Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL		0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C		0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX	0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX	1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  91# define DSI_TXPKT1C_CMD_EN		BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H		0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT	0
 102
 103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H		0x14
 105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 106# define DSI_RXPKT1H_DET_ERR		BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 108# define DSI_RXPKT1H_COR_ERR		BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 121
 122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H		0x18
 124# define DSI_RXPKT1H_DET_ERR		BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 126# define DSI_RXPKT1H_COR_ERR		BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT		0
 132
 133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO	0x1c
 135
 136#define DSI0_DISP0_CTRL		0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 141# define DSI_DISP0_LP_STOP_DISABLE	0
 142# define DSI_DISP0_LP_STOP_PERLINE	1
 143# define DSI_DISP0_LP_STOP_PERFRAME	2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL		BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL		BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL		BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL		BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT	5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END		BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT	2
 161# define DSI_PFORMAT_RGB565		0
 162# define DSI_PFORMAT_RGB666_PACKED	1
 163# define DSI_PFORMAT_RGB666		2
 164# define DSI_PFORMAT_RGB888		3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE		BIT(1)
 167# define DSI_DISP0_ENABLE		BIT(0)
 168
 169#define DSI0_DISP1_CTRL		0x1c
 170#define DSI1_DISP1_CTRL		0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT	1
 174# define DSI_DISP1_PFORMAT_16BIT	0
 175# define DSI_DISP1_PFORMAT_24BIT	1
 176# define DSI_DISP1_PFORMAT_32BIT_LE	2
 177# define DSI_DISP1_PFORMAT_32BIT_BE	3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE		BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT		0x24
 185#define DSI0_INT_EN		0x28
 186# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 187# define DSI1_INT_PHY_D3_STOP		BIT(29)
 188# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 189# define DSI1_INT_PHY_D2_STOP		BIT(27)
 190# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 191# define DSI1_INT_PHY_D1_STOP		BIT(25)
 192# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 193# define DSI1_INT_PHY_D0_STOP		BIT(23)
 194# define DSI1_INT_FIFO_ERR		BIT(22)
 195# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 196# define DSI1_INT_PHY_RXLPDT		BIT(20)
 197# define DSI1_INT_PHY_RXTRIG		BIT(19)
 198# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 199# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 200
 201/* Signaled when the clock lane enters the given state. */
 202# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 203# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 204# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 205
 206/* Signaled on timeouts */
 207# define DSI1_INT_PR_TO			BIT(13)
 208# define DSI1_INT_TA_TO			BIT(12)
 209# define DSI1_INT_LPRX_TO		BIT(11)
 210# define DSI1_INT_HSTX_TO		BIT(10)
 211
 212/* Contention on a line when trying to drive the line low */
 213# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 214# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 215
 216/* Control error: incorrect line state sequence on data lane 0. */
 217# define DSI1_INT_ERR_CONTROL		BIT(7)
 218/* LPDT synchronization error (bits received not a multiple of 8. */
 219
 220# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 221/* Signaled after receiving an error packet from the display in
 222 * response to a read.
 223 */
 224# define DSI1_INT_RXPKT2		BIT(5)
 225/* Signaled after receiving a packet.  The header and optional short
 226 * response will be in RXPKT1H, and a long response will be in the
 227 * RXPKT_FIFO.
 228 */
 229# define DSI1_INT_RXPKT1		BIT(4)
 230# define DSI1_INT_TXPKT2_DONE		BIT(3)
 231# define DSI1_INT_TXPKT2_END		BIT(2)
 232/* Signaled after all repeats of TXPKT1 are transferred. */
 233# define DSI1_INT_TXPKT1_DONE		BIT(1)
 234/* Signaled after each TXPKT1 repeat is scheduled. */
 235# define DSI1_INT_TXPKT1_END		BIT(0)
 236
 237#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 238					 DSI1_INT_ERR_CONTROL |	 \
 239					 DSI1_INT_ERR_CONT_LP0 | \
 240					 DSI1_INT_ERR_CONT_LP1 | \
 241					 DSI1_INT_HSTX_TO |	 \
 242					 DSI1_INT_LPRX_TO |	 \
 243					 DSI1_INT_TA_TO |	 \
 244					 DSI1_INT_PR_TO)
 245
 246#define DSI0_STAT		0x2c
 247#define DSI0_HSTX_TO_CNT	0x30
 248#define DSI0_LPRX_TO_CNT	0x34
 249#define DSI0_TA_TO_CNT		0x38
 250#define DSI0_PR_TO_CNT		0x3c
 251#define DSI0_PHYC		0x40
 252# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 254# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 255# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 257# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 258# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 259# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 260# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 261# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 262# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 263# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 264# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 265# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 266# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 267# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 268# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 269# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 270# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 271
 272#define DSI0_HS_CLT0		0x44
 273#define DSI0_HS_CLT1		0x48
 274#define DSI0_HS_CLT2		0x4c
 275#define DSI0_HS_DLT3		0x50
 276#define DSI0_HS_DLT4		0x54
 277#define DSI0_HS_DLT5		0x58
 278#define DSI0_HS_DLT6		0x5c
 279#define DSI0_HS_DLT7		0x60
 280
 281#define DSI0_PHY_AFEC0		0x64
 282# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 283# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 284# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 301# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 302# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 303# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 304# define DSI1_PHY_AFEC0_RESET			BIT(13)
 305# define DSI1_PHY_AFEC0_PD			BIT(12)
 306# define DSI0_PHY_AFEC0_RESET			BIT(11)
 307# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 308# define DSI0_PHY_AFEC0_PD			BIT(10)
 309# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
 310# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 311# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 312# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 313# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
 314# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 315# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 316# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 317# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 318
 319#define DSI0_PHY_AFEC1		0x68
 320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 326
 327#define DSI0_TST_SEL		0x6c
 328#define DSI0_TST_MON		0x70
 329#define DSI0_ID			0x74
 330# define DSI_ID_VALUE		0x00647369
 331
 332#define DSI1_CTRL		0x00
 333# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 334# define DSI_CTRL_HS_CLKC_SHIFT		14
 335# define DSI_CTRL_HS_CLKC_BYTE		0
 336# define DSI_CTRL_HS_CLKC_DDR2		1
 337# define DSI_CTRL_HS_CLKC_DDR		2
 338
 339# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 340# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 341# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 342# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 343# define DSI_CTRL_CAL_BYTE		BIT(9)
 344# define DSI_CTRL_INV_BYTE		BIT(8)
 345# define DSI_CTRL_CLR_LDF		BIT(7)
 346# define DSI0_CTRL_CLR_PBCF		BIT(6)
 347# define DSI1_CTRL_CLR_RXF		BIT(6)
 348# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 349# define DSI1_CTRL_CLR_PDF		BIT(5)
 350# define DSI0_CTRL_CLR_PDF		BIT(4)
 351# define DSI1_CTRL_CLR_CDF		BIT(4)
 352# define DSI0_CTRL_CLR_CDF		BIT(3)
 353# define DSI0_CTRL_CTRL2		BIT(2)
 354# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 355# define DSI0_CTRL_CTRL1		BIT(1)
 356# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 357# define DSI0_CTRL_CTRL0		BIT(0)
 358# define DSI1_CTRL_EN			BIT(0)
 359# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 360					 DSI0_CTRL_CLR_PBCF | \
 361					 DSI0_CTRL_CLR_CPBCF |	\
 362					 DSI0_CTRL_CLR_PDF | \
 363					 DSI0_CTRL_CLR_CDF)
 364# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 365					 DSI1_CTRL_CLR_RXF | \
 366					 DSI1_CTRL_CLR_PDF | \
 367					 DSI1_CTRL_CLR_CDF)
 368
 369#define DSI1_TXPKT2C		0x0c
 370#define DSI1_TXPKT2H		0x10
 371#define DSI1_TXPKT_PIX_FIFO	0x20
 372#define DSI1_RXPKT_FIFO		0x24
 373#define DSI1_DISP0_CTRL		0x28
 374#define DSI1_INT_STAT		0x30
 375#define DSI1_INT_EN		0x34
 376/* State reporting bits.  These mostly behave like INT_STAT, where
 377 * writing a 1 clears the bit.
 378 */
 379#define DSI1_STAT		0x38
 380# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 381# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 382# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 383# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 384# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 385# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 386# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 387# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 388# define DSI1_STAT_FIFO_ERR		BIT(23)
 389# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 390# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 391# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 392/* Set when in forward direction */
 393# define DSI1_STAT_PHY_DIR		BIT(19)
 394# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 395# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 396# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 397# define DSI1_STAT_PR_TO		BIT(15)
 398# define DSI1_STAT_TA_TO		BIT(14)
 399# define DSI1_STAT_LPRX_TO		BIT(13)
 400# define DSI1_STAT_HSTX_TO		BIT(12)
 401# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 402# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 403# define DSI1_STAT_ERR_CONTROL		BIT(9)
 404# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 405# define DSI1_STAT_RXPKT2		BIT(7)
 406# define DSI1_STAT_RXPKT1		BIT(6)
 407# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 408# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 409# define DSI1_STAT_TXPKT2_END		BIT(3)
 410# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 411# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 412# define DSI1_STAT_TXPKT1_END		BIT(0)
 413
 414#define DSI1_HSTX_TO_CNT	0x3c
 415#define DSI1_LPRX_TO_CNT	0x40
 416#define DSI1_TA_TO_CNT		0x44
 417#define DSI1_PR_TO_CNT		0x48
 418#define DSI1_PHYC		0x4c
 419
 420#define DSI1_HS_CLT0		0x50
 421# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 422# define DSI_HS_CLT0_CZERO_SHIFT	18
 423# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 424# define DSI_HS_CLT0_CPRE_SHIFT		9
 425# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 426# define DSI_HS_CLT0_CPREP_SHIFT	0
 427
 428#define DSI1_HS_CLT1		0x54
 429# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 430# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 431# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 432# define DSI_HS_CLT1_CPOST_SHIFT	0
 433
 434#define DSI1_HS_CLT2		0x58
 435# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 436# define DSI_HS_CLT2_WUP_SHIFT		0
 437
 438#define DSI1_HS_DLT3		0x5c
 439# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 440# define DSI_HS_DLT3_EXIT_SHIFT		18
 441# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 442# define DSI_HS_DLT3_ZERO_SHIFT		9
 443# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 444# define DSI_HS_DLT3_PRE_SHIFT		0
 445
 446#define DSI1_HS_DLT4		0x60
 447# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 448# define DSI_HS_DLT4_ANLAT_SHIFT	18
 449# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 450# define DSI_HS_DLT4_TRAIL_SHIFT	9
 451# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 452# define DSI_HS_DLT4_LPX_SHIFT		0
 453
 454#define DSI1_HS_DLT5		0x64
 455# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 456# define DSI_HS_DLT5_INIT_SHIFT		0
 457
 458#define DSI1_HS_DLT6		0x68
 459# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 460# define DSI_HS_DLT6_TA_GET_SHIFT	24
 461# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 462# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 463# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 464# define DSI_HS_DLT6_TA_GO_SHIFT	8
 465# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 466# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 467
 468#define DSI1_HS_DLT7		0x6c
 469# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 470# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 471
 472#define DSI1_PHY_AFEC0		0x70
 473
 474#define DSI1_PHY_AFEC1		0x74
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 485
 486#define DSI1_TST_SEL		0x78
 487#define DSI1_TST_MON		0x7c
 488#define DSI1_PHY_TST1		0x80
 489#define DSI1_PHY_TST2		0x84
 490#define DSI1_PHY_FIFO_STAT	0x88
 491/* Actually, all registers in the range that aren't otherwise claimed
 492 * will return the ID.
 493 */
 494#define DSI1_ID			0x8c
 495
 496/* General DSI hardware state. */
 497struct vc4_dsi {
 498	struct platform_device *pdev;
 499
 500	struct mipi_dsi_host dsi_host;
 501	struct drm_encoder *encoder;
 502	struct drm_bridge *bridge;
 503	struct list_head bridge_chain;
 504
 505	void __iomem *regs;
 506
 507	struct dma_chan *reg_dma_chan;
 508	dma_addr_t reg_dma_paddr;
 509	u32 *reg_dma_mem;
 510	dma_addr_t reg_paddr;
 511
 512	/* Whether we're on bcm2835's DSI0 or DSI1. */
 513	int port;
 514
 515	/* DSI channel for the panel we're connected to. */
 516	u32 channel;
 517	u32 lanes;
 518	u32 format;
 519	u32 divider;
 520	u32 mode_flags;
 521
 522	/* Input clock from CPRMAN to the digital PHY, for the DSI
 523	 * escape clock.
 524	 */
 525	struct clk *escape_clock;
 526
 527	/* Input clock to the analog PHY, used to generate the DSI bit
 528	 * clock.
 529	 */
 530	struct clk *pll_phy_clock;
 531
 532	/* HS Clocks generated within the DSI analog PHY. */
 533	struct clk_fixed_factor phy_clocks[3];
 534
 535	struct clk_hw_onecell_data *clk_onecell;
 536
 537	/* Pixel clock output to the pixelvalve, generated from the HS
 538	 * clock.
 539	 */
 540	struct clk *pixel_clock;
 541
 542	struct completion xfer_completion;
 543	int xfer_result;
 544
 545	struct debugfs_regset32 regset;
 546};
 547
 548#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 549
 550static inline void
 551dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 552{
 553	struct dma_chan *chan = dsi->reg_dma_chan;
 554	struct dma_async_tx_descriptor *tx;
 555	dma_cookie_t cookie;
 556	int ret;
 557
 558	/* DSI0 should be able to write normally. */
 559	if (!chan) {
 560		writel(val, dsi->regs + offset);
 561		return;
 562	}
 563
 564	*dsi->reg_dma_mem = val;
 565
 566	tx = chan->device->device_prep_dma_memcpy(chan,
 567						  dsi->reg_paddr + offset,
 568						  dsi->reg_dma_paddr,
 569						  4, 0);
 570	if (!tx) {
 571		DRM_ERROR("Failed to set up DMA register write\n");
 572		return;
 573	}
 574
 575	cookie = tx->tx_submit(tx);
 576	ret = dma_submit_error(cookie);
 577	if (ret) {
 578		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 579		return;
 580	}
 581	ret = dma_sync_wait(chan, cookie);
 582	if (ret)
 583		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 584}
 585
 586#define DSI_READ(offset) readl(dsi->regs + (offset))
 587#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 588#define DSI_PORT_READ(offset) \
 589	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 590#define DSI_PORT_WRITE(offset, val) \
 591	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 592#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 593
 594/* VC4 DSI encoder KMS struct */
 595struct vc4_dsi_encoder {
 596	struct vc4_encoder base;
 597	struct vc4_dsi *dsi;
 598};
 599
 600static inline struct vc4_dsi_encoder *
 601to_vc4_dsi_encoder(struct drm_encoder *encoder)
 602{
 603	return container_of(encoder, struct vc4_dsi_encoder, base.base);
 604}
 605
 606static const struct debugfs_reg32 dsi0_regs[] = {
 607	VC4_REG32(DSI0_CTRL),
 608	VC4_REG32(DSI0_STAT),
 609	VC4_REG32(DSI0_HSTX_TO_CNT),
 610	VC4_REG32(DSI0_LPRX_TO_CNT),
 611	VC4_REG32(DSI0_TA_TO_CNT),
 612	VC4_REG32(DSI0_PR_TO_CNT),
 613	VC4_REG32(DSI0_DISP0_CTRL),
 614	VC4_REG32(DSI0_DISP1_CTRL),
 615	VC4_REG32(DSI0_INT_STAT),
 616	VC4_REG32(DSI0_INT_EN),
 617	VC4_REG32(DSI0_PHYC),
 618	VC4_REG32(DSI0_HS_CLT0),
 619	VC4_REG32(DSI0_HS_CLT1),
 620	VC4_REG32(DSI0_HS_CLT2),
 621	VC4_REG32(DSI0_HS_DLT3),
 622	VC4_REG32(DSI0_HS_DLT4),
 623	VC4_REG32(DSI0_HS_DLT5),
 624	VC4_REG32(DSI0_HS_DLT6),
 625	VC4_REG32(DSI0_HS_DLT7),
 626	VC4_REG32(DSI0_PHY_AFEC0),
 627	VC4_REG32(DSI0_PHY_AFEC1),
 628	VC4_REG32(DSI0_ID),
 629};
 630
 631static const struct debugfs_reg32 dsi1_regs[] = {
 632	VC4_REG32(DSI1_CTRL),
 633	VC4_REG32(DSI1_STAT),
 634	VC4_REG32(DSI1_HSTX_TO_CNT),
 635	VC4_REG32(DSI1_LPRX_TO_CNT),
 636	VC4_REG32(DSI1_TA_TO_CNT),
 637	VC4_REG32(DSI1_PR_TO_CNT),
 638	VC4_REG32(DSI1_DISP0_CTRL),
 639	VC4_REG32(DSI1_DISP1_CTRL),
 640	VC4_REG32(DSI1_INT_STAT),
 641	VC4_REG32(DSI1_INT_EN),
 642	VC4_REG32(DSI1_PHYC),
 643	VC4_REG32(DSI1_HS_CLT0),
 644	VC4_REG32(DSI1_HS_CLT1),
 645	VC4_REG32(DSI1_HS_CLT2),
 646	VC4_REG32(DSI1_HS_DLT3),
 647	VC4_REG32(DSI1_HS_DLT4),
 648	VC4_REG32(DSI1_HS_DLT5),
 649	VC4_REG32(DSI1_HS_DLT6),
 650	VC4_REG32(DSI1_HS_DLT7),
 651	VC4_REG32(DSI1_PHY_AFEC0),
 652	VC4_REG32(DSI1_PHY_AFEC1),
 653	VC4_REG32(DSI1_ID),
 654};
 655
 656static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 657{
 658	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 659
 660	if (latch)
 661		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 662	else
 663		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 664
 665	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 666}
 667
 668/* Enters or exits Ultra Low Power State. */
 669static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 670{
 671	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 672	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 673			 DSI_PHYC_DLANE0_ULPS |
 674			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 675			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 676			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 677	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 678			 DSI1_STAT_PHY_D0_ULPS |
 679			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 680			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 681			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 682	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 683			 DSI1_STAT_PHY_D0_STOP |
 684			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 685			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 686			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 687	int ret;
 688	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 689				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 690
 691	if (ulps == ulps_currently_enabled)
 692		return;
 693
 694	DSI_PORT_WRITE(STAT, stat_ulps);
 695	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 696	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 697	if (ret) {
 698		dev_warn(&dsi->pdev->dev,
 699			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 700			 DSI_PORT_READ(STAT));
 701		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 702		vc4_dsi_latch_ulps(dsi, false);
 703		return;
 704	}
 705
 706	/* The DSI module can't be disabled while the module is
 707	 * generating ULPS state.  So, to be able to disable the
 708	 * module, we have the AFE latch the ULPS state and continue
 709	 * on to having the module enter STOP.
 710	 */
 711	vc4_dsi_latch_ulps(dsi, ulps);
 712
 713	DSI_PORT_WRITE(STAT, stat_stop);
 714	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 715	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 716	if (ret) {
 717		dev_warn(&dsi->pdev->dev,
 718			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 719			 DSI_PORT_READ(STAT));
 720		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 721		return;
 722	}
 723}
 724
 725static u32
 726dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 727{
 728	/* The HS timings have to be rounded up to a multiple of 8
 729	 * because we're using the byte clock.
 730	 */
 731	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 732}
 733
 734/* ESC always runs at 100Mhz. */
 735#define ESC_TIME_NS 10
 736
 737static u32
 738dsi_esc_timing(u32 ns)
 739{
 740	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 741}
 742
 743static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 744{
 745	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 746	struct vc4_dsi *dsi = vc4_encoder->dsi;
 747	struct device *dev = &dsi->pdev->dev;
 748	struct drm_bridge *iter;
 749
 750	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
 751		if (iter->funcs->disable)
 752			iter->funcs->disable(iter);
 753	}
 754
 755	vc4_dsi_ulps(dsi, true);
 756
 757	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
 758		if (iter->funcs->post_disable)
 759			iter->funcs->post_disable(iter);
 760	}
 761
 762	clk_disable_unprepare(dsi->pll_phy_clock);
 763	clk_disable_unprepare(dsi->escape_clock);
 764	clk_disable_unprepare(dsi->pixel_clock);
 765
 766	pm_runtime_put(dev);
 767}
 768
 769/* Extends the mode's blank intervals to handle BCM2835's integer-only
 770 * DSI PLL divider.
 771 *
 772 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 773 * driver since most peripherals are hanging off of the PLLD_PER
 774 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 775 * the pixel clock), only has an integer divider off of DSI.
 776 *
 777 * To get our panel mode to refresh at the expected 60Hz, we need to
 778 * extend the horizontal blank time.  This means we drive a
 779 * higher-than-expected clock rate to the panel, but that's what the
 780 * firmware does too.
 781 */
 782static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 783				       const struct drm_display_mode *mode,
 784				       struct drm_display_mode *adjusted_mode)
 785{
 786	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 787	struct vc4_dsi *dsi = vc4_encoder->dsi;
 788	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 789	unsigned long parent_rate = clk_get_rate(phy_parent);
 790	unsigned long pixel_clock_hz = mode->clock * 1000;
 791	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 792	int divider;
 793
 794	/* Find what divider gets us a faster clock than the requested
 795	 * pixel clock.
 796	 */
 797	for (divider = 1; divider < 8; divider++) {
 798		if (parent_rate / divider < pll_clock) {
 799			divider--;
 800			break;
 801		}
 802	}
 803
 804	/* Now that we've picked a PLL divider, calculate back to its
 805	 * pixel clock.
 806	 */
 807	pll_clock = parent_rate / divider;
 808	pixel_clock_hz = pll_clock / dsi->divider;
 809
 810	adjusted_mode->clock = pixel_clock_hz / 1000;
 811
 812	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 813	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 814				mode->clock;
 815	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 816	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 817
 818	return true;
 819}
 820
 821static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 822{
 823	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 824	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 825	struct vc4_dsi *dsi = vc4_encoder->dsi;
 826	struct device *dev = &dsi->pdev->dev;
 827	bool debug_dump_regs = false;
 828	struct drm_bridge *iter;
 829	unsigned long hs_clock;
 830	u32 ui_ns;
 831	/* Minimum LP state duration in escape clock cycles. */
 832	u32 lpx = dsi_esc_timing(60);
 833	unsigned long pixel_clock_hz = mode->clock * 1000;
 834	unsigned long dsip_clock;
 835	unsigned long phy_clock;
 836	int ret;
 837
 838	ret = pm_runtime_get_sync(dev);
 839	if (ret) {
 840		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 841		return;
 842	}
 843
 844	if (debug_dump_regs) {
 845		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 846		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 847		drm_print_regset32(&p, &dsi->regset);
 848	}
 849
 850	/* Round up the clk_set_rate() request slightly, since
 851	 * PLLD_DSI1 is an integer divider and its rate selection will
 852	 * never round up.
 853	 */
 854	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 855	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 856	if (ret) {
 857		dev_err(&dsi->pdev->dev,
 858			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 859	}
 860
 861	/* Reset the DSI and all its fifos. */
 862	DSI_PORT_WRITE(CTRL,
 863		       DSI_CTRL_SOFT_RESET_CFG |
 864		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 865
 866	DSI_PORT_WRITE(CTRL,
 867		       DSI_CTRL_HSDT_EOT_DISABLE |
 868		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 869
 870	/* Clear all stat bits so we see what has happened during enable. */
 871	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 872
 873	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 874	if (dsi->port == 0) {
 875		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 876			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 877
 878		if (dsi->lanes < 2)
 879			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 880
 881		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 882			afec0 |= DSI0_PHY_AFEC0_RESET;
 883
 884		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 885
 886		DSI_PORT_WRITE(PHY_AFEC1,
 887			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 888			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 889			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 890	} else {
 891		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 892			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 893			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 894			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 895			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 896			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 897			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 898
 899		if (dsi->lanes < 4)
 900			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 901		if (dsi->lanes < 3)
 902			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 903		if (dsi->lanes < 2)
 904			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 905
 906		afec0 |= DSI1_PHY_AFEC0_RESET;
 907
 908		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 909
 910		DSI_PORT_WRITE(PHY_AFEC1, 0);
 911
 912		/* AFEC reset hold time */
 913		mdelay(1);
 914	}
 915
 916	ret = clk_prepare_enable(dsi->escape_clock);
 917	if (ret) {
 918		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 919		return;
 920	}
 921
 922	ret = clk_prepare_enable(dsi->pll_phy_clock);
 923	if (ret) {
 924		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 925		return;
 926	}
 927
 928	hs_clock = clk_get_rate(dsi->pll_phy_clock);
 929
 930	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 931	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
 932	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 933	 * that rate.  Separately, a value derived from PIX_CLK_DIV
 934	 * and HS_CLKC is fed into the PV to divide down to the actual
 935	 * pixel clock for pushing pixels into DSI.
 936	 */
 937	dsip_clock = phy_clock / 8;
 938	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 939	if (ret) {
 940		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 941			dsip_clock, ret);
 942	}
 943
 944	ret = clk_prepare_enable(dsi->pixel_clock);
 945	if (ret) {
 946		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 947		return;
 948	}
 949
 950	/* How many ns one DSI unit interval is.  Note that the clock
 951	 * is DDR, so there's an extra divide by 2.
 952	 */
 953	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 954
 955	DSI_PORT_WRITE(HS_CLT0,
 956		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 957				     DSI_HS_CLT0_CZERO) |
 958		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 959				     DSI_HS_CLT0_CPRE) |
 960		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 961				     DSI_HS_CLT0_CPREP));
 962
 963	DSI_PORT_WRITE(HS_CLT1,
 964		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 965				     DSI_HS_CLT1_CTRAIL) |
 966		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 967				     DSI_HS_CLT1_CPOST));
 968
 969	DSI_PORT_WRITE(HS_CLT2,
 970		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 971				     DSI_HS_CLT2_WUP));
 972
 973	DSI_PORT_WRITE(HS_DLT3,
 974		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 975				     DSI_HS_DLT3_EXIT) |
 976		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 977				     DSI_HS_DLT3_ZERO) |
 978		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 979				     DSI_HS_DLT3_PRE));
 980
 981	DSI_PORT_WRITE(HS_DLT4,
 982		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 983				     DSI_HS_DLT4_LPX) |
 984		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 985					 dsi_hs_timing(ui_ns, 60, 4)),
 986				     DSI_HS_DLT4_TRAIL) |
 987		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 988
 989	/* T_INIT is how long STOP is driven after power-up to
 990	 * indicate to the slave (also coming out of power-up) that
 991	 * master init is complete, and should be greater than the
 992	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
 993	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
 994	 * T_INIT,SLAVE, while allowing protocols on top of it to give
 995	 * greater minimums.  The vc4 firmware uses an extremely
 996	 * conservative 5ms, and we maintain that here.
 997	 */
 998	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
 999							    5 * 1000 * 1000, 0),
1000					      DSI_HS_DLT5_INIT));
1001
1002	DSI_PORT_WRITE(HS_DLT6,
1003		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1004		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1005		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1006		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1007
1008	DSI_PORT_WRITE(HS_DLT7,
1009		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1010				     DSI_HS_DLT7_LP_WUP));
1011
1012	DSI_PORT_WRITE(PHYC,
1013		       DSI_PHYC_DLANE0_ENABLE |
1014		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1015		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1016		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1017		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1018		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1019			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1020		       (dsi->port == 0 ?
1021			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1022			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1023
1024	DSI_PORT_WRITE(CTRL,
1025		       DSI_PORT_READ(CTRL) |
1026		       DSI_CTRL_CAL_BYTE);
1027
1028	/* HS timeout in HS clock cycles: disabled. */
1029	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1030	/* LP receive timeout in HS clocks. */
1031	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1032	/* Bus turnaround timeout */
1033	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1034	/* Display reset sequence timeout */
1035	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1036
1037	/* Set up DISP1 for transferring long command payloads through
1038	 * the pixfifo.
1039	 */
1040	DSI_PORT_WRITE(DISP1_CTRL,
1041		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1042				     DSI_DISP1_PFORMAT) |
1043		       DSI_DISP1_ENABLE);
1044
1045	/* Ungate the block. */
1046	if (dsi->port == 0)
1047		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1048	else
1049		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1050
1051	/* Bring AFE out of reset. */
1052	if (dsi->port == 0) {
1053	} else {
1054		DSI_PORT_WRITE(PHY_AFEC0,
1055			       DSI_PORT_READ(PHY_AFEC0) &
1056			       ~DSI1_PHY_AFEC0_RESET);
1057	}
1058
1059	vc4_dsi_ulps(dsi, false);
1060
1061	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1062		if (iter->funcs->pre_enable)
1063			iter->funcs->pre_enable(iter);
1064	}
1065
1066	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1067		DSI_PORT_WRITE(DISP0_CTRL,
1068			       VC4_SET_FIELD(dsi->divider,
1069					     DSI_DISP0_PIX_CLK_DIV) |
1070			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1071			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1072					     DSI_DISP0_LP_STOP_CTRL) |
1073			       DSI_DISP0_ST_END |
1074			       DSI_DISP0_ENABLE);
1075	} else {
1076		DSI_PORT_WRITE(DISP0_CTRL,
1077			       DSI_DISP0_COMMAND_MODE |
1078			       DSI_DISP0_ENABLE);
1079	}
1080
1081	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1082		if (iter->funcs->enable)
1083			iter->funcs->enable(iter);
1084	}
1085
1086	if (debug_dump_regs) {
1087		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1088		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1089		drm_print_regset32(&p, &dsi->regset);
1090	}
1091}
1092
1093static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1094				     const struct mipi_dsi_msg *msg)
1095{
1096	struct vc4_dsi *dsi = host_to_dsi(host);
1097	struct mipi_dsi_packet packet;
1098	u32 pkth = 0, pktc = 0;
1099	int i, ret;
1100	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1101	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1102
1103	mipi_dsi_create_packet(&packet, msg);
1104
1105	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1106	pkth |= VC4_SET_FIELD(packet.header[1] |
1107			      (packet.header[2] << 8),
1108			      DSI_TXPKT1H_BC_PARAM);
1109	if (is_long) {
1110		/* Divide data across the various FIFOs we have available.
1111		 * The command FIFO takes byte-oriented data, but is of
1112		 * limited size. The pixel FIFO (never actually used for
1113		 * pixel data in reality) is word oriented, and substantially
1114		 * larger. So, we use the pixel FIFO for most of the data,
1115		 * sending the residual bytes in the command FIFO at the start.
1116		 *
1117		 * With this arrangement, the command FIFO will never get full.
1118		 */
1119		if (packet.payload_length <= 16) {
1120			cmd_fifo_len = packet.payload_length;
1121			pix_fifo_len = 0;
1122		} else {
1123			cmd_fifo_len = (packet.payload_length %
1124					DSI_PIX_FIFO_WIDTH);
1125			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1126					DSI_PIX_FIFO_WIDTH);
1127		}
1128
1129		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1130
1131		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1132	}
1133
1134	if (msg->rx_len) {
1135		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1136				      DSI_TXPKT1C_CMD_CTRL);
1137	} else {
1138		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1139				      DSI_TXPKT1C_CMD_CTRL);
1140	}
1141
1142	for (i = 0; i < cmd_fifo_len; i++)
1143		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1144	for (i = 0; i < pix_fifo_len; i++) {
1145		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1146
1147		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1148			       pix[0] |
1149			       pix[1] << 8 |
1150			       pix[2] << 16 |
1151			       pix[3] << 24);
1152	}
1153
1154	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1155		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1156	if (is_long)
1157		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1158
1159	/* Send one copy of the packet.  Larger repeats are used for pixel
1160	 * data in command mode.
1161	 */
1162	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1163
1164	pktc |= DSI_TXPKT1C_CMD_EN;
1165	if (pix_fifo_len) {
1166		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1167				      DSI_TXPKT1C_DISPLAY_NO);
1168	} else {
1169		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1170				      DSI_TXPKT1C_DISPLAY_NO);
1171	}
1172
1173	/* Enable the appropriate interrupt for the transfer completion. */
1174	dsi->xfer_result = 0;
1175	reinit_completion(&dsi->xfer_completion);
1176	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1177	if (msg->rx_len) {
1178		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1179					DSI1_INT_PHY_DIR_RTF));
1180	} else {
1181		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1182					DSI1_INT_TXPKT1_DONE));
1183	}
1184
1185	/* Send the packet. */
1186	DSI_PORT_WRITE(TXPKT1H, pkth);
1187	DSI_PORT_WRITE(TXPKT1C, pktc);
1188
1189	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1190					 msecs_to_jiffies(1000))) {
1191		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1192		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1193			DSI_PORT_READ(INT_STAT));
1194		ret = -ETIMEDOUT;
1195	} else {
1196		ret = dsi->xfer_result;
1197	}
1198
1199	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1200
1201	if (ret)
1202		goto reset_fifo_and_return;
1203
1204	if (ret == 0 && msg->rx_len) {
1205		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1206		u8 *msg_rx = msg->rx_buf;
1207
1208		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1209			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1210						  DSI_RXPKT1H_BC_PARAM);
1211
1212			if (rxlen != msg->rx_len) {
1213				DRM_ERROR("DSI returned %db, expecting %db\n",
1214					  rxlen, (int)msg->rx_len);
1215				ret = -ENXIO;
1216				goto reset_fifo_and_return;
1217			}
1218
1219			for (i = 0; i < msg->rx_len; i++)
1220				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1221		} else {
1222			/* FINISHME: Handle AWER */
1223
1224			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1225						  DSI_RXPKT1H_SHORT_0);
1226			if (msg->rx_len > 1) {
1227				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1228							  DSI_RXPKT1H_SHORT_1);
1229			}
1230		}
1231	}
1232
1233	return ret;
1234
1235reset_fifo_and_return:
1236	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1237
1238	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1239	udelay(1);
1240	DSI_PORT_WRITE(CTRL,
1241		       DSI_PORT_READ(CTRL) |
1242		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1243
1244	DSI_PORT_WRITE(TXPKT1C, 0);
1245	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1246	return ret;
1247}
1248
1249static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1250			       struct mipi_dsi_device *device)
1251{
1252	struct vc4_dsi *dsi = host_to_dsi(host);
1253
1254	dsi->lanes = device->lanes;
1255	dsi->channel = device->channel;
1256	dsi->mode_flags = device->mode_flags;
1257
1258	switch (device->format) {
1259	case MIPI_DSI_FMT_RGB888:
1260		dsi->format = DSI_PFORMAT_RGB888;
1261		dsi->divider = 24 / dsi->lanes;
1262		break;
1263	case MIPI_DSI_FMT_RGB666:
1264		dsi->format = DSI_PFORMAT_RGB666;
1265		dsi->divider = 24 / dsi->lanes;
1266		break;
1267	case MIPI_DSI_FMT_RGB666_PACKED:
1268		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1269		dsi->divider = 18 / dsi->lanes;
1270		break;
1271	case MIPI_DSI_FMT_RGB565:
1272		dsi->format = DSI_PFORMAT_RGB565;
1273		dsi->divider = 16 / dsi->lanes;
1274		break;
1275	default:
1276		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1277			dsi->format);
1278		return 0;
1279	}
1280
1281	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1282		dev_err(&dsi->pdev->dev,
1283			"Only VIDEO mode panels supported currently.\n");
1284		return 0;
1285	}
1286
1287	return 0;
1288}
1289
1290static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1291			       struct mipi_dsi_device *device)
1292{
1293	return 0;
1294}
1295
1296static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1297	.attach = vc4_dsi_host_attach,
1298	.detach = vc4_dsi_host_detach,
1299	.transfer = vc4_dsi_host_transfer,
1300};
1301
1302static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1303	.disable = vc4_dsi_encoder_disable,
1304	.enable = vc4_dsi_encoder_enable,
1305	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1306};
1307
1308static const struct of_device_id vc4_dsi_dt_match[] = {
1309	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1310	{}
1311};
1312
1313static void dsi_handle_error(struct vc4_dsi *dsi,
1314			     irqreturn_t *ret, u32 stat, u32 bit,
1315			     const char *type)
1316{
1317	if (!(stat & bit))
1318		return;
1319
1320	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1321	*ret = IRQ_HANDLED;
1322}
1323
1324/*
1325 * Initial handler for port 1 where we need the reg_dma workaround.
1326 * The register DMA writes sleep, so we can't do it in the top half.
1327 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1328 * parent interrupt contrller until our interrupt thread is done.
1329 */
1330static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1331{
1332	struct vc4_dsi *dsi = data;
1333	u32 stat = DSI_PORT_READ(INT_STAT);
1334
1335	if (!stat)
1336		return IRQ_NONE;
1337
1338	return IRQ_WAKE_THREAD;
1339}
1340
1341/*
1342 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1343 * 1 where we need the reg_dma workaround.
1344 */
1345static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1346{
1347	struct vc4_dsi *dsi = data;
1348	u32 stat = DSI_PORT_READ(INT_STAT);
1349	irqreturn_t ret = IRQ_NONE;
1350
1351	DSI_PORT_WRITE(INT_STAT, stat);
1352
1353	dsi_handle_error(dsi, &ret, stat,
1354			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1355	dsi_handle_error(dsi, &ret, stat,
1356			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1357	dsi_handle_error(dsi, &ret, stat,
1358			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1359	dsi_handle_error(dsi, &ret, stat,
1360			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1361	dsi_handle_error(dsi, &ret, stat,
1362			 DSI1_INT_HSTX_TO, "HSTX timeout");
1363	dsi_handle_error(dsi, &ret, stat,
1364			 DSI1_INT_LPRX_TO, "LPRX timeout");
1365	dsi_handle_error(dsi, &ret, stat,
1366			 DSI1_INT_TA_TO, "turnaround timeout");
1367	dsi_handle_error(dsi, &ret, stat,
1368			 DSI1_INT_PR_TO, "peripheral reset timeout");
1369
1370	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1371		complete(&dsi->xfer_completion);
1372		ret = IRQ_HANDLED;
1373	} else if (stat & DSI1_INT_HSTX_TO) {
1374		complete(&dsi->xfer_completion);
1375		dsi->xfer_result = -ETIMEDOUT;
1376		ret = IRQ_HANDLED;
1377	}
1378
1379	return ret;
1380}
1381
1382/**
1383 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1384 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1385 * @dsi: DSI encoder
1386 */
1387static int
1388vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1389{
1390	struct device *dev = &dsi->pdev->dev;
1391	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1392	static const struct {
1393		const char *dsi0_name, *dsi1_name;
1394		int div;
1395	} phy_clocks[] = {
1396		{ "dsi0_byte", "dsi1_byte", 8 },
1397		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1398		{ "dsi0_ddr", "dsi1_ddr", 2 },
1399	};
1400	int i;
1401
1402	dsi->clk_onecell = devm_kzalloc(dev,
1403					sizeof(*dsi->clk_onecell) +
1404					ARRAY_SIZE(phy_clocks) *
1405					sizeof(struct clk_hw *),
1406					GFP_KERNEL);
1407	if (!dsi->clk_onecell)
1408		return -ENOMEM;
1409	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1410
1411	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1412		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1413		struct clk_init_data init;
1414		int ret;
1415
1416		/* We just use core fixed factor clock ops for the PHY
1417		 * clocks.  The clocks are actually gated by the
1418		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1419		 * setting if we use the DDR/DDR2 clocks.  However,
1420		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1421		 * setting both our parent DSI PLL's rate and this
1422		 * clock's rate, so it knows if DDR/DDR2 are going to
1423		 * be used and could enable the gates itself.
1424		 */
1425		fix->mult = 1;
1426		fix->div = phy_clocks[i].div;
1427		fix->hw.init = &init;
1428
1429		memset(&init, 0, sizeof(init));
1430		init.parent_names = &parent_name;
1431		init.num_parents = 1;
1432		if (dsi->port == 1)
1433			init.name = phy_clocks[i].dsi1_name;
1434		else
1435			init.name = phy_clocks[i].dsi0_name;
1436		init.ops = &clk_fixed_factor_ops;
1437
1438		ret = devm_clk_hw_register(dev, &fix->hw);
1439		if (ret)
1440			return ret;
1441
1442		dsi->clk_onecell->hws[i] = &fix->hw;
1443	}
1444
1445	return of_clk_add_hw_provider(dev->of_node,
1446				      of_clk_hw_onecell_get,
1447				      dsi->clk_onecell);
1448}
1449
1450static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1451{
1452	struct platform_device *pdev = to_platform_device(dev);
1453	struct drm_device *drm = dev_get_drvdata(master);
1454	struct vc4_dev *vc4 = to_vc4_dev(drm);
1455	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1456	struct vc4_dsi_encoder *vc4_dsi_encoder;
1457	struct drm_panel *panel;
1458	const struct of_device_id *match;
1459	dma_cap_mask_t dma_mask;
1460	int ret;
1461
1462	match = of_match_device(vc4_dsi_dt_match, dev);
1463	if (!match)
1464		return -ENODEV;
1465
1466	dsi->port = (uintptr_t)match->data;
1467
1468	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1469				       GFP_KERNEL);
1470	if (!vc4_dsi_encoder)
1471		return -ENOMEM;
1472
1473	INIT_LIST_HEAD(&dsi->bridge_chain);
1474	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1475	vc4_dsi_encoder->dsi = dsi;
1476	dsi->encoder = &vc4_dsi_encoder->base.base;
1477
1478	dsi->regs = vc4_ioremap_regs(pdev, 0);
1479	if (IS_ERR(dsi->regs))
1480		return PTR_ERR(dsi->regs);
1481
1482	dsi->regset.base = dsi->regs;
1483	if (dsi->port == 0) {
1484		dsi->regset.regs = dsi0_regs;
1485		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1486	} else {
1487		dsi->regset.regs = dsi1_regs;
1488		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1489	}
1490
1491	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1492		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1493			DSI_PORT_READ(ID), DSI_ID_VALUE);
1494		return -ENODEV;
1495	}
1496
1497	/* DSI1 has a broken AXI slave that doesn't respond to writes
1498	 * from the ARM.  It does handle writes from the DMA engine,
1499	 * so set up a channel for talking to it.
1500	 */
1501	if (dsi->port == 1) {
1502		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1503						      &dsi->reg_dma_paddr,
1504						      GFP_KERNEL);
1505		if (!dsi->reg_dma_mem) {
1506			DRM_ERROR("Failed to get DMA memory\n");
1507			return -ENOMEM;
1508		}
1509
1510		dma_cap_zero(dma_mask);
1511		dma_cap_set(DMA_MEMCPY, dma_mask);
1512		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1513		if (IS_ERR(dsi->reg_dma_chan)) {
1514			ret = PTR_ERR(dsi->reg_dma_chan);
1515			if (ret != -EPROBE_DEFER)
1516				DRM_ERROR("Failed to get DMA channel: %d\n",
1517					  ret);
1518			return ret;
1519		}
1520
1521		/* Get the physical address of the device's registers.  The
1522		 * struct resource for the regs gives us the bus address
1523		 * instead.
1524		 */
1525		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1526							     0, NULL, NULL));
1527	}
1528
1529	init_completion(&dsi->xfer_completion);
1530	/* At startup enable error-reporting interrupts and nothing else. */
1531	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1532	/* Clear any existing interrupt state. */
1533	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1534
1535	if (dsi->reg_dma_mem)
1536		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1537						vc4_dsi_irq_defer_to_thread_handler,
1538						vc4_dsi_irq_handler,
1539						IRQF_ONESHOT,
1540						"vc4 dsi", dsi);
1541	else
1542		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1543				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1544	if (ret) {
1545		if (ret != -EPROBE_DEFER)
1546			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1547		return ret;
1548	}
1549
1550	dsi->escape_clock = devm_clk_get(dev, "escape");
1551	if (IS_ERR(dsi->escape_clock)) {
1552		ret = PTR_ERR(dsi->escape_clock);
1553		if (ret != -EPROBE_DEFER)
1554			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1555		return ret;
1556	}
1557
1558	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1559	if (IS_ERR(dsi->pll_phy_clock)) {
1560		ret = PTR_ERR(dsi->pll_phy_clock);
1561		if (ret != -EPROBE_DEFER)
1562			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1563		return ret;
1564	}
1565
1566	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1567	if (IS_ERR(dsi->pixel_clock)) {
1568		ret = PTR_ERR(dsi->pixel_clock);
1569		if (ret != -EPROBE_DEFER)
1570			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1571		return ret;
1572	}
1573
1574	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1575					  &panel, &dsi->bridge);
1576	if (ret) {
1577		/* If the bridge or panel pointed by dev->of_node is not
1578		 * enabled, just return 0 here so that we don't prevent the DRM
1579		 * dev from being registered. Of course that means the DSI
1580		 * encoder won't be exposed, but that's not a problem since
1581		 * nothing is connected to it.
1582		 */
1583		if (ret == -ENODEV)
1584			return 0;
1585
1586		return ret;
1587	}
1588
1589	if (panel) {
1590		dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1591							      DRM_MODE_CONNECTOR_DSI);
1592		if (IS_ERR(dsi->bridge))
1593			return PTR_ERR(dsi->bridge);
1594	}
1595
1596	/* The esc clock rate is supposed to always be 100Mhz. */
1597	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1598	if (ret) {
1599		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1600		return ret;
1601	}
1602
1603	ret = vc4_dsi_init_phy_clocks(dsi);
1604	if (ret)
1605		return ret;
1606
1607	if (dsi->port == 1)
1608		vc4->dsi1 = dsi;
1609
1610	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1611	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1612
1613	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1614	if (ret) {
1615		dev_err(dev, "bridge attach failed: %d\n", ret);
1616		return ret;
1617	}
1618	/* Disable the atomic helper calls into the bridge.  We
1619	 * manually call the bridge pre_enable / enable / etc. calls
1620	 * from our driver, since we need to sequence them within the
1621	 * encoder's enable/disable paths.
1622	 */
1623	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1624
1625	if (dsi->port == 0)
1626		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1627	else
1628		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1629
1630	pm_runtime_enable(dev);
1631
1632	return 0;
1633}
1634
1635static void vc4_dsi_unbind(struct device *dev, struct device *master,
1636			   void *data)
1637{
1638	struct drm_device *drm = dev_get_drvdata(master);
1639	struct vc4_dev *vc4 = to_vc4_dev(drm);
1640	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1641
1642	if (dsi->bridge)
1643		pm_runtime_disable(dev);
1644
1645	/*
1646	 * Restore the bridge_chain so the bridge detach procedure can happen
1647	 * normally.
1648	 */
1649	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1650	drm_encoder_cleanup(dsi->encoder);
1651
1652	if (dsi->port == 1)
1653		vc4->dsi1 = NULL;
1654}
1655
1656static const struct component_ops vc4_dsi_ops = {
1657	.bind   = vc4_dsi_bind,
1658	.unbind = vc4_dsi_unbind,
1659};
1660
1661static int vc4_dsi_dev_probe(struct platform_device *pdev)
1662{
1663	struct device *dev = &pdev->dev;
1664	struct vc4_dsi *dsi;
1665	int ret;
1666
1667	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1668	if (!dsi)
1669		return -ENOMEM;
1670	dev_set_drvdata(dev, dsi);
1671
1672	dsi->pdev = pdev;
1673
1674	/* Note, the initialization sequence for DSI and panels is
1675	 * tricky.  The component bind above won't get past its
1676	 * -EPROBE_DEFER until the panel/bridge probes.  The
1677	 * panel/bridge will return -EPROBE_DEFER until it has a
1678	 * mipi_dsi_host to register its device to.  So, we register
1679	 * the host during pdev probe time, so vc4 as a whole can then
1680	 * -EPROBE_DEFER its component bind process until the panel
1681	 * successfully attaches.
1682	 */
1683	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1684	dsi->dsi_host.dev = dev;
1685	mipi_dsi_host_register(&dsi->dsi_host);
1686
1687	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1688	if (ret) {
1689		mipi_dsi_host_unregister(&dsi->dsi_host);
1690		return ret;
1691	}
1692
1693	return 0;
1694}
1695
1696static int vc4_dsi_dev_remove(struct platform_device *pdev)
1697{
1698	struct device *dev = &pdev->dev;
1699	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1700
1701	component_del(&pdev->dev, &vc4_dsi_ops);
1702	mipi_dsi_host_unregister(&dsi->dsi_host);
1703
1704	return 0;
1705}
1706
1707struct platform_driver vc4_dsi_driver = {
1708	.probe = vc4_dsi_dev_probe,
1709	.remove = vc4_dsi_dev_remove,
1710	.driver = {
1711		.name = "vc4_dsi",
1712		.of_match_table = vc4_dsi_dt_match,
1713	},
1714};