Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/kernel/ptrace.c
  3 *
  4 *  By Ross Biro 1/23/92
  5 * edited by Linus Torvalds
  6 * ARM modifications Copyright (C) 2000 Russell King
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 
 14#include <linux/mm.h>
 
 15#include <linux/smp.h>
 16#include <linux/ptrace.h>
 17#include <linux/user.h>
 18#include <linux/security.h>
 19#include <linux/init.h>
 20#include <linux/signal.h>
 21#include <linux/uaccess.h>
 22#include <linux/perf_event.h>
 23#include <linux/hw_breakpoint.h>
 24#include <linux/regset.h>
 
 
 
 25
 26#include <asm/pgtable.h>
 27#include <asm/system.h>
 28#include <asm/traps.h>
 29
 
 
 
 30#define REG_PC	15
 31#define REG_PSR	16
 32/*
 33 * does not yet catch signals sent when the child dies.
 34 * in exit.c or in signal.c.
 35 */
 36
 37#if 0
 38/*
 39 * Breakpoint SWI instruction: SWI &9F0001
 40 */
 41#define BREAKINST_ARM	0xef9f0001
 42#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 43#else
 44/*
 45 * New breakpoints - use an undefined instruction.  The ARM architecture
 46 * reference manual guarantees that the following instruction space
 47 * will produce an undefined instruction exception on all CPUs:
 48 *
 49 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 50 *  Thumb: 1101 1110 xxxx xxxx
 51 */
 52#define BREAKINST_ARM	0xe7f001f0
 53#define BREAKINST_THUMB	0xde01
 54#endif
 55
 56struct pt_regs_offset {
 57	const char *name;
 58	int offset;
 59};
 60
 61#define REG_OFFSET_NAME(r) \
 62	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 63#define REG_OFFSET_END {.name = NULL, .offset = 0}
 64
 65static const struct pt_regs_offset regoffset_table[] = {
 66	REG_OFFSET_NAME(r0),
 67	REG_OFFSET_NAME(r1),
 68	REG_OFFSET_NAME(r2),
 69	REG_OFFSET_NAME(r3),
 70	REG_OFFSET_NAME(r4),
 71	REG_OFFSET_NAME(r5),
 72	REG_OFFSET_NAME(r6),
 73	REG_OFFSET_NAME(r7),
 74	REG_OFFSET_NAME(r8),
 75	REG_OFFSET_NAME(r9),
 76	REG_OFFSET_NAME(r10),
 77	REG_OFFSET_NAME(fp),
 78	REG_OFFSET_NAME(ip),
 79	REG_OFFSET_NAME(sp),
 80	REG_OFFSET_NAME(lr),
 81	REG_OFFSET_NAME(pc),
 82	REG_OFFSET_NAME(cpsr),
 83	REG_OFFSET_NAME(ORIG_r0),
 84	REG_OFFSET_END,
 85};
 86
 87/**
 88 * regs_query_register_offset() - query register offset from its name
 89 * @name:	the name of a register
 90 *
 91 * regs_query_register_offset() returns the offset of a register in struct
 92 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 93 */
 94int regs_query_register_offset(const char *name)
 95{
 96	const struct pt_regs_offset *roff;
 97	for (roff = regoffset_table; roff->name != NULL; roff++)
 98		if (!strcmp(roff->name, name))
 99			return roff->offset;
100	return -EINVAL;
101}
102
103/**
104 * regs_query_register_name() - query register name from its offset
105 * @offset:	the offset of a register in struct pt_regs.
106 *
107 * regs_query_register_name() returns the name of a register from its
108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109 */
110const char *regs_query_register_name(unsigned int offset)
111{
112	const struct pt_regs_offset *roff;
113	for (roff = regoffset_table; roff->name != NULL; roff++)
114		if (roff->offset == offset)
115			return roff->name;
116	return NULL;
117}
118
119/**
120 * regs_within_kernel_stack() - check the address in the stack
121 * @regs:      pt_regs which contains kernel stack pointer.
122 * @addr:      address which is checked.
123 *
124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125 * If @addr is within the kernel stack, it returns true. If not, returns false.
126 */
127bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128{
129	return ((addr & ~(THREAD_SIZE - 1))  ==
130		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131}
132
133/**
134 * regs_get_kernel_stack_nth() - get Nth entry of the stack
135 * @regs:	pt_regs which contains kernel stack pointer.
136 * @n:		stack entry number.
137 *
138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140 * this returns 0.
141 */
142unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143{
144	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145	addr += n;
146	if (regs_within_kernel_stack(regs, (unsigned long)addr))
147		return *addr;
148	else
149		return 0;
150}
151
152/*
153 * this routine will get a word off of the processes privileged stack.
154 * the offset is how far from the base addr as stored in the THREAD.
155 * this routine assumes that all the privileged stacks are in our
156 * data space.
157 */
158static inline long get_user_reg(struct task_struct *task, int offset)
159{
160	return task_pt_regs(task)->uregs[offset];
161}
162
163/*
164 * this routine will put a word on the processes privileged stack.
165 * the offset is how far from the base addr as stored in the THREAD.
166 * this routine assumes that all the privileged stacks are in our
167 * data space.
168 */
169static inline int
170put_user_reg(struct task_struct *task, int offset, long data)
171{
172	struct pt_regs newregs, *regs = task_pt_regs(task);
173	int ret = -EINVAL;
174
175	newregs = *regs;
176	newregs.uregs[offset] = data;
177
178	if (valid_user_regs(&newregs)) {
179		regs->uregs[offset] = data;
180		ret = 0;
181	}
182
183	return ret;
184}
185
186/*
187 * Called by kernel/ptrace.c when detaching..
188 */
189void ptrace_disable(struct task_struct *child)
190{
191	/* Nothing to do. */
192}
193
194/*
195 * Handle hitting a breakpoint.
196 */
197void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198{
199	siginfo_t info;
200
201	info.si_signo = SIGTRAP;
202	info.si_errno = 0;
203	info.si_code  = TRAP_BRKPT;
204	info.si_addr  = (void __user *)instruction_pointer(regs);
205
206	force_sig_info(SIGTRAP, &info, tsk);
207}
208
209static int break_trap(struct pt_regs *regs, unsigned int instr)
210{
211	ptrace_break(current, regs);
212	return 0;
213}
214
215static struct undef_hook arm_break_hook = {
216	.instr_mask	= 0x0fffffff,
217	.instr_val	= 0x07f001f0,
218	.cpsr_mask	= PSR_T_BIT,
219	.cpsr_val	= 0,
220	.fn		= break_trap,
221};
222
223static struct undef_hook thumb_break_hook = {
224	.instr_mask	= 0xffff,
225	.instr_val	= 0xde01,
226	.cpsr_mask	= PSR_T_BIT,
227	.cpsr_val	= PSR_T_BIT,
228	.fn		= break_trap,
229};
230
231static struct undef_hook thumb2_break_hook = {
232	.instr_mask	= 0xffffffff,
233	.instr_val	= 0xf7f0a000,
234	.cpsr_mask	= PSR_T_BIT,
235	.cpsr_val	= PSR_T_BIT,
236	.fn		= break_trap,
237};
238
239static int __init ptrace_break_init(void)
240{
241	register_undef_hook(&arm_break_hook);
242	register_undef_hook(&thumb_break_hook);
243	register_undef_hook(&thumb2_break_hook);
244	return 0;
245}
246
247core_initcall(ptrace_break_init);
248
249/*
250 * Read the word at offset "off" into the "struct user".  We
251 * actually access the pt_regs stored on the kernel stack.
252 */
253static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
254			    unsigned long __user *ret)
255{
256	unsigned long tmp;
257
258	if (off & 3 || off >= sizeof(struct user))
259		return -EIO;
260
261	tmp = 0;
262	if (off == PT_TEXT_ADDR)
263		tmp = tsk->mm->start_code;
264	else if (off == PT_DATA_ADDR)
265		tmp = tsk->mm->start_data;
266	else if (off == PT_TEXT_END_ADDR)
267		tmp = tsk->mm->end_code;
268	else if (off < sizeof(struct pt_regs))
269		tmp = get_user_reg(tsk, off >> 2);
 
 
270
271	return put_user(tmp, ret);
272}
273
274/*
275 * Write the word at offset "off" into "struct user".  We
276 * actually access the pt_regs stored on the kernel stack.
277 */
278static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279			     unsigned long val)
280{
281	if (off & 3 || off >= sizeof(struct user))
282		return -EIO;
283
284	if (off >= sizeof(struct pt_regs))
285		return 0;
286
287	return put_user_reg(tsk, off >> 2, val);
288}
289
290#ifdef CONFIG_IWMMXT
291
292/*
293 * Get the child iWMMXt state.
294 */
295static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296{
297	struct thread_info *thread = task_thread_info(tsk);
298
299	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300		return -ENODATA;
301	iwmmxt_task_disable(thread);  /* force it to ram */
302	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303		? -EFAULT : 0;
304}
305
306/*
307 * Set the child iWMMXt state.
308 */
309static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310{
311	struct thread_info *thread = task_thread_info(tsk);
312
313	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314		return -EACCES;
315	iwmmxt_task_release(thread);  /* force a reload */
316	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317		? -EFAULT : 0;
318}
319
320#endif
321
322#ifdef CONFIG_CRUNCH
323/*
324 * Get the child Crunch state.
325 */
326static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
327{
328	struct thread_info *thread = task_thread_info(tsk);
329
330	crunch_task_disable(thread);  /* force it to ram */
331	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
332		? -EFAULT : 0;
333}
334
335/*
336 * Set the child Crunch state.
337 */
338static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
339{
340	struct thread_info *thread = task_thread_info(tsk);
341
342	crunch_task_release(thread);  /* force a reload */
343	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
344		? -EFAULT : 0;
345}
346#endif
347
348#ifdef CONFIG_HAVE_HW_BREAKPOINT
349/*
350 * Convert a virtual register number into an index for a thread_info
351 * breakpoint array. Breakpoints are identified using positive numbers
352 * whilst watchpoints are negative. The registers are laid out as pairs
353 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354 * Register 0 is reserved for describing resource information.
355 */
356static int ptrace_hbp_num_to_idx(long num)
357{
358	if (num < 0)
359		num = (ARM_MAX_BRP << 1) - num;
360	return (num - 1) >> 1;
361}
362
363/*
364 * Returns the virtual register number for the address of the
365 * breakpoint at index idx.
366 */
367static long ptrace_hbp_idx_to_num(int idx)
368{
369	long mid = ARM_MAX_BRP << 1;
370	long num = (idx << 1) + 1;
371	return num > mid ? mid - num : num;
372}
373
374/*
375 * Handle hitting a HW-breakpoint.
376 */
377static void ptrace_hbptriggered(struct perf_event *bp,
378				     struct perf_sample_data *data,
379				     struct pt_regs *regs)
380{
381	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
382	long num;
383	int i;
384	siginfo_t info;
385
386	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
387		if (current->thread.debug.hbp[i] == bp)
388			break;
389
390	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
391
392	info.si_signo	= SIGTRAP;
393	info.si_errno	= (int)num;
394	info.si_code	= TRAP_HWBKPT;
395	info.si_addr	= (void __user *)(bkpt->trigger);
396
397	force_sig_info(SIGTRAP, &info, current);
398}
399
400/*
401 * Set ptrace breakpoint pointers to zero for this task.
402 * This is required in order to prevent child processes from unregistering
403 * breakpoints held by their parent.
404 */
405void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
406{
407	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
408}
409
410/*
411 * Unregister breakpoints from this task and reset the pointers in
412 * the thread_struct.
413 */
414void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
415{
416	int i;
417	struct thread_struct *t = &tsk->thread;
418
419	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
420		if (t->debug.hbp[i]) {
421			unregister_hw_breakpoint(t->debug.hbp[i]);
422			t->debug.hbp[i] = NULL;
423		}
424	}
425}
426
427static u32 ptrace_get_hbp_resource_info(void)
428{
429	u8 num_brps, num_wrps, debug_arch, wp_len;
430	u32 reg = 0;
431
432	num_brps	= hw_breakpoint_slots(TYPE_INST);
433	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
434	debug_arch	= arch_get_debug_arch();
435	wp_len		= arch_get_max_wp_len();
436
437	reg		|= debug_arch;
438	reg		<<= 8;
439	reg		|= wp_len;
440	reg		<<= 8;
441	reg		|= num_wrps;
442	reg		<<= 8;
443	reg		|= num_brps;
444
445	return reg;
446}
447
448static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
449{
450	struct perf_event_attr attr;
451
452	ptrace_breakpoint_init(&attr);
453
454	/* Initialise fields to sane defaults. */
455	attr.bp_addr	= 0;
456	attr.bp_len	= HW_BREAKPOINT_LEN_4;
457	attr.bp_type	= type;
458	attr.disabled	= 1;
459
460	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
461					   tsk);
462}
463
464static int ptrace_gethbpregs(struct task_struct *tsk, long num,
465			     unsigned long  __user *data)
466{
467	u32 reg;
468	int idx, ret = 0;
469	struct perf_event *bp;
470	struct arch_hw_breakpoint_ctrl arch_ctrl;
471
472	if (num == 0) {
473		reg = ptrace_get_hbp_resource_info();
474	} else {
475		idx = ptrace_hbp_num_to_idx(num);
476		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
477			ret = -EINVAL;
478			goto out;
479		}
480
481		bp = tsk->thread.debug.hbp[idx];
482		if (!bp) {
483			reg = 0;
484			goto put;
485		}
486
487		arch_ctrl = counter_arch_bp(bp)->ctrl;
488
489		/*
490		 * Fix up the len because we may have adjusted it
491		 * to compensate for an unaligned address.
492		 */
493		while (!(arch_ctrl.len & 0x1))
494			arch_ctrl.len >>= 1;
495
496		if (num & 0x1)
497			reg = bp->attr.bp_addr;
498		else
499			reg = encode_ctrl_reg(arch_ctrl);
500	}
501
502put:
503	if (put_user(reg, data))
504		ret = -EFAULT;
505
506out:
507	return ret;
508}
509
510static int ptrace_sethbpregs(struct task_struct *tsk, long num,
511			     unsigned long __user *data)
512{
513	int idx, gen_len, gen_type, implied_type, ret = 0;
514	u32 user_val;
515	struct perf_event *bp;
516	struct arch_hw_breakpoint_ctrl ctrl;
517	struct perf_event_attr attr;
518
519	if (num == 0)
520		goto out;
521	else if (num < 0)
522		implied_type = HW_BREAKPOINT_RW;
523	else
524		implied_type = HW_BREAKPOINT_X;
525
526	idx = ptrace_hbp_num_to_idx(num);
527	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
528		ret = -EINVAL;
529		goto out;
530	}
531
532	if (get_user(user_val, data)) {
533		ret = -EFAULT;
534		goto out;
535	}
536
537	bp = tsk->thread.debug.hbp[idx];
538	if (!bp) {
539		bp = ptrace_hbp_create(tsk, implied_type);
540		if (IS_ERR(bp)) {
541			ret = PTR_ERR(bp);
542			goto out;
543		}
544		tsk->thread.debug.hbp[idx] = bp;
545	}
546
547	attr = bp->attr;
548
549	if (num & 0x1) {
550		/* Address */
551		attr.bp_addr	= user_val;
552	} else {
553		/* Control */
554		decode_ctrl_reg(user_val, &ctrl);
555		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
556		if (ret)
557			goto out;
558
559		if ((gen_type & implied_type) != gen_type) {
560			ret = -EINVAL;
561			goto out;
562		}
563
564		attr.bp_len	= gen_len;
565		attr.bp_type	= gen_type;
566		attr.disabled	= !ctrl.enabled;
567	}
568
569	ret = modify_user_hw_breakpoint(bp, &attr);
570out:
571	return ret;
572}
573#endif
574
575/* regset get/set implementations */
576
577static int gpr_get(struct task_struct *target,
578		   const struct user_regset *regset,
579		   unsigned int pos, unsigned int count,
580		   void *kbuf, void __user *ubuf)
581{
582	struct pt_regs *regs = task_pt_regs(target);
583
584	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
585				   regs,
586				   0, sizeof(*regs));
587}
588
589static int gpr_set(struct task_struct *target,
590		   const struct user_regset *regset,
591		   unsigned int pos, unsigned int count,
592		   const void *kbuf, const void __user *ubuf)
593{
594	int ret;
595	struct pt_regs newregs;
596
597	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
598				 &newregs,
599				 0, sizeof(newregs));
600	if (ret)
601		return ret;
602
603	if (!valid_user_regs(&newregs))
604		return -EINVAL;
605
606	*task_pt_regs(target) = newregs;
607	return 0;
608}
609
610static int fpa_get(struct task_struct *target,
611		   const struct user_regset *regset,
612		   unsigned int pos, unsigned int count,
613		   void *kbuf, void __user *ubuf)
614{
615	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
616				   &task_thread_info(target)->fpstate,
617				   0, sizeof(struct user_fp));
618}
619
620static int fpa_set(struct task_struct *target,
621		   const struct user_regset *regset,
622		   unsigned int pos, unsigned int count,
623		   const void *kbuf, const void __user *ubuf)
624{
625	struct thread_info *thread = task_thread_info(target);
626
627	thread->used_cp[1] = thread->used_cp[2] = 1;
628
629	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
630		&thread->fpstate,
631		0, sizeof(struct user_fp));
632}
633
634#ifdef CONFIG_VFP
635/*
636 * VFP register get/set implementations.
637 *
638 * With respect to the kernel, struct user_fp is divided into three chunks:
639 * 16 or 32 real VFP registers (d0-d15 or d0-31)
640 *	These are transferred to/from the real registers in the task's
641 *	vfp_hard_struct.  The number of registers depends on the kernel
642 *	configuration.
643 *
644 * 16 or 0 fake VFP registers (d16-d31 or empty)
645 *	i.e., the user_vfp structure has space for 32 registers even if
646 *	the kernel doesn't have them all.
647 *
648 *	vfp_get() reads this chunk as zero where applicable
649 *	vfp_set() ignores this chunk
650 *
651 * 1 word for the FPSCR
652 *
653 * The bounds-checking logic built into user_regset_copyout and friends
654 * means that we can make a simple sequence of calls to map the relevant data
655 * to/from the specified slice of the user regset structure.
656 */
657static int vfp_get(struct task_struct *target,
658		   const struct user_regset *regset,
659		   unsigned int pos, unsigned int count,
660		   void *kbuf, void __user *ubuf)
661{
662	int ret;
663	struct thread_info *thread = task_thread_info(target);
664	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
665	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
666	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
667
668	vfp_sync_hwstate(thread);
669
670	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
671				  &vfp->fpregs,
672				  user_fpregs_offset,
673				  user_fpregs_offset + sizeof(vfp->fpregs));
674	if (ret)
675		return ret;
676
677	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
678				       user_fpregs_offset + sizeof(vfp->fpregs),
679				       user_fpscr_offset);
680	if (ret)
681		return ret;
682
683	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
684				   &vfp->fpscr,
685				   user_fpscr_offset,
686				   user_fpscr_offset + sizeof(vfp->fpscr));
687}
688
689/*
690 * For vfp_set() a read-modify-write is done on the VFP registers,
691 * in order to avoid writing back a half-modified set of registers on
692 * failure.
693 */
694static int vfp_set(struct task_struct *target,
695			  const struct user_regset *regset,
696			  unsigned int pos, unsigned int count,
697			  const void *kbuf, const void __user *ubuf)
698{
699	int ret;
700	struct thread_info *thread = task_thread_info(target);
701	struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
702	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
703	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
704
 
 
 
705	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
706				  &new_vfp.fpregs,
707				  user_fpregs_offset,
708				  user_fpregs_offset + sizeof(new_vfp.fpregs));
709	if (ret)
710		return ret;
711
712	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
713				user_fpregs_offset + sizeof(new_vfp.fpregs),
714				user_fpscr_offset);
715	if (ret)
716		return ret;
717
718	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
719				 &new_vfp.fpscr,
720				 user_fpscr_offset,
721				 user_fpscr_offset + sizeof(new_vfp.fpscr));
722	if (ret)
723		return ret;
724
725	vfp_sync_hwstate(thread);
726	thread->vfpstate.hard = new_vfp;
727	vfp_flush_hwstate(thread);
728
729	return 0;
730}
731#endif /* CONFIG_VFP */
732
733enum arm_regset {
734	REGSET_GPR,
735	REGSET_FPR,
736#ifdef CONFIG_VFP
737	REGSET_VFP,
738#endif
739};
740
741static const struct user_regset arm_regsets[] = {
742	[REGSET_GPR] = {
743		.core_note_type = NT_PRSTATUS,
744		.n = ELF_NGREG,
745		.size = sizeof(u32),
746		.align = sizeof(u32),
747		.get = gpr_get,
748		.set = gpr_set
749	},
750	[REGSET_FPR] = {
751		/*
752		 * For the FPA regs in fpstate, the real fields are a mixture
753		 * of sizes, so pretend that the registers are word-sized:
754		 */
755		.core_note_type = NT_PRFPREG,
756		.n = sizeof(struct user_fp) / sizeof(u32),
757		.size = sizeof(u32),
758		.align = sizeof(u32),
759		.get = fpa_get,
760		.set = fpa_set
761	},
762#ifdef CONFIG_VFP
763	[REGSET_VFP] = {
764		/*
765		 * Pretend that the VFP regs are word-sized, since the FPSCR is
766		 * a single word dangling at the end of struct user_vfp:
767		 */
768		.core_note_type = NT_ARM_VFP,
769		.n = ARM_VFPREGS_SIZE / sizeof(u32),
770		.size = sizeof(u32),
771		.align = sizeof(u32),
772		.get = vfp_get,
773		.set = vfp_set
774	},
775#endif /* CONFIG_VFP */
776};
777
778static const struct user_regset_view user_arm_view = {
779	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
780	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
781};
782
783const struct user_regset_view *task_user_regset_view(struct task_struct *task)
784{
785	return &user_arm_view;
786}
787
788long arch_ptrace(struct task_struct *child, long request,
789		 unsigned long addr, unsigned long data)
790{
791	int ret;
792	unsigned long __user *datap = (unsigned long __user *) data;
793
794	switch (request) {
795		case PTRACE_PEEKUSR:
796			ret = ptrace_read_user(child, addr, datap);
797			break;
798
799		case PTRACE_POKEUSR:
800			ret = ptrace_write_user(child, addr, data);
801			break;
802
803		case PTRACE_GETREGS:
804			ret = copy_regset_to_user(child,
805						  &user_arm_view, REGSET_GPR,
806						  0, sizeof(struct pt_regs),
807						  datap);
808			break;
809
810		case PTRACE_SETREGS:
811			ret = copy_regset_from_user(child,
812						    &user_arm_view, REGSET_GPR,
813						    0, sizeof(struct pt_regs),
814						    datap);
815			break;
816
817		case PTRACE_GETFPREGS:
818			ret = copy_regset_to_user(child,
819						  &user_arm_view, REGSET_FPR,
820						  0, sizeof(union fp_state),
821						  datap);
822			break;
823
824		case PTRACE_SETFPREGS:
825			ret = copy_regset_from_user(child,
826						    &user_arm_view, REGSET_FPR,
827						    0, sizeof(union fp_state),
828						    datap);
829			break;
830
831#ifdef CONFIG_IWMMXT
832		case PTRACE_GETWMMXREGS:
833			ret = ptrace_getwmmxregs(child, datap);
834			break;
835
836		case PTRACE_SETWMMXREGS:
837			ret = ptrace_setwmmxregs(child, datap);
838			break;
839#endif
840
841		case PTRACE_GET_THREAD_AREA:
842			ret = put_user(task_thread_info(child)->tp_value,
843				       datap);
844			break;
845
846		case PTRACE_SET_SYSCALL:
847			task_thread_info(child)->syscall = data;
848			ret = 0;
849			break;
850
851#ifdef CONFIG_CRUNCH
852		case PTRACE_GETCRUNCHREGS:
853			ret = ptrace_getcrunchregs(child, datap);
854			break;
855
856		case PTRACE_SETCRUNCHREGS:
857			ret = ptrace_setcrunchregs(child, datap);
858			break;
859#endif
860
861#ifdef CONFIG_VFP
862		case PTRACE_GETVFPREGS:
863			ret = copy_regset_to_user(child,
864						  &user_arm_view, REGSET_VFP,
865						  0, ARM_VFPREGS_SIZE,
866						  datap);
867			break;
868
869		case PTRACE_SETVFPREGS:
870			ret = copy_regset_from_user(child,
871						    &user_arm_view, REGSET_VFP,
872						    0, ARM_VFPREGS_SIZE,
873						    datap);
874			break;
875#endif
876
877#ifdef CONFIG_HAVE_HW_BREAKPOINT
878		case PTRACE_GETHBPREGS:
879			if (ptrace_get_breakpoints(child) < 0)
880				return -ESRCH;
881
882			ret = ptrace_gethbpregs(child, addr,
883						(unsigned long __user *)data);
884			ptrace_put_breakpoints(child);
885			break;
886		case PTRACE_SETHBPREGS:
887			if (ptrace_get_breakpoints(child) < 0)
888				return -ESRCH;
889
890			ret = ptrace_sethbpregs(child, addr,
891						(unsigned long __user *)data);
892			ptrace_put_breakpoints(child);
893			break;
894#endif
895
896		default:
897			ret = ptrace_request(child, request, addr, data);
898			break;
899	}
900
901	return ret;
902}
903
904asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
 
 
 
 
 
 
905{
906	unsigned long ip;
907
908	if (!test_thread_flag(TIF_SYSCALL_TRACE))
909		return scno;
910	if (!(current->ptrace & PT_PTRACED))
911		return scno;
912
913	/*
914	 * Save IP.  IP is used to denote syscall entry/exit:
915	 *  IP = 0 -> entry, = 1 -> exit
916	 */
917	ip = regs->ARM_ip;
918	regs->ARM_ip = why;
 
 
 
 
 
919
 
 
 
 
 
920	current_thread_info()->syscall = scno;
921
922	/* the 0x80 provides a way for the tracing parent to distinguish
923	   between a syscall stop and SIGTRAP delivery */
924	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
925				 ? 0x80 : 0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926	/*
927	 * this isn't the same as continuing with a signal, but it will do
928	 * for normal use.  strace only continues with a signal if the
929	 * stopping signal is not SIGTRAP.  -brl
930	 */
931	if (current->exit_code) {
932		send_sig(current->exit_code, current, 1);
933		current->exit_code = 0;
934	}
935	regs->ARM_ip = ip;
 
 
 
 
 
936
937	return current_thread_info()->syscall;
 
938}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/ptrace.c
  4 *
  5 *  By Ross Biro 1/23/92
  6 * edited by Linus Torvalds
  7 * ARM modifications Copyright (C) 2000 Russell King
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/mm.h>
 13#include <linux/elf.h>
 14#include <linux/smp.h>
 15#include <linux/ptrace.h>
 16#include <linux/user.h>
 17#include <linux/security.h>
 18#include <linux/init.h>
 19#include <linux/signal.h>
 20#include <linux/uaccess.h>
 21#include <linux/perf_event.h>
 22#include <linux/hw_breakpoint.h>
 23#include <linux/regset.h>
 24#include <linux/audit.h>
 25#include <linux/tracehook.h>
 26#include <linux/unistd.h>
 27
 
 
 28#include <asm/traps.h>
 29
 30#define CREATE_TRACE_POINTS
 31#include <trace/events/syscalls.h>
 32
 33#define REG_PC	15
 34#define REG_PSR	16
 35/*
 36 * does not yet catch signals sent when the child dies.
 37 * in exit.c or in signal.c.
 38 */
 39
 40#if 0
 41/*
 42 * Breakpoint SWI instruction: SWI &9F0001
 43 */
 44#define BREAKINST_ARM	0xef9f0001
 45#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 46#else
 47/*
 48 * New breakpoints - use an undefined instruction.  The ARM architecture
 49 * reference manual guarantees that the following instruction space
 50 * will produce an undefined instruction exception on all CPUs:
 51 *
 52 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 53 *  Thumb: 1101 1110 xxxx xxxx
 54 */
 55#define BREAKINST_ARM	0xe7f001f0
 56#define BREAKINST_THUMB	0xde01
 57#endif
 58
 59struct pt_regs_offset {
 60	const char *name;
 61	int offset;
 62};
 63
 64#define REG_OFFSET_NAME(r) \
 65	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 66#define REG_OFFSET_END {.name = NULL, .offset = 0}
 67
 68static const struct pt_regs_offset regoffset_table[] = {
 69	REG_OFFSET_NAME(r0),
 70	REG_OFFSET_NAME(r1),
 71	REG_OFFSET_NAME(r2),
 72	REG_OFFSET_NAME(r3),
 73	REG_OFFSET_NAME(r4),
 74	REG_OFFSET_NAME(r5),
 75	REG_OFFSET_NAME(r6),
 76	REG_OFFSET_NAME(r7),
 77	REG_OFFSET_NAME(r8),
 78	REG_OFFSET_NAME(r9),
 79	REG_OFFSET_NAME(r10),
 80	REG_OFFSET_NAME(fp),
 81	REG_OFFSET_NAME(ip),
 82	REG_OFFSET_NAME(sp),
 83	REG_OFFSET_NAME(lr),
 84	REG_OFFSET_NAME(pc),
 85	REG_OFFSET_NAME(cpsr),
 86	REG_OFFSET_NAME(ORIG_r0),
 87	REG_OFFSET_END,
 88};
 89
 90/**
 91 * regs_query_register_offset() - query register offset from its name
 92 * @name:	the name of a register
 93 *
 94 * regs_query_register_offset() returns the offset of a register in struct
 95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 96 */
 97int regs_query_register_offset(const char *name)
 98{
 99	const struct pt_regs_offset *roff;
100	for (roff = regoffset_table; roff->name != NULL; roff++)
101		if (!strcmp(roff->name, name))
102			return roff->offset;
103	return -EINVAL;
104}
105
106/**
107 * regs_query_register_name() - query register name from its offset
108 * @offset:	the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
113const char *regs_query_register_name(unsigned int offset)
114{
115	const struct pt_regs_offset *roff;
116	for (roff = regoffset_table; roff->name != NULL; roff++)
117		if (roff->offset == offset)
118			return roff->name;
119	return NULL;
120}
121
122/**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs:      pt_regs which contains kernel stack pointer.
125 * @addr:      address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131{
132	return ((addr & ~(THREAD_SIZE - 1))  ==
133		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134}
135
136/**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs:	pt_regs which contains kernel stack pointer.
139 * @n:		stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146{
147	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148	addr += n;
149	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150		return *addr;
151	else
152		return 0;
153}
154
155/*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
161static inline long get_user_reg(struct task_struct *task, int offset)
162{
163	return task_pt_regs(task)->uregs[offset];
164}
165
166/*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172static inline int
173put_user_reg(struct task_struct *task, int offset, long data)
174{
175	struct pt_regs newregs, *regs = task_pt_regs(task);
176	int ret = -EINVAL;
177
178	newregs = *regs;
179	newregs.uregs[offset] = data;
180
181	if (valid_user_regs(&newregs)) {
182		regs->uregs[offset] = data;
183		ret = 0;
184	}
185
186	return ret;
187}
188
189/*
190 * Called by kernel/ptrace.c when detaching..
191 */
192void ptrace_disable(struct task_struct *child)
193{
194	/* Nothing to do. */
195}
196
197/*
198 * Handle hitting a breakpoint.
199 */
200void ptrace_break(struct pt_regs *regs)
201{
202	force_sig_fault(SIGTRAP, TRAP_BRKPT,
203			(void __user *)instruction_pointer(regs));
 
 
 
 
 
 
204}
205
206static int break_trap(struct pt_regs *regs, unsigned int instr)
207{
208	ptrace_break(regs);
209	return 0;
210}
211
212static struct undef_hook arm_break_hook = {
213	.instr_mask	= 0x0fffffff,
214	.instr_val	= 0x07f001f0,
215	.cpsr_mask	= PSR_T_BIT,
216	.cpsr_val	= 0,
217	.fn		= break_trap,
218};
219
220static struct undef_hook thumb_break_hook = {
221	.instr_mask	= 0xffffffff,
222	.instr_val	= 0x0000de01,
223	.cpsr_mask	= PSR_T_BIT,
224	.cpsr_val	= PSR_T_BIT,
225	.fn		= break_trap,
226};
227
228static struct undef_hook thumb2_break_hook = {
229	.instr_mask	= 0xffffffff,
230	.instr_val	= 0xf7f0a000,
231	.cpsr_mask	= PSR_T_BIT,
232	.cpsr_val	= PSR_T_BIT,
233	.fn		= break_trap,
234};
235
236static int __init ptrace_break_init(void)
237{
238	register_undef_hook(&arm_break_hook);
239	register_undef_hook(&thumb_break_hook);
240	register_undef_hook(&thumb2_break_hook);
241	return 0;
242}
243
244core_initcall(ptrace_break_init);
245
246/*
247 * Read the word at offset "off" into the "struct user".  We
248 * actually access the pt_regs stored on the kernel stack.
249 */
250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251			    unsigned long __user *ret)
252{
253	unsigned long tmp;
254
255	if (off & 3)
256		return -EIO;
257
258	tmp = 0;
259	if (off == PT_TEXT_ADDR)
260		tmp = tsk->mm->start_code;
261	else if (off == PT_DATA_ADDR)
262		tmp = tsk->mm->start_data;
263	else if (off == PT_TEXT_END_ADDR)
264		tmp = tsk->mm->end_code;
265	else if (off < sizeof(struct pt_regs))
266		tmp = get_user_reg(tsk, off >> 2);
267	else if (off >= sizeof(struct user))
268		return -EIO;
269
270	return put_user(tmp, ret);
271}
272
273/*
274 * Write the word at offset "off" into "struct user".  We
275 * actually access the pt_regs stored on the kernel stack.
276 */
277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278			     unsigned long val)
279{
280	if (off & 3 || off >= sizeof(struct user))
281		return -EIO;
282
283	if (off >= sizeof(struct pt_regs))
284		return 0;
285
286	return put_user_reg(tsk, off >> 2, val);
287}
288
289#ifdef CONFIG_IWMMXT
290
291/*
292 * Get the child iWMMXt state.
293 */
294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295{
296	struct thread_info *thread = task_thread_info(tsk);
297
298	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299		return -ENODATA;
300	iwmmxt_task_disable(thread);  /* force it to ram */
301	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302		? -EFAULT : 0;
303}
304
305/*
306 * Set the child iWMMXt state.
307 */
308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309{
310	struct thread_info *thread = task_thread_info(tsk);
311
312	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313		return -EACCES;
314	iwmmxt_task_release(thread);  /* force a reload */
315	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316		? -EFAULT : 0;
317}
318
319#endif
320
321#ifdef CONFIG_CRUNCH
322/*
323 * Get the child Crunch state.
324 */
325static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
326{
327	struct thread_info *thread = task_thread_info(tsk);
328
329	crunch_task_disable(thread);  /* force it to ram */
330	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
331		? -EFAULT : 0;
332}
333
334/*
335 * Set the child Crunch state.
336 */
337static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
338{
339	struct thread_info *thread = task_thread_info(tsk);
340
341	crunch_task_release(thread);  /* force a reload */
342	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
343		? -EFAULT : 0;
344}
345#endif
346
347#ifdef CONFIG_HAVE_HW_BREAKPOINT
348/*
349 * Convert a virtual register number into an index for a thread_info
350 * breakpoint array. Breakpoints are identified using positive numbers
351 * whilst watchpoints are negative. The registers are laid out as pairs
352 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
353 * Register 0 is reserved for describing resource information.
354 */
355static int ptrace_hbp_num_to_idx(long num)
356{
357	if (num < 0)
358		num = (ARM_MAX_BRP << 1) - num;
359	return (num - 1) >> 1;
360}
361
362/*
363 * Returns the virtual register number for the address of the
364 * breakpoint at index idx.
365 */
366static long ptrace_hbp_idx_to_num(int idx)
367{
368	long mid = ARM_MAX_BRP << 1;
369	long num = (idx << 1) + 1;
370	return num > mid ? mid - num : num;
371}
372
373/*
374 * Handle hitting a HW-breakpoint.
375 */
376static void ptrace_hbptriggered(struct perf_event *bp,
377				     struct perf_sample_data *data,
378				     struct pt_regs *regs)
379{
380	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
381	long num;
382	int i;
 
383
384	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
385		if (current->thread.debug.hbp[i] == bp)
386			break;
387
388	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
389
390	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
 
 
 
 
 
391}
392
393/*
394 * Set ptrace breakpoint pointers to zero for this task.
395 * This is required in order to prevent child processes from unregistering
396 * breakpoints held by their parent.
397 */
398void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
399{
400	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
401}
402
403/*
404 * Unregister breakpoints from this task and reset the pointers in
405 * the thread_struct.
406 */
407void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
408{
409	int i;
410	struct thread_struct *t = &tsk->thread;
411
412	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
413		if (t->debug.hbp[i]) {
414			unregister_hw_breakpoint(t->debug.hbp[i]);
415			t->debug.hbp[i] = NULL;
416		}
417	}
418}
419
420static u32 ptrace_get_hbp_resource_info(void)
421{
422	u8 num_brps, num_wrps, debug_arch, wp_len;
423	u32 reg = 0;
424
425	num_brps	= hw_breakpoint_slots(TYPE_INST);
426	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
427	debug_arch	= arch_get_debug_arch();
428	wp_len		= arch_get_max_wp_len();
429
430	reg		|= debug_arch;
431	reg		<<= 8;
432	reg		|= wp_len;
433	reg		<<= 8;
434	reg		|= num_wrps;
435	reg		<<= 8;
436	reg		|= num_brps;
437
438	return reg;
439}
440
441static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
442{
443	struct perf_event_attr attr;
444
445	ptrace_breakpoint_init(&attr);
446
447	/* Initialise fields to sane defaults. */
448	attr.bp_addr	= 0;
449	attr.bp_len	= HW_BREAKPOINT_LEN_4;
450	attr.bp_type	= type;
451	attr.disabled	= 1;
452
453	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
454					   tsk);
455}
456
457static int ptrace_gethbpregs(struct task_struct *tsk, long num,
458			     unsigned long  __user *data)
459{
460	u32 reg;
461	int idx, ret = 0;
462	struct perf_event *bp;
463	struct arch_hw_breakpoint_ctrl arch_ctrl;
464
465	if (num == 0) {
466		reg = ptrace_get_hbp_resource_info();
467	} else {
468		idx = ptrace_hbp_num_to_idx(num);
469		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
470			ret = -EINVAL;
471			goto out;
472		}
473
474		bp = tsk->thread.debug.hbp[idx];
475		if (!bp) {
476			reg = 0;
477			goto put;
478		}
479
480		arch_ctrl = counter_arch_bp(bp)->ctrl;
481
482		/*
483		 * Fix up the len because we may have adjusted it
484		 * to compensate for an unaligned address.
485		 */
486		while (!(arch_ctrl.len & 0x1))
487			arch_ctrl.len >>= 1;
488
489		if (num & 0x1)
490			reg = bp->attr.bp_addr;
491		else
492			reg = encode_ctrl_reg(arch_ctrl);
493	}
494
495put:
496	if (put_user(reg, data))
497		ret = -EFAULT;
498
499out:
500	return ret;
501}
502
503static int ptrace_sethbpregs(struct task_struct *tsk, long num,
504			     unsigned long __user *data)
505{
506	int idx, gen_len, gen_type, implied_type, ret = 0;
507	u32 user_val;
508	struct perf_event *bp;
509	struct arch_hw_breakpoint_ctrl ctrl;
510	struct perf_event_attr attr;
511
512	if (num == 0)
513		goto out;
514	else if (num < 0)
515		implied_type = HW_BREAKPOINT_RW;
516	else
517		implied_type = HW_BREAKPOINT_X;
518
519	idx = ptrace_hbp_num_to_idx(num);
520	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
521		ret = -EINVAL;
522		goto out;
523	}
524
525	if (get_user(user_val, data)) {
526		ret = -EFAULT;
527		goto out;
528	}
529
530	bp = tsk->thread.debug.hbp[idx];
531	if (!bp) {
532		bp = ptrace_hbp_create(tsk, implied_type);
533		if (IS_ERR(bp)) {
534			ret = PTR_ERR(bp);
535			goto out;
536		}
537		tsk->thread.debug.hbp[idx] = bp;
538	}
539
540	attr = bp->attr;
541
542	if (num & 0x1) {
543		/* Address */
544		attr.bp_addr	= user_val;
545	} else {
546		/* Control */
547		decode_ctrl_reg(user_val, &ctrl);
548		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
549		if (ret)
550			goto out;
551
552		if ((gen_type & implied_type) != gen_type) {
553			ret = -EINVAL;
554			goto out;
555		}
556
557		attr.bp_len	= gen_len;
558		attr.bp_type	= gen_type;
559		attr.disabled	= !ctrl.enabled;
560	}
561
562	ret = modify_user_hw_breakpoint(bp, &attr);
563out:
564	return ret;
565}
566#endif
567
568/* regset get/set implementations */
569
570static int gpr_get(struct task_struct *target,
571		   const struct user_regset *regset,
572		   struct membuf to)
 
573{
574	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
 
 
 
 
575}
576
577static int gpr_set(struct task_struct *target,
578		   const struct user_regset *regset,
579		   unsigned int pos, unsigned int count,
580		   const void *kbuf, const void __user *ubuf)
581{
582	int ret;
583	struct pt_regs newregs = *task_pt_regs(target);
584
585	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
586				 &newregs,
587				 0, sizeof(newregs));
588	if (ret)
589		return ret;
590
591	if (!valid_user_regs(&newregs))
592		return -EINVAL;
593
594	*task_pt_regs(target) = newregs;
595	return 0;
596}
597
598static int fpa_get(struct task_struct *target,
599		   const struct user_regset *regset,
600		   struct membuf to)
 
601{
602	return membuf_write(&to, &task_thread_info(target)->fpstate,
603				 sizeof(struct user_fp));
 
604}
605
606static int fpa_set(struct task_struct *target,
607		   const struct user_regset *regset,
608		   unsigned int pos, unsigned int count,
609		   const void *kbuf, const void __user *ubuf)
610{
611	struct thread_info *thread = task_thread_info(target);
612
613	thread->used_cp[1] = thread->used_cp[2] = 1;
614
615	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
616		&thread->fpstate,
617		0, sizeof(struct user_fp));
618}
619
620#ifdef CONFIG_VFP
621/*
622 * VFP register get/set implementations.
623 *
624 * With respect to the kernel, struct user_fp is divided into three chunks:
625 * 16 or 32 real VFP registers (d0-d15 or d0-31)
626 *	These are transferred to/from the real registers in the task's
627 *	vfp_hard_struct.  The number of registers depends on the kernel
628 *	configuration.
629 *
630 * 16 or 0 fake VFP registers (d16-d31 or empty)
631 *	i.e., the user_vfp structure has space for 32 registers even if
632 *	the kernel doesn't have them all.
633 *
634 *	vfp_get() reads this chunk as zero where applicable
635 *	vfp_set() ignores this chunk
636 *
637 * 1 word for the FPSCR
 
 
 
 
638 */
639static int vfp_get(struct task_struct *target,
640		   const struct user_regset *regset,
641		   struct membuf to)
 
642{
 
643	struct thread_info *thread = task_thread_info(target);
644	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
 
645	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
646
647	vfp_sync_hwstate(thread);
648
649	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
650	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
651	return membuf_store(&to, vfp->fpscr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652}
653
654/*
655 * For vfp_set() a read-modify-write is done on the VFP registers,
656 * in order to avoid writing back a half-modified set of registers on
657 * failure.
658 */
659static int vfp_set(struct task_struct *target,
660			  const struct user_regset *regset,
661			  unsigned int pos, unsigned int count,
662			  const void *kbuf, const void __user *ubuf)
663{
664	int ret;
665	struct thread_info *thread = task_thread_info(target);
666	struct vfp_hard_struct new_vfp;
667	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669
670	vfp_sync_hwstate(thread);
671	new_vfp = thread->vfpstate.hard;
672
673	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
674				  &new_vfp.fpregs,
675				  user_fpregs_offset,
676				  user_fpregs_offset + sizeof(new_vfp.fpregs));
677	if (ret)
678		return ret;
679
680	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
681				user_fpregs_offset + sizeof(new_vfp.fpregs),
682				user_fpscr_offset);
683	if (ret)
684		return ret;
685
686	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
687				 &new_vfp.fpscr,
688				 user_fpscr_offset,
689				 user_fpscr_offset + sizeof(new_vfp.fpscr));
690	if (ret)
691		return ret;
692
 
693	thread->vfpstate.hard = new_vfp;
694	vfp_flush_hwstate(thread);
695
696	return 0;
697}
698#endif /* CONFIG_VFP */
699
700enum arm_regset {
701	REGSET_GPR,
702	REGSET_FPR,
703#ifdef CONFIG_VFP
704	REGSET_VFP,
705#endif
706};
707
708static const struct user_regset arm_regsets[] = {
709	[REGSET_GPR] = {
710		.core_note_type = NT_PRSTATUS,
711		.n = ELF_NGREG,
712		.size = sizeof(u32),
713		.align = sizeof(u32),
714		.regset_get = gpr_get,
715		.set = gpr_set
716	},
717	[REGSET_FPR] = {
718		/*
719		 * For the FPA regs in fpstate, the real fields are a mixture
720		 * of sizes, so pretend that the registers are word-sized:
721		 */
722		.core_note_type = NT_PRFPREG,
723		.n = sizeof(struct user_fp) / sizeof(u32),
724		.size = sizeof(u32),
725		.align = sizeof(u32),
726		.regset_get = fpa_get,
727		.set = fpa_set
728	},
729#ifdef CONFIG_VFP
730	[REGSET_VFP] = {
731		/*
732		 * Pretend that the VFP regs are word-sized, since the FPSCR is
733		 * a single word dangling at the end of struct user_vfp:
734		 */
735		.core_note_type = NT_ARM_VFP,
736		.n = ARM_VFPREGS_SIZE / sizeof(u32),
737		.size = sizeof(u32),
738		.align = sizeof(u32),
739		.regset_get = vfp_get,
740		.set = vfp_set
741	},
742#endif /* CONFIG_VFP */
743};
744
745static const struct user_regset_view user_arm_view = {
746	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
747	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
748};
749
750const struct user_regset_view *task_user_regset_view(struct task_struct *task)
751{
752	return &user_arm_view;
753}
754
755long arch_ptrace(struct task_struct *child, long request,
756		 unsigned long addr, unsigned long data)
757{
758	int ret;
759	unsigned long __user *datap = (unsigned long __user *) data;
760
761	switch (request) {
762		case PTRACE_PEEKUSR:
763			ret = ptrace_read_user(child, addr, datap);
764			break;
765
766		case PTRACE_POKEUSR:
767			ret = ptrace_write_user(child, addr, data);
768			break;
769
770		case PTRACE_GETREGS:
771			ret = copy_regset_to_user(child,
772						  &user_arm_view, REGSET_GPR,
773						  0, sizeof(struct pt_regs),
774						  datap);
775			break;
776
777		case PTRACE_SETREGS:
778			ret = copy_regset_from_user(child,
779						    &user_arm_view, REGSET_GPR,
780						    0, sizeof(struct pt_regs),
781						    datap);
782			break;
783
784		case PTRACE_GETFPREGS:
785			ret = copy_regset_to_user(child,
786						  &user_arm_view, REGSET_FPR,
787						  0, sizeof(union fp_state),
788						  datap);
789			break;
790
791		case PTRACE_SETFPREGS:
792			ret = copy_regset_from_user(child,
793						    &user_arm_view, REGSET_FPR,
794						    0, sizeof(union fp_state),
795						    datap);
796			break;
797
798#ifdef CONFIG_IWMMXT
799		case PTRACE_GETWMMXREGS:
800			ret = ptrace_getwmmxregs(child, datap);
801			break;
802
803		case PTRACE_SETWMMXREGS:
804			ret = ptrace_setwmmxregs(child, datap);
805			break;
806#endif
807
808		case PTRACE_GET_THREAD_AREA:
809			ret = put_user(task_thread_info(child)->tp_value[0],
810				       datap);
811			break;
812
813		case PTRACE_SET_SYSCALL:
814			task_thread_info(child)->syscall = data;
815			ret = 0;
816			break;
817
818#ifdef CONFIG_CRUNCH
819		case PTRACE_GETCRUNCHREGS:
820			ret = ptrace_getcrunchregs(child, datap);
821			break;
822
823		case PTRACE_SETCRUNCHREGS:
824			ret = ptrace_setcrunchregs(child, datap);
825			break;
826#endif
827
828#ifdef CONFIG_VFP
829		case PTRACE_GETVFPREGS:
830			ret = copy_regset_to_user(child,
831						  &user_arm_view, REGSET_VFP,
832						  0, ARM_VFPREGS_SIZE,
833						  datap);
834			break;
835
836		case PTRACE_SETVFPREGS:
837			ret = copy_regset_from_user(child,
838						    &user_arm_view, REGSET_VFP,
839						    0, ARM_VFPREGS_SIZE,
840						    datap);
841			break;
842#endif
843
844#ifdef CONFIG_HAVE_HW_BREAKPOINT
845		case PTRACE_GETHBPREGS:
 
 
 
846			ret = ptrace_gethbpregs(child, addr,
847						(unsigned long __user *)data);
 
848			break;
849		case PTRACE_SETHBPREGS:
 
 
 
850			ret = ptrace_sethbpregs(child, addr,
851						(unsigned long __user *)data);
 
852			break;
853#endif
854
855		default:
856			ret = ptrace_request(child, request, addr, data);
857			break;
858	}
859
860	return ret;
861}
862
863enum ptrace_syscall_dir {
864	PTRACE_SYSCALL_ENTER = 0,
865	PTRACE_SYSCALL_EXIT,
866};
867
868static void tracehook_report_syscall(struct pt_regs *regs,
869				    enum ptrace_syscall_dir dir)
870{
871	unsigned long ip;
872
 
 
 
 
 
873	/*
874	 * IP is used to denote syscall entry/exit:
875	 * IP = 0 -> entry, =1 -> exit
876	 */
877	ip = regs->ARM_ip;
878	regs->ARM_ip = dir;
879
880	if (dir == PTRACE_SYSCALL_EXIT)
881		tracehook_report_syscall_exit(regs, 0);
882	else if (tracehook_report_syscall_entry(regs))
883		current_thread_info()->syscall = -1;
884
885	regs->ARM_ip = ip;
886}
887
888asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
889{
890	current_thread_info()->syscall = scno;
891
892	if (test_thread_flag(TIF_SYSCALL_TRACE))
893		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
894
895	/* Do seccomp after ptrace; syscall may have changed. */
896#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
897	if (secure_computing() == -1)
898		return -1;
899#else
900	/* XXX: remove this once OABI gets fixed */
901	secure_computing_strict(current_thread_info()->syscall);
902#endif
903
904	/* Tracer or seccomp may have changed syscall. */
905	scno = current_thread_info()->syscall;
906
907	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
908		trace_sys_enter(regs, scno);
909
910	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
911			    regs->ARM_r3);
912
913	return scno;
914}
915
916asmlinkage void syscall_trace_exit(struct pt_regs *regs)
917{
918	/*
919	 * Audit the syscall before anything else, as a debugger may
920	 * come in and change the current registers.
 
921	 */
922	audit_syscall_exit(regs);
923
924	/*
925	 * Note that we haven't updated the ->syscall field for the
926	 * current thread. This isn't a problem because it will have
927	 * been set on syscall entry and there hasn't been an opportunity
928	 * for a PTRACE_SET_SYSCALL since then.
929	 */
930	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
931		trace_sys_exit(regs, regs_return_value(regs));
932
933	if (test_thread_flag(TIF_SYSCALL_TRACE))
934		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
935}