Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2016 Broadcom
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License version 2 as published by
   6 * the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program.  If not, see <http://www.gnu.org/licenses/>.
  15 */
  16
  17/**
  18 * DOC: VC4 DSI0/DSI1 module
  19 *
  20 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  22 * controller.
  23 *
  24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  25 * while the compute module brings both DSI0 and DSI1 out.
  26 *
  27 * This driver has been tested for DSI1 video-mode display only
  28 * currently, with most of the information necessary for DSI0
  29 * hopefully present.
  30 */
  31
  32#include <drm/drm_atomic_helper.h>
  33#include <drm/drm_crtc_helper.h>
  34#include <drm/drm_edid.h>
  35#include <drm/drm_mipi_dsi.h>
  36#include <drm/drm_of.h>
  37#include <drm/drm_panel.h>
  38#include <linux/clk.h>
  39#include <linux/clk-provider.h>
  40#include <linux/completion.h>
  41#include <linux/component.h>
  42#include <linux/dmaengine.h>
  43#include <linux/i2c.h>
  44#include <linux/of_address.h>
  45#include <linux/of_platform.h>
  46#include <linux/pm_runtime.h>
  47#include "vc4_drv.h"
  48#include "vc4_regs.h"
  49
  50#define DSI_CMD_FIFO_DEPTH  16
  51#define DSI_PIX_FIFO_DEPTH 256
  52#define DSI_PIX_FIFO_WIDTH   4
  53
  54#define DSI0_CTRL		0x00
  55
  56/* Command packet control. */
  57#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  58#define DSI1_TXPKT1C		0x04
  59# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  60# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  61# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  62# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  63
  64# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  65# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  66/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  67# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  68/* Primary display where cmdfifo provides part of the payload and
  69 * pixelvalve the rest.
  70 */
  71# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  72/* Secondary display where cmdfifo provides part of the payload and
  73 * pixfifo the rest.
  74 */
  75# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  76
  77# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  78# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  79
  80# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  81# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  82/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  83# define DSI_TXPKT1C_CMD_CTRL_TX	0
  84/* Command with BTA for either ack or read data. */
  85# define DSI_TXPKT1C_CMD_CTRL_RX	1
  86/* Trigger according to TRIG_CMD */
  87# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  88/* BTA alone for getting error status after a command, or a TE trigger
  89 * without a previous command.
  90 */
  91# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  92
  93# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  94# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  95# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  96# define DSI_TXPKT1C_CMD_EN		BIT(0)
  97
  98/* Command packet header. */
  99#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
 100#define DSI1_TXPKT1H		0x08
 101# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
 102# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
 103# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 104# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 105# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 106# define DSI_TXPKT1H_BC_DT_SHIFT	0
 107
 108#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 109#define DSI1_RXPKT1H		0x14
 110# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 111# define DSI_RXPKT1H_DET_ERR		BIT(30)
 112# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 113# define DSI_RXPKT1H_COR_ERR		BIT(28)
 114# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 115# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 116/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 117# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 118# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 119/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 120# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 121# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 122# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 123# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 124# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 125# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 126
 127#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 128#define DSI1_RXPKT2H		0x18
 129# define DSI_RXPKT1H_DET_ERR		BIT(30)
 130# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 131# define DSI_RXPKT1H_COR_ERR		BIT(28)
 132# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 133# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 134# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 135# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 136# define DSI_RXPKT1H_DT_SHIFT		0
 137
 138#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 139#define DSI1_TXPKT_CMD_FIFO	0x1c
 140
 141#define DSI0_DISP0_CTRL		0x18
 142# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 143# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 144# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 145# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 146# define DSI_DISP0_LP_STOP_DISABLE	0
 147# define DSI_DISP0_LP_STOP_PERLINE	1
 148# define DSI_DISP0_LP_STOP_PERFRAME	2
 149
 150/* Transmit RGB pixels and null packets only during HACTIVE, instead
 151 * of going to LP-STOP.
 152 */
 153# define DSI_DISP_HACTIVE_NULL		BIT(10)
 154/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 155# define DSI_DISP_VBLP_CTRL		BIT(9)
 156/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 157# define DSI_DISP_HFP_CTRL		BIT(8)
 158/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 159# define DSI_DISP_HBP_CTRL		BIT(7)
 160# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 161# define DSI_DISP0_CHANNEL_SHIFT	5
 162/* Enables end events for HSYNC/VSYNC, not just start events. */
 163# define DSI_DISP0_ST_END		BIT(4)
 164# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 165# define DSI_DISP0_PFORMAT_SHIFT	2
 166# define DSI_PFORMAT_RGB565		0
 167# define DSI_PFORMAT_RGB666_PACKED	1
 168# define DSI_PFORMAT_RGB666		2
 169# define DSI_PFORMAT_RGB888		3
 170/* Default is VIDEO mode. */
 171# define DSI_DISP0_COMMAND_MODE		BIT(1)
 172# define DSI_DISP0_ENABLE		BIT(0)
 173
 174#define DSI0_DISP1_CTRL		0x1c
 175#define DSI1_DISP1_CTRL		0x2c
 176/* Format of the data written to TXPKT_PIX_FIFO. */
 177# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 178# define DSI_DISP1_PFORMAT_SHIFT	1
 179# define DSI_DISP1_PFORMAT_16BIT	0
 180# define DSI_DISP1_PFORMAT_24BIT	1
 181# define DSI_DISP1_PFORMAT_32BIT_LE	2
 182# define DSI_DISP1_PFORMAT_32BIT_BE	3
 183
 184/* DISP1 is always command mode. */
 185# define DSI_DISP1_ENABLE		BIT(0)
 186
 187#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 188
 189#define DSI0_INT_STAT		0x24
 190#define DSI0_INT_EN		0x28
 191# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 192# define DSI1_INT_PHY_D3_STOP		BIT(29)
 193# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 194# define DSI1_INT_PHY_D2_STOP		BIT(27)
 195# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 196# define DSI1_INT_PHY_D1_STOP		BIT(25)
 197# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 198# define DSI1_INT_PHY_D0_STOP		BIT(23)
 199# define DSI1_INT_FIFO_ERR		BIT(22)
 200# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 201# define DSI1_INT_PHY_RXLPDT		BIT(20)
 202# define DSI1_INT_PHY_RXTRIG		BIT(19)
 203# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 204# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 205
 206/* Signaled when the clock lane enters the given state. */
 207# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 208# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 209# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 210
 211/* Signaled on timeouts */
 212# define DSI1_INT_PR_TO			BIT(13)
 213# define DSI1_INT_TA_TO			BIT(12)
 214# define DSI1_INT_LPRX_TO		BIT(11)
 215# define DSI1_INT_HSTX_TO		BIT(10)
 216
 217/* Contention on a line when trying to drive the line low */
 218# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 219# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 220
 221/* Control error: incorrect line state sequence on data lane 0. */
 222# define DSI1_INT_ERR_CONTROL		BIT(7)
 223/* LPDT synchronization error (bits received not a multiple of 8. */
 224
 225# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 226/* Signaled after receiving an error packet from the display in
 227 * response to a read.
 228 */
 229# define DSI1_INT_RXPKT2		BIT(5)
 230/* Signaled after receiving a packet.  The header and optional short
 231 * response will be in RXPKT1H, and a long response will be in the
 232 * RXPKT_FIFO.
 233 */
 234# define DSI1_INT_RXPKT1		BIT(4)
 235# define DSI1_INT_TXPKT2_DONE		BIT(3)
 236# define DSI1_INT_TXPKT2_END		BIT(2)
 237/* Signaled after all repeats of TXPKT1 are transferred. */
 238# define DSI1_INT_TXPKT1_DONE		BIT(1)
 239/* Signaled after each TXPKT1 repeat is scheduled. */
 240# define DSI1_INT_TXPKT1_END		BIT(0)
 241
 242#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 243					 DSI1_INT_ERR_CONTROL |	 \
 244					 DSI1_INT_ERR_CONT_LP0 | \
 245					 DSI1_INT_ERR_CONT_LP1 | \
 246					 DSI1_INT_HSTX_TO |	 \
 247					 DSI1_INT_LPRX_TO |	 \
 248					 DSI1_INT_TA_TO |	 \
 249					 DSI1_INT_PR_TO)
 250
 251#define DSI0_STAT		0x2c
 252#define DSI0_HSTX_TO_CNT	0x30
 253#define DSI0_LPRX_TO_CNT	0x34
 254#define DSI0_TA_TO_CNT		0x38
 255#define DSI0_PR_TO_CNT		0x3c
 256#define DSI0_PHYC		0x40
 257# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 258# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 259# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 260# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 261# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 262# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 263# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 264# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 265# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 266# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 267# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 268# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 269# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 270# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 271# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 272# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 273# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 274# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 275# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 276
 277#define DSI0_HS_CLT0		0x44
 278#define DSI0_HS_CLT1		0x48
 279#define DSI0_HS_CLT2		0x4c
 280#define DSI0_HS_DLT3		0x50
 281#define DSI0_HS_DLT4		0x54
 282#define DSI0_HS_DLT5		0x58
 283#define DSI0_HS_DLT6		0x5c
 284#define DSI0_HS_DLT7		0x60
 285
 286#define DSI0_PHY_AFEC0		0x64
 287# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 288# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 289# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 290# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 291# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 292# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 293# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 294# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 295# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 296# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 297# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 298# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 299# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 300# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 301# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 302# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 303# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 304# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 305# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 306# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 307# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 308# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 309# define DSI1_PHY_AFEC0_RESET			BIT(13)
 310# define DSI1_PHY_AFEC0_PD			BIT(12)
 311# define DSI0_PHY_AFEC0_RESET			BIT(11)
 312# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 313# define DSI0_PHY_AFEC0_PD			BIT(10)
 314# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
 315# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 316# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 317# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 318# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
 319# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 320# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 321# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 322# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 323
 324#define DSI0_PHY_AFEC1		0x68
 325# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 326# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 327# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 328# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 329# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 330# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 331
 332#define DSI0_TST_SEL		0x6c
 333#define DSI0_TST_MON		0x70
 334#define DSI0_ID			0x74
 335# define DSI_ID_VALUE		0x00647369
 336
 337#define DSI1_CTRL		0x00
 338# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 339# define DSI_CTRL_HS_CLKC_SHIFT		14
 340# define DSI_CTRL_HS_CLKC_BYTE		0
 341# define DSI_CTRL_HS_CLKC_DDR2		1
 342# define DSI_CTRL_HS_CLKC_DDR		2
 343
 344# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 345# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 346# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 347# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 348# define DSI_CTRL_CAL_BYTE		BIT(9)
 349# define DSI_CTRL_INV_BYTE		BIT(8)
 350# define DSI_CTRL_CLR_LDF		BIT(7)
 351# define DSI0_CTRL_CLR_PBCF		BIT(6)
 352# define DSI1_CTRL_CLR_RXF		BIT(6)
 353# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 354# define DSI1_CTRL_CLR_PDF		BIT(5)
 355# define DSI0_CTRL_CLR_PDF		BIT(4)
 356# define DSI1_CTRL_CLR_CDF		BIT(4)
 357# define DSI0_CTRL_CLR_CDF		BIT(3)
 358# define DSI0_CTRL_CTRL2		BIT(2)
 359# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 360# define DSI0_CTRL_CTRL1		BIT(1)
 361# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 362# define DSI0_CTRL_CTRL0		BIT(0)
 363# define DSI1_CTRL_EN			BIT(0)
 364# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 365					 DSI0_CTRL_CLR_PBCF | \
 366					 DSI0_CTRL_CLR_CPBCF |	\
 367					 DSI0_CTRL_CLR_PDF | \
 368					 DSI0_CTRL_CLR_CDF)
 369# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 370					 DSI1_CTRL_CLR_RXF | \
 371					 DSI1_CTRL_CLR_PDF | \
 372					 DSI1_CTRL_CLR_CDF)
 373
 374#define DSI1_TXPKT2C		0x0c
 375#define DSI1_TXPKT2H		0x10
 376#define DSI1_TXPKT_PIX_FIFO	0x20
 377#define DSI1_RXPKT_FIFO		0x24
 378#define DSI1_DISP0_CTRL		0x28
 379#define DSI1_INT_STAT		0x30
 380#define DSI1_INT_EN		0x34
 381/* State reporting bits.  These mostly behave like INT_STAT, where
 382 * writing a 1 clears the bit.
 383 */
 384#define DSI1_STAT		0x38
 385# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 386# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 387# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 388# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 389# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 390# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 391# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 392# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 393# define DSI1_STAT_FIFO_ERR		BIT(23)
 394# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 395# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 396# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 397/* Set when in forward direction */
 398# define DSI1_STAT_PHY_DIR		BIT(19)
 399# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 400# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 401# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 402# define DSI1_STAT_PR_TO		BIT(15)
 403# define DSI1_STAT_TA_TO		BIT(14)
 404# define DSI1_STAT_LPRX_TO		BIT(13)
 405# define DSI1_STAT_HSTX_TO		BIT(12)
 406# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 407# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 408# define DSI1_STAT_ERR_CONTROL		BIT(9)
 409# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 410# define DSI1_STAT_RXPKT2		BIT(7)
 411# define DSI1_STAT_RXPKT1		BIT(6)
 412# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 413# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 414# define DSI1_STAT_TXPKT2_END		BIT(3)
 415# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 416# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 417# define DSI1_STAT_TXPKT1_END		BIT(0)
 418
 419#define DSI1_HSTX_TO_CNT	0x3c
 420#define DSI1_LPRX_TO_CNT	0x40
 421#define DSI1_TA_TO_CNT		0x44
 422#define DSI1_PR_TO_CNT		0x48
 423#define DSI1_PHYC		0x4c
 424
 425#define DSI1_HS_CLT0		0x50
 426# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 427# define DSI_HS_CLT0_CZERO_SHIFT	18
 428# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 429# define DSI_HS_CLT0_CPRE_SHIFT		9
 430# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 431# define DSI_HS_CLT0_CPREP_SHIFT	0
 432
 433#define DSI1_HS_CLT1		0x54
 434# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 435# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 436# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 437# define DSI_HS_CLT1_CPOST_SHIFT	0
 438
 439#define DSI1_HS_CLT2		0x58
 440# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 441# define DSI_HS_CLT2_WUP_SHIFT		0
 442
 443#define DSI1_HS_DLT3		0x5c
 444# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 445# define DSI_HS_DLT3_EXIT_SHIFT		18
 446# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 447# define DSI_HS_DLT3_ZERO_SHIFT		9
 448# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 449# define DSI_HS_DLT3_PRE_SHIFT		0
 450
 451#define DSI1_HS_DLT4		0x60
 452# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 453# define DSI_HS_DLT4_ANLAT_SHIFT	18
 454# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 455# define DSI_HS_DLT4_TRAIL_SHIFT	9
 456# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 457# define DSI_HS_DLT4_LPX_SHIFT		0
 458
 459#define DSI1_HS_DLT5		0x64
 460# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 461# define DSI_HS_DLT5_INIT_SHIFT		0
 462
 463#define DSI1_HS_DLT6		0x68
 464# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 465# define DSI_HS_DLT6_TA_GET_SHIFT	24
 466# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 467# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 468# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 469# define DSI_HS_DLT6_TA_GO_SHIFT	8
 470# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 471# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 472
 473#define DSI1_HS_DLT7		0x6c
 474# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 475# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 476
 477#define DSI1_PHY_AFEC0		0x70
 478
 479#define DSI1_PHY_AFEC1		0x74
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 483# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 484# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 485# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 486# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 487# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 488# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 489# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 490
 491#define DSI1_TST_SEL		0x78
 492#define DSI1_TST_MON		0x7c
 493#define DSI1_PHY_TST1		0x80
 494#define DSI1_PHY_TST2		0x84
 495#define DSI1_PHY_FIFO_STAT	0x88
 496/* Actually, all registers in the range that aren't otherwise claimed
 497 * will return the ID.
 498 */
 499#define DSI1_ID			0x8c
 500
 501/* General DSI hardware state. */
 502struct vc4_dsi {
 503	struct platform_device *pdev;
 504
 505	struct mipi_dsi_host dsi_host;
 506	struct drm_encoder *encoder;
 507	struct drm_bridge *bridge;
 508
 509	void __iomem *regs;
 510
 511	struct dma_chan *reg_dma_chan;
 512	dma_addr_t reg_dma_paddr;
 513	u32 *reg_dma_mem;
 514	dma_addr_t reg_paddr;
 515
 516	/* Whether we're on bcm2835's DSI0 or DSI1. */
 517	int port;
 518
 519	/* DSI channel for the panel we're connected to. */
 520	u32 channel;
 521	u32 lanes;
 522	u32 format;
 523	u32 divider;
 524	u32 mode_flags;
 525
 526	/* Input clock from CPRMAN to the digital PHY, for the DSI
 527	 * escape clock.
 528	 */
 529	struct clk *escape_clock;
 530
 531	/* Input clock to the analog PHY, used to generate the DSI bit
 532	 * clock.
 533	 */
 534	struct clk *pll_phy_clock;
 535
 536	/* HS Clocks generated within the DSI analog PHY. */
 537	struct clk_fixed_factor phy_clocks[3];
 538
 539	struct clk_hw_onecell_data *clk_onecell;
 540
 541	/* Pixel clock output to the pixelvalve, generated from the HS
 542	 * clock.
 543	 */
 544	struct clk *pixel_clock;
 545
 546	struct completion xfer_completion;
 547	int xfer_result;
 548};
 549
 550#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 551
 552static inline void
 553dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 554{
 555	struct dma_chan *chan = dsi->reg_dma_chan;
 556	struct dma_async_tx_descriptor *tx;
 557	dma_cookie_t cookie;
 558	int ret;
 559
 560	/* DSI0 should be able to write normally. */
 561	if (!chan) {
 562		writel(val, dsi->regs + offset);
 563		return;
 564	}
 565
 566	*dsi->reg_dma_mem = val;
 567
 568	tx = chan->device->device_prep_dma_memcpy(chan,
 569						  dsi->reg_paddr + offset,
 570						  dsi->reg_dma_paddr,
 571						  4, 0);
 572	if (!tx) {
 573		DRM_ERROR("Failed to set up DMA register write\n");
 574		return;
 575	}
 576
 577	cookie = tx->tx_submit(tx);
 578	ret = dma_submit_error(cookie);
 579	if (ret) {
 580		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 581		return;
 582	}
 583	ret = dma_sync_wait(chan, cookie);
 584	if (ret)
 585		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 586}
 587
 588#define DSI_READ(offset) readl(dsi->regs + (offset))
 589#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 590#define DSI_PORT_READ(offset) \
 591	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 592#define DSI_PORT_WRITE(offset, val) \
 593	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 594#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 595
 596/* VC4 DSI encoder KMS struct */
 597struct vc4_dsi_encoder {
 598	struct vc4_encoder base;
 599	struct vc4_dsi *dsi;
 600};
 601
 602static inline struct vc4_dsi_encoder *
 603to_vc4_dsi_encoder(struct drm_encoder *encoder)
 604{
 605	return container_of(encoder, struct vc4_dsi_encoder, base.base);
 606}
 607
 608#define DSI_REG(reg) { reg, #reg }
 609static const struct {
 610	u32 reg;
 611	const char *name;
 612} dsi0_regs[] = {
 613	DSI_REG(DSI0_CTRL),
 614	DSI_REG(DSI0_STAT),
 615	DSI_REG(DSI0_HSTX_TO_CNT),
 616	DSI_REG(DSI0_LPRX_TO_CNT),
 617	DSI_REG(DSI0_TA_TO_CNT),
 618	DSI_REG(DSI0_PR_TO_CNT),
 619	DSI_REG(DSI0_DISP0_CTRL),
 620	DSI_REG(DSI0_DISP1_CTRL),
 621	DSI_REG(DSI0_INT_STAT),
 622	DSI_REG(DSI0_INT_EN),
 623	DSI_REG(DSI0_PHYC),
 624	DSI_REG(DSI0_HS_CLT0),
 625	DSI_REG(DSI0_HS_CLT1),
 626	DSI_REG(DSI0_HS_CLT2),
 627	DSI_REG(DSI0_HS_DLT3),
 628	DSI_REG(DSI0_HS_DLT4),
 629	DSI_REG(DSI0_HS_DLT5),
 630	DSI_REG(DSI0_HS_DLT6),
 631	DSI_REG(DSI0_HS_DLT7),
 632	DSI_REG(DSI0_PHY_AFEC0),
 633	DSI_REG(DSI0_PHY_AFEC1),
 634	DSI_REG(DSI0_ID),
 635};
 636
 637static const struct {
 638	u32 reg;
 639	const char *name;
 640} dsi1_regs[] = {
 641	DSI_REG(DSI1_CTRL),
 642	DSI_REG(DSI1_STAT),
 643	DSI_REG(DSI1_HSTX_TO_CNT),
 644	DSI_REG(DSI1_LPRX_TO_CNT),
 645	DSI_REG(DSI1_TA_TO_CNT),
 646	DSI_REG(DSI1_PR_TO_CNT),
 647	DSI_REG(DSI1_DISP0_CTRL),
 648	DSI_REG(DSI1_DISP1_CTRL),
 649	DSI_REG(DSI1_INT_STAT),
 650	DSI_REG(DSI1_INT_EN),
 651	DSI_REG(DSI1_PHYC),
 652	DSI_REG(DSI1_HS_CLT0),
 653	DSI_REG(DSI1_HS_CLT1),
 654	DSI_REG(DSI1_HS_CLT2),
 655	DSI_REG(DSI1_HS_DLT3),
 656	DSI_REG(DSI1_HS_DLT4),
 657	DSI_REG(DSI1_HS_DLT5),
 658	DSI_REG(DSI1_HS_DLT6),
 659	DSI_REG(DSI1_HS_DLT7),
 660	DSI_REG(DSI1_PHY_AFEC0),
 661	DSI_REG(DSI1_PHY_AFEC1),
 662	DSI_REG(DSI1_ID),
 663};
 664
 665static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
 666{
 667	int i;
 668
 669	if (dsi->port == 0) {
 670		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
 671			DRM_INFO("0x%04x (%s): 0x%08x\n",
 672				 dsi0_regs[i].reg, dsi0_regs[i].name,
 673				 DSI_READ(dsi0_regs[i].reg));
 674		}
 675	} else {
 676		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
 677			DRM_INFO("0x%04x (%s): 0x%08x\n",
 678				 dsi1_regs[i].reg, dsi1_regs[i].name,
 679				 DSI_READ(dsi1_regs[i].reg));
 680		}
 681	}
 682}
 683
 684#ifdef CONFIG_DEBUG_FS
 685int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
 686{
 687	struct drm_info_node *node = (struct drm_info_node *)m->private;
 688	struct drm_device *drm = node->minor->dev;
 689	struct vc4_dev *vc4 = to_vc4_dev(drm);
 690	int dsi_index = (uintptr_t)node->info_ent->data;
 691	struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
 692	int i;
 693
 694	if (!dsi)
 695		return 0;
 696
 697	if (dsi->port == 0) {
 698		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
 699			seq_printf(m, "0x%04x (%s): 0x%08x\n",
 700				   dsi0_regs[i].reg, dsi0_regs[i].name,
 701				   DSI_READ(dsi0_regs[i].reg));
 702		}
 703	} else {
 704		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
 705			seq_printf(m, "0x%04x (%s): 0x%08x\n",
 706				   dsi1_regs[i].reg, dsi1_regs[i].name,
 707				   DSI_READ(dsi1_regs[i].reg));
 708		}
 709	}
 710
 711	return 0;
 712}
 713#endif
 714
 715static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
 716{
 717	drm_encoder_cleanup(encoder);
 718}
 719
 720static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
 721	.destroy = vc4_dsi_encoder_destroy,
 722};
 723
 724static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 725{
 726	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 727
 728	if (latch)
 729		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 730	else
 731		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 732
 733	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 734}
 735
 736/* Enters or exits Ultra Low Power State. */
 737static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 738{
 739	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 740	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 741			 DSI_PHYC_DLANE0_ULPS |
 742			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 743			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 744			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 745	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 746			 DSI1_STAT_PHY_D0_ULPS |
 747			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 748			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 749			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 750	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 751			 DSI1_STAT_PHY_D0_STOP |
 752			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 753			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 754			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 755	int ret;
 756
 757	DSI_PORT_WRITE(STAT, stat_ulps);
 758	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 759	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 760	if (ret) {
 761		dev_warn(&dsi->pdev->dev,
 762			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 763			 DSI_PORT_READ(STAT));
 764		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 765		vc4_dsi_latch_ulps(dsi, false);
 766		return;
 767	}
 768
 769	/* The DSI module can't be disabled while the module is
 770	 * generating ULPS state.  So, to be able to disable the
 771	 * module, we have the AFE latch the ULPS state and continue
 772	 * on to having the module enter STOP.
 773	 */
 774	vc4_dsi_latch_ulps(dsi, ulps);
 775
 776	DSI_PORT_WRITE(STAT, stat_stop);
 777	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 778	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 779	if (ret) {
 780		dev_warn(&dsi->pdev->dev,
 781			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 782			 DSI_PORT_READ(STAT));
 783		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 784		return;
 785	}
 786}
 787
 788static u32
 789dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 790{
 791	/* The HS timings have to be rounded up to a multiple of 8
 792	 * because we're using the byte clock.
 793	 */
 794	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 795}
 796
 797/* ESC always runs at 100Mhz. */
 798#define ESC_TIME_NS 10
 799
 800static u32
 801dsi_esc_timing(u32 ns)
 802{
 803	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 804}
 805
 806static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 807{
 808	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 809	struct vc4_dsi *dsi = vc4_encoder->dsi;
 810	struct device *dev = &dsi->pdev->dev;
 811
 812	vc4_dsi_ulps(dsi, true);
 813
 814	clk_disable_unprepare(dsi->pll_phy_clock);
 815	clk_disable_unprepare(dsi->escape_clock);
 816	clk_disable_unprepare(dsi->pixel_clock);
 817
 818	pm_runtime_put(dev);
 819}
 820
 821/* Extends the mode's blank intervals to handle BCM2835's integer-only
 822 * DSI PLL divider.
 823 *
 824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 825 * driver since most peripherals are hanging off of the PLLD_PER
 826 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 827 * the pixel clock), only has an integer divider off of DSI.
 828 *
 829 * To get our panel mode to refresh at the expected 60Hz, we need to
 830 * extend the horizontal blank time.  This means we drive a
 831 * higher-than-expected clock rate to the panel, but that's what the
 832 * firmware does too.
 833 */
 834static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 835				       const struct drm_display_mode *mode,
 836				       struct drm_display_mode *adjusted_mode)
 837{
 838	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 839	struct vc4_dsi *dsi = vc4_encoder->dsi;
 840	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 841	unsigned long parent_rate = clk_get_rate(phy_parent);
 842	unsigned long pixel_clock_hz = mode->clock * 1000;
 843	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 844	int divider;
 845
 846	/* Find what divider gets us a faster clock than the requested
 847	 * pixel clock.
 848	 */
 849	for (divider = 1; divider < 8; divider++) {
 850		if (parent_rate / divider < pll_clock) {
 851			divider--;
 852			break;
 853		}
 854	}
 855
 856	/* Now that we've picked a PLL divider, calculate back to its
 857	 * pixel clock.
 858	 */
 859	pll_clock = parent_rate / divider;
 860	pixel_clock_hz = pll_clock / dsi->divider;
 861
 862	adjusted_mode->clock = pixel_clock_hz / 1000;
 863
 864	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 865	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 866				mode->clock;
 867	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 868	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 869
 870	return true;
 871}
 872
 873static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 874{
 875	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 876	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 877	struct vc4_dsi *dsi = vc4_encoder->dsi;
 878	struct device *dev = &dsi->pdev->dev;
 879	bool debug_dump_regs = false;
 880	unsigned long hs_clock;
 881	u32 ui_ns;
 882	/* Minimum LP state duration in escape clock cycles. */
 883	u32 lpx = dsi_esc_timing(60);
 884	unsigned long pixel_clock_hz = mode->clock * 1000;
 885	unsigned long dsip_clock;
 886	unsigned long phy_clock;
 887	int ret;
 888
 889	ret = pm_runtime_get_sync(dev);
 890	if (ret) {
 891		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 892		return;
 893	}
 894
 895	if (debug_dump_regs) {
 896		DRM_INFO("DSI regs before:\n");
 897		vc4_dsi_dump_regs(dsi);
 898	}
 899
 900	/* Round up the clk_set_rate() request slightly, since
 901	 * PLLD_DSI1 is an integer divider and its rate selection will
 902	 * never round up.
 903	 */
 904	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 905	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 906	if (ret) {
 907		dev_err(&dsi->pdev->dev,
 908			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 909	}
 910
 911	/* Reset the DSI and all its fifos. */
 912	DSI_PORT_WRITE(CTRL,
 913		       DSI_CTRL_SOFT_RESET_CFG |
 914		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 915
 916	DSI_PORT_WRITE(CTRL,
 917		       DSI_CTRL_HSDT_EOT_DISABLE |
 918		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 919
 920	/* Clear all stat bits so we see what has happened during enable. */
 921	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 922
 923	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 924	if (dsi->port == 0) {
 925		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 926			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 927
 928		if (dsi->lanes < 2)
 929			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 930
 931		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 932			afec0 |= DSI0_PHY_AFEC0_RESET;
 933
 934		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 935
 936		DSI_PORT_WRITE(PHY_AFEC1,
 937			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 938			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 939			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 940	} else {
 941		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 942			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 943			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 944			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 945			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 946			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 947			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 948
 949		if (dsi->lanes < 4)
 950			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 951		if (dsi->lanes < 3)
 952			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 953		if (dsi->lanes < 2)
 954			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 955
 956		afec0 |= DSI1_PHY_AFEC0_RESET;
 957
 958		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 959
 960		DSI_PORT_WRITE(PHY_AFEC1, 0);
 961
 962		/* AFEC reset hold time */
 963		mdelay(1);
 964	}
 965
 966	ret = clk_prepare_enable(dsi->escape_clock);
 967	if (ret) {
 968		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 969		return;
 970	}
 971
 972	ret = clk_prepare_enable(dsi->pll_phy_clock);
 973	if (ret) {
 974		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 975		return;
 976	}
 977
 978	hs_clock = clk_get_rate(dsi->pll_phy_clock);
 979
 980	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 981	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
 982	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 983	 * that rate.  Separately, a value derived from PIX_CLK_DIV
 984	 * and HS_CLKC is fed into the PV to divide down to the actual
 985	 * pixel clock for pushing pixels into DSI.
 986	 */
 987	dsip_clock = phy_clock / 8;
 988	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 989	if (ret) {
 990		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 991			dsip_clock, ret);
 992	}
 993
 994	ret = clk_prepare_enable(dsi->pixel_clock);
 995	if (ret) {
 996		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 997		return;
 998	}
 999
1000	/* How many ns one DSI unit interval is.  Note that the clock
1001	 * is DDR, so there's an extra divide by 2.
1002	 */
1003	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1004
1005	DSI_PORT_WRITE(HS_CLT0,
1006		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1007				     DSI_HS_CLT0_CZERO) |
1008		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1009				     DSI_HS_CLT0_CPRE) |
1010		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1011				     DSI_HS_CLT0_CPREP));
1012
1013	DSI_PORT_WRITE(HS_CLT1,
1014		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1015				     DSI_HS_CLT1_CTRAIL) |
1016		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1017				     DSI_HS_CLT1_CPOST));
1018
1019	DSI_PORT_WRITE(HS_CLT2,
1020		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1021				     DSI_HS_CLT2_WUP));
1022
1023	DSI_PORT_WRITE(HS_DLT3,
1024		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1025				     DSI_HS_DLT3_EXIT) |
1026		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1027				     DSI_HS_DLT3_ZERO) |
1028		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1029				     DSI_HS_DLT3_PRE));
1030
1031	DSI_PORT_WRITE(HS_DLT4,
1032		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1033				     DSI_HS_DLT4_LPX) |
1034		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1035					 dsi_hs_timing(ui_ns, 60, 4)),
1036				     DSI_HS_DLT4_TRAIL) |
1037		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1038
1039	/* T_INIT is how long STOP is driven after power-up to
1040	 * indicate to the slave (also coming out of power-up) that
1041	 * master init is complete, and should be greater than the
1042	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1043	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1044	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1045	 * greater minimums.  The vc4 firmware uses an extremely
1046	 * conservative 5ms, and we maintain that here.
1047	 */
1048	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1049							    5 * 1000 * 1000, 0),
1050					      DSI_HS_DLT5_INIT));
1051
1052	DSI_PORT_WRITE(HS_DLT6,
1053		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1054		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1055		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1056		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1057
1058	DSI_PORT_WRITE(HS_DLT7,
1059		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1060				     DSI_HS_DLT7_LP_WUP));
1061
1062	DSI_PORT_WRITE(PHYC,
1063		       DSI_PHYC_DLANE0_ENABLE |
1064		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1065		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1066		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1067		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1068		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1069			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1070		       (dsi->port == 0 ?
1071			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1072			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1073
1074	DSI_PORT_WRITE(CTRL,
1075		       DSI_PORT_READ(CTRL) |
1076		       DSI_CTRL_CAL_BYTE);
1077
1078	/* HS timeout in HS clock cycles: disabled. */
1079	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1080	/* LP receive timeout in HS clocks. */
1081	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1082	/* Bus turnaround timeout */
1083	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1084	/* Display reset sequence timeout */
1085	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1086
1087	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1088		DSI_PORT_WRITE(DISP0_CTRL,
1089			       VC4_SET_FIELD(dsi->divider,
1090					     DSI_DISP0_PIX_CLK_DIV) |
1091			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1092			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1093					     DSI_DISP0_LP_STOP_CTRL) |
1094			       DSI_DISP0_ST_END |
1095			       DSI_DISP0_ENABLE);
1096	} else {
1097		DSI_PORT_WRITE(DISP0_CTRL,
1098			       DSI_DISP0_COMMAND_MODE |
1099			       DSI_DISP0_ENABLE);
1100	}
1101
1102	/* Set up DISP1 for transferring long command payloads through
1103	 * the pixfifo.
1104	 */
1105	DSI_PORT_WRITE(DISP1_CTRL,
1106		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1107				     DSI_DISP1_PFORMAT) |
1108		       DSI_DISP1_ENABLE);
1109
1110	/* Ungate the block. */
1111	if (dsi->port == 0)
1112		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1113	else
1114		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1115
1116	/* Bring AFE out of reset. */
1117	if (dsi->port == 0) {
1118	} else {
1119		DSI_PORT_WRITE(PHY_AFEC0,
1120			       DSI_PORT_READ(PHY_AFEC0) &
1121			       ~DSI1_PHY_AFEC0_RESET);
1122	}
1123
1124	vc4_dsi_ulps(dsi, false);
1125
1126	if (debug_dump_regs) {
1127		DRM_INFO("DSI regs after:\n");
1128		vc4_dsi_dump_regs(dsi);
1129	}
1130}
1131
1132static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1133				     const struct mipi_dsi_msg *msg)
1134{
1135	struct vc4_dsi *dsi = host_to_dsi(host);
1136	struct mipi_dsi_packet packet;
1137	u32 pkth = 0, pktc = 0;
1138	int i, ret;
1139	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1140	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1141
1142	mipi_dsi_create_packet(&packet, msg);
1143
1144	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1145	pkth |= VC4_SET_FIELD(packet.header[1] |
1146			      (packet.header[2] << 8),
1147			      DSI_TXPKT1H_BC_PARAM);
1148	if (is_long) {
1149		/* Divide data across the various FIFOs we have available.
1150		 * The command FIFO takes byte-oriented data, but is of
1151		 * limited size. The pixel FIFO (never actually used for
1152		 * pixel data in reality) is word oriented, and substantially
1153		 * larger. So, we use the pixel FIFO for most of the data,
1154		 * sending the residual bytes in the command FIFO at the start.
1155		 *
1156		 * With this arrangement, the command FIFO will never get full.
1157		 */
1158		if (packet.payload_length <= 16) {
1159			cmd_fifo_len = packet.payload_length;
1160			pix_fifo_len = 0;
1161		} else {
1162			cmd_fifo_len = (packet.payload_length %
1163					DSI_PIX_FIFO_WIDTH);
1164			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1165					DSI_PIX_FIFO_WIDTH);
1166		}
1167
1168		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1169
1170		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1171	}
1172
1173	if (msg->rx_len) {
1174		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1175				      DSI_TXPKT1C_CMD_CTRL);
1176	} else {
1177		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1178				      DSI_TXPKT1C_CMD_CTRL);
1179	}
1180
1181	for (i = 0; i < cmd_fifo_len; i++)
1182		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1183	for (i = 0; i < pix_fifo_len; i++) {
1184		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1185
1186		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1187			       pix[0] |
1188			       pix[1] << 8 |
1189			       pix[2] << 16 |
1190			       pix[3] << 24);
1191	}
1192
1193	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1194		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1195	if (is_long)
1196		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1197
1198	/* Send one copy of the packet.  Larger repeats are used for pixel
1199	 * data in command mode.
1200	 */
1201	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1202
1203	pktc |= DSI_TXPKT1C_CMD_EN;
1204	if (pix_fifo_len) {
1205		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1206				      DSI_TXPKT1C_DISPLAY_NO);
1207	} else {
1208		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1209				      DSI_TXPKT1C_DISPLAY_NO);
1210	}
1211
1212	/* Enable the appropriate interrupt for the transfer completion. */
1213	dsi->xfer_result = 0;
1214	reinit_completion(&dsi->xfer_completion);
1215	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1216	if (msg->rx_len) {
1217		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1218					DSI1_INT_PHY_DIR_RTF));
1219	} else {
1220		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1221					DSI1_INT_TXPKT1_DONE));
1222	}
1223
1224	/* Send the packet. */
1225	DSI_PORT_WRITE(TXPKT1H, pkth);
1226	DSI_PORT_WRITE(TXPKT1C, pktc);
1227
1228	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1229					 msecs_to_jiffies(1000))) {
1230		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1231		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1232			DSI_PORT_READ(INT_STAT));
1233		ret = -ETIMEDOUT;
1234	} else {
1235		ret = dsi->xfer_result;
1236	}
1237
1238	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1239
1240	if (ret)
1241		goto reset_fifo_and_return;
1242
1243	if (ret == 0 && msg->rx_len) {
1244		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1245		u8 *msg_rx = msg->rx_buf;
1246
1247		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1248			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1249						  DSI_RXPKT1H_BC_PARAM);
1250
1251			if (rxlen != msg->rx_len) {
1252				DRM_ERROR("DSI returned %db, expecting %db\n",
1253					  rxlen, (int)msg->rx_len);
1254				ret = -ENXIO;
1255				goto reset_fifo_and_return;
1256			}
1257
1258			for (i = 0; i < msg->rx_len; i++)
1259				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1260		} else {
1261			/* FINISHME: Handle AWER */
1262
1263			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1264						  DSI_RXPKT1H_SHORT_0);
1265			if (msg->rx_len > 1) {
1266				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1267							  DSI_RXPKT1H_SHORT_1);
1268			}
1269		}
1270	}
1271
1272	return ret;
1273
1274reset_fifo_and_return:
1275	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1276
1277	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1278	udelay(1);
1279	DSI_PORT_WRITE(CTRL,
1280		       DSI_PORT_READ(CTRL) |
1281		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1282
1283	DSI_PORT_WRITE(TXPKT1C, 0);
1284	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1285	return ret;
1286}
1287
1288static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1289			       struct mipi_dsi_device *device)
1290{
1291	struct vc4_dsi *dsi = host_to_dsi(host);
1292
1293	dsi->lanes = device->lanes;
1294	dsi->channel = device->channel;
1295	dsi->mode_flags = device->mode_flags;
1296
1297	switch (device->format) {
1298	case MIPI_DSI_FMT_RGB888:
1299		dsi->format = DSI_PFORMAT_RGB888;
1300		dsi->divider = 24 / dsi->lanes;
1301		break;
1302	case MIPI_DSI_FMT_RGB666:
1303		dsi->format = DSI_PFORMAT_RGB666;
1304		dsi->divider = 24 / dsi->lanes;
1305		break;
1306	case MIPI_DSI_FMT_RGB666_PACKED:
1307		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1308		dsi->divider = 18 / dsi->lanes;
1309		break;
1310	case MIPI_DSI_FMT_RGB565:
1311		dsi->format = DSI_PFORMAT_RGB565;
1312		dsi->divider = 16 / dsi->lanes;
1313		break;
1314	default:
1315		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1316			dsi->format);
1317		return 0;
1318	}
1319
1320	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1321		dev_err(&dsi->pdev->dev,
1322			"Only VIDEO mode panels supported currently.\n");
1323		return 0;
1324	}
1325
1326	return 0;
1327}
1328
1329static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1330			       struct mipi_dsi_device *device)
1331{
1332	return 0;
1333}
1334
1335static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1336	.attach = vc4_dsi_host_attach,
1337	.detach = vc4_dsi_host_detach,
1338	.transfer = vc4_dsi_host_transfer,
1339};
1340
1341static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1342	.disable = vc4_dsi_encoder_disable,
1343	.enable = vc4_dsi_encoder_enable,
1344	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1345};
1346
1347static const struct of_device_id vc4_dsi_dt_match[] = {
1348	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1349	{}
1350};
1351
1352static void dsi_handle_error(struct vc4_dsi *dsi,
1353			     irqreturn_t *ret, u32 stat, u32 bit,
1354			     const char *type)
1355{
1356	if (!(stat & bit))
1357		return;
1358
1359	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1360	*ret = IRQ_HANDLED;
1361}
1362
1363/*
1364 * Initial handler for port 1 where we need the reg_dma workaround.
1365 * The register DMA writes sleep, so we can't do it in the top half.
1366 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1367 * parent interrupt contrller until our interrupt thread is done.
1368 */
1369static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1370{
1371	struct vc4_dsi *dsi = data;
1372	u32 stat = DSI_PORT_READ(INT_STAT);
1373
1374	if (!stat)
1375		return IRQ_NONE;
1376
1377	return IRQ_WAKE_THREAD;
1378}
1379
1380/*
1381 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1382 * 1 where we need the reg_dma workaround.
1383 */
1384static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1385{
1386	struct vc4_dsi *dsi = data;
1387	u32 stat = DSI_PORT_READ(INT_STAT);
1388	irqreturn_t ret = IRQ_NONE;
1389
1390	DSI_PORT_WRITE(INT_STAT, stat);
1391
1392	dsi_handle_error(dsi, &ret, stat,
1393			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1394	dsi_handle_error(dsi, &ret, stat,
1395			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1396	dsi_handle_error(dsi, &ret, stat,
1397			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1398	dsi_handle_error(dsi, &ret, stat,
1399			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1400	dsi_handle_error(dsi, &ret, stat,
1401			 DSI1_INT_HSTX_TO, "HSTX timeout");
1402	dsi_handle_error(dsi, &ret, stat,
1403			 DSI1_INT_LPRX_TO, "LPRX timeout");
1404	dsi_handle_error(dsi, &ret, stat,
1405			 DSI1_INT_TA_TO, "turnaround timeout");
1406	dsi_handle_error(dsi, &ret, stat,
1407			 DSI1_INT_PR_TO, "peripheral reset timeout");
1408
1409	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1410		complete(&dsi->xfer_completion);
1411		ret = IRQ_HANDLED;
1412	} else if (stat & DSI1_INT_HSTX_TO) {
1413		complete(&dsi->xfer_completion);
1414		dsi->xfer_result = -ETIMEDOUT;
1415		ret = IRQ_HANDLED;
1416	}
1417
1418	return ret;
1419}
1420
1421/**
1422 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1423 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1424 * @dsi: DSI encoder
1425 */
1426static int
1427vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1428{
1429	struct device *dev = &dsi->pdev->dev;
1430	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1431	static const struct {
1432		const char *dsi0_name, *dsi1_name;
1433		int div;
1434	} phy_clocks[] = {
1435		{ "dsi0_byte", "dsi1_byte", 8 },
1436		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1437		{ "dsi0_ddr", "dsi1_ddr", 2 },
1438	};
1439	int i;
1440
1441	dsi->clk_onecell = devm_kzalloc(dev,
1442					sizeof(*dsi->clk_onecell) +
1443					ARRAY_SIZE(phy_clocks) *
1444					sizeof(struct clk_hw *),
1445					GFP_KERNEL);
1446	if (!dsi->clk_onecell)
1447		return -ENOMEM;
1448	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1449
1450	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1451		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1452		struct clk_init_data init;
1453		int ret;
1454
1455		/* We just use core fixed factor clock ops for the PHY
1456		 * clocks.  The clocks are actually gated by the
1457		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1458		 * setting if we use the DDR/DDR2 clocks.  However,
1459		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1460		 * setting both our parent DSI PLL's rate and this
1461		 * clock's rate, so it knows if DDR/DDR2 are going to
1462		 * be used and could enable the gates itself.
1463		 */
1464		fix->mult = 1;
1465		fix->div = phy_clocks[i].div;
1466		fix->hw.init = &init;
1467
1468		memset(&init, 0, sizeof(init));
1469		init.parent_names = &parent_name;
1470		init.num_parents = 1;
1471		if (dsi->port == 1)
1472			init.name = phy_clocks[i].dsi1_name;
1473		else
1474			init.name = phy_clocks[i].dsi0_name;
1475		init.ops = &clk_fixed_factor_ops;
1476
1477		ret = devm_clk_hw_register(dev, &fix->hw);
1478		if (ret)
1479			return ret;
1480
1481		dsi->clk_onecell->hws[i] = &fix->hw;
1482	}
1483
1484	return of_clk_add_hw_provider(dev->of_node,
1485				      of_clk_hw_onecell_get,
1486				      dsi->clk_onecell);
1487}
1488
1489static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1490{
1491	struct platform_device *pdev = to_platform_device(dev);
1492	struct drm_device *drm = dev_get_drvdata(master);
1493	struct vc4_dev *vc4 = to_vc4_dev(drm);
1494	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1495	struct vc4_dsi_encoder *vc4_dsi_encoder;
1496	struct drm_panel *panel;
1497	const struct of_device_id *match;
1498	dma_cap_mask_t dma_mask;
1499	int ret;
1500
1501	match = of_match_device(vc4_dsi_dt_match, dev);
1502	if (!match)
1503		return -ENODEV;
1504
1505	dsi->port = (uintptr_t)match->data;
1506
1507	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1508				       GFP_KERNEL);
1509	if (!vc4_dsi_encoder)
1510		return -ENOMEM;
1511	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1512	vc4_dsi_encoder->dsi = dsi;
1513	dsi->encoder = &vc4_dsi_encoder->base.base;
1514
1515	dsi->regs = vc4_ioremap_regs(pdev, 0);
1516	if (IS_ERR(dsi->regs))
1517		return PTR_ERR(dsi->regs);
1518
1519	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1520		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1521			DSI_PORT_READ(ID), DSI_ID_VALUE);
1522		return -ENODEV;
1523	}
1524
1525	/* DSI1 has a broken AXI slave that doesn't respond to writes
1526	 * from the ARM.  It does handle writes from the DMA engine,
1527	 * so set up a channel for talking to it.
1528	 */
1529	if (dsi->port == 1) {
1530		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1531						      &dsi->reg_dma_paddr,
1532						      GFP_KERNEL);
1533		if (!dsi->reg_dma_mem) {
1534			DRM_ERROR("Failed to get DMA memory\n");
1535			return -ENOMEM;
1536		}
1537
1538		dma_cap_zero(dma_mask);
1539		dma_cap_set(DMA_MEMCPY, dma_mask);
1540		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1541		if (IS_ERR(dsi->reg_dma_chan)) {
1542			ret = PTR_ERR(dsi->reg_dma_chan);
1543			if (ret != -EPROBE_DEFER)
1544				DRM_ERROR("Failed to get DMA channel: %d\n",
1545					  ret);
1546			return ret;
1547		}
1548
1549		/* Get the physical address of the device's registers.  The
1550		 * struct resource for the regs gives us the bus address
1551		 * instead.
1552		 */
1553		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1554							     0, NULL, NULL));
1555	}
1556
1557	init_completion(&dsi->xfer_completion);
1558	/* At startup enable error-reporting interrupts and nothing else. */
1559	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1560	/* Clear any existing interrupt state. */
1561	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1562
1563	if (dsi->reg_dma_mem)
1564		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1565						vc4_dsi_irq_defer_to_thread_handler,
1566						vc4_dsi_irq_handler,
1567						IRQF_ONESHOT,
1568						"vc4 dsi", dsi);
1569	else
1570		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1571				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1572	if (ret) {
1573		if (ret != -EPROBE_DEFER)
1574			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1575		return ret;
1576	}
1577
1578	dsi->escape_clock = devm_clk_get(dev, "escape");
1579	if (IS_ERR(dsi->escape_clock)) {
1580		ret = PTR_ERR(dsi->escape_clock);
1581		if (ret != -EPROBE_DEFER)
1582			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1583		return ret;
1584	}
1585
1586	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1587	if (IS_ERR(dsi->pll_phy_clock)) {
1588		ret = PTR_ERR(dsi->pll_phy_clock);
1589		if (ret != -EPROBE_DEFER)
1590			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1591		return ret;
1592	}
1593
1594	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1595	if (IS_ERR(dsi->pixel_clock)) {
1596		ret = PTR_ERR(dsi->pixel_clock);
1597		if (ret != -EPROBE_DEFER)
1598			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1599		return ret;
1600	}
1601
1602	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1603					  &panel, &dsi->bridge);
1604	if (ret)
1605		return ret;
1606
1607	if (panel) {
1608		dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1609							DRM_MODE_CONNECTOR_DSI);
1610		if (IS_ERR(dsi->bridge))
1611			return PTR_ERR(dsi->bridge);
1612	}
1613
1614	/* The esc clock rate is supposed to always be 100Mhz. */
1615	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1616	if (ret) {
1617		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1618		return ret;
1619	}
1620
1621	ret = vc4_dsi_init_phy_clocks(dsi);
1622	if (ret)
1623		return ret;
1624
1625	if (dsi->port == 1)
1626		vc4->dsi1 = dsi;
1627
1628	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1629			 DRM_MODE_ENCODER_DSI, NULL);
1630	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1631
1632	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1633	if (ret) {
1634		dev_err(dev, "bridge attach failed: %d\n", ret);
1635		return ret;
1636	}
1637
1638	pm_runtime_enable(dev);
1639
1640	return 0;
1641}
1642
1643static void vc4_dsi_unbind(struct device *dev, struct device *master,
1644			   void *data)
1645{
1646	struct drm_device *drm = dev_get_drvdata(master);
1647	struct vc4_dev *vc4 = to_vc4_dev(drm);
1648	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1649
1650	pm_runtime_disable(dev);
1651
1652	vc4_dsi_encoder_destroy(dsi->encoder);
1653
1654	if (dsi->port == 1)
1655		vc4->dsi1 = NULL;
1656}
1657
1658static const struct component_ops vc4_dsi_ops = {
1659	.bind   = vc4_dsi_bind,
1660	.unbind = vc4_dsi_unbind,
1661};
1662
1663static int vc4_dsi_dev_probe(struct platform_device *pdev)
1664{
1665	struct device *dev = &pdev->dev;
1666	struct vc4_dsi *dsi;
1667	int ret;
1668
1669	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1670	if (!dsi)
1671		return -ENOMEM;
1672	dev_set_drvdata(dev, dsi);
1673
1674	dsi->pdev = pdev;
1675
1676	/* Note, the initialization sequence for DSI and panels is
1677	 * tricky.  The component bind above won't get past its
1678	 * -EPROBE_DEFER until the panel/bridge probes.  The
1679	 * panel/bridge will return -EPROBE_DEFER until it has a
1680	 * mipi_dsi_host to register its device to.  So, we register
1681	 * the host during pdev probe time, so vc4 as a whole can then
1682	 * -EPROBE_DEFER its component bind process until the panel
1683	 * successfully attaches.
1684	 */
1685	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1686	dsi->dsi_host.dev = dev;
1687	mipi_dsi_host_register(&dsi->dsi_host);
1688
1689	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1690	if (ret) {
1691		mipi_dsi_host_unregister(&dsi->dsi_host);
1692		return ret;
1693	}
1694
1695	return 0;
1696}
1697
1698static int vc4_dsi_dev_remove(struct platform_device *pdev)
1699{
1700	struct device *dev = &pdev->dev;
1701	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1702
1703	component_del(&pdev->dev, &vc4_dsi_ops);
1704	mipi_dsi_host_unregister(&dsi->dsi_host);
1705
1706	return 0;
1707}
1708
1709struct platform_driver vc4_dsi_driver = {
1710	.probe = vc4_dsi_dev_probe,
1711	.remove = vc4_dsi_dev_remove,
1712	.driver = {
1713		.name = "vc4_dsi",
1714		.of_match_table = vc4_dsi_dt_match,
1715	},
1716};