Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
 
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
 
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
 
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
 
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <asm/uaccess.h>
 
 
 
 
 
 
 
  31#include <asm/tlbflush.h>
  32#include <asm/shmparam.h>
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*** Page table manipulation functions ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37{
  38	pte_t *pte;
  39
  40	pte = pte_offset_kernel(pmd, addr);
  41	do {
  42		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  43		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  44	} while (pte++, addr += PAGE_SIZE, addr != end);
 
  45}
  46
  47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 
  48{
  49	pmd_t *pmd;
  50	unsigned long next;
 
  51
  52	pmd = pmd_offset(pud, addr);
  53	do {
  54		next = pmd_addr_end(addr, end);
 
 
 
 
 
 
 
  55		if (pmd_none_or_clear_bad(pmd))
  56			continue;
  57		vunmap_pte_range(pmd, addr, next);
 
 
  58	} while (pmd++, addr = next, addr != end);
  59}
  60
  61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 
  62{
  63	pud_t *pud;
  64	unsigned long next;
 
  65
  66	pud = pud_offset(pgd, addr);
  67	do {
  68		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
  69		if (pud_none_or_clear_bad(pud))
  70			continue;
  71		vunmap_pmd_range(pud, addr, next);
  72	} while (pud++, addr = next, addr != end);
  73}
  74
  75static void vunmap_page_range(unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76{
  77	pgd_t *pgd;
  78	unsigned long next;
 
 
 
  79
  80	BUG_ON(addr >= end);
  81	pgd = pgd_offset_k(addr);
  82	do {
  83		next = pgd_addr_end(addr, end);
 
 
  84		if (pgd_none_or_clear_bad(pgd))
  85			continue;
  86		vunmap_pud_range(pgd, addr, next);
  87	} while (pgd++, addr = next, addr != end);
 
 
 
  88}
  89
  90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  91		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92{
  93	pte_t *pte;
  94
  95	/*
  96	 * nr is a running index into the array which helps higher level
  97	 * callers keep track of where we're up to.
  98	 */
  99
 100	pte = pte_alloc_kernel(pmd, addr);
 101	if (!pte)
 102		return -ENOMEM;
 103	do {
 104		struct page *page = pages[*nr];
 105
 106		if (WARN_ON(!pte_none(*pte)))
 107			return -EBUSY;
 108		if (WARN_ON(!page))
 109			return -ENOMEM;
 110		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 111		(*nr)++;
 112	} while (pte++, addr += PAGE_SIZE, addr != end);
 
 113	return 0;
 114}
 115
 116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 117		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 118{
 119	pmd_t *pmd;
 120	unsigned long next;
 121
 122	pmd = pmd_alloc(&init_mm, pud, addr);
 123	if (!pmd)
 124		return -ENOMEM;
 125	do {
 126		next = pmd_addr_end(addr, end);
 127		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 128			return -ENOMEM;
 129	} while (pmd++, addr = next, addr != end);
 130	return 0;
 131}
 132
 133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 134		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 135{
 136	pud_t *pud;
 137	unsigned long next;
 138
 139	pud = pud_alloc(&init_mm, pgd, addr);
 140	if (!pud)
 141		return -ENOMEM;
 142	do {
 143		next = pud_addr_end(addr, end);
 144		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 145			return -ENOMEM;
 146	} while (pud++, addr = next, addr != end);
 147	return 0;
 148}
 149
 150/*
 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 152 * will have pfns corresponding to the "pages" array.
 153 *
 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 155 */
 156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 157				   pgprot_t prot, struct page **pages)
 158{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159	pgd_t *pgd;
 160	unsigned long next;
 161	unsigned long addr = start;
 162	int err = 0;
 163	int nr = 0;
 
 164
 165	BUG_ON(addr >= end);
 166	pgd = pgd_offset_k(addr);
 167	do {
 168		next = pgd_addr_end(addr, end);
 169		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 
 
 170		if (err)
 171			return err;
 172	} while (pgd++, addr = next, addr != end);
 173
 174	return nr;
 
 
 
 175}
 176
 177static int vmap_page_range(unsigned long start, unsigned long end,
 178			   pgprot_t prot, struct page **pages)
 
 
 
 
 
 
 
 
 
 179{
 180	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181
 182	ret = vmap_page_range_noflush(start, end, prot, pages);
 183	flush_cache_vmap(start, end);
 184	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187int is_vmalloc_or_module_addr(const void *x)
 188{
 189	/*
 190	 * ARM, x86-64 and sparc64 put modules in a special place,
 191	 * and fall back on vmalloc() if that fails. Others
 192	 * just put it in the vmalloc space.
 193	 */
 194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 195	unsigned long addr = (unsigned long)x;
 196	if (addr >= MODULES_VADDR && addr < MODULES_END)
 197		return 1;
 198#endif
 199	return is_vmalloc_addr(x);
 200}
 201
 202/*
 203 * Walk a vmap address to the struct page it maps.
 
 
 204 */
 205struct page *vmalloc_to_page(const void *vmalloc_addr)
 206{
 207	unsigned long addr = (unsigned long) vmalloc_addr;
 208	struct page *page = NULL;
 209	pgd_t *pgd = pgd_offset_k(addr);
 
 
 
 
 210
 211	/*
 212	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 213	 * architectures that do not vmalloc module space
 214	 */
 215	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 216
 217	if (!pgd_none(*pgd)) {
 218		pud_t *pud = pud_offset(pgd, addr);
 219		if (!pud_none(*pud)) {
 220			pmd_t *pmd = pmd_offset(pud, addr);
 221			if (!pmd_none(*pmd)) {
 222				pte_t *ptep, pte;
 223
 224				ptep = pte_offset_map(pmd, addr);
 225				pte = *ptep;
 226				if (pte_present(pte))
 227					page = pte_page(pte);
 228				pte_unmap(ptep);
 229			}
 230		}
 231	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	return page;
 233}
 234EXPORT_SYMBOL(vmalloc_to_page);
 235
 236/*
 237 * Map a vmalloc()-space virtual address to the physical page frame number.
 238 */
 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 240{
 241	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 242}
 243EXPORT_SYMBOL(vmalloc_to_pfn);
 244
 245
 246/*** Global kva allocator ***/
 247
 248#define VM_LAZY_FREE	0x01
 249#define VM_LAZY_FREEING	0x02
 250#define VM_VM_AREA	0x04
 251
 252struct vmap_area {
 253	unsigned long va_start;
 254	unsigned long va_end;
 255	unsigned long flags;
 256	struct rb_node rb_node;		/* address sorted rbtree */
 257	struct list_head list;		/* address sorted list */
 258	struct list_head purge_list;	/* "lazy purge" list */
 259	void *private;
 260	struct rcu_head rcu_head;
 261};
 262
 263static DEFINE_SPINLOCK(vmap_area_lock);
 264static LIST_HEAD(vmap_area_list);
 
 
 265static struct rb_root vmap_area_root = RB_ROOT;
 
 266
 267/* The vmap cache globals are protected by vmap_area_lock */
 268static struct rb_node *free_vmap_cache;
 269static unsigned long cached_hole_size;
 270static unsigned long cached_vstart;
 271static unsigned long cached_align;
 272
 273static unsigned long vmap_area_pcpu_hole;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275static struct vmap_area *__find_vmap_area(unsigned long addr)
 276{
 277	struct rb_node *n = vmap_area_root.rb_node;
 278
 279	while (n) {
 280		struct vmap_area *va;
 281
 282		va = rb_entry(n, struct vmap_area, rb_node);
 283		if (addr < va->va_start)
 284			n = n->rb_left;
 285		else if (addr > va->va_start)
 286			n = n->rb_right;
 287		else
 288			return va;
 289	}
 290
 291	return NULL;
 292}
 293
 294static void __insert_vmap_area(struct vmap_area *va)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295{
 296	struct rb_node **p = &vmap_area_root.rb_node;
 297	struct rb_node *parent = NULL;
 298	struct rb_node *tmp;
 299
 300	while (*p) {
 301		struct vmap_area *tmp_va;
 302
 303		parent = *p;
 304		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 305		if (va->va_start < tmp_va->va_end)
 306			p = &(*p)->rb_left;
 307		else if (va->va_end > tmp_va->va_start)
 308			p = &(*p)->rb_right;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309		else
 310			BUG();
 
 
 
 
 311	}
 312
 313	rb_link_node(&va->rb_node, parent, p);
 314	rb_insert_color(&va->rb_node, &vmap_area_root);
 
 
 
 
 
 
 
 315
 316	/* address-sort this list so it is usable like the vmlist */
 317	tmp = rb_prev(&va->rb_node);
 318	if (tmp) {
 319		struct vmap_area *prev;
 320		prev = rb_entry(tmp, struct vmap_area, rb_node);
 321		list_add_rcu(&va->list, &prev->list);
 322	} else
 323		list_add_rcu(&va->list, &vmap_area_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324}
 325
 326static void purge_vmap_area_lazy(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328/*
 329 * Allocate a region of KVA of the specified size and alignment, within the
 330 * vstart and vend.
 331 */
 332static struct vmap_area *alloc_vmap_area(unsigned long size,
 333				unsigned long align,
 334				unsigned long vstart, unsigned long vend,
 335				int node, gfp_t gfp_mask)
 336{
 337	struct vmap_area *va;
 338	struct rb_node *n;
 339	unsigned long addr;
 340	int purged = 0;
 341	struct vmap_area *first;
 342
 343	BUG_ON(!size);
 344	BUG_ON(size & ~PAGE_MASK);
 345	BUG_ON(!is_power_of_2(align));
 346
 347	va = kmalloc_node(sizeof(struct vmap_area),
 348			gfp_mask & GFP_RECLAIM_MASK, node);
 
 
 
 
 
 349	if (unlikely(!va))
 350		return ERR_PTR(-ENOMEM);
 351
 352retry:
 353	spin_lock(&vmap_area_lock);
 354	/*
 355	 * Invalidate cache if we have more permissive parameters.
 356	 * cached_hole_size notes the largest hole noticed _below_
 357	 * the vmap_area cached in free_vmap_cache: if size fits
 358	 * into that hole, we want to scan from vstart to reuse
 359	 * the hole instead of allocating above free_vmap_cache.
 360	 * Note that __free_vmap_area may update free_vmap_cache
 361	 * without updating cached_hole_size or cached_align.
 362	 */
 363	if (!free_vmap_cache ||
 364			size < cached_hole_size ||
 365			vstart < cached_vstart ||
 366			align < cached_align) {
 367nocache:
 368		cached_hole_size = 0;
 369		free_vmap_cache = NULL;
 370	}
 371	/* record if we encounter less permissive parameters */
 372	cached_vstart = vstart;
 373	cached_align = align;
 374
 375	/* find starting point for our search */
 376	if (free_vmap_cache) {
 377		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 378		addr = ALIGN(first->va_end, align);
 379		if (addr < vstart)
 380			goto nocache;
 381		if (addr + size - 1 < addr)
 382			goto overflow;
 383
 384	} else {
 385		addr = ALIGN(vstart, align);
 386		if (addr + size - 1 < addr)
 387			goto overflow;
 388
 389		n = vmap_area_root.rb_node;
 390		first = NULL;
 391
 392		while (n) {
 393			struct vmap_area *tmp;
 394			tmp = rb_entry(n, struct vmap_area, rb_node);
 395			if (tmp->va_end >= addr) {
 396				first = tmp;
 397				if (tmp->va_start <= addr)
 398					break;
 399				n = n->rb_left;
 400			} else
 401				n = n->rb_right;
 402		}
 403
 404		if (!first)
 405			goto found;
 406	}
 407
 408	/* from the starting point, walk areas until a suitable hole is found */
 409	while (addr + size > first->va_start && addr + size <= vend) {
 410		if (addr + cached_hole_size < first->va_start)
 411			cached_hole_size = first->va_start - addr;
 412		addr = ALIGN(first->va_end, align);
 413		if (addr + size - 1 < addr)
 414			goto overflow;
 415
 416		n = rb_next(&first->rb_node);
 417		if (n)
 418			first = rb_entry(n, struct vmap_area, rb_node);
 419		else
 420			goto found;
 421	}
 422
 423found:
 424	if (addr + size > vend)
 
 
 
 425		goto overflow;
 426
 427	va->va_start = addr;
 428	va->va_end = addr + size;
 429	va->flags = 0;
 430	__insert_vmap_area(va);
 431	free_vmap_cache = &va->rb_node;
 
 432	spin_unlock(&vmap_area_lock);
 433
 434	BUG_ON(va->va_start & (align-1));
 435	BUG_ON(va->va_start < vstart);
 436	BUG_ON(va->va_end > vend);
 437
 
 
 
 
 
 
 438	return va;
 439
 440overflow:
 441	spin_unlock(&vmap_area_lock);
 442	if (!purged) {
 443		purge_vmap_area_lazy();
 444		purged = 1;
 445		goto retry;
 446	}
 447	if (printk_ratelimit())
 448		printk(KERN_WARNING
 449			"vmap allocation for size %lu failed: "
 450			"use vmalloc=<size> to increase size.\n", size);
 451	kfree(va);
 452	return ERR_PTR(-EBUSY);
 453}
 454
 455static void __free_vmap_area(struct vmap_area *va)
 456{
 457	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 458
 459	if (free_vmap_cache) {
 460		if (va->va_end < cached_vstart) {
 461			free_vmap_cache = NULL;
 462		} else {
 463			struct vmap_area *cache;
 464			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 465			if (va->va_start <= cache->va_start) {
 466				free_vmap_cache = rb_prev(&va->rb_node);
 467				/*
 468				 * We don't try to update cached_hole_size or
 469				 * cached_align, but it won't go very wrong.
 470				 */
 471			}
 472		}
 473	}
 474	rb_erase(&va->rb_node, &vmap_area_root);
 475	RB_CLEAR_NODE(&va->rb_node);
 476	list_del_rcu(&va->list);
 477
 478	/*
 479	 * Track the highest possible candidate for pcpu area
 480	 * allocation.  Areas outside of vmalloc area can be returned
 481	 * here too, consider only end addresses which fall inside
 482	 * vmalloc area proper.
 483	 */
 484	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 485		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 486
 487	kfree_rcu(va, rcu_head);
 488}
 489
 490/*
 491 * Free a region of KVA allocated by alloc_vmap_area
 492 */
 493static void free_vmap_area(struct vmap_area *va)
 494{
 495	spin_lock(&vmap_area_lock);
 496	__free_vmap_area(va);
 497	spin_unlock(&vmap_area_lock);
 498}
 499
 500/*
 501 * Clear the pagetable entries of a given vmap_area
 502 */
 503static void unmap_vmap_area(struct vmap_area *va)
 504{
 505	vunmap_page_range(va->va_start, va->va_end);
 506}
 
 507
 508static void vmap_debug_free_range(unsigned long start, unsigned long end)
 509{
 510	/*
 511	 * Unmap page tables and force a TLB flush immediately if
 512	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 513	 * bugs similarly to those in linear kernel virtual address
 514	 * space after a page has been freed.
 515	 *
 516	 * All the lazy freeing logic is still retained, in order to
 517	 * minimise intrusiveness of this debugging feature.
 518	 *
 519	 * This is going to be *slow* (linear kernel virtual address
 520	 * debugging doesn't do a broadcast TLB flush so it is a lot
 521	 * faster).
 522	 */
 523#ifdef CONFIG_DEBUG_PAGEALLOC
 524	vunmap_page_range(start, end);
 525	flush_tlb_kernel_range(start, end);
 526#endif
 527}
 
 528
 529/*
 530 * lazy_max_pages is the maximum amount of virtual address space we gather up
 531 * before attempting to purge with a TLB flush.
 532 *
 533 * There is a tradeoff here: a larger number will cover more kernel page tables
 534 * and take slightly longer to purge, but it will linearly reduce the number of
 535 * global TLB flushes that must be performed. It would seem natural to scale
 536 * this number up linearly with the number of CPUs (because vmapping activity
 537 * could also scale linearly with the number of CPUs), however it is likely
 538 * that in practice, workloads might be constrained in other ways that mean
 539 * vmap activity will not scale linearly with CPUs. Also, I want to be
 540 * conservative and not introduce a big latency on huge systems, so go with
 541 * a less aggressive log scale. It will still be an improvement over the old
 542 * code, and it will be simple to change the scale factor if we find that it
 543 * becomes a problem on bigger systems.
 544 */
 545static unsigned long lazy_max_pages(void)
 546{
 547	unsigned int log;
 548
 549	log = fls(num_online_cpus());
 550
 551	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 552}
 553
 554static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 
 
 
 
 
 
 
 555
 556/* for per-CPU blocks */
 557static void purge_fragmented_blocks_allcpus(void);
 558
 
 559/*
 560 * called before a call to iounmap() if the caller wants vm_area_struct's
 561 * immediately freed.
 562 */
 563void set_iounmap_nonlazy(void)
 564{
 565	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 566}
 
 567
 568/*
 569 * Purges all lazily-freed vmap areas.
 570 *
 571 * If sync is 0 then don't purge if there is already a purge in progress.
 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 574 * their own TLB flushing).
 575 * Returns with *start = min(*start, lowest purged address)
 576 *              *end = max(*end, highest purged address)
 577 */
 578static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 579					int sync, int force_flush)
 580{
 581	static DEFINE_SPINLOCK(purge_lock);
 582	LIST_HEAD(valist);
 583	struct vmap_area *va;
 584	struct vmap_area *n_va;
 585	int nr = 0;
 586
 587	/*
 588	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 589	 * should not expect such behaviour. This just simplifies locking for
 590	 * the case that isn't actually used at the moment anyway.
 591	 */
 592	if (!sync && !force_flush) {
 593		if (!spin_trylock(&purge_lock))
 594			return;
 595	} else
 596		spin_lock(&purge_lock);
 597
 598	if (sync)
 599		purge_fragmented_blocks_allcpus();
 
 
 600
 601	rcu_read_lock();
 602	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 603		if (va->flags & VM_LAZY_FREE) {
 604			if (va->va_start < *start)
 605				*start = va->va_start;
 606			if (va->va_end > *end)
 607				*end = va->va_end;
 608			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 609			list_add_tail(&va->purge_list, &valist);
 610			va->flags |= VM_LAZY_FREEING;
 611			va->flags &= ~VM_LAZY_FREE;
 612		}
 613	}
 614	rcu_read_unlock();
 615
 616	if (nr)
 617		atomic_sub(nr, &vmap_lazy_nr);
 
 
 
 
 
 618
 619	if (nr || force_flush)
 620		flush_tlb_kernel_range(*start, *end);
 621
 622	if (nr) {
 623		spin_lock(&vmap_area_lock);
 624		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 625			__free_vmap_area(va);
 626		spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627	}
 628	spin_unlock(&purge_lock);
 
 629}
 630
 631/*
 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 633 * is already purging.
 634 */
 635static void try_purge_vmap_area_lazy(void)
 636{
 637	unsigned long start = ULONG_MAX, end = 0;
 638
 639	__purge_vmap_area_lazy(&start, &end, 0, 0);
 
 640}
 641
 642/*
 643 * Kick off a purge of the outstanding lazy areas.
 644 */
 645static void purge_vmap_area_lazy(void)
 646{
 647	unsigned long start = ULONG_MAX, end = 0;
 648
 649	__purge_vmap_area_lazy(&start, &end, 1, 0);
 
 650}
 651
 652/*
 653 * Free a vmap area, caller ensuring that the area has been unmapped
 654 * and flush_cache_vunmap had been called for the correct range
 655 * previously.
 656 */
 657static void free_vmap_area_noflush(struct vmap_area *va)
 658{
 659	va->flags |= VM_LAZY_FREE;
 660	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 661	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 662		try_purge_vmap_area_lazy();
 663}
 664
 665/*
 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 667 * called for the correct range previously.
 668 */
 669static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 670{
 671	unmap_vmap_area(va);
 672	free_vmap_area_noflush(va);
 
 
 
 
 
 
 
 
 
 
 673}
 674
 675/*
 676 * Free and unmap a vmap area
 677 */
 678static void free_unmap_vmap_area(struct vmap_area *va)
 679{
 680	flush_cache_vunmap(va->va_start, va->va_end);
 681	free_unmap_vmap_area_noflush(va);
 
 
 
 
 682}
 683
 684static struct vmap_area *find_vmap_area(unsigned long addr)
 685{
 686	struct vmap_area *va;
 687
 688	spin_lock(&vmap_area_lock);
 689	va = __find_vmap_area(addr);
 690	spin_unlock(&vmap_area_lock);
 691
 692	return va;
 693}
 694
 695static void free_unmap_vmap_area_addr(unsigned long addr)
 696{
 697	struct vmap_area *va;
 698
 699	va = find_vmap_area(addr);
 700	BUG_ON(!va);
 701	free_unmap_vmap_area(va);
 702}
 703
 704
 705/*** Per cpu kva allocator ***/
 706
 707/*
 708 * vmap space is limited especially on 32 bit architectures. Ensure there is
 709 * room for at least 16 percpu vmap blocks per CPU.
 710 */
 711/*
 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 713 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 714 * instead (we just need a rough idea)
 715 */
 716#if BITS_PER_LONG == 32
 717#define VMALLOC_SPACE		(128UL*1024*1024)
 718#else
 719#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 720#endif
 721
 722#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 723#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 724#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 725#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 726#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 727#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 728#define VMAP_BBMAP_BITS		\
 729		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 730		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 731			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 732
 733#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 734
 735static bool vmap_initialized __read_mostly = false;
 736
 737struct vmap_block_queue {
 738	spinlock_t lock;
 739	struct list_head free;
 740};
 741
 742struct vmap_block {
 743	spinlock_t lock;
 744	struct vmap_area *va;
 745	struct vmap_block_queue *vbq;
 746	unsigned long free, dirty;
 747	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 748	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 749	struct list_head free_list;
 750	struct rcu_head rcu_head;
 751	struct list_head purge;
 752};
 753
 754/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 755static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 756
 757/*
 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 759 * in the free path. Could get rid of this if we change the API to return a
 760 * "cookie" from alloc, to be passed to free. But no big deal yet.
 761 */
 762static DEFINE_SPINLOCK(vmap_block_tree_lock);
 763static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 764
 765/*
 766 * We should probably have a fallback mechanism to allocate virtual memory
 767 * out of partially filled vmap blocks. However vmap block sizing should be
 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 769 * big problem.
 770 */
 771
 772static unsigned long addr_to_vb_idx(unsigned long addr)
 773{
 774	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 775	addr /= VMAP_BLOCK_SIZE;
 776	return addr;
 777}
 778
 779static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780{
 781	struct vmap_block_queue *vbq;
 782	struct vmap_block *vb;
 783	struct vmap_area *va;
 784	unsigned long vb_idx;
 785	int node, err;
 
 786
 787	node = numa_node_id();
 788
 789	vb = kmalloc_node(sizeof(struct vmap_block),
 790			gfp_mask & GFP_RECLAIM_MASK, node);
 791	if (unlikely(!vb))
 792		return ERR_PTR(-ENOMEM);
 793
 794	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 795					VMALLOC_START, VMALLOC_END,
 796					node, gfp_mask);
 797	if (IS_ERR(va)) {
 798		kfree(vb);
 799		return ERR_CAST(va);
 800	}
 801
 802	err = radix_tree_preload(gfp_mask);
 803	if (unlikely(err)) {
 804		kfree(vb);
 805		free_vmap_area(va);
 806		return ERR_PTR(err);
 807	}
 808
 809	spin_lock_init(&vb->lock);
 810	vb->va = va;
 811	vb->free = VMAP_BBMAP_BITS;
 
 
 812	vb->dirty = 0;
 813	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 814	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 815	INIT_LIST_HEAD(&vb->free_list);
 816
 817	vb_idx = addr_to_vb_idx(va->va_start);
 818	spin_lock(&vmap_block_tree_lock);
 819	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 820	spin_unlock(&vmap_block_tree_lock);
 821	BUG_ON(err);
 822	radix_tree_preload_end();
 
 823
 824	vbq = &get_cpu_var(vmap_block_queue);
 825	vb->vbq = vbq;
 826	spin_lock(&vbq->lock);
 827	list_add_rcu(&vb->free_list, &vbq->free);
 828	spin_unlock(&vbq->lock);
 829	put_cpu_var(vmap_block_queue);
 830
 831	return vb;
 832}
 833
 834static void free_vmap_block(struct vmap_block *vb)
 835{
 836	struct vmap_block *tmp;
 837	unsigned long vb_idx;
 838
 839	vb_idx = addr_to_vb_idx(vb->va->va_start);
 840	spin_lock(&vmap_block_tree_lock);
 841	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 842	spin_unlock(&vmap_block_tree_lock);
 843	BUG_ON(tmp != vb);
 844
 845	free_vmap_area_noflush(vb->va);
 846	kfree_rcu(vb, rcu_head);
 847}
 848
 849static void purge_fragmented_blocks(int cpu)
 850{
 851	LIST_HEAD(purge);
 852	struct vmap_block *vb;
 853	struct vmap_block *n_vb;
 854	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 855
 856	rcu_read_lock();
 857	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 858
 859		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 860			continue;
 861
 862		spin_lock(&vb->lock);
 863		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 864			vb->free = 0; /* prevent further allocs after releasing lock */
 865			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 866			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 867			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 868			spin_lock(&vbq->lock);
 869			list_del_rcu(&vb->free_list);
 870			spin_unlock(&vbq->lock);
 871			spin_unlock(&vb->lock);
 872			list_add_tail(&vb->purge, &purge);
 873		} else
 874			spin_unlock(&vb->lock);
 875	}
 876	rcu_read_unlock();
 877
 878	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 879		list_del(&vb->purge);
 880		free_vmap_block(vb);
 881	}
 882}
 883
 884static void purge_fragmented_blocks_thiscpu(void)
 885{
 886	purge_fragmented_blocks(smp_processor_id());
 887}
 888
 889static void purge_fragmented_blocks_allcpus(void)
 890{
 891	int cpu;
 892
 893	for_each_possible_cpu(cpu)
 894		purge_fragmented_blocks(cpu);
 895}
 896
 897static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 898{
 899	struct vmap_block_queue *vbq;
 900	struct vmap_block *vb;
 901	unsigned long addr = 0;
 902	unsigned int order;
 903	int purge = 0;
 904
 905	BUG_ON(size & ~PAGE_MASK);
 906	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 
 
 
 
 
 
 
 
 907	order = get_order(size);
 908
 909again:
 910	rcu_read_lock();
 911	vbq = &get_cpu_var(vmap_block_queue);
 912	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 913		int i;
 914
 915		spin_lock(&vb->lock);
 916		if (vb->free < 1UL << order)
 917			goto next;
 918
 919		i = bitmap_find_free_region(vb->alloc_map,
 920						VMAP_BBMAP_BITS, order);
 921
 922		if (i < 0) {
 923			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 924				/* fragmented and no outstanding allocations */
 925				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 926				purge = 1;
 927			}
 928			goto next;
 929		}
 930		addr = vb->va->va_start + (i << PAGE_SHIFT);
 931		BUG_ON(addr_to_vb_idx(addr) !=
 932				addr_to_vb_idx(vb->va->va_start));
 933		vb->free -= 1UL << order;
 934		if (vb->free == 0) {
 935			spin_lock(&vbq->lock);
 936			list_del_rcu(&vb->free_list);
 937			spin_unlock(&vbq->lock);
 938		}
 
 939		spin_unlock(&vb->lock);
 940		break;
 941next:
 942		spin_unlock(&vb->lock);
 943	}
 944
 945	if (purge)
 946		purge_fragmented_blocks_thiscpu();
 947
 948	put_cpu_var(vmap_block_queue);
 949	rcu_read_unlock();
 950
 951	if (!addr) {
 952		vb = new_vmap_block(gfp_mask);
 953		if (IS_ERR(vb))
 954			return vb;
 955		goto again;
 956	}
 957
 958	return (void *)addr;
 959}
 960
 961static void vb_free(const void *addr, unsigned long size)
 962{
 963	unsigned long offset;
 964	unsigned long vb_idx;
 965	unsigned int order;
 966	struct vmap_block *vb;
 967
 968	BUG_ON(size & ~PAGE_MASK);
 969	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 970
 971	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 972
 973	order = get_order(size);
 
 
 974
 975	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 976
 977	vb_idx = addr_to_vb_idx((unsigned long)addr);
 978	rcu_read_lock();
 979	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 980	rcu_read_unlock();
 981	BUG_ON(!vb);
 982
 983	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 
 984
 985	spin_lock(&vb->lock);
 986	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 
 
 
 987
 988	vb->dirty += 1UL << order;
 989	if (vb->dirty == VMAP_BBMAP_BITS) {
 990		BUG_ON(vb->free);
 991		spin_unlock(&vb->lock);
 992		free_vmap_block(vb);
 993	} else
 994		spin_unlock(&vb->lock);
 995}
 996
 997/**
 998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 999 *
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1005 *
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1009 */
1010void vm_unmap_aliases(void)
1011{
1012	unsigned long start = ULONG_MAX, end = 0;
1013	int cpu;
1014	int flush = 0;
1015
1016	if (unlikely(!vmap_initialized))
1017		return;
1018
 
 
1019	for_each_possible_cpu(cpu) {
1020		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021		struct vmap_block *vb;
1022
1023		rcu_read_lock();
1024		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025			int i;
1026
1027			spin_lock(&vb->lock);
1028			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029			while (i < VMAP_BBMAP_BITS) {
1030				unsigned long s, e;
1031				int j;
1032				j = find_next_zero_bit(vb->dirty_map,
1033					VMAP_BBMAP_BITS, i);
1034
1035				s = vb->va->va_start + (i << PAGE_SHIFT);
1036				e = vb->va->va_start + (j << PAGE_SHIFT);
1037				flush = 1;
 
 
1038
1039				if (s < start)
1040					start = s;
1041				if (e > end)
1042					end = e;
1043
1044				i = j;
1045				i = find_next_bit(vb->dirty_map,
1046							VMAP_BBMAP_BITS, i);
1047			}
1048			spin_unlock(&vb->lock);
1049		}
1050		rcu_read_unlock();
1051	}
1052
1053	__purge_vmap_area_lazy(&start, &end, 1, flush);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054}
1055EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1056
1057/**
1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1059 * @mem: the pointer returned by vm_map_ram
1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1061 */
1062void vm_unmap_ram(const void *mem, unsigned int count)
1063{
1064	unsigned long size = count << PAGE_SHIFT;
1065	unsigned long addr = (unsigned long)mem;
 
1066
 
1067	BUG_ON(!addr);
1068	BUG_ON(addr < VMALLOC_START);
1069	BUG_ON(addr > VMALLOC_END);
1070	BUG_ON(addr & (PAGE_SIZE-1));
1071
1072	debug_check_no_locks_freed(mem, size);
1073	vmap_debug_free_range(addr, addr+size);
1074
1075	if (likely(count <= VMAP_MAX_ALLOC))
1076		vb_free(mem, size);
1077	else
1078		free_unmap_vmap_area_addr(addr);
 
 
 
 
 
 
 
1079}
1080EXPORT_SYMBOL(vm_unmap_ram);
1081
1082/**
1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1084 * @pages: an array of pointers to the pages to be mapped
1085 * @count: number of pages
1086 * @node: prefer to allocate data structures on this node
1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
 
 
 
 
 
1088 *
1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1090 */
1091void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1092{
1093	unsigned long size = count << PAGE_SHIFT;
1094	unsigned long addr;
1095	void *mem;
1096
1097	if (likely(count <= VMAP_MAX_ALLOC)) {
1098		mem = vb_alloc(size, GFP_KERNEL);
1099		if (IS_ERR(mem))
1100			return NULL;
1101		addr = (unsigned long)mem;
1102	} else {
1103		struct vmap_area *va;
1104		va = alloc_vmap_area(size, PAGE_SIZE,
1105				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1106		if (IS_ERR(va))
1107			return NULL;
1108
1109		addr = va->va_start;
1110		mem = (void *)addr;
1111	}
1112	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 
 
 
 
1113		vm_unmap_ram(mem, count);
1114		return NULL;
1115	}
 
1116	return mem;
1117}
1118EXPORT_SYMBOL(vm_map_ram);
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/**
1121 * vm_area_register_early - register vmap area early during boot
1122 * @vm: vm_struct to register
1123 * @align: requested alignment
1124 *
1125 * This function is used to register kernel vm area before
1126 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1127 * proper values on entry and other fields should be zero.  On return,
1128 * vm->addr contains the allocated address.
1129 *
1130 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1131 */
1132void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1133{
1134	static size_t vm_init_off __initdata;
1135	unsigned long addr;
1136
1137	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1138	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1139
1140	vm->addr = (void *)addr;
1141
1142	vm->next = vmlist;
1143	vmlist = vm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144}
1145
1146void __init vmalloc_init(void)
1147{
1148	struct vmap_area *va;
1149	struct vm_struct *tmp;
1150	int i;
1151
 
 
 
 
 
1152	for_each_possible_cpu(i) {
1153		struct vmap_block_queue *vbq;
 
1154
1155		vbq = &per_cpu(vmap_block_queue, i);
1156		spin_lock_init(&vbq->lock);
1157		INIT_LIST_HEAD(&vbq->free);
 
 
 
1158	}
1159
1160	/* Import existing vmlist entries. */
1161	for (tmp = vmlist; tmp; tmp = tmp->next) {
1162		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1163		va->flags = tmp->flags | VM_VM_AREA;
 
 
1164		va->va_start = (unsigned long)tmp->addr;
1165		va->va_end = va->va_start + tmp->size;
1166		__insert_vmap_area(va);
 
1167	}
1168
1169	vmap_area_pcpu_hole = VMALLOC_END;
1170
 
 
1171	vmap_initialized = true;
1172}
1173
1174/**
1175 * map_kernel_range_noflush - map kernel VM area with the specified pages
1176 * @addr: start of the VM area to map
1177 * @size: size of the VM area to map
1178 * @prot: page protection flags to use
1179 * @pages: pages to map
1180 *
1181 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1182 * specify should have been allocated using get_vm_area() and its
1183 * friends.
1184 *
1185 * NOTE:
1186 * This function does NOT do any cache flushing.  The caller is
1187 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1188 * before calling this function.
1189 *
1190 * RETURNS:
1191 * The number of pages mapped on success, -errno on failure.
1192 */
1193int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1194			     pgprot_t prot, struct page **pages)
1195{
1196	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1197}
1198
1199/**
1200 * unmap_kernel_range_noflush - unmap kernel VM area
1201 * @addr: start of the VM area to unmap
1202 * @size: size of the VM area to unmap
1203 *
1204 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1205 * specify should have been allocated using get_vm_area() and its
1206 * friends.
1207 *
1208 * NOTE:
1209 * This function does NOT do any cache flushing.  The caller is
1210 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1211 * before calling this function and flush_tlb_kernel_range() after.
1212 */
1213void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1214{
1215	vunmap_page_range(addr, addr + size);
1216}
1217EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1218
1219/**
1220 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1221 * @addr: start of the VM area to unmap
1222 * @size: size of the VM area to unmap
1223 *
1224 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1225 * the unmapping and tlb after.
1226 */
1227void unmap_kernel_range(unsigned long addr, unsigned long size)
1228{
1229	unsigned long end = addr + size;
1230
1231	flush_cache_vunmap(addr, end);
1232	vunmap_page_range(addr, end);
1233	flush_tlb_kernel_range(addr, end);
1234}
1235
1236int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
 
1237{
1238	unsigned long addr = (unsigned long)area->addr;
1239	unsigned long end = addr + area->size - PAGE_SIZE;
1240	int err;
1241
1242	err = vmap_page_range(addr, end, prot, *pages);
1243	if (err > 0) {
1244		*pages += err;
1245		err = 0;
1246	}
1247
1248	return err;
1249}
1250EXPORT_SYMBOL_GPL(map_vm_area);
1251
1252/*** Old vmalloc interfaces ***/
1253DEFINE_RWLOCK(vmlist_lock);
1254struct vm_struct *vmlist;
1255
1256static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1257			      unsigned long flags, void *caller)
1258{
1259	struct vm_struct *tmp, **p;
1260
1261	vm->flags = flags;
1262	vm->addr = (void *)va->va_start;
1263	vm->size = va->va_end - va->va_start;
1264	vm->caller = caller;
1265	va->private = vm;
1266	va->flags |= VM_VM_AREA;
1267
1268	write_lock(&vmlist_lock);
1269	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1270		if (tmp->addr >= vm->addr)
1271			break;
1272	}
1273	vm->next = *p;
1274	*p = vm;
1275	write_unlock(&vmlist_lock);
1276}
1277
1278static struct vm_struct *__get_vm_area_node(unsigned long size,
1279		unsigned long align, unsigned long flags, unsigned long start,
1280		unsigned long end, int node, gfp_t gfp_mask, void *caller)
 
1281{
1282	static struct vmap_area *va;
1283	struct vm_struct *area;
 
1284
1285	BUG_ON(in_interrupt());
1286	if (flags & VM_IOREMAP) {
1287		int bit = fls(size);
1288
1289		if (bit > IOREMAP_MAX_ORDER)
1290			bit = IOREMAP_MAX_ORDER;
1291		else if (bit < PAGE_SHIFT)
1292			bit = PAGE_SHIFT;
1293
1294		align = 1ul << bit;
1295	}
1296
1297	size = PAGE_ALIGN(size);
1298	if (unlikely(!size))
1299		return NULL;
1300
 
 
 
 
1301	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1302	if (unlikely(!area))
1303		return NULL;
1304
1305	/*
1306	 * We always allocate a guard page.
1307	 */
1308	size += PAGE_SIZE;
1309
1310	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1311	if (IS_ERR(va)) {
1312		kfree(area);
1313		return NULL;
1314	}
1315
1316	insert_vmalloc_vm(area, va, flags, caller);
1317	return area;
1318}
1319
1320struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1321				unsigned long start, unsigned long end)
1322{
1323	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1324						__builtin_return_address(0));
1325}
1326EXPORT_SYMBOL_GPL(__get_vm_area);
1327
1328struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1329				       unsigned long start, unsigned long end,
1330				       void *caller)
1331{
1332	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1333				  caller);
1334}
1335
1336/**
1337 *	get_vm_area  -  reserve a contiguous kernel virtual area
1338 *	@size:		size of the area
1339 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 
 
 
 
1340 *
1341 *	Search an area of @size in the kernel virtual mapping area,
1342 *	and reserved it for out purposes.  Returns the area descriptor
1343 *	on success or %NULL on failure.
1344 */
1345struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1346{
1347	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1348				-1, GFP_KERNEL, __builtin_return_address(0));
 
 
1349}
1350
1351struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1352				void *caller)
1353{
1354	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1355						-1, GFP_KERNEL, caller);
 
1356}
1357
1358static struct vm_struct *find_vm_area(const void *addr)
 
 
 
 
 
 
 
 
 
 
1359{
1360	struct vmap_area *va;
1361
1362	va = find_vmap_area((unsigned long)addr);
1363	if (va && va->flags & VM_VM_AREA)
1364		return va->private;
1365
1366	return NULL;
1367}
1368
1369/**
1370 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1371 *	@addr:		base address
 
 
 
 
1372 *
1373 *	Search for the kernel VM area starting at @addr, and remove it.
1374 *	This function returns the found VM area, but using it is NOT safe
1375 *	on SMP machines, except for its size or flags.
1376 */
1377struct vm_struct *remove_vm_area(const void *addr)
1378{
1379	struct vmap_area *va;
1380
1381	va = find_vmap_area((unsigned long)addr);
1382	if (va && va->flags & VM_VM_AREA) {
1383		struct vm_struct *vm = va->private;
1384		struct vm_struct *tmp, **p;
1385		/*
1386		 * remove from list and disallow access to this vm_struct
1387		 * before unmap. (address range confliction is maintained by
1388		 * vmap.)
1389		 */
1390		write_lock(&vmlist_lock);
1391		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1392			;
1393		*p = tmp->next;
1394		write_unlock(&vmlist_lock);
1395
1396		vmap_debug_free_range(va->va_start, va->va_end);
1397		free_unmap_vmap_area(va);
1398		vm->size -= PAGE_SIZE;
1399
1400		return vm;
1401	}
 
 
1402	return NULL;
1403}
1404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405static void __vunmap(const void *addr, int deallocate_pages)
1406{
1407	struct vm_struct *area;
1408
1409	if (!addr)
1410		return;
1411
1412	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1413		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1414		return;
1415	}
1416
1417	area = remove_vm_area(addr);
1418	if (unlikely(!area)) {
1419		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1420				addr);
1421		return;
1422	}
1423
1424	debug_check_no_locks_freed(addr, area->size);
1425	debug_check_no_obj_freed(addr, area->size);
 
 
 
 
1426
1427	if (deallocate_pages) {
 
1428		int i;
1429
1430		for (i = 0; i < area->nr_pages; i++) {
1431			struct page *page = area->pages[i];
1432
1433			BUG_ON(!page);
1434			__free_page(page);
 
1435		}
 
1436
1437		if (area->flags & VM_VPAGES)
1438			vfree(area->pages);
1439		else
1440			kfree(area->pages);
1441	}
1442
1443	kfree(area);
1444	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
1445}
1446
1447/**
1448 *	vfree  -  release memory allocated by vmalloc()
1449 *	@addr:		memory base address
1450 *
1451 *	Free the virtually continuous memory area starting at @addr, as
1452 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1453 *	NULL, no operation is performed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454 *
1455 *	Must not be called in interrupt context.
 
 
 
 
 
 
1456 */
1457void vfree(const void *addr)
1458{
1459	BUG_ON(in_interrupt());
1460
1461	kmemleak_free(addr);
1462
1463	__vunmap(addr, 1);
 
 
 
 
 
1464}
1465EXPORT_SYMBOL(vfree);
1466
1467/**
1468 *	vunmap  -  release virtual mapping obtained by vmap()
1469 *	@addr:		memory base address
1470 *
1471 *	Free the virtually contiguous memory area starting at @addr,
1472 *	which was created from the page array passed to vmap().
1473 *
1474 *	Must not be called in interrupt context.
1475 */
1476void vunmap(const void *addr)
1477{
1478	BUG_ON(in_interrupt());
1479	might_sleep();
1480	__vunmap(addr, 0);
 
1481}
1482EXPORT_SYMBOL(vunmap);
1483
1484/**
1485 *	vmap  -  map an array of pages into virtually contiguous space
1486 *	@pages:		array of page pointers
1487 *	@count:		number of pages to map
1488 *	@flags:		vm_area->flags
1489 *	@prot:		page protection for the mapping
 
 
 
 
 
 
1490 *
1491 *	Maps @count pages from @pages into contiguous kernel virtual
1492 *	space.
1493 */
1494void *vmap(struct page **pages, unsigned int count,
1495		unsigned long flags, pgprot_t prot)
1496{
1497	struct vm_struct *area;
 
 
1498
1499	might_sleep();
1500
1501	if (count > totalram_pages)
1502		return NULL;
1503
1504	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1505					__builtin_return_address(0));
1506	if (!area)
1507		return NULL;
1508
1509	if (map_vm_area(area, prot, &pages)) {
 
 
1510		vunmap(area->addr);
1511		return NULL;
1512	}
1513
 
 
 
 
1514	return area->addr;
1515}
1516EXPORT_SYMBOL(vmap);
1517
1518static void *__vmalloc_node(unsigned long size, unsigned long align,
1519			    gfp_t gfp_mask, pgprot_t prot,
1520			    int node, void *caller);
1521static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1522				 pgprot_t prot, int node, void *caller)
 
 
 
1523{
1524	const int order = 0;
1525	struct page **pages;
1526	unsigned int nr_pages, array_size, i;
1527	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1528
1529	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1530	array_size = (nr_pages * sizeof(struct page *));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531
1532	area->nr_pages = nr_pages;
1533	/* Please note that the recursion is strictly bounded. */
1534	if (array_size > PAGE_SIZE) {
1535		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1536				PAGE_KERNEL, node, caller);
1537		area->flags |= VM_VPAGES;
1538	} else {
1539		pages = kmalloc_node(array_size, nested_gfp, node);
1540	}
1541	area->pages = pages;
1542	area->caller = caller;
1543	if (!area->pages) {
1544		remove_vm_area(area->addr);
1545		kfree(area);
 
 
1546		return NULL;
1547	}
1548
1549	for (i = 0; i < area->nr_pages; i++) {
1550		struct page *page;
1551		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1552
1553		if (node < 0)
1554			page = alloc_page(tmp_mask);
1555		else
1556			page = alloc_pages_node(node, tmp_mask, order);
1557
1558		if (unlikely(!page)) {
1559			/* Successfully allocated i pages, free them in __vunmap() */
1560			area->nr_pages = i;
1561			goto fail;
1562		}
1563		area->pages[i] = page;
 
 
 
 
 
1564	}
1565
1566	if (map_vm_area(area, prot, &pages))
 
 
 
 
1567		goto fail;
 
 
1568	return area->addr;
1569
1570fail:
1571	warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1572			  "allocated %ld of %ld bytes\n",
1573			  (area->nr_pages*PAGE_SIZE), area->size);
1574	vfree(area->addr);
1575	return NULL;
1576}
1577
1578/**
1579 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1580 *	@size:		allocation size
1581 *	@align:		desired alignment
1582 *	@start:		vm area range start
1583 *	@end:		vm area range end
1584 *	@gfp_mask:	flags for the page level allocator
1585 *	@prot:		protection mask for the allocated pages
1586 *	@node:		node to use for allocation or -1
1587 *	@caller:	caller's return address
1588 *
1589 *	Allocate enough pages to cover @size from the page level
1590 *	allocator with @gfp_mask flags.  Map them into contiguous
1591 *	kernel virtual space, using a pagetable protection of @prot.
 
 
 
1592 */
1593void *__vmalloc_node_range(unsigned long size, unsigned long align,
1594			unsigned long start, unsigned long end, gfp_t gfp_mask,
1595			pgprot_t prot, int node, void *caller)
 
1596{
1597	struct vm_struct *area;
1598	void *addr;
1599	unsigned long real_size = size;
 
 
1600
1601	size = PAGE_ALIGN(size);
1602	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1603		return NULL;
1604
1605	area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1606				  gfp_mask, caller);
1607
1608	if (!area)
1609		return NULL;
 
 
 
 
1610
1611	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613	/*
1614	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1615	 * structures allocated in the __get_vm_area_node() function contain
1616	 * references to the virtual address of the vmalloc'ed block.
1617	 */
1618	kmemleak_alloc(addr, real_size, 3, gfp_mask);
 
 
 
1619
1620	return addr;
 
 
 
 
 
 
 
 
 
 
1621}
1622
1623/**
1624 *	__vmalloc_node  -  allocate virtually contiguous memory
1625 *	@size:		allocation size
1626 *	@align:		desired alignment
1627 *	@gfp_mask:	flags for the page level allocator
1628 *	@prot:		protection mask for the allocated pages
1629 *	@node:		node to use for allocation or -1
1630 *	@caller:	caller's return address
1631 *
1632 *	Allocate enough pages to cover @size from the page level
1633 *	allocator with @gfp_mask flags.  Map them into contiguous
1634 *	kernel virtual space, using a pagetable protection of @prot.
1635 */
1636static void *__vmalloc_node(unsigned long size, unsigned long align,
1637			    gfp_t gfp_mask, pgprot_t prot,
1638			    int node, void *caller)
 
 
 
 
 
1639{
1640	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1641				gfp_mask, prot, node, caller);
1642}
 
 
 
 
 
 
 
 
1643
1644void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1645{
1646	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1647				__builtin_return_address(0));
1648}
1649EXPORT_SYMBOL(__vmalloc);
1650
1651static inline void *__vmalloc_node_flags(unsigned long size,
1652					int node, gfp_t flags)
 
 
 
 
 
 
 
 
 
 
 
1653{
1654	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1655					node, __builtin_return_address(0));
1656}
 
1657
1658/**
1659 *	vmalloc  -  allocate virtually contiguous memory
1660 *	@size:		allocation size
1661 *	Allocate enough pages to cover @size from the page level
1662 *	allocator and map them into contiguous kernel virtual space.
 
1663 *
1664 *	For tight control over page level allocator and protection flags
1665 *	use __vmalloc() instead.
1666 */
1667void *vmalloc(unsigned long size)
1668{
1669	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
 
 
1670}
1671EXPORT_SYMBOL(vmalloc);
1672
1673/**
1674 *	vzalloc - allocate virtually contiguous memory with zero fill
1675 *	@size:	allocation size
1676 *	Allocate enough pages to cover @size from the page level
1677 *	allocator and map them into contiguous kernel virtual space.
1678 *	The memory allocated is set to zero.
 
 
 
 
1679 *
1680 *	For tight control over page level allocator and protection flags
1681 *	use __vmalloc() instead.
1682 */
1683void *vzalloc(unsigned long size)
1684{
1685	return __vmalloc_node_flags(size, -1,
1686				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1687}
1688EXPORT_SYMBOL(vzalloc);
1689
1690/**
1691 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1692 * @size: allocation size
1693 *
1694 * The resulting memory area is zeroed so it can be mapped to userspace
1695 * without leaking data.
 
 
1696 */
1697void *vmalloc_user(unsigned long size)
1698{
1699	struct vm_struct *area;
1700	void *ret;
1701
1702	ret = __vmalloc_node(size, SHMLBA,
1703			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1704			     PAGE_KERNEL, -1, __builtin_return_address(0));
1705	if (ret) {
1706		area = find_vm_area(ret);
1707		area->flags |= VM_USERMAP;
1708	}
1709	return ret;
1710}
1711EXPORT_SYMBOL(vmalloc_user);
1712
1713/**
1714 *	vmalloc_node  -  allocate memory on a specific node
1715 *	@size:		allocation size
1716 *	@node:		numa node
1717 *
1718 *	Allocate enough pages to cover @size from the page level
1719 *	allocator and map them into contiguous kernel virtual space.
 
 
 
1720 *
1721 *	For tight control over page level allocator and protection flags
1722 *	use __vmalloc() instead.
1723 */
1724void *vmalloc_node(unsigned long size, int node)
1725{
1726	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1727					node, __builtin_return_address(0));
1728}
1729EXPORT_SYMBOL(vmalloc_node);
1730
1731/**
1732 * vzalloc_node - allocate memory on a specific node with zero fill
1733 * @size:	allocation size
1734 * @node:	numa node
1735 *
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator and map them into contiguous kernel virtual space.
1738 * The memory allocated is set to zero.
1739 *
1740 * For tight control over page level allocator and protection flags
1741 * use __vmalloc_node() instead.
1742 */
1743void *vzalloc_node(unsigned long size, int node)
1744{
1745	return __vmalloc_node_flags(size, node,
1746			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1747}
1748EXPORT_SYMBOL(vzalloc_node);
1749
1750#ifndef PAGE_KERNEL_EXEC
1751# define PAGE_KERNEL_EXEC PAGE_KERNEL
1752#endif
1753
1754/**
1755 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1756 *	@size:		allocation size
1757 *
1758 *	Kernel-internal function to allocate enough pages to cover @size
1759 *	the page level allocator and map them into contiguous and
1760 *	executable kernel virtual space.
1761 *
1762 *	For tight control over page level allocator and protection flags
1763 *	use __vmalloc() instead.
1764 */
1765
1766void *vmalloc_exec(unsigned long size)
1767{
1768	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1769			      -1, __builtin_return_address(0));
1770}
1771
1772#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1773#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1774#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1775#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1776#else
1777#define GFP_VMALLOC32 GFP_KERNEL
 
 
 
 
1778#endif
1779
1780/**
1781 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1782 *	@size:		allocation size
1783 *
1784 *	Allocate enough 32bit PA addressable pages to cover @size from the
1785 *	page level allocator and map them into contiguous kernel virtual space.
 
 
1786 */
1787void *vmalloc_32(unsigned long size)
1788{
1789	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1790			      -1, __builtin_return_address(0));
1791}
1792EXPORT_SYMBOL(vmalloc_32);
1793
1794/**
1795 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1796 *	@size:		allocation size
1797 *
1798 * The resulting memory area is 32bit addressable and zeroed so it can be
1799 * mapped to userspace without leaking data.
 
 
1800 */
1801void *vmalloc_32_user(unsigned long size)
1802{
1803	struct vm_struct *area;
1804	void *ret;
1805
1806	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1807			     -1, __builtin_return_address(0));
1808	if (ret) {
1809		area = find_vm_area(ret);
1810		area->flags |= VM_USERMAP;
1811	}
1812	return ret;
1813}
1814EXPORT_SYMBOL(vmalloc_32_user);
1815
1816/*
1817 * small helper routine , copy contents to buf from addr.
1818 * If the page is not present, fill zero.
1819 */
1820
1821static int aligned_vread(char *buf, char *addr, unsigned long count)
1822{
1823	struct page *p;
1824	int copied = 0;
1825
1826	while (count) {
1827		unsigned long offset, length;
1828
1829		offset = (unsigned long)addr & ~PAGE_MASK;
1830		length = PAGE_SIZE - offset;
1831		if (length > count)
1832			length = count;
1833		p = vmalloc_to_page(addr);
1834		/*
1835		 * To do safe access to this _mapped_ area, we need
1836		 * lock. But adding lock here means that we need to add
1837		 * overhead of vmalloc()/vfree() calles for this _debug_
1838		 * interface, rarely used. Instead of that, we'll use
1839		 * kmap() and get small overhead in this access function.
1840		 */
1841		if (p) {
1842			/*
1843			 * we can expect USER0 is not used (see vread/vwrite's
1844			 * function description)
1845			 */
1846			void *map = kmap_atomic(p, KM_USER0);
1847			memcpy(buf, map + offset, length);
1848			kunmap_atomic(map, KM_USER0);
1849		} else
1850			memset(buf, 0, length);
1851
1852		addr += length;
1853		buf += length;
1854		copied += length;
1855		count -= length;
1856	}
1857	return copied;
1858}
1859
1860static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1861{
1862	struct page *p;
1863	int copied = 0;
1864
1865	while (count) {
1866		unsigned long offset, length;
1867
1868		offset = (unsigned long)addr & ~PAGE_MASK;
1869		length = PAGE_SIZE - offset;
1870		if (length > count)
1871			length = count;
1872		p = vmalloc_to_page(addr);
1873		/*
1874		 * To do safe access to this _mapped_ area, we need
1875		 * lock. But adding lock here means that we need to add
1876		 * overhead of vmalloc()/vfree() calles for this _debug_
1877		 * interface, rarely used. Instead of that, we'll use
1878		 * kmap() and get small overhead in this access function.
1879		 */
1880		if (p) {
1881			/*
1882			 * we can expect USER0 is not used (see vread/vwrite's
1883			 * function description)
1884			 */
1885			void *map = kmap_atomic(p, KM_USER0);
1886			memcpy(map + offset, buf, length);
1887			kunmap_atomic(map, KM_USER0);
1888		}
1889		addr += length;
1890		buf += length;
1891		copied += length;
1892		count -= length;
1893	}
1894	return copied;
1895}
1896
1897/**
1898 *	vread() -  read vmalloc area in a safe way.
1899 *	@buf:		buffer for reading data
1900 *	@addr:		vm address.
1901 *	@count:		number of bytes to be read.
1902 *
1903 *	Returns # of bytes which addr and buf should be increased.
1904 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1905 *	includes any intersect with alive vmalloc area.
1906 *
1907 *	This function checks that addr is a valid vmalloc'ed area, and
1908 *	copy data from that area to a given buffer. If the given memory range
1909 *	of [addr...addr+count) includes some valid address, data is copied to
1910 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1911 *	IOREMAP area is treated as memory hole and no copy is done.
1912 *
1913 *	If [addr...addr+count) doesn't includes any intersects with alive
1914 *	vm_struct area, returns 0.
1915 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1916 *	the caller should guarantee KM_USER0 is not used.
1917 *
1918 *	Note: In usual ops, vread() is never necessary because the caller
1919 *	should know vmalloc() area is valid and can use memcpy().
1920 *	This is for routines which have to access vmalloc area without
1921 *	any informaion, as /dev/kmem.
1922 *
1923 */
1924
1925long vread(char *buf, char *addr, unsigned long count)
1926{
1927	struct vm_struct *tmp;
 
1928	char *vaddr, *buf_start = buf;
1929	unsigned long buflen = count;
1930	unsigned long n;
1931
1932	/* Don't allow overflow */
1933	if ((unsigned long) addr + count < count)
1934		count = -(unsigned long) addr;
1935
1936	read_lock(&vmlist_lock);
1937	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1938		vaddr = (char *) tmp->addr;
1939		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
1940			continue;
1941		while (addr < vaddr) {
1942			if (count == 0)
1943				goto finished;
1944			*buf = '\0';
1945			buf++;
1946			addr++;
1947			count--;
1948		}
1949		n = vaddr + tmp->size - PAGE_SIZE - addr;
1950		if (n > count)
1951			n = count;
1952		if (!(tmp->flags & VM_IOREMAP))
1953			aligned_vread(buf, addr, n);
1954		else /* IOREMAP area is treated as memory hole */
1955			memset(buf, 0, n);
1956		buf += n;
1957		addr += n;
1958		count -= n;
1959	}
1960finished:
1961	read_unlock(&vmlist_lock);
1962
1963	if (buf == buf_start)
1964		return 0;
1965	/* zero-fill memory holes */
1966	if (buf != buf_start + buflen)
1967		memset(buf, 0, buflen - (buf - buf_start));
1968
1969	return buflen;
1970}
1971
1972/**
1973 *	vwrite() -  write vmalloc area in a safe way.
1974 *	@buf:		buffer for source data
1975 *	@addr:		vm address.
1976 *	@count:		number of bytes to be read.
1977 *
1978 *	Returns # of bytes which addr and buf should be incresed.
1979 *	(same number to @count).
1980 *	If [addr...addr+count) doesn't includes any intersect with valid
1981 *	vmalloc area, returns 0.
1982 *
1983 *	This function checks that addr is a valid vmalloc'ed area, and
1984 *	copy data from a buffer to the given addr. If specified range of
1985 *	[addr...addr+count) includes some valid address, data is copied from
1986 *	proper area of @buf. If there are memory holes, no copy to hole.
1987 *	IOREMAP area is treated as memory hole and no copy is done.
1988 *
1989 *	If [addr...addr+count) doesn't includes any intersects with alive
1990 *	vm_struct area, returns 0.
1991 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1992 *	the caller should guarantee KM_USER0 is not used.
1993 *
1994 *	Note: In usual ops, vwrite() is never necessary because the caller
1995 *	should know vmalloc() area is valid and can use memcpy().
1996 *	This is for routines which have to access vmalloc area without
1997 *	any informaion, as /dev/kmem.
1998 */
1999
2000long vwrite(char *buf, char *addr, unsigned long count)
2001{
2002	struct vm_struct *tmp;
2003	char *vaddr;
2004	unsigned long n, buflen;
2005	int copied = 0;
2006
2007	/* Don't allow overflow */
2008	if ((unsigned long) addr + count < count)
2009		count = -(unsigned long) addr;
2010	buflen = count;
2011
2012	read_lock(&vmlist_lock);
2013	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2014		vaddr = (char *) tmp->addr;
2015		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2016			continue;
2017		while (addr < vaddr) {
2018			if (count == 0)
2019				goto finished;
2020			buf++;
2021			addr++;
2022			count--;
2023		}
2024		n = vaddr + tmp->size - PAGE_SIZE - addr;
2025		if (n > count)
2026			n = count;
2027		if (!(tmp->flags & VM_IOREMAP)) {
2028			aligned_vwrite(buf, addr, n);
2029			copied++;
2030		}
2031		buf += n;
2032		addr += n;
2033		count -= n;
2034	}
2035finished:
2036	read_unlock(&vmlist_lock);
2037	if (!copied)
2038		return 0;
2039	return buflen;
2040}
2041
2042/**
2043 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2044 *	@vma:		vma to cover (map full range of vma)
2045 *	@addr:		vmalloc memory
2046 *	@pgoff:		number of pages into addr before first page to map
2047 *
2048 *	Returns:	0 for success, -Exxx on failure
2049 *
2050 *	This function checks that addr is a valid vmalloc'ed area, and
2051 *	that it is big enough to cover the vma. Will return failure if
2052 *	that criteria isn't met.
2053 *
2054 *	Similar to remap_pfn_range() (see mm/memory.c)
2055 */
2056int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2057						unsigned long pgoff)
2058{
2059	struct vm_struct *area;
2060	unsigned long uaddr = vma->vm_start;
2061	unsigned long usize = vma->vm_end - vma->vm_start;
2062
2063	if ((PAGE_SIZE-1) & (unsigned long)addr)
2064		return -EINVAL;
2065
2066	area = find_vm_area(addr);
2067	if (!area)
2068		return -EINVAL;
2069
2070	if (!(area->flags & VM_USERMAP))
2071		return -EINVAL;
2072
2073	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
 
2074		return -EINVAL;
 
2075
2076	addr += pgoff << PAGE_SHIFT;
2077	do {
2078		struct page *page = vmalloc_to_page(addr);
2079		int ret;
2080
2081		ret = vm_insert_page(vma, uaddr, page);
2082		if (ret)
2083			return ret;
2084
2085		uaddr += PAGE_SIZE;
2086		addr += PAGE_SIZE;
2087		usize -= PAGE_SIZE;
2088	} while (usize > 0);
2089
2090	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2091	vma->vm_flags |= VM_RESERVED;
2092
2093	return 0;
2094}
2095EXPORT_SYMBOL(remap_vmalloc_range);
2096
2097/*
2098 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2099 * have one.
2100 */
2101void  __attribute__((weak)) vmalloc_sync_all(void)
2102{
2103}
2104
2105
2106static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2107{
2108	/* apply_to_page_range() does all the hard work. */
2109	return 0;
2110}
2111
2112/**
2113 *	alloc_vm_area - allocate a range of kernel address space
2114 *	@size:		size of the area
 
 
 
 
 
 
 
 
2115 *
2116 *	Returns:	NULL on failure, vm_struct on success
2117 *
2118 *	This function reserves a range of kernel address space, and
2119 *	allocates pagetables to map that range.  No actual mappings
2120 *	are created.  If the kernel address space is not shared
2121 *	between processes, it syncs the pagetable across all
2122 *	processes.
2123 */
2124struct vm_struct *alloc_vm_area(size_t size)
 
2125{
2126	struct vm_struct *area;
2127
2128	area = get_vm_area_caller(size, VM_IOREMAP,
2129				__builtin_return_address(0));
2130	if (area == NULL)
2131		return NULL;
2132
2133	/*
2134	 * This ensures that page tables are constructed for this region
2135	 * of kernel virtual address space and mapped into init_mm.
2136	 */
2137	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2138				area->size, f, NULL)) {
2139		free_vm_area(area);
2140		return NULL;
2141	}
2142
2143	/*
2144	 * If the allocated address space is passed to a hypercall
2145	 * before being used then we cannot rely on a page fault to
2146	 * trigger an update of the page tables.  So sync all the page
2147	 * tables here.
2148	 */
2149	vmalloc_sync_all();
2150
2151	return area;
2152}
2153EXPORT_SYMBOL_GPL(alloc_vm_area);
2154
2155void free_vm_area(struct vm_struct *area)
2156{
2157	struct vm_struct *ret;
2158	ret = remove_vm_area(area->addr);
2159	BUG_ON(ret != area);
2160	kfree(area);
2161}
2162EXPORT_SYMBOL_GPL(free_vm_area);
2163
2164#ifdef CONFIG_SMP
2165static struct vmap_area *node_to_va(struct rb_node *n)
2166{
2167	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2168}
2169
2170/**
2171 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2172 * @end: target address
2173 * @pnext: out arg for the next vmap_area
2174 * @pprev: out arg for the previous vmap_area
2175 *
2176 * Returns: %true if either or both of next and prev are found,
2177 *	    %false if no vmap_area exists
2178 *
2179 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2180 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2181 */
2182static bool pvm_find_next_prev(unsigned long end,
2183			       struct vmap_area **pnext,
2184			       struct vmap_area **pprev)
2185{
2186	struct rb_node *n = vmap_area_root.rb_node;
2187	struct vmap_area *va = NULL;
 
 
 
2188
2189	while (n) {
2190		va = rb_entry(n, struct vmap_area, rb_node);
2191		if (end < va->va_end)
2192			n = n->rb_left;
2193		else if (end > va->va_end)
 
 
2194			n = n->rb_right;
2195		else
2196			break;
 
2197	}
2198
2199	if (!va)
2200		return false;
2201
2202	if (va->va_end > end) {
2203		*pnext = va;
2204		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2205	} else {
2206		*pprev = va;
2207		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2208	}
2209	return true;
2210}
2211
2212/**
2213 * pvm_determine_end - find the highest aligned address between two vmap_areas
2214 * @pnext: in/out arg for the next vmap_area
2215 * @pprev: in/out arg for the previous vmap_area
2216 * @align: alignment
2217 *
2218 * Returns: determined end address
2219 *
2220 * Find the highest aligned address between *@pnext and *@pprev below
2221 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2222 * down address is between the end addresses of the two vmap_areas.
2223 *
2224 * Please note that the address returned by this function may fall
2225 * inside *@pnext vmap_area.  The caller is responsible for checking
2226 * that.
2227 */
2228static unsigned long pvm_determine_end(struct vmap_area **pnext,
2229				       struct vmap_area **pprev,
2230				       unsigned long align)
2231{
2232	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2233	unsigned long addr;
2234
2235	if (*pnext)
2236		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2237	else
2238		addr = vmalloc_end;
2239
2240	while (*pprev && (*pprev)->va_end > addr) {
2241		*pnext = *pprev;
2242		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2243	}
2244
2245	return addr;
2246}
2247
2248/**
2249 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2250 * @offsets: array containing offset of each area
2251 * @sizes: array containing size of each area
2252 * @nr_vms: the number of areas to allocate
2253 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2254 *
2255 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2256 *	    vm_structs on success, %NULL on failure
2257 *
2258 * Percpu allocator wants to use congruent vm areas so that it can
2259 * maintain the offsets among percpu areas.  This function allocates
2260 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2261 * be scattered pretty far, distance between two areas easily going up
2262 * to gigabytes.  To avoid interacting with regular vmallocs, these
2263 * areas are allocated from top.
2264 *
2265 * Despite its complicated look, this allocator is rather simple.  It
2266 * does everything top-down and scans areas from the end looking for
2267 * matching slot.  While scanning, if any of the areas overlaps with
2268 * existing vmap_area, the base address is pulled down to fit the
2269 * area.  Scanning is repeated till all the areas fit and then all
2270 * necessary data structres are inserted and the result is returned.
2271 */
2272struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2273				     const size_t *sizes, int nr_vms,
2274				     size_t align)
2275{
2276	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2277	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2278	struct vmap_area **vas, *prev, *next;
2279	struct vm_struct **vms;
2280	int area, area2, last_area, term_area;
2281	unsigned long base, start, end, last_end;
2282	bool purged = false;
 
2283
2284	/* verify parameters and allocate data structures */
2285	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2286	for (last_area = 0, area = 0; area < nr_vms; area++) {
2287		start = offsets[area];
2288		end = start + sizes[area];
2289
2290		/* is everything aligned properly? */
2291		BUG_ON(!IS_ALIGNED(offsets[area], align));
2292		BUG_ON(!IS_ALIGNED(sizes[area], align));
2293
2294		/* detect the area with the highest address */
2295		if (start > offsets[last_area])
2296			last_area = area;
2297
2298		for (area2 = 0; area2 < nr_vms; area2++) {
2299			unsigned long start2 = offsets[area2];
2300			unsigned long end2 = start2 + sizes[area2];
2301
2302			if (area2 == area)
2303				continue;
2304
2305			BUG_ON(start2 >= start && start2 < end);
2306			BUG_ON(end2 <= end && end2 > start);
2307		}
2308	}
2309	last_end = offsets[last_area] + sizes[last_area];
2310
2311	if (vmalloc_end - vmalloc_start < last_end) {
2312		WARN_ON(true);
2313		return NULL;
2314	}
2315
2316	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2317	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2318	if (!vas || !vms)
2319		goto err_free;
2320
2321	for (area = 0; area < nr_vms; area++) {
2322		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2323		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2324		if (!vas[area] || !vms[area])
2325			goto err_free;
2326	}
2327retry:
2328	spin_lock(&vmap_area_lock);
2329
2330	/* start scanning - we scan from the top, begin with the last area */
2331	area = term_area = last_area;
2332	start = offsets[area];
2333	end = start + sizes[area];
2334
2335	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2336		base = vmalloc_end - last_end;
2337		goto found;
2338	}
2339	base = pvm_determine_end(&next, &prev, align) - end;
2340
2341	while (true) {
2342		BUG_ON(next && next->va_end <= base + end);
2343		BUG_ON(prev && prev->va_end > base + end);
2344
2345		/*
2346		 * base might have underflowed, add last_end before
2347		 * comparing.
2348		 */
2349		if (base + last_end < vmalloc_start + last_end) {
2350			spin_unlock(&vmap_area_lock);
2351			if (!purged) {
2352				purge_vmap_area_lazy();
2353				purged = true;
2354				goto retry;
2355			}
2356			goto err_free;
2357		}
2358
2359		/*
2360		 * If next overlaps, move base downwards so that it's
2361		 * right below next and then recheck.
2362		 */
2363		if (next && next->va_start < base + end) {
2364			base = pvm_determine_end(&next, &prev, align) - end;
2365			term_area = area;
2366			continue;
2367		}
2368
2369		/*
2370		 * If prev overlaps, shift down next and prev and move
2371		 * base so that it's right below new next and then
2372		 * recheck.
2373		 */
2374		if (prev && prev->va_end > base + start)  {
2375			next = prev;
2376			prev = node_to_va(rb_prev(&next->rb_node));
2377			base = pvm_determine_end(&next, &prev, align) - end;
2378			term_area = area;
2379			continue;
2380		}
2381
2382		/*
2383		 * This area fits, move on to the previous one.  If
2384		 * the previous one is the terminal one, we're done.
2385		 */
2386		area = (area + nr_vms - 1) % nr_vms;
2387		if (area == term_area)
2388			break;
 
2389		start = offsets[area];
2390		end = start + sizes[area];
2391		pvm_find_next_prev(base + end, &next, &prev);
2392	}
2393found:
2394	/* we've found a fitting base, insert all va's */
2395	for (area = 0; area < nr_vms; area++) {
2396		struct vmap_area *va = vas[area];
 
 
 
 
 
 
 
 
2397
2398		va->va_start = base + offsets[area];
2399		va->va_end = va->va_start + sizes[area];
2400		__insert_vmap_area(va);
 
 
 
 
 
 
 
 
 
 
2401	}
2402
2403	vmap_area_pcpu_hole = base + offsets[last_area];
2404
2405	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
2406
2407	/* insert all vm's */
2408	for (area = 0; area < nr_vms; area++)
2409		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2410				  pcpu_get_vm_areas);
 
 
 
 
 
2411
2412	kfree(vas);
2413	return vms;
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415err_free:
2416	for (area = 0; area < nr_vms; area++) {
2417		if (vas)
2418			kfree(vas[area]);
2419		if (vms)
2420			kfree(vms[area]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421	}
 
2422	kfree(vas);
2423	kfree(vms);
2424	return NULL;
2425}
2426
2427/**
2428 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2429 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2430 * @nr_vms: the number of allocated areas
2431 *
2432 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2433 */
2434void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2435{
2436	int i;
2437
2438	for (i = 0; i < nr_vms; i++)
2439		free_vm_area(vms[i]);
2440	kfree(vms);
2441}
2442#endif	/* CONFIG_SMP */
2443
2444#ifdef CONFIG_PROC_FS
2445static void *s_start(struct seq_file *m, loff_t *pos)
2446	__acquires(&vmlist_lock)
2447{
2448	loff_t n = *pos;
2449	struct vm_struct *v;
2450
2451	read_lock(&vmlist_lock);
2452	v = vmlist;
2453	while (n > 0 && v) {
2454		n--;
2455		v = v->next;
2456	}
2457	if (!n)
2458		return v;
2459
2460	return NULL;
 
 
 
 
 
 
2461
 
2462}
2463
2464static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2465{
2466	struct vm_struct *v = p;
2467
2468	++*pos;
2469	return v->next;
2470}
2471
2472static void s_stop(struct seq_file *m, void *p)
2473	__releases(&vmlist_lock)
 
2474{
2475	read_unlock(&vmlist_lock);
 
2476}
2477
2478static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2479{
2480	if (NUMA_BUILD) {
2481		unsigned int nr, *counters = m->private;
2482
2483		if (!counters)
2484			return;
2485
 
 
 
 
 
2486		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2487
2488		for (nr = 0; nr < v->nr_pages; nr++)
2489			counters[page_to_nid(v->pages[nr])]++;
2490
2491		for_each_node_state(nr, N_HIGH_MEMORY)
2492			if (counters[nr])
2493				seq_printf(m, " N%u=%u", nr, counters[nr]);
2494	}
2495}
2496
 
 
 
 
 
 
 
 
 
 
 
 
 
2497static int s_show(struct seq_file *m, void *p)
2498{
2499	struct vm_struct *v = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2500
2501	seq_printf(m, "0x%p-0x%p %7ld",
2502		v->addr, v->addr + v->size, v->size);
2503
2504	if (v->caller)
2505		seq_printf(m, " %pS", v->caller);
2506
2507	if (v->nr_pages)
2508		seq_printf(m, " pages=%d", v->nr_pages);
2509
2510	if (v->phys_addr)
2511		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2512
2513	if (v->flags & VM_IOREMAP)
2514		seq_printf(m, " ioremap");
2515
2516	if (v->flags & VM_ALLOC)
2517		seq_printf(m, " vmalloc");
2518
2519	if (v->flags & VM_MAP)
2520		seq_printf(m, " vmap");
2521
2522	if (v->flags & VM_USERMAP)
2523		seq_printf(m, " user");
 
 
 
2524
2525	if (v->flags & VM_VPAGES)
2526		seq_printf(m, " vpages");
2527
2528	show_numa_info(m, v);
2529	seq_putc(m, '\n');
 
 
 
 
 
 
 
2530	return 0;
2531}
2532
2533static const struct seq_operations vmalloc_op = {
2534	.start = s_start,
2535	.next = s_next,
2536	.stop = s_stop,
2537	.show = s_show,
2538};
2539
2540static int vmalloc_open(struct inode *inode, struct file *file)
2541{
2542	unsigned int *ptr = NULL;
2543	int ret;
2544
2545	if (NUMA_BUILD) {
2546		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2547		if (ptr == NULL)
2548			return -ENOMEM;
2549	}
2550	ret = seq_open(file, &vmalloc_op);
2551	if (!ret) {
2552		struct seq_file *m = file->private_data;
2553		m->private = ptr;
2554	} else
2555		kfree(ptr);
2556	return ret;
2557}
2558
2559static const struct file_operations proc_vmalloc_operations = {
2560	.open		= vmalloc_open,
2561	.read		= seq_read,
2562	.llseek		= seq_lseek,
2563	.release	= seq_release_private,
2564};
2565
2566static int __init proc_vmalloc_init(void)
2567{
2568	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
 
 
 
 
 
2569	return 0;
2570}
2571module_init(proc_vmalloc_init);
2572#endif
2573
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
 
 
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/io.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/llist.h>
  35#include <linux/bitops.h>
  36#include <linux/rbtree_augmented.h>
  37#include <linux/overflow.h>
  38#include <linux/pgtable.h>
  39#include <linux/uaccess.h>
  40#include <linux/hugetlb.h>
  41#include <asm/tlbflush.h>
  42#include <asm/shmparam.h>
  43
  44#include "internal.h"
  45#include "pgalloc-track.h"
  46
  47#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
  48static bool __ro_after_init vmap_allow_huge = true;
  49
  50static int __init set_nohugevmalloc(char *str)
  51{
  52	vmap_allow_huge = false;
  53	return 0;
  54}
  55early_param("nohugevmalloc", set_nohugevmalloc);
  56#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  57static const bool vmap_allow_huge = false;
  58#endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  59
  60bool is_vmalloc_addr(const void *x)
  61{
  62	unsigned long addr = (unsigned long)x;
  63
  64	return addr >= VMALLOC_START && addr < VMALLOC_END;
  65}
  66EXPORT_SYMBOL(is_vmalloc_addr);
  67
  68struct vfree_deferred {
  69	struct llist_head list;
  70	struct work_struct wq;
  71};
  72static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  73
  74static void __vunmap(const void *, int);
  75
  76static void free_work(struct work_struct *w)
  77{
  78	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  79	struct llist_node *t, *llnode;
  80
  81	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  82		__vunmap((void *)llnode, 1);
  83}
  84
  85/*** Page table manipulation functions ***/
  86static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  87			phys_addr_t phys_addr, pgprot_t prot,
  88			unsigned int max_page_shift, pgtbl_mod_mask *mask)
  89{
  90	pte_t *pte;
  91	u64 pfn;
  92	unsigned long size = PAGE_SIZE;
  93
  94	pfn = phys_addr >> PAGE_SHIFT;
  95	pte = pte_alloc_kernel_track(pmd, addr, mask);
  96	if (!pte)
  97		return -ENOMEM;
  98	do {
  99		BUG_ON(!pte_none(*pte));
 100
 101#ifdef CONFIG_HUGETLB_PAGE
 102		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 103		if (size != PAGE_SIZE) {
 104			pte_t entry = pfn_pte(pfn, prot);
 105
 106			entry = pte_mkhuge(entry);
 107			entry = arch_make_huge_pte(entry, ilog2(size), 0);
 108			set_huge_pte_at(&init_mm, addr, pte, entry);
 109			pfn += PFN_DOWN(size);
 110			continue;
 111		}
 112#endif
 113		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 114		pfn++;
 115	} while (pte += PFN_DOWN(size), addr += size, addr != end);
 116	*mask |= PGTBL_PTE_MODIFIED;
 117	return 0;
 118}
 119
 120static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 121			phys_addr_t phys_addr, pgprot_t prot,
 122			unsigned int max_page_shift)
 123{
 124	if (max_page_shift < PMD_SHIFT)
 125		return 0;
 126
 127	if (!arch_vmap_pmd_supported(prot))
 128		return 0;
 129
 130	if ((end - addr) != PMD_SIZE)
 131		return 0;
 132
 133	if (!IS_ALIGNED(addr, PMD_SIZE))
 134		return 0;
 135
 136	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 137		return 0;
 138
 139	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 140		return 0;
 141
 142	return pmd_set_huge(pmd, phys_addr, prot);
 143}
 144
 145static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 146			phys_addr_t phys_addr, pgprot_t prot,
 147			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 148{
 149	pmd_t *pmd;
 150	unsigned long next;
 151
 152	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 153	if (!pmd)
 154		return -ENOMEM;
 155	do {
 156		next = pmd_addr_end(addr, end);
 157
 158		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 159					max_page_shift)) {
 160			*mask |= PGTBL_PMD_MODIFIED;
 161			continue;
 162		}
 163
 164		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 165			return -ENOMEM;
 166	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 167	return 0;
 168}
 169
 170static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 171			phys_addr_t phys_addr, pgprot_t prot,
 172			unsigned int max_page_shift)
 173{
 174	if (max_page_shift < PUD_SHIFT)
 175		return 0;
 176
 177	if (!arch_vmap_pud_supported(prot))
 178		return 0;
 179
 180	if ((end - addr) != PUD_SIZE)
 181		return 0;
 182
 183	if (!IS_ALIGNED(addr, PUD_SIZE))
 184		return 0;
 185
 186	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 187		return 0;
 188
 189	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 190		return 0;
 191
 192	return pud_set_huge(pud, phys_addr, prot);
 193}
 194
 195static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 196			phys_addr_t phys_addr, pgprot_t prot,
 197			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 198{
 199	pud_t *pud;
 200	unsigned long next;
 201
 202	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 203	if (!pud)
 204		return -ENOMEM;
 205	do {
 206		next = pud_addr_end(addr, end);
 207
 208		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 209					max_page_shift)) {
 210			*mask |= PGTBL_PUD_MODIFIED;
 211			continue;
 212		}
 213
 214		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 215					max_page_shift, mask))
 216			return -ENOMEM;
 217	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 218	return 0;
 219}
 220
 221static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 222			phys_addr_t phys_addr, pgprot_t prot,
 223			unsigned int max_page_shift)
 224{
 225	if (max_page_shift < P4D_SHIFT)
 226		return 0;
 227
 228	if (!arch_vmap_p4d_supported(prot))
 229		return 0;
 230
 231	if ((end - addr) != P4D_SIZE)
 232		return 0;
 233
 234	if (!IS_ALIGNED(addr, P4D_SIZE))
 235		return 0;
 236
 237	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 238		return 0;
 239
 240	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 241		return 0;
 242
 243	return p4d_set_huge(p4d, phys_addr, prot);
 244}
 245
 246static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 247			phys_addr_t phys_addr, pgprot_t prot,
 248			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 249{
 250	p4d_t *p4d;
 251	unsigned long next;
 252
 253	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 254	if (!p4d)
 255		return -ENOMEM;
 256	do {
 257		next = p4d_addr_end(addr, end);
 258
 259		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 260					max_page_shift)) {
 261			*mask |= PGTBL_P4D_MODIFIED;
 262			continue;
 263		}
 264
 265		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 266					max_page_shift, mask))
 267			return -ENOMEM;
 268	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 269	return 0;
 270}
 271
 272static int vmap_range_noflush(unsigned long addr, unsigned long end,
 273			phys_addr_t phys_addr, pgprot_t prot,
 274			unsigned int max_page_shift)
 275{
 276	pgd_t *pgd;
 277	unsigned long start;
 278	unsigned long next;
 279	int err;
 280	pgtbl_mod_mask mask = 0;
 281
 282	might_sleep();
 283	BUG_ON(addr >= end);
 284
 285	start = addr;
 286	pgd = pgd_offset_k(addr);
 287	do {
 288		next = pgd_addr_end(addr, end);
 289		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 290					max_page_shift, &mask);
 291		if (err)
 292			break;
 293	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 294
 295	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 296		arch_sync_kernel_mappings(start, end);
 297
 298	return err;
 299}
 300
 301int vmap_range(unsigned long addr, unsigned long end,
 302			phys_addr_t phys_addr, pgprot_t prot,
 303			unsigned int max_page_shift)
 304{
 305	int err;
 306
 307	err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift);
 308	flush_cache_vmap(addr, end);
 309
 310	return err;
 311}
 312
 313static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 314			     pgtbl_mod_mask *mask)
 315{
 316	pte_t *pte;
 317
 318	pte = pte_offset_kernel(pmd, addr);
 319	do {
 320		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 321		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 322	} while (pte++, addr += PAGE_SIZE, addr != end);
 323	*mask |= PGTBL_PTE_MODIFIED;
 324}
 325
 326static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 327			     pgtbl_mod_mask *mask)
 328{
 329	pmd_t *pmd;
 330	unsigned long next;
 331	int cleared;
 332
 333	pmd = pmd_offset(pud, addr);
 334	do {
 335		next = pmd_addr_end(addr, end);
 336
 337		cleared = pmd_clear_huge(pmd);
 338		if (cleared || pmd_bad(*pmd))
 339			*mask |= PGTBL_PMD_MODIFIED;
 340
 341		if (cleared)
 342			continue;
 343		if (pmd_none_or_clear_bad(pmd))
 344			continue;
 345		vunmap_pte_range(pmd, addr, next, mask);
 346
 347		cond_resched();
 348	} while (pmd++, addr = next, addr != end);
 349}
 350
 351static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 352			     pgtbl_mod_mask *mask)
 353{
 354	pud_t *pud;
 355	unsigned long next;
 356	int cleared;
 357
 358	pud = pud_offset(p4d, addr);
 359	do {
 360		next = pud_addr_end(addr, end);
 361
 362		cleared = pud_clear_huge(pud);
 363		if (cleared || pud_bad(*pud))
 364			*mask |= PGTBL_PUD_MODIFIED;
 365
 366		if (cleared)
 367			continue;
 368		if (pud_none_or_clear_bad(pud))
 369			continue;
 370		vunmap_pmd_range(pud, addr, next, mask);
 371	} while (pud++, addr = next, addr != end);
 372}
 373
 374static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 375			     pgtbl_mod_mask *mask)
 376{
 377	p4d_t *p4d;
 378	unsigned long next;
 379	int cleared;
 380
 381	p4d = p4d_offset(pgd, addr);
 382	do {
 383		next = p4d_addr_end(addr, end);
 384
 385		cleared = p4d_clear_huge(p4d);
 386		if (cleared || p4d_bad(*p4d))
 387			*mask |= PGTBL_P4D_MODIFIED;
 388
 389		if (cleared)
 390			continue;
 391		if (p4d_none_or_clear_bad(p4d))
 392			continue;
 393		vunmap_pud_range(p4d, addr, next, mask);
 394	} while (p4d++, addr = next, addr != end);
 395}
 396
 397/*
 398 * vunmap_range_noflush is similar to vunmap_range, but does not
 399 * flush caches or TLBs.
 400 *
 401 * The caller is responsible for calling flush_cache_vmap() before calling
 402 * this function, and flush_tlb_kernel_range after it has returned
 403 * successfully (and before the addresses are expected to cause a page fault
 404 * or be re-mapped for something else, if TLB flushes are being delayed or
 405 * coalesced).
 406 *
 407 * This is an internal function only. Do not use outside mm/.
 408 */
 409void vunmap_range_noflush(unsigned long start, unsigned long end)
 410{
 
 411	unsigned long next;
 412	pgd_t *pgd;
 413	unsigned long addr = start;
 414	pgtbl_mod_mask mask = 0;
 415
 416	BUG_ON(addr >= end);
 417	pgd = pgd_offset_k(addr);
 418	do {
 419		next = pgd_addr_end(addr, end);
 420		if (pgd_bad(*pgd))
 421			mask |= PGTBL_PGD_MODIFIED;
 422		if (pgd_none_or_clear_bad(pgd))
 423			continue;
 424		vunmap_p4d_range(pgd, addr, next, &mask);
 425	} while (pgd++, addr = next, addr != end);
 426
 427	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 428		arch_sync_kernel_mappings(start, end);
 429}
 430
 431/**
 432 * vunmap_range - unmap kernel virtual addresses
 433 * @addr: start of the VM area to unmap
 434 * @end: end of the VM area to unmap (non-inclusive)
 435 *
 436 * Clears any present PTEs in the virtual address range, flushes TLBs and
 437 * caches. Any subsequent access to the address before it has been re-mapped
 438 * is a kernel bug.
 439 */
 440void vunmap_range(unsigned long addr, unsigned long end)
 441{
 442	flush_cache_vunmap(addr, end);
 443	vunmap_range_noflush(addr, end);
 444	flush_tlb_kernel_range(addr, end);
 445}
 446
 447static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 448		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 449		pgtbl_mod_mask *mask)
 450{
 451	pte_t *pte;
 452
 453	/*
 454	 * nr is a running index into the array which helps higher level
 455	 * callers keep track of where we're up to.
 456	 */
 457
 458	pte = pte_alloc_kernel_track(pmd, addr, mask);
 459	if (!pte)
 460		return -ENOMEM;
 461	do {
 462		struct page *page = pages[*nr];
 463
 464		if (WARN_ON(!pte_none(*pte)))
 465			return -EBUSY;
 466		if (WARN_ON(!page))
 467			return -ENOMEM;
 468		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 469		(*nr)++;
 470	} while (pte++, addr += PAGE_SIZE, addr != end);
 471	*mask |= PGTBL_PTE_MODIFIED;
 472	return 0;
 473}
 474
 475static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 476		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 477		pgtbl_mod_mask *mask)
 478{
 479	pmd_t *pmd;
 480	unsigned long next;
 481
 482	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 483	if (!pmd)
 484		return -ENOMEM;
 485	do {
 486		next = pmd_addr_end(addr, end);
 487		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 488			return -ENOMEM;
 489	} while (pmd++, addr = next, addr != end);
 490	return 0;
 491}
 492
 493static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 494		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 495		pgtbl_mod_mask *mask)
 496{
 497	pud_t *pud;
 498	unsigned long next;
 499
 500	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 501	if (!pud)
 502		return -ENOMEM;
 503	do {
 504		next = pud_addr_end(addr, end);
 505		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 506			return -ENOMEM;
 507	} while (pud++, addr = next, addr != end);
 508	return 0;
 509}
 510
 511static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 512		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 513		pgtbl_mod_mask *mask)
 
 
 
 
 
 514{
 515	p4d_t *p4d;
 516	unsigned long next;
 517
 518	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 519	if (!p4d)
 520		return -ENOMEM;
 521	do {
 522		next = p4d_addr_end(addr, end);
 523		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 524			return -ENOMEM;
 525	} while (p4d++, addr = next, addr != end);
 526	return 0;
 527}
 528
 529static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 530		pgprot_t prot, struct page **pages)
 531{
 532	unsigned long start = addr;
 533	pgd_t *pgd;
 534	unsigned long next;
 
 535	int err = 0;
 536	int nr = 0;
 537	pgtbl_mod_mask mask = 0;
 538
 539	BUG_ON(addr >= end);
 540	pgd = pgd_offset_k(addr);
 541	do {
 542		next = pgd_addr_end(addr, end);
 543		if (pgd_bad(*pgd))
 544			mask |= PGTBL_PGD_MODIFIED;
 545		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 546		if (err)
 547			return err;
 548	} while (pgd++, addr = next, addr != end);
 549
 550	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 551		arch_sync_kernel_mappings(start, end);
 552
 553	return 0;
 554}
 555
 556/*
 557 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 558 * flush caches.
 559 *
 560 * The caller is responsible for calling flush_cache_vmap() after this
 561 * function returns successfully and before the addresses are accessed.
 562 *
 563 * This is an internal function only. Do not use outside mm/.
 564 */
 565int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 566		pgprot_t prot, struct page **pages, unsigned int page_shift)
 567{
 568	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 569
 570	WARN_ON(page_shift < PAGE_SHIFT);
 571
 572	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 573			page_shift == PAGE_SHIFT)
 574		return vmap_small_pages_range_noflush(addr, end, prot, pages);
 575
 576	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 577		int err;
 578
 579		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 580					__pa(page_address(pages[i])), prot,
 581					page_shift);
 582		if (err)
 583			return err;
 584
 585		addr += 1UL << page_shift;
 586	}
 587
 588	return 0;
 589}
 590
 591/**
 592 * vmap_pages_range - map pages to a kernel virtual address
 593 * @addr: start of the VM area to map
 594 * @end: end of the VM area to map (non-inclusive)
 595 * @prot: page protection flags to use
 596 * @pages: pages to map (always PAGE_SIZE pages)
 597 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 598 * be aligned and contiguous up to at least this shift.
 599 *
 600 * RETURNS:
 601 * 0 on success, -errno on failure.
 602 */
 603static int vmap_pages_range(unsigned long addr, unsigned long end,
 604		pgprot_t prot, struct page **pages, unsigned int page_shift)
 605{
 606	int err;
 607
 608	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 609	flush_cache_vmap(addr, end);
 610	return err;
 611}
 612
 613int is_vmalloc_or_module_addr(const void *x)
 614{
 615	/*
 616	 * ARM, x86-64 and sparc64 put modules in a special place,
 617	 * and fall back on vmalloc() if that fails. Others
 618	 * just put it in the vmalloc space.
 619	 */
 620#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 621	unsigned long addr = (unsigned long)x;
 622	if (addr >= MODULES_VADDR && addr < MODULES_END)
 623		return 1;
 624#endif
 625	return is_vmalloc_addr(x);
 626}
 627
 628/*
 629 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 630 * return the tail page that corresponds to the base page address, which
 631 * matches small vmap mappings.
 632 */
 633struct page *vmalloc_to_page(const void *vmalloc_addr)
 634{
 635	unsigned long addr = (unsigned long) vmalloc_addr;
 636	struct page *page = NULL;
 637	pgd_t *pgd = pgd_offset_k(addr);
 638	p4d_t *p4d;
 639	pud_t *pud;
 640	pmd_t *pmd;
 641	pte_t *ptep, pte;
 642
 643	/*
 644	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 645	 * architectures that do not vmalloc module space
 646	 */
 647	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 648
 649	if (pgd_none(*pgd))
 650		return NULL;
 651	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 652		return NULL; /* XXX: no allowance for huge pgd */
 653	if (WARN_ON_ONCE(pgd_bad(*pgd)))
 654		return NULL;
 655
 656	p4d = p4d_offset(pgd, addr);
 657	if (p4d_none(*p4d))
 658		return NULL;
 659	if (p4d_leaf(*p4d))
 660		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 661	if (WARN_ON_ONCE(p4d_bad(*p4d)))
 662		return NULL;
 663
 664	pud = pud_offset(p4d, addr);
 665	if (pud_none(*pud))
 666		return NULL;
 667	if (pud_leaf(*pud))
 668		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 669	if (WARN_ON_ONCE(pud_bad(*pud)))
 670		return NULL;
 671
 672	pmd = pmd_offset(pud, addr);
 673	if (pmd_none(*pmd))
 674		return NULL;
 675	if (pmd_leaf(*pmd))
 676		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 677	if (WARN_ON_ONCE(pmd_bad(*pmd)))
 678		return NULL;
 679
 680	ptep = pte_offset_map(pmd, addr);
 681	pte = *ptep;
 682	if (pte_present(pte))
 683		page = pte_page(pte);
 684	pte_unmap(ptep);
 685
 686	return page;
 687}
 688EXPORT_SYMBOL(vmalloc_to_page);
 689
 690/*
 691 * Map a vmalloc()-space virtual address to the physical page frame number.
 692 */
 693unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 694{
 695	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 696}
 697EXPORT_SYMBOL(vmalloc_to_pfn);
 698
 699
 700/*** Global kva allocator ***/
 701
 702#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 703#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 704
 
 
 
 
 
 
 
 
 
 
 
 705
 706static DEFINE_SPINLOCK(vmap_area_lock);
 707static DEFINE_SPINLOCK(free_vmap_area_lock);
 708/* Export for kexec only */
 709LIST_HEAD(vmap_area_list);
 710static struct rb_root vmap_area_root = RB_ROOT;
 711static bool vmap_initialized __read_mostly;
 712
 713static struct rb_root purge_vmap_area_root = RB_ROOT;
 714static LIST_HEAD(purge_vmap_area_list);
 715static DEFINE_SPINLOCK(purge_vmap_area_lock);
 
 
 716
 717/*
 718 * This kmem_cache is used for vmap_area objects. Instead of
 719 * allocating from slab we reuse an object from this cache to
 720 * make things faster. Especially in "no edge" splitting of
 721 * free block.
 722 */
 723static struct kmem_cache *vmap_area_cachep;
 724
 725/*
 726 * This linked list is used in pair with free_vmap_area_root.
 727 * It gives O(1) access to prev/next to perform fast coalescing.
 728 */
 729static LIST_HEAD(free_vmap_area_list);
 730
 731/*
 732 * This augment red-black tree represents the free vmap space.
 733 * All vmap_area objects in this tree are sorted by va->va_start
 734 * address. It is used for allocation and merging when a vmap
 735 * object is released.
 736 *
 737 * Each vmap_area node contains a maximum available free block
 738 * of its sub-tree, right or left. Therefore it is possible to
 739 * find a lowest match of free area.
 740 */
 741static struct rb_root free_vmap_area_root = RB_ROOT;
 742
 743/*
 744 * Preload a CPU with one object for "no edge" split case. The
 745 * aim is to get rid of allocations from the atomic context, thus
 746 * to use more permissive allocation masks.
 747 */
 748static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 749
 750static __always_inline unsigned long
 751va_size(struct vmap_area *va)
 752{
 753	return (va->va_end - va->va_start);
 754}
 755
 756static __always_inline unsigned long
 757get_subtree_max_size(struct rb_node *node)
 758{
 759	struct vmap_area *va;
 760
 761	va = rb_entry_safe(node, struct vmap_area, rb_node);
 762	return va ? va->subtree_max_size : 0;
 763}
 764
 765/*
 766 * Gets called when remove the node and rotate.
 767 */
 768static __always_inline unsigned long
 769compute_subtree_max_size(struct vmap_area *va)
 770{
 771	return max3(va_size(va),
 772		get_subtree_max_size(va->rb_node.rb_left),
 773		get_subtree_max_size(va->rb_node.rb_right));
 774}
 775
 776RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 777	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 778
 779static void purge_vmap_area_lazy(void);
 780static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 781static unsigned long lazy_max_pages(void);
 782
 783static atomic_long_t nr_vmalloc_pages;
 784
 785unsigned long vmalloc_nr_pages(void)
 786{
 787	return atomic_long_read(&nr_vmalloc_pages);
 788}
 789
 790static struct vmap_area *__find_vmap_area(unsigned long addr)
 791{
 792	struct rb_node *n = vmap_area_root.rb_node;
 793
 794	while (n) {
 795		struct vmap_area *va;
 796
 797		va = rb_entry(n, struct vmap_area, rb_node);
 798		if (addr < va->va_start)
 799			n = n->rb_left;
 800		else if (addr >= va->va_end)
 801			n = n->rb_right;
 802		else
 803			return va;
 804	}
 805
 806	return NULL;
 807}
 808
 809/*
 810 * This function returns back addresses of parent node
 811 * and its left or right link for further processing.
 812 *
 813 * Otherwise NULL is returned. In that case all further
 814 * steps regarding inserting of conflicting overlap range
 815 * have to be declined and actually considered as a bug.
 816 */
 817static __always_inline struct rb_node **
 818find_va_links(struct vmap_area *va,
 819	struct rb_root *root, struct rb_node *from,
 820	struct rb_node **parent)
 821{
 822	struct vmap_area *tmp_va;
 823	struct rb_node **link;
 824
 825	if (root) {
 826		link = &root->rb_node;
 827		if (unlikely(!*link)) {
 828			*parent = NULL;
 829			return link;
 830		}
 831	} else {
 832		link = &from;
 833	}
 834
 835	/*
 836	 * Go to the bottom of the tree. When we hit the last point
 837	 * we end up with parent rb_node and correct direction, i name
 838	 * it link, where the new va->rb_node will be attached to.
 839	 */
 840	do {
 841		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 842
 843		/*
 844		 * During the traversal we also do some sanity check.
 845		 * Trigger the BUG() if there are sides(left/right)
 846		 * or full overlaps.
 847		 */
 848		if (va->va_start < tmp_va->va_end &&
 849				va->va_end <= tmp_va->va_start)
 850			link = &(*link)->rb_left;
 851		else if (va->va_end > tmp_va->va_start &&
 852				va->va_start >= tmp_va->va_end)
 853			link = &(*link)->rb_right;
 854		else {
 855			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 856				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 857
 858			return NULL;
 859		}
 860	} while (*link);
 861
 862	*parent = &tmp_va->rb_node;
 863	return link;
 864}
 865
 866static __always_inline struct list_head *
 867get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 868{
 869	struct list_head *list;
 870
 871	if (unlikely(!parent))
 872		/*
 873		 * The red-black tree where we try to find VA neighbors
 874		 * before merging or inserting is empty, i.e. it means
 875		 * there is no free vmap space. Normally it does not
 876		 * happen but we handle this case anyway.
 877		 */
 878		return NULL;
 879
 880	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 881	return (&parent->rb_right == link ? list->next : list);
 882}
 883
 884static __always_inline void
 885link_va(struct vmap_area *va, struct rb_root *root,
 886	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 887{
 888	/*
 889	 * VA is still not in the list, but we can
 890	 * identify its future previous list_head node.
 891	 */
 892	if (likely(parent)) {
 893		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 894		if (&parent->rb_right != link)
 895			head = head->prev;
 896	}
 897
 898	/* Insert to the rb-tree */
 899	rb_link_node(&va->rb_node, parent, link);
 900	if (root == &free_vmap_area_root) {
 901		/*
 902		 * Some explanation here. Just perform simple insertion
 903		 * to the tree. We do not set va->subtree_max_size to
 904		 * its current size before calling rb_insert_augmented().
 905		 * It is because of we populate the tree from the bottom
 906		 * to parent levels when the node _is_ in the tree.
 907		 *
 908		 * Therefore we set subtree_max_size to zero after insertion,
 909		 * to let __augment_tree_propagate_from() puts everything to
 910		 * the correct order later on.
 911		 */
 912		rb_insert_augmented(&va->rb_node,
 913			root, &free_vmap_area_rb_augment_cb);
 914		va->subtree_max_size = 0;
 915	} else {
 916		rb_insert_color(&va->rb_node, root);
 917	}
 918
 919	/* Address-sort this list */
 920	list_add(&va->list, head);
 921}
 922
 923static __always_inline void
 924unlink_va(struct vmap_area *va, struct rb_root *root)
 925{
 926	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 927		return;
 928
 929	if (root == &free_vmap_area_root)
 930		rb_erase_augmented(&va->rb_node,
 931			root, &free_vmap_area_rb_augment_cb);
 932	else
 933		rb_erase(&va->rb_node, root);
 934
 935	list_del(&va->list);
 936	RB_CLEAR_NODE(&va->rb_node);
 937}
 938
 939#if DEBUG_AUGMENT_PROPAGATE_CHECK
 940static void
 941augment_tree_propagate_check(void)
 942{
 943	struct vmap_area *va;
 944	unsigned long computed_size;
 945
 946	list_for_each_entry(va, &free_vmap_area_list, list) {
 947		computed_size = compute_subtree_max_size(va);
 948		if (computed_size != va->subtree_max_size)
 949			pr_emerg("tree is corrupted: %lu, %lu\n",
 950				va_size(va), va->subtree_max_size);
 951	}
 952}
 953#endif
 954
 955/*
 956 * This function populates subtree_max_size from bottom to upper
 957 * levels starting from VA point. The propagation must be done
 958 * when VA size is modified by changing its va_start/va_end. Or
 959 * in case of newly inserting of VA to the tree.
 960 *
 961 * It means that __augment_tree_propagate_from() must be called:
 962 * - After VA has been inserted to the tree(free path);
 963 * - After VA has been shrunk(allocation path);
 964 * - After VA has been increased(merging path).
 965 *
 966 * Please note that, it does not mean that upper parent nodes
 967 * and their subtree_max_size are recalculated all the time up
 968 * to the root node.
 969 *
 970 *       4--8
 971 *        /\
 972 *       /  \
 973 *      /    \
 974 *    2--2  8--8
 975 *
 976 * For example if we modify the node 4, shrinking it to 2, then
 977 * no any modification is required. If we shrink the node 2 to 1
 978 * its subtree_max_size is updated only, and set to 1. If we shrink
 979 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 980 * node becomes 4--6.
 981 */
 982static __always_inline void
 983augment_tree_propagate_from(struct vmap_area *va)
 984{
 985	/*
 986	 * Populate the tree from bottom towards the root until
 987	 * the calculated maximum available size of checked node
 988	 * is equal to its current one.
 989	 */
 990	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 991
 992#if DEBUG_AUGMENT_PROPAGATE_CHECK
 993	augment_tree_propagate_check();
 994#endif
 995}
 996
 997static void
 998insert_vmap_area(struct vmap_area *va,
 999	struct rb_root *root, struct list_head *head)
1000{
1001	struct rb_node **link;
1002	struct rb_node *parent;
1003
1004	link = find_va_links(va, root, NULL, &parent);
1005	if (link)
1006		link_va(va, root, parent, link, head);
1007}
1008
1009static void
1010insert_vmap_area_augment(struct vmap_area *va,
1011	struct rb_node *from, struct rb_root *root,
1012	struct list_head *head)
1013{
1014	struct rb_node **link;
1015	struct rb_node *parent;
1016
1017	if (from)
1018		link = find_va_links(va, NULL, from, &parent);
1019	else
1020		link = find_va_links(va, root, NULL, &parent);
1021
1022	if (link) {
1023		link_va(va, root, parent, link, head);
1024		augment_tree_propagate_from(va);
1025	}
1026}
1027
1028/*
1029 * Merge de-allocated chunk of VA memory with previous
1030 * and next free blocks. If coalesce is not done a new
1031 * free area is inserted. If VA has been merged, it is
1032 * freed.
1033 *
1034 * Please note, it can return NULL in case of overlap
1035 * ranges, followed by WARN() report. Despite it is a
1036 * buggy behaviour, a system can be alive and keep
1037 * ongoing.
1038 */
1039static __always_inline struct vmap_area *
1040merge_or_add_vmap_area(struct vmap_area *va,
1041	struct rb_root *root, struct list_head *head)
1042{
1043	struct vmap_area *sibling;
1044	struct list_head *next;
1045	struct rb_node **link;
1046	struct rb_node *parent;
1047	bool merged = false;
1048
1049	/*
1050	 * Find a place in the tree where VA potentially will be
1051	 * inserted, unless it is merged with its sibling/siblings.
1052	 */
1053	link = find_va_links(va, root, NULL, &parent);
1054	if (!link)
1055		return NULL;
1056
1057	/*
1058	 * Get next node of VA to check if merging can be done.
1059	 */
1060	next = get_va_next_sibling(parent, link);
1061	if (unlikely(next == NULL))
1062		goto insert;
1063
1064	/*
1065	 * start            end
1066	 * |                |
1067	 * |<------VA------>|<-----Next----->|
1068	 *                  |                |
1069	 *                  start            end
1070	 */
1071	if (next != head) {
1072		sibling = list_entry(next, struct vmap_area, list);
1073		if (sibling->va_start == va->va_end) {
1074			sibling->va_start = va->va_start;
1075
1076			/* Free vmap_area object. */
1077			kmem_cache_free(vmap_area_cachep, va);
1078
1079			/* Point to the new merged area. */
1080			va = sibling;
1081			merged = true;
1082		}
1083	}
1084
1085	/*
1086	 * start            end
1087	 * |                |
1088	 * |<-----Prev----->|<------VA------>|
1089	 *                  |                |
1090	 *                  start            end
1091	 */
1092	if (next->prev != head) {
1093		sibling = list_entry(next->prev, struct vmap_area, list);
1094		if (sibling->va_end == va->va_start) {
1095			/*
1096			 * If both neighbors are coalesced, it is important
1097			 * to unlink the "next" node first, followed by merging
1098			 * with "previous" one. Otherwise the tree might not be
1099			 * fully populated if a sibling's augmented value is
1100			 * "normalized" because of rotation operations.
1101			 */
1102			if (merged)
1103				unlink_va(va, root);
1104
1105			sibling->va_end = va->va_end;
1106
1107			/* Free vmap_area object. */
1108			kmem_cache_free(vmap_area_cachep, va);
1109
1110			/* Point to the new merged area. */
1111			va = sibling;
1112			merged = true;
1113		}
1114	}
1115
1116insert:
1117	if (!merged)
1118		link_va(va, root, parent, link, head);
1119
1120	return va;
1121}
1122
1123static __always_inline struct vmap_area *
1124merge_or_add_vmap_area_augment(struct vmap_area *va,
1125	struct rb_root *root, struct list_head *head)
1126{
1127	va = merge_or_add_vmap_area(va, root, head);
1128	if (va)
1129		augment_tree_propagate_from(va);
1130
1131	return va;
1132}
1133
1134static __always_inline bool
1135is_within_this_va(struct vmap_area *va, unsigned long size,
1136	unsigned long align, unsigned long vstart)
1137{
1138	unsigned long nva_start_addr;
1139
1140	if (va->va_start > vstart)
1141		nva_start_addr = ALIGN(va->va_start, align);
1142	else
1143		nva_start_addr = ALIGN(vstart, align);
1144
1145	/* Can be overflowed due to big size or alignment. */
1146	if (nva_start_addr + size < nva_start_addr ||
1147			nva_start_addr < vstart)
1148		return false;
1149
1150	return (nva_start_addr + size <= va->va_end);
1151}
1152
1153/*
1154 * Find the first free block(lowest start address) in the tree,
1155 * that will accomplish the request corresponding to passing
1156 * parameters.
1157 */
1158static __always_inline struct vmap_area *
1159find_vmap_lowest_match(unsigned long size,
1160	unsigned long align, unsigned long vstart)
1161{
1162	struct vmap_area *va;
1163	struct rb_node *node;
1164	unsigned long length;
1165
1166	/* Start from the root. */
1167	node = free_vmap_area_root.rb_node;
1168
1169	/* Adjust the search size for alignment overhead. */
1170	length = size + align - 1;
1171
1172	while (node) {
1173		va = rb_entry(node, struct vmap_area, rb_node);
1174
1175		if (get_subtree_max_size(node->rb_left) >= length &&
1176				vstart < va->va_start) {
1177			node = node->rb_left;
1178		} else {
1179			if (is_within_this_va(va, size, align, vstart))
1180				return va;
1181
1182			/*
1183			 * Does not make sense to go deeper towards the right
1184			 * sub-tree if it does not have a free block that is
1185			 * equal or bigger to the requested search length.
1186			 */
1187			if (get_subtree_max_size(node->rb_right) >= length) {
1188				node = node->rb_right;
1189				continue;
1190			}
1191
1192			/*
1193			 * OK. We roll back and find the first right sub-tree,
1194			 * that will satisfy the search criteria. It can happen
1195			 * only once due to "vstart" restriction.
1196			 */
1197			while ((node = rb_parent(node))) {
1198				va = rb_entry(node, struct vmap_area, rb_node);
1199				if (is_within_this_va(va, size, align, vstart))
1200					return va;
1201
1202				if (get_subtree_max_size(node->rb_right) >= length &&
1203						vstart <= va->va_start) {
1204					node = node->rb_right;
1205					break;
1206				}
1207			}
1208		}
1209	}
1210
1211	return NULL;
1212}
1213
1214#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1215#include <linux/random.h>
1216
1217static struct vmap_area *
1218find_vmap_lowest_linear_match(unsigned long size,
1219	unsigned long align, unsigned long vstart)
1220{
1221	struct vmap_area *va;
1222
1223	list_for_each_entry(va, &free_vmap_area_list, list) {
1224		if (!is_within_this_va(va, size, align, vstart))
1225			continue;
1226
1227		return va;
1228	}
1229
1230	return NULL;
1231}
1232
1233static void
1234find_vmap_lowest_match_check(unsigned long size)
1235{
1236	struct vmap_area *va_1, *va_2;
1237	unsigned long vstart;
1238	unsigned int rnd;
1239
1240	get_random_bytes(&rnd, sizeof(rnd));
1241	vstart = VMALLOC_START + rnd;
1242
1243	va_1 = find_vmap_lowest_match(size, 1, vstart);
1244	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1245
1246	if (va_1 != va_2)
1247		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1248			va_1, va_2, vstart);
1249}
1250#endif
1251
1252enum fit_type {
1253	NOTHING_FIT = 0,
1254	FL_FIT_TYPE = 1,	/* full fit */
1255	LE_FIT_TYPE = 2,	/* left edge fit */
1256	RE_FIT_TYPE = 3,	/* right edge fit */
1257	NE_FIT_TYPE = 4		/* no edge fit */
1258};
1259
1260static __always_inline enum fit_type
1261classify_va_fit_type(struct vmap_area *va,
1262	unsigned long nva_start_addr, unsigned long size)
1263{
1264	enum fit_type type;
1265
1266	/* Check if it is within VA. */
1267	if (nva_start_addr < va->va_start ||
1268			nva_start_addr + size > va->va_end)
1269		return NOTHING_FIT;
1270
1271	/* Now classify. */
1272	if (va->va_start == nva_start_addr) {
1273		if (va->va_end == nva_start_addr + size)
1274			type = FL_FIT_TYPE;
1275		else
1276			type = LE_FIT_TYPE;
1277	} else if (va->va_end == nva_start_addr + size) {
1278		type = RE_FIT_TYPE;
1279	} else {
1280		type = NE_FIT_TYPE;
1281	}
1282
1283	return type;
1284}
1285
1286static __always_inline int
1287adjust_va_to_fit_type(struct vmap_area *va,
1288	unsigned long nva_start_addr, unsigned long size,
1289	enum fit_type type)
1290{
1291	struct vmap_area *lva = NULL;
1292
1293	if (type == FL_FIT_TYPE) {
1294		/*
1295		 * No need to split VA, it fully fits.
1296		 *
1297		 * |               |
1298		 * V      NVA      V
1299		 * |---------------|
1300		 */
1301		unlink_va(va, &free_vmap_area_root);
1302		kmem_cache_free(vmap_area_cachep, va);
1303	} else if (type == LE_FIT_TYPE) {
1304		/*
1305		 * Split left edge of fit VA.
1306		 *
1307		 * |       |
1308		 * V  NVA  V   R
1309		 * |-------|-------|
1310		 */
1311		va->va_start += size;
1312	} else if (type == RE_FIT_TYPE) {
1313		/*
1314		 * Split right edge of fit VA.
1315		 *
1316		 *         |       |
1317		 *     L   V  NVA  V
1318		 * |-------|-------|
1319		 */
1320		va->va_end = nva_start_addr;
1321	} else if (type == NE_FIT_TYPE) {
1322		/*
1323		 * Split no edge of fit VA.
1324		 *
1325		 *     |       |
1326		 *   L V  NVA  V R
1327		 * |---|-------|---|
1328		 */
1329		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1330		if (unlikely(!lva)) {
1331			/*
1332			 * For percpu allocator we do not do any pre-allocation
1333			 * and leave it as it is. The reason is it most likely
1334			 * never ends up with NE_FIT_TYPE splitting. In case of
1335			 * percpu allocations offsets and sizes are aligned to
1336			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1337			 * are its main fitting cases.
1338			 *
1339			 * There are a few exceptions though, as an example it is
1340			 * a first allocation (early boot up) when we have "one"
1341			 * big free space that has to be split.
1342			 *
1343			 * Also we can hit this path in case of regular "vmap"
1344			 * allocations, if "this" current CPU was not preloaded.
1345			 * See the comment in alloc_vmap_area() why. If so, then
1346			 * GFP_NOWAIT is used instead to get an extra object for
1347			 * split purpose. That is rare and most time does not
1348			 * occur.
1349			 *
1350			 * What happens if an allocation gets failed. Basically,
1351			 * an "overflow" path is triggered to purge lazily freed
1352			 * areas to free some memory, then, the "retry" path is
1353			 * triggered to repeat one more time. See more details
1354			 * in alloc_vmap_area() function.
1355			 */
1356			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1357			if (!lva)
1358				return -1;
1359		}
1360
1361		/*
1362		 * Build the remainder.
1363		 */
1364		lva->va_start = va->va_start;
1365		lva->va_end = nva_start_addr;
1366
1367		/*
1368		 * Shrink this VA to remaining size.
1369		 */
1370		va->va_start = nva_start_addr + size;
1371	} else {
1372		return -1;
1373	}
1374
1375	if (type != FL_FIT_TYPE) {
1376		augment_tree_propagate_from(va);
1377
1378		if (lva)	/* type == NE_FIT_TYPE */
1379			insert_vmap_area_augment(lva, &va->rb_node,
1380				&free_vmap_area_root, &free_vmap_area_list);
1381	}
1382
1383	return 0;
1384}
1385
1386/*
1387 * Returns a start address of the newly allocated area, if success.
1388 * Otherwise a vend is returned that indicates failure.
1389 */
1390static __always_inline unsigned long
1391__alloc_vmap_area(unsigned long size, unsigned long align,
1392	unsigned long vstart, unsigned long vend)
1393{
1394	unsigned long nva_start_addr;
1395	struct vmap_area *va;
1396	enum fit_type type;
1397	int ret;
1398
1399	va = find_vmap_lowest_match(size, align, vstart);
1400	if (unlikely(!va))
1401		return vend;
1402
1403	if (va->va_start > vstart)
1404		nva_start_addr = ALIGN(va->va_start, align);
1405	else
1406		nva_start_addr = ALIGN(vstart, align);
1407
1408	/* Check the "vend" restriction. */
1409	if (nva_start_addr + size > vend)
1410		return vend;
1411
1412	/* Classify what we have found. */
1413	type = classify_va_fit_type(va, nva_start_addr, size);
1414	if (WARN_ON_ONCE(type == NOTHING_FIT))
1415		return vend;
1416
1417	/* Update the free vmap_area. */
1418	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1419	if (ret)
1420		return vend;
1421
1422#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1423	find_vmap_lowest_match_check(size);
1424#endif
1425
1426	return nva_start_addr;
1427}
1428
1429/*
1430 * Free a region of KVA allocated by alloc_vmap_area
1431 */
1432static void free_vmap_area(struct vmap_area *va)
1433{
1434	/*
1435	 * Remove from the busy tree/list.
1436	 */
1437	spin_lock(&vmap_area_lock);
1438	unlink_va(va, &vmap_area_root);
1439	spin_unlock(&vmap_area_lock);
1440
1441	/*
1442	 * Insert/Merge it back to the free tree/list.
1443	 */
1444	spin_lock(&free_vmap_area_lock);
1445	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1446	spin_unlock(&free_vmap_area_lock);
1447}
1448
1449static inline void
1450preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1451{
1452	struct vmap_area *va = NULL;
1453
1454	/*
1455	 * Preload this CPU with one extra vmap_area object. It is used
1456	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1457	 * a CPU that does an allocation is preloaded.
1458	 *
1459	 * We do it in non-atomic context, thus it allows us to use more
1460	 * permissive allocation masks to be more stable under low memory
1461	 * condition and high memory pressure.
1462	 */
1463	if (!this_cpu_read(ne_fit_preload_node))
1464		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1465
1466	spin_lock(lock);
1467
1468	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1469		kmem_cache_free(vmap_area_cachep, va);
1470}
1471
1472/*
1473 * Allocate a region of KVA of the specified size and alignment, within the
1474 * vstart and vend.
1475 */
1476static struct vmap_area *alloc_vmap_area(unsigned long size,
1477				unsigned long align,
1478				unsigned long vstart, unsigned long vend,
1479				int node, gfp_t gfp_mask)
1480{
1481	struct vmap_area *va;
 
1482	unsigned long addr;
1483	int purged = 0;
1484	int ret;
1485
1486	BUG_ON(!size);
1487	BUG_ON(offset_in_page(size));
1488	BUG_ON(!is_power_of_2(align));
1489
1490	if (unlikely(!vmap_initialized))
1491		return ERR_PTR(-EBUSY);
1492
1493	might_sleep();
1494	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1495
1496	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1497	if (unlikely(!va))
1498		return ERR_PTR(-ENOMEM);
1499
 
 
1500	/*
1501	 * Only scan the relevant parts containing pointers to other objects
1502	 * to avoid false negatives.
1503	 */
1504	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506retry:
1507	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1508	addr = __alloc_vmap_area(size, align, vstart, vend);
1509	spin_unlock(&free_vmap_area_lock);
 
 
1510
1511	/*
1512	 * If an allocation fails, the "vend" address is
1513	 * returned. Therefore trigger the overflow path.
1514	 */
1515	if (unlikely(addr == vend))
1516		goto overflow;
1517
1518	va->va_start = addr;
1519	va->va_end = addr + size;
1520	va->vm = NULL;
1521
1522	spin_lock(&vmap_area_lock);
1523	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1524	spin_unlock(&vmap_area_lock);
1525
1526	BUG_ON(!IS_ALIGNED(va->va_start, align));
1527	BUG_ON(va->va_start < vstart);
1528	BUG_ON(va->va_end > vend);
1529
1530	ret = kasan_populate_vmalloc(addr, size);
1531	if (ret) {
1532		free_vmap_area(va);
1533		return ERR_PTR(ret);
1534	}
1535
1536	return va;
1537
1538overflow:
 
1539	if (!purged) {
1540		purge_vmap_area_lazy();
1541		purged = 1;
1542		goto retry;
1543	}
 
 
 
 
 
 
 
1544
1545	if (gfpflags_allow_blocking(gfp_mask)) {
1546		unsigned long freed = 0;
1547		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1548		if (freed > 0) {
1549			purged = 0;
1550			goto retry;
 
 
 
 
 
 
 
 
 
 
 
1551		}
1552	}
 
 
 
1553
1554	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1555		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1556			size);
 
 
 
 
 
1557
1558	kmem_cache_free(vmap_area_cachep, va);
1559	return ERR_PTR(-EBUSY);
 
 
 
 
 
 
 
 
 
1560}
1561
1562int register_vmap_purge_notifier(struct notifier_block *nb)
 
 
 
1563{
1564	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1565}
1566EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1567
1568int unregister_vmap_purge_notifier(struct notifier_block *nb)
1569{
1570	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571}
1572EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1573
1574/*
1575 * lazy_max_pages is the maximum amount of virtual address space we gather up
1576 * before attempting to purge with a TLB flush.
1577 *
1578 * There is a tradeoff here: a larger number will cover more kernel page tables
1579 * and take slightly longer to purge, but it will linearly reduce the number of
1580 * global TLB flushes that must be performed. It would seem natural to scale
1581 * this number up linearly with the number of CPUs (because vmapping activity
1582 * could also scale linearly with the number of CPUs), however it is likely
1583 * that in practice, workloads might be constrained in other ways that mean
1584 * vmap activity will not scale linearly with CPUs. Also, I want to be
1585 * conservative and not introduce a big latency on huge systems, so go with
1586 * a less aggressive log scale. It will still be an improvement over the old
1587 * code, and it will be simple to change the scale factor if we find that it
1588 * becomes a problem on bigger systems.
1589 */
1590static unsigned long lazy_max_pages(void)
1591{
1592	unsigned int log;
1593
1594	log = fls(num_online_cpus());
1595
1596	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1597}
1598
1599static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1600
1601/*
1602 * Serialize vmap purging.  There is no actual critical section protected
1603 * by this look, but we want to avoid concurrent calls for performance
1604 * reasons and to make the pcpu_get_vm_areas more deterministic.
1605 */
1606static DEFINE_MUTEX(vmap_purge_lock);
1607
1608/* for per-CPU blocks */
1609static void purge_fragmented_blocks_allcpus(void);
1610
1611#ifdef CONFIG_X86_64
1612/*
1613 * called before a call to iounmap() if the caller wants vm_area_struct's
1614 * immediately freed.
1615 */
1616void set_iounmap_nonlazy(void)
1617{
1618	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1619}
1620#endif /* CONFIG_X86_64 */
1621
1622/*
1623 * Purges all lazily-freed vmap areas.
 
 
 
 
 
 
 
1624 */
1625static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 
1626{
1627	unsigned long resched_threshold;
1628	struct list_head local_pure_list;
1629	struct vmap_area *va, *n_va;
 
 
1630
1631	lockdep_assert_held(&vmap_purge_lock);
 
 
 
 
 
 
 
 
 
1632
1633	spin_lock(&purge_vmap_area_lock);
1634	purge_vmap_area_root = RB_ROOT;
1635	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1636	spin_unlock(&purge_vmap_area_lock);
1637
1638	if (unlikely(list_empty(&local_pure_list)))
1639		return false;
 
 
 
 
 
 
 
 
 
 
 
 
1640
1641	start = min(start,
1642		list_first_entry(&local_pure_list,
1643			struct vmap_area, list)->va_start);
1644
1645	end = max(end,
1646		list_last_entry(&local_pure_list,
1647			struct vmap_area, list)->va_end);
1648
1649	flush_tlb_kernel_range(start, end);
1650	resched_threshold = lazy_max_pages() << 1;
1651
1652	spin_lock(&free_vmap_area_lock);
1653	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1654		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1655		unsigned long orig_start = va->va_start;
1656		unsigned long orig_end = va->va_end;
1657
1658		/*
1659		 * Finally insert or merge lazily-freed area. It is
1660		 * detached and there is no need to "unlink" it from
1661		 * anything.
1662		 */
1663		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1664				&free_vmap_area_list);
1665
1666		if (!va)
1667			continue;
1668
1669		if (is_vmalloc_or_module_addr((void *)orig_start))
1670			kasan_release_vmalloc(orig_start, orig_end,
1671					      va->va_start, va->va_end);
1672
1673		atomic_long_sub(nr, &vmap_lazy_nr);
1674
1675		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1676			cond_resched_lock(&free_vmap_area_lock);
1677	}
1678	spin_unlock(&free_vmap_area_lock);
1679	return true;
1680}
1681
1682/*
1683 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1684 * is already purging.
1685 */
1686static void try_purge_vmap_area_lazy(void)
1687{
1688	if (mutex_trylock(&vmap_purge_lock)) {
1689		__purge_vmap_area_lazy(ULONG_MAX, 0);
1690		mutex_unlock(&vmap_purge_lock);
1691	}
1692}
1693
1694/*
1695 * Kick off a purge of the outstanding lazy areas.
1696 */
1697static void purge_vmap_area_lazy(void)
1698{
1699	mutex_lock(&vmap_purge_lock);
1700	purge_fragmented_blocks_allcpus();
1701	__purge_vmap_area_lazy(ULONG_MAX, 0);
1702	mutex_unlock(&vmap_purge_lock);
1703}
1704
1705/*
1706 * Free a vmap area, caller ensuring that the area has been unmapped
1707 * and flush_cache_vunmap had been called for the correct range
1708 * previously.
1709 */
1710static void free_vmap_area_noflush(struct vmap_area *va)
1711{
1712	unsigned long nr_lazy;
 
 
 
 
1713
1714	spin_lock(&vmap_area_lock);
1715	unlink_va(va, &vmap_area_root);
1716	spin_unlock(&vmap_area_lock);
1717
1718	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1719				PAGE_SHIFT, &vmap_lazy_nr);
1720
1721	/*
1722	 * Merge or place it to the purge tree/list.
1723	 */
1724	spin_lock(&purge_vmap_area_lock);
1725	merge_or_add_vmap_area(va,
1726		&purge_vmap_area_root, &purge_vmap_area_list);
1727	spin_unlock(&purge_vmap_area_lock);
1728
1729	/* After this point, we may free va at any time */
1730	if (unlikely(nr_lazy > lazy_max_pages()))
1731		try_purge_vmap_area_lazy();
1732}
1733
1734/*
1735 * Free and unmap a vmap area
1736 */
1737static void free_unmap_vmap_area(struct vmap_area *va)
1738{
1739	flush_cache_vunmap(va->va_start, va->va_end);
1740	vunmap_range_noflush(va->va_start, va->va_end);
1741	if (debug_pagealloc_enabled_static())
1742		flush_tlb_kernel_range(va->va_start, va->va_end);
1743
1744	free_vmap_area_noflush(va);
1745}
1746
1747static struct vmap_area *find_vmap_area(unsigned long addr)
1748{
1749	struct vmap_area *va;
1750
1751	spin_lock(&vmap_area_lock);
1752	va = __find_vmap_area(addr);
1753	spin_unlock(&vmap_area_lock);
1754
1755	return va;
1756}
1757
 
 
 
 
 
 
 
 
 
 
1758/*** Per cpu kva allocator ***/
1759
1760/*
1761 * vmap space is limited especially on 32 bit architectures. Ensure there is
1762 * room for at least 16 percpu vmap blocks per CPU.
1763 */
1764/*
1765 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1766 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1767 * instead (we just need a rough idea)
1768 */
1769#if BITS_PER_LONG == 32
1770#define VMALLOC_SPACE		(128UL*1024*1024)
1771#else
1772#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1773#endif
1774
1775#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1776#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1777#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1778#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1779#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1780#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1781#define VMAP_BBMAP_BITS		\
1782		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1783		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1784			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1785
1786#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1787
 
 
1788struct vmap_block_queue {
1789	spinlock_t lock;
1790	struct list_head free;
1791};
1792
1793struct vmap_block {
1794	spinlock_t lock;
1795	struct vmap_area *va;
 
1796	unsigned long free, dirty;
1797	unsigned long dirty_min, dirty_max; /*< dirty range */
 
1798	struct list_head free_list;
1799	struct rcu_head rcu_head;
1800	struct list_head purge;
1801};
1802
1803/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1804static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1805
1806/*
1807 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1808 * in the free path. Could get rid of this if we change the API to return a
1809 * "cookie" from alloc, to be passed to free. But no big deal yet.
1810 */
1811static DEFINE_XARRAY(vmap_blocks);
 
1812
1813/*
1814 * We should probably have a fallback mechanism to allocate virtual memory
1815 * out of partially filled vmap blocks. However vmap block sizing should be
1816 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1817 * big problem.
1818 */
1819
1820static unsigned long addr_to_vb_idx(unsigned long addr)
1821{
1822	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1823	addr /= VMAP_BLOCK_SIZE;
1824	return addr;
1825}
1826
1827static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1828{
1829	unsigned long addr;
1830
1831	addr = va_start + (pages_off << PAGE_SHIFT);
1832	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1833	return (void *)addr;
1834}
1835
1836/**
1837 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1838 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1839 * @order:    how many 2^order pages should be occupied in newly allocated block
1840 * @gfp_mask: flags for the page level allocator
1841 *
1842 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1843 */
1844static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1845{
1846	struct vmap_block_queue *vbq;
1847	struct vmap_block *vb;
1848	struct vmap_area *va;
1849	unsigned long vb_idx;
1850	int node, err;
1851	void *vaddr;
1852
1853	node = numa_node_id();
1854
1855	vb = kmalloc_node(sizeof(struct vmap_block),
1856			gfp_mask & GFP_RECLAIM_MASK, node);
1857	if (unlikely(!vb))
1858		return ERR_PTR(-ENOMEM);
1859
1860	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1861					VMALLOC_START, VMALLOC_END,
1862					node, gfp_mask);
1863	if (IS_ERR(va)) {
1864		kfree(vb);
1865		return ERR_CAST(va);
1866	}
1867
1868	vaddr = vmap_block_vaddr(va->va_start, 0);
 
 
 
 
 
 
1869	spin_lock_init(&vb->lock);
1870	vb->va = va;
1871	/* At least something should be left free */
1872	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1873	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1874	vb->dirty = 0;
1875	vb->dirty_min = VMAP_BBMAP_BITS;
1876	vb->dirty_max = 0;
1877	INIT_LIST_HEAD(&vb->free_list);
1878
1879	vb_idx = addr_to_vb_idx(va->va_start);
1880	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1881	if (err) {
1882		kfree(vb);
1883		free_vmap_area(va);
1884		return ERR_PTR(err);
1885	}
1886
1887	vbq = &get_cpu_var(vmap_block_queue);
 
1888	spin_lock(&vbq->lock);
1889	list_add_tail_rcu(&vb->free_list, &vbq->free);
1890	spin_unlock(&vbq->lock);
1891	put_cpu_var(vmap_block_queue);
1892
1893	return vaddr;
1894}
1895
1896static void free_vmap_block(struct vmap_block *vb)
1897{
1898	struct vmap_block *tmp;
 
1899
1900	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
 
 
 
1901	BUG_ON(tmp != vb);
1902
1903	free_vmap_area_noflush(vb->va);
1904	kfree_rcu(vb, rcu_head);
1905}
1906
1907static void purge_fragmented_blocks(int cpu)
1908{
1909	LIST_HEAD(purge);
1910	struct vmap_block *vb;
1911	struct vmap_block *n_vb;
1912	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1913
1914	rcu_read_lock();
1915	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1916
1917		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1918			continue;
1919
1920		spin_lock(&vb->lock);
1921		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1922			vb->free = 0; /* prevent further allocs after releasing lock */
1923			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1924			vb->dirty_min = 0;
1925			vb->dirty_max = VMAP_BBMAP_BITS;
1926			spin_lock(&vbq->lock);
1927			list_del_rcu(&vb->free_list);
1928			spin_unlock(&vbq->lock);
1929			spin_unlock(&vb->lock);
1930			list_add_tail(&vb->purge, &purge);
1931		} else
1932			spin_unlock(&vb->lock);
1933	}
1934	rcu_read_unlock();
1935
1936	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1937		list_del(&vb->purge);
1938		free_vmap_block(vb);
1939	}
1940}
1941
 
 
 
 
 
1942static void purge_fragmented_blocks_allcpus(void)
1943{
1944	int cpu;
1945
1946	for_each_possible_cpu(cpu)
1947		purge_fragmented_blocks(cpu);
1948}
1949
1950static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1951{
1952	struct vmap_block_queue *vbq;
1953	struct vmap_block *vb;
1954	void *vaddr = NULL;
1955	unsigned int order;
 
1956
1957	BUG_ON(offset_in_page(size));
1958	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1959	if (WARN_ON(size == 0)) {
1960		/*
1961		 * Allocating 0 bytes isn't what caller wants since
1962		 * get_order(0) returns funny result. Just warn and terminate
1963		 * early.
1964		 */
1965		return NULL;
1966	}
1967	order = get_order(size);
1968
 
1969	rcu_read_lock();
1970	vbq = &get_cpu_var(vmap_block_queue);
1971	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1972		unsigned long pages_off;
1973
1974		spin_lock(&vb->lock);
1975		if (vb->free < (1UL << order)) {
1976			spin_unlock(&vb->lock);
1977			continue;
 
 
 
 
 
 
 
 
 
 
1978		}
1979
1980		pages_off = VMAP_BBMAP_BITS - vb->free;
1981		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1982		vb->free -= 1UL << order;
1983		if (vb->free == 0) {
1984			spin_lock(&vbq->lock);
1985			list_del_rcu(&vb->free_list);
1986			spin_unlock(&vbq->lock);
1987		}
1988
1989		spin_unlock(&vb->lock);
1990		break;
 
 
1991	}
1992
 
 
 
1993	put_cpu_var(vmap_block_queue);
1994	rcu_read_unlock();
1995
1996	/* Allocate new block if nothing was found */
1997	if (!vaddr)
1998		vaddr = new_vmap_block(order, gfp_mask);
 
 
 
1999
2000	return vaddr;
2001}
2002
2003static void vb_free(unsigned long addr, unsigned long size)
2004{
2005	unsigned long offset;
 
2006	unsigned int order;
2007	struct vmap_block *vb;
2008
2009	BUG_ON(offset_in_page(size));
2010	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2011
2012	flush_cache_vunmap(addr, addr + size);
2013
2014	order = get_order(size);
2015	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2016	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2017
2018	vunmap_range_noflush(addr, addr + size);
 
 
 
 
 
 
2019
2020	if (debug_pagealloc_enabled_static())
2021		flush_tlb_kernel_range(addr, addr + size);
2022
2023	spin_lock(&vb->lock);
2024
2025	/* Expand dirty range */
2026	vb->dirty_min = min(vb->dirty_min, offset);
2027	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2028
2029	vb->dirty += 1UL << order;
2030	if (vb->dirty == VMAP_BBMAP_BITS) {
2031		BUG_ON(vb->free);
2032		spin_unlock(&vb->lock);
2033		free_vmap_block(vb);
2034	} else
2035		spin_unlock(&vb->lock);
2036}
2037
2038static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
 
 
 
 
 
 
 
 
 
 
 
 
 
2039{
 
2040	int cpu;
 
2041
2042	if (unlikely(!vmap_initialized))
2043		return;
2044
2045	might_sleep();
2046
2047	for_each_possible_cpu(cpu) {
2048		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2049		struct vmap_block *vb;
2050
2051		rcu_read_lock();
2052		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
2053			spin_lock(&vb->lock);
2054			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2055				unsigned long va_start = vb->va->va_start;
2056				unsigned long s, e;
 
 
 
2057
2058				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2059				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2060
2061				start = min(s, start);
2062				end   = max(e, end);
2063
2064				flush = 1;
 
 
 
 
 
 
 
2065			}
2066			spin_unlock(&vb->lock);
2067		}
2068		rcu_read_unlock();
2069	}
2070
2071	mutex_lock(&vmap_purge_lock);
2072	purge_fragmented_blocks_allcpus();
2073	if (!__purge_vmap_area_lazy(start, end) && flush)
2074		flush_tlb_kernel_range(start, end);
2075	mutex_unlock(&vmap_purge_lock);
2076}
2077
2078/**
2079 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2080 *
2081 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2082 * to amortize TLB flushing overheads. What this means is that any page you
2083 * have now, may, in a former life, have been mapped into kernel virtual
2084 * address by the vmap layer and so there might be some CPUs with TLB entries
2085 * still referencing that page (additional to the regular 1:1 kernel mapping).
2086 *
2087 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2088 * be sure that none of the pages we have control over will have any aliases
2089 * from the vmap layer.
2090 */
2091void vm_unmap_aliases(void)
2092{
2093	unsigned long start = ULONG_MAX, end = 0;
2094	int flush = 0;
2095
2096	_vm_unmap_aliases(start, end, flush);
2097}
2098EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2099
2100/**
2101 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2102 * @mem: the pointer returned by vm_map_ram
2103 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2104 */
2105void vm_unmap_ram(const void *mem, unsigned int count)
2106{
2107	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2108	unsigned long addr = (unsigned long)mem;
2109	struct vmap_area *va;
2110
2111	might_sleep();
2112	BUG_ON(!addr);
2113	BUG_ON(addr < VMALLOC_START);
2114	BUG_ON(addr > VMALLOC_END);
2115	BUG_ON(!PAGE_ALIGNED(addr));
2116
2117	kasan_poison_vmalloc(mem, size);
 
2118
2119	if (likely(count <= VMAP_MAX_ALLOC)) {
2120		debug_check_no_locks_freed(mem, size);
2121		vb_free(addr, size);
2122		return;
2123	}
2124
2125	va = find_vmap_area(addr);
2126	BUG_ON(!va);
2127	debug_check_no_locks_freed((void *)va->va_start,
2128				    (va->va_end - va->va_start));
2129	free_unmap_vmap_area(va);
2130}
2131EXPORT_SYMBOL(vm_unmap_ram);
2132
2133/**
2134 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2135 * @pages: an array of pointers to the pages to be mapped
2136 * @count: number of pages
2137 * @node: prefer to allocate data structures on this node
2138 *
2139 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2140 * faster than vmap so it's good.  But if you mix long-life and short-life
2141 * objects with vm_map_ram(), it could consume lots of address space through
2142 * fragmentation (especially on a 32bit machine).  You could see failures in
2143 * the end.  Please use this function for short-lived objects.
2144 *
2145 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2146 */
2147void *vm_map_ram(struct page **pages, unsigned int count, int node)
2148{
2149	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2150	unsigned long addr;
2151	void *mem;
2152
2153	if (likely(count <= VMAP_MAX_ALLOC)) {
2154		mem = vb_alloc(size, GFP_KERNEL);
2155		if (IS_ERR(mem))
2156			return NULL;
2157		addr = (unsigned long)mem;
2158	} else {
2159		struct vmap_area *va;
2160		va = alloc_vmap_area(size, PAGE_SIZE,
2161				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2162		if (IS_ERR(va))
2163			return NULL;
2164
2165		addr = va->va_start;
2166		mem = (void *)addr;
2167	}
2168
2169	kasan_unpoison_vmalloc(mem, size);
2170
2171	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2172				pages, PAGE_SHIFT) < 0) {
2173		vm_unmap_ram(mem, count);
2174		return NULL;
2175	}
2176
2177	return mem;
2178}
2179EXPORT_SYMBOL(vm_map_ram);
2180
2181static struct vm_struct *vmlist __initdata;
2182
2183static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2184{
2185#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2186	return vm->page_order;
2187#else
2188	return 0;
2189#endif
2190}
2191
2192static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2193{
2194#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2195	vm->page_order = order;
2196#else
2197	BUG_ON(order != 0);
2198#endif
2199}
2200
2201/**
2202 * vm_area_add_early - add vmap area early during boot
2203 * @vm: vm_struct to add
2204 *
2205 * This function is used to add fixed kernel vm area to vmlist before
2206 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2207 * should contain proper values and the other fields should be zero.
2208 *
2209 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2210 */
2211void __init vm_area_add_early(struct vm_struct *vm)
2212{
2213	struct vm_struct *tmp, **p;
2214
2215	BUG_ON(vmap_initialized);
2216	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2217		if (tmp->addr >= vm->addr) {
2218			BUG_ON(tmp->addr < vm->addr + vm->size);
2219			break;
2220		} else
2221			BUG_ON(tmp->addr + tmp->size > vm->addr);
2222	}
2223	vm->next = *p;
2224	*p = vm;
2225}
2226
2227/**
2228 * vm_area_register_early - register vmap area early during boot
2229 * @vm: vm_struct to register
2230 * @align: requested alignment
2231 *
2232 * This function is used to register kernel vm area before
2233 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2234 * proper values on entry and other fields should be zero.  On return,
2235 * vm->addr contains the allocated address.
2236 *
2237 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2238 */
2239void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2240{
2241	static size_t vm_init_off __initdata;
2242	unsigned long addr;
2243
2244	addr = ALIGN(VMALLOC_START + vm_init_off, align);
2245	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2246
2247	vm->addr = (void *)addr;
2248
2249	vm_area_add_early(vm);
2250}
2251
2252static void vmap_init_free_space(void)
2253{
2254	unsigned long vmap_start = 1;
2255	const unsigned long vmap_end = ULONG_MAX;
2256	struct vmap_area *busy, *free;
2257
2258	/*
2259	 *     B     F     B     B     B     F
2260	 * -|-----|.....|-----|-----|-----|.....|-
2261	 *  |           The KVA space           |
2262	 *  |<--------------------------------->|
2263	 */
2264	list_for_each_entry(busy, &vmap_area_list, list) {
2265		if (busy->va_start - vmap_start > 0) {
2266			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2267			if (!WARN_ON_ONCE(!free)) {
2268				free->va_start = vmap_start;
2269				free->va_end = busy->va_start;
2270
2271				insert_vmap_area_augment(free, NULL,
2272					&free_vmap_area_root,
2273						&free_vmap_area_list);
2274			}
2275		}
2276
2277		vmap_start = busy->va_end;
2278	}
2279
2280	if (vmap_end - vmap_start > 0) {
2281		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2282		if (!WARN_ON_ONCE(!free)) {
2283			free->va_start = vmap_start;
2284			free->va_end = vmap_end;
2285
2286			insert_vmap_area_augment(free, NULL,
2287				&free_vmap_area_root,
2288					&free_vmap_area_list);
2289		}
2290	}
2291}
2292
2293void __init vmalloc_init(void)
2294{
2295	struct vmap_area *va;
2296	struct vm_struct *tmp;
2297	int i;
2298
2299	/*
2300	 * Create the cache for vmap_area objects.
2301	 */
2302	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2303
2304	for_each_possible_cpu(i) {
2305		struct vmap_block_queue *vbq;
2306		struct vfree_deferred *p;
2307
2308		vbq = &per_cpu(vmap_block_queue, i);
2309		spin_lock_init(&vbq->lock);
2310		INIT_LIST_HEAD(&vbq->free);
2311		p = &per_cpu(vfree_deferred, i);
2312		init_llist_head(&p->list);
2313		INIT_WORK(&p->wq, free_work);
2314	}
2315
2316	/* Import existing vmlist entries. */
2317	for (tmp = vmlist; tmp; tmp = tmp->next) {
2318		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2319		if (WARN_ON_ONCE(!va))
2320			continue;
2321
2322		va->va_start = (unsigned long)tmp->addr;
2323		va->va_end = va->va_start + tmp->size;
2324		va->vm = tmp;
2325		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2326	}
2327
2328	/*
2329	 * Now we can initialize a free vmap space.
2330	 */
2331	vmap_init_free_space();
2332	vmap_initialized = true;
2333}
2334
2335static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2336	struct vmap_area *va, unsigned long flags, const void *caller)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337{
2338	vm->flags = flags;
2339	vm->addr = (void *)va->va_start;
2340	vm->size = va->va_end - va->va_start;
2341	vm->caller = caller;
2342	va->vm = vm;
2343}
2344
2345static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2346			      unsigned long flags, const void *caller)
2347{
2348	spin_lock(&vmap_area_lock);
2349	setup_vmalloc_vm_locked(vm, va, flags, caller);
2350	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
 
2351}
 
 
 
 
 
2352
2353static void clear_vm_uninitialized_flag(struct vm_struct *vm)
 
2354{
2355	/*
2356	 * Before removing VM_UNINITIALIZED,
2357	 * we should make sure that vm has proper values.
2358	 * Pair with smp_rmb() in show_numa_info().
2359	 */
2360	smp_wmb();
2361	vm->flags &= ~VM_UNINITIALIZED;
 
 
 
 
 
 
 
 
 
 
2362}
2363
2364static struct vm_struct *__get_vm_area_node(unsigned long size,
2365		unsigned long align, unsigned long shift, unsigned long flags,
2366		unsigned long start, unsigned long end, int node,
2367		gfp_t gfp_mask, const void *caller)
2368{
2369	struct vmap_area *va;
2370	struct vm_struct *area;
2371	unsigned long requested_size = size;
2372
2373	BUG_ON(in_interrupt());
2374	size = ALIGN(size, 1ul << shift);
 
 
 
 
 
 
 
 
 
 
 
2375	if (unlikely(!size))
2376		return NULL;
2377
2378	if (flags & VM_IOREMAP)
2379		align = 1ul << clamp_t(int, get_count_order_long(size),
2380				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2381
2382	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2383	if (unlikely(!area))
2384		return NULL;
2385
2386	if (!(flags & VM_NO_GUARD))
2387		size += PAGE_SIZE;
 
 
2388
2389	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2390	if (IS_ERR(va)) {
2391		kfree(area);
2392		return NULL;
2393	}
2394
2395	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
 
 
2396
2397	setup_vmalloc_vm(area, va, flags, caller);
2398
2399	return area;
 
 
2400}
 
2401
2402struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2403				       unsigned long start, unsigned long end,
2404				       const void *caller)
2405{
2406	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2407				  NUMA_NO_NODE, GFP_KERNEL, caller);
2408}
2409
2410/**
2411 * get_vm_area - reserve a contiguous kernel virtual area
2412 * @size:	 size of the area
2413 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2414 *
2415 * Search an area of @size in the kernel virtual mapping area,
2416 * and reserved it for out purposes.  Returns the area descriptor
2417 * on success or %NULL on failure.
2418 *
2419 * Return: the area descriptor on success or %NULL on failure.
 
 
2420 */
2421struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2422{
2423	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2424				  VMALLOC_START, VMALLOC_END,
2425				  NUMA_NO_NODE, GFP_KERNEL,
2426				  __builtin_return_address(0));
2427}
2428
2429struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2430				const void *caller)
2431{
2432	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2433				  VMALLOC_START, VMALLOC_END,
2434				  NUMA_NO_NODE, GFP_KERNEL, caller);
2435}
2436
2437/**
2438 * find_vm_area - find a continuous kernel virtual area
2439 * @addr:	  base address
2440 *
2441 * Search for the kernel VM area starting at @addr, and return it.
2442 * It is up to the caller to do all required locking to keep the returned
2443 * pointer valid.
2444 *
2445 * Return: the area descriptor on success or %NULL on failure.
2446 */
2447struct vm_struct *find_vm_area(const void *addr)
2448{
2449	struct vmap_area *va;
2450
2451	va = find_vmap_area((unsigned long)addr);
2452	if (!va)
2453		return NULL;
2454
2455	return va->vm;
2456}
2457
2458/**
2459 * remove_vm_area - find and remove a continuous kernel virtual area
2460 * @addr:	    base address
2461 *
2462 * Search for the kernel VM area starting at @addr, and remove it.
2463 * This function returns the found VM area, but using it is NOT safe
2464 * on SMP machines, except for its size or flags.
2465 *
2466 * Return: the area descriptor on success or %NULL on failure.
 
 
2467 */
2468struct vm_struct *remove_vm_area(const void *addr)
2469{
2470	struct vmap_area *va;
2471
2472	might_sleep();
2473
2474	spin_lock(&vmap_area_lock);
2475	va = __find_vmap_area((unsigned long)addr);
2476	if (va && va->vm) {
2477		struct vm_struct *vm = va->vm;
2478
2479		va->vm = NULL;
2480		spin_unlock(&vmap_area_lock);
 
 
 
 
 
2481
2482		kasan_free_shadow(vm);
2483		free_unmap_vmap_area(va);
 
2484
2485		return vm;
2486	}
2487
2488	spin_unlock(&vmap_area_lock);
2489	return NULL;
2490}
2491
2492static inline void set_area_direct_map(const struct vm_struct *area,
2493				       int (*set_direct_map)(struct page *page))
2494{
2495	int i;
2496
2497	/* HUGE_VMALLOC passes small pages to set_direct_map */
2498	for (i = 0; i < area->nr_pages; i++)
2499		if (page_address(area->pages[i]))
2500			set_direct_map(area->pages[i]);
2501}
2502
2503/* Handle removing and resetting vm mappings related to the vm_struct. */
2504static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2505{
2506	unsigned long start = ULONG_MAX, end = 0;
2507	unsigned int page_order = vm_area_page_order(area);
2508	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2509	int flush_dmap = 0;
2510	int i;
2511
2512	remove_vm_area(area->addr);
2513
2514	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2515	if (!flush_reset)
2516		return;
2517
2518	/*
2519	 * If not deallocating pages, just do the flush of the VM area and
2520	 * return.
2521	 */
2522	if (!deallocate_pages) {
2523		vm_unmap_aliases();
2524		return;
2525	}
2526
2527	/*
2528	 * If execution gets here, flush the vm mapping and reset the direct
2529	 * map. Find the start and end range of the direct mappings to make sure
2530	 * the vm_unmap_aliases() flush includes the direct map.
2531	 */
2532	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2533		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2534		if (addr) {
2535			unsigned long page_size;
2536
2537			page_size = PAGE_SIZE << page_order;
2538			start = min(addr, start);
2539			end = max(addr + page_size, end);
2540			flush_dmap = 1;
2541		}
2542	}
2543
2544	/*
2545	 * Set direct map to something invalid so that it won't be cached if
2546	 * there are any accesses after the TLB flush, then flush the TLB and
2547	 * reset the direct map permissions to the default.
2548	 */
2549	set_area_direct_map(area, set_direct_map_invalid_noflush);
2550	_vm_unmap_aliases(start, end, flush_dmap);
2551	set_area_direct_map(area, set_direct_map_default_noflush);
2552}
2553
2554static void __vunmap(const void *addr, int deallocate_pages)
2555{
2556	struct vm_struct *area;
2557
2558	if (!addr)
2559		return;
2560
2561	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2562			addr))
2563		return;
 
2564
2565	area = find_vm_area(addr);
2566	if (unlikely(!area)) {
2567		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2568				addr);
2569		return;
2570	}
2571
2572	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2573	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2574
2575	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2576
2577	vm_remove_mappings(area, deallocate_pages);
2578
2579	if (deallocate_pages) {
2580		unsigned int page_order = vm_area_page_order(area);
2581		int i;
2582
2583		for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2584			struct page *page = area->pages[i];
2585
2586			BUG_ON(!page);
2587			__free_pages(page, page_order);
2588			cond_resched();
2589		}
2590		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2591
2592		kvfree(area->pages);
 
 
 
2593	}
2594
2595	kfree(area);
2596}
2597
2598static inline void __vfree_deferred(const void *addr)
2599{
2600	/*
2601	 * Use raw_cpu_ptr() because this can be called from preemptible
2602	 * context. Preemption is absolutely fine here, because the llist_add()
2603	 * implementation is lockless, so it works even if we are adding to
2604	 * another cpu's list. schedule_work() should be fine with this too.
2605	 */
2606	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2607
2608	if (llist_add((struct llist_node *)addr, &p->list))
2609		schedule_work(&p->wq);
2610}
2611
2612/**
2613 * vfree_atomic - release memory allocated by vmalloc()
2614 * @addr:	  memory base address
2615 *
2616 * This one is just like vfree() but can be called in any atomic context
2617 * except NMIs.
2618 */
2619void vfree_atomic(const void *addr)
2620{
2621	BUG_ON(in_nmi());
2622
2623	kmemleak_free(addr);
2624
2625	if (!addr)
2626		return;
2627	__vfree_deferred(addr);
2628}
2629
2630static void __vfree(const void *addr)
2631{
2632	if (unlikely(in_interrupt()))
2633		__vfree_deferred(addr);
2634	else
2635		__vunmap(addr, 1);
2636}
2637
2638/**
2639 * vfree - Release memory allocated by vmalloc()
2640 * @addr:  Memory base address
2641 *
2642 * Free the virtually continuous memory area starting at @addr, as obtained
2643 * from one of the vmalloc() family of APIs.  This will usually also free the
2644 * physical memory underlying the virtual allocation, but that memory is
2645 * reference counted, so it will not be freed until the last user goes away.
2646 *
2647 * If @addr is NULL, no operation is performed.
2648 *
2649 * Context:
2650 * May sleep if called *not* from interrupt context.
2651 * Must not be called in NMI context (strictly speaking, it could be
2652 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2653 * conventions for vfree() arch-dependent would be a really bad idea).
2654 */
2655void vfree(const void *addr)
2656{
2657	BUG_ON(in_nmi());
2658
2659	kmemleak_free(addr);
2660
2661	might_sleep_if(!in_interrupt());
2662
2663	if (!addr)
2664		return;
2665
2666	__vfree(addr);
2667}
2668EXPORT_SYMBOL(vfree);
2669
2670/**
2671 * vunmap - release virtual mapping obtained by vmap()
2672 * @addr:   memory base address
2673 *
2674 * Free the virtually contiguous memory area starting at @addr,
2675 * which was created from the page array passed to vmap().
2676 *
2677 * Must not be called in interrupt context.
2678 */
2679void vunmap(const void *addr)
2680{
2681	BUG_ON(in_interrupt());
2682	might_sleep();
2683	if (addr)
2684		__vunmap(addr, 0);
2685}
2686EXPORT_SYMBOL(vunmap);
2687
2688/**
2689 * vmap - map an array of pages into virtually contiguous space
2690 * @pages: array of page pointers
2691 * @count: number of pages to map
2692 * @flags: vm_area->flags
2693 * @prot: page protection for the mapping
2694 *
2695 * Maps @count pages from @pages into contiguous kernel virtual space.
2696 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2697 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2698 * are transferred from the caller to vmap(), and will be freed / dropped when
2699 * vfree() is called on the return value.
2700 *
2701 * Return: the address of the area or %NULL on failure
 
2702 */
2703void *vmap(struct page **pages, unsigned int count,
2704	   unsigned long flags, pgprot_t prot)
2705{
2706	struct vm_struct *area;
2707	unsigned long addr;
2708	unsigned long size;		/* In bytes */
2709
2710	might_sleep();
2711
2712	if (count > totalram_pages())
2713		return NULL;
2714
2715	size = (unsigned long)count << PAGE_SHIFT;
2716	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2717	if (!area)
2718		return NULL;
2719
2720	addr = (unsigned long)area->addr;
2721	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2722				pages, PAGE_SHIFT) < 0) {
2723		vunmap(area->addr);
2724		return NULL;
2725	}
2726
2727	if (flags & VM_MAP_PUT_PAGES) {
2728		area->pages = pages;
2729		area->nr_pages = count;
2730	}
2731	return area->addr;
2732}
2733EXPORT_SYMBOL(vmap);
2734
2735#ifdef CONFIG_VMAP_PFN
2736struct vmap_pfn_data {
2737	unsigned long	*pfns;
2738	pgprot_t	prot;
2739	unsigned int	idx;
2740};
2741
2742static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2743{
2744	struct vmap_pfn_data *data = private;
 
 
 
2745
2746	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2747		return -EINVAL;
2748	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2749	return 0;
2750}
2751
2752/**
2753 * vmap_pfn - map an array of PFNs into virtually contiguous space
2754 * @pfns: array of PFNs
2755 * @count: number of pages to map
2756 * @prot: page protection for the mapping
2757 *
2758 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2759 * the start address of the mapping.
2760 */
2761void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2762{
2763	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2764	struct vm_struct *area;
2765
2766	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2767			__builtin_return_address(0));
2768	if (!area)
2769		return NULL;
2770	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2771			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2772		free_vm_area(area);
2773		return NULL;
2774	}
2775	return area->addr;
2776}
2777EXPORT_SYMBOL_GPL(vmap_pfn);
2778#endif /* CONFIG_VMAP_PFN */
2779
2780static inline unsigned int
2781vm_area_alloc_pages(gfp_t gfp, int nid,
2782		unsigned int order, unsigned long nr_pages, struct page **pages)
2783{
2784	unsigned int nr_allocated = 0;
2785
2786	/*
2787	 * For order-0 pages we make use of bulk allocator, if
2788	 * the page array is partly or not at all populated due
2789	 * to fails, fallback to a single page allocator that is
2790	 * more permissive.
2791	 */
2792	if (!order)
2793		nr_allocated = alloc_pages_bulk_array_node(
2794			gfp, nid, nr_pages, pages);
2795	else
2796		/*
2797		 * Compound pages required for remap_vmalloc_page if
2798		 * high-order pages.
2799		 */
2800		gfp |= __GFP_COMP;
2801
2802	/* High-order pages or fallback path if "bulk" fails. */
2803	while (nr_allocated < nr_pages) {
2804		struct page *page;
2805		int i;
2806
2807		page = alloc_pages_node(nid, gfp, order);
2808		if (unlikely(!page))
2809			break;
2810
2811		/*
2812		 * Careful, we allocate and map page-order pages, but
2813		 * tracking is done per PAGE_SIZE page so as to keep the
2814		 * vm_struct APIs independent of the physical/mapped size.
2815		 */
2816		for (i = 0; i < (1U << order); i++)
2817			pages[nr_allocated + i] = page + i;
2818
2819		if (gfpflags_allow_blocking(gfp))
2820			cond_resched();
2821
2822		nr_allocated += 1U << order;
2823	}
2824
2825	return nr_allocated;
2826}
2827
2828static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2829				 pgprot_t prot, unsigned int page_shift,
2830				 int node)
2831{
2832	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2833	unsigned long addr = (unsigned long)area->addr;
2834	unsigned long size = get_vm_area_size(area);
2835	unsigned long array_size;
2836	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2837	unsigned int page_order;
2838
2839	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2840	gfp_mask |= __GFP_NOWARN;
2841	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2842		gfp_mask |= __GFP_HIGHMEM;
2843
 
2844	/* Please note that the recursion is strictly bounded. */
2845	if (array_size > PAGE_SIZE) {
2846		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2847					area->caller);
 
2848	} else {
2849		area->pages = kmalloc_node(array_size, nested_gfp, node);
2850	}
2851
 
2852	if (!area->pages) {
2853		warn_alloc(gfp_mask, NULL,
2854			"vmalloc error: size %lu, failed to allocated page array size %lu",
2855			nr_small_pages * PAGE_SIZE, array_size);
2856		free_vm_area(area);
2857		return NULL;
2858	}
2859
2860	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2861	page_order = vm_area_page_order(area);
 
2862
2863	area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2864		page_order, nr_small_pages, area->pages);
 
 
2865
2866	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2867
2868	/*
2869	 * If not enough pages were obtained to accomplish an
2870	 * allocation request, free them via __vfree() if any.
2871	 */
2872	if (area->nr_pages != nr_small_pages) {
2873		warn_alloc(gfp_mask, NULL,
2874			"vmalloc error: size %lu, page order %u, failed to allocate pages",
2875			area->nr_pages * PAGE_SIZE, page_order);
2876		goto fail;
2877	}
2878
2879	if (vmap_pages_range(addr, addr + size, prot, area->pages,
2880			page_shift) < 0) {
2881		warn_alloc(gfp_mask, NULL,
2882			"vmalloc error: size %lu, failed to map pages",
2883			area->nr_pages * PAGE_SIZE);
2884		goto fail;
2885	}
2886
2887	return area->addr;
2888
2889fail:
2890	__vfree(area->addr);
 
 
 
2891	return NULL;
2892}
2893
2894/**
2895 * __vmalloc_node_range - allocate virtually contiguous memory
2896 * @size:		  allocation size
2897 * @align:		  desired alignment
2898 * @start:		  vm area range start
2899 * @end:		  vm area range end
2900 * @gfp_mask:		  flags for the page level allocator
2901 * @prot:		  protection mask for the allocated pages
2902 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2903 * @node:		  node to use for allocation or NUMA_NO_NODE
2904 * @caller:		  caller's return address
2905 *
2906 * Allocate enough pages to cover @size from the page level
2907 * allocator with @gfp_mask flags.  Map them into contiguous
2908 * kernel virtual space, using a pagetable protection of @prot.
2909 *
2910 * Return: the address of the area or %NULL on failure
2911 */
2912void *__vmalloc_node_range(unsigned long size, unsigned long align,
2913			unsigned long start, unsigned long end, gfp_t gfp_mask,
2914			pgprot_t prot, unsigned long vm_flags, int node,
2915			const void *caller)
2916{
2917	struct vm_struct *area;
2918	void *addr;
2919	unsigned long real_size = size;
2920	unsigned long real_align = align;
2921	unsigned int shift = PAGE_SHIFT;
2922
2923	if (WARN_ON_ONCE(!size))
 
2924		return NULL;
2925
2926	if ((size >> PAGE_SHIFT) > totalram_pages()) {
2927		warn_alloc(gfp_mask, NULL,
2928			"vmalloc error: size %lu, exceeds total pages",
2929			real_size);
2930		return NULL;
2931	}
2932
2933	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
2934		unsigned long size_per_node;
2935
2936		/*
2937		 * Try huge pages. Only try for PAGE_KERNEL allocations,
2938		 * others like modules don't yet expect huge pages in
2939		 * their allocations due to apply_to_page_range not
2940		 * supporting them.
2941		 */
2942
2943		size_per_node = size;
2944		if (node == NUMA_NO_NODE)
2945			size_per_node /= num_online_nodes();
2946		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
2947			shift = PMD_SHIFT;
2948		else
2949			shift = arch_vmap_pte_supported_shift(size_per_node);
2950
2951		align = max(real_align, 1UL << shift);
2952		size = ALIGN(real_size, 1UL << shift);
2953	}
2954
2955again:
2956	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
2957				  VM_UNINITIALIZED | vm_flags, start, end, node,
2958				  gfp_mask, caller);
2959	if (!area) {
2960		warn_alloc(gfp_mask, NULL,
2961			"vmalloc error: size %lu, vm_struct allocation failed",
2962			real_size);
2963		goto fail;
2964	}
2965
2966	addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
2967	if (!addr)
2968		goto fail;
2969
2970	/*
2971	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2972	 * flag. It means that vm_struct is not fully initialized.
2973	 * Now, it is fully initialized, so remove this flag here.
2974	 */
2975	clear_vm_uninitialized_flag(area);
2976
2977	size = PAGE_ALIGN(size);
2978	kmemleak_vmalloc(area, size, gfp_mask);
2979
2980	return addr;
2981
2982fail:
2983	if (shift > PAGE_SHIFT) {
2984		shift = PAGE_SHIFT;
2985		align = real_align;
2986		size = real_size;
2987		goto again;
2988	}
2989
2990	return NULL;
2991}
2992
2993/**
2994 * __vmalloc_node - allocate virtually contiguous memory
2995 * @size:	    allocation size
2996 * @align:	    desired alignment
2997 * @gfp_mask:	    flags for the page level allocator
2998 * @node:	    node to use for allocation or NUMA_NO_NODE
2999 * @caller:	    caller's return address
3000 *
3001 * Allocate enough pages to cover @size from the page level allocator with
3002 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3003 *
3004 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3005 * and __GFP_NOFAIL are not supported
3006 *
3007 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3008 * with mm people.
3009 *
3010 * Return: pointer to the allocated memory or %NULL on error
3011 */
3012void *__vmalloc_node(unsigned long size, unsigned long align,
3013			    gfp_t gfp_mask, int node, const void *caller)
3014{
3015	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3016				gfp_mask, PAGE_KERNEL, 0, node, caller);
3017}
3018/*
3019 * This is only for performance analysis of vmalloc and stress purpose.
3020 * It is required by vmalloc test module, therefore do not use it other
3021 * than that.
3022 */
3023#ifdef CONFIG_TEST_VMALLOC_MODULE
3024EXPORT_SYMBOL_GPL(__vmalloc_node);
3025#endif
3026
3027void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3028{
3029	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3030				__builtin_return_address(0));
3031}
3032EXPORT_SYMBOL(__vmalloc);
3033
3034/**
3035 * vmalloc - allocate virtually contiguous memory
3036 * @size:    allocation size
3037 *
3038 * Allocate enough pages to cover @size from the page level
3039 * allocator and map them into contiguous kernel virtual space.
3040 *
3041 * For tight control over page level allocator and protection flags
3042 * use __vmalloc() instead.
3043 *
3044 * Return: pointer to the allocated memory or %NULL on error
3045 */
3046void *vmalloc(unsigned long size)
3047{
3048	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3049				__builtin_return_address(0));
3050}
3051EXPORT_SYMBOL(vmalloc);
3052
3053/**
3054 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3055 * @size:    allocation size
3056 *
3057 * Allocate enough non-huge pages to cover @size from the page level
3058 * allocator and map them into contiguous kernel virtual space.
3059 *
3060 * Return: pointer to the allocated memory or %NULL on error
 
3061 */
3062void *vmalloc_no_huge(unsigned long size)
3063{
3064	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3065				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3066				    NUMA_NO_NODE, __builtin_return_address(0));
3067}
3068EXPORT_SYMBOL(vmalloc_no_huge);
3069
3070/**
3071 * vzalloc - allocate virtually contiguous memory with zero fill
3072 * @size:    allocation size
3073 *
3074 * Allocate enough pages to cover @size from the page level
3075 * allocator and map them into contiguous kernel virtual space.
3076 * The memory allocated is set to zero.
3077 *
3078 * For tight control over page level allocator and protection flags
3079 * use __vmalloc() instead.
3080 *
3081 * Return: pointer to the allocated memory or %NULL on error
 
3082 */
3083void *vzalloc(unsigned long size)
3084{
3085	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3086				__builtin_return_address(0));
3087}
3088EXPORT_SYMBOL(vzalloc);
3089
3090/**
3091 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3092 * @size: allocation size
3093 *
3094 * The resulting memory area is zeroed so it can be mapped to userspace
3095 * without leaking data.
3096 *
3097 * Return: pointer to the allocated memory or %NULL on error
3098 */
3099void *vmalloc_user(unsigned long size)
3100{
3101	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3102				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3103				    VM_USERMAP, NUMA_NO_NODE,
3104				    __builtin_return_address(0));
 
 
 
 
 
 
 
3105}
3106EXPORT_SYMBOL(vmalloc_user);
3107
3108/**
3109 * vmalloc_node - allocate memory on a specific node
3110 * @size:	  allocation size
3111 * @node:	  numa node
3112 *
3113 * Allocate enough pages to cover @size from the page level
3114 * allocator and map them into contiguous kernel virtual space.
3115 *
3116 * For tight control over page level allocator and protection flags
3117 * use __vmalloc() instead.
3118 *
3119 * Return: pointer to the allocated memory or %NULL on error
 
3120 */
3121void *vmalloc_node(unsigned long size, int node)
3122{
3123	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3124			__builtin_return_address(0));
3125}
3126EXPORT_SYMBOL(vmalloc_node);
3127
3128/**
3129 * vzalloc_node - allocate memory on a specific node with zero fill
3130 * @size:	allocation size
3131 * @node:	numa node
3132 *
3133 * Allocate enough pages to cover @size from the page level
3134 * allocator and map them into contiguous kernel virtual space.
3135 * The memory allocated is set to zero.
3136 *
3137 * Return: pointer to the allocated memory or %NULL on error
 
3138 */
3139void *vzalloc_node(unsigned long size, int node)
3140{
3141	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3142				__builtin_return_address(0));
3143}
3144EXPORT_SYMBOL(vzalloc_node);
3145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3147#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3148#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3149#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3150#else
3151/*
3152 * 64b systems should always have either DMA or DMA32 zones. For others
3153 * GFP_DMA32 should do the right thing and use the normal zone.
3154 */
3155#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3156#endif
3157
3158/**
3159 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3160 * @size:	allocation size
3161 *
3162 * Allocate enough 32bit PA addressable pages to cover @size from the
3163 * page level allocator and map them into contiguous kernel virtual space.
3164 *
3165 * Return: pointer to the allocated memory or %NULL on error
3166 */
3167void *vmalloc_32(unsigned long size)
3168{
3169	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3170			__builtin_return_address(0));
3171}
3172EXPORT_SYMBOL(vmalloc_32);
3173
3174/**
3175 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3176 * @size:	     allocation size
3177 *
3178 * The resulting memory area is 32bit addressable and zeroed so it can be
3179 * mapped to userspace without leaking data.
3180 *
3181 * Return: pointer to the allocated memory or %NULL on error
3182 */
3183void *vmalloc_32_user(unsigned long size)
3184{
3185	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3186				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3187				    VM_USERMAP, NUMA_NO_NODE,
3188				    __builtin_return_address(0));
 
 
 
 
 
 
3189}
3190EXPORT_SYMBOL(vmalloc_32_user);
3191
3192/*
3193 * small helper routine , copy contents to buf from addr.
3194 * If the page is not present, fill zero.
3195 */
3196
3197static int aligned_vread(char *buf, char *addr, unsigned long count)
3198{
3199	struct page *p;
3200	int copied = 0;
3201
3202	while (count) {
3203		unsigned long offset, length;
3204
3205		offset = offset_in_page(addr);
3206		length = PAGE_SIZE - offset;
3207		if (length > count)
3208			length = count;
3209		p = vmalloc_to_page(addr);
3210		/*
3211		 * To do safe access to this _mapped_ area, we need
3212		 * lock. But adding lock here means that we need to add
3213		 * overhead of vmalloc()/vfree() calls for this _debug_
3214		 * interface, rarely used. Instead of that, we'll use
3215		 * kmap() and get small overhead in this access function.
3216		 */
3217		if (p) {
3218			/* We can expect USER0 is not used -- see vread() */
3219			void *map = kmap_atomic(p);
 
 
 
3220			memcpy(buf, map + offset, length);
3221			kunmap_atomic(map);
3222		} else
3223			memset(buf, 0, length);
3224
3225		addr += length;
3226		buf += length;
3227		copied += length;
3228		count -= length;
3229	}
3230	return copied;
3231}
3232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233/**
3234 * vread() - read vmalloc area in a safe way.
3235 * @buf:     buffer for reading data
3236 * @addr:    vm address.
3237 * @count:   number of bytes to be read.
3238 *
3239 * This function checks that addr is a valid vmalloc'ed area, and
3240 * copy data from that area to a given buffer. If the given memory range
3241 * of [addr...addr+count) includes some valid address, data is copied to
3242 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3243 * IOREMAP area is treated as memory hole and no copy is done.
3244 *
3245 * If [addr...addr+count) doesn't includes any intersects with alive
3246 * vm_struct area, returns 0. @buf should be kernel's buffer.
3247 *
3248 * Note: In usual ops, vread() is never necessary because the caller
3249 * should know vmalloc() area is valid and can use memcpy().
3250 * This is for routines which have to access vmalloc area without
3251 * any information, as /proc/kcore.
3252 *
3253 * Return: number of bytes for which addr and buf should be increased
3254 * (same number as @count) or %0 if [addr...addr+count) doesn't
3255 * include any intersection with valid vmalloc area
 
 
 
3256 */
 
3257long vread(char *buf, char *addr, unsigned long count)
3258{
3259	struct vmap_area *va;
3260	struct vm_struct *vm;
3261	char *vaddr, *buf_start = buf;
3262	unsigned long buflen = count;
3263	unsigned long n;
3264
3265	/* Don't allow overflow */
3266	if ((unsigned long) addr + count < count)
3267		count = -(unsigned long) addr;
3268
3269	spin_lock(&vmap_area_lock);
3270	va = __find_vmap_area((unsigned long)addr);
3271	if (!va)
3272		goto finished;
3273	list_for_each_entry_from(va, &vmap_area_list, list) {
3274		if (!count)
3275			break;
3276
3277		if (!va->vm)
3278			continue;
3279
3280		vm = va->vm;
3281		vaddr = (char *) vm->addr;
3282		if (addr >= vaddr + get_vm_area_size(vm))
3283			continue;
3284		while (addr < vaddr) {
3285			if (count == 0)
3286				goto finished;
3287			*buf = '\0';
3288			buf++;
3289			addr++;
3290			count--;
3291		}
3292		n = vaddr + get_vm_area_size(vm) - addr;
3293		if (n > count)
3294			n = count;
3295		if (!(vm->flags & VM_IOREMAP))
3296			aligned_vread(buf, addr, n);
3297		else /* IOREMAP area is treated as memory hole */
3298			memset(buf, 0, n);
3299		buf += n;
3300		addr += n;
3301		count -= n;
3302	}
3303finished:
3304	spin_unlock(&vmap_area_lock);
3305
3306	if (buf == buf_start)
3307		return 0;
3308	/* zero-fill memory holes */
3309	if (buf != buf_start + buflen)
3310		memset(buf, 0, buflen - (buf - buf_start));
3311
3312	return buflen;
3313}
3314
3315/**
3316 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3317 * @vma:		vma to cover
3318 * @uaddr:		target user address to start at
3319 * @kaddr:		virtual address of vmalloc kernel memory
3320 * @pgoff:		offset from @kaddr to start at
3321 * @size:		size of map area
3322 *
3323 * Returns:	0 for success, -Exxx on failure
3324 *
3325 * This function checks that @kaddr is a valid vmalloc'ed area,
3326 * and that it is big enough to cover the range starting at
3327 * @uaddr in @vma. Will return failure if that criteria isn't
3328 * met.
3329 *
3330 * Similar to remap_pfn_range() (see mm/memory.c)
3331 */
3332int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3333				void *kaddr, unsigned long pgoff,
3334				unsigned long size)
 
 
 
 
 
 
 
 
 
3335{
3336	struct vm_struct *area;
3337	unsigned long off;
3338	unsigned long end_index;
 
 
 
 
 
 
3339
3340	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3341		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3342
3343	size = PAGE_ALIGN(size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344
3345	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3346		return -EINVAL;
3347
3348	area = find_vm_area(kaddr);
3349	if (!area)
3350		return -EINVAL;
3351
3352	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3353		return -EINVAL;
3354
3355	if (check_add_overflow(size, off, &end_index) ||
3356	    end_index > get_vm_area_size(area))
3357		return -EINVAL;
3358	kaddr += off;
3359
 
3360	do {
3361		struct page *page = vmalloc_to_page(kaddr);
3362		int ret;
3363
3364		ret = vm_insert_page(vma, uaddr, page);
3365		if (ret)
3366			return ret;
3367
3368		uaddr += PAGE_SIZE;
3369		kaddr += PAGE_SIZE;
3370		size -= PAGE_SIZE;
3371	} while (size > 0);
3372
3373	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
 
3374
3375	return 0;
3376}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3377
3378/**
3379 * remap_vmalloc_range - map vmalloc pages to userspace
3380 * @vma:		vma to cover (map full range of vma)
3381 * @addr:		vmalloc memory
3382 * @pgoff:		number of pages into addr before first page to map
3383 *
3384 * Returns:	0 for success, -Exxx on failure
3385 *
3386 * This function checks that addr is a valid vmalloc'ed area, and
3387 * that it is big enough to cover the vma. Will return failure if
3388 * that criteria isn't met.
3389 *
3390 * Similar to remap_pfn_range() (see mm/memory.c)
 
 
 
 
 
 
3391 */
3392int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3393						unsigned long pgoff)
3394{
3395	return remap_vmalloc_range_partial(vma, vma->vm_start,
3396					   addr, pgoff,
3397					   vma->vm_end - vma->vm_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3398}
3399EXPORT_SYMBOL(remap_vmalloc_range);
3400
3401void free_vm_area(struct vm_struct *area)
3402{
3403	struct vm_struct *ret;
3404	ret = remove_vm_area(area->addr);
3405	BUG_ON(ret != area);
3406	kfree(area);
3407}
3408EXPORT_SYMBOL_GPL(free_vm_area);
3409
3410#ifdef CONFIG_SMP
3411static struct vmap_area *node_to_va(struct rb_node *n)
3412{
3413	return rb_entry_safe(n, struct vmap_area, rb_node);
3414}
3415
3416/**
3417 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3418 * @addr: target address
 
 
3419 *
3420 * Returns: vmap_area if it is found. If there is no such area
3421 *   the first highest(reverse order) vmap_area is returned
3422 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3423 *   if there are no any areas before @addr.
 
3424 */
3425static struct vmap_area *
3426pvm_find_va_enclose_addr(unsigned long addr)
 
3427{
3428	struct vmap_area *va, *tmp;
3429	struct rb_node *n;
3430
3431	n = free_vmap_area_root.rb_node;
3432	va = NULL;
3433
3434	while (n) {
3435		tmp = rb_entry(n, struct vmap_area, rb_node);
3436		if (tmp->va_start <= addr) {
3437			va = tmp;
3438			if (tmp->va_end >= addr)
3439				break;
3440
3441			n = n->rb_right;
3442		} else {
3443			n = n->rb_left;
3444		}
3445	}
3446
3447	return va;
 
 
 
 
 
 
 
 
 
 
3448}
3449
3450/**
3451 * pvm_determine_end_from_reverse - find the highest aligned address
3452 * of free block below VMALLOC_END
3453 * @va:
3454 *   in - the VA we start the search(reverse order);
3455 *   out - the VA with the highest aligned end address.
3456 * @align: alignment for required highest address
3457 *
3458 * Returns: determined end address within vmap_area
3459 */
3460static unsigned long
3461pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
 
 
 
 
 
 
 
3462{
3463	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3464	unsigned long addr;
3465
3466	if (likely(*va)) {
3467		list_for_each_entry_from_reverse((*va),
3468				&free_vmap_area_list, list) {
3469			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3470			if ((*va)->va_start < addr)
3471				return addr;
3472		}
 
3473	}
3474
3475	return 0;
3476}
3477
3478/**
3479 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3480 * @offsets: array containing offset of each area
3481 * @sizes: array containing size of each area
3482 * @nr_vms: the number of areas to allocate
3483 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3484 *
3485 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3486 *	    vm_structs on success, %NULL on failure
3487 *
3488 * Percpu allocator wants to use congruent vm areas so that it can
3489 * maintain the offsets among percpu areas.  This function allocates
3490 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3491 * be scattered pretty far, distance between two areas easily going up
3492 * to gigabytes.  To avoid interacting with regular vmallocs, these
3493 * areas are allocated from top.
3494 *
3495 * Despite its complicated look, this allocator is rather simple. It
3496 * does everything top-down and scans free blocks from the end looking
3497 * for matching base. While scanning, if any of the areas do not fit the
3498 * base address is pulled down to fit the area. Scanning is repeated till
3499 * all the areas fit and then all necessary data structures are inserted
3500 * and the result is returned.
3501 */
3502struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3503				     const size_t *sizes, int nr_vms,
3504				     size_t align)
3505{
3506	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3507	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3508	struct vmap_area **vas, *va;
3509	struct vm_struct **vms;
3510	int area, area2, last_area, term_area;
3511	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3512	bool purged = false;
3513	enum fit_type type;
3514
3515	/* verify parameters and allocate data structures */
3516	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3517	for (last_area = 0, area = 0; area < nr_vms; area++) {
3518		start = offsets[area];
3519		end = start + sizes[area];
3520
3521		/* is everything aligned properly? */
3522		BUG_ON(!IS_ALIGNED(offsets[area], align));
3523		BUG_ON(!IS_ALIGNED(sizes[area], align));
3524
3525		/* detect the area with the highest address */
3526		if (start > offsets[last_area])
3527			last_area = area;
3528
3529		for (area2 = area + 1; area2 < nr_vms; area2++) {
3530			unsigned long start2 = offsets[area2];
3531			unsigned long end2 = start2 + sizes[area2];
3532
3533			BUG_ON(start2 < end && start < end2);
 
 
 
 
3534		}
3535	}
3536	last_end = offsets[last_area] + sizes[last_area];
3537
3538	if (vmalloc_end - vmalloc_start < last_end) {
3539		WARN_ON(true);
3540		return NULL;
3541	}
3542
3543	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3544	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3545	if (!vas || !vms)
3546		goto err_free2;
3547
3548	for (area = 0; area < nr_vms; area++) {
3549		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3550		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3551		if (!vas[area] || !vms[area])
3552			goto err_free;
3553	}
3554retry:
3555	spin_lock(&free_vmap_area_lock);
3556
3557	/* start scanning - we scan from the top, begin with the last area */
3558	area = term_area = last_area;
3559	start = offsets[area];
3560	end = start + sizes[area];
3561
3562	va = pvm_find_va_enclose_addr(vmalloc_end);
3563	base = pvm_determine_end_from_reverse(&va, align) - end;
 
 
 
3564
3565	while (true) {
 
 
 
3566		/*
3567		 * base might have underflowed, add last_end before
3568		 * comparing.
3569		 */
3570		if (base + last_end < vmalloc_start + last_end)
3571			goto overflow;
3572
3573		/*
3574		 * Fitting base has not been found.
3575		 */
3576		if (va == NULL)
3577			goto overflow;
 
3578
3579		/*
3580		 * If required width exceeds current VA block, move
3581		 * base downwards and then recheck.
3582		 */
3583		if (base + end > va->va_end) {
3584			base = pvm_determine_end_from_reverse(&va, align) - end;
3585			term_area = area;
3586			continue;
3587		}
3588
3589		/*
3590		 * If this VA does not fit, move base downwards and recheck.
 
 
3591		 */
3592		if (base + start < va->va_start) {
3593			va = node_to_va(rb_prev(&va->rb_node));
3594			base = pvm_determine_end_from_reverse(&va, align) - end;
 
3595			term_area = area;
3596			continue;
3597		}
3598
3599		/*
3600		 * This area fits, move on to the previous one.  If
3601		 * the previous one is the terminal one, we're done.
3602		 */
3603		area = (area + nr_vms - 1) % nr_vms;
3604		if (area == term_area)
3605			break;
3606
3607		start = offsets[area];
3608		end = start + sizes[area];
3609		va = pvm_find_va_enclose_addr(base + end);
3610	}
3611
3612	/* we've found a fitting base, insert all va's */
3613	for (area = 0; area < nr_vms; area++) {
3614		int ret;
3615
3616		start = base + offsets[area];
3617		size = sizes[area];
3618
3619		va = pvm_find_va_enclose_addr(start);
3620		if (WARN_ON_ONCE(va == NULL))
3621			/* It is a BUG(), but trigger recovery instead. */
3622			goto recovery;
3623
3624		type = classify_va_fit_type(va, start, size);
3625		if (WARN_ON_ONCE(type == NOTHING_FIT))
3626			/* It is a BUG(), but trigger recovery instead. */
3627			goto recovery;
3628
3629		ret = adjust_va_to_fit_type(va, start, size, type);
3630		if (unlikely(ret))
3631			goto recovery;
3632
3633		/* Allocated area. */
3634		va = vas[area];
3635		va->va_start = start;
3636		va->va_end = start + size;
3637	}
3638
3639	spin_unlock(&free_vmap_area_lock);
3640
3641	/* populate the kasan shadow space */
3642	for (area = 0; area < nr_vms; area++) {
3643		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3644			goto err_free_shadow;
3645
3646		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3647				       sizes[area]);
3648	}
3649
3650	/* insert all vm's */
3651	spin_lock(&vmap_area_lock);
3652	for (area = 0; area < nr_vms; area++) {
3653		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3654
3655		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3656				 pcpu_get_vm_areas);
3657	}
3658	spin_unlock(&vmap_area_lock);
3659
3660	kfree(vas);
3661	return vms;
3662
3663recovery:
3664	/*
3665	 * Remove previously allocated areas. There is no
3666	 * need in removing these areas from the busy tree,
3667	 * because they are inserted only on the final step
3668	 * and when pcpu_get_vm_areas() is success.
3669	 */
3670	while (area--) {
3671		orig_start = vas[area]->va_start;
3672		orig_end = vas[area]->va_end;
3673		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3674				&free_vmap_area_list);
3675		if (va)
3676			kasan_release_vmalloc(orig_start, orig_end,
3677				va->va_start, va->va_end);
3678		vas[area] = NULL;
3679	}
3680
3681overflow:
3682	spin_unlock(&free_vmap_area_lock);
3683	if (!purged) {
3684		purge_vmap_area_lazy();
3685		purged = true;
3686
3687		/* Before "retry", check if we recover. */
3688		for (area = 0; area < nr_vms; area++) {
3689			if (vas[area])
3690				continue;
3691
3692			vas[area] = kmem_cache_zalloc(
3693				vmap_area_cachep, GFP_KERNEL);
3694			if (!vas[area])
3695				goto err_free;
3696		}
3697
3698		goto retry;
3699	}
3700
3701err_free:
3702	for (area = 0; area < nr_vms; area++) {
3703		if (vas[area])
3704			kmem_cache_free(vmap_area_cachep, vas[area]);
3705
3706		kfree(vms[area]);
3707	}
3708err_free2:
3709	kfree(vas);
3710	kfree(vms);
3711	return NULL;
3712
3713err_free_shadow:
3714	spin_lock(&free_vmap_area_lock);
3715	/*
3716	 * We release all the vmalloc shadows, even the ones for regions that
3717	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3718	 * being able to tolerate this case.
3719	 */
3720	for (area = 0; area < nr_vms; area++) {
3721		orig_start = vas[area]->va_start;
3722		orig_end = vas[area]->va_end;
3723		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3724				&free_vmap_area_list);
3725		if (va)
3726			kasan_release_vmalloc(orig_start, orig_end,
3727				va->va_start, va->va_end);
3728		vas[area] = NULL;
3729		kfree(vms[area]);
3730	}
3731	spin_unlock(&free_vmap_area_lock);
3732	kfree(vas);
3733	kfree(vms);
3734	return NULL;
3735}
3736
3737/**
3738 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3739 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3740 * @nr_vms: the number of allocated areas
3741 *
3742 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3743 */
3744void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3745{
3746	int i;
3747
3748	for (i = 0; i < nr_vms; i++)
3749		free_vm_area(vms[i]);
3750	kfree(vms);
3751}
3752#endif	/* CONFIG_SMP */
3753
3754#ifdef CONFIG_PRINTK
3755bool vmalloc_dump_obj(void *object)
 
3756{
3757	struct vm_struct *vm;
3758	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3759
3760	vm = find_vm_area(objp);
3761	if (!vm)
3762		return false;
3763	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3764		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3765	return true;
3766}
3767#endif
3768
3769#ifdef CONFIG_PROC_FS
3770static void *s_start(struct seq_file *m, loff_t *pos)
3771	__acquires(&vmap_purge_lock)
3772	__acquires(&vmap_area_lock)
3773{
3774	mutex_lock(&vmap_purge_lock);
3775	spin_lock(&vmap_area_lock);
3776
3777	return seq_list_start(&vmap_area_list, *pos);
3778}
3779
3780static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3781{
3782	return seq_list_next(p, &vmap_area_list, pos);
 
 
 
3783}
3784
3785static void s_stop(struct seq_file *m, void *p)
3786	__releases(&vmap_area_lock)
3787	__releases(&vmap_purge_lock)
3788{
3789	spin_unlock(&vmap_area_lock);
3790	mutex_unlock(&vmap_purge_lock);
3791}
3792
3793static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3794{
3795	if (IS_ENABLED(CONFIG_NUMA)) {
3796		unsigned int nr, *counters = m->private;
3797
3798		if (!counters)
3799			return;
3800
3801		if (v->flags & VM_UNINITIALIZED)
3802			return;
3803		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3804		smp_rmb();
3805
3806		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3807
3808		for (nr = 0; nr < v->nr_pages; nr++)
3809			counters[page_to_nid(v->pages[nr])]++;
3810
3811		for_each_node_state(nr, N_HIGH_MEMORY)
3812			if (counters[nr])
3813				seq_printf(m, " N%u=%u", nr, counters[nr]);
3814	}
3815}
3816
3817static void show_purge_info(struct seq_file *m)
3818{
3819	struct vmap_area *va;
3820
3821	spin_lock(&purge_vmap_area_lock);
3822	list_for_each_entry(va, &purge_vmap_area_list, list) {
3823		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3824			(void *)va->va_start, (void *)va->va_end,
3825			va->va_end - va->va_start);
3826	}
3827	spin_unlock(&purge_vmap_area_lock);
3828}
3829
3830static int s_show(struct seq_file *m, void *p)
3831{
3832	struct vmap_area *va;
3833	struct vm_struct *v;
3834
3835	va = list_entry(p, struct vmap_area, list);
3836
3837	/*
3838	 * s_show can encounter race with remove_vm_area, !vm on behalf
3839	 * of vmap area is being tear down or vm_map_ram allocation.
3840	 */
3841	if (!va->vm) {
3842		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3843			(void *)va->va_start, (void *)va->va_end,
3844			va->va_end - va->va_start);
3845
3846		return 0;
3847	}
3848
3849	v = va->vm;
3850
3851	seq_printf(m, "0x%pK-0x%pK %7ld",
3852		v->addr, v->addr + v->size, v->size);
3853
3854	if (v->caller)
3855		seq_printf(m, " %pS", v->caller);
3856
3857	if (v->nr_pages)
3858		seq_printf(m, " pages=%d", v->nr_pages);
3859
3860	if (v->phys_addr)
3861		seq_printf(m, " phys=%pa", &v->phys_addr);
3862
3863	if (v->flags & VM_IOREMAP)
3864		seq_puts(m, " ioremap");
3865
3866	if (v->flags & VM_ALLOC)
3867		seq_puts(m, " vmalloc");
3868
3869	if (v->flags & VM_MAP)
3870		seq_puts(m, " vmap");
3871
3872	if (v->flags & VM_USERMAP)
3873		seq_puts(m, " user");
3874
3875	if (v->flags & VM_DMA_COHERENT)
3876		seq_puts(m, " dma-coherent");
3877
3878	if (is_vmalloc_addr(v->pages))
3879		seq_puts(m, " vpages");
3880
3881	show_numa_info(m, v);
3882	seq_putc(m, '\n');
3883
3884	/*
3885	 * As a final step, dump "unpurged" areas.
3886	 */
3887	if (list_is_last(&va->list, &vmap_area_list))
3888		show_purge_info(m);
3889
3890	return 0;
3891}
3892
3893static const struct seq_operations vmalloc_op = {
3894	.start = s_start,
3895	.next = s_next,
3896	.stop = s_stop,
3897	.show = s_show,
3898};
3899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3900static int __init proc_vmalloc_init(void)
3901{
3902	if (IS_ENABLED(CONFIG_NUMA))
3903		proc_create_seq_private("vmallocinfo", 0400, NULL,
3904				&vmalloc_op,
3905				nr_node_ids * sizeof(unsigned int), NULL);
3906	else
3907		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3908	return 0;
3909}
3910module_init(proc_vmalloc_init);
 
3911
3912#endif