty = driver->ttys[idx];
1167
1168	if (!IS_ERR(tty))
1169		tty_kref_get(tty);
1170	return tty;
1171}
1172
1173/**
1174 *	tty_init_termios	-  helper for termios setup
1175 *	@tty: the tty to set up
1176 *
1177 *	Initialise the termios structure for this tty. This runs under
1178 *	the tty_mutex currently so we can be relaxed about ordering.
1179 */
1180
1181void tty_init_termios(struct tty_struct *tty)
1182{
1183	struct ktermios *tp;
1184	int idx = tty->index;
1185
1186	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1187		tty->termios = tty->driver->init_termios;
1188	else {
1189		/* Check for lazy saved data */
1190		tp = tty->driver->termios[idx];
1191		if (tp != NULL) {
1192			tty->termios = *tp;
1193			tty->termios.c_line  = tty->driver->init_termios.c_line;
1194		} else
1195			tty->termios = tty->driver->init_termios;
1196	}
 
 
 
1197	/* Compatibility until drivers always set this */
1198	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1199	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1200}
1201EXPORT_SYMBOL_GPL(tty_init_termios);
1202
1203int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1204{
1205	tty_init_termios(tty);
1206	tty_driver_kref_get(driver);
1207	tty->count++;
1208	driver->ttys[tty->index] = tty;
1209	return 0;
1210}
1211EXPORT_SYMBOL_GPL(tty_standard_install);
1212
1213/**
1214 *	tty_driver_install_tty() - install a tty entry in the driver
1215 *	@driver: the driver for the tty
1216 *	@tty: the tty
1217 *
1218 *	Install a tty object into the driver tables. The tty->index field
1219 *	will be set by the time this is called. This method is responsible
1220 *	for ensuring any need additional structures are allocated and
1221 *	configured.
1222 *
1223 *	Locking: tty_mutex for now
1224 */
1225static int tty_driver_install_tty(struct tty_driver *driver,
1226						struct tty_struct *tty)
1227{
1228	return driver->ops->install ? driver->ops->install(driver, tty) :
1229		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1230}
1231
1232/**
1233 *	tty_driver_remove_tty() - remove a tty from the driver tables
1234 *	@driver: the driver for the tty
1235 *	@idx:	 the minor number
1236 *
1237 *	Remvoe a tty object from the driver tables. The tty->index field
1238 *	will be set by the time this is called.
1239 *
1240 *	Locking: tty_mutex for now
1241 */
1242static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1243{
1244	if (driver->ops->remove)
1245		driver->ops->remove(driver, tty);
1246	else
1247		driver->ttys[tty->index] = NULL;
1248}
1249
1250/*
1251 * 	tty_reopen()	- fast re-open of an open tty
1252 * 	@tty	- the tty to open
1253 *
1254 *	Return 0 on success, -errno on error.
1255 *	Re-opens on master ptys are not allowed and return -EIO.
1256 *
1257 *	Locking: Caller must hold tty_lock
 
1258 */
1259static int tty_reopen(struct tty_struct *tty)
1260{
1261	struct tty_driver *driver = tty->driver;
1262	struct tty_ldisc *ld;
1263	int retval = 0;
1264
1265	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1266	    driver->subtype == PTY_TYPE_MASTER)
 
1267		return -EIO;
1268
1269	if (!tty->count)
1270		return -EAGAIN;
1271
1272	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1273		return -EBUSY;
 
 
 
1274
1275	ld = tty_ldisc_ref_wait(tty);
1276	if (ld) {
1277		tty_ldisc_deref(ld);
1278	} else {
1279		retval = tty_ldisc_lock(tty, 5 * HZ);
1280		if (retval)
1281			return retval;
1282
1283		if (!tty->ldisc)
1284			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1285		tty_ldisc_unlock(tty);
1286	}
 
 
1287
1288	if (retval == 0)
1289		tty->count++;
 
1290
1291	return retval;
1292}
1293
1294/**
1295 *	tty_init_dev		-	initialise a tty device
1296 *	@driver: tty driver we are opening a device on
1297 *	@idx: device index
1298 *	@ret_tty: returned tty structure
 
1299 *
1300 *	Prepare a tty device. This may not be a "new" clean device but
1301 *	could also be an active device. The pty drivers require special
1302 *	handling because of this.
1303 *
1304 *	Locking:
1305 *		The function is called under the tty_mutex, which
1306 *	protects us from the tty struct or driver itself going away.
1307 *
1308 *	On exit the tty device has the line discipline attached and
1309 *	a reference count of 1. If a pair was created for pty/tty use
1310 *	and the other was a pty master then it too has a reference count of 1.
1311 *
1312 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1313 * failed open.  The new code protects the open with a mutex, so it's
1314 * really quite straightforward.  The mutex locking can probably be
1315 * relaxed for the (most common) case of reopening a tty.
1316 */
1317
1318struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
1319{
1320	struct tty_struct *tty;
1321	int retval;
1322
 
 
 
 
 
 
1323	/*
1324	 * First time open is complex, especially for PTY devices.
1325	 * This code guarantees that either everything succeeds and the
1326	 * TTY is ready for operation, or else the table slots are vacated
1327	 * and the allocated memory released.  (Except that the termios
1328	 * may be retained.)
1329	 */
1330
1331	if (!try_module_get(driver->owner))
1332		return ERR_PTR(-ENODEV);
1333
1334	tty = alloc_tty_struct(driver, idx);
1335	if (!tty) {
1336		retval = -ENOMEM;
1337		goto err_module_put;
1338	}
 
1339
1340	tty_lock(tty);
1341	retval = tty_driver_install_tty(driver, tty);
1342	if (retval < 0)
1343		goto err_free_tty;
1344
1345	if (!tty->port)
1346		tty->port = driver->ports[idx];
1347
1348	if (WARN_RATELIMIT(!tty->port,
1349			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1350			__func__, tty->driver->name)) {
1351		retval = -EINVAL;
1352		goto err_release_lock;
1353	}
1354
1355	retval = tty_ldisc_lock(tty, 5 * HZ);
1356	if (retval)
1357		goto err_release_lock;
1358	tty->port->itty = tty;
1359
1360	/*
1361	 * Structures all installed ... call the ldisc open routines.
1362	 * If we fail here just call release_tty to clean up.  No need
1363	 * to decrement the use counts, as release_tty doesn't care.
1364	 */
1365	retval = tty_ldisc_setup(tty, tty->link);
1366	if (retval)
1367		goto err_release_tty;
1368	tty_ldisc_unlock(tty);
1369	/* Return the tty locked so that it cannot vanish under the caller */
1370	return tty;
1371
1372err_free_tty:
1373	tty_unlock(tty);
1374	free_tty_struct(tty);
1375err_module_put:
1376	module_put(driver->owner);
1377	return ERR_PTR(retval);
1378
1379	/* call the tty release_tty routine to clean out this slot */
1380err_release_tty:
1381	tty_ldisc_unlock(tty);
1382	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1383			     retval, idx);
1384err_release_lock:
1385	tty_unlock(tty);
1386	release_tty(tty, idx);
1387	return ERR_PTR(retval);
1388}
1389
1390/**
1391 * tty_save_termios() - save tty termios data in driver table
1392 * @tty: tty whose termios data to save
1393 *
1394 * Locking: Caller guarantees serialisation with tty_init_termios().
1395 */
1396void tty_save_termios(struct tty_struct *tty)
1397{
1398	struct ktermios *tp;
1399	int idx = tty->index;
1400
1401	/* If the port is going to reset then it has no termios to save */
1402	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1403		return;
1404
1405	/* Stash the termios data */
1406	tp = tty->driver->termios[idx];
1407	if (tp == NULL) {
1408		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1409		if (tp == NULL)
1410			return;
1411		tty->driver->termios[idx] = tp;
1412	}
1413	*tp = tty->termios;
1414}
1415EXPORT_SYMBOL_GPL(tty_save_termios);
1416
1417/**
1418 *	tty_flush_works		-	flush all works of a tty/pty pair
1419 *	@tty: tty device to flush works for (or either end of a pty pair)
1420 *
1421 *	Sync flush all works belonging to @tty (and the 'other' tty).
1422 */
1423static void tty_flush_works(struct tty_struct *tty)
1424{
1425	flush_work(&tty->SAK_work);
1426	flush_work(&tty->hangup_work);
1427	if (tty->link) {
1428		flush_work(&tty->link->SAK_work);
1429		flush_work(&tty->link->hangup_work);
1430	}
1431}
 
1432
1433/**
1434 *	release_one_tty		-	release tty structure memory
1435 *	@kref: kref of tty we are obliterating
1436 *
1437 *	Releases memory associated with a tty structure, and clears out the
1438 *	driver table slots. This function is called when a device is no longer
1439 *	in use. It also gets called when setup of a device fails.
1440 *
1441 *	Locking:
 
1442 *		takes the file list lock internally when working on the list
1443 *	of ttys that the driver keeps.
1444 *
1445 *	This method gets called from a work queue so that the driver private
1446 *	cleanup ops can sleep (needed for USB at least)
1447 */
1448static void release_one_tty(struct work_struct *work)
1449{
1450	struct tty_struct *tty =
1451		container_of(work, struct tty_struct, hangup_work);
1452	struct tty_driver *driver = tty->driver;
1453	struct module *owner = driver->owner;
1454
1455	if (tty->ops->cleanup)
1456		tty->ops->cleanup(tty);
1457
1458	tty->magic = 0;
1459	tty_driver_kref_put(driver);
1460	module_put(owner);
1461
1462	spin_lock(&tty->files_lock);
1463	list_del_init(&tty->tty_files);
1464	spin_unlock(&tty->files_lock);
1465
1466	put_pid(tty->pgrp);
1467	put_pid(tty->session);
1468	free_tty_struct(tty);
1469}
1470
1471static void queue_release_one_tty(struct kref *kref)
1472{
1473	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1474
 
 
 
 
 
1475	/* The hangup queue is now free so we can reuse it rather than
1476	   waste a chunk of memory for each port */
1477	INIT_WORK(&tty->hangup_work, release_one_tty);
1478	schedule_work(&tty->hangup_work);
1479}
1480
1481/**
1482 *	tty_kref_put		-	release a tty kref
1483 *	@tty: tty device
1484 *
1485 *	Release a reference to a tty device and if need be let the kref
1486 *	layer destruct the object for us
1487 */
1488
1489void tty_kref_put(struct tty_struct *tty)
1490{
1491	if (tty)
1492		kref_put(&tty->kref, queue_release_one_tty);
1493}
1494EXPORT_SYMBOL(tty_kref_put);
1495
1496/**
1497 *	release_tty		-	release tty structure memory
1498 *
1499 *	Release both @tty and a possible linked partner (think pty pair),
1500 *	and decrement the refcount of the backing module.
1501 *
1502 *	Locking:
1503 *		tty_mutex
1504 *		takes the file list lock internally when working on the list
1505 *	of ttys that the driver keeps.
 
1506 *
1507 */
1508static void release_tty(struct tty_struct *tty, int idx)
1509{
1510	/* This should always be true but check for the moment */
1511	WARN_ON(tty->index != idx);
1512	WARN_ON(!mutex_is_locked(&tty_mutex));
1513	if (tty->ops->shutdown)
1514		tty->ops->shutdown(tty);
1515	tty_save_termios(tty);
1516	tty_driver_remove_tty(tty->driver, tty);
1517	tty->port->itty = NULL;
1518	if (tty->link)
1519		tty->link->port->itty = NULL;
1520	tty_buffer_cancel_work(tty->port);
1521	if (tty->link)
1522		tty_buffer_cancel_work(tty->link->port);
1523
1524	tty_kref_put(tty->link);
1525	tty_kref_put(tty);
1526}
1527
1528/**
1529 *	tty_release_checks - check a tty before real release
1530 *	@tty: tty to check
1531 *	@o_tty: link of @tty (if any)
1532 *	@idx: index of the tty
1533 *
1534 *	Performs some paranoid checking before true release of the @tty.
1535 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1536 */
1537static int tty_release_checks(struct tty_struct *tty, int idx)
1538{
1539#ifdef TTY_PARANOIA_CHECK
1540	if (idx < 0 || idx >= tty->driver->num) {
1541		tty_debug(tty, "bad idx %d\n", idx);
1542		return -1;
1543	}
1544
1545	/* not much to check for devpts */
1546	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1547		return 0;
1548
1549	if (tty != tty->driver->ttys[idx]) {
1550		tty_debug(tty, "bad driver table[%d] = %p\n",
1551			  idx, tty->driver->ttys[idx]);
1552		return -1;
1553	}
1554	if (tty->driver->other) {
1555		struct tty_struct *o_tty = tty->link;
1556
1557		if (o_tty != tty->driver->other->ttys[idx]) {
1558			tty_debug(tty, "bad other table[%d] = %p\n",
1559				  idx, tty->driver->other->ttys[idx]);
1560			return -1;
1561		}
1562		if (o_tty->link != tty) {
1563			tty_debug(tty, "bad link = %p\n", o_tty->link);
1564			return -1;
1565		}
1566	}
1567#endif
1568	return 0;
1569}
1570
1571/**
1572 *      tty_kclose      -       closes tty opened by tty_kopen
1573 *      @tty: tty device
1574 *
1575 *      Performs the final steps to release and free a tty device. It is the
1576 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1577 *      flag on tty->port.
1578 */
1579void tty_kclose(struct tty_struct *tty)
1580{
1581	/*
1582	 * Ask the line discipline code to release its structures
1583	 */
1584	tty_ldisc_release(tty);
1585
1586	/* Wait for pending work before tty destruction commmences */
1587	tty_flush_works(tty);
1588
1589	tty_debug_hangup(tty, "freeing structure\n");
1590	/*
1591	 * The release_tty function takes care of the details of clearing
1592	 * the slots and preserving the termios structure.
1593	 */
1594	mutex_lock(&tty_mutex);
1595	tty_port_set_kopened(tty->port, 0);
1596	release_tty(tty, tty->index);
1597	mutex_unlock(&tty_mutex);
1598}
1599EXPORT_SYMBOL_GPL(tty_kclose);
1600
1601/**
1602 *	tty_release_struct	-	release a tty struct
1603 *	@tty: tty device
1604 *	@idx: index of the tty
1605 *
1606 *	Performs the final steps to release and free a tty device. It is
1607 *	roughly the reverse of tty_init_dev.
1608 */
1609void tty_release_struct(struct tty_struct *tty, int idx)
1610{
1611	/*
1612	 * Ask the line discipline code to release its structures
1613	 */
1614	tty_ldisc_release(tty);
1615
1616	/* Wait for pending work before tty destruction commmences */
1617	tty_flush_works(tty);
1618
1619	tty_debug_hangup(tty, "freeing structure\n");
1620	/*
1621	 * The release_tty function takes care of the details of clearing
1622	 * the slots and preserving the termios structure.
1623	 */
1624	mutex_lock(&tty_mutex);
1625	release_tty(tty, idx);
1626	mutex_unlock(&tty_mutex);
1627}
1628EXPORT_SYMBOL_GPL(tty_release_struct);
1629
1630/**
1631 *	tty_release		-	vfs callback for close
1632 *	@inode: inode of tty
1633 *	@filp: file pointer for handle to tty
1634 *
1635 *	Called the last time each file handle is closed that references
1636 *	this tty. There may however be several such references.
1637 *
1638 *	Locking:
1639 *		Takes bkl. See tty_release_dev
1640 *
1641 * Even releasing the tty structures is a tricky business.. We have
1642 * to be very careful that the structures are all released at the
1643 * same time, as interrupts might otherwise get the wrong pointers.
1644 *
1645 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1646 * lead to double frees or releasing memory still in use.
1647 */
1648
1649int tty_release(struct inode *inode, struct file *filp)
1650{
1651	struct tty_struct *tty = file_tty(filp);
1652	struct tty_struct *o_tty = NULL;
1653	int	do_sleep, final;
 
1654	int	idx;
1655	long	timeout = 0;
1656	int	once = 1;
1657
1658	if (tty_paranoia_check(tty, inode, __func__))
1659		return 0;
1660
1661	tty_lock(tty);
1662	check_tty_count(tty, __func__);
1663
1664	__tty_fasync(-1, filp, 0);
1665
1666	idx = tty->index;
1667	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1668	    tty->driver->subtype == PTY_TYPE_MASTER)
1669		o_tty = tty->link;
 
1670
1671	if (tty_release_checks(tty, idx)) {
1672		tty_unlock(tty);
 
 
 
1673		return 0;
1674	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675
1676	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678	if (tty->ops->close)
1679		tty->ops->close(tty, filp);
1680
1681	/* If tty is pty master, lock the slave pty (stable lock order) */
1682	tty_lock_slave(o_tty);
1683
1684	/*
1685	 * Sanity check: if tty->count is going to zero, there shouldn't be
1686	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1687	 * wait queues and kick everyone out _before_ actually starting to
1688	 * close.  This ensures that we won't block while releasing the tty
1689	 * structure.
1690	 *
1691	 * The test for the o_tty closing is necessary, since the master and
1692	 * slave sides may close in any order.  If the slave side closes out
1693	 * first, its count will be one, since the master side holds an open.
1694	 * Thus this test wouldn't be triggered at the time the slave closed,
1695	 * so we do it now.
 
 
 
 
1696	 */
1697	while (1) {
 
 
 
 
 
 
 
 
1698		do_sleep = 0;
1699
1700		if (tty->count <= 1) {
1701			if (waitqueue_active(&tty->read_wait)) {
1702				wake_up_poll(&tty->read_wait, EPOLLIN);
1703				do_sleep++;
1704			}
1705			if (waitqueue_active(&tty->write_wait)) {
1706				wake_up_poll(&tty->write_wait, EPOLLOUT);
1707				do_sleep++;
1708			}
1709		}
1710		if (o_tty && o_tty->count <= 1) {
1711			if (waitqueue_active(&o_tty->read_wait)) {
1712				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1713				do_sleep++;
1714			}
1715			if (waitqueue_active(&o_tty->write_wait)) {
1716				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1717				do_sleep++;
1718			}
1719		}
1720		if (!do_sleep)
1721			break;
1722
1723		if (once) {
1724			once = 0;
1725			tty_warn(tty, "read/write wait queue active!\n");
1726		}
1727		schedule_timeout_killable(timeout);
1728		if (timeout < 120 * HZ)
1729			timeout = 2 * timeout + 1;
1730		else
1731			timeout = MAX_SCHEDULE_TIMEOUT;
1732	}
1733
1734	if (o_tty) {
 
 
 
 
 
1735		if (--o_tty->count < 0) {
1736			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1737			o_tty->count = 0;
1738		}
1739	}
1740	if (--tty->count < 0) {
1741		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1742		tty->count = 0;
1743	}
1744
1745	/*
1746	 * We've decremented tty->count, so we need to remove this file
1747	 * descriptor off the tty->tty_files list; this serves two
1748	 * purposes:
1749	 *  - check_tty_count sees the correct number of file descriptors
1750	 *    associated with this tty.
1751	 *  - do_tty_hangup no longer sees this file descriptor as
1752	 *    something that needs to be handled for hangups.
1753	 */
1754	tty_del_file(filp);
1755
1756	/*
1757	 * Perform some housekeeping before deciding whether to return.
1758	 *
 
 
 
 
 
 
 
 
 
 
1759	 * If _either_ side is closing, make sure there aren't any
1760	 * processes that still think tty or o_tty is their controlling
1761	 * tty.
1762	 */
1763	if (!tty->count) {
1764		read_lock(&tasklist_lock);
1765		session_clear_tty(tty->session);
1766		if (o_tty)
1767			session_clear_tty(o_tty->session);
1768		read_unlock(&tasklist_lock);
1769	}
1770
 
 
1771	/* check whether both sides are closing ... */
1772	final = !tty->count && !(o_tty && o_tty->count);
1773
1774	tty_unlock_slave(o_tty);
1775	tty_unlock(tty);
1776
1777	/* At this point, the tty->count == 0 should ensure a dead tty
1778	   cannot be re-opened by a racing opener */
1779
1780	if (!final)
1781		return 0;
 
1782
1783	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1784
1785	tty_release_struct(tty, idx);
 
 
 
1786	return 0;
1787}
1788
1789/**
1790 *	tty_open_current_tty - get locked tty of current task
1791 *	@device: device number
1792 *	@filp: file pointer to tty
1793 *	@return: locked tty of the current task iff @device is /dev/tty
1794 *
1795 *	Performs a re-open of the current task's controlling tty.
 
 
 
 
 
 
 
 
 
1796 *
1797 *	We cannot return driver and index like for the other nodes because
1798 *	devpts will not work then. It expects inodes to be from devpts FS.
 
1799 */
1800static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
 
1801{
1802	struct tty_struct *tty;
1803	int retval;
 
 
 
 
 
 
1804
1805	if (device != MKDEV(TTYAUX_MAJOR, 0))
1806		return NULL;
 
 
1807
1808	tty = get_current_tty();
1809	if (!tty)
1810		return ERR_PTR(-ENXIO);
1811
1812	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1813	/* noctty = 1; */
1814	tty_lock(tty);
1815	tty_kref_put(tty);	/* safe to drop the kref now */
1816
1817	retval = tty_reopen(tty);
1818	if (retval < 0) {
1819		tty_unlock(tty);
1820		tty = ERR_PTR(retval);
 
 
 
 
 
1821	}
1822	return tty;
1823}
1824
1825/**
1826 *	tty_lookup_driver - lookup a tty driver for a given device file
1827 *	@device: device number
1828 *	@filp: file pointer to tty
1829 *	@index: index for the device in the @return driver
1830 *	@return: driver for this inode (with increased refcount)
1831 *
1832 * 	If @return is not erroneous, the caller is responsible to decrement the
1833 * 	refcount by tty_driver_kref_put.
1834 *
1835 *	Locking: tty_mutex protects get_tty_driver
1836 */
1837static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1838		int *index)
1839{
1840	struct tty_driver *driver = NULL;
1841
1842	switch (device) {
1843#ifdef CONFIG_VT
1844	case MKDEV(TTY_MAJOR, 0): {
1845		extern struct tty_driver *console_driver;
1846		driver = tty_driver_kref_get(console_driver);
1847		*index = fg_console;
1848		break;
 
1849	}
1850#endif
1851	case MKDEV(TTYAUX_MAJOR, 1): {
1852		struct tty_driver *console_driver = console_device(index);
1853		if (console_driver) {
1854			driver = tty_driver_kref_get(console_driver);
1855			if (driver && filp) {
1856				/* Don't let /dev/console block */
1857				filp->f_flags |= O_NONBLOCK;
1858				break;
 
1859			}
1860		}
1861		if (driver)
1862			tty_driver_kref_put(driver);
1863		return ERR_PTR(-ENODEV);
1864	}
1865	default:
1866		driver = get_tty_driver(device, index);
1867		if (!driver)
1868			return ERR_PTR(-ENODEV);
1869		break;
1870	}
1871	return driver;
1872}
1873
1874/**
1875 *	tty_kopen	-	open a tty device for kernel
1876 *	@device: dev_t of device to open
1877 *
1878 *	Opens tty exclusively for kernel. Performs the driver lookup,
1879 *	makes sure it's not already opened and performs the first-time
1880 *	tty initialization.
1881 *
1882 *	Returns the locked initialized &tty_struct
1883 *
1884 *	Claims the global tty_mutex to serialize:
1885 *	  - concurrent first-time tty initialization
1886 *	  - concurrent tty driver removal w/ lookup
1887 *	  - concurrent tty removal from driver table
1888 */
1889struct tty_struct *tty_kopen(dev_t device)
1890{
1891	struct tty_struct *tty;
1892	struct tty_driver *driver;
1893	int index = -1;
1894
1895	mutex_lock(&tty_mutex);
1896	driver = tty_lookup_driver(device, NULL, &index);
1897	if (IS_ERR(driver)) {
1898		mutex_unlock(&tty_mutex);
1899		return ERR_CAST(driver);
1900	}
1901
1902	/* check whether we're reopening an existing tty */
1903	tty = tty_driver_lookup_tty(driver, NULL, index);
1904	if (IS_ERR(tty))
1905		goto out;
1906
1907	if (tty) {
1908		/* drop kref from tty_driver_lookup_tty() */
1909		tty_kref_put(tty);
1910		tty = ERR_PTR(-EBUSY);
1911	} else { /* tty_init_dev returns tty with the tty_lock held */
1912		tty = tty_init_dev(driver, index);
1913		if (IS_ERR(tty))
1914			goto out;
1915		tty_port_set_kopened(tty->port, 1);
1916	}
1917out:
1918	mutex_unlock(&tty_mutex);
1919	tty_driver_kref_put(driver);
1920	return tty;
1921}
1922EXPORT_SYMBOL_GPL(tty_kopen);
1923
1924/**
1925 *	tty_open_by_driver	-	open a tty device
1926 *	@device: dev_t of device to open
1927 *	@filp: file pointer to tty
1928 *
1929 *	Performs the driver lookup, checks for a reopen, or otherwise
1930 *	performs the first-time tty initialization.
1931 *
1932 *	Returns the locked initialized or re-opened &tty_struct
1933 *
1934 *	Claims the global tty_mutex to serialize:
1935 *	  - concurrent first-time tty initialization
1936 *	  - concurrent tty driver removal w/ lookup
1937 *	  - concurrent tty removal from driver table
1938 */
1939static struct tty_struct *tty_open_by_driver(dev_t device,
1940					     struct file *filp)
1941{
1942	struct tty_struct *tty;
1943	struct tty_driver *driver = NULL;
1944	int index = -1;
1945	int retval;
1946
1947	mutex_lock(&tty_mutex);
1948	driver = tty_lookup_driver(device, filp, &index);
1949	if (IS_ERR(driver)) {
1950		mutex_unlock(&tty_mutex);
1951		return ERR_CAST(driver);
1952	}
 
 
 
 
1953
1954	/* check whether we're reopening an existing tty */
1955	tty = tty_driver_lookup_tty(driver, filp, index);
1956	if (IS_ERR(tty)) {
1957		mutex_unlock(&tty_mutex);
1958		goto out;
1959	}
1960
1961	if (tty) {
1962		if (tty_port_kopened(tty->port)) {
1963			tty_kref_put(tty);
1964			mutex_unlock(&tty_mutex);
1965			tty = ERR_PTR(-EBUSY);
1966			goto out;
1967		}
1968		mutex_unlock(&tty_mutex);
1969		retval = tty_lock_interruptible(tty);
1970		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1971		if (retval) {
1972			if (retval == -EINTR)
1973				retval = -ERESTARTSYS;
1974			tty = ERR_PTR(retval);
1975			goto out;
1976		}
1977		retval = tty_reopen(tty);
1978		if (retval < 0) {
1979			tty_unlock(tty);
1980			tty = ERR_PTR(retval);
1981		}
1982	} else { /* Returns with the tty_lock held for now */
1983		tty = tty_init_dev(driver, index);
1984		mutex_unlock(&tty_mutex);
1985	}
1986out:
1987	tty_driver_kref_put(driver);
1988	return tty;
1989}
1990
1991/**
1992 *	tty_open		-	open a tty device
1993 *	@inode: inode of device file
1994 *	@filp: file pointer to tty
1995 *
1996 *	tty_open and tty_release keep up the tty count that contains the
1997 *	number of opens done on a tty. We cannot use the inode-count, as
1998 *	different inodes might point to the same tty.
1999 *
2000 *	Open-counting is needed for pty masters, as well as for keeping
2001 *	track of serial lines: DTR is dropped when the last close happens.
2002 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2003 *
2004 *	The termios state of a pty is reset on first open so that
2005 *	settings don't persist across reuse.
2006 *
2007 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2008 *		 tty->count should protect the rest.
2009 *		 ->siglock protects ->signal/->sighand
2010 *
2011 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2012 *	tty_mutex
2013 */
2014
2015static int tty_open(struct inode *inode, struct file *filp)
2016{
2017	struct tty_struct *tty;
2018	int noctty, retval;
2019	dev_t device = inode->i_rdev;
2020	unsigned saved_flags = filp->f_flags;
2021
2022	nonseekable_open(inode, filp);
2023
2024retry_open:
2025	retval = tty_alloc_file(filp);
2026	if (retval)
2027		return -ENOMEM;
2028
2029	tty = tty_open_current_tty(device, filp);
2030	if (!tty)
2031		tty = tty_open_by_driver(device, filp);
2032
2033	if (IS_ERR(tty)) {
2034		tty_free_file(filp);
2035		retval = PTR_ERR(tty);
2036		if (retval != -EAGAIN || signal_pending(current))
2037			return retval;
2038		schedule();
2039		goto retry_open;
2040	}
2041
2042	tty_add_file(tty, filp);
2043
2044	check_tty_count(tty, __func__);
2045	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2046
 
 
 
 
 
 
 
2047	if (tty->ops->open)
2048		retval = tty->ops->open(tty, filp);
2049	else
2050		retval = -ENODEV;
2051	filp->f_flags = saved_flags;
2052
 
 
 
 
2053	if (retval) {
2054		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2055
2056		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
2057		tty_release(inode, filp);
2058		if (retval != -ERESTARTSYS)
2059			return retval;
2060
2061		if (signal_pending(current))
2062			return retval;
2063
2064		schedule();
2065		/*
2066		 * Need to reset f_op in case a hangup happened.
2067		 */
2068		if (tty_hung_up_p(filp))
 
2069			filp->f_op = &tty_fops;
 
2070		goto retry_open;
2071	}
2072	clear_bit(TTY_HUPPED, &tty->flags);
 
2073
2074	noctty = (filp->f_flags & O_NOCTTY) ||
2075		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2076		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2077		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2078		  tty->driver->subtype == PTY_TYPE_MASTER);
2079	if (!noctty)
2080		tty_open_proc_set_tty(filp, tty);
2081	tty_unlock(tty);
 
 
 
2082	return 0;
2083}
2084
2085
2086
2087/**
2088 *	tty_poll	-	check tty status
2089 *	@filp: file being polled
2090 *	@wait: poll wait structures to update
2091 *
2092 *	Call the line discipline polling method to obtain the poll
2093 *	status of the device.
2094 *
2095 *	Locking: locks called line discipline but ldisc poll method
2096 *	may be re-entered freely by other callers.
2097 */
2098
2099static __poll_t tty_poll(struct file *filp, poll_table *wait)
2100{
2101	struct tty_struct *tty = file_tty(filp);
2102	struct tty_ldisc *ld;
2103	__poll_t ret = 0;
2104
2105	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2106		return 0;
2107
2108	ld = tty_ldisc_ref_wait(tty);
2109	if (!ld)
2110		return hung_up_tty_poll(filp, wait);
2111	if (ld->ops->poll)
2112		ret = ld->ops->poll(tty, filp, wait);
2113	tty_ldisc_deref(ld);
2114	return ret;
2115}
2116
2117static int __tty_fasync(int fd, struct file *filp, int on)
2118{
2119	struct tty_struct *tty = file_tty(filp);
2120	unsigned long flags;
2121	int retval = 0;
2122
2123	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2124		goto out;
2125
2126	retval = fasync_helper(fd, filp, on, &tty->fasync);
2127	if (retval <= 0)
2128		goto out;
2129
2130	if (on) {
2131		enum pid_type type;
2132		struct pid *pid;
2133
 
2134		spin_lock_irqsave(&tty->ctrl_lock, flags);
2135		if (tty->pgrp) {
2136			pid = tty->pgrp;
2137			type = PIDTYPE_PGID;
2138		} else {
2139			pid = task_pid(current);
2140			type = PIDTYPE_TGID;
2141		}
2142		get_pid(pid);
2143		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2144		__f_setown(filp, pid, type, 0);
2145		put_pid(pid);
2146		retval = 0;
 
 
 
 
2147	}
 
2148out:
2149	return retval;
2150}
2151
2152static int tty_fasync(int fd, struct file *filp, int on)
2153{
2154	struct tty_struct *tty = file_tty(filp);
2155	int retval = -ENOTTY;
2156
2157	tty_lock(tty);
2158	if (!tty_hung_up_p(filp))
2159		retval = __tty_fasync(fd, filp, on);
2160	tty_unlock(tty);
2161
2162	return retval;
2163}
2164
2165/**
2166 *	tiocsti			-	fake input character
2167 *	@tty: tty to fake input into
2168 *	@p: pointer to character
2169 *
2170 *	Fake input to a tty device. Does the necessary locking and
2171 *	input management.
2172 *
2173 *	FIXME: does not honour flow control ??
2174 *
2175 *	Locking:
2176 *		Called functions take tty_ldiscs_lock
2177 *		current->signal->tty check is safe without locks
2178 *
2179 *	FIXME: may race normal receive processing
2180 */
2181
2182static int tiocsti(struct tty_struct *tty, char __user *p)
2183{
2184	char ch, mbz = 0;
2185	struct tty_ldisc *ld;
2186
2187	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2188		return -EPERM;
2189	if (get_user(ch, p))
2190		return -EFAULT;
2191	tty_audit_tiocsti(tty, ch);
2192	ld = tty_ldisc_ref_wait(tty);
2193	if (!ld)
2194		return -EIO;
2195	if (ld->ops->receive_buf)
2196		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2197	tty_ldisc_deref(ld);
2198	return 0;
2199}
2200
2201/**
2202 *	tiocgwinsz		-	implement window query ioctl
2203 *	@tty; tty
2204 *	@arg: user buffer for result
2205 *
2206 *	Copies the kernel idea of the window size into the user buffer.
2207 *
2208 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2209 *		is consistent.
2210 */
2211
2212static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2213{
2214	int err;
2215
2216	mutex_lock(&tty->winsize_mutex);
2217	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2218	mutex_unlock(&tty->winsize_mutex);
2219
2220	return err ? -EFAULT: 0;
2221}
2222
2223/**
2224 *	tty_do_resize		-	resize event
2225 *	@tty: tty being resized
2226 *	@rows: rows (character)
2227 *	@cols: cols (character)
2228 *
2229 *	Update the termios variables and send the necessary signals to
2230 *	peform a terminal resize correctly
2231 */
2232
2233int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2234{
2235	struct pid *pgrp;
 
2236
2237	/* Lock the tty */
2238	mutex_lock(&tty->winsize_mutex);
2239	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2240		goto done;
 
 
 
 
 
2241
2242	/* Signal the foreground process group */
2243	pgrp = tty_get_pgrp(tty);
2244	if (pgrp)
2245		kill_pgrp(pgrp, SIGWINCH, 1);
2246	put_pid(pgrp);
2247
2248	tty->winsize = *ws;
2249done:
2250	mutex_unlock(&tty->winsize_mutex);
2251	return 0;
2252}
2253EXPORT_SYMBOL(tty_do_resize);
2254
2255/**
2256 *	tiocswinsz		-	implement window size set ioctl
2257 *	@tty; tty side of tty
2258 *	@arg: user buffer for result
2259 *
2260 *	Copies the user idea of the window size to the kernel. Traditionally
2261 *	this is just advisory information but for the Linux console it
2262 *	actually has driver level meaning and triggers a VC resize.
2263 *
2264 *	Locking:
2265 *		Driver dependent. The default do_resize method takes the
2266 *	tty termios mutex and ctrl_lock. The console takes its own lock
2267 *	then calls into the default method.
2268 */
2269
2270static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2271{
2272	struct winsize tmp_ws;
2273	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2274		return -EFAULT;
2275
2276	if (tty->ops->resize)
2277		return tty->ops->resize(tty, &tmp_ws);
2278	else
2279		return tty_do_resize(tty, &tmp_ws);
2280}
2281
2282/**
2283 *	tioccons	-	allow admin to move logical console
2284 *	@file: the file to become console
2285 *
2286 *	Allow the administrator to move the redirected console device
2287 *
2288 *	Locking: uses redirect_lock to guard the redirect information
2289 */
2290
2291static int tioccons(struct file *file)
2292{
2293	if (!capable(CAP_SYS_ADMIN))
2294		return -EPERM;
2295	if (file->f_op->write == redirected_tty_write) {
2296		struct file *f;
2297		spin_lock(&redirect_lock);
2298		f = redirect;
2299		redirect = NULL;
2300		spin_unlock(&redirect_lock);
2301		if (f)
2302			fput(f);
2303		return 0;
2304	}
2305	spin_lock(&redirect_lock);
2306	if (redirect) {
2307		spin_unlock(&redirect_lock);
2308		return -EBUSY;
2309	}
2310	redirect = get_file(file);
 
2311	spin_unlock(&redirect_lock);
2312	return 0;
2313}
2314
2315/**
2316 *	tiocsetd	-	set line discipline
2317 *	@tty: tty device
2318 *	@p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319 *
2320 *	Set the line discipline according to user request.
 
2321 *
2322 *	Locking: see tty_set_ldisc, this function is just a helper
2323 */
2324
2325static int tiocsetd(struct tty_struct *tty, int __user *p)
2326{
2327	int disc;
2328	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2329
2330	if (get_user(disc, p))
 
 
 
 
 
 
 
 
2331		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332
2333	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
2334
2335	return ret;
 
 
 
 
 
 
 
 
 
 
2336}
2337
2338/**
2339 *	tiocgetd	-	get line discipline
2340 *	@tty: tty device
2341 *	@p: pointer to user data
2342 *
2343 *	Retrieves the line discipline id directly from the ldisc.
2344 *
2345 *	Locking: waits for ldisc reference (in case the line discipline
2346 *		is changing or the tty is being hungup)
2347 */
2348
2349static int tiocgetd(struct tty_struct *tty, int __user *p)
2350{
2351	struct tty_ldisc *ld;
2352	int ret;
2353
2354	ld = tty_ldisc_ref_wait(tty);
2355	if (!ld)
2356		return -EIO;
2357	ret = put_user(ld->ops->num, p);
2358	tty_ldisc_deref(ld);
2359	return ret;
2360}
2361
2362/**
2363 *	send_break	-	performed time break
2364 *	@tty: device to break on
2365 *	@duration: timeout in mS
2366 *
2367 *	Perform a timed break on hardware that lacks its own driver level
2368 *	timed break functionality.
2369 *
2370 *	Locking:
2371 *		atomic_write_lock serializes
2372 *
2373 */
2374
2375static int send_break(struct tty_struct *tty, unsigned int duration)
2376{
2377	int retval;
2378
2379	if (tty->ops->break_ctl == NULL)
2380		return 0;
2381
2382	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2383		retval = tty->ops->break_ctl(tty, duration);
2384	else {
2385		/* Do the work ourselves */
2386		if (tty_write_lock(tty, 0) < 0)
2387			return -EINTR;
2388		retval = tty->ops->break_ctl(tty, -1);
2389		if (retval)
2390			goto out;
2391		if (!signal_pending(current))
2392			msleep_interruptible(duration);
2393		retval = tty->ops->break_ctl(tty, 0);
2394out:
2395		tty_write_unlock(tty);
2396		if (signal_pending(current))
2397			retval = -EINTR;
2398	}
2399	return retval;
2400}
2401
2402/**
2403 *	tty_tiocmget		-	get modem status
2404 *	@tty: tty device
2405 *	@file: user file pointer
2406 *	@p: pointer to result
2407 *
2408 *	Obtain the modem status bits from the tty driver if the feature
2409 *	is supported. Return -EINVAL if it is not available.
2410 *
2411 *	Locking: none (up to the driver)
2412 */
2413
2414static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2415{
2416	int retval = -EINVAL;
2417
2418	if (tty->ops->tiocmget) {
2419		retval = tty->ops->tiocmget(tty);
2420
2421		if (retval >= 0)
2422			retval = put_user(retval, p);
2423	}
2424	return retval;
2425}
2426
2427/**
2428 *	tty_tiocmset		-	set modem status
2429 *	@tty: tty device
2430 *	@cmd: command - clear bits, set bits or set all
2431 *	@p: pointer to desired bits
2432 *
2433 *	Set the modem status bits from the tty driver if the feature
2434 *	is supported. Return -EINVAL if it is not available.
2435 *
2436 *	Locking: none (up to the driver)
2437 */
2438
2439static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2440	     unsigned __user *p)
2441{
2442	int retval;
2443	unsigned int set, clear, val;
2444
2445	if (tty->ops->tiocmset == NULL)
2446		return -EINVAL;
2447
2448	retval = get_user(val, p);
2449	if (retval)
2450		return retval;
2451	set = clear = 0;
2452	switch (cmd) {
2453	case TIOCMBIS:
2454		set = val;
2455		break;
2456	case TIOCMBIC:
2457		clear = val;
2458		break;
2459	case TIOCMSET:
2460		set = val;
2461		clear = ~val;
2462		break;
2463	}
2464	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2465	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2466	return tty->ops->tiocmset(tty, set, clear);
2467}
2468
2469static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2470{
2471	int retval = -EINVAL;
2472	struct serial_icounter_struct icount;
2473	memset(&icount, 0, sizeof(icount));
2474	if (tty->ops->get_icount)
2475		retval = tty->ops->get_icount(tty, &icount);
2476	if (retval != 0)
2477		return retval;
2478	if (copy_to_user(arg, &icount, sizeof(icount)))
2479		return -EFAULT;
2480	return 0;
2481}
2482
2483static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2484{
2485	static DEFINE_RATELIMIT_STATE(depr_flags,
2486			DEFAULT_RATELIMIT_INTERVAL,
2487			DEFAULT_RATELIMIT_BURST);
2488	char comm[TASK_COMM_LEN];
2489	struct serial_struct v;
2490	int flags;
2491
2492	if (copy_from_user(&v, ss, sizeof(*ss)))
2493		return -EFAULT;
2494
2495	flags = v.flags & ASYNC_DEPRECATED;
2496
2497	if (flags && __ratelimit(&depr_flags))
2498		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2499			__func__, get_task_comm(comm, current), flags);
2500	if (!tty->ops->set_serial)
2501		return -ENOTTY;
2502	return tty->ops->set_serial(tty, &v);
2503}
2504
2505static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2506{
2507	struct serial_struct v;
2508	int err;
2509
2510	memset(&v, 0, sizeof(v));
2511	if (!tty->ops->get_serial)
2512		return -ENOTTY;
2513	err = tty->ops->get_serial(tty, &v);
2514	if (!err && copy_to_user(ss, &v, sizeof(v)))
2515		err = -EFAULT;
2516	return err;
2517}
 
2518
2519/*
2520 * if pty, return the slave side (real_tty)
2521 * otherwise, return self
2522 */
2523static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2524{
2525	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2526	    tty->driver->subtype == PTY_TYPE_MASTER)
2527		tty = tty->link;
2528	return tty;
2529}
 
2530
2531/*
2532 * Split this up, as gcc can choke on it otherwise..
2533 */
2534long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2535{
2536	struct tty_struct *tty = file_tty(file);
2537	struct tty_struct *real_tty;
2538	void __user *p = (void __user *)arg;
2539	int retval;
2540	struct tty_ldisc *ld;
 
2541
2542	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2543		return -EINVAL;
2544
2545	real_tty = tty_pair_get_tty(tty);
2546
2547	/*
2548	 * Factor out some common prep work
2549	 */
2550	switch (cmd) {
2551	case TIOCSETD:
2552	case TIOCSBRK:
2553	case TIOCCBRK:
2554	case TCSBRK:
2555	case TCSBRKP:
2556		retval = tty_check_change(tty);
2557		if (retval)
2558			return retval;
2559		if (cmd != TIOCCBRK) {
2560			tty_wait_until_sent(tty, 0);
2561			if (signal_pending(current))
2562				return -EINTR;
2563		}
2564		break;
2565	}
2566
2567	/*
2568	 *	Now do the stuff.
2569	 */
2570	switch (cmd) {
2571	case TIOCSTI:
2572		return tiocsti(tty, p);
2573	case TIOCGWINSZ:
2574		return tiocgwinsz(real_tty, p);
2575	case TIOCSWINSZ:
2576		return tiocswinsz(real_tty, p);
2577	case TIOCCONS:
2578		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2579	case TIOCEXCL:
2580		set_bit(TTY_EXCLUSIVE, &tty->flags);
2581		return 0;
2582	case TIOCNXCL:
2583		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2584		return 0;
2585	case TIOCGEXCL:
2586	{
2587		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2588		return put_user(excl, (int __user *)p);
2589	}
 
 
 
 
 
 
 
 
2590	case TIOCGETD:
2591		return tiocgetd(tty, p);
2592	case TIOCSETD:
2593		return tiocsetd(tty, p);
2594	case TIOCVHANGUP:
2595		if (!capable(CAP_SYS_ADMIN))
2596			return -EPERM;
2597		tty_vhangup(tty);
2598		return 0;
2599	case TIOCGDEV:
2600	{
2601		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2602		return put_user(ret, (unsigned int __user *)p);
2603	}
2604	/*
2605	 * Break handling
2606	 */
2607	case TIOCSBRK:	/* Turn break on, unconditionally */
2608		if (tty->ops->break_ctl)
2609			return tty->ops->break_ctl(tty, -1);
2610		return 0;
2611	case TIOCCBRK:	/* Turn break off, unconditionally */
2612		if (tty->ops->break_ctl)
2613			return tty->ops->break_ctl(tty, 0);
2614		return 0;
2615	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2616		/* non-zero arg means wait for all output data
2617		 * to be sent (performed above) but don't send break.
2618		 * This is used by the tcdrain() termios function.
2619		 */
2620		if (!arg)
2621			return send_break(tty, 250);
2622		return 0;
2623	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2624		return send_break(tty, arg ? arg*100 : 250);
2625
2626	case TIOCMGET:
2627		return tty_tiocmget(tty, p);
2628	case TIOCMSET:
2629	case TIOCMBIC:
2630	case TIOCMBIS:
2631		return tty_tiocmset(tty, cmd, p);
2632	case TIOCGICOUNT:
2633		return tty_tiocgicount(tty, p);
 
 
 
 
2634	case TCFLSH:
2635		switch (arg) {
2636		case TCIFLUSH:
2637		case TCIOFLUSH:
2638		/* flush tty buffer and allow ldisc to process ioctl */
2639			tty_buffer_flush(tty, NULL);
2640			break;
2641		}
2642		break;
2643	case TIOCSSERIAL:
2644		return tty_tiocsserial(tty, p);
2645	case TIOCGSERIAL:
2646		return tty_tiocgserial(tty, p);
2647	case TIOCGPTPEER:
2648		/* Special because the struct file is needed */
2649		return ptm_open_peer(file, tty, (int)arg);
2650	default:
2651		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2652		if (retval != -ENOIOCTLCMD)
2653			return retval;
2654	}
2655	if (tty->ops->ioctl) {
2656		retval = tty->ops->ioctl(tty, cmd, arg);
2657		if (retval != -ENOIOCTLCMD)
2658			return retval;
2659	}
2660	ld = tty_ldisc_ref_wait(tty);
2661	if (!ld)
2662		return hung_up_tty_ioctl(file, cmd, arg);
2663	retval = -EINVAL;
2664	if (ld->ops->ioctl) {
2665		retval = ld->ops->ioctl(tty, file, cmd, arg);
2666		if (retval == -ENOIOCTLCMD)
2667			retval = -ENOTTY;
2668	}
2669	tty_ldisc_deref(ld);
2670	return retval;
2671}
2672
2673#ifdef CONFIG_COMPAT
2674
2675struct serial_struct32 {
2676	compat_int_t    type;
2677	compat_int_t    line;
2678	compat_uint_t   port;
2679	compat_int_t    irq;
2680	compat_int_t    flags;
2681	compat_int_t    xmit_fifo_size;
2682	compat_int_t    custom_divisor;
2683	compat_int_t    baud_base;
2684	unsigned short  close_delay;
2685	char    io_type;
2686	char    reserved_char;
2687	compat_int_t    hub6;
2688	unsigned short  closing_wait; /* time to wait before closing */
2689	unsigned short  closing_wait2; /* no longer used... */
2690	compat_uint_t   iomem_base;
2691	unsigned short  iomem_reg_shift;
2692	unsigned int    port_high;
2693	/* compat_ulong_t  iomap_base FIXME */
2694	compat_int_t    reserved;
2695};
2696
2697static int compat_tty_tiocsserial(struct tty_struct *tty,
2698		struct serial_struct32 __user *ss)
2699{
2700	static DEFINE_RATELIMIT_STATE(depr_flags,
2701			DEFAULT_RATELIMIT_INTERVAL,
2702			DEFAULT_RATELIMIT_BURST);
2703	char comm[TASK_COMM_LEN];
2704	struct serial_struct32 v32;
2705	struct serial_struct v;
2706	int flags;
2707
2708	if (copy_from_user(&v32, ss, sizeof(*ss)))
2709		return -EFAULT;
2710
2711	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2712	v.iomem_base = compat_ptr(v32.iomem_base);
2713	v.iomem_reg_shift = v32.iomem_reg_shift;
2714	v.port_high = v32.port_high;
2715	v.iomap_base = 0;
2716
2717	flags = v.flags & ASYNC_DEPRECATED;
2718
2719	if (flags && __ratelimit(&depr_flags))
2720		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2721			__func__, get_task_comm(comm, current), flags);
2722	if (!tty->ops->set_serial)
2723		return -ENOTTY;
2724	return tty->ops->set_serial(tty, &v);
2725}
2726
2727static int compat_tty_tiocgserial(struct tty_struct *tty,
2728			struct serial_struct32 __user *ss)
2729{
2730	struct serial_struct32 v32;
2731	struct serial_struct v;
2732	int err;
2733
2734	memset(&v, 0, sizeof(v));
2735	memset(&v32, 0, sizeof(v32));
2736
2737	if (!tty->ops->get_serial)
2738		return -ENOTTY;
2739	err = tty->ops->get_serial(tty, &v);
2740	if (!err) {
2741		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2742		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2743			0xfffffff : ptr_to_compat(v.iomem_base);
2744		v32.iomem_reg_shift = v.iomem_reg_shift;
2745		v32.port_high = v.port_high;
2746		if (copy_to_user(ss, &v32, sizeof(v32)))
2747			err = -EFAULT;
2748	}
2749	return err;
2750}
2751static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2752				unsigned long arg)
2753{
 
2754	struct tty_struct *tty = file_tty(file);
2755	struct tty_ldisc *ld;
2756	int retval = -ENOIOCTLCMD;
2757
2758	switch (cmd) {
2759	case TIOCOUTQ:
2760	case TIOCSTI:
2761	case TIOCGWINSZ:
2762	case TIOCSWINSZ:
2763	case TIOCGEXCL:
2764	case TIOCGETD:
2765	case TIOCSETD:
2766	case TIOCGDEV:
2767	case TIOCMGET:
2768	case TIOCMSET:
2769	case TIOCMBIC:
2770	case TIOCMBIS:
2771	case TIOCGICOUNT:
2772	case TIOCGPGRP:
2773	case TIOCSPGRP:
2774	case TIOCGSID:
2775	case TIOCSERGETLSR:
2776	case TIOCGRS485:
2777	case TIOCSRS485:
2778#ifdef TIOCGETP
2779	case TIOCGETP:
2780	case TIOCSETP:
2781	case TIOCSETN:
2782#endif
2783#ifdef TIOCGETC
2784	case TIOCGETC:
2785	case TIOCSETC:
2786#endif
2787#ifdef TIOCGLTC
2788	case TIOCGLTC:
2789	case TIOCSLTC:
2790#endif
2791	case TCSETSF:
2792	case TCSETSW:
2793	case TCSETS:
2794	case TCGETS:
2795#ifdef TCGETS2
2796	case TCGETS2:
2797	case TCSETSF2:
2798	case TCSETSW2:
2799	case TCSETS2:
2800#endif
2801	case TCGETA:
2802	case TCSETAF:
2803	case TCSETAW:
2804	case TCSETA:
2805	case TIOCGLCKTRMIOS:
2806	case TIOCSLCKTRMIOS:
2807#ifdef TCGETX
2808	case TCGETX:
2809	case TCSETX:
2810	case TCSETXW:
2811	case TCSETXF:
2812#endif
2813	case TIOCGSOFTCAR:
2814	case TIOCSSOFTCAR:
2815
2816	case PPPIOCGCHAN:
2817	case PPPIOCGUNIT:
2818		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2819	case TIOCCONS:
2820	case TIOCEXCL:
2821	case TIOCNXCL:
2822	case TIOCVHANGUP:
2823	case TIOCSBRK:
2824	case TIOCCBRK:
2825	case TCSBRK:
2826	case TCSBRKP:
2827	case TCFLSH:
2828	case TIOCGPTPEER:
2829	case TIOCNOTTY:
2830	case TIOCSCTTY:
2831	case TCXONC:
2832	case TIOCMIWAIT:
2833	case TIOCSERCONFIG:
2834		return tty_ioctl(file, cmd, arg);
2835	}
2836
2837	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2838		return -EINVAL;
2839
2840	switch (cmd) {
2841	case TIOCSSERIAL:
2842		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2843	case TIOCGSERIAL:
2844		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2845	}
2846	if (tty->ops->compat_ioctl) {
2847		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2848		if (retval != -ENOIOCTLCMD)
2849			return retval;
2850	}
2851
2852	ld = tty_ldisc_ref_wait(tty);
2853	if (!ld)
2854		return hung_up_tty_compat_ioctl(file, cmd, arg);
2855	if (ld->ops->compat_ioctl)
2856		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2857	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2858		retval = ld->ops->ioctl(tty, file,
2859				(unsigned long)compat_ptr(cmd), arg);
2860	tty_ldisc_deref(ld);
2861
2862	return retval;
2863}
2864#endif
2865
2866static int this_tty(const void *t, struct file *file, unsigned fd)
2867{
2868	if (likely(file->f_op->read != tty_read))
2869		return 0;
2870	return file_tty(file) != t ? 0 : fd + 1;
2871}
2872	
2873/*
2874 * This implements the "Secure Attention Key" ---  the idea is to
2875 * prevent trojan horses by killing all processes associated with this
2876 * tty when the user hits the "Secure Attention Key".  Required for
2877 * super-paranoid applications --- see the Orange Book for more details.
2878 *
2879 * This code could be nicer; ideally it should send a HUP, wait a few
2880 * seconds, then send a INT, and then a KILL signal.  But you then
2881 * have to coordinate with the init process, since all processes associated
2882 * with the current tty must be dead before the new getty is allowed
2883 * to spawn.
2884 *
2885 * Now, if it would be correct ;-/ The current code has a nasty hole -
2886 * it doesn't catch files in flight. We may send the descriptor to ourselves
2887 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2888 *
2889 * Nasty bug: do_SAK is being called in interrupt context.  This can
2890 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2891 */
2892void __do_SAK(struct tty_struct *tty)
2893{
2894#ifdef TTY_SOFT_SAK
2895	tty_hangup(tty);
2896#else
2897	struct task_struct *g, *p;
2898	struct pid *session;
2899	int		i;
 
 
2900
2901	if (!tty)
2902		return;
2903	session = tty->session;
2904
2905	tty_ldisc_flush(tty);
2906
2907	tty_driver_flush_buffer(tty);
2908
2909	read_lock(&tasklist_lock);
2910	/* Kill the entire session */
2911	do_each_pid_task(session, PIDTYPE_SID, p) {
2912		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2913			   task_pid_nr(p), p->comm);
2914		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
2915	} while_each_pid_task(session, PIDTYPE_SID, p);
2916
2917	/* Now kill any processes that happen to have the tty open */
 
2918	do_each_thread(g, p) {
2919		if (p->signal->tty == tty) {
2920			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2921				   task_pid_nr(p), p->comm);
2922			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
2923			continue;
2924		}
2925		task_lock(p);
2926		i = iterate_fd(p->files, 0, this_tty, tty);
2927		if (i != 0) {
2928			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2929				   task_pid_nr(p), p->comm, i - 1);
2930			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931		}
2932		task_unlock(p);
2933	} while_each_thread(g, p);
2934	read_unlock(&tasklist_lock);
2935#endif
2936}
2937
2938static void do_SAK_work(struct work_struct *work)
2939{
2940	struct tty_struct *tty =
2941		container_of(work, struct tty_struct, SAK_work);
2942	__do_SAK(tty);
2943}
2944
2945/*
2946 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2947 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2948 * the values which we write to it will be identical to the values which it
2949 * already has. --akpm
2950 */
2951void do_SAK(struct tty_struct *tty)
2952{
2953	if (!tty)
2954		return;
2955	schedule_work(&tty->SAK_work);
2956}
2957
2958EXPORT_SYMBOL(do_SAK);
2959
 
 
 
 
 
 
2960/* Must put_device() after it's unused! */
2961static struct device *tty_get_device(struct tty_struct *tty)
2962{
2963	dev_t devt = tty_devnum(tty);
2964	return class_find_device_by_devt(tty_class, devt);
2965}
2966
2967
2968/**
2969 *	alloc_tty_struct
 
2970 *
2971 *	This subroutine allocates and initializes a tty structure.
 
2972 *
2973 *	Locking: none - tty in question is not exposed at this point
2974 */
2975
2976struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
2977{
2978	struct tty_struct *tty;
2979
2980	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2981	if (!tty)
2982		return NULL;
2983
2984	kref_init(&tty->kref);
2985	tty->magic = TTY_MAGIC;
2986	if (tty_ldisc_init(tty)) {
2987		kfree(tty);
2988		return NULL;
2989	}
2990	tty->session = NULL;
2991	tty->pgrp = NULL;
2992	mutex_init(&tty->legacy_mutex);
2993	mutex_init(&tty->throttle_mutex);
2994	init_rwsem(&tty->termios_rwsem);
2995	mutex_init(&tty->winsize_mutex);
2996	init_ldsem(&tty->ldisc_sem);
2997	init_waitqueue_head(&tty->write_wait);
2998	init_waitqueue_head(&tty->read_wait);
2999	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3000	mutex_init(&tty->atomic_write_lock);
 
 
 
3001	spin_lock_init(&tty->ctrl_lock);
3002	spin_lock_init(&tty->flow_lock);
3003	spin_lock_init(&tty->files_lock);
3004	INIT_LIST_HEAD(&tty->tty_files);
3005	INIT_WORK(&tty->SAK_work, do_SAK_work);
3006
3007	tty->driver = driver;
3008	tty->ops = driver->ops;
3009	tty->index = idx;
3010	tty_line_name(driver, idx, tty->name);
3011	tty->dev = tty_get_device(tty);
 
3012
3013	return tty;
 
 
 
 
 
 
 
 
 
 
 
3014}
3015
3016/**
3017 *	tty_put_char	-	write one character to a tty
3018 *	@tty: tty
3019 *	@ch: character
3020 *
3021 *	Write one byte to the tty using the provided put_char method
3022 *	if present. Returns the number of characters successfully output.
3023 *
3024 *	Note: the specific put_char operation in the driver layer may go
3025 *	away soon. Don't call it directly, use this method
3026 */
3027
3028int tty_put_char(struct tty_struct *tty, unsigned char ch)
3029{
3030	if (tty->ops->put_char)
3031		return tty->ops->put_char(tty, ch);
3032	return tty->ops->write(tty, &ch, 1);
3033}
3034EXPORT_SYMBOL_GPL(tty_put_char);
3035
3036struct class *tty_class;
3037
3038static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3039		unsigned int index, unsigned int count)
3040{
3041	int err;
3042
3043	/* init here, since reused cdevs cause crashes */
3044	driver->cdevs[index] = cdev_alloc();
3045	if (!driver->cdevs[index])
3046		return -ENOMEM;
3047	driver->cdevs[index]->ops = &tty_fops;
3048	driver->cdevs[index]->owner = driver->owner;
3049	err = cdev_add(driver->cdevs[index], dev, count);
3050	if (err)
3051		kobject_put(&driver->cdevs[index]->kobj);
3052	return err;
3053}
3054
3055/**
3056 *	tty_register_device - register a tty device
3057 *	@driver: the tty driver that describes the tty device
3058 *	@index: the index in the tty driver for this tty device
3059 *	@device: a struct device that is associated with this tty device.
3060 *		This field is optional, if there is no known struct device
3061 *		for this tty device it can be set to NULL safely.
3062 *
3063 *	Returns a pointer to the struct device for this tty device
3064 *	(or ERR_PTR(-EFOO) on error).
3065 *
3066 *	This call is required to be made to register an individual tty device
3067 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3068 *	that bit is not set, this function should not be called by a tty
3069 *	driver.
3070 *
3071 *	Locking: ??
3072 */
3073
3074struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3075				   struct device *device)
3076{
3077	return tty_register_device_attr(driver, index, device, NULL, NULL);
3078}
3079EXPORT_SYMBOL(tty_register_device);
3080
3081static void tty_device_create_release(struct device *dev)
3082{
3083	dev_dbg(dev, "releasing...\n");
3084	kfree(dev);
3085}
3086
3087/**
3088 *	tty_register_device_attr - register a tty device
3089 *	@driver: the tty driver that describes the tty device
3090 *	@index: the index in the tty driver for this tty device
3091 *	@device: a struct device that is associated with this tty device.
3092 *		This field is optional, if there is no known struct device
3093 *		for this tty device it can be set to NULL safely.
3094 *	@drvdata: Driver data to be set to device.
3095 *	@attr_grp: Attribute group to be set on device.
3096 *
3097 *	Returns a pointer to the struct device for this tty device
3098 *	(or ERR_PTR(-EFOO) on error).
3099 *
3100 *	This call is required to be made to register an individual tty device
3101 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102 *	that bit is not set, this function should not be called by a tty
3103 *	driver.
3104 *
3105 *	Locking: ??
3106 */
3107struct device *tty_register_device_attr(struct tty_driver *driver,
3108				   unsigned index, struct device *device,
3109				   void *drvdata,
3110				   const struct attribute_group **attr_grp)
3111{
3112	char name[64];
3113	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3114	struct ktermios *tp;
3115	struct device *dev;
3116	int retval;
3117
3118	if (index >= driver->num) {
3119		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3120		       driver->name, index);
3121		return ERR_PTR(-EINVAL);
3122	}
3123
3124	if (driver->type == TTY_DRIVER_TYPE_PTY)
3125		pty_line_name(driver, index, name);
3126	else
3127		tty_line_name(driver, index, name);
3128
3129	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3130	if (!dev)
3131		return ERR_PTR(-ENOMEM);
3132
3133	dev->devt = devt;
3134	dev->class = tty_class;
3135	dev->parent = device;
3136	dev->release = tty_device_create_release;
3137	dev_set_name(dev, "%s", name);
3138	dev->groups = attr_grp;
3139	dev_set_drvdata(dev, drvdata);
3140
3141	dev_set_uevent_suppress(dev, 1);
3142
3143	retval = device_register(dev);
3144	if (retval)
3145		goto err_put;
3146
3147	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3148		/*
3149		 * Free any saved termios data so that the termios state is
3150		 * reset when reusing a minor number.
3151		 */
3152		tp = driver->termios[index];
3153		if (tp) {
3154			driver->termios[index] = NULL;
3155			kfree(tp);
3156		}
3157
3158		retval = tty_cdev_add(driver, devt, index, 1);
3159		if (retval)
3160			goto err_del;
3161	}
3162
3163	dev_set_uevent_suppress(dev, 0);
3164	kobject_uevent(&dev->kobj, KOBJ_ADD);
3165
3166	return dev;
3167
3168err_del:
3169	device_del(dev);
3170err_put:
3171	put_device(dev);
3172
3173	return ERR_PTR(retval);
3174}
3175EXPORT_SYMBOL_GPL(tty_register_device_attr);
3176
3177/**
3178 * 	tty_unregister_device - unregister a tty device
3179 * 	@driver: the tty driver that describes the tty device
3180 * 	@index: the index in the tty driver for this tty device
3181 *
3182 * 	If a tty device is registered with a call to tty_register_device() then
3183 *	this function must be called when the tty device is gone.
3184 *
3185 *	Locking: ??
3186 */
3187
3188void tty_unregister_device(struct tty_driver *driver, unsigned index)
3189{
3190	device_destroy(tty_class,
3191		MKDEV(driver->major, driver->minor_start) + index);
3192	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3193		cdev_del(driver->cdevs[index]);
3194		driver->cdevs[index] = NULL;
3195	}
3196}
3197EXPORT_SYMBOL(tty_unregister_device);
3198
3199/**
3200 * __tty_alloc_driver -- allocate tty driver
3201 * @lines: count of lines this driver can handle at most
3202 * @owner: module which is responsible for this driver
3203 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3204 *
3205 * This should not be called directly, some of the provided macros should be
3206 * used instead. Use IS_ERR and friends on @retval.
3207 */
3208struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3209		unsigned long flags)
3210{
3211	struct tty_driver *driver;
3212	unsigned int cdevs = 1;
3213	int err;
3214
3215	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3216		return ERR_PTR(-EINVAL);
3217
3218	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3219	if (!driver)
3220		return ERR_PTR(-ENOMEM);
3221
3222	kref_init(&driver->kref);
3223	driver->magic = TTY_DRIVER_MAGIC;
3224	driver->num = lines;
3225	driver->owner = owner;
3226	driver->flags = flags;
3227
3228	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3229		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3230				GFP_KERNEL);
3231		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3232				GFP_KERNEL);
3233		if (!driver->ttys || !driver->termios) {
3234			err = -ENOMEM;
3235			goto err_free_all;
3236		}
3237	}
3238
3239	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3240		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3241				GFP_KERNEL);
3242		if (!driver->ports) {
3243			err = -ENOMEM;
3244			goto err_free_all;
3245		}
3246		cdevs = lines;
3247	}
3248
3249	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3250	if (!driver->cdevs) {
3251		err = -ENOMEM;
3252		goto err_free_all;
3253	}
3254
3255	return driver;
3256err_free_all:
3257	kfree(driver->ports);
3258	kfree(driver->ttys);
3259	kfree(driver->termios);
3260	kfree(driver->cdevs);
3261	kfree(driver);
3262	return ERR_PTR(err);
3263}
3264EXPORT_SYMBOL(__tty_alloc_driver);
3265
3266static void destruct_tty_driver(struct kref *kref)
3267{
3268	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3269	int i;
3270	struct ktermios *tp;
 
3271
3272	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3273		for (i = 0; i < driver->num; i++) {
3274			tp = driver->termios[i];
3275			if (tp) {
3276				driver->termios[i] = NULL;
3277				kfree(tp);
3278			}
3279			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3280				tty_unregister_device(driver, i);
3281		}
 
3282		proc_tty_unregister_driver(driver);
3283		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3284			cdev_del(driver->cdevs[0]);
 
 
3285	}
3286	kfree(driver->cdevs);
3287	kfree(driver->ports);
3288	kfree(driver->termios);
3289	kfree(driver->ttys);
3290	kfree(driver);
3291}
3292
3293void tty_driver_kref_put(struct tty_driver *driver)
3294{
3295	kref_put(&driver->kref, destruct_tty_driver);
3296}
3297EXPORT_SYMBOL(tty_driver_kref_put);
3298
3299void tty_set_operations(struct tty_driver *driver,
3300			const struct tty_operations *op)
3301{
3302	driver->ops = op;
3303};
3304EXPORT_SYMBOL(tty_set_operations);
3305
3306void put_tty_driver(struct tty_driver *d)
3307{
3308	tty_driver_kref_put(d);
3309}
3310EXPORT_SYMBOL(put_tty_driver);
3311
3312/*
3313 * Called by a tty driver to register itself.
3314 */
3315int tty_register_driver(struct tty_driver *driver)
3316{
3317	int error;
3318	int i;
3319	dev_t dev;
 
3320	struct device *d;
3321
 
 
 
 
 
 
3322	if (!driver->major) {
3323		error = alloc_chrdev_region(&dev, driver->minor_start,
3324						driver->num, driver->name);
3325		if (!error) {
3326			driver->major = MAJOR(dev);
3327			driver->minor_start = MINOR(dev);
3328		}
3329	} else {
3330		dev = MKDEV(driver->major, driver->minor_start);
3331		error = register_chrdev_region(dev, driver->num, driver->name);
3332	}
3333	if (error < 0)
3334		goto err;
 
 
3335
3336	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3337		error = tty_cdev_add(driver, dev, 0, driver->num);
3338		if (error)
3339			goto err_unreg_char;
 
 
 
 
 
 
 
 
 
 
 
 
 
3340	}
3341
3342	mutex_lock(&tty_mutex);
3343	list_add(&driver->tty_drivers, &tty_drivers);
3344	mutex_unlock(&tty_mutex);
3345
3346	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3347		for (i = 0; i < driver->num; i++) {
3348			d = tty_register_device(driver, i, NULL);
3349			if (IS_ERR(d)) {
3350				error = PTR_ERR(d);
3351				goto err_unreg_devs;
3352			}
3353		}
3354	}
3355	proc_tty_register_driver(driver);
3356	driver->flags |= TTY_DRIVER_INSTALLED;
3357	return 0;
3358
3359err_unreg_devs:
3360	for (i--; i >= 0; i--)
3361		tty_unregister_device(driver, i);
3362
3363	mutex_lock(&tty_mutex);
3364	list_del(&driver->tty_drivers);
3365	mutex_unlock(&tty_mutex);
3366
3367err_unreg_char:
3368	unregister_chrdev_region(dev, driver->num);
3369err:
 
 
3370	return error;
3371}
 
3372EXPORT_SYMBOL(tty_register_driver);
3373
3374/*
3375 * Called by a tty driver to unregister itself.
3376 */
3377int tty_unregister_driver(struct tty_driver *driver)
3378{
3379#if 0
3380	/* FIXME */
3381	if (driver->refcount)
3382		return -EBUSY;
3383#endif
3384	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3385				driver->num);
3386	mutex_lock(&tty_mutex);
3387	list_del(&driver->tty_drivers);
3388	mutex_unlock(&tty_mutex);
3389	return 0;
3390}
3391
3392EXPORT_SYMBOL(tty_unregister_driver);
3393
3394dev_t tty_devnum(struct tty_struct *tty)
3395{
3396	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3397}
3398EXPORT_SYMBOL(tty_devnum);
3399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400void tty_default_fops(struct file_operations *fops)
3401{
3402	*fops = tty_fops;
3403}
3404
3405static char *tty_devnode(struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406{
3407	if (!mode)
3408		return NULL;
3409	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3410	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3411		*mode = 0666;
3412	return NULL;
3413}
3414
3415static int __init tty_class_init(void)
3416{
3417	tty_class = class_create(THIS_MODULE, "tty");
3418	if (IS_ERR(tty_class))
3419		return PTR_ERR(tty_class);
3420	tty_class->devnode = tty_devnode;
3421	return 0;
3422}
3423
3424postcore_initcall(tty_class_init);
3425
3426/* 3/2004 jmc: why do these devices exist? */
3427static struct cdev tty_cdev, console_cdev;
3428
3429static ssize_t show_cons_active(struct device *dev,
3430				struct device_attribute *attr, char *buf)
3431{
3432	struct console *cs[16];
3433	int i = 0;
3434	struct console *c;
3435	ssize_t count = 0;
3436
3437	console_lock();
3438	for_each_console(c) {
3439		if (!c->device)
3440			continue;
3441		if (!c->write)
3442			continue;
3443		if ((c->flags & CON_ENABLED) == 0)
3444			continue;
3445		cs[i++] = c;
3446		if (i >= ARRAY_SIZE(cs))
3447			break;
3448	}
3449	while (i--) {
3450		int index = cs[i]->index;
3451		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3452
3453		/* don't resolve tty0 as some programs depend on it */
3454		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3455			count += tty_line_name(drv, index, buf + count);
3456		else
3457			count += sprintf(buf + count, "%s%d",
3458					 cs[i]->name, cs[i]->index);
3459
3460		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3461	}
3462	console_unlock();
3463
3464	return count;
3465}
3466static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3467
3468static struct attribute *cons_dev_attrs[] = {
3469	&dev_attr_active.attr,
3470	NULL
3471};
3472
3473ATTRIBUTE_GROUPS(cons_dev);
3474
3475static struct device *consdev;
3476
3477void console_sysfs_notify(void)
3478{
3479	if (consdev)
3480		sysfs_notify(&consdev->kobj, NULL, "active");
3481}
3482
3483/*
3484 * Ok, now we can initialize the rest of the tty devices and can count
3485 * on memory allocations, interrupts etc..
3486 */
3487int __init tty_init(void)
3488{
3489	tty_sysctl_init();
3490	cdev_init(&tty_cdev, &tty_fops);
3491	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3492	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3493		panic("Couldn't register /dev/tty driver\n");
3494	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3495
3496	cdev_init(&console_cdev, &console_fops);
3497	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3498	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3499		panic("Couldn't register /dev/console driver\n");
3500	consdev = device_create_with_groups(tty_class, NULL,
3501					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3502					    cons_dev_groups, "console");
3503	if (IS_ERR(consdev))
3504		consdev = NULL;
 
 
3505
3506#ifdef CONFIG_VT
3507	vty_init(&console_fops);
3508#endif
3509	return 0;
3510}
3511