Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
 
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
 
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
 
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <asm/uaccess.h>
 
 
 
 
 
 
  31#include <asm/tlbflush.h>
  32#include <asm/shmparam.h>
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*** Page table manipulation functions ***/
  35
  36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 
  37{
  38	pte_t *pte;
  39
  40	pte = pte_offset_kernel(pmd, addr);
  41	do {
  42		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  43		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  44	} while (pte++, addr += PAGE_SIZE, addr != end);
 
  45}
  46
  47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 
  48{
  49	pmd_t *pmd;
  50	unsigned long next;
 
  51
  52	pmd = pmd_offset(pud, addr);
  53	do {
  54		next = pmd_addr_end(addr, end);
 
 
 
 
 
 
 
  55		if (pmd_none_or_clear_bad(pmd))
  56			continue;
  57		vunmap_pte_range(pmd, addr, next);
 
 
  58	} while (pmd++, addr = next, addr != end);
  59}
  60
  61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 
  62{
  63	pud_t *pud;
  64	unsigned long next;
 
  65
  66	pud = pud_offset(pgd, addr);
  67	do {
  68		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
  69		if (pud_none_or_clear_bad(pud))
  70			continue;
  71		vunmap_pmd_range(pud, addr, next);
  72	} while (pud++, addr = next, addr != end);
  73}
  74
  75static void vunmap_page_range(unsigned long addr, unsigned long end)
 
  76{
  77	pgd_t *pgd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78	unsigned long next;
 
 
 
  79
  80	BUG_ON(addr >= end);
  81	pgd = pgd_offset_k(addr);
  82	do {
  83		next = pgd_addr_end(addr, end);
 
 
  84		if (pgd_none_or_clear_bad(pgd))
  85			continue;
  86		vunmap_pud_range(pgd, addr, next);
  87	} while (pgd++, addr = next, addr != end);
 
 
 
  88}
  89
  90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  91		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
  92{
  93	pte_t *pte;
  94
  95	/*
  96	 * nr is a running index into the array which helps higher level
  97	 * callers keep track of where we're up to.
  98	 */
  99
 100	pte = pte_alloc_kernel(pmd, addr);
 101	if (!pte)
 102		return -ENOMEM;
 103	do {
 104		struct page *page = pages[*nr];
 105
 106		if (WARN_ON(!pte_none(*pte)))
 107			return -EBUSY;
 108		if (WARN_ON(!page))
 109			return -ENOMEM;
 110		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 111		(*nr)++;
 112	} while (pte++, addr += PAGE_SIZE, addr != end);
 
 113	return 0;
 114}
 115
 116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 117		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 118{
 119	pmd_t *pmd;
 120	unsigned long next;
 121
 122	pmd = pmd_alloc(&init_mm, pud, addr);
 123	if (!pmd)
 124		return -ENOMEM;
 125	do {
 126		next = pmd_addr_end(addr, end);
 127		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 128			return -ENOMEM;
 129	} while (pmd++, addr = next, addr != end);
 130	return 0;
 131}
 132
 133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 134		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 135{
 136	pud_t *pud;
 137	unsigned long next;
 138
 139	pud = pud_alloc(&init_mm, pgd, addr);
 140	if (!pud)
 141		return -ENOMEM;
 142	do {
 143		next = pud_addr_end(addr, end);
 144		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 145			return -ENOMEM;
 146	} while (pud++, addr = next, addr != end);
 147	return 0;
 148}
 149
 150/*
 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 152 * will have pfns corresponding to the "pages" array.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153 *
 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 
 
 
 
 
 
 155 */
 156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 157				   pgprot_t prot, struct page **pages)
 158{
 159	pgd_t *pgd;
 
 160	unsigned long next;
 161	unsigned long addr = start;
 162	int err = 0;
 163	int nr = 0;
 
 164
 165	BUG_ON(addr >= end);
 166	pgd = pgd_offset_k(addr);
 167	do {
 168		next = pgd_addr_end(addr, end);
 169		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 
 
 170		if (err)
 171			return err;
 172	} while (pgd++, addr = next, addr != end);
 173
 174	return nr;
 
 
 
 175}
 176
 177static int vmap_page_range(unsigned long start, unsigned long end,
 178			   pgprot_t prot, struct page **pages)
 179{
 180	int ret;
 181
 182	ret = vmap_page_range_noflush(start, end, prot, pages);
 183	flush_cache_vmap(start, end);
 184	return ret;
 185}
 186
 187int is_vmalloc_or_module_addr(const void *x)
 188{
 189	/*
 190	 * ARM, x86-64 and sparc64 put modules in a special place,
 191	 * and fall back on vmalloc() if that fails. Others
 192	 * just put it in the vmalloc space.
 193	 */
 194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 195	unsigned long addr = (unsigned long)x;
 196	if (addr >= MODULES_VADDR && addr < MODULES_END)
 197		return 1;
 198#endif
 199	return is_vmalloc_addr(x);
 200}
 201
 202/*
 203 * Walk a vmap address to the struct page it maps.
 204 */
 205struct page *vmalloc_to_page(const void *vmalloc_addr)
 206{
 207	unsigned long addr = (unsigned long) vmalloc_addr;
 208	struct page *page = NULL;
 209	pgd_t *pgd = pgd_offset_k(addr);
 
 
 
 
 210
 211	/*
 212	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 213	 * architectures that do not vmalloc module space
 214	 */
 215	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 216
 217	if (!pgd_none(*pgd)) {
 218		pud_t *pud = pud_offset(pgd, addr);
 219		if (!pud_none(*pud)) {
 220			pmd_t *pmd = pmd_offset(pud, addr);
 221			if (!pmd_none(*pmd)) {
 222				pte_t *ptep, pte;
 223
 224				ptep = pte_offset_map(pmd, addr);
 225				pte = *ptep;
 226				if (pte_present(pte))
 227					page = pte_page(pte);
 228				pte_unmap(ptep);
 229			}
 230		}
 231	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	return page;
 233}
 234EXPORT_SYMBOL(vmalloc_to_page);
 235
 236/*
 237 * Map a vmalloc()-space virtual address to the physical page frame number.
 238 */
 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 240{
 241	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 242}
 243EXPORT_SYMBOL(vmalloc_to_pfn);
 244
 245
 246/*** Global kva allocator ***/
 247
 248#define VM_LAZY_FREE	0x01
 249#define VM_LAZY_FREEING	0x02
 250#define VM_VM_AREA	0x04
 251
 252struct vmap_area {
 253	unsigned long va_start;
 254	unsigned long va_end;
 255	unsigned long flags;
 256	struct rb_node rb_node;		/* address sorted rbtree */
 257	struct list_head list;		/* address sorted list */
 258	struct list_head purge_list;	/* "lazy purge" list */
 259	void *private;
 260	struct rcu_head rcu_head;
 261};
 262
 263static DEFINE_SPINLOCK(vmap_area_lock);
 264static LIST_HEAD(vmap_area_list);
 
 
 
 265static struct rb_root vmap_area_root = RB_ROOT;
 
 266
 267/* The vmap cache globals are protected by vmap_area_lock */
 268static struct rb_node *free_vmap_cache;
 269static unsigned long cached_hole_size;
 270static unsigned long cached_vstart;
 271static unsigned long cached_align;
 
 
 272
 273static unsigned long vmap_area_pcpu_hole;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275static struct vmap_area *__find_vmap_area(unsigned long addr)
 276{
 277	struct rb_node *n = vmap_area_root.rb_node;
 278
 279	while (n) {
 280		struct vmap_area *va;
 281
 282		va = rb_entry(n, struct vmap_area, rb_node);
 283		if (addr < va->va_start)
 284			n = n->rb_left;
 285		else if (addr > va->va_start)
 286			n = n->rb_right;
 287		else
 288			return va;
 289	}
 290
 291	return NULL;
 292}
 293
 294static void __insert_vmap_area(struct vmap_area *va)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295{
 296	struct rb_node **p = &vmap_area_root.rb_node;
 297	struct rb_node *parent = NULL;
 298	struct rb_node *tmp;
 299
 300	while (*p) {
 301		struct vmap_area *tmp_va;
 302
 303		parent = *p;
 304		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 305		if (va->va_start < tmp_va->va_end)
 306			p = &(*p)->rb_left;
 307		else if (va->va_end > tmp_va->va_start)
 308			p = &(*p)->rb_right;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309		else
 310			BUG();
 
 
 
 
 311	}
 312
 313	rb_link_node(&va->rb_node, parent, p);
 314	rb_insert_color(&va->rb_node, &vmap_area_root);
 315
 316	/* address-sort this list so it is usable like the vmlist */
 317	tmp = rb_prev(&va->rb_node);
 318	if (tmp) {
 319		struct vmap_area *prev;
 320		prev = rb_entry(tmp, struct vmap_area, rb_node);
 321		list_add_rcu(&va->list, &prev->list);
 322	} else
 323		list_add_rcu(&va->list, &vmap_area_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324}
 325
 326static void purge_vmap_area_lazy(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328/*
 329 * Allocate a region of KVA of the specified size and alignment, within the
 330 * vstart and vend.
 331 */
 332static struct vmap_area *alloc_vmap_area(unsigned long size,
 333				unsigned long align,
 334				unsigned long vstart, unsigned long vend,
 335				int node, gfp_t gfp_mask)
 336{
 337	struct vmap_area *va;
 338	struct rb_node *n;
 339	unsigned long addr;
 340	int purged = 0;
 341	struct vmap_area *first;
 342
 343	BUG_ON(!size);
 344	BUG_ON(size & ~PAGE_MASK);
 345	BUG_ON(!is_power_of_2(align));
 346
 347	va = kmalloc_node(sizeof(struct vmap_area),
 348			gfp_mask & GFP_RECLAIM_MASK, node);
 
 
 
 
 
 349	if (unlikely(!va))
 350		return ERR_PTR(-ENOMEM);
 351
 352retry:
 353	spin_lock(&vmap_area_lock);
 354	/*
 355	 * Invalidate cache if we have more permissive parameters.
 356	 * cached_hole_size notes the largest hole noticed _below_
 357	 * the vmap_area cached in free_vmap_cache: if size fits
 358	 * into that hole, we want to scan from vstart to reuse
 359	 * the hole instead of allocating above free_vmap_cache.
 360	 * Note that __free_vmap_area may update free_vmap_cache
 361	 * without updating cached_hole_size or cached_align.
 362	 */
 363	if (!free_vmap_cache ||
 364			size < cached_hole_size ||
 365			vstart < cached_vstart ||
 366			align < cached_align) {
 367nocache:
 368		cached_hole_size = 0;
 369		free_vmap_cache = NULL;
 370	}
 371	/* record if we encounter less permissive parameters */
 372	cached_vstart = vstart;
 373	cached_align = align;
 374
 375	/* find starting point for our search */
 376	if (free_vmap_cache) {
 377		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 378		addr = ALIGN(first->va_end, align);
 379		if (addr < vstart)
 380			goto nocache;
 381		if (addr + size - 1 < addr)
 382			goto overflow;
 383
 384	} else {
 385		addr = ALIGN(vstart, align);
 386		if (addr + size - 1 < addr)
 387			goto overflow;
 388
 389		n = vmap_area_root.rb_node;
 390		first = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391
 392		while (n) {
 393			struct vmap_area *tmp;
 394			tmp = rb_entry(n, struct vmap_area, rb_node);
 395			if (tmp->va_end >= addr) {
 396				first = tmp;
 397				if (tmp->va_start <= addr)
 398					break;
 399				n = n->rb_left;
 400			} else
 401				n = n->rb_right;
 402		}
 403
 404		if (!first)
 405			goto found;
 406	}
 407
 408	/* from the starting point, walk areas until a suitable hole is found */
 409	while (addr + size > first->va_start && addr + size <= vend) {
 410		if (addr + cached_hole_size < first->va_start)
 411			cached_hole_size = first->va_start - addr;
 412		addr = ALIGN(first->va_end, align);
 413		if (addr + size - 1 < addr)
 414			goto overflow;
 415
 416		n = rb_next(&first->rb_node);
 417		if (n)
 418			first = rb_entry(n, struct vmap_area, rb_node);
 419		else
 420			goto found;
 421	}
 422
 423found:
 424	if (addr + size > vend)
 425		goto overflow;
 426
 427	va->va_start = addr;
 428	va->va_end = addr + size;
 429	va->flags = 0;
 430	__insert_vmap_area(va);
 431	free_vmap_cache = &va->rb_node;
 
 
 432	spin_unlock(&vmap_area_lock);
 433
 434	BUG_ON(va->va_start & (align-1));
 435	BUG_ON(va->va_start < vstart);
 436	BUG_ON(va->va_end > vend);
 437
 
 
 
 
 
 
 438	return va;
 439
 440overflow:
 441	spin_unlock(&vmap_area_lock);
 442	if (!purged) {
 443		purge_vmap_area_lazy();
 444		purged = 1;
 445		goto retry;
 446	}
 447	if (printk_ratelimit())
 448		printk(KERN_WARNING
 449			"vmap allocation for size %lu failed: "
 450			"use vmalloc=<size> to increase size.\n", size);
 451	kfree(va);
 452	return ERR_PTR(-EBUSY);
 453}
 454
 455static void __free_vmap_area(struct vmap_area *va)
 456{
 457	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 458
 459	if (free_vmap_cache) {
 460		if (va->va_end < cached_vstart) {
 461			free_vmap_cache = NULL;
 462		} else {
 463			struct vmap_area *cache;
 464			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 465			if (va->va_start <= cache->va_start) {
 466				free_vmap_cache = rb_prev(&va->rb_node);
 467				/*
 468				 * We don't try to update cached_hole_size or
 469				 * cached_align, but it won't go very wrong.
 470				 */
 471			}
 472		}
 473	}
 474	rb_erase(&va->rb_node, &vmap_area_root);
 475	RB_CLEAR_NODE(&va->rb_node);
 476	list_del_rcu(&va->list);
 477
 478	/*
 479	 * Track the highest possible candidate for pcpu area
 480	 * allocation.  Areas outside of vmalloc area can be returned
 481	 * here too, consider only end addresses which fall inside
 482	 * vmalloc area proper.
 483	 */
 484	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 485		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 486
 487	kfree_rcu(va, rcu_head);
 488}
 
 489
 490/*
 491 * Free a region of KVA allocated by alloc_vmap_area
 492 */
 493static void free_vmap_area(struct vmap_area *va)
 494{
 495	spin_lock(&vmap_area_lock);
 496	__free_vmap_area(va);
 497	spin_unlock(&vmap_area_lock);
 498}
 499
 500/*
 501 * Clear the pagetable entries of a given vmap_area
 502 */
 503static void unmap_vmap_area(struct vmap_area *va)
 504{
 505	vunmap_page_range(va->va_start, va->va_end);
 506}
 
 507
 508static void vmap_debug_free_range(unsigned long start, unsigned long end)
 509{
 510	/*
 511	 * Unmap page tables and force a TLB flush immediately if
 512	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 513	 * bugs similarly to those in linear kernel virtual address
 514	 * space after a page has been freed.
 515	 *
 516	 * All the lazy freeing logic is still retained, in order to
 517	 * minimise intrusiveness of this debugging feature.
 518	 *
 519	 * This is going to be *slow* (linear kernel virtual address
 520	 * debugging doesn't do a broadcast TLB flush so it is a lot
 521	 * faster).
 522	 */
 523#ifdef CONFIG_DEBUG_PAGEALLOC
 524	vunmap_page_range(start, end);
 525	flush_tlb_kernel_range(start, end);
 526#endif
 527}
 
 528
 529/*
 530 * lazy_max_pages is the maximum amount of virtual address space we gather up
 531 * before attempting to purge with a TLB flush.
 532 *
 533 * There is a tradeoff here: a larger number will cover more kernel page tables
 534 * and take slightly longer to purge, but it will linearly reduce the number of
 535 * global TLB flushes that must be performed. It would seem natural to scale
 536 * this number up linearly with the number of CPUs (because vmapping activity
 537 * could also scale linearly with the number of CPUs), however it is likely
 538 * that in practice, workloads might be constrained in other ways that mean
 539 * vmap activity will not scale linearly with CPUs. Also, I want to be
 540 * conservative and not introduce a big latency on huge systems, so go with
 541 * a less aggressive log scale. It will still be an improvement over the old
 542 * code, and it will be simple to change the scale factor if we find that it
 543 * becomes a problem on bigger systems.
 544 */
 545static unsigned long lazy_max_pages(void)
 546{
 547	unsigned int log;
 548
 549	log = fls(num_online_cpus());
 550
 551	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 552}
 553
 554static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 
 
 
 
 
 
 
 555
 556/* for per-CPU blocks */
 557static void purge_fragmented_blocks_allcpus(void);
 558
 559/*
 560 * called before a call to iounmap() if the caller wants vm_area_struct's
 561 * immediately freed.
 562 */
 563void set_iounmap_nonlazy(void)
 564{
 565	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 566}
 567
 568/*
 569 * Purges all lazily-freed vmap areas.
 570 *
 571 * If sync is 0 then don't purge if there is already a purge in progress.
 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 574 * their own TLB flushing).
 575 * Returns with *start = min(*start, lowest purged address)
 576 *              *end = max(*end, highest purged address)
 577 */
 578static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 579					int sync, int force_flush)
 580{
 581	static DEFINE_SPINLOCK(purge_lock);
 582	LIST_HEAD(valist);
 583	struct vmap_area *va;
 584	struct vmap_area *n_va;
 585	int nr = 0;
 
 
 
 
 
 586
 587	/*
 588	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 589	 * should not expect such behaviour. This just simplifies locking for
 590	 * the case that isn't actually used at the moment anyway.
 591	 */
 592	if (!sync && !force_flush) {
 593		if (!spin_trylock(&purge_lock))
 594			return;
 595	} else
 596		spin_lock(&purge_lock);
 
 597
 598	if (sync)
 599		purge_fragmented_blocks_allcpus();
 600
 601	rcu_read_lock();
 602	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 603		if (va->flags & VM_LAZY_FREE) {
 604			if (va->va_start < *start)
 605				*start = va->va_start;
 606			if (va->va_end > *end)
 607				*end = va->va_end;
 608			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 609			list_add_tail(&va->purge_list, &valist);
 610			va->flags |= VM_LAZY_FREEING;
 611			va->flags &= ~VM_LAZY_FREE;
 612		}
 613	}
 614	rcu_read_unlock();
 615
 616	if (nr)
 617		atomic_sub(nr, &vmap_lazy_nr);
 618
 619	if (nr || force_flush)
 620		flush_tlb_kernel_range(*start, *end);
 
 621
 622	if (nr) {
 623		spin_lock(&vmap_area_lock);
 624		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 625			__free_vmap_area(va);
 626		spin_unlock(&vmap_area_lock);
 627	}
 628	spin_unlock(&purge_lock);
 
 629}
 630
 631/*
 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 633 * is already purging.
 634 */
 635static void try_purge_vmap_area_lazy(void)
 636{
 637	unsigned long start = ULONG_MAX, end = 0;
 638
 639	__purge_vmap_area_lazy(&start, &end, 0, 0);
 
 640}
 641
 642/*
 643 * Kick off a purge of the outstanding lazy areas.
 644 */
 645static void purge_vmap_area_lazy(void)
 646{
 647	unsigned long start = ULONG_MAX, end = 0;
 648
 649	__purge_vmap_area_lazy(&start, &end, 1, 0);
 
 650}
 651
 652/*
 653 * Free a vmap area, caller ensuring that the area has been unmapped
 654 * and flush_cache_vunmap had been called for the correct range
 655 * previously.
 656 */
 657static void free_vmap_area_noflush(struct vmap_area *va)
 658{
 659	va->flags |= VM_LAZY_FREE;
 660	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 661	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 662		try_purge_vmap_area_lazy();
 663}
 664
 665/*
 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 667 * called for the correct range previously.
 668 */
 669static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 670{
 671	unmap_vmap_area(va);
 672	free_vmap_area_noflush(va);
 
 
 
 
 673}
 674
 675/*
 676 * Free and unmap a vmap area
 677 */
 678static void free_unmap_vmap_area(struct vmap_area *va)
 679{
 680	flush_cache_vunmap(va->va_start, va->va_end);
 681	free_unmap_vmap_area_noflush(va);
 
 
 
 
 682}
 683
 684static struct vmap_area *find_vmap_area(unsigned long addr)
 685{
 686	struct vmap_area *va;
 687
 688	spin_lock(&vmap_area_lock);
 689	va = __find_vmap_area(addr);
 690	spin_unlock(&vmap_area_lock);
 691
 692	return va;
 693}
 694
 695static void free_unmap_vmap_area_addr(unsigned long addr)
 696{
 697	struct vmap_area *va;
 698
 699	va = find_vmap_area(addr);
 700	BUG_ON(!va);
 701	free_unmap_vmap_area(va);
 702}
 703
 704
 705/*** Per cpu kva allocator ***/
 706
 707/*
 708 * vmap space is limited especially on 32 bit architectures. Ensure there is
 709 * room for at least 16 percpu vmap blocks per CPU.
 710 */
 711/*
 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 713 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 714 * instead (we just need a rough idea)
 715 */
 716#if BITS_PER_LONG == 32
 717#define VMALLOC_SPACE		(128UL*1024*1024)
 718#else
 719#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 720#endif
 721
 722#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 723#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 724#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 725#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 726#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 727#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 728#define VMAP_BBMAP_BITS		\
 729		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 730		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 731			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 732
 733#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 734
 735static bool vmap_initialized __read_mostly = false;
 736
 737struct vmap_block_queue {
 738	spinlock_t lock;
 739	struct list_head free;
 740};
 741
 742struct vmap_block {
 743	spinlock_t lock;
 744	struct vmap_area *va;
 745	struct vmap_block_queue *vbq;
 746	unsigned long free, dirty;
 747	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 748	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 749	struct list_head free_list;
 750	struct rcu_head rcu_head;
 751	struct list_head purge;
 752};
 753
 754/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 755static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 756
 757/*
 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 759 * in the free path. Could get rid of this if we change the API to return a
 760 * "cookie" from alloc, to be passed to free. But no big deal yet.
 761 */
 762static DEFINE_SPINLOCK(vmap_block_tree_lock);
 763static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 764
 765/*
 766 * We should probably have a fallback mechanism to allocate virtual memory
 767 * out of partially filled vmap blocks. However vmap block sizing should be
 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 769 * big problem.
 770 */
 771
 772static unsigned long addr_to_vb_idx(unsigned long addr)
 773{
 774	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 775	addr /= VMAP_BLOCK_SIZE;
 776	return addr;
 777}
 778
 779static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780{
 781	struct vmap_block_queue *vbq;
 782	struct vmap_block *vb;
 783	struct vmap_area *va;
 784	unsigned long vb_idx;
 785	int node, err;
 
 786
 787	node = numa_node_id();
 788
 789	vb = kmalloc_node(sizeof(struct vmap_block),
 790			gfp_mask & GFP_RECLAIM_MASK, node);
 791	if (unlikely(!vb))
 792		return ERR_PTR(-ENOMEM);
 793
 794	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 795					VMALLOC_START, VMALLOC_END,
 796					node, gfp_mask);
 797	if (IS_ERR(va)) {
 798		kfree(vb);
 799		return ERR_CAST(va);
 800	}
 801
 802	err = radix_tree_preload(gfp_mask);
 803	if (unlikely(err)) {
 804		kfree(vb);
 805		free_vmap_area(va);
 806		return ERR_PTR(err);
 807	}
 808
 809	spin_lock_init(&vb->lock);
 810	vb->va = va;
 811	vb->free = VMAP_BBMAP_BITS;
 
 
 812	vb->dirty = 0;
 813	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 814	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 815	INIT_LIST_HEAD(&vb->free_list);
 816
 817	vb_idx = addr_to_vb_idx(va->va_start);
 818	spin_lock(&vmap_block_tree_lock);
 819	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 820	spin_unlock(&vmap_block_tree_lock);
 821	BUG_ON(err);
 822	radix_tree_preload_end();
 
 823
 824	vbq = &get_cpu_var(vmap_block_queue);
 825	vb->vbq = vbq;
 826	spin_lock(&vbq->lock);
 827	list_add_rcu(&vb->free_list, &vbq->free);
 828	spin_unlock(&vbq->lock);
 829	put_cpu_var(vmap_block_queue);
 830
 831	return vb;
 832}
 833
 834static void free_vmap_block(struct vmap_block *vb)
 835{
 836	struct vmap_block *tmp;
 837	unsigned long vb_idx;
 838
 839	vb_idx = addr_to_vb_idx(vb->va->va_start);
 840	spin_lock(&vmap_block_tree_lock);
 841	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 842	spin_unlock(&vmap_block_tree_lock);
 843	BUG_ON(tmp != vb);
 844
 845	free_vmap_area_noflush(vb->va);
 846	kfree_rcu(vb, rcu_head);
 847}
 848
 849static void purge_fragmented_blocks(int cpu)
 850{
 851	LIST_HEAD(purge);
 852	struct vmap_block *vb;
 853	struct vmap_block *n_vb;
 854	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 855
 856	rcu_read_lock();
 857	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 858
 859		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 860			continue;
 861
 862		spin_lock(&vb->lock);
 863		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 864			vb->free = 0; /* prevent further allocs after releasing lock */
 865			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 866			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 867			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 868			spin_lock(&vbq->lock);
 869			list_del_rcu(&vb->free_list);
 870			spin_unlock(&vbq->lock);
 871			spin_unlock(&vb->lock);
 872			list_add_tail(&vb->purge, &purge);
 873		} else
 874			spin_unlock(&vb->lock);
 875	}
 876	rcu_read_unlock();
 877
 878	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 879		list_del(&vb->purge);
 880		free_vmap_block(vb);
 881	}
 882}
 883
 884static void purge_fragmented_blocks_thiscpu(void)
 885{
 886	purge_fragmented_blocks(smp_processor_id());
 887}
 888
 889static void purge_fragmented_blocks_allcpus(void)
 890{
 891	int cpu;
 892
 893	for_each_possible_cpu(cpu)
 894		purge_fragmented_blocks(cpu);
 895}
 896
 897static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 898{
 899	struct vmap_block_queue *vbq;
 900	struct vmap_block *vb;
 901	unsigned long addr = 0;
 902	unsigned int order;
 903	int purge = 0;
 904
 905	BUG_ON(size & ~PAGE_MASK);
 906	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 
 
 
 
 
 
 
 
 907	order = get_order(size);
 908
 909again:
 910	rcu_read_lock();
 911	vbq = &get_cpu_var(vmap_block_queue);
 912	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 913		int i;
 914
 915		spin_lock(&vb->lock);
 916		if (vb->free < 1UL << order)
 917			goto next;
 918
 919		i = bitmap_find_free_region(vb->alloc_map,
 920						VMAP_BBMAP_BITS, order);
 921
 922		if (i < 0) {
 923			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 924				/* fragmented and no outstanding allocations */
 925				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 926				purge = 1;
 927			}
 928			goto next;
 929		}
 930		addr = vb->va->va_start + (i << PAGE_SHIFT);
 931		BUG_ON(addr_to_vb_idx(addr) !=
 932				addr_to_vb_idx(vb->va->va_start));
 933		vb->free -= 1UL << order;
 934		if (vb->free == 0) {
 935			spin_lock(&vbq->lock);
 936			list_del_rcu(&vb->free_list);
 937			spin_unlock(&vbq->lock);
 938		}
 
 939		spin_unlock(&vb->lock);
 940		break;
 941next:
 942		spin_unlock(&vb->lock);
 943	}
 944
 945	if (purge)
 946		purge_fragmented_blocks_thiscpu();
 947
 948	put_cpu_var(vmap_block_queue);
 949	rcu_read_unlock();
 950
 951	if (!addr) {
 952		vb = new_vmap_block(gfp_mask);
 953		if (IS_ERR(vb))
 954			return vb;
 955		goto again;
 956	}
 957
 958	return (void *)addr;
 959}
 960
 961static void vb_free(const void *addr, unsigned long size)
 962{
 963	unsigned long offset;
 964	unsigned long vb_idx;
 965	unsigned int order;
 966	struct vmap_block *vb;
 967
 968	BUG_ON(size & ~PAGE_MASK);
 969	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 970
 971	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 972
 973	order = get_order(size);
 
 
 974
 975	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 976
 977	vb_idx = addr_to_vb_idx((unsigned long)addr);
 978	rcu_read_lock();
 979	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 980	rcu_read_unlock();
 981	BUG_ON(!vb);
 982
 983	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 984
 985	spin_lock(&vb->lock);
 986	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 
 
 
 987
 988	vb->dirty += 1UL << order;
 989	if (vb->dirty == VMAP_BBMAP_BITS) {
 990		BUG_ON(vb->free);
 991		spin_unlock(&vb->lock);
 992		free_vmap_block(vb);
 993	} else
 994		spin_unlock(&vb->lock);
 995}
 996
 997/**
 998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 999 *
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1005 *
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1009 */
1010void vm_unmap_aliases(void)
1011{
1012	unsigned long start = ULONG_MAX, end = 0;
1013	int cpu;
1014	int flush = 0;
1015
1016	if (unlikely(!vmap_initialized))
1017		return;
1018
 
 
1019	for_each_possible_cpu(cpu) {
1020		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021		struct vmap_block *vb;
1022
1023		rcu_read_lock();
1024		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025			int i;
1026
1027			spin_lock(&vb->lock);
1028			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029			while (i < VMAP_BBMAP_BITS) {
1030				unsigned long s, e;
1031				int j;
1032				j = find_next_zero_bit(vb->dirty_map,
1033					VMAP_BBMAP_BITS, i);
1034
1035				s = vb->va->va_start + (i << PAGE_SHIFT);
1036				e = vb->va->va_start + (j << PAGE_SHIFT);
1037				flush = 1;
 
 
1038
1039				if (s < start)
1040					start = s;
1041				if (e > end)
1042					end = e;
1043
1044				i = j;
1045				i = find_next_bit(vb->dirty_map,
1046							VMAP_BBMAP_BITS, i);
1047			}
1048			spin_unlock(&vb->lock);
1049		}
1050		rcu_read_unlock();
1051	}
1052
1053	__purge_vmap_area_lazy(&start, &end, 1, flush);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054}
1055EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1056
1057/**
1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1059 * @mem: the pointer returned by vm_map_ram
1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1061 */
1062void vm_unmap_ram(const void *mem, unsigned int count)
1063{
1064	unsigned long size = count << PAGE_SHIFT;
1065	unsigned long addr = (unsigned long)mem;
 
1066
 
1067	BUG_ON(!addr);
1068	BUG_ON(addr < VMALLOC_START);
1069	BUG_ON(addr > VMALLOC_END);
1070	BUG_ON(addr & (PAGE_SIZE-1));
1071
1072	debug_check_no_locks_freed(mem, size);
1073	vmap_debug_free_range(addr, addr+size);
1074
1075	if (likely(count <= VMAP_MAX_ALLOC))
1076		vb_free(mem, size);
1077	else
1078		free_unmap_vmap_area_addr(addr);
 
 
 
 
 
 
 
1079}
1080EXPORT_SYMBOL(vm_unmap_ram);
1081
1082/**
1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1084 * @pages: an array of pointers to the pages to be mapped
1085 * @count: number of pages
1086 * @node: prefer to allocate data structures on this node
1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
 
 
 
 
 
1088 *
1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1090 */
1091void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1092{
1093	unsigned long size = count << PAGE_SHIFT;
1094	unsigned long addr;
1095	void *mem;
1096
1097	if (likely(count <= VMAP_MAX_ALLOC)) {
1098		mem = vb_alloc(size, GFP_KERNEL);
1099		if (IS_ERR(mem))
1100			return NULL;
1101		addr = (unsigned long)mem;
1102	} else {
1103		struct vmap_area *va;
1104		va = alloc_vmap_area(size, PAGE_SIZE,
1105				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1106		if (IS_ERR(va))
1107			return NULL;
1108
1109		addr = va->va_start;
1110		mem = (void *)addr;
1111	}
1112	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 
 
 
1113		vm_unmap_ram(mem, count);
1114		return NULL;
1115	}
1116	return mem;
1117}
1118EXPORT_SYMBOL(vm_map_ram);
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/**
1121 * vm_area_register_early - register vmap area early during boot
1122 * @vm: vm_struct to register
1123 * @align: requested alignment
1124 *
1125 * This function is used to register kernel vm area before
1126 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1127 * proper values on entry and other fields should be zero.  On return,
1128 * vm->addr contains the allocated address.
1129 *
1130 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1131 */
1132void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1133{
1134	static size_t vm_init_off __initdata;
1135	unsigned long addr;
1136
1137	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1138	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1139
1140	vm->addr = (void *)addr;
1141
1142	vm->next = vmlist;
1143	vmlist = vm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144}
1145
1146void __init vmalloc_init(void)
1147{
1148	struct vmap_area *va;
1149	struct vm_struct *tmp;
1150	int i;
1151
 
 
 
 
 
1152	for_each_possible_cpu(i) {
1153		struct vmap_block_queue *vbq;
 
1154
1155		vbq = &per_cpu(vmap_block_queue, i);
1156		spin_lock_init(&vbq->lock);
1157		INIT_LIST_HEAD(&vbq->free);
 
 
 
1158	}
1159
1160	/* Import existing vmlist entries. */
1161	for (tmp = vmlist; tmp; tmp = tmp->next) {
1162		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1163		va->flags = tmp->flags | VM_VM_AREA;
 
 
1164		va->va_start = (unsigned long)tmp->addr;
1165		va->va_end = va->va_start + tmp->size;
1166		__insert_vmap_area(va);
 
1167	}
1168
1169	vmap_area_pcpu_hole = VMALLOC_END;
1170
 
 
1171	vmap_initialized = true;
1172}
1173
1174/**
1175 * map_kernel_range_noflush - map kernel VM area with the specified pages
1176 * @addr: start of the VM area to map
1177 * @size: size of the VM area to map
1178 * @prot: page protection flags to use
1179 * @pages: pages to map
1180 *
1181 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1182 * specify should have been allocated using get_vm_area() and its
1183 * friends.
1184 *
1185 * NOTE:
1186 * This function does NOT do any cache flushing.  The caller is
1187 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1188 * before calling this function.
1189 *
1190 * RETURNS:
1191 * The number of pages mapped on success, -errno on failure.
1192 */
1193int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1194			     pgprot_t prot, struct page **pages)
1195{
1196	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1197}
1198
1199/**
1200 * unmap_kernel_range_noflush - unmap kernel VM area
1201 * @addr: start of the VM area to unmap
1202 * @size: size of the VM area to unmap
1203 *
1204 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1205 * specify should have been allocated using get_vm_area() and its
1206 * friends.
1207 *
1208 * NOTE:
1209 * This function does NOT do any cache flushing.  The caller is
1210 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1211 * before calling this function and flush_tlb_kernel_range() after.
1212 */
1213void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1214{
1215	vunmap_page_range(addr, addr + size);
1216}
1217EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1218
1219/**
1220 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1221 * @addr: start of the VM area to unmap
1222 * @size: size of the VM area to unmap
1223 *
1224 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1225 * the unmapping and tlb after.
1226 */
1227void unmap_kernel_range(unsigned long addr, unsigned long size)
1228{
1229	unsigned long end = addr + size;
1230
1231	flush_cache_vunmap(addr, end);
1232	vunmap_page_range(addr, end);
1233	flush_tlb_kernel_range(addr, end);
1234}
1235
1236int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1237{
1238	unsigned long addr = (unsigned long)area->addr;
1239	unsigned long end = addr + area->size - PAGE_SIZE;
1240	int err;
1241
1242	err = vmap_page_range(addr, end, prot, *pages);
1243	if (err > 0) {
1244		*pages += err;
1245		err = 0;
1246	}
1247
1248	return err;
1249}
1250EXPORT_SYMBOL_GPL(map_vm_area);
1251
1252/*** Old vmalloc interfaces ***/
1253DEFINE_RWLOCK(vmlist_lock);
1254struct vm_struct *vmlist;
1255
1256static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1257			      unsigned long flags, void *caller)
1258{
1259	struct vm_struct *tmp, **p;
1260
1261	vm->flags = flags;
1262	vm->addr = (void *)va->va_start;
1263	vm->size = va->va_end - va->va_start;
1264	vm->caller = caller;
1265	va->private = vm;
1266	va->flags |= VM_VM_AREA;
1267
1268	write_lock(&vmlist_lock);
1269	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1270		if (tmp->addr >= vm->addr)
1271			break;
1272	}
1273	vm->next = *p;
1274	*p = vm;
1275	write_unlock(&vmlist_lock);
 
 
 
 
 
 
 
 
 
1276}
1277
1278static struct vm_struct *__get_vm_area_node(unsigned long size,
1279		unsigned long align, unsigned long flags, unsigned long start,
1280		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1281{
1282	static struct vmap_area *va;
1283	struct vm_struct *area;
 
1284
1285	BUG_ON(in_interrupt());
1286	if (flags & VM_IOREMAP) {
1287		int bit = fls(size);
1288
1289		if (bit > IOREMAP_MAX_ORDER)
1290			bit = IOREMAP_MAX_ORDER;
1291		else if (bit < PAGE_SHIFT)
1292			bit = PAGE_SHIFT;
1293
1294		align = 1ul << bit;
1295	}
1296
1297	size = PAGE_ALIGN(size);
1298	if (unlikely(!size))
1299		return NULL;
1300
 
 
 
 
1301	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1302	if (unlikely(!area))
1303		return NULL;
1304
1305	/*
1306	 * We always allocate a guard page.
1307	 */
1308	size += PAGE_SIZE;
1309
1310	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1311	if (IS_ERR(va)) {
1312		kfree(area);
1313		return NULL;
1314	}
1315
1316	insert_vmalloc_vm(area, va, flags, caller);
1317	return area;
1318}
1319
1320struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1321				unsigned long start, unsigned long end)
1322{
1323	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1324						__builtin_return_address(0));
1325}
1326EXPORT_SYMBOL_GPL(__get_vm_area);
1327
1328struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1329				       unsigned long start, unsigned long end,
1330				       void *caller)
1331{
1332	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1333				  caller);
1334}
1335
1336/**
1337 *	get_vm_area  -  reserve a contiguous kernel virtual area
1338 *	@size:		size of the area
1339 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 
 
 
 
1340 *
1341 *	Search an area of @size in the kernel virtual mapping area,
1342 *	and reserved it for out purposes.  Returns the area descriptor
1343 *	on success or %NULL on failure.
1344 */
1345struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1346{
1347	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1348				-1, GFP_KERNEL, __builtin_return_address(0));
 
1349}
1350
1351struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1352				void *caller)
1353{
1354	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1355						-1, GFP_KERNEL, caller);
1356}
1357
1358static struct vm_struct *find_vm_area(const void *addr)
 
 
 
 
 
 
 
 
 
 
1359{
1360	struct vmap_area *va;
1361
1362	va = find_vmap_area((unsigned long)addr);
1363	if (va && va->flags & VM_VM_AREA)
1364		return va->private;
1365
1366	return NULL;
1367}
1368
1369/**
1370 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1371 *	@addr:		base address
1372 *
1373 *	Search for the kernel VM area starting at @addr, and remove it.
1374 *	This function returns the found VM area, but using it is NOT safe
1375 *	on SMP machines, except for its size or flags.
 
 
1376 */
1377struct vm_struct *remove_vm_area(const void *addr)
1378{
1379	struct vmap_area *va;
1380
1381	va = find_vmap_area((unsigned long)addr);
1382	if (va && va->flags & VM_VM_AREA) {
1383		struct vm_struct *vm = va->private;
1384		struct vm_struct *tmp, **p;
1385		/*
1386		 * remove from list and disallow access to this vm_struct
1387		 * before unmap. (address range confliction is maintained by
1388		 * vmap.)
1389		 */
1390		write_lock(&vmlist_lock);
1391		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1392			;
1393		*p = tmp->next;
1394		write_unlock(&vmlist_lock);
1395
1396		vmap_debug_free_range(va->va_start, va->va_end);
 
 
 
1397		free_unmap_vmap_area(va);
1398		vm->size -= PAGE_SIZE;
1399
1400		return vm;
1401	}
 
 
1402	return NULL;
1403}
1404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405static void __vunmap(const void *addr, int deallocate_pages)
1406{
1407	struct vm_struct *area;
1408
1409	if (!addr)
1410		return;
1411
1412	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1413		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1414		return;
1415	}
1416
1417	area = remove_vm_area(addr);
1418	if (unlikely(!area)) {
1419		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1420				addr);
1421		return;
1422	}
1423
1424	debug_check_no_locks_freed(addr, area->size);
1425	debug_check_no_obj_freed(addr, area->size);
 
 
 
 
1426
1427	if (deallocate_pages) {
1428		int i;
1429
1430		for (i = 0; i < area->nr_pages; i++) {
1431			struct page *page = area->pages[i];
1432
1433			BUG_ON(!page);
1434			__free_page(page);
1435		}
 
1436
1437		if (area->flags & VM_VPAGES)
1438			vfree(area->pages);
1439		else
1440			kfree(area->pages);
1441	}
1442
1443	kfree(area);
1444	return;
1445}
1446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447/**
1448 *	vfree  -  release memory allocated by vmalloc()
1449 *	@addr:		memory base address
 
 
 
 
1450 *
1451 *	Free the virtually continuous memory area starting at @addr, as
1452 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1453 *	NULL, no operation is performed.
1454 *
1455 *	Must not be called in interrupt context.
 
 
1456 */
1457void vfree(const void *addr)
1458{
1459	BUG_ON(in_interrupt());
1460
1461	kmemleak_free(addr);
1462
1463	__vunmap(addr, 1);
 
 
 
 
 
1464}
1465EXPORT_SYMBOL(vfree);
1466
1467/**
1468 *	vunmap  -  release virtual mapping obtained by vmap()
1469 *	@addr:		memory base address
1470 *
1471 *	Free the virtually contiguous memory area starting at @addr,
1472 *	which was created from the page array passed to vmap().
1473 *
1474 *	Must not be called in interrupt context.
1475 */
1476void vunmap(const void *addr)
1477{
1478	BUG_ON(in_interrupt());
1479	might_sleep();
1480	__vunmap(addr, 0);
 
1481}
1482EXPORT_SYMBOL(vunmap);
1483
1484/**
1485 *	vmap  -  map an array of pages into virtually contiguous space
1486 *	@pages:		array of page pointers
1487 *	@count:		number of pages to map
1488 *	@flags:		vm_area->flags
1489 *	@prot:		page protection for the mapping
1490 *
1491 *	Maps @count pages from @pages into contiguous kernel virtual
1492 *	space.
 
 
1493 */
1494void *vmap(struct page **pages, unsigned int count,
1495		unsigned long flags, pgprot_t prot)
1496{
1497	struct vm_struct *area;
 
1498
1499	might_sleep();
1500
1501	if (count > totalram_pages)
1502		return NULL;
1503
1504	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1505					__builtin_return_address(0));
1506	if (!area)
1507		return NULL;
1508
1509	if (map_vm_area(area, prot, &pages)) {
 
1510		vunmap(area->addr);
1511		return NULL;
1512	}
1513
1514	return area->addr;
1515}
1516EXPORT_SYMBOL(vmap);
1517
1518static void *__vmalloc_node(unsigned long size, unsigned long align,
1519			    gfp_t gfp_mask, pgprot_t prot,
1520			    int node, void *caller);
1521static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1522				 pgprot_t prot, int node, void *caller)
1523{
1524	const int order = 0;
1525	struct page **pages;
1526	unsigned int nr_pages, array_size, i;
1527	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 
 
 
 
1528
1529	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1530	array_size = (nr_pages * sizeof(struct page *));
1531
1532	area->nr_pages = nr_pages;
1533	/* Please note that the recursion is strictly bounded. */
1534	if (array_size > PAGE_SIZE) {
1535		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1536				PAGE_KERNEL, node, caller);
1537		area->flags |= VM_VPAGES;
1538	} else {
1539		pages = kmalloc_node(array_size, nested_gfp, node);
1540	}
1541	area->pages = pages;
1542	area->caller = caller;
1543	if (!area->pages) {
1544		remove_vm_area(area->addr);
1545		kfree(area);
1546		return NULL;
1547	}
1548
 
 
 
1549	for (i = 0; i < area->nr_pages; i++) {
1550		struct page *page;
1551		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1552
1553		if (node < 0)
1554			page = alloc_page(tmp_mask);
1555		else
1556			page = alloc_pages_node(node, tmp_mask, order);
1557
1558		if (unlikely(!page)) {
1559			/* Successfully allocated i pages, free them in __vunmap() */
1560			area->nr_pages = i;
 
1561			goto fail;
1562		}
1563		area->pages[i] = page;
 
 
1564	}
 
1565
1566	if (map_vm_area(area, prot, &pages))
 
1567		goto fail;
 
1568	return area->addr;
1569
1570fail:
1571	warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1572			  "allocated %ld of %ld bytes\n",
1573			  (area->nr_pages*PAGE_SIZE), area->size);
1574	vfree(area->addr);
1575	return NULL;
1576}
1577
1578/**
1579 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1580 *	@size:		allocation size
1581 *	@align:		desired alignment
1582 *	@start:		vm area range start
1583 *	@end:		vm area range end
1584 *	@gfp_mask:	flags for the page level allocator
1585 *	@prot:		protection mask for the allocated pages
1586 *	@node:		node to use for allocation or -1
1587 *	@caller:	caller's return address
1588 *
1589 *	Allocate enough pages to cover @size from the page level
1590 *	allocator with @gfp_mask flags.  Map them into contiguous
1591 *	kernel virtual space, using a pagetable protection of @prot.
 
 
 
1592 */
1593void *__vmalloc_node_range(unsigned long size, unsigned long align,
1594			unsigned long start, unsigned long end, gfp_t gfp_mask,
1595			pgprot_t prot, int node, void *caller)
 
1596{
1597	struct vm_struct *area;
1598	void *addr;
1599	unsigned long real_size = size;
1600
1601	size = PAGE_ALIGN(size);
1602	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1603		return NULL;
1604
1605	area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1606				  gfp_mask, caller);
1607
 
 
1608	if (!area)
1609		return NULL;
1610
1611	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
 
 
1612
1613	/*
1614	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1615	 * structures allocated in the __get_vm_area_node() function contain
1616	 * references to the virtual address of the vmalloc'ed block.
1617	 */
1618	kmemleak_alloc(addr, real_size, 3, gfp_mask);
 
 
1619
1620	return addr;
 
 
 
 
 
1621}
1622
1623/**
1624 *	__vmalloc_node  -  allocate virtually contiguous memory
1625 *	@size:		allocation size
1626 *	@align:		desired alignment
1627 *	@gfp_mask:	flags for the page level allocator
1628 *	@prot:		protection mask for the allocated pages
1629 *	@node:		node to use for allocation or -1
1630 *	@caller:	caller's return address
1631 *
1632 *	Allocate enough pages to cover @size from the page level
1633 *	allocator with @gfp_mask flags.  Map them into contiguous
1634 *	kernel virtual space, using a pagetable protection of @prot.
1635 */
1636static void *__vmalloc_node(unsigned long size, unsigned long align,
1637			    gfp_t gfp_mask, pgprot_t prot,
1638			    int node, void *caller)
 
 
 
 
 
1639{
1640	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1641				gfp_mask, prot, node, caller);
1642}
 
 
 
 
 
 
 
 
1643
1644void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1645{
1646	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1647				__builtin_return_address(0));
1648}
1649EXPORT_SYMBOL(__vmalloc);
1650
1651static inline void *__vmalloc_node_flags(unsigned long size,
1652					int node, gfp_t flags)
1653{
1654	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1655					node, __builtin_return_address(0));
1656}
1657
1658/**
1659 *	vmalloc  -  allocate virtually contiguous memory
1660 *	@size:		allocation size
1661 *	Allocate enough pages to cover @size from the page level
1662 *	allocator and map them into contiguous kernel virtual space.
 
 
 
 
1663 *
1664 *	For tight control over page level allocator and protection flags
1665 *	use __vmalloc() instead.
1666 */
1667void *vmalloc(unsigned long size)
1668{
1669	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
 
1670}
1671EXPORT_SYMBOL(vmalloc);
1672
1673/**
1674 *	vzalloc - allocate virtually contiguous memory with zero fill
1675 *	@size:	allocation size
1676 *	Allocate enough pages to cover @size from the page level
1677 *	allocator and map them into contiguous kernel virtual space.
1678 *	The memory allocated is set to zero.
 
 
 
 
1679 *
1680 *	For tight control over page level allocator and protection flags
1681 *	use __vmalloc() instead.
1682 */
1683void *vzalloc(unsigned long size)
1684{
1685	return __vmalloc_node_flags(size, -1,
1686				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1687}
1688EXPORT_SYMBOL(vzalloc);
1689
1690/**
1691 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1692 * @size: allocation size
1693 *
1694 * The resulting memory area is zeroed so it can be mapped to userspace
1695 * without leaking data.
 
 
1696 */
1697void *vmalloc_user(unsigned long size)
1698{
1699	struct vm_struct *area;
1700	void *ret;
1701
1702	ret = __vmalloc_node(size, SHMLBA,
1703			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1704			     PAGE_KERNEL, -1, __builtin_return_address(0));
1705	if (ret) {
1706		area = find_vm_area(ret);
1707		area->flags |= VM_USERMAP;
1708	}
1709	return ret;
1710}
1711EXPORT_SYMBOL(vmalloc_user);
1712
1713/**
1714 *	vmalloc_node  -  allocate memory on a specific node
1715 *	@size:		allocation size
1716 *	@node:		numa node
 
 
 
1717 *
1718 *	Allocate enough pages to cover @size from the page level
1719 *	allocator and map them into contiguous kernel virtual space.
1720 *
1721 *	For tight control over page level allocator and protection flags
1722 *	use __vmalloc() instead.
1723 */
1724void *vmalloc_node(unsigned long size, int node)
1725{
1726	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1727					node, __builtin_return_address(0));
1728}
1729EXPORT_SYMBOL(vmalloc_node);
1730
1731/**
1732 * vzalloc_node - allocate memory on a specific node with zero fill
1733 * @size:	allocation size
1734 * @node:	numa node
1735 *
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator and map them into contiguous kernel virtual space.
1738 * The memory allocated is set to zero.
1739 *
1740 * For tight control over page level allocator and protection flags
1741 * use __vmalloc_node() instead.
1742 */
1743void *vzalloc_node(unsigned long size, int node)
1744{
1745	return __vmalloc_node_flags(size, node,
1746			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1747}
1748EXPORT_SYMBOL(vzalloc_node);
1749
1750#ifndef PAGE_KERNEL_EXEC
1751# define PAGE_KERNEL_EXEC PAGE_KERNEL
1752#endif
1753
1754/**
1755 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1756 *	@size:		allocation size
1757 *
1758 *	Kernel-internal function to allocate enough pages to cover @size
1759 *	the page level allocator and map them into contiguous and
1760 *	executable kernel virtual space.
1761 *
1762 *	For tight control over page level allocator and protection flags
1763 *	use __vmalloc() instead.
1764 */
1765
1766void *vmalloc_exec(unsigned long size)
1767{
1768	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1769			      -1, __builtin_return_address(0));
1770}
1771
1772#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1773#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1774#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1775#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1776#else
1777#define GFP_VMALLOC32 GFP_KERNEL
 
 
 
 
1778#endif
1779
1780/**
1781 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1782 *	@size:		allocation size
 
 
 
1783 *
1784 *	Allocate enough 32bit PA addressable pages to cover @size from the
1785 *	page level allocator and map them into contiguous kernel virtual space.
1786 */
1787void *vmalloc_32(unsigned long size)
1788{
1789	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1790			      -1, __builtin_return_address(0));
1791}
1792EXPORT_SYMBOL(vmalloc_32);
1793
1794/**
1795 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1796 *	@size:		allocation size
1797 *
1798 * The resulting memory area is 32bit addressable and zeroed so it can be
1799 * mapped to userspace without leaking data.
 
 
1800 */
1801void *vmalloc_32_user(unsigned long size)
1802{
1803	struct vm_struct *area;
1804	void *ret;
1805
1806	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1807			     -1, __builtin_return_address(0));
1808	if (ret) {
1809		area = find_vm_area(ret);
1810		area->flags |= VM_USERMAP;
1811	}
1812	return ret;
1813}
1814EXPORT_SYMBOL(vmalloc_32_user);
1815
1816/*
1817 * small helper routine , copy contents to buf from addr.
1818 * If the page is not present, fill zero.
1819 */
1820
1821static int aligned_vread(char *buf, char *addr, unsigned long count)
1822{
1823	struct page *p;
1824	int copied = 0;
1825
1826	while (count) {
1827		unsigned long offset, length;
1828
1829		offset = (unsigned long)addr & ~PAGE_MASK;
1830		length = PAGE_SIZE - offset;
1831		if (length > count)
1832			length = count;
1833		p = vmalloc_to_page(addr);
1834		/*
1835		 * To do safe access to this _mapped_ area, we need
1836		 * lock. But adding lock here means that we need to add
1837		 * overhead of vmalloc()/vfree() calles for this _debug_
1838		 * interface, rarely used. Instead of that, we'll use
1839		 * kmap() and get small overhead in this access function.
1840		 */
1841		if (p) {
1842			/*
1843			 * we can expect USER0 is not used (see vread/vwrite's
1844			 * function description)
1845			 */
1846			void *map = kmap_atomic(p, KM_USER0);
1847			memcpy(buf, map + offset, length);
1848			kunmap_atomic(map, KM_USER0);
1849		} else
1850			memset(buf, 0, length);
1851
1852		addr += length;
1853		buf += length;
1854		copied += length;
1855		count -= length;
1856	}
1857	return copied;
1858}
1859
1860static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1861{
1862	struct page *p;
1863	int copied = 0;
1864
1865	while (count) {
1866		unsigned long offset, length;
1867
1868		offset = (unsigned long)addr & ~PAGE_MASK;
1869		length = PAGE_SIZE - offset;
1870		if (length > count)
1871			length = count;
1872		p = vmalloc_to_page(addr);
1873		/*
1874		 * To do safe access to this _mapped_ area, we need
1875		 * lock. But adding lock here means that we need to add
1876		 * overhead of vmalloc()/vfree() calles for this _debug_
1877		 * interface, rarely used. Instead of that, we'll use
1878		 * kmap() and get small overhead in this access function.
1879		 */
1880		if (p) {
1881			/*
1882			 * we can expect USER0 is not used (see vread/vwrite's
1883			 * function description)
1884			 */
1885			void *map = kmap_atomic(p, KM_USER0);
1886			memcpy(map + offset, buf, length);
1887			kunmap_atomic(map, KM_USER0);
1888		}
1889		addr += length;
1890		buf += length;
1891		copied += length;
1892		count -= length;
1893	}
1894	return copied;
1895}
1896
1897/**
1898 *	vread() -  read vmalloc area in a safe way.
1899 *	@buf:		buffer for reading data
1900 *	@addr:		vm address.
1901 *	@count:		number of bytes to be read.
1902 *
1903 *	Returns # of bytes which addr and buf should be increased.
1904 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1905 *	includes any intersect with alive vmalloc area.
1906 *
1907 *	This function checks that addr is a valid vmalloc'ed area, and
1908 *	copy data from that area to a given buffer. If the given memory range
1909 *	of [addr...addr+count) includes some valid address, data is copied to
1910 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1911 *	IOREMAP area is treated as memory hole and no copy is done.
1912 *
1913 *	If [addr...addr+count) doesn't includes any intersects with alive
1914 *	vm_struct area, returns 0.
1915 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1916 *	the caller should guarantee KM_USER0 is not used.
1917 *
1918 *	Note: In usual ops, vread() is never necessary because the caller
1919 *	should know vmalloc() area is valid and can use memcpy().
1920 *	This is for routines which have to access vmalloc area without
1921 *	any informaion, as /dev/kmem.
1922 *
1923 */
1924
1925long vread(char *buf, char *addr, unsigned long count)
1926{
1927	struct vm_struct *tmp;
 
1928	char *vaddr, *buf_start = buf;
1929	unsigned long buflen = count;
1930	unsigned long n;
1931
1932	/* Don't allow overflow */
1933	if ((unsigned long) addr + count < count)
1934		count = -(unsigned long) addr;
1935
1936	read_lock(&vmlist_lock);
1937	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1938		vaddr = (char *) tmp->addr;
1939		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 
 
 
 
 
 
 
1940			continue;
1941		while (addr < vaddr) {
1942			if (count == 0)
1943				goto finished;
1944			*buf = '\0';
1945			buf++;
1946			addr++;
1947			count--;
1948		}
1949		n = vaddr + tmp->size - PAGE_SIZE - addr;
1950		if (n > count)
1951			n = count;
1952		if (!(tmp->flags & VM_IOREMAP))
1953			aligned_vread(buf, addr, n);
1954		else /* IOREMAP area is treated as memory hole */
1955			memset(buf, 0, n);
1956		buf += n;
1957		addr += n;
1958		count -= n;
1959	}
1960finished:
1961	read_unlock(&vmlist_lock);
1962
1963	if (buf == buf_start)
1964		return 0;
1965	/* zero-fill memory holes */
1966	if (buf != buf_start + buflen)
1967		memset(buf, 0, buflen - (buf - buf_start));
1968
1969	return buflen;
1970}
1971
1972/**
1973 *	vwrite() -  write vmalloc area in a safe way.
1974 *	@buf:		buffer for source data
1975 *	@addr:		vm address.
1976 *	@count:		number of bytes to be read.
1977 *
1978 *	Returns # of bytes which addr and buf should be incresed.
1979 *	(same number to @count).
1980 *	If [addr...addr+count) doesn't includes any intersect with valid
1981 *	vmalloc area, returns 0.
1982 *
1983 *	This function checks that addr is a valid vmalloc'ed area, and
1984 *	copy data from a buffer to the given addr. If specified range of
1985 *	[addr...addr+count) includes some valid address, data is copied from
1986 *	proper area of @buf. If there are memory holes, no copy to hole.
1987 *	IOREMAP area is treated as memory hole and no copy is done.
1988 *
1989 *	If [addr...addr+count) doesn't includes any intersects with alive
1990 *	vm_struct area, returns 0.
1991 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1992 *	the caller should guarantee KM_USER0 is not used.
1993 *
1994 *	Note: In usual ops, vwrite() is never necessary because the caller
1995 *	should know vmalloc() area is valid and can use memcpy().
1996 *	This is for routines which have to access vmalloc area without
1997 *	any informaion, as /dev/kmem.
1998 */
1999
2000long vwrite(char *buf, char *addr, unsigned long count)
2001{
2002	struct vm_struct *tmp;
 
2003	char *vaddr;
2004	unsigned long n, buflen;
2005	int copied = 0;
2006
2007	/* Don't allow overflow */
2008	if ((unsigned long) addr + count < count)
2009		count = -(unsigned long) addr;
2010	buflen = count;
2011
2012	read_lock(&vmlist_lock);
2013	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2014		vaddr = (char *) tmp->addr;
2015		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 
 
 
 
 
 
 
2016			continue;
2017		while (addr < vaddr) {
2018			if (count == 0)
2019				goto finished;
2020			buf++;
2021			addr++;
2022			count--;
2023		}
2024		n = vaddr + tmp->size - PAGE_SIZE - addr;
2025		if (n > count)
2026			n = count;
2027		if (!(tmp->flags & VM_IOREMAP)) {
2028			aligned_vwrite(buf, addr, n);
2029			copied++;
2030		}
2031		buf += n;
2032		addr += n;
2033		count -= n;
2034	}
2035finished:
2036	read_unlock(&vmlist_lock);
2037	if (!copied)
2038		return 0;
2039	return buflen;
2040}
2041
2042/**
2043 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2044 *	@vma:		vma to cover (map full range of vma)
2045 *	@addr:		vmalloc memory
2046 *	@pgoff:		number of pages into addr before first page to map
2047 *
2048 *	Returns:	0 for success, -Exxx on failure
2049 *
2050 *	This function checks that addr is a valid vmalloc'ed area, and
2051 *	that it is big enough to cover the vma. Will return failure if
2052 *	that criteria isn't met.
2053 *
2054 *	Similar to remap_pfn_range() (see mm/memory.c)
2055 */
2056int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2057						unsigned long pgoff)
 
 
 
 
2058{
2059	struct vm_struct *area;
2060	unsigned long uaddr = vma->vm_start;
2061	unsigned long usize = vma->vm_end - vma->vm_start;
2062
2063	if ((PAGE_SIZE-1) & (unsigned long)addr)
2064		return -EINVAL;
2065
2066	area = find_vm_area(addr);
 
 
 
 
 
2067	if (!area)
2068		return -EINVAL;
2069
2070	if (!(area->flags & VM_USERMAP))
2071		return -EINVAL;
2072
2073	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
 
2074		return -EINVAL;
 
2075
2076	addr += pgoff << PAGE_SHIFT;
2077	do {
2078		struct page *page = vmalloc_to_page(addr);
2079		int ret;
2080
2081		ret = vm_insert_page(vma, uaddr, page);
2082		if (ret)
2083			return ret;
2084
2085		uaddr += PAGE_SIZE;
2086		addr += PAGE_SIZE;
2087		usize -= PAGE_SIZE;
2088	} while (usize > 0);
2089
2090	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2091	vma->vm_flags |= VM_RESERVED;
2092
2093	return 0;
2094}
2095EXPORT_SYMBOL(remap_vmalloc_range);
2096
2097/*
2098 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2099 * have one.
 
 
 
 
 
 
 
 
 
 
2100 */
2101void  __attribute__((weak)) vmalloc_sync_all(void)
 
2102{
 
 
 
2103}
 
2104
2105
2106static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2107{
2108	/* apply_to_page_range() does all the hard work. */
 
 
 
 
 
2109	return 0;
2110}
2111
2112/**
2113 *	alloc_vm_area - allocate a range of kernel address space
2114 *	@size:		size of the area
 
2115 *
2116 *	Returns:	NULL on failure, vm_struct on success
2117 *
2118 *	This function reserves a range of kernel address space, and
2119 *	allocates pagetables to map that range.  No actual mappings
2120 *	are created.  If the kernel address space is not shared
2121 *	between processes, it syncs the pagetable across all
2122 *	processes.
 
2123 */
2124struct vm_struct *alloc_vm_area(size_t size)
2125{
2126	struct vm_struct *area;
2127
2128	area = get_vm_area_caller(size, VM_IOREMAP,
2129				__builtin_return_address(0));
2130	if (area == NULL)
2131		return NULL;
2132
2133	/*
2134	 * This ensures that page tables are constructed for this region
2135	 * of kernel virtual address space and mapped into init_mm.
2136	 */
2137	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2138				area->size, f, NULL)) {
2139		free_vm_area(area);
2140		return NULL;
2141	}
2142
2143	/*
2144	 * If the allocated address space is passed to a hypercall
2145	 * before being used then we cannot rely on a page fault to
2146	 * trigger an update of the page tables.  So sync all the page
2147	 * tables here.
2148	 */
2149	vmalloc_sync_all();
2150
2151	return area;
2152}
2153EXPORT_SYMBOL_GPL(alloc_vm_area);
2154
2155void free_vm_area(struct vm_struct *area)
2156{
2157	struct vm_struct *ret;
2158	ret = remove_vm_area(area->addr);
2159	BUG_ON(ret != area);
2160	kfree(area);
2161}
2162EXPORT_SYMBOL_GPL(free_vm_area);
2163
2164#ifdef CONFIG_SMP
2165static struct vmap_area *node_to_va(struct rb_node *n)
2166{
2167	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2168}
2169
2170/**
2171 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2172 * @end: target address
2173 * @pnext: out arg for the next vmap_area
2174 * @pprev: out arg for the previous vmap_area
2175 *
2176 * Returns: %true if either or both of next and prev are found,
2177 *	    %false if no vmap_area exists
2178 *
2179 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2180 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2181 */
2182static bool pvm_find_next_prev(unsigned long end,
2183			       struct vmap_area **pnext,
2184			       struct vmap_area **pprev)
2185{
2186	struct rb_node *n = vmap_area_root.rb_node;
2187	struct vmap_area *va = NULL;
 
 
 
2188
2189	while (n) {
2190		va = rb_entry(n, struct vmap_area, rb_node);
2191		if (end < va->va_end)
2192			n = n->rb_left;
2193		else if (end > va->va_end)
 
 
2194			n = n->rb_right;
2195		else
2196			break;
 
2197	}
2198
2199	if (!va)
2200		return false;
2201
2202	if (va->va_end > end) {
2203		*pnext = va;
2204		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2205	} else {
2206		*pprev = va;
2207		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2208	}
2209	return true;
2210}
2211
2212/**
2213 * pvm_determine_end - find the highest aligned address between two vmap_areas
2214 * @pnext: in/out arg for the next vmap_area
2215 * @pprev: in/out arg for the previous vmap_area
2216 * @align: alignment
2217 *
2218 * Returns: determined end address
2219 *
2220 * Find the highest aligned address between *@pnext and *@pprev below
2221 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2222 * down address is between the end addresses of the two vmap_areas.
2223 *
2224 * Please note that the address returned by this function may fall
2225 * inside *@pnext vmap_area.  The caller is responsible for checking
2226 * that.
2227 */
2228static unsigned long pvm_determine_end(struct vmap_area **pnext,
2229				       struct vmap_area **pprev,
2230				       unsigned long align)
2231{
2232	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2233	unsigned long addr;
2234
2235	if (*pnext)
2236		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2237	else
2238		addr = vmalloc_end;
2239
2240	while (*pprev && (*pprev)->va_end > addr) {
2241		*pnext = *pprev;
2242		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2243	}
2244
2245	return addr;
2246}
2247
2248/**
2249 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2250 * @offsets: array containing offset of each area
2251 * @sizes: array containing size of each area
2252 * @nr_vms: the number of areas to allocate
2253 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2254 *
2255 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2256 *	    vm_structs on success, %NULL on failure
2257 *
2258 * Percpu allocator wants to use congruent vm areas so that it can
2259 * maintain the offsets among percpu areas.  This function allocates
2260 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2261 * be scattered pretty far, distance between two areas easily going up
2262 * to gigabytes.  To avoid interacting with regular vmallocs, these
2263 * areas are allocated from top.
2264 *
2265 * Despite its complicated look, this allocator is rather simple.  It
2266 * does everything top-down and scans areas from the end looking for
2267 * matching slot.  While scanning, if any of the areas overlaps with
2268 * existing vmap_area, the base address is pulled down to fit the
2269 * area.  Scanning is repeated till all the areas fit and then all
2270 * necessary data structres are inserted and the result is returned.
2271 */
2272struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2273				     const size_t *sizes, int nr_vms,
2274				     size_t align)
2275{
2276	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2277	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2278	struct vmap_area **vas, *prev, *next;
2279	struct vm_struct **vms;
2280	int area, area2, last_area, term_area;
2281	unsigned long base, start, end, last_end;
2282	bool purged = false;
 
2283
2284	/* verify parameters and allocate data structures */
2285	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2286	for (last_area = 0, area = 0; area < nr_vms; area++) {
2287		start = offsets[area];
2288		end = start + sizes[area];
2289
2290		/* is everything aligned properly? */
2291		BUG_ON(!IS_ALIGNED(offsets[area], align));
2292		BUG_ON(!IS_ALIGNED(sizes[area], align));
2293
2294		/* detect the area with the highest address */
2295		if (start > offsets[last_area])
2296			last_area = area;
2297
2298		for (area2 = 0; area2 < nr_vms; area2++) {
2299			unsigned long start2 = offsets[area2];
2300			unsigned long end2 = start2 + sizes[area2];
2301
2302			if (area2 == area)
2303				continue;
2304
2305			BUG_ON(start2 >= start && start2 < end);
2306			BUG_ON(end2 <= end && end2 > start);
2307		}
2308	}
2309	last_end = offsets[last_area] + sizes[last_area];
2310
2311	if (vmalloc_end - vmalloc_start < last_end) {
2312		WARN_ON(true);
2313		return NULL;
2314	}
2315
2316	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2317	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2318	if (!vas || !vms)
2319		goto err_free;
2320
2321	for (area = 0; area < nr_vms; area++) {
2322		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2323		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2324		if (!vas[area] || !vms[area])
2325			goto err_free;
2326	}
2327retry:
2328	spin_lock(&vmap_area_lock);
2329
2330	/* start scanning - we scan from the top, begin with the last area */
2331	area = term_area = last_area;
2332	start = offsets[area];
2333	end = start + sizes[area];
2334
2335	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2336		base = vmalloc_end - last_end;
2337		goto found;
2338	}
2339	base = pvm_determine_end(&next, &prev, align) - end;
2340
2341	while (true) {
2342		BUG_ON(next && next->va_end <= base + end);
2343		BUG_ON(prev && prev->va_end > base + end);
2344
2345		/*
2346		 * base might have underflowed, add last_end before
2347		 * comparing.
2348		 */
2349		if (base + last_end < vmalloc_start + last_end) {
2350			spin_unlock(&vmap_area_lock);
2351			if (!purged) {
2352				purge_vmap_area_lazy();
2353				purged = true;
2354				goto retry;
2355			}
2356			goto err_free;
2357		}
2358
2359		/*
2360		 * If next overlaps, move base downwards so that it's
2361		 * right below next and then recheck.
2362		 */
2363		if (next && next->va_start < base + end) {
2364			base = pvm_determine_end(&next, &prev, align) - end;
 
 
 
 
 
 
 
2365			term_area = area;
2366			continue;
2367		}
2368
2369		/*
2370		 * If prev overlaps, shift down next and prev and move
2371		 * base so that it's right below new next and then
2372		 * recheck.
2373		 */
2374		if (prev && prev->va_end > base + start)  {
2375			next = prev;
2376			prev = node_to_va(rb_prev(&next->rb_node));
2377			base = pvm_determine_end(&next, &prev, align) - end;
2378			term_area = area;
2379			continue;
2380		}
2381
2382		/*
2383		 * This area fits, move on to the previous one.  If
2384		 * the previous one is the terminal one, we're done.
2385		 */
2386		area = (area + nr_vms - 1) % nr_vms;
2387		if (area == term_area)
2388			break;
 
2389		start = offsets[area];
2390		end = start + sizes[area];
2391		pvm_find_next_prev(base + end, &next, &prev);
2392	}
2393found:
2394	/* we've found a fitting base, insert all va's */
2395	for (area = 0; area < nr_vms; area++) {
2396		struct vmap_area *va = vas[area];
 
 
 
2397
2398		va->va_start = base + offsets[area];
2399		va->va_end = va->va_start + sizes[area];
2400		__insert_vmap_area(va);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401	}
2402
2403	vmap_area_pcpu_hole = base + offsets[last_area];
2404
2405	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
2406
2407	/* insert all vm's */
2408	for (area = 0; area < nr_vms; area++)
2409		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2410				  pcpu_get_vm_areas);
 
 
 
 
 
2411
2412	kfree(vas);
2413	return vms;
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415err_free:
2416	for (area = 0; area < nr_vms; area++) {
2417		if (vas)
2418			kfree(vas[area]);
2419		if (vms)
2420			kfree(vms[area]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421	}
 
2422	kfree(vas);
2423	kfree(vms);
2424	return NULL;
2425}
2426
2427/**
2428 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2429 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2430 * @nr_vms: the number of allocated areas
2431 *
2432 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2433 */
2434void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2435{
2436	int i;
2437
2438	for (i = 0; i < nr_vms; i++)
2439		free_vm_area(vms[i]);
2440	kfree(vms);
2441}
2442#endif	/* CONFIG_SMP */
2443
2444#ifdef CONFIG_PROC_FS
2445static void *s_start(struct seq_file *m, loff_t *pos)
2446	__acquires(&vmlist_lock)
 
2447{
2448	loff_t n = *pos;
2449	struct vm_struct *v;
2450
2451	read_lock(&vmlist_lock);
2452	v = vmlist;
2453	while (n > 0 && v) {
2454		n--;
2455		v = v->next;
2456	}
2457	if (!n)
2458		return v;
2459
2460	return NULL;
2461
 
2462}
2463
2464static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2465{
2466	struct vm_struct *v = p;
2467
2468	++*pos;
2469	return v->next;
2470}
2471
2472static void s_stop(struct seq_file *m, void *p)
2473	__releases(&vmlist_lock)
 
2474{
2475	read_unlock(&vmlist_lock);
 
2476}
2477
2478static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2479{
2480	if (NUMA_BUILD) {
2481		unsigned int nr, *counters = m->private;
2482
2483		if (!counters)
2484			return;
2485
 
 
 
 
 
2486		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2487
2488		for (nr = 0; nr < v->nr_pages; nr++)
2489			counters[page_to_nid(v->pages[nr])]++;
2490
2491		for_each_node_state(nr, N_HIGH_MEMORY)
2492			if (counters[nr])
2493				seq_printf(m, " N%u=%u", nr, counters[nr]);
2494	}
2495}
2496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497static int s_show(struct seq_file *m, void *p)
2498{
2499	struct vm_struct *v = p;
 
 
 
2500
2501	seq_printf(m, "0x%p-0x%p %7ld",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502		v->addr, v->addr + v->size, v->size);
2503
2504	if (v->caller)
2505		seq_printf(m, " %pS", v->caller);
2506
2507	if (v->nr_pages)
2508		seq_printf(m, " pages=%d", v->nr_pages);
2509
2510	if (v->phys_addr)
2511		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2512
2513	if (v->flags & VM_IOREMAP)
2514		seq_printf(m, " ioremap");
2515
2516	if (v->flags & VM_ALLOC)
2517		seq_printf(m, " vmalloc");
2518
2519	if (v->flags & VM_MAP)
2520		seq_printf(m, " vmap");
2521
2522	if (v->flags & VM_USERMAP)
2523		seq_printf(m, " user");
 
 
 
2524
2525	if (v->flags & VM_VPAGES)
2526		seq_printf(m, " vpages");
2527
2528	show_numa_info(m, v);
2529	seq_putc(m, '\n');
 
 
 
 
 
 
 
 
 
 
2530	return 0;
2531}
2532
2533static const struct seq_operations vmalloc_op = {
2534	.start = s_start,
2535	.next = s_next,
2536	.stop = s_stop,
2537	.show = s_show,
2538};
2539
2540static int vmalloc_open(struct inode *inode, struct file *file)
2541{
2542	unsigned int *ptr = NULL;
2543	int ret;
2544
2545	if (NUMA_BUILD) {
2546		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2547		if (ptr == NULL)
2548			return -ENOMEM;
2549	}
2550	ret = seq_open(file, &vmalloc_op);
2551	if (!ret) {
2552		struct seq_file *m = file->private_data;
2553		m->private = ptr;
2554	} else
2555		kfree(ptr);
2556	return ret;
2557}
2558
2559static const struct file_operations proc_vmalloc_operations = {
2560	.open		= vmalloc_open,
2561	.read		= seq_read,
2562	.llseek		= seq_lseek,
2563	.release	= seq_release_private,
2564};
2565
2566static int __init proc_vmalloc_init(void)
2567{
2568	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
 
 
 
 
 
2569	return 0;
2570}
2571module_init(proc_vmalloc_init);
2572#endif
2573
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
  10 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
  11 */
  12
  13#include <linux/vmalloc.h>
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/highmem.h>
  17#include <linux/sched/signal.h>
  18#include <linux/slab.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/set_memory.h>
  24#include <linux/debugobjects.h>
  25#include <linux/kallsyms.h>
  26#include <linux/list.h>
  27#include <linux/notifier.h>
  28#include <linux/rbtree.h>
  29#include <linux/xarray.h>
  30#include <linux/rcupdate.h>
  31#include <linux/pfn.h>
  32#include <linux/kmemleak.h>
  33#include <linux/atomic.h>
  34#include <linux/compiler.h>
  35#include <linux/llist.h>
  36#include <linux/bitops.h>
  37#include <linux/rbtree_augmented.h>
  38#include <linux/overflow.h>
  39
  40#include <linux/uaccess.h>
  41#include <asm/tlbflush.h>
  42#include <asm/shmparam.h>
  43
  44#include "internal.h"
  45#include "pgalloc-track.h"
  46
  47bool is_vmalloc_addr(const void *x)
  48{
  49	unsigned long addr = (unsigned long)x;
  50
  51	return addr >= VMALLOC_START && addr < VMALLOC_END;
  52}
  53EXPORT_SYMBOL(is_vmalloc_addr);
  54
  55struct vfree_deferred {
  56	struct llist_head list;
  57	struct work_struct wq;
  58};
  59static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  60
  61static void __vunmap(const void *, int);
  62
  63static void free_work(struct work_struct *w)
  64{
  65	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  66	struct llist_node *t, *llnode;
  67
  68	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  69		__vunmap((void *)llnode, 1);
  70}
  71
  72/*** Page table manipulation functions ***/
  73
  74static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  75			     pgtbl_mod_mask *mask)
  76{
  77	pte_t *pte;
  78
  79	pte = pte_offset_kernel(pmd, addr);
  80	do {
  81		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  82		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  83	} while (pte++, addr += PAGE_SIZE, addr != end);
  84	*mask |= PGTBL_PTE_MODIFIED;
  85}
  86
  87static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
  88			     pgtbl_mod_mask *mask)
  89{
  90	pmd_t *pmd;
  91	unsigned long next;
  92	int cleared;
  93
  94	pmd = pmd_offset(pud, addr);
  95	do {
  96		next = pmd_addr_end(addr, end);
  97
  98		cleared = pmd_clear_huge(pmd);
  99		if (cleared || pmd_bad(*pmd))
 100			*mask |= PGTBL_PMD_MODIFIED;
 101
 102		if (cleared)
 103			continue;
 104		if (pmd_none_or_clear_bad(pmd))
 105			continue;
 106		vunmap_pte_range(pmd, addr, next, mask);
 107
 108		cond_resched();
 109	} while (pmd++, addr = next, addr != end);
 110}
 111
 112static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 113			     pgtbl_mod_mask *mask)
 114{
 115	pud_t *pud;
 116	unsigned long next;
 117	int cleared;
 118
 119	pud = pud_offset(p4d, addr);
 120	do {
 121		next = pud_addr_end(addr, end);
 122
 123		cleared = pud_clear_huge(pud);
 124		if (cleared || pud_bad(*pud))
 125			*mask |= PGTBL_PUD_MODIFIED;
 126
 127		if (cleared)
 128			continue;
 129		if (pud_none_or_clear_bad(pud))
 130			continue;
 131		vunmap_pmd_range(pud, addr, next, mask);
 132	} while (pud++, addr = next, addr != end);
 133}
 134
 135static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 136			     pgtbl_mod_mask *mask)
 137{
 138	p4d_t *p4d;
 139	unsigned long next;
 140	int cleared;
 141
 142	p4d = p4d_offset(pgd, addr);
 143	do {
 144		next = p4d_addr_end(addr, end);
 145
 146		cleared = p4d_clear_huge(p4d);
 147		if (cleared || p4d_bad(*p4d))
 148			*mask |= PGTBL_P4D_MODIFIED;
 149
 150		if (cleared)
 151			continue;
 152		if (p4d_none_or_clear_bad(p4d))
 153			continue;
 154		vunmap_pud_range(p4d, addr, next, mask);
 155	} while (p4d++, addr = next, addr != end);
 156}
 157
 158/**
 159 * unmap_kernel_range_noflush - unmap kernel VM area
 160 * @start: start of the VM area to unmap
 161 * @size: size of the VM area to unmap
 162 *
 163 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 164 * should have been allocated using get_vm_area() and its friends.
 165 *
 166 * NOTE:
 167 * This function does NOT do any cache flushing.  The caller is responsible
 168 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 169 * function and flush_tlb_kernel_range() after.
 170 */
 171void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
 172{
 173	unsigned long end = start + size;
 174	unsigned long next;
 175	pgd_t *pgd;
 176	unsigned long addr = start;
 177	pgtbl_mod_mask mask = 0;
 178
 179	BUG_ON(addr >= end);
 180	pgd = pgd_offset_k(addr);
 181	do {
 182		next = pgd_addr_end(addr, end);
 183		if (pgd_bad(*pgd))
 184			mask |= PGTBL_PGD_MODIFIED;
 185		if (pgd_none_or_clear_bad(pgd))
 186			continue;
 187		vunmap_p4d_range(pgd, addr, next, &mask);
 188	} while (pgd++, addr = next, addr != end);
 189
 190	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 191		arch_sync_kernel_mappings(start, end);
 192}
 193
 194static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 195		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 196		pgtbl_mod_mask *mask)
 197{
 198	pte_t *pte;
 199
 200	/*
 201	 * nr is a running index into the array which helps higher level
 202	 * callers keep track of where we're up to.
 203	 */
 204
 205	pte = pte_alloc_kernel_track(pmd, addr, mask);
 206	if (!pte)
 207		return -ENOMEM;
 208	do {
 209		struct page *page = pages[*nr];
 210
 211		if (WARN_ON(!pte_none(*pte)))
 212			return -EBUSY;
 213		if (WARN_ON(!page))
 214			return -ENOMEM;
 215		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 216		(*nr)++;
 217	} while (pte++, addr += PAGE_SIZE, addr != end);
 218	*mask |= PGTBL_PTE_MODIFIED;
 219	return 0;
 220}
 221
 222static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 223		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 224		pgtbl_mod_mask *mask)
 225{
 226	pmd_t *pmd;
 227	unsigned long next;
 228
 229	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 230	if (!pmd)
 231		return -ENOMEM;
 232	do {
 233		next = pmd_addr_end(addr, end);
 234		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
 235			return -ENOMEM;
 236	} while (pmd++, addr = next, addr != end);
 237	return 0;
 238}
 239
 240static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 241		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 242		pgtbl_mod_mask *mask)
 243{
 244	pud_t *pud;
 245	unsigned long next;
 246
 247	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 248	if (!pud)
 249		return -ENOMEM;
 250	do {
 251		next = pud_addr_end(addr, end);
 252		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
 253			return -ENOMEM;
 254	} while (pud++, addr = next, addr != end);
 255	return 0;
 256}
 257
 258static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 259		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 260		pgtbl_mod_mask *mask)
 261{
 262	p4d_t *p4d;
 263	unsigned long next;
 264
 265	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 266	if (!p4d)
 267		return -ENOMEM;
 268	do {
 269		next = p4d_addr_end(addr, end);
 270		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
 271			return -ENOMEM;
 272	} while (p4d++, addr = next, addr != end);
 273	return 0;
 274}
 275
 276/**
 277 * map_kernel_range_noflush - map kernel VM area with the specified pages
 278 * @addr: start of the VM area to map
 279 * @size: size of the VM area to map
 280 * @prot: page protection flags to use
 281 * @pages: pages to map
 282 *
 283 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 284 * have been allocated using get_vm_area() and its friends.
 285 *
 286 * NOTE:
 287 * This function does NOT do any cache flushing.  The caller is responsible for
 288 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 289 * function.
 290 *
 291 * RETURNS:
 292 * 0 on success, -errno on failure.
 293 */
 294int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 295			     pgprot_t prot, struct page **pages)
 296{
 297	unsigned long start = addr;
 298	unsigned long end = addr + size;
 299	unsigned long next;
 300	pgd_t *pgd;
 301	int err = 0;
 302	int nr = 0;
 303	pgtbl_mod_mask mask = 0;
 304
 305	BUG_ON(addr >= end);
 306	pgd = pgd_offset_k(addr);
 307	do {
 308		next = pgd_addr_end(addr, end);
 309		if (pgd_bad(*pgd))
 310			mask |= PGTBL_PGD_MODIFIED;
 311		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 312		if (err)
 313			return err;
 314	} while (pgd++, addr = next, addr != end);
 315
 316	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 317		arch_sync_kernel_mappings(start, end);
 318
 319	return 0;
 320}
 321
 322int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
 323		struct page **pages)
 324{
 325	int ret;
 326
 327	ret = map_kernel_range_noflush(start, size, prot, pages);
 328	flush_cache_vmap(start, start + size);
 329	return ret;
 330}
 331
 332int is_vmalloc_or_module_addr(const void *x)
 333{
 334	/*
 335	 * ARM, x86-64 and sparc64 put modules in a special place,
 336	 * and fall back on vmalloc() if that fails. Others
 337	 * just put it in the vmalloc space.
 338	 */
 339#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 340	unsigned long addr = (unsigned long)x;
 341	if (addr >= MODULES_VADDR && addr < MODULES_END)
 342		return 1;
 343#endif
 344	return is_vmalloc_addr(x);
 345}
 346
 347/*
 348 * Walk a vmap address to the struct page it maps.
 349 */
 350struct page *vmalloc_to_page(const void *vmalloc_addr)
 351{
 352	unsigned long addr = (unsigned long) vmalloc_addr;
 353	struct page *page = NULL;
 354	pgd_t *pgd = pgd_offset_k(addr);
 355	p4d_t *p4d;
 356	pud_t *pud;
 357	pmd_t *pmd;
 358	pte_t *ptep, pte;
 359
 360	/*
 361	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 362	 * architectures that do not vmalloc module space
 363	 */
 364	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 365
 366	if (pgd_none(*pgd))
 367		return NULL;
 368	p4d = p4d_offset(pgd, addr);
 369	if (p4d_none(*p4d))
 370		return NULL;
 371	pud = pud_offset(p4d, addr);
 372
 373	/*
 374	 * Don't dereference bad PUD or PMD (below) entries. This will also
 375	 * identify huge mappings, which we may encounter on architectures
 376	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 377	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 378	 * not [unambiguously] associated with a struct page, so there is
 379	 * no correct value to return for them.
 380	 */
 381	WARN_ON_ONCE(pud_bad(*pud));
 382	if (pud_none(*pud) || pud_bad(*pud))
 383		return NULL;
 384	pmd = pmd_offset(pud, addr);
 385	WARN_ON_ONCE(pmd_bad(*pmd));
 386	if (pmd_none(*pmd) || pmd_bad(*pmd))
 387		return NULL;
 388
 389	ptep = pte_offset_map(pmd, addr);
 390	pte = *ptep;
 391	if (pte_present(pte))
 392		page = pte_page(pte);
 393	pte_unmap(ptep);
 394	return page;
 395}
 396EXPORT_SYMBOL(vmalloc_to_page);
 397
 398/*
 399 * Map a vmalloc()-space virtual address to the physical page frame number.
 400 */
 401unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 402{
 403	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 404}
 405EXPORT_SYMBOL(vmalloc_to_pfn);
 406
 407
 408/*** Global kva allocator ***/
 409
 410#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 411#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 412
 
 
 
 
 
 
 
 
 
 
 
 413
 414static DEFINE_SPINLOCK(vmap_area_lock);
 415static DEFINE_SPINLOCK(free_vmap_area_lock);
 416/* Export for kexec only */
 417LIST_HEAD(vmap_area_list);
 418static LLIST_HEAD(vmap_purge_list);
 419static struct rb_root vmap_area_root = RB_ROOT;
 420static bool vmap_initialized __read_mostly;
 421
 422/*
 423 * This kmem_cache is used for vmap_area objects. Instead of
 424 * allocating from slab we reuse an object from this cache to
 425 * make things faster. Especially in "no edge" splitting of
 426 * free block.
 427 */
 428static struct kmem_cache *vmap_area_cachep;
 429
 430/*
 431 * This linked list is used in pair with free_vmap_area_root.
 432 * It gives O(1) access to prev/next to perform fast coalescing.
 433 */
 434static LIST_HEAD(free_vmap_area_list);
 435
 436/*
 437 * This augment red-black tree represents the free vmap space.
 438 * All vmap_area objects in this tree are sorted by va->va_start
 439 * address. It is used for allocation and merging when a vmap
 440 * object is released.
 441 *
 442 * Each vmap_area node contains a maximum available free block
 443 * of its sub-tree, right or left. Therefore it is possible to
 444 * find a lowest match of free area.
 445 */
 446static struct rb_root free_vmap_area_root = RB_ROOT;
 447
 448/*
 449 * Preload a CPU with one object for "no edge" split case. The
 450 * aim is to get rid of allocations from the atomic context, thus
 451 * to use more permissive allocation masks.
 452 */
 453static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 454
 455static __always_inline unsigned long
 456va_size(struct vmap_area *va)
 457{
 458	return (va->va_end - va->va_start);
 459}
 460
 461static __always_inline unsigned long
 462get_subtree_max_size(struct rb_node *node)
 463{
 464	struct vmap_area *va;
 465
 466	va = rb_entry_safe(node, struct vmap_area, rb_node);
 467	return va ? va->subtree_max_size : 0;
 468}
 469
 470/*
 471 * Gets called when remove the node and rotate.
 472 */
 473static __always_inline unsigned long
 474compute_subtree_max_size(struct vmap_area *va)
 475{
 476	return max3(va_size(va),
 477		get_subtree_max_size(va->rb_node.rb_left),
 478		get_subtree_max_size(va->rb_node.rb_right));
 479}
 480
 481RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 482	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 483
 484static void purge_vmap_area_lazy(void);
 485static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 486static unsigned long lazy_max_pages(void);
 487
 488static atomic_long_t nr_vmalloc_pages;
 489
 490unsigned long vmalloc_nr_pages(void)
 491{
 492	return atomic_long_read(&nr_vmalloc_pages);
 493}
 494
 495static struct vmap_area *__find_vmap_area(unsigned long addr)
 496{
 497	struct rb_node *n = vmap_area_root.rb_node;
 498
 499	while (n) {
 500		struct vmap_area *va;
 501
 502		va = rb_entry(n, struct vmap_area, rb_node);
 503		if (addr < va->va_start)
 504			n = n->rb_left;
 505		else if (addr >= va->va_end)
 506			n = n->rb_right;
 507		else
 508			return va;
 509	}
 510
 511	return NULL;
 512}
 513
 514/*
 515 * This function returns back addresses of parent node
 516 * and its left or right link for further processing.
 517 *
 518 * Otherwise NULL is returned. In that case all further
 519 * steps regarding inserting of conflicting overlap range
 520 * have to be declined and actually considered as a bug.
 521 */
 522static __always_inline struct rb_node **
 523find_va_links(struct vmap_area *va,
 524	struct rb_root *root, struct rb_node *from,
 525	struct rb_node **parent)
 526{
 527	struct vmap_area *tmp_va;
 528	struct rb_node **link;
 529
 530	if (root) {
 531		link = &root->rb_node;
 532		if (unlikely(!*link)) {
 533			*parent = NULL;
 534			return link;
 535		}
 536	} else {
 537		link = &from;
 538	}
 539
 540	/*
 541	 * Go to the bottom of the tree. When we hit the last point
 542	 * we end up with parent rb_node and correct direction, i name
 543	 * it link, where the new va->rb_node will be attached to.
 544	 */
 545	do {
 546		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 547
 548		/*
 549		 * During the traversal we also do some sanity check.
 550		 * Trigger the BUG() if there are sides(left/right)
 551		 * or full overlaps.
 552		 */
 553		if (va->va_start < tmp_va->va_end &&
 554				va->va_end <= tmp_va->va_start)
 555			link = &(*link)->rb_left;
 556		else if (va->va_end > tmp_va->va_start &&
 557				va->va_start >= tmp_va->va_end)
 558			link = &(*link)->rb_right;
 559		else {
 560			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 561				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 562
 563			return NULL;
 564		}
 565	} while (*link);
 566
 567	*parent = &tmp_va->rb_node;
 568	return link;
 569}
 570
 571static __always_inline struct list_head *
 572get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 573{
 574	struct list_head *list;
 575
 576	if (unlikely(!parent))
 577		/*
 578		 * The red-black tree where we try to find VA neighbors
 579		 * before merging or inserting is empty, i.e. it means
 580		 * there is no free vmap space. Normally it does not
 581		 * happen but we handle this case anyway.
 582		 */
 583		return NULL;
 584
 585	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 586	return (&parent->rb_right == link ? list->next : list);
 587}
 588
 589static __always_inline void
 590link_va(struct vmap_area *va, struct rb_root *root,
 591	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 592{
 593	/*
 594	 * VA is still not in the list, but we can
 595	 * identify its future previous list_head node.
 596	 */
 597	if (likely(parent)) {
 598		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 599		if (&parent->rb_right != link)
 600			head = head->prev;
 601	}
 602
 603	/* Insert to the rb-tree */
 604	rb_link_node(&va->rb_node, parent, link);
 605	if (root == &free_vmap_area_root) {
 606		/*
 607		 * Some explanation here. Just perform simple insertion
 608		 * to the tree. We do not set va->subtree_max_size to
 609		 * its current size before calling rb_insert_augmented().
 610		 * It is because of we populate the tree from the bottom
 611		 * to parent levels when the node _is_ in the tree.
 612		 *
 613		 * Therefore we set subtree_max_size to zero after insertion,
 614		 * to let __augment_tree_propagate_from() puts everything to
 615		 * the correct order later on.
 616		 */
 617		rb_insert_augmented(&va->rb_node,
 618			root, &free_vmap_area_rb_augment_cb);
 619		va->subtree_max_size = 0;
 620	} else {
 621		rb_insert_color(&va->rb_node, root);
 622	}
 623
 624	/* Address-sort this list */
 625	list_add(&va->list, head);
 626}
 627
 628static __always_inline void
 629unlink_va(struct vmap_area *va, struct rb_root *root)
 630{
 631	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 632		return;
 633
 634	if (root == &free_vmap_area_root)
 635		rb_erase_augmented(&va->rb_node,
 636			root, &free_vmap_area_rb_augment_cb);
 637	else
 638		rb_erase(&va->rb_node, root);
 639
 640	list_del(&va->list);
 641	RB_CLEAR_NODE(&va->rb_node);
 642}
 643
 644#if DEBUG_AUGMENT_PROPAGATE_CHECK
 645static void
 646augment_tree_propagate_check(void)
 647{
 648	struct vmap_area *va;
 649	unsigned long computed_size;
 650
 651	list_for_each_entry(va, &free_vmap_area_list, list) {
 652		computed_size = compute_subtree_max_size(va);
 653		if (computed_size != va->subtree_max_size)
 654			pr_emerg("tree is corrupted: %lu, %lu\n",
 655				va_size(va), va->subtree_max_size);
 656	}
 657}
 658#endif
 659
 660/*
 661 * This function populates subtree_max_size from bottom to upper
 662 * levels starting from VA point. The propagation must be done
 663 * when VA size is modified by changing its va_start/va_end. Or
 664 * in case of newly inserting of VA to the tree.
 665 *
 666 * It means that __augment_tree_propagate_from() must be called:
 667 * - After VA has been inserted to the tree(free path);
 668 * - After VA has been shrunk(allocation path);
 669 * - After VA has been increased(merging path).
 670 *
 671 * Please note that, it does not mean that upper parent nodes
 672 * and their subtree_max_size are recalculated all the time up
 673 * to the root node.
 674 *
 675 *       4--8
 676 *        /\
 677 *       /  \
 678 *      /    \
 679 *    2--2  8--8
 680 *
 681 * For example if we modify the node 4, shrinking it to 2, then
 682 * no any modification is required. If we shrink the node 2 to 1
 683 * its subtree_max_size is updated only, and set to 1. If we shrink
 684 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 685 * node becomes 4--6.
 686 */
 687static __always_inline void
 688augment_tree_propagate_from(struct vmap_area *va)
 689{
 690	/*
 691	 * Populate the tree from bottom towards the root until
 692	 * the calculated maximum available size of checked node
 693	 * is equal to its current one.
 694	 */
 695	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 696
 697#if DEBUG_AUGMENT_PROPAGATE_CHECK
 698	augment_tree_propagate_check();
 699#endif
 700}
 701
 702static void
 703insert_vmap_area(struct vmap_area *va,
 704	struct rb_root *root, struct list_head *head)
 705{
 706	struct rb_node **link;
 707	struct rb_node *parent;
 708
 709	link = find_va_links(va, root, NULL, &parent);
 710	if (link)
 711		link_va(va, root, parent, link, head);
 712}
 713
 714static void
 715insert_vmap_area_augment(struct vmap_area *va,
 716	struct rb_node *from, struct rb_root *root,
 717	struct list_head *head)
 718{
 719	struct rb_node **link;
 720	struct rb_node *parent;
 721
 722	if (from)
 723		link = find_va_links(va, NULL, from, &parent);
 724	else
 725		link = find_va_links(va, root, NULL, &parent);
 726
 727	if (link) {
 728		link_va(va, root, parent, link, head);
 729		augment_tree_propagate_from(va);
 730	}
 731}
 732
 733/*
 734 * Merge de-allocated chunk of VA memory with previous
 735 * and next free blocks. If coalesce is not done a new
 736 * free area is inserted. If VA has been merged, it is
 737 * freed.
 738 *
 739 * Please note, it can return NULL in case of overlap
 740 * ranges, followed by WARN() report. Despite it is a
 741 * buggy behaviour, a system can be alive and keep
 742 * ongoing.
 743 */
 744static __always_inline struct vmap_area *
 745merge_or_add_vmap_area(struct vmap_area *va,
 746	struct rb_root *root, struct list_head *head)
 747{
 748	struct vmap_area *sibling;
 749	struct list_head *next;
 750	struct rb_node **link;
 751	struct rb_node *parent;
 752	bool merged = false;
 753
 754	/*
 755	 * Find a place in the tree where VA potentially will be
 756	 * inserted, unless it is merged with its sibling/siblings.
 757	 */
 758	link = find_va_links(va, root, NULL, &parent);
 759	if (!link)
 760		return NULL;
 761
 762	/*
 763	 * Get next node of VA to check if merging can be done.
 764	 */
 765	next = get_va_next_sibling(parent, link);
 766	if (unlikely(next == NULL))
 767		goto insert;
 768
 769	/*
 770	 * start            end
 771	 * |                |
 772	 * |<------VA------>|<-----Next----->|
 773	 *                  |                |
 774	 *                  start            end
 775	 */
 776	if (next != head) {
 777		sibling = list_entry(next, struct vmap_area, list);
 778		if (sibling->va_start == va->va_end) {
 779			sibling->va_start = va->va_start;
 780
 781			/* Free vmap_area object. */
 782			kmem_cache_free(vmap_area_cachep, va);
 783
 784			/* Point to the new merged area. */
 785			va = sibling;
 786			merged = true;
 787		}
 788	}
 789
 790	/*
 791	 * start            end
 792	 * |                |
 793	 * |<-----Prev----->|<------VA------>|
 794	 *                  |                |
 795	 *                  start            end
 796	 */
 797	if (next->prev != head) {
 798		sibling = list_entry(next->prev, struct vmap_area, list);
 799		if (sibling->va_end == va->va_start) {
 800			/*
 801			 * If both neighbors are coalesced, it is important
 802			 * to unlink the "next" node first, followed by merging
 803			 * with "previous" one. Otherwise the tree might not be
 804			 * fully populated if a sibling's augmented value is
 805			 * "normalized" because of rotation operations.
 806			 */
 807			if (merged)
 808				unlink_va(va, root);
 809
 810			sibling->va_end = va->va_end;
 811
 812			/* Free vmap_area object. */
 813			kmem_cache_free(vmap_area_cachep, va);
 814
 815			/* Point to the new merged area. */
 816			va = sibling;
 817			merged = true;
 818		}
 819	}
 820
 821insert:
 822	if (!merged)
 823		link_va(va, root, parent, link, head);
 824
 825	/*
 826	 * Last step is to check and update the tree.
 827	 */
 828	augment_tree_propagate_from(va);
 829	return va;
 830}
 831
 832static __always_inline bool
 833is_within_this_va(struct vmap_area *va, unsigned long size,
 834	unsigned long align, unsigned long vstart)
 835{
 836	unsigned long nva_start_addr;
 837
 838	if (va->va_start > vstart)
 839		nva_start_addr = ALIGN(va->va_start, align);
 840	else
 841		nva_start_addr = ALIGN(vstart, align);
 842
 843	/* Can be overflowed due to big size or alignment. */
 844	if (nva_start_addr + size < nva_start_addr ||
 845			nva_start_addr < vstart)
 846		return false;
 847
 848	return (nva_start_addr + size <= va->va_end);
 849}
 850
 851/*
 852 * Find the first free block(lowest start address) in the tree,
 853 * that will accomplish the request corresponding to passing
 854 * parameters.
 855 */
 856static __always_inline struct vmap_area *
 857find_vmap_lowest_match(unsigned long size,
 858	unsigned long align, unsigned long vstart)
 859{
 860	struct vmap_area *va;
 861	struct rb_node *node;
 862	unsigned long length;
 863
 864	/* Start from the root. */
 865	node = free_vmap_area_root.rb_node;
 866
 867	/* Adjust the search size for alignment overhead. */
 868	length = size + align - 1;
 869
 870	while (node) {
 871		va = rb_entry(node, struct vmap_area, rb_node);
 872
 873		if (get_subtree_max_size(node->rb_left) >= length &&
 874				vstart < va->va_start) {
 875			node = node->rb_left;
 876		} else {
 877			if (is_within_this_va(va, size, align, vstart))
 878				return va;
 879
 880			/*
 881			 * Does not make sense to go deeper towards the right
 882			 * sub-tree if it does not have a free block that is
 883			 * equal or bigger to the requested search length.
 884			 */
 885			if (get_subtree_max_size(node->rb_right) >= length) {
 886				node = node->rb_right;
 887				continue;
 888			}
 889
 890			/*
 891			 * OK. We roll back and find the first right sub-tree,
 892			 * that will satisfy the search criteria. It can happen
 893			 * only once due to "vstart" restriction.
 894			 */
 895			while ((node = rb_parent(node))) {
 896				va = rb_entry(node, struct vmap_area, rb_node);
 897				if (is_within_this_va(va, size, align, vstart))
 898					return va;
 899
 900				if (get_subtree_max_size(node->rb_right) >= length &&
 901						vstart <= va->va_start) {
 902					node = node->rb_right;
 903					break;
 904				}
 905			}
 906		}
 907	}
 908
 909	return NULL;
 910}
 911
 912#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 913#include <linux/random.h>
 914
 915static struct vmap_area *
 916find_vmap_lowest_linear_match(unsigned long size,
 917	unsigned long align, unsigned long vstart)
 918{
 919	struct vmap_area *va;
 920
 921	list_for_each_entry(va, &free_vmap_area_list, list) {
 922		if (!is_within_this_va(va, size, align, vstart))
 923			continue;
 924
 925		return va;
 926	}
 927
 928	return NULL;
 929}
 930
 931static void
 932find_vmap_lowest_match_check(unsigned long size)
 933{
 934	struct vmap_area *va_1, *va_2;
 935	unsigned long vstart;
 936	unsigned int rnd;
 937
 938	get_random_bytes(&rnd, sizeof(rnd));
 939	vstart = VMALLOC_START + rnd;
 940
 941	va_1 = find_vmap_lowest_match(size, 1, vstart);
 942	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 943
 944	if (va_1 != va_2)
 945		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 946			va_1, va_2, vstart);
 947}
 948#endif
 949
 950enum fit_type {
 951	NOTHING_FIT = 0,
 952	FL_FIT_TYPE = 1,	/* full fit */
 953	LE_FIT_TYPE = 2,	/* left edge fit */
 954	RE_FIT_TYPE = 3,	/* right edge fit */
 955	NE_FIT_TYPE = 4		/* no edge fit */
 956};
 957
 958static __always_inline enum fit_type
 959classify_va_fit_type(struct vmap_area *va,
 960	unsigned long nva_start_addr, unsigned long size)
 961{
 962	enum fit_type type;
 963
 964	/* Check if it is within VA. */
 965	if (nva_start_addr < va->va_start ||
 966			nva_start_addr + size > va->va_end)
 967		return NOTHING_FIT;
 968
 969	/* Now classify. */
 970	if (va->va_start == nva_start_addr) {
 971		if (va->va_end == nva_start_addr + size)
 972			type = FL_FIT_TYPE;
 973		else
 974			type = LE_FIT_TYPE;
 975	} else if (va->va_end == nva_start_addr + size) {
 976		type = RE_FIT_TYPE;
 977	} else {
 978		type = NE_FIT_TYPE;
 979	}
 980
 981	return type;
 982}
 983
 984static __always_inline int
 985adjust_va_to_fit_type(struct vmap_area *va,
 986	unsigned long nva_start_addr, unsigned long size,
 987	enum fit_type type)
 988{
 989	struct vmap_area *lva = NULL;
 990
 991	if (type == FL_FIT_TYPE) {
 992		/*
 993		 * No need to split VA, it fully fits.
 994		 *
 995		 * |               |
 996		 * V      NVA      V
 997		 * |---------------|
 998		 */
 999		unlink_va(va, &free_vmap_area_root);
1000		kmem_cache_free(vmap_area_cachep, va);
1001	} else if (type == LE_FIT_TYPE) {
1002		/*
1003		 * Split left edge of fit VA.
1004		 *
1005		 * |       |
1006		 * V  NVA  V   R
1007		 * |-------|-------|
1008		 */
1009		va->va_start += size;
1010	} else if (type == RE_FIT_TYPE) {
1011		/*
1012		 * Split right edge of fit VA.
1013		 *
1014		 *         |       |
1015		 *     L   V  NVA  V
1016		 * |-------|-------|
1017		 */
1018		va->va_end = nva_start_addr;
1019	} else if (type == NE_FIT_TYPE) {
1020		/*
1021		 * Split no edge of fit VA.
1022		 *
1023		 *     |       |
1024		 *   L V  NVA  V R
1025		 * |---|-------|---|
1026		 */
1027		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1028		if (unlikely(!lva)) {
1029			/*
1030			 * For percpu allocator we do not do any pre-allocation
1031			 * and leave it as it is. The reason is it most likely
1032			 * never ends up with NE_FIT_TYPE splitting. In case of
1033			 * percpu allocations offsets and sizes are aligned to
1034			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1035			 * are its main fitting cases.
1036			 *
1037			 * There are a few exceptions though, as an example it is
1038			 * a first allocation (early boot up) when we have "one"
1039			 * big free space that has to be split.
1040			 *
1041			 * Also we can hit this path in case of regular "vmap"
1042			 * allocations, if "this" current CPU was not preloaded.
1043			 * See the comment in alloc_vmap_area() why. If so, then
1044			 * GFP_NOWAIT is used instead to get an extra object for
1045			 * split purpose. That is rare and most time does not
1046			 * occur.
1047			 *
1048			 * What happens if an allocation gets failed. Basically,
1049			 * an "overflow" path is triggered to purge lazily freed
1050			 * areas to free some memory, then, the "retry" path is
1051			 * triggered to repeat one more time. See more details
1052			 * in alloc_vmap_area() function.
1053			 */
1054			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1055			if (!lva)
1056				return -1;
1057		}
1058
1059		/*
1060		 * Build the remainder.
1061		 */
1062		lva->va_start = va->va_start;
1063		lva->va_end = nva_start_addr;
1064
1065		/*
1066		 * Shrink this VA to remaining size.
1067		 */
1068		va->va_start = nva_start_addr + size;
1069	} else {
1070		return -1;
1071	}
1072
1073	if (type != FL_FIT_TYPE) {
1074		augment_tree_propagate_from(va);
1075
1076		if (lva)	/* type == NE_FIT_TYPE */
1077			insert_vmap_area_augment(lva, &va->rb_node,
1078				&free_vmap_area_root, &free_vmap_area_list);
1079	}
1080
1081	return 0;
1082}
1083
1084/*
1085 * Returns a start address of the newly allocated area, if success.
1086 * Otherwise a vend is returned that indicates failure.
1087 */
1088static __always_inline unsigned long
1089__alloc_vmap_area(unsigned long size, unsigned long align,
1090	unsigned long vstart, unsigned long vend)
1091{
1092	unsigned long nva_start_addr;
1093	struct vmap_area *va;
1094	enum fit_type type;
1095	int ret;
1096
1097	va = find_vmap_lowest_match(size, align, vstart);
1098	if (unlikely(!va))
1099		return vend;
1100
1101	if (va->va_start > vstart)
1102		nva_start_addr = ALIGN(va->va_start, align);
1103	else
1104		nva_start_addr = ALIGN(vstart, align);
1105
1106	/* Check the "vend" restriction. */
1107	if (nva_start_addr + size > vend)
1108		return vend;
1109
1110	/* Classify what we have found. */
1111	type = classify_va_fit_type(va, nva_start_addr, size);
1112	if (WARN_ON_ONCE(type == NOTHING_FIT))
1113		return vend;
1114
1115	/* Update the free vmap_area. */
1116	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1117	if (ret)
1118		return vend;
1119
1120#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1121	find_vmap_lowest_match_check(size);
1122#endif
1123
1124	return nva_start_addr;
1125}
1126
1127/*
1128 * Free a region of KVA allocated by alloc_vmap_area
1129 */
1130static void free_vmap_area(struct vmap_area *va)
1131{
1132	/*
1133	 * Remove from the busy tree/list.
1134	 */
1135	spin_lock(&vmap_area_lock);
1136	unlink_va(va, &vmap_area_root);
1137	spin_unlock(&vmap_area_lock);
1138
1139	/*
1140	 * Insert/Merge it back to the free tree/list.
1141	 */
1142	spin_lock(&free_vmap_area_lock);
1143	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1144	spin_unlock(&free_vmap_area_lock);
1145}
1146
1147/*
1148 * Allocate a region of KVA of the specified size and alignment, within the
1149 * vstart and vend.
1150 */
1151static struct vmap_area *alloc_vmap_area(unsigned long size,
1152				unsigned long align,
1153				unsigned long vstart, unsigned long vend,
1154				int node, gfp_t gfp_mask)
1155{
1156	struct vmap_area *va, *pva;
 
1157	unsigned long addr;
1158	int purged = 0;
1159	int ret;
1160
1161	BUG_ON(!size);
1162	BUG_ON(offset_in_page(size));
1163	BUG_ON(!is_power_of_2(align));
1164
1165	if (unlikely(!vmap_initialized))
1166		return ERR_PTR(-EBUSY);
1167
1168	might_sleep();
1169	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1170
1171	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1172	if (unlikely(!va))
1173		return ERR_PTR(-ENOMEM);
1174
 
 
1175	/*
1176	 * Only scan the relevant parts containing pointers to other objects
1177	 * to avoid false negatives.
1178	 */
1179	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180
1181retry:
1182	/*
1183	 * Preload this CPU with one extra vmap_area object. It is used
1184	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1185	 * does not guarantee that an allocation occurs on a CPU that
1186	 * is preloaded, instead we minimize the case when it is not.
1187	 * It can happen because of cpu migration, because there is a
1188	 * race until the below spinlock is taken.
1189	 *
1190	 * The preload is done in non-atomic context, thus it allows us
1191	 * to use more permissive allocation masks to be more stable under
1192	 * low memory condition and high memory pressure. In rare case,
1193	 * if not preloaded, GFP_NOWAIT is used.
1194	 *
1195	 * Set "pva" to NULL here, because of "retry" path.
1196	 */
1197	pva = NULL;
1198
1199	if (!this_cpu_read(ne_fit_preload_node))
1200		/*
1201		 * Even if it fails we do not really care about that.
1202		 * Just proceed as it is. If needed "overflow" path
1203		 * will refill the cache we allocate from.
1204		 */
1205		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 
 
 
 
1206
1207	spin_lock(&free_vmap_area_lock);
 
 
1208
1209	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1210		kmem_cache_free(vmap_area_cachep, pva);
 
 
 
 
 
1211
1212	/*
1213	 * If an allocation fails, the "vend" address is
1214	 * returned. Therefore trigger the overflow path.
1215	 */
1216	addr = __alloc_vmap_area(size, align, vstart, vend);
1217	spin_unlock(&free_vmap_area_lock);
1218
1219	if (unlikely(addr == vend))
 
1220		goto overflow;
1221
1222	va->va_start = addr;
1223	va->va_end = addr + size;
1224	va->vm = NULL;
1225
1226
1227	spin_lock(&vmap_area_lock);
1228	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1229	spin_unlock(&vmap_area_lock);
1230
1231	BUG_ON(!IS_ALIGNED(va->va_start, align));
1232	BUG_ON(va->va_start < vstart);
1233	BUG_ON(va->va_end > vend);
1234
1235	ret = kasan_populate_vmalloc(addr, size);
1236	if (ret) {
1237		free_vmap_area(va);
1238		return ERR_PTR(ret);
1239	}
1240
1241	return va;
1242
1243overflow:
 
1244	if (!purged) {
1245		purge_vmap_area_lazy();
1246		purged = 1;
1247		goto retry;
1248	}
 
 
 
 
 
 
 
1249
1250	if (gfpflags_allow_blocking(gfp_mask)) {
1251		unsigned long freed = 0;
1252		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1253		if (freed > 0) {
1254			purged = 0;
1255			goto retry;
 
 
 
 
 
 
 
 
 
 
 
1256		}
1257	}
 
 
 
 
 
 
 
 
 
 
 
 
1258
1259	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1260		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1261			size);
1262
1263	kmem_cache_free(vmap_area_cachep, va);
1264	return ERR_PTR(-EBUSY);
 
 
 
 
 
 
1265}
1266
1267int register_vmap_purge_notifier(struct notifier_block *nb)
 
 
 
1268{
1269	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1270}
1271EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1272
1273int unregister_vmap_purge_notifier(struct notifier_block *nb)
1274{
1275	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276}
1277EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1278
1279/*
1280 * lazy_max_pages is the maximum amount of virtual address space we gather up
1281 * before attempting to purge with a TLB flush.
1282 *
1283 * There is a tradeoff here: a larger number will cover more kernel page tables
1284 * and take slightly longer to purge, but it will linearly reduce the number of
1285 * global TLB flushes that must be performed. It would seem natural to scale
1286 * this number up linearly with the number of CPUs (because vmapping activity
1287 * could also scale linearly with the number of CPUs), however it is likely
1288 * that in practice, workloads might be constrained in other ways that mean
1289 * vmap activity will not scale linearly with CPUs. Also, I want to be
1290 * conservative and not introduce a big latency on huge systems, so go with
1291 * a less aggressive log scale. It will still be an improvement over the old
1292 * code, and it will be simple to change the scale factor if we find that it
1293 * becomes a problem on bigger systems.
1294 */
1295static unsigned long lazy_max_pages(void)
1296{
1297	unsigned int log;
1298
1299	log = fls(num_online_cpus());
1300
1301	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1302}
1303
1304static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1305
1306/*
1307 * Serialize vmap purging.  There is no actual criticial section protected
1308 * by this look, but we want to avoid concurrent calls for performance
1309 * reasons and to make the pcpu_get_vm_areas more deterministic.
1310 */
1311static DEFINE_MUTEX(vmap_purge_lock);
1312
1313/* for per-CPU blocks */
1314static void purge_fragmented_blocks_allcpus(void);
1315
1316/*
1317 * called before a call to iounmap() if the caller wants vm_area_struct's
1318 * immediately freed.
1319 */
1320void set_iounmap_nonlazy(void)
1321{
1322	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1323}
1324
1325/*
1326 * Purges all lazily-freed vmap areas.
 
 
 
 
 
 
 
1327 */
1328static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 
1329{
1330	unsigned long resched_threshold;
1331	struct llist_node *valist;
1332	struct vmap_area *va;
1333	struct vmap_area *n_va;
1334
1335	lockdep_assert_held(&vmap_purge_lock);
1336
1337	valist = llist_del_all(&vmap_purge_list);
1338	if (unlikely(valist == NULL))
1339		return false;
1340
1341	/*
1342	 * TODO: to calculate a flush range without looping.
1343	 * The list can be up to lazy_max_pages() elements.
 
1344	 */
1345	llist_for_each_entry(va, valist, purge_list) {
1346		if (va->va_start < start)
1347			start = va->va_start;
1348		if (va->va_end > end)
1349			end = va->va_end;
1350	}
1351
1352	flush_tlb_kernel_range(start, end);
1353	resched_threshold = lazy_max_pages() << 1;
1354
1355	spin_lock(&free_vmap_area_lock);
1356	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1357		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1358		unsigned long orig_start = va->va_start;
1359		unsigned long orig_end = va->va_end;
1360
1361		/*
1362		 * Finally insert or merge lazily-freed area. It is
1363		 * detached and there is no need to "unlink" it from
1364		 * anything.
1365		 */
1366		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1367					    &free_vmap_area_list);
 
1368
1369		if (!va)
1370			continue;
1371
1372		if (is_vmalloc_or_module_addr((void *)orig_start))
1373			kasan_release_vmalloc(orig_start, orig_end,
1374					      va->va_start, va->va_end);
1375
1376		atomic_long_sub(nr, &vmap_lazy_nr);
1377
1378		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1379			cond_resched_lock(&free_vmap_area_lock);
 
1380	}
1381	spin_unlock(&free_vmap_area_lock);
1382	return true;
1383}
1384
1385/*
1386 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1387 * is already purging.
1388 */
1389static void try_purge_vmap_area_lazy(void)
1390{
1391	if (mutex_trylock(&vmap_purge_lock)) {
1392		__purge_vmap_area_lazy(ULONG_MAX, 0);
1393		mutex_unlock(&vmap_purge_lock);
1394	}
1395}
1396
1397/*
1398 * Kick off a purge of the outstanding lazy areas.
1399 */
1400static void purge_vmap_area_lazy(void)
1401{
1402	mutex_lock(&vmap_purge_lock);
1403	purge_fragmented_blocks_allcpus();
1404	__purge_vmap_area_lazy(ULONG_MAX, 0);
1405	mutex_unlock(&vmap_purge_lock);
1406}
1407
1408/*
1409 * Free a vmap area, caller ensuring that the area has been unmapped
1410 * and flush_cache_vunmap had been called for the correct range
1411 * previously.
1412 */
1413static void free_vmap_area_noflush(struct vmap_area *va)
1414{
1415	unsigned long nr_lazy;
 
 
 
 
1416
1417	spin_lock(&vmap_area_lock);
1418	unlink_va(va, &vmap_area_root);
1419	spin_unlock(&vmap_area_lock);
1420
1421	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1422				PAGE_SHIFT, &vmap_lazy_nr);
1423
1424	/* After this point, we may free va at any time */
1425	llist_add(&va->purge_list, &vmap_purge_list);
1426
1427	if (unlikely(nr_lazy > lazy_max_pages()))
1428		try_purge_vmap_area_lazy();
1429}
1430
1431/*
1432 * Free and unmap a vmap area
1433 */
1434static void free_unmap_vmap_area(struct vmap_area *va)
1435{
1436	flush_cache_vunmap(va->va_start, va->va_end);
1437	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1438	if (debug_pagealloc_enabled_static())
1439		flush_tlb_kernel_range(va->va_start, va->va_end);
1440
1441	free_vmap_area_noflush(va);
1442}
1443
1444static struct vmap_area *find_vmap_area(unsigned long addr)
1445{
1446	struct vmap_area *va;
1447
1448	spin_lock(&vmap_area_lock);
1449	va = __find_vmap_area(addr);
1450	spin_unlock(&vmap_area_lock);
1451
1452	return va;
1453}
1454
 
 
 
 
 
 
 
 
 
 
1455/*** Per cpu kva allocator ***/
1456
1457/*
1458 * vmap space is limited especially on 32 bit architectures. Ensure there is
1459 * room for at least 16 percpu vmap blocks per CPU.
1460 */
1461/*
1462 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1463 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1464 * instead (we just need a rough idea)
1465 */
1466#if BITS_PER_LONG == 32
1467#define VMALLOC_SPACE		(128UL*1024*1024)
1468#else
1469#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1470#endif
1471
1472#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1473#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1474#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1475#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1476#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1477#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1478#define VMAP_BBMAP_BITS		\
1479		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1480		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1481			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1482
1483#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1484
 
 
1485struct vmap_block_queue {
1486	spinlock_t lock;
1487	struct list_head free;
1488};
1489
1490struct vmap_block {
1491	spinlock_t lock;
1492	struct vmap_area *va;
 
1493	unsigned long free, dirty;
1494	unsigned long dirty_min, dirty_max; /*< dirty range */
 
1495	struct list_head free_list;
1496	struct rcu_head rcu_head;
1497	struct list_head purge;
1498};
1499
1500/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1501static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1502
1503/*
1504 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1505 * in the free path. Could get rid of this if we change the API to return a
1506 * "cookie" from alloc, to be passed to free. But no big deal yet.
1507 */
1508static DEFINE_XARRAY(vmap_blocks);
 
1509
1510/*
1511 * We should probably have a fallback mechanism to allocate virtual memory
1512 * out of partially filled vmap blocks. However vmap block sizing should be
1513 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1514 * big problem.
1515 */
1516
1517static unsigned long addr_to_vb_idx(unsigned long addr)
1518{
1519	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1520	addr /= VMAP_BLOCK_SIZE;
1521	return addr;
1522}
1523
1524static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1525{
1526	unsigned long addr;
1527
1528	addr = va_start + (pages_off << PAGE_SHIFT);
1529	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1530	return (void *)addr;
1531}
1532
1533/**
1534 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1535 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1536 * @order:    how many 2^order pages should be occupied in newly allocated block
1537 * @gfp_mask: flags for the page level allocator
1538 *
1539 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1540 */
1541static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1542{
1543	struct vmap_block_queue *vbq;
1544	struct vmap_block *vb;
1545	struct vmap_area *va;
1546	unsigned long vb_idx;
1547	int node, err;
1548	void *vaddr;
1549
1550	node = numa_node_id();
1551
1552	vb = kmalloc_node(sizeof(struct vmap_block),
1553			gfp_mask & GFP_RECLAIM_MASK, node);
1554	if (unlikely(!vb))
1555		return ERR_PTR(-ENOMEM);
1556
1557	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1558					VMALLOC_START, VMALLOC_END,
1559					node, gfp_mask);
1560	if (IS_ERR(va)) {
1561		kfree(vb);
1562		return ERR_CAST(va);
1563	}
1564
1565	vaddr = vmap_block_vaddr(va->va_start, 0);
 
 
 
 
 
 
1566	spin_lock_init(&vb->lock);
1567	vb->va = va;
1568	/* At least something should be left free */
1569	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1570	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1571	vb->dirty = 0;
1572	vb->dirty_min = VMAP_BBMAP_BITS;
1573	vb->dirty_max = 0;
1574	INIT_LIST_HEAD(&vb->free_list);
1575
1576	vb_idx = addr_to_vb_idx(va->va_start);
1577	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1578	if (err) {
1579		kfree(vb);
1580		free_vmap_area(va);
1581		return ERR_PTR(err);
1582	}
1583
1584	vbq = &get_cpu_var(vmap_block_queue);
 
1585	spin_lock(&vbq->lock);
1586	list_add_tail_rcu(&vb->free_list, &vbq->free);
1587	spin_unlock(&vbq->lock);
1588	put_cpu_var(vmap_block_queue);
1589
1590	return vaddr;
1591}
1592
1593static void free_vmap_block(struct vmap_block *vb)
1594{
1595	struct vmap_block *tmp;
 
1596
1597	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
 
 
 
1598	BUG_ON(tmp != vb);
1599
1600	free_vmap_area_noflush(vb->va);
1601	kfree_rcu(vb, rcu_head);
1602}
1603
1604static void purge_fragmented_blocks(int cpu)
1605{
1606	LIST_HEAD(purge);
1607	struct vmap_block *vb;
1608	struct vmap_block *n_vb;
1609	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1610
1611	rcu_read_lock();
1612	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1613
1614		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1615			continue;
1616
1617		spin_lock(&vb->lock);
1618		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1619			vb->free = 0; /* prevent further allocs after releasing lock */
1620			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1621			vb->dirty_min = 0;
1622			vb->dirty_max = VMAP_BBMAP_BITS;
1623			spin_lock(&vbq->lock);
1624			list_del_rcu(&vb->free_list);
1625			spin_unlock(&vbq->lock);
1626			spin_unlock(&vb->lock);
1627			list_add_tail(&vb->purge, &purge);
1628		} else
1629			spin_unlock(&vb->lock);
1630	}
1631	rcu_read_unlock();
1632
1633	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1634		list_del(&vb->purge);
1635		free_vmap_block(vb);
1636	}
1637}
1638
 
 
 
 
 
1639static void purge_fragmented_blocks_allcpus(void)
1640{
1641	int cpu;
1642
1643	for_each_possible_cpu(cpu)
1644		purge_fragmented_blocks(cpu);
1645}
1646
1647static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1648{
1649	struct vmap_block_queue *vbq;
1650	struct vmap_block *vb;
1651	void *vaddr = NULL;
1652	unsigned int order;
 
1653
1654	BUG_ON(offset_in_page(size));
1655	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1656	if (WARN_ON(size == 0)) {
1657		/*
1658		 * Allocating 0 bytes isn't what caller wants since
1659		 * get_order(0) returns funny result. Just warn and terminate
1660		 * early.
1661		 */
1662		return NULL;
1663	}
1664	order = get_order(size);
1665
 
1666	rcu_read_lock();
1667	vbq = &get_cpu_var(vmap_block_queue);
1668	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1669		unsigned long pages_off;
1670
1671		spin_lock(&vb->lock);
1672		if (vb->free < (1UL << order)) {
1673			spin_unlock(&vb->lock);
1674			continue;
 
 
 
 
 
 
 
 
 
 
1675		}
1676
1677		pages_off = VMAP_BBMAP_BITS - vb->free;
1678		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1679		vb->free -= 1UL << order;
1680		if (vb->free == 0) {
1681			spin_lock(&vbq->lock);
1682			list_del_rcu(&vb->free_list);
1683			spin_unlock(&vbq->lock);
1684		}
1685
1686		spin_unlock(&vb->lock);
1687		break;
 
 
1688	}
1689
 
 
 
1690	put_cpu_var(vmap_block_queue);
1691	rcu_read_unlock();
1692
1693	/* Allocate new block if nothing was found */
1694	if (!vaddr)
1695		vaddr = new_vmap_block(order, gfp_mask);
 
 
 
1696
1697	return vaddr;
1698}
1699
1700static void vb_free(unsigned long addr, unsigned long size)
1701{
1702	unsigned long offset;
 
1703	unsigned int order;
1704	struct vmap_block *vb;
1705
1706	BUG_ON(offset_in_page(size));
1707	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1708
1709	flush_cache_vunmap(addr, addr + size);
1710
1711	order = get_order(size);
1712	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1713	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1714
1715	unmap_kernel_range_noflush(addr, size);
1716
1717	if (debug_pagealloc_enabled_static())
1718		flush_tlb_kernel_range(addr, addr + size);
 
 
 
 
 
1719
1720	spin_lock(&vb->lock);
1721
1722	/* Expand dirty range */
1723	vb->dirty_min = min(vb->dirty_min, offset);
1724	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1725
1726	vb->dirty += 1UL << order;
1727	if (vb->dirty == VMAP_BBMAP_BITS) {
1728		BUG_ON(vb->free);
1729		spin_unlock(&vb->lock);
1730		free_vmap_block(vb);
1731	} else
1732		spin_unlock(&vb->lock);
1733}
1734
1735static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
 
 
 
 
 
 
 
 
 
 
 
 
 
1736{
 
1737	int cpu;
 
1738
1739	if (unlikely(!vmap_initialized))
1740		return;
1741
1742	might_sleep();
1743
1744	for_each_possible_cpu(cpu) {
1745		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1746		struct vmap_block *vb;
1747
1748		rcu_read_lock();
1749		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1750			spin_lock(&vb->lock);
1751			if (vb->dirty) {
1752				unsigned long va_start = vb->va->va_start;
1753				unsigned long s, e;
 
 
 
1754
1755				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1756				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1757
1758				start = min(s, start);
1759				end   = max(e, end);
1760
1761				flush = 1;
 
 
 
 
 
 
 
1762			}
1763			spin_unlock(&vb->lock);
1764		}
1765		rcu_read_unlock();
1766	}
1767
1768	mutex_lock(&vmap_purge_lock);
1769	purge_fragmented_blocks_allcpus();
1770	if (!__purge_vmap_area_lazy(start, end) && flush)
1771		flush_tlb_kernel_range(start, end);
1772	mutex_unlock(&vmap_purge_lock);
1773}
1774
1775/**
1776 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1777 *
1778 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1779 * to amortize TLB flushing overheads. What this means is that any page you
1780 * have now, may, in a former life, have been mapped into kernel virtual
1781 * address by the vmap layer and so there might be some CPUs with TLB entries
1782 * still referencing that page (additional to the regular 1:1 kernel mapping).
1783 *
1784 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1785 * be sure that none of the pages we have control over will have any aliases
1786 * from the vmap layer.
1787 */
1788void vm_unmap_aliases(void)
1789{
1790	unsigned long start = ULONG_MAX, end = 0;
1791	int flush = 0;
1792
1793	_vm_unmap_aliases(start, end, flush);
1794}
1795EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1796
1797/**
1798 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1799 * @mem: the pointer returned by vm_map_ram
1800 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1801 */
1802void vm_unmap_ram(const void *mem, unsigned int count)
1803{
1804	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1805	unsigned long addr = (unsigned long)mem;
1806	struct vmap_area *va;
1807
1808	might_sleep();
1809	BUG_ON(!addr);
1810	BUG_ON(addr < VMALLOC_START);
1811	BUG_ON(addr > VMALLOC_END);
1812	BUG_ON(!PAGE_ALIGNED(addr));
1813
1814	kasan_poison_vmalloc(mem, size);
 
1815
1816	if (likely(count <= VMAP_MAX_ALLOC)) {
1817		debug_check_no_locks_freed(mem, size);
1818		vb_free(addr, size);
1819		return;
1820	}
1821
1822	va = find_vmap_area(addr);
1823	BUG_ON(!va);
1824	debug_check_no_locks_freed((void *)va->va_start,
1825				    (va->va_end - va->va_start));
1826	free_unmap_vmap_area(va);
1827}
1828EXPORT_SYMBOL(vm_unmap_ram);
1829
1830/**
1831 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1832 * @pages: an array of pointers to the pages to be mapped
1833 * @count: number of pages
1834 * @node: prefer to allocate data structures on this node
1835 *
1836 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1837 * faster than vmap so it's good.  But if you mix long-life and short-life
1838 * objects with vm_map_ram(), it could consume lots of address space through
1839 * fragmentation (especially on a 32bit machine).  You could see failures in
1840 * the end.  Please use this function for short-lived objects.
1841 *
1842 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1843 */
1844void *vm_map_ram(struct page **pages, unsigned int count, int node)
1845{
1846	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1847	unsigned long addr;
1848	void *mem;
1849
1850	if (likely(count <= VMAP_MAX_ALLOC)) {
1851		mem = vb_alloc(size, GFP_KERNEL);
1852		if (IS_ERR(mem))
1853			return NULL;
1854		addr = (unsigned long)mem;
1855	} else {
1856		struct vmap_area *va;
1857		va = alloc_vmap_area(size, PAGE_SIZE,
1858				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1859		if (IS_ERR(va))
1860			return NULL;
1861
1862		addr = va->va_start;
1863		mem = (void *)addr;
1864	}
1865
1866	kasan_unpoison_vmalloc(mem, size);
1867
1868	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1869		vm_unmap_ram(mem, count);
1870		return NULL;
1871	}
1872	return mem;
1873}
1874EXPORT_SYMBOL(vm_map_ram);
1875
1876static struct vm_struct *vmlist __initdata;
1877
1878/**
1879 * vm_area_add_early - add vmap area early during boot
1880 * @vm: vm_struct to add
1881 *
1882 * This function is used to add fixed kernel vm area to vmlist before
1883 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1884 * should contain proper values and the other fields should be zero.
1885 *
1886 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1887 */
1888void __init vm_area_add_early(struct vm_struct *vm)
1889{
1890	struct vm_struct *tmp, **p;
1891
1892	BUG_ON(vmap_initialized);
1893	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1894		if (tmp->addr >= vm->addr) {
1895			BUG_ON(tmp->addr < vm->addr + vm->size);
1896			break;
1897		} else
1898			BUG_ON(tmp->addr + tmp->size > vm->addr);
1899	}
1900	vm->next = *p;
1901	*p = vm;
1902}
1903
1904/**
1905 * vm_area_register_early - register vmap area early during boot
1906 * @vm: vm_struct to register
1907 * @align: requested alignment
1908 *
1909 * This function is used to register kernel vm area before
1910 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1911 * proper values on entry and other fields should be zero.  On return,
1912 * vm->addr contains the allocated address.
1913 *
1914 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1915 */
1916void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1917{
1918	static size_t vm_init_off __initdata;
1919	unsigned long addr;
1920
1921	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1922	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1923
1924	vm->addr = (void *)addr;
1925
1926	vm_area_add_early(vm);
1927}
1928
1929static void vmap_init_free_space(void)
1930{
1931	unsigned long vmap_start = 1;
1932	const unsigned long vmap_end = ULONG_MAX;
1933	struct vmap_area *busy, *free;
1934
1935	/*
1936	 *     B     F     B     B     B     F
1937	 * -|-----|.....|-----|-----|-----|.....|-
1938	 *  |           The KVA space           |
1939	 *  |<--------------------------------->|
1940	 */
1941	list_for_each_entry(busy, &vmap_area_list, list) {
1942		if (busy->va_start - vmap_start > 0) {
1943			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1944			if (!WARN_ON_ONCE(!free)) {
1945				free->va_start = vmap_start;
1946				free->va_end = busy->va_start;
1947
1948				insert_vmap_area_augment(free, NULL,
1949					&free_vmap_area_root,
1950						&free_vmap_area_list);
1951			}
1952		}
1953
1954		vmap_start = busy->va_end;
1955	}
1956
1957	if (vmap_end - vmap_start > 0) {
1958		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1959		if (!WARN_ON_ONCE(!free)) {
1960			free->va_start = vmap_start;
1961			free->va_end = vmap_end;
1962
1963			insert_vmap_area_augment(free, NULL,
1964				&free_vmap_area_root,
1965					&free_vmap_area_list);
1966		}
1967	}
1968}
1969
1970void __init vmalloc_init(void)
1971{
1972	struct vmap_area *va;
1973	struct vm_struct *tmp;
1974	int i;
1975
1976	/*
1977	 * Create the cache for vmap_area objects.
1978	 */
1979	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1980
1981	for_each_possible_cpu(i) {
1982		struct vmap_block_queue *vbq;
1983		struct vfree_deferred *p;
1984
1985		vbq = &per_cpu(vmap_block_queue, i);
1986		spin_lock_init(&vbq->lock);
1987		INIT_LIST_HEAD(&vbq->free);
1988		p = &per_cpu(vfree_deferred, i);
1989		init_llist_head(&p->list);
1990		INIT_WORK(&p->wq, free_work);
1991	}
1992
1993	/* Import existing vmlist entries. */
1994	for (tmp = vmlist; tmp; tmp = tmp->next) {
1995		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1996		if (WARN_ON_ONCE(!va))
1997			continue;
1998
1999		va->va_start = (unsigned long)tmp->addr;
2000		va->va_end = va->va_start + tmp->size;
2001		va->vm = tmp;
2002		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2003	}
2004
2005	/*
2006	 * Now we can initialize a free vmap space.
2007	 */
2008	vmap_init_free_space();
2009	vmap_initialized = true;
2010}
2011
2012/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2014 * @addr: start of the VM area to unmap
2015 * @size: size of the VM area to unmap
2016 *
2017 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2018 * the unmapping and tlb after.
2019 */
2020void unmap_kernel_range(unsigned long addr, unsigned long size)
2021{
2022	unsigned long end = addr + size;
2023
2024	flush_cache_vunmap(addr, end);
2025	unmap_kernel_range_noflush(addr, size);
2026	flush_tlb_kernel_range(addr, end);
2027}
2028
2029static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2030	struct vmap_area *va, unsigned long flags, const void *caller)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2031{
 
 
2032	vm->flags = flags;
2033	vm->addr = (void *)va->va_start;
2034	vm->size = va->va_end - va->va_start;
2035	vm->caller = caller;
2036	va->vm = vm;
2037}
2038
2039static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2040			      unsigned long flags, const void *caller)
2041{
2042	spin_lock(&vmap_area_lock);
2043	setup_vmalloc_vm_locked(vm, va, flags, caller);
2044	spin_unlock(&vmap_area_lock);
2045}
2046
2047static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2048{
2049	/*
2050	 * Before removing VM_UNINITIALIZED,
2051	 * we should make sure that vm has proper values.
2052	 * Pair with smp_rmb() in show_numa_info().
2053	 */
2054	smp_wmb();
2055	vm->flags &= ~VM_UNINITIALIZED;
2056}
2057
2058static struct vm_struct *__get_vm_area_node(unsigned long size,
2059		unsigned long align, unsigned long flags, unsigned long start,
2060		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2061{
2062	struct vmap_area *va;
2063	struct vm_struct *area;
2064	unsigned long requested_size = size;
2065
2066	BUG_ON(in_interrupt());
 
 
 
 
 
 
 
 
 
 
 
2067	size = PAGE_ALIGN(size);
2068	if (unlikely(!size))
2069		return NULL;
2070
2071	if (flags & VM_IOREMAP)
2072		align = 1ul << clamp_t(int, get_count_order_long(size),
2073				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2074
2075	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2076	if (unlikely(!area))
2077		return NULL;
2078
2079	if (!(flags & VM_NO_GUARD))
2080		size += PAGE_SIZE;
 
 
2081
2082	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2083	if (IS_ERR(va)) {
2084		kfree(area);
2085		return NULL;
2086	}
2087
2088	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
 
 
2089
2090	setup_vmalloc_vm(area, va, flags, caller);
2091
2092	return area;
 
 
2093}
 
2094
2095struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2096				       unsigned long start, unsigned long end,
2097				       const void *caller)
2098{
2099	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2100				  GFP_KERNEL, caller);
2101}
2102
2103/**
2104 * get_vm_area - reserve a contiguous kernel virtual area
2105 * @size:	 size of the area
2106 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2107 *
2108 * Search an area of @size in the kernel virtual mapping area,
2109 * and reserved it for out purposes.  Returns the area descriptor
2110 * on success or %NULL on failure.
2111 *
2112 * Return: the area descriptor on success or %NULL on failure.
 
 
2113 */
2114struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2115{
2116	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2117				  NUMA_NO_NODE, GFP_KERNEL,
2118				  __builtin_return_address(0));
2119}
2120
2121struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2122				const void *caller)
2123{
2124	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2125				  NUMA_NO_NODE, GFP_KERNEL, caller);
2126}
2127
2128/**
2129 * find_vm_area - find a continuous kernel virtual area
2130 * @addr:	  base address
2131 *
2132 * Search for the kernel VM area starting at @addr, and return it.
2133 * It is up to the caller to do all required locking to keep the returned
2134 * pointer valid.
2135 *
2136 * Return: pointer to the found area or %NULL on faulure
2137 */
2138struct vm_struct *find_vm_area(const void *addr)
2139{
2140	struct vmap_area *va;
2141
2142	va = find_vmap_area((unsigned long)addr);
2143	if (!va)
2144		return NULL;
2145
2146	return va->vm;
2147}
2148
2149/**
2150 * remove_vm_area - find and remove a continuous kernel virtual area
2151 * @addr:	    base address
2152 *
2153 * Search for the kernel VM area starting at @addr, and remove it.
2154 * This function returns the found VM area, but using it is NOT safe
2155 * on SMP machines, except for its size or flags.
2156 *
2157 * Return: pointer to the found area or %NULL on faulure
2158 */
2159struct vm_struct *remove_vm_area(const void *addr)
2160{
2161	struct vmap_area *va;
2162
2163	might_sleep();
2164
2165	spin_lock(&vmap_area_lock);
2166	va = __find_vmap_area((unsigned long)addr);
2167	if (va && va->vm) {
2168		struct vm_struct *vm = va->vm;
 
 
 
 
 
 
 
 
2169
2170		va->vm = NULL;
2171		spin_unlock(&vmap_area_lock);
2172
2173		kasan_free_shadow(vm);
2174		free_unmap_vmap_area(va);
 
2175
2176		return vm;
2177	}
2178
2179	spin_unlock(&vmap_area_lock);
2180	return NULL;
2181}
2182
2183static inline void set_area_direct_map(const struct vm_struct *area,
2184				       int (*set_direct_map)(struct page *page))
2185{
2186	int i;
2187
2188	for (i = 0; i < area->nr_pages; i++)
2189		if (page_address(area->pages[i]))
2190			set_direct_map(area->pages[i]);
2191}
2192
2193/* Handle removing and resetting vm mappings related to the vm_struct. */
2194static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2195{
2196	unsigned long start = ULONG_MAX, end = 0;
2197	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2198	int flush_dmap = 0;
2199	int i;
2200
2201	remove_vm_area(area->addr);
2202
2203	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2204	if (!flush_reset)
2205		return;
2206
2207	/*
2208	 * If not deallocating pages, just do the flush of the VM area and
2209	 * return.
2210	 */
2211	if (!deallocate_pages) {
2212		vm_unmap_aliases();
2213		return;
2214	}
2215
2216	/*
2217	 * If execution gets here, flush the vm mapping and reset the direct
2218	 * map. Find the start and end range of the direct mappings to make sure
2219	 * the vm_unmap_aliases() flush includes the direct map.
2220	 */
2221	for (i = 0; i < area->nr_pages; i++) {
2222		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2223		if (addr) {
2224			start = min(addr, start);
2225			end = max(addr + PAGE_SIZE, end);
2226			flush_dmap = 1;
2227		}
2228	}
2229
2230	/*
2231	 * Set direct map to something invalid so that it won't be cached if
2232	 * there are any accesses after the TLB flush, then flush the TLB and
2233	 * reset the direct map permissions to the default.
2234	 */
2235	set_area_direct_map(area, set_direct_map_invalid_noflush);
2236	_vm_unmap_aliases(start, end, flush_dmap);
2237	set_area_direct_map(area, set_direct_map_default_noflush);
2238}
2239
2240static void __vunmap(const void *addr, int deallocate_pages)
2241{
2242	struct vm_struct *area;
2243
2244	if (!addr)
2245		return;
2246
2247	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2248			addr))
2249		return;
 
2250
2251	area = find_vm_area(addr);
2252	if (unlikely(!area)) {
2253		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2254				addr);
2255		return;
2256	}
2257
2258	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2259	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2260
2261	kasan_poison_vmalloc(area->addr, area->size);
2262
2263	vm_remove_mappings(area, deallocate_pages);
2264
2265	if (deallocate_pages) {
2266		int i;
2267
2268		for (i = 0; i < area->nr_pages; i++) {
2269			struct page *page = area->pages[i];
2270
2271			BUG_ON(!page);
2272			__free_pages(page, 0);
2273		}
2274		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2275
2276		kvfree(area->pages);
 
 
 
2277	}
2278
2279	kfree(area);
2280	return;
2281}
2282
2283static inline void __vfree_deferred(const void *addr)
2284{
2285	/*
2286	 * Use raw_cpu_ptr() because this can be called from preemptible
2287	 * context. Preemption is absolutely fine here, because the llist_add()
2288	 * implementation is lockless, so it works even if we are adding to
2289	 * another cpu's list. schedule_work() should be fine with this too.
2290	 */
2291	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2292
2293	if (llist_add((struct llist_node *)addr, &p->list))
2294		schedule_work(&p->wq);
2295}
2296
2297/**
2298 * vfree_atomic - release memory allocated by vmalloc()
2299 * @addr:	  memory base address
2300 *
2301 * This one is just like vfree() but can be called in any atomic context
2302 * except NMIs.
2303 */
2304void vfree_atomic(const void *addr)
2305{
2306	BUG_ON(in_nmi());
2307
2308	kmemleak_free(addr);
2309
2310	if (!addr)
2311		return;
2312	__vfree_deferred(addr);
2313}
2314
2315static void __vfree(const void *addr)
2316{
2317	if (unlikely(in_interrupt()))
2318		__vfree_deferred(addr);
2319	else
2320		__vunmap(addr, 1);
2321}
2322
2323/**
2324 * vfree - release memory allocated by vmalloc()
2325 * @addr:  memory base address
2326 *
2327 * Free the virtually continuous memory area starting at @addr, as
2328 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2329 * NULL, no operation is performed.
2330 *
2331 * Must not be called in NMI context (strictly speaking, only if we don't
2332 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2333 * conventions for vfree() arch-depenedent would be a really bad idea)
2334 *
2335 * May sleep if called *not* from interrupt context.
2336 *
2337 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2338 */
2339void vfree(const void *addr)
2340{
2341	BUG_ON(in_nmi());
2342
2343	kmemleak_free(addr);
2344
2345	might_sleep_if(!in_interrupt());
2346
2347	if (!addr)
2348		return;
2349
2350	__vfree(addr);
2351}
2352EXPORT_SYMBOL(vfree);
2353
2354/**
2355 * vunmap - release virtual mapping obtained by vmap()
2356 * @addr:   memory base address
2357 *
2358 * Free the virtually contiguous memory area starting at @addr,
2359 * which was created from the page array passed to vmap().
2360 *
2361 * Must not be called in interrupt context.
2362 */
2363void vunmap(const void *addr)
2364{
2365	BUG_ON(in_interrupt());
2366	might_sleep();
2367	if (addr)
2368		__vunmap(addr, 0);
2369}
2370EXPORT_SYMBOL(vunmap);
2371
2372/**
2373 * vmap - map an array of pages into virtually contiguous space
2374 * @pages: array of page pointers
2375 * @count: number of pages to map
2376 * @flags: vm_area->flags
2377 * @prot: page protection for the mapping
2378 *
2379 * Maps @count pages from @pages into contiguous kernel virtual
2380 * space.
2381 *
2382 * Return: the address of the area or %NULL on failure
2383 */
2384void *vmap(struct page **pages, unsigned int count,
2385	   unsigned long flags, pgprot_t prot)
2386{
2387	struct vm_struct *area;
2388	unsigned long size;		/* In bytes */
2389
2390	might_sleep();
2391
2392	if (count > totalram_pages())
2393		return NULL;
2394
2395	size = (unsigned long)count << PAGE_SHIFT;
2396	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2397	if (!area)
2398		return NULL;
2399
2400	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2401			pages) < 0) {
2402		vunmap(area->addr);
2403		return NULL;
2404	}
2405
2406	return area->addr;
2407}
2408EXPORT_SYMBOL(vmap);
2409
 
 
 
2410static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2411				 pgprot_t prot, int node)
2412{
 
2413	struct page **pages;
2414	unsigned int nr_pages, array_size, i;
2415	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2416	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2417	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2418					0 :
2419					__GFP_HIGHMEM;
2420
2421	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2422	array_size = (nr_pages * sizeof(struct page *));
2423
 
2424	/* Please note that the recursion is strictly bounded. */
2425	if (array_size > PAGE_SIZE) {
2426		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2427				node, area->caller);
 
2428	} else {
2429		pages = kmalloc_node(array_size, nested_gfp, node);
2430	}
2431
2432	if (!pages) {
 
2433		remove_vm_area(area->addr);
2434		kfree(area);
2435		return NULL;
2436	}
2437
2438	area->pages = pages;
2439	area->nr_pages = nr_pages;
2440
2441	for (i = 0; i < area->nr_pages; i++) {
2442		struct page *page;
 
2443
2444		if (node == NUMA_NO_NODE)
2445			page = alloc_page(alloc_mask|highmem_mask);
2446		else
2447			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2448
2449		if (unlikely(!page)) {
2450			/* Successfully allocated i pages, free them in __vunmap() */
2451			area->nr_pages = i;
2452			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2453			goto fail;
2454		}
2455		area->pages[i] = page;
2456		if (gfpflags_allow_blocking(gfp_mask))
2457			cond_resched();
2458	}
2459	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2460
2461	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2462			prot, pages) < 0)
2463		goto fail;
2464
2465	return area->addr;
2466
2467fail:
2468	warn_alloc(gfp_mask, NULL,
2469			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2470			  (area->nr_pages*PAGE_SIZE), area->size);
2471	__vfree(area->addr);
2472	return NULL;
2473}
2474
2475/**
2476 * __vmalloc_node_range - allocate virtually contiguous memory
2477 * @size:		  allocation size
2478 * @align:		  desired alignment
2479 * @start:		  vm area range start
2480 * @end:		  vm area range end
2481 * @gfp_mask:		  flags for the page level allocator
2482 * @prot:		  protection mask for the allocated pages
2483 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2484 * @node:		  node to use for allocation or NUMA_NO_NODE
2485 * @caller:		  caller's return address
2486 *
2487 * Allocate enough pages to cover @size from the page level
2488 * allocator with @gfp_mask flags.  Map them into contiguous
2489 * kernel virtual space, using a pagetable protection of @prot.
2490 *
2491 * Return: the address of the area or %NULL on failure
2492 */
2493void *__vmalloc_node_range(unsigned long size, unsigned long align,
2494			unsigned long start, unsigned long end, gfp_t gfp_mask,
2495			pgprot_t prot, unsigned long vm_flags, int node,
2496			const void *caller)
2497{
2498	struct vm_struct *area;
2499	void *addr;
2500	unsigned long real_size = size;
2501
2502	size = PAGE_ALIGN(size);
2503	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2504		goto fail;
 
 
 
2505
2506	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2507				vm_flags, start, end, node, gfp_mask, caller);
2508	if (!area)
2509		goto fail;
2510
2511	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2512	if (!addr)
2513		return NULL;
2514
2515	/*
2516	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2517	 * flag. It means that vm_struct is not fully initialized.
2518	 * Now, it is fully initialized, so remove this flag here.
2519	 */
2520	clear_vm_uninitialized_flag(area);
2521
2522	kmemleak_vmalloc(area, size, gfp_mask);
2523
2524	return addr;
2525
2526fail:
2527	warn_alloc(gfp_mask, NULL,
2528			  "vmalloc: allocation failure: %lu bytes", real_size);
2529	return NULL;
2530}
2531
2532/**
2533 * __vmalloc_node - allocate virtually contiguous memory
2534 * @size:	    allocation size
2535 * @align:	    desired alignment
2536 * @gfp_mask:	    flags for the page level allocator
2537 * @node:	    node to use for allocation or NUMA_NO_NODE
2538 * @caller:	    caller's return address
2539 *
2540 * Allocate enough pages to cover @size from the page level allocator with
2541 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2542 *
2543 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2544 * and __GFP_NOFAIL are not supported
2545 *
2546 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2547 * with mm people.
2548 *
2549 * Return: pointer to the allocated memory or %NULL on error
2550 */
2551void *__vmalloc_node(unsigned long size, unsigned long align,
2552			    gfp_t gfp_mask, int node, const void *caller)
2553{
2554	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2555				gfp_mask, PAGE_KERNEL, 0, node, caller);
2556}
2557/*
2558 * This is only for performance analysis of vmalloc and stress purpose.
2559 * It is required by vmalloc test module, therefore do not use it other
2560 * than that.
2561 */
2562#ifdef CONFIG_TEST_VMALLOC_MODULE
2563EXPORT_SYMBOL_GPL(__vmalloc_node);
2564#endif
2565
2566void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2567{
2568	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2569				__builtin_return_address(0));
2570}
2571EXPORT_SYMBOL(__vmalloc);
2572
 
 
 
 
 
 
 
2573/**
2574 * vmalloc - allocate virtually contiguous memory
2575 * @size:    allocation size
2576 *
2577 * Allocate enough pages to cover @size from the page level
2578 * allocator and map them into contiguous kernel virtual space.
2579 *
2580 * For tight control over page level allocator and protection flags
2581 * use __vmalloc() instead.
2582 *
2583 * Return: pointer to the allocated memory or %NULL on error
 
2584 */
2585void *vmalloc(unsigned long size)
2586{
2587	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2588				__builtin_return_address(0));
2589}
2590EXPORT_SYMBOL(vmalloc);
2591
2592/**
2593 * vzalloc - allocate virtually contiguous memory with zero fill
2594 * @size:    allocation size
2595 *
2596 * Allocate enough pages to cover @size from the page level
2597 * allocator and map them into contiguous kernel virtual space.
2598 * The memory allocated is set to zero.
2599 *
2600 * For tight control over page level allocator and protection flags
2601 * use __vmalloc() instead.
2602 *
2603 * Return: pointer to the allocated memory or %NULL on error
 
2604 */
2605void *vzalloc(unsigned long size)
2606{
2607	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2608				__builtin_return_address(0));
2609}
2610EXPORT_SYMBOL(vzalloc);
2611
2612/**
2613 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2614 * @size: allocation size
2615 *
2616 * The resulting memory area is zeroed so it can be mapped to userspace
2617 * without leaking data.
2618 *
2619 * Return: pointer to the allocated memory or %NULL on error
2620 */
2621void *vmalloc_user(unsigned long size)
2622{
2623	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2624				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2625				    VM_USERMAP, NUMA_NO_NODE,
2626				    __builtin_return_address(0));
 
 
 
 
 
 
 
2627}
2628EXPORT_SYMBOL(vmalloc_user);
2629
2630/**
2631 * vmalloc_node - allocate memory on a specific node
2632 * @size:	  allocation size
2633 * @node:	  numa node
2634 *
2635 * Allocate enough pages to cover @size from the page level
2636 * allocator and map them into contiguous kernel virtual space.
2637 *
2638 * For tight control over page level allocator and protection flags
2639 * use __vmalloc() instead.
2640 *
2641 * Return: pointer to the allocated memory or %NULL on error
 
2642 */
2643void *vmalloc_node(unsigned long size, int node)
2644{
2645	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2646			__builtin_return_address(0));
2647}
2648EXPORT_SYMBOL(vmalloc_node);
2649
2650/**
2651 * vzalloc_node - allocate memory on a specific node with zero fill
2652 * @size:	allocation size
2653 * @node:	numa node
2654 *
2655 * Allocate enough pages to cover @size from the page level
2656 * allocator and map them into contiguous kernel virtual space.
2657 * The memory allocated is set to zero.
2658 *
2659 * Return: pointer to the allocated memory or %NULL on error
 
2660 */
2661void *vzalloc_node(unsigned long size, int node)
2662{
2663	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2664				__builtin_return_address(0));
2665}
2666EXPORT_SYMBOL(vzalloc_node);
2667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2668#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2669#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2670#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2671#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2672#else
2673/*
2674 * 64b systems should always have either DMA or DMA32 zones. For others
2675 * GFP_DMA32 should do the right thing and use the normal zone.
2676 */
2677#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2678#endif
2679
2680/**
2681 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2682 * @size:	allocation size
2683 *
2684 * Allocate enough 32bit PA addressable pages to cover @size from the
2685 * page level allocator and map them into contiguous kernel virtual space.
2686 *
2687 * Return: pointer to the allocated memory or %NULL on error
 
2688 */
2689void *vmalloc_32(unsigned long size)
2690{
2691	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2692			__builtin_return_address(0));
2693}
2694EXPORT_SYMBOL(vmalloc_32);
2695
2696/**
2697 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2698 * @size:	     allocation size
2699 *
2700 * The resulting memory area is 32bit addressable and zeroed so it can be
2701 * mapped to userspace without leaking data.
2702 *
2703 * Return: pointer to the allocated memory or %NULL on error
2704 */
2705void *vmalloc_32_user(unsigned long size)
2706{
2707	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2708				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2709				    VM_USERMAP, NUMA_NO_NODE,
2710				    __builtin_return_address(0));
 
 
 
 
 
 
2711}
2712EXPORT_SYMBOL(vmalloc_32_user);
2713
2714/*
2715 * small helper routine , copy contents to buf from addr.
2716 * If the page is not present, fill zero.
2717 */
2718
2719static int aligned_vread(char *buf, char *addr, unsigned long count)
2720{
2721	struct page *p;
2722	int copied = 0;
2723
2724	while (count) {
2725		unsigned long offset, length;
2726
2727		offset = offset_in_page(addr);
2728		length = PAGE_SIZE - offset;
2729		if (length > count)
2730			length = count;
2731		p = vmalloc_to_page(addr);
2732		/*
2733		 * To do safe access to this _mapped_ area, we need
2734		 * lock. But adding lock here means that we need to add
2735		 * overhead of vmalloc()/vfree() calles for this _debug_
2736		 * interface, rarely used. Instead of that, we'll use
2737		 * kmap() and get small overhead in this access function.
2738		 */
2739		if (p) {
2740			/*
2741			 * we can expect USER0 is not used (see vread/vwrite's
2742			 * function description)
2743			 */
2744			void *map = kmap_atomic(p);
2745			memcpy(buf, map + offset, length);
2746			kunmap_atomic(map);
2747		} else
2748			memset(buf, 0, length);
2749
2750		addr += length;
2751		buf += length;
2752		copied += length;
2753		count -= length;
2754	}
2755	return copied;
2756}
2757
2758static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2759{
2760	struct page *p;
2761	int copied = 0;
2762
2763	while (count) {
2764		unsigned long offset, length;
2765
2766		offset = offset_in_page(addr);
2767		length = PAGE_SIZE - offset;
2768		if (length > count)
2769			length = count;
2770		p = vmalloc_to_page(addr);
2771		/*
2772		 * To do safe access to this _mapped_ area, we need
2773		 * lock. But adding lock here means that we need to add
2774		 * overhead of vmalloc()/vfree() calles for this _debug_
2775		 * interface, rarely used. Instead of that, we'll use
2776		 * kmap() and get small overhead in this access function.
2777		 */
2778		if (p) {
2779			/*
2780			 * we can expect USER0 is not used (see vread/vwrite's
2781			 * function description)
2782			 */
2783			void *map = kmap_atomic(p);
2784			memcpy(map + offset, buf, length);
2785			kunmap_atomic(map);
2786		}
2787		addr += length;
2788		buf += length;
2789		copied += length;
2790		count -= length;
2791	}
2792	return copied;
2793}
2794
2795/**
2796 * vread() - read vmalloc area in a safe way.
2797 * @buf:     buffer for reading data
2798 * @addr:    vm address.
2799 * @count:   number of bytes to be read.
2800 *
2801 * This function checks that addr is a valid vmalloc'ed area, and
2802 * copy data from that area to a given buffer. If the given memory range
2803 * of [addr...addr+count) includes some valid address, data is copied to
2804 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2805 * IOREMAP area is treated as memory hole and no copy is done.
2806 *
2807 * If [addr...addr+count) doesn't includes any intersects with alive
2808 * vm_struct area, returns 0. @buf should be kernel's buffer.
2809 *
2810 * Note: In usual ops, vread() is never necessary because the caller
2811 * should know vmalloc() area is valid and can use memcpy().
2812 * This is for routines which have to access vmalloc area without
2813 * any information, as /dev/kmem.
2814 *
2815 * Return: number of bytes for which addr and buf should be increased
2816 * (same number as @count) or %0 if [addr...addr+count) doesn't
2817 * include any intersection with valid vmalloc area
 
 
 
2818 */
 
2819long vread(char *buf, char *addr, unsigned long count)
2820{
2821	struct vmap_area *va;
2822	struct vm_struct *vm;
2823	char *vaddr, *buf_start = buf;
2824	unsigned long buflen = count;
2825	unsigned long n;
2826
2827	/* Don't allow overflow */
2828	if ((unsigned long) addr + count < count)
2829		count = -(unsigned long) addr;
2830
2831	spin_lock(&vmap_area_lock);
2832	list_for_each_entry(va, &vmap_area_list, list) {
2833		if (!count)
2834			break;
2835
2836		if (!va->vm)
2837			continue;
2838
2839		vm = va->vm;
2840		vaddr = (char *) vm->addr;
2841		if (addr >= vaddr + get_vm_area_size(vm))
2842			continue;
2843		while (addr < vaddr) {
2844			if (count == 0)
2845				goto finished;
2846			*buf = '\0';
2847			buf++;
2848			addr++;
2849			count--;
2850		}
2851		n = vaddr + get_vm_area_size(vm) - addr;
2852		if (n > count)
2853			n = count;
2854		if (!(vm->flags & VM_IOREMAP))
2855			aligned_vread(buf, addr, n);
2856		else /* IOREMAP area is treated as memory hole */
2857			memset(buf, 0, n);
2858		buf += n;
2859		addr += n;
2860		count -= n;
2861	}
2862finished:
2863	spin_unlock(&vmap_area_lock);
2864
2865	if (buf == buf_start)
2866		return 0;
2867	/* zero-fill memory holes */
2868	if (buf != buf_start + buflen)
2869		memset(buf, 0, buflen - (buf - buf_start));
2870
2871	return buflen;
2872}
2873
2874/**
2875 * vwrite() - write vmalloc area in a safe way.
2876 * @buf:      buffer for source data
2877 * @addr:     vm address.
2878 * @count:    number of bytes to be read.
2879 *
2880 * This function checks that addr is a valid vmalloc'ed area, and
2881 * copy data from a buffer to the given addr. If specified range of
2882 * [addr...addr+count) includes some valid address, data is copied from
2883 * proper area of @buf. If there are memory holes, no copy to hole.
2884 * IOREMAP area is treated as memory hole and no copy is done.
2885 *
2886 * If [addr...addr+count) doesn't includes any intersects with alive
2887 * vm_struct area, returns 0. @buf should be kernel's buffer.
2888 *
2889 * Note: In usual ops, vwrite() is never necessary because the caller
2890 * should know vmalloc() area is valid and can use memcpy().
2891 * This is for routines which have to access vmalloc area without
2892 * any information, as /dev/kmem.
2893 *
2894 * Return: number of bytes for which addr and buf should be
2895 * increased (same number as @count) or %0 if [addr...addr+count)
2896 * doesn't include any intersection with valid vmalloc area
 
 
 
2897 */
 
2898long vwrite(char *buf, char *addr, unsigned long count)
2899{
2900	struct vmap_area *va;
2901	struct vm_struct *vm;
2902	char *vaddr;
2903	unsigned long n, buflen;
2904	int copied = 0;
2905
2906	/* Don't allow overflow */
2907	if ((unsigned long) addr + count < count)
2908		count = -(unsigned long) addr;
2909	buflen = count;
2910
2911	spin_lock(&vmap_area_lock);
2912	list_for_each_entry(va, &vmap_area_list, list) {
2913		if (!count)
2914			break;
2915
2916		if (!va->vm)
2917			continue;
2918
2919		vm = va->vm;
2920		vaddr = (char *) vm->addr;
2921		if (addr >= vaddr + get_vm_area_size(vm))
2922			continue;
2923		while (addr < vaddr) {
2924			if (count == 0)
2925				goto finished;
2926			buf++;
2927			addr++;
2928			count--;
2929		}
2930		n = vaddr + get_vm_area_size(vm) - addr;
2931		if (n > count)
2932			n = count;
2933		if (!(vm->flags & VM_IOREMAP)) {
2934			aligned_vwrite(buf, addr, n);
2935			copied++;
2936		}
2937		buf += n;
2938		addr += n;
2939		count -= n;
2940	}
2941finished:
2942	spin_unlock(&vmap_area_lock);
2943	if (!copied)
2944		return 0;
2945	return buflen;
2946}
2947
2948/**
2949 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2950 * @vma:		vma to cover
2951 * @uaddr:		target user address to start at
2952 * @kaddr:		virtual address of vmalloc kernel memory
2953 * @pgoff:		offset from @kaddr to start at
2954 * @size:		size of map area
2955 *
2956 * Returns:	0 for success, -Exxx on failure
2957 *
2958 * This function checks that @kaddr is a valid vmalloc'ed area,
2959 * and that it is big enough to cover the range starting at
2960 * @uaddr in @vma. Will return failure if that criteria isn't
2961 * met.
2962 *
2963 * Similar to remap_pfn_range() (see mm/memory.c)
2964 */
2965int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2966				void *kaddr, unsigned long pgoff,
2967				unsigned long size)
2968{
2969	struct vm_struct *area;
2970	unsigned long off;
2971	unsigned long end_index;
2972
2973	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
2974		return -EINVAL;
2975
2976	size = PAGE_ALIGN(size);
2977
2978	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2979		return -EINVAL;
2980
2981	area = find_vm_area(kaddr);
2982	if (!area)
2983		return -EINVAL;
2984
2985	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
2986		return -EINVAL;
2987
2988	if (check_add_overflow(size, off, &end_index) ||
2989	    end_index > get_vm_area_size(area))
2990		return -EINVAL;
2991	kaddr += off;
2992
 
2993	do {
2994		struct page *page = vmalloc_to_page(kaddr);
2995		int ret;
2996
2997		ret = vm_insert_page(vma, uaddr, page);
2998		if (ret)
2999			return ret;
3000
3001		uaddr += PAGE_SIZE;
3002		kaddr += PAGE_SIZE;
3003		size -= PAGE_SIZE;
3004	} while (size > 0);
3005
3006	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
 
3007
3008	return 0;
3009}
3010EXPORT_SYMBOL(remap_vmalloc_range_partial);
3011
3012/**
3013 * remap_vmalloc_range - map vmalloc pages to userspace
3014 * @vma:		vma to cover (map full range of vma)
3015 * @addr:		vmalloc memory
3016 * @pgoff:		number of pages into addr before first page to map
3017 *
3018 * Returns:	0 for success, -Exxx on failure
3019 *
3020 * This function checks that addr is a valid vmalloc'ed area, and
3021 * that it is big enough to cover the vma. Will return failure if
3022 * that criteria isn't met.
3023 *
3024 * Similar to remap_pfn_range() (see mm/memory.c)
3025 */
3026int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3027						unsigned long pgoff)
3028{
3029	return remap_vmalloc_range_partial(vma, vma->vm_start,
3030					   addr, pgoff,
3031					   vma->vm_end - vma->vm_start);
3032}
3033EXPORT_SYMBOL(remap_vmalloc_range);
3034
3035static int f(pte_t *pte, unsigned long addr, void *data)
 
3036{
3037	pte_t ***p = data;
3038
3039	if (p) {
3040		*(*p) = pte;
3041		(*p)++;
3042	}
3043	return 0;
3044}
3045
3046/**
3047 * alloc_vm_area - allocate a range of kernel address space
3048 * @size:	   size of the area
3049 * @ptes:	   returns the PTEs for the address space
3050 *
3051 * Returns:	NULL on failure, vm_struct on success
3052 *
3053 * This function reserves a range of kernel address space, and
3054 * allocates pagetables to map that range.  No actual mappings
3055 * are created.
3056 *
3057 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3058 * allocated for the VM area are returned.
3059 */
3060struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3061{
3062	struct vm_struct *area;
3063
3064	area = get_vm_area_caller(size, VM_IOREMAP,
3065				__builtin_return_address(0));
3066	if (area == NULL)
3067		return NULL;
3068
3069	/*
3070	 * This ensures that page tables are constructed for this region
3071	 * of kernel virtual address space and mapped into init_mm.
3072	 */
3073	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3074				size, f, ptes ? &ptes : NULL)) {
3075		free_vm_area(area);
3076		return NULL;
3077	}
3078
 
 
 
 
 
 
 
 
3079	return area;
3080}
3081EXPORT_SYMBOL_GPL(alloc_vm_area);
3082
3083void free_vm_area(struct vm_struct *area)
3084{
3085	struct vm_struct *ret;
3086	ret = remove_vm_area(area->addr);
3087	BUG_ON(ret != area);
3088	kfree(area);
3089}
3090EXPORT_SYMBOL_GPL(free_vm_area);
3091
3092#ifdef CONFIG_SMP
3093static struct vmap_area *node_to_va(struct rb_node *n)
3094{
3095	return rb_entry_safe(n, struct vmap_area, rb_node);
3096}
3097
3098/**
3099 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3100 * @addr: target address
 
 
3101 *
3102 * Returns: vmap_area if it is found. If there is no such area
3103 *   the first highest(reverse order) vmap_area is returned
3104 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3105 *   if there are no any areas before @addr.
 
3106 */
3107static struct vmap_area *
3108pvm_find_va_enclose_addr(unsigned long addr)
 
3109{
3110	struct vmap_area *va, *tmp;
3111	struct rb_node *n;
3112
3113	n = free_vmap_area_root.rb_node;
3114	va = NULL;
3115
3116	while (n) {
3117		tmp = rb_entry(n, struct vmap_area, rb_node);
3118		if (tmp->va_start <= addr) {
3119			va = tmp;
3120			if (tmp->va_end >= addr)
3121				break;
3122
3123			n = n->rb_right;
3124		} else {
3125			n = n->rb_left;
3126		}
3127	}
3128
3129	return va;
 
 
 
 
 
 
 
 
 
 
3130}
3131
3132/**
3133 * pvm_determine_end_from_reverse - find the highest aligned address
3134 * of free block below VMALLOC_END
3135 * @va:
3136 *   in - the VA we start the search(reverse order);
3137 *   out - the VA with the highest aligned end address.
3138 *
3139 * Returns: determined end address within vmap_area
3140 */
3141static unsigned long
3142pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
 
 
 
 
 
 
 
 
3143{
3144	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3145	unsigned long addr;
3146
3147	if (likely(*va)) {
3148		list_for_each_entry_from_reverse((*va),
3149				&free_vmap_area_list, list) {
3150			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3151			if ((*va)->va_start < addr)
3152				return addr;
3153		}
 
3154	}
3155
3156	return 0;
3157}
3158
3159/**
3160 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3161 * @offsets: array containing offset of each area
3162 * @sizes: array containing size of each area
3163 * @nr_vms: the number of areas to allocate
3164 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3165 *
3166 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3167 *	    vm_structs on success, %NULL on failure
3168 *
3169 * Percpu allocator wants to use congruent vm areas so that it can
3170 * maintain the offsets among percpu areas.  This function allocates
3171 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3172 * be scattered pretty far, distance between two areas easily going up
3173 * to gigabytes.  To avoid interacting with regular vmallocs, these
3174 * areas are allocated from top.
3175 *
3176 * Despite its complicated look, this allocator is rather simple. It
3177 * does everything top-down and scans free blocks from the end looking
3178 * for matching base. While scanning, if any of the areas do not fit the
3179 * base address is pulled down to fit the area. Scanning is repeated till
3180 * all the areas fit and then all necessary data structures are inserted
3181 * and the result is returned.
3182 */
3183struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3184				     const size_t *sizes, int nr_vms,
3185				     size_t align)
3186{
3187	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3188	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3189	struct vmap_area **vas, *va;
3190	struct vm_struct **vms;
3191	int area, area2, last_area, term_area;
3192	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3193	bool purged = false;
3194	enum fit_type type;
3195
3196	/* verify parameters and allocate data structures */
3197	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3198	for (last_area = 0, area = 0; area < nr_vms; area++) {
3199		start = offsets[area];
3200		end = start + sizes[area];
3201
3202		/* is everything aligned properly? */
3203		BUG_ON(!IS_ALIGNED(offsets[area], align));
3204		BUG_ON(!IS_ALIGNED(sizes[area], align));
3205
3206		/* detect the area with the highest address */
3207		if (start > offsets[last_area])
3208			last_area = area;
3209
3210		for (area2 = area + 1; area2 < nr_vms; area2++) {
3211			unsigned long start2 = offsets[area2];
3212			unsigned long end2 = start2 + sizes[area2];
3213
3214			BUG_ON(start2 < end && start < end2);
 
 
 
 
3215		}
3216	}
3217	last_end = offsets[last_area] + sizes[last_area];
3218
3219	if (vmalloc_end - vmalloc_start < last_end) {
3220		WARN_ON(true);
3221		return NULL;
3222	}
3223
3224	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3225	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3226	if (!vas || !vms)
3227		goto err_free2;
3228
3229	for (area = 0; area < nr_vms; area++) {
3230		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3231		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3232		if (!vas[area] || !vms[area])
3233			goto err_free;
3234	}
3235retry:
3236	spin_lock(&free_vmap_area_lock);
3237
3238	/* start scanning - we scan from the top, begin with the last area */
3239	area = term_area = last_area;
3240	start = offsets[area];
3241	end = start + sizes[area];
3242
3243	va = pvm_find_va_enclose_addr(vmalloc_end);
3244	base = pvm_determine_end_from_reverse(&va, align) - end;
 
 
 
3245
3246	while (true) {
 
 
 
3247		/*
3248		 * base might have underflowed, add last_end before
3249		 * comparing.
3250		 */
3251		if (base + last_end < vmalloc_start + last_end)
3252			goto overflow;
 
 
 
 
 
 
 
3253
3254		/*
3255		 * Fitting base has not been found.
 
3256		 */
3257		if (va == NULL)
3258			goto overflow;
3259
3260		/*
3261		 * If required width exceeds current VA block, move
3262		 * base downwards and then recheck.
3263		 */
3264		if (base + end > va->va_end) {
3265			base = pvm_determine_end_from_reverse(&va, align) - end;
3266			term_area = area;
3267			continue;
3268		}
3269
3270		/*
3271		 * If this VA does not fit, move base downwards and recheck.
 
 
3272		 */
3273		if (base + start < va->va_start) {
3274			va = node_to_va(rb_prev(&va->rb_node));
3275			base = pvm_determine_end_from_reverse(&va, align) - end;
 
3276			term_area = area;
3277			continue;
3278		}
3279
3280		/*
3281		 * This area fits, move on to the previous one.  If
3282		 * the previous one is the terminal one, we're done.
3283		 */
3284		area = (area + nr_vms - 1) % nr_vms;
3285		if (area == term_area)
3286			break;
3287
3288		start = offsets[area];
3289		end = start + sizes[area];
3290		va = pvm_find_va_enclose_addr(base + end);
3291	}
3292
3293	/* we've found a fitting base, insert all va's */
3294	for (area = 0; area < nr_vms; area++) {
3295		int ret;
3296
3297		start = base + offsets[area];
3298		size = sizes[area];
3299
3300		va = pvm_find_va_enclose_addr(start);
3301		if (WARN_ON_ONCE(va == NULL))
3302			/* It is a BUG(), but trigger recovery instead. */
3303			goto recovery;
3304
3305		type = classify_va_fit_type(va, start, size);
3306		if (WARN_ON_ONCE(type == NOTHING_FIT))
3307			/* It is a BUG(), but trigger recovery instead. */
3308			goto recovery;
3309
3310		ret = adjust_va_to_fit_type(va, start, size, type);
3311		if (unlikely(ret))
3312			goto recovery;
3313
3314		/* Allocated area. */
3315		va = vas[area];
3316		va->va_start = start;
3317		va->va_end = start + size;
3318	}
3319
3320	spin_unlock(&free_vmap_area_lock);
3321
3322	/* populate the kasan shadow space */
3323	for (area = 0; area < nr_vms; area++) {
3324		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3325			goto err_free_shadow;
3326
3327		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3328				       sizes[area]);
3329	}
3330
3331	/* insert all vm's */
3332	spin_lock(&vmap_area_lock);
3333	for (area = 0; area < nr_vms; area++) {
3334		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3335
3336		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3337				 pcpu_get_vm_areas);
3338	}
3339	spin_unlock(&vmap_area_lock);
3340
3341	kfree(vas);
3342	return vms;
3343
3344recovery:
3345	/*
3346	 * Remove previously allocated areas. There is no
3347	 * need in removing these areas from the busy tree,
3348	 * because they are inserted only on the final step
3349	 * and when pcpu_get_vm_areas() is success.
3350	 */
3351	while (area--) {
3352		orig_start = vas[area]->va_start;
3353		orig_end = vas[area]->va_end;
3354		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3355					    &free_vmap_area_list);
3356		if (va)
3357			kasan_release_vmalloc(orig_start, orig_end,
3358				va->va_start, va->va_end);
3359		vas[area] = NULL;
3360	}
3361
3362overflow:
3363	spin_unlock(&free_vmap_area_lock);
3364	if (!purged) {
3365		purge_vmap_area_lazy();
3366		purged = true;
3367
3368		/* Before "retry", check if we recover. */
3369		for (area = 0; area < nr_vms; area++) {
3370			if (vas[area])
3371				continue;
3372
3373			vas[area] = kmem_cache_zalloc(
3374				vmap_area_cachep, GFP_KERNEL);
3375			if (!vas[area])
3376				goto err_free;
3377		}
3378
3379		goto retry;
3380	}
3381
3382err_free:
3383	for (area = 0; area < nr_vms; area++) {
3384		if (vas[area])
3385			kmem_cache_free(vmap_area_cachep, vas[area]);
3386
3387		kfree(vms[area]);
3388	}
3389err_free2:
3390	kfree(vas);
3391	kfree(vms);
3392	return NULL;
3393
3394err_free_shadow:
3395	spin_lock(&free_vmap_area_lock);
3396	/*
3397	 * We release all the vmalloc shadows, even the ones for regions that
3398	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3399	 * being able to tolerate this case.
3400	 */
3401	for (area = 0; area < nr_vms; area++) {
3402		orig_start = vas[area]->va_start;
3403		orig_end = vas[area]->va_end;
3404		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3405					    &free_vmap_area_list);
3406		if (va)
3407			kasan_release_vmalloc(orig_start, orig_end,
3408				va->va_start, va->va_end);
3409		vas[area] = NULL;
3410		kfree(vms[area]);
3411	}
3412	spin_unlock(&free_vmap_area_lock);
3413	kfree(vas);
3414	kfree(vms);
3415	return NULL;
3416}
3417
3418/**
3419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3421 * @nr_vms: the number of allocated areas
3422 *
3423 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3424 */
3425void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3426{
3427	int i;
3428
3429	for (i = 0; i < nr_vms; i++)
3430		free_vm_area(vms[i]);
3431	kfree(vms);
3432}
3433#endif	/* CONFIG_SMP */
3434
3435#ifdef CONFIG_PROC_FS
3436static void *s_start(struct seq_file *m, loff_t *pos)
3437	__acquires(&vmap_purge_lock)
3438	__acquires(&vmap_area_lock)
3439{
3440	mutex_lock(&vmap_purge_lock);
3441	spin_lock(&vmap_area_lock);
 
 
 
 
 
 
 
 
 
 
 
3442
3443	return seq_list_start(&vmap_area_list, *pos);
3444}
3445
3446static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3447{
3448	return seq_list_next(p, &vmap_area_list, pos);
 
 
 
3449}
3450
3451static void s_stop(struct seq_file *m, void *p)
3452	__releases(&vmap_purge_lock)
3453	__releases(&vmap_area_lock)
3454{
3455	mutex_unlock(&vmap_purge_lock);
3456	spin_unlock(&vmap_area_lock);
3457}
3458
3459static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3460{
3461	if (IS_ENABLED(CONFIG_NUMA)) {
3462		unsigned int nr, *counters = m->private;
3463
3464		if (!counters)
3465			return;
3466
3467		if (v->flags & VM_UNINITIALIZED)
3468			return;
3469		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3470		smp_rmb();
3471
3472		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3473
3474		for (nr = 0; nr < v->nr_pages; nr++)
3475			counters[page_to_nid(v->pages[nr])]++;
3476
3477		for_each_node_state(nr, N_HIGH_MEMORY)
3478			if (counters[nr])
3479				seq_printf(m, " N%u=%u", nr, counters[nr]);
3480	}
3481}
3482
3483static void show_purge_info(struct seq_file *m)
3484{
3485	struct llist_node *head;
3486	struct vmap_area *va;
3487
3488	head = READ_ONCE(vmap_purge_list.first);
3489	if (head == NULL)
3490		return;
3491
3492	llist_for_each_entry(va, head, purge_list) {
3493		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3494			(void *)va->va_start, (void *)va->va_end,
3495			va->va_end - va->va_start);
3496	}
3497}
3498
3499static int s_show(struct seq_file *m, void *p)
3500{
3501	struct vmap_area *va;
3502	struct vm_struct *v;
3503
3504	va = list_entry(p, struct vmap_area, list);
3505
3506	/*
3507	 * s_show can encounter race with remove_vm_area, !vm on behalf
3508	 * of vmap area is being tear down or vm_map_ram allocation.
3509	 */
3510	if (!va->vm) {
3511		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3512			(void *)va->va_start, (void *)va->va_end,
3513			va->va_end - va->va_start);
3514
3515		return 0;
3516	}
3517
3518	v = va->vm;
3519
3520	seq_printf(m, "0x%pK-0x%pK %7ld",
3521		v->addr, v->addr + v->size, v->size);
3522
3523	if (v->caller)
3524		seq_printf(m, " %pS", v->caller);
3525
3526	if (v->nr_pages)
3527		seq_printf(m, " pages=%d", v->nr_pages);
3528
3529	if (v->phys_addr)
3530		seq_printf(m, " phys=%pa", &v->phys_addr);
3531
3532	if (v->flags & VM_IOREMAP)
3533		seq_puts(m, " ioremap");
3534
3535	if (v->flags & VM_ALLOC)
3536		seq_puts(m, " vmalloc");
3537
3538	if (v->flags & VM_MAP)
3539		seq_puts(m, " vmap");
3540
3541	if (v->flags & VM_USERMAP)
3542		seq_puts(m, " user");
3543
3544	if (v->flags & VM_DMA_COHERENT)
3545		seq_puts(m, " dma-coherent");
3546
3547	if (is_vmalloc_addr(v->pages))
3548		seq_puts(m, " vpages");
3549
3550	show_numa_info(m, v);
3551	seq_putc(m, '\n');
3552
3553	/*
3554	 * As a final step, dump "unpurged" areas. Note,
3555	 * that entire "/proc/vmallocinfo" output will not
3556	 * be address sorted, because the purge list is not
3557	 * sorted.
3558	 */
3559	if (list_is_last(&va->list, &vmap_area_list))
3560		show_purge_info(m);
3561
3562	return 0;
3563}
3564
3565static const struct seq_operations vmalloc_op = {
3566	.start = s_start,
3567	.next = s_next,
3568	.stop = s_stop,
3569	.show = s_show,
3570};
3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3572static int __init proc_vmalloc_init(void)
3573{
3574	if (IS_ENABLED(CONFIG_NUMA))
3575		proc_create_seq_private("vmallocinfo", 0400, NULL,
3576				&vmalloc_op,
3577				nr_node_ids * sizeof(unsigned int), NULL);
3578	else
3579		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3580	return 0;
3581}
3582module_init(proc_vmalloc_init);
 
3583
3584#endif