Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
 
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <asm/uaccess.h>
 
 
 
 
  31#include <asm/tlbflush.h>
  32#include <asm/shmparam.h>
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*** Page table manipulation functions ***/
  35
  36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  37{
  38	pte_t *pte;
  39
  40	pte = pte_offset_kernel(pmd, addr);
  41	do {
  42		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  43		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  44	} while (pte++, addr += PAGE_SIZE, addr != end);
  45}
  46
  47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  48{
  49	pmd_t *pmd;
  50	unsigned long next;
  51
  52	pmd = pmd_offset(pud, addr);
  53	do {
  54		next = pmd_addr_end(addr, end);
 
 
  55		if (pmd_none_or_clear_bad(pmd))
  56			continue;
  57		vunmap_pte_range(pmd, addr, next);
  58	} while (pmd++, addr = next, addr != end);
  59}
  60
  61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  62{
  63	pud_t *pud;
  64	unsigned long next;
  65
  66	pud = pud_offset(pgd, addr);
  67	do {
  68		next = pud_addr_end(addr, end);
 
 
  69		if (pud_none_or_clear_bad(pud))
  70			continue;
  71		vunmap_pmd_range(pud, addr, next);
  72	} while (pud++, addr = next, addr != end);
  73}
  74
  75static void vunmap_page_range(unsigned long addr, unsigned long end)
  76{
  77	pgd_t *pgd;
  78	unsigned long next;
  79
  80	BUG_ON(addr >= end);
  81	pgd = pgd_offset_k(addr);
  82	do {
  83		next = pgd_addr_end(addr, end);
  84		if (pgd_none_or_clear_bad(pgd))
  85			continue;
  86		vunmap_pud_range(pgd, addr, next);
  87	} while (pgd++, addr = next, addr != end);
  88}
  89
  90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  91		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  92{
  93	pte_t *pte;
  94
  95	/*
  96	 * nr is a running index into the array which helps higher level
  97	 * callers keep track of where we're up to.
  98	 */
  99
 100	pte = pte_alloc_kernel(pmd, addr);
 101	if (!pte)
 102		return -ENOMEM;
 103	do {
 104		struct page *page = pages[*nr];
 105
 106		if (WARN_ON(!pte_none(*pte)))
 107			return -EBUSY;
 108		if (WARN_ON(!page))
 109			return -ENOMEM;
 110		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 111		(*nr)++;
 112	} while (pte++, addr += PAGE_SIZE, addr != end);
 113	return 0;
 114}
 115
 116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 117		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 118{
 119	pmd_t *pmd;
 120	unsigned long next;
 121
 122	pmd = pmd_alloc(&init_mm, pud, addr);
 123	if (!pmd)
 124		return -ENOMEM;
 125	do {
 126		next = pmd_addr_end(addr, end);
 127		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 128			return -ENOMEM;
 129	} while (pmd++, addr = next, addr != end);
 130	return 0;
 131}
 132
 133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 134		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 135{
 136	pud_t *pud;
 137	unsigned long next;
 138
 139	pud = pud_alloc(&init_mm, pgd, addr);
 140	if (!pud)
 141		return -ENOMEM;
 142	do {
 143		next = pud_addr_end(addr, end);
 144		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 145			return -ENOMEM;
 146	} while (pud++, addr = next, addr != end);
 147	return 0;
 148}
 149
 150/*
 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 152 * will have pfns corresponding to the "pages" array.
 153 *
 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 155 */
 156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 157				   pgprot_t prot, struct page **pages)
 158{
 159	pgd_t *pgd;
 160	unsigned long next;
 161	unsigned long addr = start;
 162	int err = 0;
 163	int nr = 0;
 164
 165	BUG_ON(addr >= end);
 166	pgd = pgd_offset_k(addr);
 167	do {
 168		next = pgd_addr_end(addr, end);
 169		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 170		if (err)
 171			return err;
 172	} while (pgd++, addr = next, addr != end);
 173
 174	return nr;
 175}
 176
 177static int vmap_page_range(unsigned long start, unsigned long end,
 178			   pgprot_t prot, struct page **pages)
 179{
 180	int ret;
 181
 182	ret = vmap_page_range_noflush(start, end, prot, pages);
 183	flush_cache_vmap(start, end);
 184	return ret;
 185}
 186
 187int is_vmalloc_or_module_addr(const void *x)
 188{
 189	/*
 190	 * ARM, x86-64 and sparc64 put modules in a special place,
 191	 * and fall back on vmalloc() if that fails. Others
 192	 * just put it in the vmalloc space.
 193	 */
 194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 195	unsigned long addr = (unsigned long)x;
 196	if (addr >= MODULES_VADDR && addr < MODULES_END)
 197		return 1;
 198#endif
 199	return is_vmalloc_addr(x);
 200}
 201
 202/*
 203 * Walk a vmap address to the struct page it maps.
 204 */
 205struct page *vmalloc_to_page(const void *vmalloc_addr)
 206{
 207	unsigned long addr = (unsigned long) vmalloc_addr;
 208	struct page *page = NULL;
 209	pgd_t *pgd = pgd_offset_k(addr);
 210
 211	/*
 212	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 213	 * architectures that do not vmalloc module space
 214	 */
 215	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 216
 217	if (!pgd_none(*pgd)) {
 218		pud_t *pud = pud_offset(pgd, addr);
 219		if (!pud_none(*pud)) {
 220			pmd_t *pmd = pmd_offset(pud, addr);
 221			if (!pmd_none(*pmd)) {
 222				pte_t *ptep, pte;
 223
 224				ptep = pte_offset_map(pmd, addr);
 225				pte = *ptep;
 226				if (pte_present(pte))
 227					page = pte_page(pte);
 228				pte_unmap(ptep);
 229			}
 230		}
 231	}
 232	return page;
 233}
 234EXPORT_SYMBOL(vmalloc_to_page);
 235
 236/*
 237 * Map a vmalloc()-space virtual address to the physical page frame number.
 238 */
 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 240{
 241	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 242}
 243EXPORT_SYMBOL(vmalloc_to_pfn);
 244
 245
 246/*** Global kva allocator ***/
 247
 248#define VM_LAZY_FREE	0x01
 249#define VM_LAZY_FREEING	0x02
 250#define VM_VM_AREA	0x04
 251
 252struct vmap_area {
 253	unsigned long va_start;
 254	unsigned long va_end;
 255	unsigned long flags;
 256	struct rb_node rb_node;		/* address sorted rbtree */
 257	struct list_head list;		/* address sorted list */
 258	struct list_head purge_list;	/* "lazy purge" list */
 259	void *private;
 260	struct rcu_head rcu_head;
 261};
 262
 263static DEFINE_SPINLOCK(vmap_area_lock);
 264static LIST_HEAD(vmap_area_list);
 
 
 265static struct rb_root vmap_area_root = RB_ROOT;
 266
 267/* The vmap cache globals are protected by vmap_area_lock */
 268static struct rb_node *free_vmap_cache;
 269static unsigned long cached_hole_size;
 270static unsigned long cached_vstart;
 271static unsigned long cached_align;
 272
 273static unsigned long vmap_area_pcpu_hole;
 274
 275static struct vmap_area *__find_vmap_area(unsigned long addr)
 276{
 277	struct rb_node *n = vmap_area_root.rb_node;
 278
 279	while (n) {
 280		struct vmap_area *va;
 281
 282		va = rb_entry(n, struct vmap_area, rb_node);
 283		if (addr < va->va_start)
 284			n = n->rb_left;
 285		else if (addr > va->va_start)
 286			n = n->rb_right;
 287		else
 288			return va;
 289	}
 290
 291	return NULL;
 292}
 293
 294static void __insert_vmap_area(struct vmap_area *va)
 295{
 296	struct rb_node **p = &vmap_area_root.rb_node;
 297	struct rb_node *parent = NULL;
 298	struct rb_node *tmp;
 299
 300	while (*p) {
 301		struct vmap_area *tmp_va;
 302
 303		parent = *p;
 304		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 305		if (va->va_start < tmp_va->va_end)
 306			p = &(*p)->rb_left;
 307		else if (va->va_end > tmp_va->va_start)
 308			p = &(*p)->rb_right;
 309		else
 310			BUG();
 311	}
 312
 313	rb_link_node(&va->rb_node, parent, p);
 314	rb_insert_color(&va->rb_node, &vmap_area_root);
 315
 316	/* address-sort this list so it is usable like the vmlist */
 317	tmp = rb_prev(&va->rb_node);
 318	if (tmp) {
 319		struct vmap_area *prev;
 320		prev = rb_entry(tmp, struct vmap_area, rb_node);
 321		list_add_rcu(&va->list, &prev->list);
 322	} else
 323		list_add_rcu(&va->list, &vmap_area_list);
 324}
 325
 326static void purge_vmap_area_lazy(void);
 327
 
 
 328/*
 329 * Allocate a region of KVA of the specified size and alignment, within the
 330 * vstart and vend.
 331 */
 332static struct vmap_area *alloc_vmap_area(unsigned long size,
 333				unsigned long align,
 334				unsigned long vstart, unsigned long vend,
 335				int node, gfp_t gfp_mask)
 336{
 337	struct vmap_area *va;
 338	struct rb_node *n;
 339	unsigned long addr;
 340	int purged = 0;
 341	struct vmap_area *first;
 342
 343	BUG_ON(!size);
 344	BUG_ON(size & ~PAGE_MASK);
 345	BUG_ON(!is_power_of_2(align));
 346
 
 
 347	va = kmalloc_node(sizeof(struct vmap_area),
 348			gfp_mask & GFP_RECLAIM_MASK, node);
 349	if (unlikely(!va))
 350		return ERR_PTR(-ENOMEM);
 351
 
 
 
 
 
 
 352retry:
 353	spin_lock(&vmap_area_lock);
 354	/*
 355	 * Invalidate cache if we have more permissive parameters.
 356	 * cached_hole_size notes the largest hole noticed _below_
 357	 * the vmap_area cached in free_vmap_cache: if size fits
 358	 * into that hole, we want to scan from vstart to reuse
 359	 * the hole instead of allocating above free_vmap_cache.
 360	 * Note that __free_vmap_area may update free_vmap_cache
 361	 * without updating cached_hole_size or cached_align.
 362	 */
 363	if (!free_vmap_cache ||
 364			size < cached_hole_size ||
 365			vstart < cached_vstart ||
 366			align < cached_align) {
 367nocache:
 368		cached_hole_size = 0;
 369		free_vmap_cache = NULL;
 370	}
 371	/* record if we encounter less permissive parameters */
 372	cached_vstart = vstart;
 373	cached_align = align;
 374
 375	/* find starting point for our search */
 376	if (free_vmap_cache) {
 377		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 378		addr = ALIGN(first->va_end, align);
 379		if (addr < vstart)
 380			goto nocache;
 381		if (addr + size - 1 < addr)
 382			goto overflow;
 383
 384	} else {
 385		addr = ALIGN(vstart, align);
 386		if (addr + size - 1 < addr)
 387			goto overflow;
 388
 389		n = vmap_area_root.rb_node;
 390		first = NULL;
 391
 392		while (n) {
 393			struct vmap_area *tmp;
 394			tmp = rb_entry(n, struct vmap_area, rb_node);
 395			if (tmp->va_end >= addr) {
 396				first = tmp;
 397				if (tmp->va_start <= addr)
 398					break;
 399				n = n->rb_left;
 400			} else
 401				n = n->rb_right;
 402		}
 403
 404		if (!first)
 405			goto found;
 406	}
 407
 408	/* from the starting point, walk areas until a suitable hole is found */
 409	while (addr + size > first->va_start && addr + size <= vend) {
 410		if (addr + cached_hole_size < first->va_start)
 411			cached_hole_size = first->va_start - addr;
 412		addr = ALIGN(first->va_end, align);
 413		if (addr + size - 1 < addr)
 414			goto overflow;
 415
 416		n = rb_next(&first->rb_node);
 417		if (n)
 418			first = rb_entry(n, struct vmap_area, rb_node);
 419		else
 420			goto found;
 
 
 421	}
 422
 423found:
 424	if (addr + size > vend)
 425		goto overflow;
 426
 427	va->va_start = addr;
 428	va->va_end = addr + size;
 429	va->flags = 0;
 430	__insert_vmap_area(va);
 431	free_vmap_cache = &va->rb_node;
 432	spin_unlock(&vmap_area_lock);
 433
 434	BUG_ON(va->va_start & (align-1));
 435	BUG_ON(va->va_start < vstart);
 436	BUG_ON(va->va_end > vend);
 437
 438	return va;
 439
 440overflow:
 441	spin_unlock(&vmap_area_lock);
 442	if (!purged) {
 443		purge_vmap_area_lazy();
 444		purged = 1;
 445		goto retry;
 446	}
 
 
 
 
 
 
 
 
 
 
 447	if (printk_ratelimit())
 448		printk(KERN_WARNING
 449			"vmap allocation for size %lu failed: "
 450			"use vmalloc=<size> to increase size.\n", size);
 451	kfree(va);
 452	return ERR_PTR(-EBUSY);
 453}
 454
 
 
 
 
 
 
 
 
 
 
 
 
 455static void __free_vmap_area(struct vmap_area *va)
 456{
 457	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 458
 459	if (free_vmap_cache) {
 460		if (va->va_end < cached_vstart) {
 461			free_vmap_cache = NULL;
 462		} else {
 463			struct vmap_area *cache;
 464			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 465			if (va->va_start <= cache->va_start) {
 466				free_vmap_cache = rb_prev(&va->rb_node);
 467				/*
 468				 * We don't try to update cached_hole_size or
 469				 * cached_align, but it won't go very wrong.
 470				 */
 471			}
 472		}
 473	}
 474	rb_erase(&va->rb_node, &vmap_area_root);
 475	RB_CLEAR_NODE(&va->rb_node);
 476	list_del_rcu(&va->list);
 477
 478	/*
 479	 * Track the highest possible candidate for pcpu area
 480	 * allocation.  Areas outside of vmalloc area can be returned
 481	 * here too, consider only end addresses which fall inside
 482	 * vmalloc area proper.
 483	 */
 484	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 485		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 486
 487	kfree_rcu(va, rcu_head);
 488}
 489
 490/*
 491 * Free a region of KVA allocated by alloc_vmap_area
 492 */
 493static void free_vmap_area(struct vmap_area *va)
 494{
 495	spin_lock(&vmap_area_lock);
 496	__free_vmap_area(va);
 497	spin_unlock(&vmap_area_lock);
 498}
 499
 500/*
 501 * Clear the pagetable entries of a given vmap_area
 502 */
 503static void unmap_vmap_area(struct vmap_area *va)
 504{
 505	vunmap_page_range(va->va_start, va->va_end);
 506}
 507
 508static void vmap_debug_free_range(unsigned long start, unsigned long end)
 509{
 510	/*
 511	 * Unmap page tables and force a TLB flush immediately if
 512	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 513	 * bugs similarly to those in linear kernel virtual address
 514	 * space after a page has been freed.
 515	 *
 516	 * All the lazy freeing logic is still retained, in order to
 517	 * minimise intrusiveness of this debugging feature.
 518	 *
 519	 * This is going to be *slow* (linear kernel virtual address
 520	 * debugging doesn't do a broadcast TLB flush so it is a lot
 521	 * faster).
 522	 */
 523#ifdef CONFIG_DEBUG_PAGEALLOC
 524	vunmap_page_range(start, end);
 525	flush_tlb_kernel_range(start, end);
 526#endif
 527}
 528
 529/*
 530 * lazy_max_pages is the maximum amount of virtual address space we gather up
 531 * before attempting to purge with a TLB flush.
 532 *
 533 * There is a tradeoff here: a larger number will cover more kernel page tables
 534 * and take slightly longer to purge, but it will linearly reduce the number of
 535 * global TLB flushes that must be performed. It would seem natural to scale
 536 * this number up linearly with the number of CPUs (because vmapping activity
 537 * could also scale linearly with the number of CPUs), however it is likely
 538 * that in practice, workloads might be constrained in other ways that mean
 539 * vmap activity will not scale linearly with CPUs. Also, I want to be
 540 * conservative and not introduce a big latency on huge systems, so go with
 541 * a less aggressive log scale. It will still be an improvement over the old
 542 * code, and it will be simple to change the scale factor if we find that it
 543 * becomes a problem on bigger systems.
 544 */
 545static unsigned long lazy_max_pages(void)
 546{
 547	unsigned int log;
 548
 549	log = fls(num_online_cpus());
 550
 551	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 552}
 553
 554static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 555
 
 
 
 
 
 
 
 556/* for per-CPU blocks */
 557static void purge_fragmented_blocks_allcpus(void);
 558
 559/*
 560 * called before a call to iounmap() if the caller wants vm_area_struct's
 561 * immediately freed.
 562 */
 563void set_iounmap_nonlazy(void)
 564{
 565	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 566}
 567
 568/*
 569 * Purges all lazily-freed vmap areas.
 570 *
 571 * If sync is 0 then don't purge if there is already a purge in progress.
 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 574 * their own TLB flushing).
 575 * Returns with *start = min(*start, lowest purged address)
 576 *              *end = max(*end, highest purged address)
 577 */
 578static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 579					int sync, int force_flush)
 580{
 581	static DEFINE_SPINLOCK(purge_lock);
 582	LIST_HEAD(valist);
 583	struct vmap_area *va;
 584	struct vmap_area *n_va;
 585	int nr = 0;
 586
 587	/*
 588	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 589	 * should not expect such behaviour. This just simplifies locking for
 590	 * the case that isn't actually used at the moment anyway.
 591	 */
 592	if (!sync && !force_flush) {
 593		if (!spin_trylock(&purge_lock))
 594			return;
 595	} else
 596		spin_lock(&purge_lock);
 597
 598	if (sync)
 599		purge_fragmented_blocks_allcpus();
 600
 601	rcu_read_lock();
 602	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 603		if (va->flags & VM_LAZY_FREE) {
 604			if (va->va_start < *start)
 605				*start = va->va_start;
 606			if (va->va_end > *end)
 607				*end = va->va_end;
 608			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 609			list_add_tail(&va->purge_list, &valist);
 610			va->flags |= VM_LAZY_FREEING;
 611			va->flags &= ~VM_LAZY_FREE;
 612		}
 613	}
 614	rcu_read_unlock();
 615
 616	if (nr)
 617		atomic_sub(nr, &vmap_lazy_nr);
 618
 619	if (nr || force_flush)
 620		flush_tlb_kernel_range(*start, *end);
 621
 622	if (nr) {
 623		spin_lock(&vmap_area_lock);
 624		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 625			__free_vmap_area(va);
 626		spin_unlock(&vmap_area_lock);
 
 
 627	}
 628	spin_unlock(&purge_lock);
 
 629}
 630
 631/*
 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 633 * is already purging.
 634 */
 635static void try_purge_vmap_area_lazy(void)
 636{
 637	unsigned long start = ULONG_MAX, end = 0;
 638
 639	__purge_vmap_area_lazy(&start, &end, 0, 0);
 
 640}
 641
 642/*
 643 * Kick off a purge of the outstanding lazy areas.
 644 */
 645static void purge_vmap_area_lazy(void)
 646{
 647	unsigned long start = ULONG_MAX, end = 0;
 648
 649	__purge_vmap_area_lazy(&start, &end, 1, 0);
 
 650}
 651
 652/*
 653 * Free a vmap area, caller ensuring that the area has been unmapped
 654 * and flush_cache_vunmap had been called for the correct range
 655 * previously.
 656 */
 657static void free_vmap_area_noflush(struct vmap_area *va)
 658{
 659	va->flags |= VM_LAZY_FREE;
 660	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 661	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 662		try_purge_vmap_area_lazy();
 663}
 664
 665/*
 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 667 * called for the correct range previously.
 668 */
 669static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 670{
 671	unmap_vmap_area(va);
 672	free_vmap_area_noflush(va);
 673}
 674
 675/*
 676 * Free and unmap a vmap area
 677 */
 678static void free_unmap_vmap_area(struct vmap_area *va)
 679{
 680	flush_cache_vunmap(va->va_start, va->va_end);
 681	free_unmap_vmap_area_noflush(va);
 
 682}
 683
 684static struct vmap_area *find_vmap_area(unsigned long addr)
 685{
 686	struct vmap_area *va;
 687
 688	spin_lock(&vmap_area_lock);
 689	va = __find_vmap_area(addr);
 690	spin_unlock(&vmap_area_lock);
 691
 692	return va;
 693}
 694
 695static void free_unmap_vmap_area_addr(unsigned long addr)
 696{
 697	struct vmap_area *va;
 698
 699	va = find_vmap_area(addr);
 700	BUG_ON(!va);
 701	free_unmap_vmap_area(va);
 702}
 703
 704
 705/*** Per cpu kva allocator ***/
 706
 707/*
 708 * vmap space is limited especially on 32 bit architectures. Ensure there is
 709 * room for at least 16 percpu vmap blocks per CPU.
 710 */
 711/*
 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 713 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 714 * instead (we just need a rough idea)
 715 */
 716#if BITS_PER_LONG == 32
 717#define VMALLOC_SPACE		(128UL*1024*1024)
 718#else
 719#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 720#endif
 721
 722#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 723#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 724#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 725#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 726#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 727#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 728#define VMAP_BBMAP_BITS		\
 729		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 730		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 731			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 732
 733#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 734
 735static bool vmap_initialized __read_mostly = false;
 736
 737struct vmap_block_queue {
 738	spinlock_t lock;
 739	struct list_head free;
 740};
 741
 742struct vmap_block {
 743	spinlock_t lock;
 744	struct vmap_area *va;
 745	struct vmap_block_queue *vbq;
 746	unsigned long free, dirty;
 747	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 748	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 749	struct list_head free_list;
 750	struct rcu_head rcu_head;
 751	struct list_head purge;
 752};
 753
 754/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 755static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 756
 757/*
 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 759 * in the free path. Could get rid of this if we change the API to return a
 760 * "cookie" from alloc, to be passed to free. But no big deal yet.
 761 */
 762static DEFINE_SPINLOCK(vmap_block_tree_lock);
 763static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 764
 765/*
 766 * We should probably have a fallback mechanism to allocate virtual memory
 767 * out of partially filled vmap blocks. However vmap block sizing should be
 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 769 * big problem.
 770 */
 771
 772static unsigned long addr_to_vb_idx(unsigned long addr)
 773{
 774	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 775	addr /= VMAP_BLOCK_SIZE;
 776	return addr;
 777}
 778
 779static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780{
 781	struct vmap_block_queue *vbq;
 782	struct vmap_block *vb;
 783	struct vmap_area *va;
 784	unsigned long vb_idx;
 785	int node, err;
 
 786
 787	node = numa_node_id();
 788
 789	vb = kmalloc_node(sizeof(struct vmap_block),
 790			gfp_mask & GFP_RECLAIM_MASK, node);
 791	if (unlikely(!vb))
 792		return ERR_PTR(-ENOMEM);
 793
 794	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 795					VMALLOC_START, VMALLOC_END,
 796					node, gfp_mask);
 797	if (IS_ERR(va)) {
 798		kfree(vb);
 799		return ERR_CAST(va);
 800	}
 801
 802	err = radix_tree_preload(gfp_mask);
 803	if (unlikely(err)) {
 804		kfree(vb);
 805		free_vmap_area(va);
 806		return ERR_PTR(err);
 807	}
 808
 
 809	spin_lock_init(&vb->lock);
 810	vb->va = va;
 811	vb->free = VMAP_BBMAP_BITS;
 
 
 812	vb->dirty = 0;
 813	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 814	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 815	INIT_LIST_HEAD(&vb->free_list);
 816
 817	vb_idx = addr_to_vb_idx(va->va_start);
 818	spin_lock(&vmap_block_tree_lock);
 819	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 820	spin_unlock(&vmap_block_tree_lock);
 821	BUG_ON(err);
 822	radix_tree_preload_end();
 823
 824	vbq = &get_cpu_var(vmap_block_queue);
 825	vb->vbq = vbq;
 826	spin_lock(&vbq->lock);
 827	list_add_rcu(&vb->free_list, &vbq->free);
 828	spin_unlock(&vbq->lock);
 829	put_cpu_var(vmap_block_queue);
 830
 831	return vb;
 832}
 833
 834static void free_vmap_block(struct vmap_block *vb)
 835{
 836	struct vmap_block *tmp;
 837	unsigned long vb_idx;
 838
 839	vb_idx = addr_to_vb_idx(vb->va->va_start);
 840	spin_lock(&vmap_block_tree_lock);
 841	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 842	spin_unlock(&vmap_block_tree_lock);
 843	BUG_ON(tmp != vb);
 844
 845	free_vmap_area_noflush(vb->va);
 846	kfree_rcu(vb, rcu_head);
 847}
 848
 849static void purge_fragmented_blocks(int cpu)
 850{
 851	LIST_HEAD(purge);
 852	struct vmap_block *vb;
 853	struct vmap_block *n_vb;
 854	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 855
 856	rcu_read_lock();
 857	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 858
 859		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 860			continue;
 861
 862		spin_lock(&vb->lock);
 863		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 864			vb->free = 0; /* prevent further allocs after releasing lock */
 865			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 866			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 867			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 868			spin_lock(&vbq->lock);
 869			list_del_rcu(&vb->free_list);
 870			spin_unlock(&vbq->lock);
 871			spin_unlock(&vb->lock);
 872			list_add_tail(&vb->purge, &purge);
 873		} else
 874			spin_unlock(&vb->lock);
 875	}
 876	rcu_read_unlock();
 877
 878	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 879		list_del(&vb->purge);
 880		free_vmap_block(vb);
 881	}
 882}
 883
 884static void purge_fragmented_blocks_thiscpu(void)
 885{
 886	purge_fragmented_blocks(smp_processor_id());
 887}
 888
 889static void purge_fragmented_blocks_allcpus(void)
 890{
 891	int cpu;
 892
 893	for_each_possible_cpu(cpu)
 894		purge_fragmented_blocks(cpu);
 895}
 896
 897static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 898{
 899	struct vmap_block_queue *vbq;
 900	struct vmap_block *vb;
 901	unsigned long addr = 0;
 902	unsigned int order;
 903	int purge = 0;
 904
 905	BUG_ON(size & ~PAGE_MASK);
 906	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 
 
 
 
 
 
 
 
 907	order = get_order(size);
 908
 909again:
 910	rcu_read_lock();
 911	vbq = &get_cpu_var(vmap_block_queue);
 912	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 913		int i;
 914
 915		spin_lock(&vb->lock);
 916		if (vb->free < 1UL << order)
 917			goto next;
 918
 919		i = bitmap_find_free_region(vb->alloc_map,
 920						VMAP_BBMAP_BITS, order);
 921
 922		if (i < 0) {
 923			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 924				/* fragmented and no outstanding allocations */
 925				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 926				purge = 1;
 927			}
 928			goto next;
 929		}
 930		addr = vb->va->va_start + (i << PAGE_SHIFT);
 931		BUG_ON(addr_to_vb_idx(addr) !=
 932				addr_to_vb_idx(vb->va->va_start));
 933		vb->free -= 1UL << order;
 934		if (vb->free == 0) {
 935			spin_lock(&vbq->lock);
 936			list_del_rcu(&vb->free_list);
 937			spin_unlock(&vbq->lock);
 938		}
 
 939		spin_unlock(&vb->lock);
 940		break;
 941next:
 942		spin_unlock(&vb->lock);
 943	}
 944
 945	if (purge)
 946		purge_fragmented_blocks_thiscpu();
 947
 948	put_cpu_var(vmap_block_queue);
 949	rcu_read_unlock();
 950
 951	if (!addr) {
 952		vb = new_vmap_block(gfp_mask);
 953		if (IS_ERR(vb))
 954			return vb;
 955		goto again;
 956	}
 957
 958	return (void *)addr;
 959}
 960
 961static void vb_free(const void *addr, unsigned long size)
 962{
 963	unsigned long offset;
 964	unsigned long vb_idx;
 965	unsigned int order;
 966	struct vmap_block *vb;
 967
 968	BUG_ON(size & ~PAGE_MASK);
 969	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 970
 971	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 972
 973	order = get_order(size);
 974
 975	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 
 976
 977	vb_idx = addr_to_vb_idx((unsigned long)addr);
 978	rcu_read_lock();
 979	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 980	rcu_read_unlock();
 981	BUG_ON(!vb);
 982
 983	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 984
 985	spin_lock(&vb->lock);
 986	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 
 
 
 987
 988	vb->dirty += 1UL << order;
 989	if (vb->dirty == VMAP_BBMAP_BITS) {
 990		BUG_ON(vb->free);
 991		spin_unlock(&vb->lock);
 992		free_vmap_block(vb);
 993	} else
 994		spin_unlock(&vb->lock);
 995}
 996
 997/**
 998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 999 *
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1005 *
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1009 */
1010void vm_unmap_aliases(void)
1011{
1012	unsigned long start = ULONG_MAX, end = 0;
1013	int cpu;
1014	int flush = 0;
1015
1016	if (unlikely(!vmap_initialized))
1017		return;
1018
 
 
1019	for_each_possible_cpu(cpu) {
1020		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021		struct vmap_block *vb;
1022
1023		rcu_read_lock();
1024		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025			int i;
1026
1027			spin_lock(&vb->lock);
1028			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029			while (i < VMAP_BBMAP_BITS) {
1030				unsigned long s, e;
1031				int j;
1032				j = find_next_zero_bit(vb->dirty_map,
1033					VMAP_BBMAP_BITS, i);
1034
1035				s = vb->va->va_start + (i << PAGE_SHIFT);
1036				e = vb->va->va_start + (j << PAGE_SHIFT);
1037				flush = 1;
 
 
1038
1039				if (s < start)
1040					start = s;
1041				if (e > end)
1042					end = e;
1043
1044				i = j;
1045				i = find_next_bit(vb->dirty_map,
1046							VMAP_BBMAP_BITS, i);
1047			}
1048			spin_unlock(&vb->lock);
1049		}
1050		rcu_read_unlock();
1051	}
1052
1053	__purge_vmap_area_lazy(&start, &end, 1, flush);
 
 
 
 
1054}
1055EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1056
1057/**
1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1059 * @mem: the pointer returned by vm_map_ram
1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1061 */
1062void vm_unmap_ram(const void *mem, unsigned int count)
1063{
1064	unsigned long size = count << PAGE_SHIFT;
1065	unsigned long addr = (unsigned long)mem;
 
1066
 
1067	BUG_ON(!addr);
1068	BUG_ON(addr < VMALLOC_START);
1069	BUG_ON(addr > VMALLOC_END);
1070	BUG_ON(addr & (PAGE_SIZE-1));
1071
1072	debug_check_no_locks_freed(mem, size);
1073	vmap_debug_free_range(addr, addr+size);
1074
1075	if (likely(count <= VMAP_MAX_ALLOC))
1076		vb_free(mem, size);
1077	else
1078		free_unmap_vmap_area_addr(addr);
 
 
 
 
1079}
1080EXPORT_SYMBOL(vm_unmap_ram);
1081
1082/**
1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1084 * @pages: an array of pointers to the pages to be mapped
1085 * @count: number of pages
1086 * @node: prefer to allocate data structures on this node
1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1088 *
 
 
 
 
 
 
1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1090 */
1091void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1092{
1093	unsigned long size = count << PAGE_SHIFT;
1094	unsigned long addr;
1095	void *mem;
1096
1097	if (likely(count <= VMAP_MAX_ALLOC)) {
1098		mem = vb_alloc(size, GFP_KERNEL);
1099		if (IS_ERR(mem))
1100			return NULL;
1101		addr = (unsigned long)mem;
1102	} else {
1103		struct vmap_area *va;
1104		va = alloc_vmap_area(size, PAGE_SIZE,
1105				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1106		if (IS_ERR(va))
1107			return NULL;
1108
1109		addr = va->va_start;
1110		mem = (void *)addr;
1111	}
1112	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1113		vm_unmap_ram(mem, count);
1114		return NULL;
1115	}
1116	return mem;
1117}
1118EXPORT_SYMBOL(vm_map_ram);
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/**
1121 * vm_area_register_early - register vmap area early during boot
1122 * @vm: vm_struct to register
1123 * @align: requested alignment
1124 *
1125 * This function is used to register kernel vm area before
1126 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1127 * proper values on entry and other fields should be zero.  On return,
1128 * vm->addr contains the allocated address.
1129 *
1130 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1131 */
1132void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1133{
1134	static size_t vm_init_off __initdata;
1135	unsigned long addr;
1136
1137	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1138	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1139
1140	vm->addr = (void *)addr;
1141
1142	vm->next = vmlist;
1143	vmlist = vm;
1144}
1145
1146void __init vmalloc_init(void)
1147{
1148	struct vmap_area *va;
1149	struct vm_struct *tmp;
1150	int i;
1151
1152	for_each_possible_cpu(i) {
1153		struct vmap_block_queue *vbq;
 
1154
1155		vbq = &per_cpu(vmap_block_queue, i);
1156		spin_lock_init(&vbq->lock);
1157		INIT_LIST_HEAD(&vbq->free);
 
 
 
1158	}
1159
1160	/* Import existing vmlist entries. */
1161	for (tmp = vmlist; tmp; tmp = tmp->next) {
1162		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1163		va->flags = tmp->flags | VM_VM_AREA;
1164		va->va_start = (unsigned long)tmp->addr;
1165		va->va_end = va->va_start + tmp->size;
 
1166		__insert_vmap_area(va);
1167	}
1168
1169	vmap_area_pcpu_hole = VMALLOC_END;
1170
1171	vmap_initialized = true;
1172}
1173
1174/**
1175 * map_kernel_range_noflush - map kernel VM area with the specified pages
1176 * @addr: start of the VM area to map
1177 * @size: size of the VM area to map
1178 * @prot: page protection flags to use
1179 * @pages: pages to map
1180 *
1181 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1182 * specify should have been allocated using get_vm_area() and its
1183 * friends.
1184 *
1185 * NOTE:
1186 * This function does NOT do any cache flushing.  The caller is
1187 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1188 * before calling this function.
1189 *
1190 * RETURNS:
1191 * The number of pages mapped on success, -errno on failure.
1192 */
1193int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1194			     pgprot_t prot, struct page **pages)
1195{
1196	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1197}
1198
1199/**
1200 * unmap_kernel_range_noflush - unmap kernel VM area
1201 * @addr: start of the VM area to unmap
1202 * @size: size of the VM area to unmap
1203 *
1204 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1205 * specify should have been allocated using get_vm_area() and its
1206 * friends.
1207 *
1208 * NOTE:
1209 * This function does NOT do any cache flushing.  The caller is
1210 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1211 * before calling this function and flush_tlb_kernel_range() after.
1212 */
1213void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1214{
1215	vunmap_page_range(addr, addr + size);
1216}
1217EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1218
1219/**
1220 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1221 * @addr: start of the VM area to unmap
1222 * @size: size of the VM area to unmap
1223 *
1224 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1225 * the unmapping and tlb after.
1226 */
1227void unmap_kernel_range(unsigned long addr, unsigned long size)
1228{
1229	unsigned long end = addr + size;
1230
1231	flush_cache_vunmap(addr, end);
1232	vunmap_page_range(addr, end);
1233	flush_tlb_kernel_range(addr, end);
1234}
 
1235
1236int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1237{
1238	unsigned long addr = (unsigned long)area->addr;
1239	unsigned long end = addr + area->size - PAGE_SIZE;
1240	int err;
1241
1242	err = vmap_page_range(addr, end, prot, *pages);
1243	if (err > 0) {
1244		*pages += err;
1245		err = 0;
1246	}
1247
1248	return err;
1249}
1250EXPORT_SYMBOL_GPL(map_vm_area);
1251
1252/*** Old vmalloc interfaces ***/
1253DEFINE_RWLOCK(vmlist_lock);
1254struct vm_struct *vmlist;
1255
1256static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1257			      unsigned long flags, void *caller)
1258{
1259	struct vm_struct *tmp, **p;
1260
1261	vm->flags = flags;
1262	vm->addr = (void *)va->va_start;
1263	vm->size = va->va_end - va->va_start;
1264	vm->caller = caller;
1265	va->private = vm;
1266	va->flags |= VM_VM_AREA;
 
 
1267
1268	write_lock(&vmlist_lock);
1269	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1270		if (tmp->addr >= vm->addr)
1271			break;
1272	}
1273	vm->next = *p;
1274	*p = vm;
1275	write_unlock(&vmlist_lock);
 
1276}
1277
1278static struct vm_struct *__get_vm_area_node(unsigned long size,
1279		unsigned long align, unsigned long flags, unsigned long start,
1280		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1281{
1282	static struct vmap_area *va;
1283	struct vm_struct *area;
1284
1285	BUG_ON(in_interrupt());
1286	if (flags & VM_IOREMAP) {
1287		int bit = fls(size);
1288
1289		if (bit > IOREMAP_MAX_ORDER)
1290			bit = IOREMAP_MAX_ORDER;
1291		else if (bit < PAGE_SHIFT)
1292			bit = PAGE_SHIFT;
1293
1294		align = 1ul << bit;
1295	}
1296
1297	size = PAGE_ALIGN(size);
1298	if (unlikely(!size))
1299		return NULL;
1300
 
 
 
 
1301	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1302	if (unlikely(!area))
1303		return NULL;
1304
1305	/*
1306	 * We always allocate a guard page.
1307	 */
1308	size += PAGE_SIZE;
1309
1310	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1311	if (IS_ERR(va)) {
1312		kfree(area);
1313		return NULL;
1314	}
1315
1316	insert_vmalloc_vm(area, va, flags, caller);
 
1317	return area;
1318}
1319
1320struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1321				unsigned long start, unsigned long end)
1322{
1323	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1324						__builtin_return_address(0));
1325}
1326EXPORT_SYMBOL_GPL(__get_vm_area);
1327
1328struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1329				       unsigned long start, unsigned long end,
1330				       void *caller)
1331{
1332	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1333				  caller);
1334}
1335
1336/**
1337 *	get_vm_area  -  reserve a contiguous kernel virtual area
1338 *	@size:		size of the area
1339 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1340 *
1341 *	Search an area of @size in the kernel virtual mapping area,
1342 *	and reserved it for out purposes.  Returns the area descriptor
1343 *	on success or %NULL on failure.
1344 */
1345struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1346{
1347	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1348				-1, GFP_KERNEL, __builtin_return_address(0));
 
1349}
1350
1351struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1352				void *caller)
1353{
1354	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1355						-1, GFP_KERNEL, caller);
1356}
1357
1358static struct vm_struct *find_vm_area(const void *addr)
 
 
 
 
 
 
 
 
1359{
1360	struct vmap_area *va;
1361
1362	va = find_vmap_area((unsigned long)addr);
1363	if (va && va->flags & VM_VM_AREA)
1364		return va->private;
1365
1366	return NULL;
1367}
1368
1369/**
1370 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1371 *	@addr:		base address
1372 *
1373 *	Search for the kernel VM area starting at @addr, and remove it.
1374 *	This function returns the found VM area, but using it is NOT safe
1375 *	on SMP machines, except for its size or flags.
1376 */
1377struct vm_struct *remove_vm_area(const void *addr)
1378{
1379	struct vmap_area *va;
1380
 
 
1381	va = find_vmap_area((unsigned long)addr);
1382	if (va && va->flags & VM_VM_AREA) {
1383		struct vm_struct *vm = va->private;
1384		struct vm_struct *tmp, **p;
1385		/*
1386		 * remove from list and disallow access to this vm_struct
1387		 * before unmap. (address range confliction is maintained by
1388		 * vmap.)
1389		 */
1390		write_lock(&vmlist_lock);
1391		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1392			;
1393		*p = tmp->next;
1394		write_unlock(&vmlist_lock);
1395
1396		vmap_debug_free_range(va->va_start, va->va_end);
 
1397		free_unmap_vmap_area(va);
1398		vm->size -= PAGE_SIZE;
1399
1400		return vm;
1401	}
1402	return NULL;
1403}
1404
1405static void __vunmap(const void *addr, int deallocate_pages)
1406{
1407	struct vm_struct *area;
1408
1409	if (!addr)
1410		return;
1411
1412	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1413		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1414		return;
1415	}
1416
1417	area = remove_vm_area(addr);
1418	if (unlikely(!area)) {
1419		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1420				addr);
1421		return;
1422	}
1423
1424	debug_check_no_locks_freed(addr, area->size);
1425	debug_check_no_obj_freed(addr, area->size);
1426
1427	if (deallocate_pages) {
1428		int i;
1429
1430		for (i = 0; i < area->nr_pages; i++) {
1431			struct page *page = area->pages[i];
1432
1433			BUG_ON(!page);
1434			__free_page(page);
1435		}
1436
1437		if (area->flags & VM_VPAGES)
1438			vfree(area->pages);
1439		else
1440			kfree(area->pages);
1441	}
1442
1443	kfree(area);
1444	return;
1445}
1446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447/**
1448 *	vfree  -  release memory allocated by vmalloc()
1449 *	@addr:		memory base address
1450 *
1451 *	Free the virtually continuous memory area starting at @addr, as
1452 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1453 *	NULL, no operation is performed.
1454 *
1455 *	Must not be called in interrupt context.
 
 
 
 
1456 */
1457void vfree(const void *addr)
1458{
1459	BUG_ON(in_interrupt());
1460
1461	kmemleak_free(addr);
1462
1463	__vunmap(addr, 1);
 
 
 
 
 
1464}
1465EXPORT_SYMBOL(vfree);
1466
1467/**
1468 *	vunmap  -  release virtual mapping obtained by vmap()
1469 *	@addr:		memory base address
1470 *
1471 *	Free the virtually contiguous memory area starting at @addr,
1472 *	which was created from the page array passed to vmap().
1473 *
1474 *	Must not be called in interrupt context.
1475 */
1476void vunmap(const void *addr)
1477{
1478	BUG_ON(in_interrupt());
1479	might_sleep();
1480	__vunmap(addr, 0);
 
1481}
1482EXPORT_SYMBOL(vunmap);
1483
1484/**
1485 *	vmap  -  map an array of pages into virtually contiguous space
1486 *	@pages:		array of page pointers
1487 *	@count:		number of pages to map
1488 *	@flags:		vm_area->flags
1489 *	@prot:		page protection for the mapping
1490 *
1491 *	Maps @count pages from @pages into contiguous kernel virtual
1492 *	space.
1493 */
1494void *vmap(struct page **pages, unsigned int count,
1495		unsigned long flags, pgprot_t prot)
1496{
1497	struct vm_struct *area;
 
1498
1499	might_sleep();
1500
1501	if (count > totalram_pages)
1502		return NULL;
1503
1504	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1505					__builtin_return_address(0));
1506	if (!area)
1507		return NULL;
1508
1509	if (map_vm_area(area, prot, &pages)) {
1510		vunmap(area->addr);
1511		return NULL;
1512	}
1513
1514	return area->addr;
1515}
1516EXPORT_SYMBOL(vmap);
1517
1518static void *__vmalloc_node(unsigned long size, unsigned long align,
1519			    gfp_t gfp_mask, pgprot_t prot,
1520			    int node, void *caller);
1521static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1522				 pgprot_t prot, int node, void *caller)
1523{
1524	const int order = 0;
1525	struct page **pages;
1526	unsigned int nr_pages, array_size, i;
1527	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 
1528
1529	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1530	array_size = (nr_pages * sizeof(struct page *));
1531
1532	area->nr_pages = nr_pages;
1533	/* Please note that the recursion is strictly bounded. */
1534	if (array_size > PAGE_SIZE) {
1535		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1536				PAGE_KERNEL, node, caller);
1537		area->flags |= VM_VPAGES;
1538	} else {
1539		pages = kmalloc_node(array_size, nested_gfp, node);
1540	}
1541	area->pages = pages;
1542	area->caller = caller;
1543	if (!area->pages) {
1544		remove_vm_area(area->addr);
1545		kfree(area);
1546		return NULL;
1547	}
1548
1549	for (i = 0; i < area->nr_pages; i++) {
1550		struct page *page;
1551		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1552
1553		if (node < 0)
1554			page = alloc_page(tmp_mask);
1555		else
1556			page = alloc_pages_node(node, tmp_mask, order);
1557
1558		if (unlikely(!page)) {
1559			/* Successfully allocated i pages, free them in __vunmap() */
1560			area->nr_pages = i;
1561			goto fail;
1562		}
1563		area->pages[i] = page;
 
 
1564	}
1565
1566	if (map_vm_area(area, prot, &pages))
1567		goto fail;
1568	return area->addr;
1569
1570fail:
1571	warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1572			  "allocated %ld of %ld bytes\n",
1573			  (area->nr_pages*PAGE_SIZE), area->size);
1574	vfree(area->addr);
1575	return NULL;
1576}
1577
1578/**
1579 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1580 *	@size:		allocation size
1581 *	@align:		desired alignment
1582 *	@start:		vm area range start
1583 *	@end:		vm area range end
1584 *	@gfp_mask:	flags for the page level allocator
1585 *	@prot:		protection mask for the allocated pages
1586 *	@node:		node to use for allocation or -1
 
1587 *	@caller:	caller's return address
1588 *
1589 *	Allocate enough pages to cover @size from the page level
1590 *	allocator with @gfp_mask flags.  Map them into contiguous
1591 *	kernel virtual space, using a pagetable protection of @prot.
1592 */
1593void *__vmalloc_node_range(unsigned long size, unsigned long align,
1594			unsigned long start, unsigned long end, gfp_t gfp_mask,
1595			pgprot_t prot, int node, void *caller)
 
1596{
1597	struct vm_struct *area;
1598	void *addr;
1599	unsigned long real_size = size;
1600
1601	size = PAGE_ALIGN(size);
1602	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1603		return NULL;
1604
1605	area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1606				  gfp_mask, caller);
1607
 
 
1608	if (!area)
 
 
 
 
1609		return NULL;
1610
1611	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
 
 
 
 
 
1612
1613	/*
1614	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1615	 * structures allocated in the __get_vm_area_node() function contain
1616	 * references to the virtual address of the vmalloc'ed block.
1617	 */
1618	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1619
1620	return addr;
 
 
 
 
 
1621}
1622
1623/**
1624 *	__vmalloc_node  -  allocate virtually contiguous memory
1625 *	@size:		allocation size
1626 *	@align:		desired alignment
1627 *	@gfp_mask:	flags for the page level allocator
1628 *	@prot:		protection mask for the allocated pages
1629 *	@node:		node to use for allocation or -1
1630 *	@caller:	caller's return address
1631 *
1632 *	Allocate enough pages to cover @size from the page level
1633 *	allocator with @gfp_mask flags.  Map them into contiguous
1634 *	kernel virtual space, using a pagetable protection of @prot.
1635 */
1636static void *__vmalloc_node(unsigned long size, unsigned long align,
1637			    gfp_t gfp_mask, pgprot_t prot,
1638			    int node, void *caller)
1639{
1640	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1641				gfp_mask, prot, node, caller);
1642}
1643
1644void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1645{
1646	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1647				__builtin_return_address(0));
1648}
1649EXPORT_SYMBOL(__vmalloc);
1650
1651static inline void *__vmalloc_node_flags(unsigned long size,
1652					int node, gfp_t flags)
1653{
1654	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1655					node, __builtin_return_address(0));
1656}
1657
1658/**
1659 *	vmalloc  -  allocate virtually contiguous memory
1660 *	@size:		allocation size
1661 *	Allocate enough pages to cover @size from the page level
1662 *	allocator and map them into contiguous kernel virtual space.
1663 *
1664 *	For tight control over page level allocator and protection flags
1665 *	use __vmalloc() instead.
1666 */
1667void *vmalloc(unsigned long size)
1668{
1669	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
 
1670}
1671EXPORT_SYMBOL(vmalloc);
1672
1673/**
1674 *	vzalloc - allocate virtually contiguous memory with zero fill
1675 *	@size:	allocation size
1676 *	Allocate enough pages to cover @size from the page level
1677 *	allocator and map them into contiguous kernel virtual space.
1678 *	The memory allocated is set to zero.
1679 *
1680 *	For tight control over page level allocator and protection flags
1681 *	use __vmalloc() instead.
1682 */
1683void *vzalloc(unsigned long size)
1684{
1685	return __vmalloc_node_flags(size, -1,
1686				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1687}
1688EXPORT_SYMBOL(vzalloc);
1689
1690/**
1691 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1692 * @size: allocation size
1693 *
1694 * The resulting memory area is zeroed so it can be mapped to userspace
1695 * without leaking data.
1696 */
1697void *vmalloc_user(unsigned long size)
1698{
1699	struct vm_struct *area;
1700	void *ret;
1701
1702	ret = __vmalloc_node(size, SHMLBA,
1703			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1704			     PAGE_KERNEL, -1, __builtin_return_address(0));
 
1705	if (ret) {
1706		area = find_vm_area(ret);
1707		area->flags |= VM_USERMAP;
1708	}
1709	return ret;
1710}
1711EXPORT_SYMBOL(vmalloc_user);
1712
1713/**
1714 *	vmalloc_node  -  allocate memory on a specific node
1715 *	@size:		allocation size
1716 *	@node:		numa node
1717 *
1718 *	Allocate enough pages to cover @size from the page level
1719 *	allocator and map them into contiguous kernel virtual space.
1720 *
1721 *	For tight control over page level allocator and protection flags
1722 *	use __vmalloc() instead.
1723 */
1724void *vmalloc_node(unsigned long size, int node)
1725{
1726	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1727					node, __builtin_return_address(0));
1728}
1729EXPORT_SYMBOL(vmalloc_node);
1730
1731/**
1732 * vzalloc_node - allocate memory on a specific node with zero fill
1733 * @size:	allocation size
1734 * @node:	numa node
1735 *
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator and map them into contiguous kernel virtual space.
1738 * The memory allocated is set to zero.
1739 *
1740 * For tight control over page level allocator and protection flags
1741 * use __vmalloc_node() instead.
1742 */
1743void *vzalloc_node(unsigned long size, int node)
1744{
1745	return __vmalloc_node_flags(size, node,
1746			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1747}
1748EXPORT_SYMBOL(vzalloc_node);
1749
1750#ifndef PAGE_KERNEL_EXEC
1751# define PAGE_KERNEL_EXEC PAGE_KERNEL
1752#endif
1753
1754/**
1755 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1756 *	@size:		allocation size
1757 *
1758 *	Kernel-internal function to allocate enough pages to cover @size
1759 *	the page level allocator and map them into contiguous and
1760 *	executable kernel virtual space.
1761 *
1762 *	For tight control over page level allocator and protection flags
1763 *	use __vmalloc() instead.
1764 */
1765
1766void *vmalloc_exec(unsigned long size)
1767{
1768	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1769			      -1, __builtin_return_address(0));
1770}
1771
1772#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1773#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1774#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1775#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1776#else
1777#define GFP_VMALLOC32 GFP_KERNEL
1778#endif
1779
1780/**
1781 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1782 *	@size:		allocation size
1783 *
1784 *	Allocate enough 32bit PA addressable pages to cover @size from the
1785 *	page level allocator and map them into contiguous kernel virtual space.
1786 */
1787void *vmalloc_32(unsigned long size)
1788{
1789	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1790			      -1, __builtin_return_address(0));
1791}
1792EXPORT_SYMBOL(vmalloc_32);
1793
1794/**
1795 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1796 *	@size:		allocation size
1797 *
1798 * The resulting memory area is 32bit addressable and zeroed so it can be
1799 * mapped to userspace without leaking data.
1800 */
1801void *vmalloc_32_user(unsigned long size)
1802{
1803	struct vm_struct *area;
1804	void *ret;
1805
1806	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1807			     -1, __builtin_return_address(0));
1808	if (ret) {
1809		area = find_vm_area(ret);
1810		area->flags |= VM_USERMAP;
1811	}
1812	return ret;
1813}
1814EXPORT_SYMBOL(vmalloc_32_user);
1815
1816/*
1817 * small helper routine , copy contents to buf from addr.
1818 * If the page is not present, fill zero.
1819 */
1820
1821static int aligned_vread(char *buf, char *addr, unsigned long count)
1822{
1823	struct page *p;
1824	int copied = 0;
1825
1826	while (count) {
1827		unsigned long offset, length;
1828
1829		offset = (unsigned long)addr & ~PAGE_MASK;
1830		length = PAGE_SIZE - offset;
1831		if (length > count)
1832			length = count;
1833		p = vmalloc_to_page(addr);
1834		/*
1835		 * To do safe access to this _mapped_ area, we need
1836		 * lock. But adding lock here means that we need to add
1837		 * overhead of vmalloc()/vfree() calles for this _debug_
1838		 * interface, rarely used. Instead of that, we'll use
1839		 * kmap() and get small overhead in this access function.
1840		 */
1841		if (p) {
1842			/*
1843			 * we can expect USER0 is not used (see vread/vwrite's
1844			 * function description)
1845			 */
1846			void *map = kmap_atomic(p, KM_USER0);
1847			memcpy(buf, map + offset, length);
1848			kunmap_atomic(map, KM_USER0);
1849		} else
1850			memset(buf, 0, length);
1851
1852		addr += length;
1853		buf += length;
1854		copied += length;
1855		count -= length;
1856	}
1857	return copied;
1858}
1859
1860static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1861{
1862	struct page *p;
1863	int copied = 0;
1864
1865	while (count) {
1866		unsigned long offset, length;
1867
1868		offset = (unsigned long)addr & ~PAGE_MASK;
1869		length = PAGE_SIZE - offset;
1870		if (length > count)
1871			length = count;
1872		p = vmalloc_to_page(addr);
1873		/*
1874		 * To do safe access to this _mapped_ area, we need
1875		 * lock. But adding lock here means that we need to add
1876		 * overhead of vmalloc()/vfree() calles for this _debug_
1877		 * interface, rarely used. Instead of that, we'll use
1878		 * kmap() and get small overhead in this access function.
1879		 */
1880		if (p) {
1881			/*
1882			 * we can expect USER0 is not used (see vread/vwrite's
1883			 * function description)
1884			 */
1885			void *map = kmap_atomic(p, KM_USER0);
1886			memcpy(map + offset, buf, length);
1887			kunmap_atomic(map, KM_USER0);
1888		}
1889		addr += length;
1890		buf += length;
1891		copied += length;
1892		count -= length;
1893	}
1894	return copied;
1895}
1896
1897/**
1898 *	vread() -  read vmalloc area in a safe way.
1899 *	@buf:		buffer for reading data
1900 *	@addr:		vm address.
1901 *	@count:		number of bytes to be read.
1902 *
1903 *	Returns # of bytes which addr and buf should be increased.
1904 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1905 *	includes any intersect with alive vmalloc area.
1906 *
1907 *	This function checks that addr is a valid vmalloc'ed area, and
1908 *	copy data from that area to a given buffer. If the given memory range
1909 *	of [addr...addr+count) includes some valid address, data is copied to
1910 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1911 *	IOREMAP area is treated as memory hole and no copy is done.
1912 *
1913 *	If [addr...addr+count) doesn't includes any intersects with alive
1914 *	vm_struct area, returns 0.
1915 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1916 *	the caller should guarantee KM_USER0 is not used.
1917 *
1918 *	Note: In usual ops, vread() is never necessary because the caller
1919 *	should know vmalloc() area is valid and can use memcpy().
1920 *	This is for routines which have to access vmalloc area without
1921 *	any informaion, as /dev/kmem.
1922 *
1923 */
1924
1925long vread(char *buf, char *addr, unsigned long count)
1926{
1927	struct vm_struct *tmp;
 
1928	char *vaddr, *buf_start = buf;
1929	unsigned long buflen = count;
1930	unsigned long n;
1931
1932	/* Don't allow overflow */
1933	if ((unsigned long) addr + count < count)
1934		count = -(unsigned long) addr;
1935
1936	read_lock(&vmlist_lock);
1937	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1938		vaddr = (char *) tmp->addr;
1939		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 
 
 
 
 
 
 
1940			continue;
1941		while (addr < vaddr) {
1942			if (count == 0)
1943				goto finished;
1944			*buf = '\0';
1945			buf++;
1946			addr++;
1947			count--;
1948		}
1949		n = vaddr + tmp->size - PAGE_SIZE - addr;
1950		if (n > count)
1951			n = count;
1952		if (!(tmp->flags & VM_IOREMAP))
1953			aligned_vread(buf, addr, n);
1954		else /* IOREMAP area is treated as memory hole */
1955			memset(buf, 0, n);
1956		buf += n;
1957		addr += n;
1958		count -= n;
1959	}
1960finished:
1961	read_unlock(&vmlist_lock);
1962
1963	if (buf == buf_start)
1964		return 0;
1965	/* zero-fill memory holes */
1966	if (buf != buf_start + buflen)
1967		memset(buf, 0, buflen - (buf - buf_start));
1968
1969	return buflen;
1970}
1971
1972/**
1973 *	vwrite() -  write vmalloc area in a safe way.
1974 *	@buf:		buffer for source data
1975 *	@addr:		vm address.
1976 *	@count:		number of bytes to be read.
1977 *
1978 *	Returns # of bytes which addr and buf should be incresed.
1979 *	(same number to @count).
1980 *	If [addr...addr+count) doesn't includes any intersect with valid
1981 *	vmalloc area, returns 0.
1982 *
1983 *	This function checks that addr is a valid vmalloc'ed area, and
1984 *	copy data from a buffer to the given addr. If specified range of
1985 *	[addr...addr+count) includes some valid address, data is copied from
1986 *	proper area of @buf. If there are memory holes, no copy to hole.
1987 *	IOREMAP area is treated as memory hole and no copy is done.
1988 *
1989 *	If [addr...addr+count) doesn't includes any intersects with alive
1990 *	vm_struct area, returns 0.
1991 *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1992 *	the caller should guarantee KM_USER0 is not used.
1993 *
1994 *	Note: In usual ops, vwrite() is never necessary because the caller
1995 *	should know vmalloc() area is valid and can use memcpy().
1996 *	This is for routines which have to access vmalloc area without
1997 *	any informaion, as /dev/kmem.
1998 */
1999
2000long vwrite(char *buf, char *addr, unsigned long count)
2001{
2002	struct vm_struct *tmp;
 
2003	char *vaddr;
2004	unsigned long n, buflen;
2005	int copied = 0;
2006
2007	/* Don't allow overflow */
2008	if ((unsigned long) addr + count < count)
2009		count = -(unsigned long) addr;
2010	buflen = count;
2011
2012	read_lock(&vmlist_lock);
2013	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2014		vaddr = (char *) tmp->addr;
2015		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 
 
 
 
 
 
 
2016			continue;
2017		while (addr < vaddr) {
2018			if (count == 0)
2019				goto finished;
2020			buf++;
2021			addr++;
2022			count--;
2023		}
2024		n = vaddr + tmp->size - PAGE_SIZE - addr;
2025		if (n > count)
2026			n = count;
2027		if (!(tmp->flags & VM_IOREMAP)) {
2028			aligned_vwrite(buf, addr, n);
2029			copied++;
2030		}
2031		buf += n;
2032		addr += n;
2033		count -= n;
2034	}
2035finished:
2036	read_unlock(&vmlist_lock);
2037	if (!copied)
2038		return 0;
2039	return buflen;
2040}
2041
2042/**
2043 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2044 *	@vma:		vma to cover (map full range of vma)
2045 *	@addr:		vmalloc memory
2046 *	@pgoff:		number of pages into addr before first page to map
 
2047 *
2048 *	Returns:	0 for success, -Exxx on failure
2049 *
2050 *	This function checks that addr is a valid vmalloc'ed area, and
2051 *	that it is big enough to cover the vma. Will return failure if
2052 *	that criteria isn't met.
 
2053 *
2054 *	Similar to remap_pfn_range() (see mm/memory.c)
2055 */
2056int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2057						unsigned long pgoff)
2058{
2059	struct vm_struct *area;
2060	unsigned long uaddr = vma->vm_start;
2061	unsigned long usize = vma->vm_end - vma->vm_start;
2062
2063	if ((PAGE_SIZE-1) & (unsigned long)addr)
 
 
2064		return -EINVAL;
2065
2066	area = find_vm_area(addr);
2067	if (!area)
2068		return -EINVAL;
2069
2070	if (!(area->flags & VM_USERMAP))
2071		return -EINVAL;
2072
2073	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2074		return -EINVAL;
2075
2076	addr += pgoff << PAGE_SHIFT;
2077	do {
2078		struct page *page = vmalloc_to_page(addr);
2079		int ret;
2080
2081		ret = vm_insert_page(vma, uaddr, page);
2082		if (ret)
2083			return ret;
2084
2085		uaddr += PAGE_SIZE;
2086		addr += PAGE_SIZE;
2087		usize -= PAGE_SIZE;
2088	} while (usize > 0);
2089
2090	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2091	vma->vm_flags |= VM_RESERVED;
2092
2093	return 0;
2094}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095EXPORT_SYMBOL(remap_vmalloc_range);
2096
2097/*
2098 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2099 * have one.
2100 */
2101void  __attribute__((weak)) vmalloc_sync_all(void)
2102{
2103}
2104
2105
2106static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2107{
2108	/* apply_to_page_range() does all the hard work. */
 
 
 
 
 
2109	return 0;
2110}
2111
2112/**
2113 *	alloc_vm_area - allocate a range of kernel address space
2114 *	@size:		size of the area
 
2115 *
2116 *	Returns:	NULL on failure, vm_struct on success
2117 *
2118 *	This function reserves a range of kernel address space, and
2119 *	allocates pagetables to map that range.  No actual mappings
2120 *	are created.  If the kernel address space is not shared
2121 *	between processes, it syncs the pagetable across all
2122 *	processes.
 
2123 */
2124struct vm_struct *alloc_vm_area(size_t size)
2125{
2126	struct vm_struct *area;
2127
2128	area = get_vm_area_caller(size, VM_IOREMAP,
2129				__builtin_return_address(0));
2130	if (area == NULL)
2131		return NULL;
2132
2133	/*
2134	 * This ensures that page tables are constructed for this region
2135	 * of kernel virtual address space and mapped into init_mm.
2136	 */
2137	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2138				area->size, f, NULL)) {
2139		free_vm_area(area);
2140		return NULL;
2141	}
2142
2143	/*
2144	 * If the allocated address space is passed to a hypercall
2145	 * before being used then we cannot rely on a page fault to
2146	 * trigger an update of the page tables.  So sync all the page
2147	 * tables here.
2148	 */
2149	vmalloc_sync_all();
2150
2151	return area;
2152}
2153EXPORT_SYMBOL_GPL(alloc_vm_area);
2154
2155void free_vm_area(struct vm_struct *area)
2156{
2157	struct vm_struct *ret;
2158	ret = remove_vm_area(area->addr);
2159	BUG_ON(ret != area);
2160	kfree(area);
2161}
2162EXPORT_SYMBOL_GPL(free_vm_area);
2163
2164#ifdef CONFIG_SMP
2165static struct vmap_area *node_to_va(struct rb_node *n)
2166{
2167	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2168}
2169
2170/**
2171 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2172 * @end: target address
2173 * @pnext: out arg for the next vmap_area
2174 * @pprev: out arg for the previous vmap_area
2175 *
2176 * Returns: %true if either or both of next and prev are found,
2177 *	    %false if no vmap_area exists
2178 *
2179 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2180 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2181 */
2182static bool pvm_find_next_prev(unsigned long end,
2183			       struct vmap_area **pnext,
2184			       struct vmap_area **pprev)
2185{
2186	struct rb_node *n = vmap_area_root.rb_node;
2187	struct vmap_area *va = NULL;
2188
2189	while (n) {
2190		va = rb_entry(n, struct vmap_area, rb_node);
2191		if (end < va->va_end)
2192			n = n->rb_left;
2193		else if (end > va->va_end)
2194			n = n->rb_right;
2195		else
2196			break;
2197	}
2198
2199	if (!va)
2200		return false;
2201
2202	if (va->va_end > end) {
2203		*pnext = va;
2204		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2205	} else {
2206		*pprev = va;
2207		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2208	}
2209	return true;
2210}
2211
2212/**
2213 * pvm_determine_end - find the highest aligned address between two vmap_areas
2214 * @pnext: in/out arg for the next vmap_area
2215 * @pprev: in/out arg for the previous vmap_area
2216 * @align: alignment
2217 *
2218 * Returns: determined end address
2219 *
2220 * Find the highest aligned address between *@pnext and *@pprev below
2221 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2222 * down address is between the end addresses of the two vmap_areas.
2223 *
2224 * Please note that the address returned by this function may fall
2225 * inside *@pnext vmap_area.  The caller is responsible for checking
2226 * that.
2227 */
2228static unsigned long pvm_determine_end(struct vmap_area **pnext,
2229				       struct vmap_area **pprev,
2230				       unsigned long align)
2231{
2232	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2233	unsigned long addr;
2234
2235	if (*pnext)
2236		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2237	else
2238		addr = vmalloc_end;
2239
2240	while (*pprev && (*pprev)->va_end > addr) {
2241		*pnext = *pprev;
2242		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2243	}
2244
2245	return addr;
2246}
2247
2248/**
2249 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2250 * @offsets: array containing offset of each area
2251 * @sizes: array containing size of each area
2252 * @nr_vms: the number of areas to allocate
2253 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2254 *
2255 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2256 *	    vm_structs on success, %NULL on failure
2257 *
2258 * Percpu allocator wants to use congruent vm areas so that it can
2259 * maintain the offsets among percpu areas.  This function allocates
2260 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2261 * be scattered pretty far, distance between two areas easily going up
2262 * to gigabytes.  To avoid interacting with regular vmallocs, these
2263 * areas are allocated from top.
2264 *
2265 * Despite its complicated look, this allocator is rather simple.  It
2266 * does everything top-down and scans areas from the end looking for
2267 * matching slot.  While scanning, if any of the areas overlaps with
2268 * existing vmap_area, the base address is pulled down to fit the
2269 * area.  Scanning is repeated till all the areas fit and then all
2270 * necessary data structres are inserted and the result is returned.
2271 */
2272struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2273				     const size_t *sizes, int nr_vms,
2274				     size_t align)
2275{
2276	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2277	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2278	struct vmap_area **vas, *prev, *next;
2279	struct vm_struct **vms;
2280	int area, area2, last_area, term_area;
2281	unsigned long base, start, end, last_end;
2282	bool purged = false;
2283
2284	/* verify parameters and allocate data structures */
2285	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2286	for (last_area = 0, area = 0; area < nr_vms; area++) {
2287		start = offsets[area];
2288		end = start + sizes[area];
2289
2290		/* is everything aligned properly? */
2291		BUG_ON(!IS_ALIGNED(offsets[area], align));
2292		BUG_ON(!IS_ALIGNED(sizes[area], align));
2293
2294		/* detect the area with the highest address */
2295		if (start > offsets[last_area])
2296			last_area = area;
2297
2298		for (area2 = 0; area2 < nr_vms; area2++) {
2299			unsigned long start2 = offsets[area2];
2300			unsigned long end2 = start2 + sizes[area2];
2301
2302			if (area2 == area)
2303				continue;
2304
2305			BUG_ON(start2 >= start && start2 < end);
2306			BUG_ON(end2 <= end && end2 > start);
2307		}
2308	}
2309	last_end = offsets[last_area] + sizes[last_area];
2310
2311	if (vmalloc_end - vmalloc_start < last_end) {
2312		WARN_ON(true);
2313		return NULL;
2314	}
2315
2316	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2317	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2318	if (!vas || !vms)
2319		goto err_free;
2320
2321	for (area = 0; area < nr_vms; area++) {
2322		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2323		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2324		if (!vas[area] || !vms[area])
2325			goto err_free;
2326	}
2327retry:
2328	spin_lock(&vmap_area_lock);
2329
2330	/* start scanning - we scan from the top, begin with the last area */
2331	area = term_area = last_area;
2332	start = offsets[area];
2333	end = start + sizes[area];
2334
2335	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2336		base = vmalloc_end - last_end;
2337		goto found;
2338	}
2339	base = pvm_determine_end(&next, &prev, align) - end;
2340
2341	while (true) {
2342		BUG_ON(next && next->va_end <= base + end);
2343		BUG_ON(prev && prev->va_end > base + end);
2344
2345		/*
2346		 * base might have underflowed, add last_end before
2347		 * comparing.
2348		 */
2349		if (base + last_end < vmalloc_start + last_end) {
2350			spin_unlock(&vmap_area_lock);
2351			if (!purged) {
2352				purge_vmap_area_lazy();
2353				purged = true;
2354				goto retry;
2355			}
2356			goto err_free;
2357		}
2358
2359		/*
2360		 * If next overlaps, move base downwards so that it's
2361		 * right below next and then recheck.
2362		 */
2363		if (next && next->va_start < base + end) {
2364			base = pvm_determine_end(&next, &prev, align) - end;
2365			term_area = area;
2366			continue;
2367		}
2368
2369		/*
2370		 * If prev overlaps, shift down next and prev and move
2371		 * base so that it's right below new next and then
2372		 * recheck.
2373		 */
2374		if (prev && prev->va_end > base + start)  {
2375			next = prev;
2376			prev = node_to_va(rb_prev(&next->rb_node));
2377			base = pvm_determine_end(&next, &prev, align) - end;
2378			term_area = area;
2379			continue;
2380		}
2381
2382		/*
2383		 * This area fits, move on to the previous one.  If
2384		 * the previous one is the terminal one, we're done.
2385		 */
2386		area = (area + nr_vms - 1) % nr_vms;
2387		if (area == term_area)
2388			break;
2389		start = offsets[area];
2390		end = start + sizes[area];
2391		pvm_find_next_prev(base + end, &next, &prev);
2392	}
2393found:
2394	/* we've found a fitting base, insert all va's */
2395	for (area = 0; area < nr_vms; area++) {
2396		struct vmap_area *va = vas[area];
2397
2398		va->va_start = base + offsets[area];
2399		va->va_end = va->va_start + sizes[area];
2400		__insert_vmap_area(va);
2401	}
2402
2403	vmap_area_pcpu_hole = base + offsets[last_area];
2404
2405	spin_unlock(&vmap_area_lock);
2406
2407	/* insert all vm's */
2408	for (area = 0; area < nr_vms; area++)
2409		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2410				  pcpu_get_vm_areas);
2411
2412	kfree(vas);
2413	return vms;
2414
2415err_free:
2416	for (area = 0; area < nr_vms; area++) {
2417		if (vas)
2418			kfree(vas[area]);
2419		if (vms)
2420			kfree(vms[area]);
2421	}
 
2422	kfree(vas);
2423	kfree(vms);
2424	return NULL;
2425}
2426
2427/**
2428 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2429 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2430 * @nr_vms: the number of allocated areas
2431 *
2432 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2433 */
2434void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2435{
2436	int i;
2437
2438	for (i = 0; i < nr_vms; i++)
2439		free_vm_area(vms[i]);
2440	kfree(vms);
2441}
2442#endif	/* CONFIG_SMP */
2443
2444#ifdef CONFIG_PROC_FS
2445static void *s_start(struct seq_file *m, loff_t *pos)
2446	__acquires(&vmlist_lock)
2447{
2448	loff_t n = *pos;
2449	struct vm_struct *v;
2450
2451	read_lock(&vmlist_lock);
2452	v = vmlist;
2453	while (n > 0 && v) {
2454		n--;
2455		v = v->next;
2456	}
2457	if (!n)
2458		return v;
2459
2460	return NULL;
2461
2462}
2463
2464static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2465{
2466	struct vm_struct *v = p;
2467
2468	++*pos;
2469	return v->next;
2470}
2471
2472static void s_stop(struct seq_file *m, void *p)
2473	__releases(&vmlist_lock)
2474{
2475	read_unlock(&vmlist_lock);
2476}
2477
2478static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2479{
2480	if (NUMA_BUILD) {
2481		unsigned int nr, *counters = m->private;
2482
2483		if (!counters)
2484			return;
2485
 
 
 
 
 
2486		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2487
2488		for (nr = 0; nr < v->nr_pages; nr++)
2489			counters[page_to_nid(v->pages[nr])]++;
2490
2491		for_each_node_state(nr, N_HIGH_MEMORY)
2492			if (counters[nr])
2493				seq_printf(m, " N%u=%u", nr, counters[nr]);
2494	}
2495}
2496
2497static int s_show(struct seq_file *m, void *p)
2498{
2499	struct vm_struct *v = p;
 
 
 
 
 
 
 
 
 
 
2500
2501	seq_printf(m, "0x%p-0x%p %7ld",
 
 
2502		v->addr, v->addr + v->size, v->size);
2503
2504	if (v->caller)
2505		seq_printf(m, " %pS", v->caller);
2506
2507	if (v->nr_pages)
2508		seq_printf(m, " pages=%d", v->nr_pages);
2509
2510	if (v->phys_addr)
2511		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2512
2513	if (v->flags & VM_IOREMAP)
2514		seq_printf(m, " ioremap");
2515
2516	if (v->flags & VM_ALLOC)
2517		seq_printf(m, " vmalloc");
2518
2519	if (v->flags & VM_MAP)
2520		seq_printf(m, " vmap");
2521
2522	if (v->flags & VM_USERMAP)
2523		seq_printf(m, " user");
2524
2525	if (v->flags & VM_VPAGES)
2526		seq_printf(m, " vpages");
2527
2528	show_numa_info(m, v);
2529	seq_putc(m, '\n');
2530	return 0;
2531}
2532
2533static const struct seq_operations vmalloc_op = {
2534	.start = s_start,
2535	.next = s_next,
2536	.stop = s_stop,
2537	.show = s_show,
2538};
2539
2540static int vmalloc_open(struct inode *inode, struct file *file)
2541{
2542	unsigned int *ptr = NULL;
2543	int ret;
2544
2545	if (NUMA_BUILD) {
2546		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2547		if (ptr == NULL)
2548			return -ENOMEM;
2549	}
2550	ret = seq_open(file, &vmalloc_op);
2551	if (!ret) {
2552		struct seq_file *m = file->private_data;
2553		m->private = ptr;
2554	} else
2555		kfree(ptr);
2556	return ret;
2557}
2558
2559static const struct file_operations proc_vmalloc_operations = {
2560	.open		= vmalloc_open,
2561	.read		= seq_read,
2562	.llseek		= seq_lseek,
2563	.release	= seq_release_private,
2564};
2565
2566static int __init proc_vmalloc_init(void)
2567{
2568	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2569	return 0;
2570}
2571module_init(proc_vmalloc_init);
 
2572#endif
2573
v4.10.11
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42	struct llist_head list;
  43	struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52	struct llist_node *llnode = llist_del_all(&p->list);
  53	while (llnode) {
  54		void *p = llnode;
  55		llnode = llist_next(llnode);
  56		__vunmap(p, 1);
  57	}
  58}
  59
  60/*** Page table manipulation functions ***/
  61
  62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  63{
  64	pte_t *pte;
  65
  66	pte = pte_offset_kernel(pmd, addr);
  67	do {
  68		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  69		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  70	} while (pte++, addr += PAGE_SIZE, addr != end);
  71}
  72
  73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  74{
  75	pmd_t *pmd;
  76	unsigned long next;
  77
  78	pmd = pmd_offset(pud, addr);
  79	do {
  80		next = pmd_addr_end(addr, end);
  81		if (pmd_clear_huge(pmd))
  82			continue;
  83		if (pmd_none_or_clear_bad(pmd))
  84			continue;
  85		vunmap_pte_range(pmd, addr, next);
  86	} while (pmd++, addr = next, addr != end);
  87}
  88
  89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  90{
  91	pud_t *pud;
  92	unsigned long next;
  93
  94	pud = pud_offset(pgd, addr);
  95	do {
  96		next = pud_addr_end(addr, end);
  97		if (pud_clear_huge(pud))
  98			continue;
  99		if (pud_none_or_clear_bad(pud))
 100			continue;
 101		vunmap_pmd_range(pud, addr, next);
 102	} while (pud++, addr = next, addr != end);
 103}
 104
 105static void vunmap_page_range(unsigned long addr, unsigned long end)
 106{
 107	pgd_t *pgd;
 108	unsigned long next;
 109
 110	BUG_ON(addr >= end);
 111	pgd = pgd_offset_k(addr);
 112	do {
 113		next = pgd_addr_end(addr, end);
 114		if (pgd_none_or_clear_bad(pgd))
 115			continue;
 116		vunmap_pud_range(pgd, addr, next);
 117	} while (pgd++, addr = next, addr != end);
 118}
 119
 120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 121		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 122{
 123	pte_t *pte;
 124
 125	/*
 126	 * nr is a running index into the array which helps higher level
 127	 * callers keep track of where we're up to.
 128	 */
 129
 130	pte = pte_alloc_kernel(pmd, addr);
 131	if (!pte)
 132		return -ENOMEM;
 133	do {
 134		struct page *page = pages[*nr];
 135
 136		if (WARN_ON(!pte_none(*pte)))
 137			return -EBUSY;
 138		if (WARN_ON(!page))
 139			return -ENOMEM;
 140		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 141		(*nr)++;
 142	} while (pte++, addr += PAGE_SIZE, addr != end);
 143	return 0;
 144}
 145
 146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 147		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 148{
 149	pmd_t *pmd;
 150	unsigned long next;
 151
 152	pmd = pmd_alloc(&init_mm, pud, addr);
 153	if (!pmd)
 154		return -ENOMEM;
 155	do {
 156		next = pmd_addr_end(addr, end);
 157		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 158			return -ENOMEM;
 159	} while (pmd++, addr = next, addr != end);
 160	return 0;
 161}
 162
 163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 164		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 165{
 166	pud_t *pud;
 167	unsigned long next;
 168
 169	pud = pud_alloc(&init_mm, pgd, addr);
 170	if (!pud)
 171		return -ENOMEM;
 172	do {
 173		next = pud_addr_end(addr, end);
 174		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 175			return -ENOMEM;
 176	} while (pud++, addr = next, addr != end);
 177	return 0;
 178}
 179
 180/*
 181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 182 * will have pfns corresponding to the "pages" array.
 183 *
 184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 185 */
 186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 187				   pgprot_t prot, struct page **pages)
 188{
 189	pgd_t *pgd;
 190	unsigned long next;
 191	unsigned long addr = start;
 192	int err = 0;
 193	int nr = 0;
 194
 195	BUG_ON(addr >= end);
 196	pgd = pgd_offset_k(addr);
 197	do {
 198		next = pgd_addr_end(addr, end);
 199		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 200		if (err)
 201			return err;
 202	} while (pgd++, addr = next, addr != end);
 203
 204	return nr;
 205}
 206
 207static int vmap_page_range(unsigned long start, unsigned long end,
 208			   pgprot_t prot, struct page **pages)
 209{
 210	int ret;
 211
 212	ret = vmap_page_range_noflush(start, end, prot, pages);
 213	flush_cache_vmap(start, end);
 214	return ret;
 215}
 216
 217int is_vmalloc_or_module_addr(const void *x)
 218{
 219	/*
 220	 * ARM, x86-64 and sparc64 put modules in a special place,
 221	 * and fall back on vmalloc() if that fails. Others
 222	 * just put it in the vmalloc space.
 223	 */
 224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 225	unsigned long addr = (unsigned long)x;
 226	if (addr >= MODULES_VADDR && addr < MODULES_END)
 227		return 1;
 228#endif
 229	return is_vmalloc_addr(x);
 230}
 231
 232/*
 233 * Walk a vmap address to the struct page it maps.
 234 */
 235struct page *vmalloc_to_page(const void *vmalloc_addr)
 236{
 237	unsigned long addr = (unsigned long) vmalloc_addr;
 238	struct page *page = NULL;
 239	pgd_t *pgd = pgd_offset_k(addr);
 240
 241	/*
 242	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 243	 * architectures that do not vmalloc module space
 244	 */
 245	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 246
 247	if (!pgd_none(*pgd)) {
 248		pud_t *pud = pud_offset(pgd, addr);
 249		if (!pud_none(*pud)) {
 250			pmd_t *pmd = pmd_offset(pud, addr);
 251			if (!pmd_none(*pmd)) {
 252				pte_t *ptep, pte;
 253
 254				ptep = pte_offset_map(pmd, addr);
 255				pte = *ptep;
 256				if (pte_present(pte))
 257					page = pte_page(pte);
 258				pte_unmap(ptep);
 259			}
 260		}
 261	}
 262	return page;
 263}
 264EXPORT_SYMBOL(vmalloc_to_page);
 265
 266/*
 267 * Map a vmalloc()-space virtual address to the physical page frame number.
 268 */
 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 270{
 271	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 272}
 273EXPORT_SYMBOL(vmalloc_to_pfn);
 274
 275
 276/*** Global kva allocator ***/
 277
 
 
 278#define VM_VM_AREA	0x04
 279
 
 
 
 
 
 
 
 
 
 
 
 280static DEFINE_SPINLOCK(vmap_area_lock);
 281/* Export for kexec only */
 282LIST_HEAD(vmap_area_list);
 283static LLIST_HEAD(vmap_purge_list);
 284static struct rb_root vmap_area_root = RB_ROOT;
 285
 286/* The vmap cache globals are protected by vmap_area_lock */
 287static struct rb_node *free_vmap_cache;
 288static unsigned long cached_hole_size;
 289static unsigned long cached_vstart;
 290static unsigned long cached_align;
 291
 292static unsigned long vmap_area_pcpu_hole;
 293
 294static struct vmap_area *__find_vmap_area(unsigned long addr)
 295{
 296	struct rb_node *n = vmap_area_root.rb_node;
 297
 298	while (n) {
 299		struct vmap_area *va;
 300
 301		va = rb_entry(n, struct vmap_area, rb_node);
 302		if (addr < va->va_start)
 303			n = n->rb_left;
 304		else if (addr >= va->va_end)
 305			n = n->rb_right;
 306		else
 307			return va;
 308	}
 309
 310	return NULL;
 311}
 312
 313static void __insert_vmap_area(struct vmap_area *va)
 314{
 315	struct rb_node **p = &vmap_area_root.rb_node;
 316	struct rb_node *parent = NULL;
 317	struct rb_node *tmp;
 318
 319	while (*p) {
 320		struct vmap_area *tmp_va;
 321
 322		parent = *p;
 323		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 324		if (va->va_start < tmp_va->va_end)
 325			p = &(*p)->rb_left;
 326		else if (va->va_end > tmp_va->va_start)
 327			p = &(*p)->rb_right;
 328		else
 329			BUG();
 330	}
 331
 332	rb_link_node(&va->rb_node, parent, p);
 333	rb_insert_color(&va->rb_node, &vmap_area_root);
 334
 335	/* address-sort this list */
 336	tmp = rb_prev(&va->rb_node);
 337	if (tmp) {
 338		struct vmap_area *prev;
 339		prev = rb_entry(tmp, struct vmap_area, rb_node);
 340		list_add_rcu(&va->list, &prev->list);
 341	} else
 342		list_add_rcu(&va->list, &vmap_area_list);
 343}
 344
 345static void purge_vmap_area_lazy(void);
 346
 347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 348
 349/*
 350 * Allocate a region of KVA of the specified size and alignment, within the
 351 * vstart and vend.
 352 */
 353static struct vmap_area *alloc_vmap_area(unsigned long size,
 354				unsigned long align,
 355				unsigned long vstart, unsigned long vend,
 356				int node, gfp_t gfp_mask)
 357{
 358	struct vmap_area *va;
 359	struct rb_node *n;
 360	unsigned long addr;
 361	int purged = 0;
 362	struct vmap_area *first;
 363
 364	BUG_ON(!size);
 365	BUG_ON(offset_in_page(size));
 366	BUG_ON(!is_power_of_2(align));
 367
 368	might_sleep();
 369
 370	va = kmalloc_node(sizeof(struct vmap_area),
 371			gfp_mask & GFP_RECLAIM_MASK, node);
 372	if (unlikely(!va))
 373		return ERR_PTR(-ENOMEM);
 374
 375	/*
 376	 * Only scan the relevant parts containing pointers to other objects
 377	 * to avoid false negatives.
 378	 */
 379	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 380
 381retry:
 382	spin_lock(&vmap_area_lock);
 383	/*
 384	 * Invalidate cache if we have more permissive parameters.
 385	 * cached_hole_size notes the largest hole noticed _below_
 386	 * the vmap_area cached in free_vmap_cache: if size fits
 387	 * into that hole, we want to scan from vstart to reuse
 388	 * the hole instead of allocating above free_vmap_cache.
 389	 * Note that __free_vmap_area may update free_vmap_cache
 390	 * without updating cached_hole_size or cached_align.
 391	 */
 392	if (!free_vmap_cache ||
 393			size < cached_hole_size ||
 394			vstart < cached_vstart ||
 395			align < cached_align) {
 396nocache:
 397		cached_hole_size = 0;
 398		free_vmap_cache = NULL;
 399	}
 400	/* record if we encounter less permissive parameters */
 401	cached_vstart = vstart;
 402	cached_align = align;
 403
 404	/* find starting point for our search */
 405	if (free_vmap_cache) {
 406		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 407		addr = ALIGN(first->va_end, align);
 408		if (addr < vstart)
 409			goto nocache;
 410		if (addr + size < addr)
 411			goto overflow;
 412
 413	} else {
 414		addr = ALIGN(vstart, align);
 415		if (addr + size < addr)
 416			goto overflow;
 417
 418		n = vmap_area_root.rb_node;
 419		first = NULL;
 420
 421		while (n) {
 422			struct vmap_area *tmp;
 423			tmp = rb_entry(n, struct vmap_area, rb_node);
 424			if (tmp->va_end >= addr) {
 425				first = tmp;
 426				if (tmp->va_start <= addr)
 427					break;
 428				n = n->rb_left;
 429			} else
 430				n = n->rb_right;
 431		}
 432
 433		if (!first)
 434			goto found;
 435	}
 436
 437	/* from the starting point, walk areas until a suitable hole is found */
 438	while (addr + size > first->va_start && addr + size <= vend) {
 439		if (addr + cached_hole_size < first->va_start)
 440			cached_hole_size = first->va_start - addr;
 441		addr = ALIGN(first->va_end, align);
 442		if (addr + size < addr)
 443			goto overflow;
 444
 445		if (list_is_last(&first->list, &vmap_area_list))
 
 
 
 446			goto found;
 447
 448		first = list_next_entry(first, list);
 449	}
 450
 451found:
 452	if (addr + size > vend)
 453		goto overflow;
 454
 455	va->va_start = addr;
 456	va->va_end = addr + size;
 457	va->flags = 0;
 458	__insert_vmap_area(va);
 459	free_vmap_cache = &va->rb_node;
 460	spin_unlock(&vmap_area_lock);
 461
 462	BUG_ON(!IS_ALIGNED(va->va_start, align));
 463	BUG_ON(va->va_start < vstart);
 464	BUG_ON(va->va_end > vend);
 465
 466	return va;
 467
 468overflow:
 469	spin_unlock(&vmap_area_lock);
 470	if (!purged) {
 471		purge_vmap_area_lazy();
 472		purged = 1;
 473		goto retry;
 474	}
 475
 476	if (gfpflags_allow_blocking(gfp_mask)) {
 477		unsigned long freed = 0;
 478		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 479		if (freed > 0) {
 480			purged = 0;
 481			goto retry;
 482		}
 483	}
 484
 485	if (printk_ratelimit())
 486		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 487			size);
 
 488	kfree(va);
 489	return ERR_PTR(-EBUSY);
 490}
 491
 492int register_vmap_purge_notifier(struct notifier_block *nb)
 493{
 494	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 495}
 496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 497
 498int unregister_vmap_purge_notifier(struct notifier_block *nb)
 499{
 500	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 501}
 502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 503
 504static void __free_vmap_area(struct vmap_area *va)
 505{
 506	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 507
 508	if (free_vmap_cache) {
 509		if (va->va_end < cached_vstart) {
 510			free_vmap_cache = NULL;
 511		} else {
 512			struct vmap_area *cache;
 513			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 514			if (va->va_start <= cache->va_start) {
 515				free_vmap_cache = rb_prev(&va->rb_node);
 516				/*
 517				 * We don't try to update cached_hole_size or
 518				 * cached_align, but it won't go very wrong.
 519				 */
 520			}
 521		}
 522	}
 523	rb_erase(&va->rb_node, &vmap_area_root);
 524	RB_CLEAR_NODE(&va->rb_node);
 525	list_del_rcu(&va->list);
 526
 527	/*
 528	 * Track the highest possible candidate for pcpu area
 529	 * allocation.  Areas outside of vmalloc area can be returned
 530	 * here too, consider only end addresses which fall inside
 531	 * vmalloc area proper.
 532	 */
 533	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 534		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 535
 536	kfree_rcu(va, rcu_head);
 537}
 538
 539/*
 540 * Free a region of KVA allocated by alloc_vmap_area
 541 */
 542static void free_vmap_area(struct vmap_area *va)
 543{
 544	spin_lock(&vmap_area_lock);
 545	__free_vmap_area(va);
 546	spin_unlock(&vmap_area_lock);
 547}
 548
 549/*
 550 * Clear the pagetable entries of a given vmap_area
 551 */
 552static void unmap_vmap_area(struct vmap_area *va)
 553{
 554	vunmap_page_range(va->va_start, va->va_end);
 555}
 556
 557static void vmap_debug_free_range(unsigned long start, unsigned long end)
 558{
 559	/*
 560	 * Unmap page tables and force a TLB flush immediately if pagealloc
 561	 * debugging is enabled.  This catches use after free bugs similarly to
 562	 * those in linear kernel virtual address space after a page has been
 563	 * freed.
 564	 *
 565	 * All the lazy freeing logic is still retained, in order to minimise
 566	 * intrusiveness of this debugging feature.
 567	 *
 568	 * This is going to be *slow* (linear kernel virtual address debugging
 569	 * doesn't do a broadcast TLB flush so it is a lot faster).
 
 570	 */
 571	if (debug_pagealloc_enabled()) {
 572		vunmap_page_range(start, end);
 573		flush_tlb_kernel_range(start, end);
 574	}
 575}
 576
 577/*
 578 * lazy_max_pages is the maximum amount of virtual address space we gather up
 579 * before attempting to purge with a TLB flush.
 580 *
 581 * There is a tradeoff here: a larger number will cover more kernel page tables
 582 * and take slightly longer to purge, but it will linearly reduce the number of
 583 * global TLB flushes that must be performed. It would seem natural to scale
 584 * this number up linearly with the number of CPUs (because vmapping activity
 585 * could also scale linearly with the number of CPUs), however it is likely
 586 * that in practice, workloads might be constrained in other ways that mean
 587 * vmap activity will not scale linearly with CPUs. Also, I want to be
 588 * conservative and not introduce a big latency on huge systems, so go with
 589 * a less aggressive log scale. It will still be an improvement over the old
 590 * code, and it will be simple to change the scale factor if we find that it
 591 * becomes a problem on bigger systems.
 592 */
 593static unsigned long lazy_max_pages(void)
 594{
 595	unsigned int log;
 596
 597	log = fls(num_online_cpus());
 598
 599	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 600}
 601
 602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 603
 604/*
 605 * Serialize vmap purging.  There is no actual criticial section protected
 606 * by this look, but we want to avoid concurrent calls for performance
 607 * reasons and to make the pcpu_get_vm_areas more deterministic.
 608 */
 609static DEFINE_MUTEX(vmap_purge_lock);
 610
 611/* for per-CPU blocks */
 612static void purge_fragmented_blocks_allcpus(void);
 613
 614/*
 615 * called before a call to iounmap() if the caller wants vm_area_struct's
 616 * immediately freed.
 617 */
 618void set_iounmap_nonlazy(void)
 619{
 620	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 621}
 622
 623/*
 624 * Purges all lazily-freed vmap areas.
 
 
 
 
 
 
 
 625 */
 626static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 
 627{
 628	struct llist_node *valist;
 
 629	struct vmap_area *va;
 630	struct vmap_area *n_va;
 631	bool do_free = false;
 
 
 
 
 
 
 
 
 
 
 
 632
 633	lockdep_assert_held(&vmap_purge_lock);
 
 634
 635	valist = llist_del_all(&vmap_purge_list);
 636	llist_for_each_entry(va, valist, purge_list) {
 637		if (va->va_start < start)
 638			start = va->va_start;
 639		if (va->va_end > end)
 640			end = va->va_end;
 641		do_free = true;
 
 
 
 
 
 642	}
 
 643
 644	if (!do_free)
 645		return false;
 646
 647	flush_tlb_kernel_range(start, end);
 
 648
 649	spin_lock(&vmap_area_lock);
 650	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 651		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 652
 653		__free_vmap_area(va);
 654		atomic_sub(nr, &vmap_lazy_nr);
 655		cond_resched_lock(&vmap_area_lock);
 656	}
 657	spin_unlock(&vmap_area_lock);
 658	return true;
 659}
 660
 661/*
 662 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 663 * is already purging.
 664 */
 665static void try_purge_vmap_area_lazy(void)
 666{
 667	if (mutex_trylock(&vmap_purge_lock)) {
 668		__purge_vmap_area_lazy(ULONG_MAX, 0);
 669		mutex_unlock(&vmap_purge_lock);
 670	}
 671}
 672
 673/*
 674 * Kick off a purge of the outstanding lazy areas.
 675 */
 676static void purge_vmap_area_lazy(void)
 677{
 678	mutex_lock(&vmap_purge_lock);
 679	purge_fragmented_blocks_allcpus();
 680	__purge_vmap_area_lazy(ULONG_MAX, 0);
 681	mutex_unlock(&vmap_purge_lock);
 682}
 683
 684/*
 685 * Free a vmap area, caller ensuring that the area has been unmapped
 686 * and flush_cache_vunmap had been called for the correct range
 687 * previously.
 688 */
 689static void free_vmap_area_noflush(struct vmap_area *va)
 690{
 691	int nr_lazy;
 
 
 
 
 692
 693	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 694				    &vmap_lazy_nr);
 695
 696	/* After this point, we may free va at any time */
 697	llist_add(&va->purge_list, &vmap_purge_list);
 698
 699	if (unlikely(nr_lazy > lazy_max_pages()))
 700		try_purge_vmap_area_lazy();
 701}
 702
 703/*
 704 * Free and unmap a vmap area
 705 */
 706static void free_unmap_vmap_area(struct vmap_area *va)
 707{
 708	flush_cache_vunmap(va->va_start, va->va_end);
 709	unmap_vmap_area(va);
 710	free_vmap_area_noflush(va);
 711}
 712
 713static struct vmap_area *find_vmap_area(unsigned long addr)
 714{
 715	struct vmap_area *va;
 716
 717	spin_lock(&vmap_area_lock);
 718	va = __find_vmap_area(addr);
 719	spin_unlock(&vmap_area_lock);
 720
 721	return va;
 722}
 723
 
 
 
 
 
 
 
 
 
 
 724/*** Per cpu kva allocator ***/
 725
 726/*
 727 * vmap space is limited especially on 32 bit architectures. Ensure there is
 728 * room for at least 16 percpu vmap blocks per CPU.
 729 */
 730/*
 731 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 732 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 733 * instead (we just need a rough idea)
 734 */
 735#if BITS_PER_LONG == 32
 736#define VMALLOC_SPACE		(128UL*1024*1024)
 737#else
 738#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 739#endif
 740
 741#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 742#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 743#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 744#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 745#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 746#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 747#define VMAP_BBMAP_BITS		\
 748		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 749		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 750			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 751
 752#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 753
 754static bool vmap_initialized __read_mostly = false;
 755
 756struct vmap_block_queue {
 757	spinlock_t lock;
 758	struct list_head free;
 759};
 760
 761struct vmap_block {
 762	spinlock_t lock;
 763	struct vmap_area *va;
 
 764	unsigned long free, dirty;
 765	unsigned long dirty_min, dirty_max; /*< dirty range */
 
 766	struct list_head free_list;
 767	struct rcu_head rcu_head;
 768	struct list_head purge;
 769};
 770
 771/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 772static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 773
 774/*
 775 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 776 * in the free path. Could get rid of this if we change the API to return a
 777 * "cookie" from alloc, to be passed to free. But no big deal yet.
 778 */
 779static DEFINE_SPINLOCK(vmap_block_tree_lock);
 780static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 781
 782/*
 783 * We should probably have a fallback mechanism to allocate virtual memory
 784 * out of partially filled vmap blocks. However vmap block sizing should be
 785 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 786 * big problem.
 787 */
 788
 789static unsigned long addr_to_vb_idx(unsigned long addr)
 790{
 791	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 792	addr /= VMAP_BLOCK_SIZE;
 793	return addr;
 794}
 795
 796static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 797{
 798	unsigned long addr;
 799
 800	addr = va_start + (pages_off << PAGE_SHIFT);
 801	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 802	return (void *)addr;
 803}
 804
 805/**
 806 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 807 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 808 * @order:    how many 2^order pages should be occupied in newly allocated block
 809 * @gfp_mask: flags for the page level allocator
 810 *
 811 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 812 */
 813static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 814{
 815	struct vmap_block_queue *vbq;
 816	struct vmap_block *vb;
 817	struct vmap_area *va;
 818	unsigned long vb_idx;
 819	int node, err;
 820	void *vaddr;
 821
 822	node = numa_node_id();
 823
 824	vb = kmalloc_node(sizeof(struct vmap_block),
 825			gfp_mask & GFP_RECLAIM_MASK, node);
 826	if (unlikely(!vb))
 827		return ERR_PTR(-ENOMEM);
 828
 829	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 830					VMALLOC_START, VMALLOC_END,
 831					node, gfp_mask);
 832	if (IS_ERR(va)) {
 833		kfree(vb);
 834		return ERR_CAST(va);
 835	}
 836
 837	err = radix_tree_preload(gfp_mask);
 838	if (unlikely(err)) {
 839		kfree(vb);
 840		free_vmap_area(va);
 841		return ERR_PTR(err);
 842	}
 843
 844	vaddr = vmap_block_vaddr(va->va_start, 0);
 845	spin_lock_init(&vb->lock);
 846	vb->va = va;
 847	/* At least something should be left free */
 848	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 849	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 850	vb->dirty = 0;
 851	vb->dirty_min = VMAP_BBMAP_BITS;
 852	vb->dirty_max = 0;
 853	INIT_LIST_HEAD(&vb->free_list);
 854
 855	vb_idx = addr_to_vb_idx(va->va_start);
 856	spin_lock(&vmap_block_tree_lock);
 857	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 858	spin_unlock(&vmap_block_tree_lock);
 859	BUG_ON(err);
 860	radix_tree_preload_end();
 861
 862	vbq = &get_cpu_var(vmap_block_queue);
 
 863	spin_lock(&vbq->lock);
 864	list_add_tail_rcu(&vb->free_list, &vbq->free);
 865	spin_unlock(&vbq->lock);
 866	put_cpu_var(vmap_block_queue);
 867
 868	return vaddr;
 869}
 870
 871static void free_vmap_block(struct vmap_block *vb)
 872{
 873	struct vmap_block *tmp;
 874	unsigned long vb_idx;
 875
 876	vb_idx = addr_to_vb_idx(vb->va->va_start);
 877	spin_lock(&vmap_block_tree_lock);
 878	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 879	spin_unlock(&vmap_block_tree_lock);
 880	BUG_ON(tmp != vb);
 881
 882	free_vmap_area_noflush(vb->va);
 883	kfree_rcu(vb, rcu_head);
 884}
 885
 886static void purge_fragmented_blocks(int cpu)
 887{
 888	LIST_HEAD(purge);
 889	struct vmap_block *vb;
 890	struct vmap_block *n_vb;
 891	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 892
 893	rcu_read_lock();
 894	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 895
 896		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 897			continue;
 898
 899		spin_lock(&vb->lock);
 900		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 901			vb->free = 0; /* prevent further allocs after releasing lock */
 902			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 903			vb->dirty_min = 0;
 904			vb->dirty_max = VMAP_BBMAP_BITS;
 905			spin_lock(&vbq->lock);
 906			list_del_rcu(&vb->free_list);
 907			spin_unlock(&vbq->lock);
 908			spin_unlock(&vb->lock);
 909			list_add_tail(&vb->purge, &purge);
 910		} else
 911			spin_unlock(&vb->lock);
 912	}
 913	rcu_read_unlock();
 914
 915	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 916		list_del(&vb->purge);
 917		free_vmap_block(vb);
 918	}
 919}
 920
 
 
 
 
 
 921static void purge_fragmented_blocks_allcpus(void)
 922{
 923	int cpu;
 924
 925	for_each_possible_cpu(cpu)
 926		purge_fragmented_blocks(cpu);
 927}
 928
 929static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 930{
 931	struct vmap_block_queue *vbq;
 932	struct vmap_block *vb;
 933	void *vaddr = NULL;
 934	unsigned int order;
 
 935
 936	BUG_ON(offset_in_page(size));
 937	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 938	if (WARN_ON(size == 0)) {
 939		/*
 940		 * Allocating 0 bytes isn't what caller wants since
 941		 * get_order(0) returns funny result. Just warn and terminate
 942		 * early.
 943		 */
 944		return NULL;
 945	}
 946	order = get_order(size);
 947
 
 948	rcu_read_lock();
 949	vbq = &get_cpu_var(vmap_block_queue);
 950	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 951		unsigned long pages_off;
 952
 953		spin_lock(&vb->lock);
 954		if (vb->free < (1UL << order)) {
 955			spin_unlock(&vb->lock);
 956			continue;
 
 
 
 
 
 
 
 
 
 
 957		}
 958
 959		pages_off = VMAP_BBMAP_BITS - vb->free;
 960		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 961		vb->free -= 1UL << order;
 962		if (vb->free == 0) {
 963			spin_lock(&vbq->lock);
 964			list_del_rcu(&vb->free_list);
 965			spin_unlock(&vbq->lock);
 966		}
 967
 968		spin_unlock(&vb->lock);
 969		break;
 
 
 970	}
 971
 
 
 
 972	put_cpu_var(vmap_block_queue);
 973	rcu_read_unlock();
 974
 975	/* Allocate new block if nothing was found */
 976	if (!vaddr)
 977		vaddr = new_vmap_block(order, gfp_mask);
 
 
 
 978
 979	return vaddr;
 980}
 981
 982static void vb_free(const void *addr, unsigned long size)
 983{
 984	unsigned long offset;
 985	unsigned long vb_idx;
 986	unsigned int order;
 987	struct vmap_block *vb;
 988
 989	BUG_ON(offset_in_page(size));
 990	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 991
 992	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 993
 994	order = get_order(size);
 995
 996	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 997	offset >>= PAGE_SHIFT;
 998
 999	vb_idx = addr_to_vb_idx((unsigned long)addr);
1000	rcu_read_lock();
1001	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002	rcu_read_unlock();
1003	BUG_ON(!vb);
1004
1005	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006
1007	spin_lock(&vb->lock);
1008
1009	/* Expand dirty range */
1010	vb->dirty_min = min(vb->dirty_min, offset);
1011	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1012
1013	vb->dirty += 1UL << order;
1014	if (vb->dirty == VMAP_BBMAP_BITS) {
1015		BUG_ON(vb->free);
1016		spin_unlock(&vb->lock);
1017		free_vmap_block(vb);
1018	} else
1019		spin_unlock(&vb->lock);
1020}
1021
1022/**
1023 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1024 *
1025 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1026 * to amortize TLB flushing overheads. What this means is that any page you
1027 * have now, may, in a former life, have been mapped into kernel virtual
1028 * address by the vmap layer and so there might be some CPUs with TLB entries
1029 * still referencing that page (additional to the regular 1:1 kernel mapping).
1030 *
1031 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1032 * be sure that none of the pages we have control over will have any aliases
1033 * from the vmap layer.
1034 */
1035void vm_unmap_aliases(void)
1036{
1037	unsigned long start = ULONG_MAX, end = 0;
1038	int cpu;
1039	int flush = 0;
1040
1041	if (unlikely(!vmap_initialized))
1042		return;
1043
1044	might_sleep();
1045
1046	for_each_possible_cpu(cpu) {
1047		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048		struct vmap_block *vb;
1049
1050		rcu_read_lock();
1051		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1052			spin_lock(&vb->lock);
1053			if (vb->dirty) {
1054				unsigned long va_start = vb->va->va_start;
1055				unsigned long s, e;
 
 
 
1056
1057				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1059
1060				start = min(s, start);
1061				end   = max(e, end);
1062
1063				flush = 1;
 
 
 
 
 
 
 
1064			}
1065			spin_unlock(&vb->lock);
1066		}
1067		rcu_read_unlock();
1068	}
1069
1070	mutex_lock(&vmap_purge_lock);
1071	purge_fragmented_blocks_allcpus();
1072	if (!__purge_vmap_area_lazy(start, end) && flush)
1073		flush_tlb_kernel_range(start, end);
1074	mutex_unlock(&vmap_purge_lock);
1075}
1076EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1077
1078/**
1079 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1080 * @mem: the pointer returned by vm_map_ram
1081 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1082 */
1083void vm_unmap_ram(const void *mem, unsigned int count)
1084{
1085	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1086	unsigned long addr = (unsigned long)mem;
1087	struct vmap_area *va;
1088
1089	might_sleep();
1090	BUG_ON(!addr);
1091	BUG_ON(addr < VMALLOC_START);
1092	BUG_ON(addr > VMALLOC_END);
1093	BUG_ON(!PAGE_ALIGNED(addr));
1094
1095	debug_check_no_locks_freed(mem, size);
1096	vmap_debug_free_range(addr, addr+size);
1097
1098	if (likely(count <= VMAP_MAX_ALLOC)) {
1099		vb_free(mem, size);
1100		return;
1101	}
1102
1103	va = find_vmap_area(addr);
1104	BUG_ON(!va);
1105	free_unmap_vmap_area(va);
1106}
1107EXPORT_SYMBOL(vm_unmap_ram);
1108
1109/**
1110 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1111 * @pages: an array of pointers to the pages to be mapped
1112 * @count: number of pages
1113 * @node: prefer to allocate data structures on this node
1114 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1115 *
1116 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1117 * faster than vmap so it's good.  But if you mix long-life and short-life
1118 * objects with vm_map_ram(), it could consume lots of address space through
1119 * fragmentation (especially on a 32bit machine).  You could see failures in
1120 * the end.  Please use this function for short-lived objects.
1121 *
1122 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1123 */
1124void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1125{
1126	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127	unsigned long addr;
1128	void *mem;
1129
1130	if (likely(count <= VMAP_MAX_ALLOC)) {
1131		mem = vb_alloc(size, GFP_KERNEL);
1132		if (IS_ERR(mem))
1133			return NULL;
1134		addr = (unsigned long)mem;
1135	} else {
1136		struct vmap_area *va;
1137		va = alloc_vmap_area(size, PAGE_SIZE,
1138				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1139		if (IS_ERR(va))
1140			return NULL;
1141
1142		addr = va->va_start;
1143		mem = (void *)addr;
1144	}
1145	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1146		vm_unmap_ram(mem, count);
1147		return NULL;
1148	}
1149	return mem;
1150}
1151EXPORT_SYMBOL(vm_map_ram);
1152
1153static struct vm_struct *vmlist __initdata;
1154/**
1155 * vm_area_add_early - add vmap area early during boot
1156 * @vm: vm_struct to add
1157 *
1158 * This function is used to add fixed kernel vm area to vmlist before
1159 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1160 * should contain proper values and the other fields should be zero.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164void __init vm_area_add_early(struct vm_struct *vm)
1165{
1166	struct vm_struct *tmp, **p;
1167
1168	BUG_ON(vmap_initialized);
1169	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1170		if (tmp->addr >= vm->addr) {
1171			BUG_ON(tmp->addr < vm->addr + vm->size);
1172			break;
1173		} else
1174			BUG_ON(tmp->addr + tmp->size > vm->addr);
1175	}
1176	vm->next = *p;
1177	*p = vm;
1178}
1179
1180/**
1181 * vm_area_register_early - register vmap area early during boot
1182 * @vm: vm_struct to register
1183 * @align: requested alignment
1184 *
1185 * This function is used to register kernel vm area before
1186 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1187 * proper values on entry and other fields should be zero.  On return,
1188 * vm->addr contains the allocated address.
1189 *
1190 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191 */
1192void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1193{
1194	static size_t vm_init_off __initdata;
1195	unsigned long addr;
1196
1197	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1198	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1199
1200	vm->addr = (void *)addr;
1201
1202	vm_area_add_early(vm);
 
1203}
1204
1205void __init vmalloc_init(void)
1206{
1207	struct vmap_area *va;
1208	struct vm_struct *tmp;
1209	int i;
1210
1211	for_each_possible_cpu(i) {
1212		struct vmap_block_queue *vbq;
1213		struct vfree_deferred *p;
1214
1215		vbq = &per_cpu(vmap_block_queue, i);
1216		spin_lock_init(&vbq->lock);
1217		INIT_LIST_HEAD(&vbq->free);
1218		p = &per_cpu(vfree_deferred, i);
1219		init_llist_head(&p->list);
1220		INIT_WORK(&p->wq, free_work);
1221	}
1222
1223	/* Import existing vmlist entries. */
1224	for (tmp = vmlist; tmp; tmp = tmp->next) {
1225		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1226		va->flags = VM_VM_AREA;
1227		va->va_start = (unsigned long)tmp->addr;
1228		va->va_end = va->va_start + tmp->size;
1229		va->vm = tmp;
1230		__insert_vmap_area(va);
1231	}
1232
1233	vmap_area_pcpu_hole = VMALLOC_END;
1234
1235	vmap_initialized = true;
1236}
1237
1238/**
1239 * map_kernel_range_noflush - map kernel VM area with the specified pages
1240 * @addr: start of the VM area to map
1241 * @size: size of the VM area to map
1242 * @prot: page protection flags to use
1243 * @pages: pages to map
1244 *
1245 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1246 * specify should have been allocated using get_vm_area() and its
1247 * friends.
1248 *
1249 * NOTE:
1250 * This function does NOT do any cache flushing.  The caller is
1251 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1252 * before calling this function.
1253 *
1254 * RETURNS:
1255 * The number of pages mapped on success, -errno on failure.
1256 */
1257int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1258			     pgprot_t prot, struct page **pages)
1259{
1260	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1261}
1262
1263/**
1264 * unmap_kernel_range_noflush - unmap kernel VM area
1265 * @addr: start of the VM area to unmap
1266 * @size: size of the VM area to unmap
1267 *
1268 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1269 * specify should have been allocated using get_vm_area() and its
1270 * friends.
1271 *
1272 * NOTE:
1273 * This function does NOT do any cache flushing.  The caller is
1274 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1275 * before calling this function and flush_tlb_kernel_range() after.
1276 */
1277void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1278{
1279	vunmap_page_range(addr, addr + size);
1280}
1281EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1282
1283/**
1284 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1285 * @addr: start of the VM area to unmap
1286 * @size: size of the VM area to unmap
1287 *
1288 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1289 * the unmapping and tlb after.
1290 */
1291void unmap_kernel_range(unsigned long addr, unsigned long size)
1292{
1293	unsigned long end = addr + size;
1294
1295	flush_cache_vunmap(addr, end);
1296	vunmap_page_range(addr, end);
1297	flush_tlb_kernel_range(addr, end);
1298}
1299EXPORT_SYMBOL_GPL(unmap_kernel_range);
1300
1301int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1302{
1303	unsigned long addr = (unsigned long)area->addr;
1304	unsigned long end = addr + get_vm_area_size(area);
1305	int err;
1306
1307	err = vmap_page_range(addr, end, prot, pages);
 
 
 
 
1308
1309	return err > 0 ? 0 : err;
1310}
1311EXPORT_SYMBOL_GPL(map_vm_area);
1312
1313static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1314			      unsigned long flags, const void *caller)
 
 
 
 
1315{
1316	spin_lock(&vmap_area_lock);
 
1317	vm->flags = flags;
1318	vm->addr = (void *)va->va_start;
1319	vm->size = va->va_end - va->va_start;
1320	vm->caller = caller;
1321	va->vm = vm;
1322	va->flags |= VM_VM_AREA;
1323	spin_unlock(&vmap_area_lock);
1324}
1325
1326static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1327{
1328	/*
1329	 * Before removing VM_UNINITIALIZED,
1330	 * we should make sure that vm has proper values.
1331	 * Pair with smp_rmb() in show_numa_info().
1332	 */
1333	smp_wmb();
1334	vm->flags &= ~VM_UNINITIALIZED;
1335}
1336
1337static struct vm_struct *__get_vm_area_node(unsigned long size,
1338		unsigned long align, unsigned long flags, unsigned long start,
1339		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1340{
1341	struct vmap_area *va;
1342	struct vm_struct *area;
1343
1344	BUG_ON(in_interrupt());
 
 
 
 
 
 
 
 
 
 
 
1345	size = PAGE_ALIGN(size);
1346	if (unlikely(!size))
1347		return NULL;
1348
1349	if (flags & VM_IOREMAP)
1350		align = 1ul << clamp_t(int, get_count_order_long(size),
1351				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1352
1353	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1354	if (unlikely(!area))
1355		return NULL;
1356
1357	if (!(flags & VM_NO_GUARD))
1358		size += PAGE_SIZE;
 
 
1359
1360	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1361	if (IS_ERR(va)) {
1362		kfree(area);
1363		return NULL;
1364	}
1365
1366	setup_vmalloc_vm(area, va, flags, caller);
1367
1368	return area;
1369}
1370
1371struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1372				unsigned long start, unsigned long end)
1373{
1374	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375				  GFP_KERNEL, __builtin_return_address(0));
1376}
1377EXPORT_SYMBOL_GPL(__get_vm_area);
1378
1379struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1380				       unsigned long start, unsigned long end,
1381				       const void *caller)
1382{
1383	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1384				  GFP_KERNEL, caller);
1385}
1386
1387/**
1388 *	get_vm_area  -  reserve a contiguous kernel virtual area
1389 *	@size:		size of the area
1390 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1391 *
1392 *	Search an area of @size in the kernel virtual mapping area,
1393 *	and reserved it for out purposes.  Returns the area descriptor
1394 *	on success or %NULL on failure.
1395 */
1396struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1397{
1398	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1399				  NUMA_NO_NODE, GFP_KERNEL,
1400				  __builtin_return_address(0));
1401}
1402
1403struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1404				const void *caller)
1405{
1406	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1407				  NUMA_NO_NODE, GFP_KERNEL, caller);
1408}
1409
1410/**
1411 *	find_vm_area  -  find a continuous kernel virtual area
1412 *	@addr:		base address
1413 *
1414 *	Search for the kernel VM area starting at @addr, and return it.
1415 *	It is up to the caller to do all required locking to keep the returned
1416 *	pointer valid.
1417 */
1418struct vm_struct *find_vm_area(const void *addr)
1419{
1420	struct vmap_area *va;
1421
1422	va = find_vmap_area((unsigned long)addr);
1423	if (va && va->flags & VM_VM_AREA)
1424		return va->vm;
1425
1426	return NULL;
1427}
1428
1429/**
1430 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1431 *	@addr:		base address
1432 *
1433 *	Search for the kernel VM area starting at @addr, and remove it.
1434 *	This function returns the found VM area, but using it is NOT safe
1435 *	on SMP machines, except for its size or flags.
1436 */
1437struct vm_struct *remove_vm_area(const void *addr)
1438{
1439	struct vmap_area *va;
1440
1441	might_sleep();
1442
1443	va = find_vmap_area((unsigned long)addr);
1444	if (va && va->flags & VM_VM_AREA) {
1445		struct vm_struct *vm = va->vm;
1446
1447		spin_lock(&vmap_area_lock);
1448		va->vm = NULL;
1449		va->flags &= ~VM_VM_AREA;
1450		spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
1451
1452		vmap_debug_free_range(va->va_start, va->va_end);
1453		kasan_free_shadow(vm);
1454		free_unmap_vmap_area(va);
 
1455
1456		return vm;
1457	}
1458	return NULL;
1459}
1460
1461static void __vunmap(const void *addr, int deallocate_pages)
1462{
1463	struct vm_struct *area;
1464
1465	if (!addr)
1466		return;
1467
1468	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1469			addr))
1470		return;
 
1471
1472	area = remove_vm_area(addr);
1473	if (unlikely(!area)) {
1474		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1475				addr);
1476		return;
1477	}
1478
1479	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1480	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1481
1482	if (deallocate_pages) {
1483		int i;
1484
1485		for (i = 0; i < area->nr_pages; i++) {
1486			struct page *page = area->pages[i];
1487
1488			BUG_ON(!page);
1489			__free_pages(page, 0);
1490		}
1491
1492		kvfree(area->pages);
 
 
 
1493	}
1494
1495	kfree(area);
1496	return;
1497}
1498
1499static inline void __vfree_deferred(const void *addr)
1500{
1501	/*
1502	 * Use raw_cpu_ptr() because this can be called from preemptible
1503	 * context. Preemption is absolutely fine here, because the llist_add()
1504	 * implementation is lockless, so it works even if we are adding to
1505	 * nother cpu's list.  schedule_work() should be fine with this too.
1506	 */
1507	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1508
1509	if (llist_add((struct llist_node *)addr, &p->list))
1510		schedule_work(&p->wq);
1511}
1512
1513/**
1514 *	vfree_atomic  -  release memory allocated by vmalloc()
1515 *	@addr:		memory base address
1516 *
1517 *	This one is just like vfree() but can be called in any atomic context
1518 *	except NMIs.
1519 */
1520void vfree_atomic(const void *addr)
1521{
1522	BUG_ON(in_nmi());
1523
1524	kmemleak_free(addr);
1525
1526	if (!addr)
1527		return;
1528	__vfree_deferred(addr);
1529}
1530
1531/**
1532 *	vfree  -  release memory allocated by vmalloc()
1533 *	@addr:		memory base address
1534 *
1535 *	Free the virtually continuous memory area starting at @addr, as
1536 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1537 *	NULL, no operation is performed.
1538 *
1539 *	Must not be called in NMI context (strictly speaking, only if we don't
1540 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1541 *	conventions for vfree() arch-depenedent would be a really bad idea)
1542 *
1543 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1544 */
1545void vfree(const void *addr)
1546{
1547	BUG_ON(in_nmi());
1548
1549	kmemleak_free(addr);
1550
1551	if (!addr)
1552		return;
1553	if (unlikely(in_interrupt()))
1554		__vfree_deferred(addr);
1555	else
1556		__vunmap(addr, 1);
1557}
1558EXPORT_SYMBOL(vfree);
1559
1560/**
1561 *	vunmap  -  release virtual mapping obtained by vmap()
1562 *	@addr:		memory base address
1563 *
1564 *	Free the virtually contiguous memory area starting at @addr,
1565 *	which was created from the page array passed to vmap().
1566 *
1567 *	Must not be called in interrupt context.
1568 */
1569void vunmap(const void *addr)
1570{
1571	BUG_ON(in_interrupt());
1572	might_sleep();
1573	if (addr)
1574		__vunmap(addr, 0);
1575}
1576EXPORT_SYMBOL(vunmap);
1577
1578/**
1579 *	vmap  -  map an array of pages into virtually contiguous space
1580 *	@pages:		array of page pointers
1581 *	@count:		number of pages to map
1582 *	@flags:		vm_area->flags
1583 *	@prot:		page protection for the mapping
1584 *
1585 *	Maps @count pages from @pages into contiguous kernel virtual
1586 *	space.
1587 */
1588void *vmap(struct page **pages, unsigned int count,
1589		unsigned long flags, pgprot_t prot)
1590{
1591	struct vm_struct *area;
1592	unsigned long size;		/* In bytes */
1593
1594	might_sleep();
1595
1596	if (count > totalram_pages)
1597		return NULL;
1598
1599	size = (unsigned long)count << PAGE_SHIFT;
1600	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1601	if (!area)
1602		return NULL;
1603
1604	if (map_vm_area(area, prot, pages)) {
1605		vunmap(area->addr);
1606		return NULL;
1607	}
1608
1609	return area->addr;
1610}
1611EXPORT_SYMBOL(vmap);
1612
1613static void *__vmalloc_node(unsigned long size, unsigned long align,
1614			    gfp_t gfp_mask, pgprot_t prot,
1615			    int node, const void *caller);
1616static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1617				 pgprot_t prot, int node)
1618{
 
1619	struct page **pages;
1620	unsigned int nr_pages, array_size, i;
1621	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1622	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1623
1624	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1625	array_size = (nr_pages * sizeof(struct page *));
1626
1627	area->nr_pages = nr_pages;
1628	/* Please note that the recursion is strictly bounded. */
1629	if (array_size > PAGE_SIZE) {
1630		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1631				PAGE_KERNEL, node, area->caller);
 
1632	} else {
1633		pages = kmalloc_node(array_size, nested_gfp, node);
1634	}
1635	area->pages = pages;
 
1636	if (!area->pages) {
1637		remove_vm_area(area->addr);
1638		kfree(area);
1639		return NULL;
1640	}
1641
1642	for (i = 0; i < area->nr_pages; i++) {
1643		struct page *page;
 
1644
1645		if (node == NUMA_NO_NODE)
1646			page = alloc_page(alloc_mask);
1647		else
1648			page = alloc_pages_node(node, alloc_mask, 0);
1649
1650		if (unlikely(!page)) {
1651			/* Successfully allocated i pages, free them in __vunmap() */
1652			area->nr_pages = i;
1653			goto fail;
1654		}
1655		area->pages[i] = page;
1656		if (gfpflags_allow_blocking(gfp_mask))
1657			cond_resched();
1658	}
1659
1660	if (map_vm_area(area, prot, pages))
1661		goto fail;
1662	return area->addr;
1663
1664fail:
1665	warn_alloc(gfp_mask,
1666			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1667			  (area->nr_pages*PAGE_SIZE), area->size);
1668	vfree(area->addr);
1669	return NULL;
1670}
1671
1672/**
1673 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1674 *	@size:		allocation size
1675 *	@align:		desired alignment
1676 *	@start:		vm area range start
1677 *	@end:		vm area range end
1678 *	@gfp_mask:	flags for the page level allocator
1679 *	@prot:		protection mask for the allocated pages
1680 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1681 *	@node:		node to use for allocation or NUMA_NO_NODE
1682 *	@caller:	caller's return address
1683 *
1684 *	Allocate enough pages to cover @size from the page level
1685 *	allocator with @gfp_mask flags.  Map them into contiguous
1686 *	kernel virtual space, using a pagetable protection of @prot.
1687 */
1688void *__vmalloc_node_range(unsigned long size, unsigned long align,
1689			unsigned long start, unsigned long end, gfp_t gfp_mask,
1690			pgprot_t prot, unsigned long vm_flags, int node,
1691			const void *caller)
1692{
1693	struct vm_struct *area;
1694	void *addr;
1695	unsigned long real_size = size;
1696
1697	size = PAGE_ALIGN(size);
1698	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1699		goto fail;
 
 
 
1700
1701	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1702				vm_flags, start, end, node, gfp_mask, caller);
1703	if (!area)
1704		goto fail;
1705
1706	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1707	if (!addr)
1708		return NULL;
1709
1710	/*
1711	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1712	 * flag. It means that vm_struct is not fully initialized.
1713	 * Now, it is fully initialized, so remove this flag here.
1714	 */
1715	clear_vm_uninitialized_flag(area);
1716
1717	/*
1718	 * A ref_count = 2 is needed because vm_struct allocated in
1719	 * __get_vm_area_node() contains a reference to the virtual address of
1720	 * the vmalloc'ed block.
1721	 */
1722	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1723
1724	return addr;
1725
1726fail:
1727	warn_alloc(gfp_mask,
1728			  "vmalloc: allocation failure: %lu bytes", real_size);
1729	return NULL;
1730}
1731
1732/**
1733 *	__vmalloc_node  -  allocate virtually contiguous memory
1734 *	@size:		allocation size
1735 *	@align:		desired alignment
1736 *	@gfp_mask:	flags for the page level allocator
1737 *	@prot:		protection mask for the allocated pages
1738 *	@node:		node to use for allocation or NUMA_NO_NODE
1739 *	@caller:	caller's return address
1740 *
1741 *	Allocate enough pages to cover @size from the page level
1742 *	allocator with @gfp_mask flags.  Map them into contiguous
1743 *	kernel virtual space, using a pagetable protection of @prot.
1744 */
1745static void *__vmalloc_node(unsigned long size, unsigned long align,
1746			    gfp_t gfp_mask, pgprot_t prot,
1747			    int node, const void *caller)
1748{
1749	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1750				gfp_mask, prot, 0, node, caller);
1751}
1752
1753void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1754{
1755	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1756				__builtin_return_address(0));
1757}
1758EXPORT_SYMBOL(__vmalloc);
1759
1760static inline void *__vmalloc_node_flags(unsigned long size,
1761					int node, gfp_t flags)
1762{
1763	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1764					node, __builtin_return_address(0));
1765}
1766
1767/**
1768 *	vmalloc  -  allocate virtually contiguous memory
1769 *	@size:		allocation size
1770 *	Allocate enough pages to cover @size from the page level
1771 *	allocator and map them into contiguous kernel virtual space.
1772 *
1773 *	For tight control over page level allocator and protection flags
1774 *	use __vmalloc() instead.
1775 */
1776void *vmalloc(unsigned long size)
1777{
1778	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1779				    GFP_KERNEL | __GFP_HIGHMEM);
1780}
1781EXPORT_SYMBOL(vmalloc);
1782
1783/**
1784 *	vzalloc - allocate virtually contiguous memory with zero fill
1785 *	@size:	allocation size
1786 *	Allocate enough pages to cover @size from the page level
1787 *	allocator and map them into contiguous kernel virtual space.
1788 *	The memory allocated is set to zero.
1789 *
1790 *	For tight control over page level allocator and protection flags
1791 *	use __vmalloc() instead.
1792 */
1793void *vzalloc(unsigned long size)
1794{
1795	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1796				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1797}
1798EXPORT_SYMBOL(vzalloc);
1799
1800/**
1801 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1802 * @size: allocation size
1803 *
1804 * The resulting memory area is zeroed so it can be mapped to userspace
1805 * without leaking data.
1806 */
1807void *vmalloc_user(unsigned long size)
1808{
1809	struct vm_struct *area;
1810	void *ret;
1811
1812	ret = __vmalloc_node(size, SHMLBA,
1813			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1814			     PAGE_KERNEL, NUMA_NO_NODE,
1815			     __builtin_return_address(0));
1816	if (ret) {
1817		area = find_vm_area(ret);
1818		area->flags |= VM_USERMAP;
1819	}
1820	return ret;
1821}
1822EXPORT_SYMBOL(vmalloc_user);
1823
1824/**
1825 *	vmalloc_node  -  allocate memory on a specific node
1826 *	@size:		allocation size
1827 *	@node:		numa node
1828 *
1829 *	Allocate enough pages to cover @size from the page level
1830 *	allocator and map them into contiguous kernel virtual space.
1831 *
1832 *	For tight control over page level allocator and protection flags
1833 *	use __vmalloc() instead.
1834 */
1835void *vmalloc_node(unsigned long size, int node)
1836{
1837	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1838					node, __builtin_return_address(0));
1839}
1840EXPORT_SYMBOL(vmalloc_node);
1841
1842/**
1843 * vzalloc_node - allocate memory on a specific node with zero fill
1844 * @size:	allocation size
1845 * @node:	numa node
1846 *
1847 * Allocate enough pages to cover @size from the page level
1848 * allocator and map them into contiguous kernel virtual space.
1849 * The memory allocated is set to zero.
1850 *
1851 * For tight control over page level allocator and protection flags
1852 * use __vmalloc_node() instead.
1853 */
1854void *vzalloc_node(unsigned long size, int node)
1855{
1856	return __vmalloc_node_flags(size, node,
1857			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1858}
1859EXPORT_SYMBOL(vzalloc_node);
1860
1861#ifndef PAGE_KERNEL_EXEC
1862# define PAGE_KERNEL_EXEC PAGE_KERNEL
1863#endif
1864
1865/**
1866 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1867 *	@size:		allocation size
1868 *
1869 *	Kernel-internal function to allocate enough pages to cover @size
1870 *	the page level allocator and map them into contiguous and
1871 *	executable kernel virtual space.
1872 *
1873 *	For tight control over page level allocator and protection flags
1874 *	use __vmalloc() instead.
1875 */
1876
1877void *vmalloc_exec(unsigned long size)
1878{
1879	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1880			      NUMA_NO_NODE, __builtin_return_address(0));
1881}
1882
1883#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1884#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1885#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1886#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1887#else
1888#define GFP_VMALLOC32 GFP_KERNEL
1889#endif
1890
1891/**
1892 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1893 *	@size:		allocation size
1894 *
1895 *	Allocate enough 32bit PA addressable pages to cover @size from the
1896 *	page level allocator and map them into contiguous kernel virtual space.
1897 */
1898void *vmalloc_32(unsigned long size)
1899{
1900	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1901			      NUMA_NO_NODE, __builtin_return_address(0));
1902}
1903EXPORT_SYMBOL(vmalloc_32);
1904
1905/**
1906 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1907 *	@size:		allocation size
1908 *
1909 * The resulting memory area is 32bit addressable and zeroed so it can be
1910 * mapped to userspace without leaking data.
1911 */
1912void *vmalloc_32_user(unsigned long size)
1913{
1914	struct vm_struct *area;
1915	void *ret;
1916
1917	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1918			     NUMA_NO_NODE, __builtin_return_address(0));
1919	if (ret) {
1920		area = find_vm_area(ret);
1921		area->flags |= VM_USERMAP;
1922	}
1923	return ret;
1924}
1925EXPORT_SYMBOL(vmalloc_32_user);
1926
1927/*
1928 * small helper routine , copy contents to buf from addr.
1929 * If the page is not present, fill zero.
1930 */
1931
1932static int aligned_vread(char *buf, char *addr, unsigned long count)
1933{
1934	struct page *p;
1935	int copied = 0;
1936
1937	while (count) {
1938		unsigned long offset, length;
1939
1940		offset = offset_in_page(addr);
1941		length = PAGE_SIZE - offset;
1942		if (length > count)
1943			length = count;
1944		p = vmalloc_to_page(addr);
1945		/*
1946		 * To do safe access to this _mapped_ area, we need
1947		 * lock. But adding lock here means that we need to add
1948		 * overhead of vmalloc()/vfree() calles for this _debug_
1949		 * interface, rarely used. Instead of that, we'll use
1950		 * kmap() and get small overhead in this access function.
1951		 */
1952		if (p) {
1953			/*
1954			 * we can expect USER0 is not used (see vread/vwrite's
1955			 * function description)
1956			 */
1957			void *map = kmap_atomic(p);
1958			memcpy(buf, map + offset, length);
1959			kunmap_atomic(map);
1960		} else
1961			memset(buf, 0, length);
1962
1963		addr += length;
1964		buf += length;
1965		copied += length;
1966		count -= length;
1967	}
1968	return copied;
1969}
1970
1971static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1972{
1973	struct page *p;
1974	int copied = 0;
1975
1976	while (count) {
1977		unsigned long offset, length;
1978
1979		offset = offset_in_page(addr);
1980		length = PAGE_SIZE - offset;
1981		if (length > count)
1982			length = count;
1983		p = vmalloc_to_page(addr);
1984		/*
1985		 * To do safe access to this _mapped_ area, we need
1986		 * lock. But adding lock here means that we need to add
1987		 * overhead of vmalloc()/vfree() calles for this _debug_
1988		 * interface, rarely used. Instead of that, we'll use
1989		 * kmap() and get small overhead in this access function.
1990		 */
1991		if (p) {
1992			/*
1993			 * we can expect USER0 is not used (see vread/vwrite's
1994			 * function description)
1995			 */
1996			void *map = kmap_atomic(p);
1997			memcpy(map + offset, buf, length);
1998			kunmap_atomic(map);
1999		}
2000		addr += length;
2001		buf += length;
2002		copied += length;
2003		count -= length;
2004	}
2005	return copied;
2006}
2007
2008/**
2009 *	vread() -  read vmalloc area in a safe way.
2010 *	@buf:		buffer for reading data
2011 *	@addr:		vm address.
2012 *	@count:		number of bytes to be read.
2013 *
2014 *	Returns # of bytes which addr and buf should be increased.
2015 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2016 *	includes any intersect with alive vmalloc area.
2017 *
2018 *	This function checks that addr is a valid vmalloc'ed area, and
2019 *	copy data from that area to a given buffer. If the given memory range
2020 *	of [addr...addr+count) includes some valid address, data is copied to
2021 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2022 *	IOREMAP area is treated as memory hole and no copy is done.
2023 *
2024 *	If [addr...addr+count) doesn't includes any intersects with alive
2025 *	vm_struct area, returns 0. @buf should be kernel's buffer.
 
 
2026 *
2027 *	Note: In usual ops, vread() is never necessary because the caller
2028 *	should know vmalloc() area is valid and can use memcpy().
2029 *	This is for routines which have to access vmalloc area without
2030 *	any informaion, as /dev/kmem.
2031 *
2032 */
2033
2034long vread(char *buf, char *addr, unsigned long count)
2035{
2036	struct vmap_area *va;
2037	struct vm_struct *vm;
2038	char *vaddr, *buf_start = buf;
2039	unsigned long buflen = count;
2040	unsigned long n;
2041
2042	/* Don't allow overflow */
2043	if ((unsigned long) addr + count < count)
2044		count = -(unsigned long) addr;
2045
2046	spin_lock(&vmap_area_lock);
2047	list_for_each_entry(va, &vmap_area_list, list) {
2048		if (!count)
2049			break;
2050
2051		if (!(va->flags & VM_VM_AREA))
2052			continue;
2053
2054		vm = va->vm;
2055		vaddr = (char *) vm->addr;
2056		if (addr >= vaddr + get_vm_area_size(vm))
2057			continue;
2058		while (addr < vaddr) {
2059			if (count == 0)
2060				goto finished;
2061			*buf = '\0';
2062			buf++;
2063			addr++;
2064			count--;
2065		}
2066		n = vaddr + get_vm_area_size(vm) - addr;
2067		if (n > count)
2068			n = count;
2069		if (!(vm->flags & VM_IOREMAP))
2070			aligned_vread(buf, addr, n);
2071		else /* IOREMAP area is treated as memory hole */
2072			memset(buf, 0, n);
2073		buf += n;
2074		addr += n;
2075		count -= n;
2076	}
2077finished:
2078	spin_unlock(&vmap_area_lock);
2079
2080	if (buf == buf_start)
2081		return 0;
2082	/* zero-fill memory holes */
2083	if (buf != buf_start + buflen)
2084		memset(buf, 0, buflen - (buf - buf_start));
2085
2086	return buflen;
2087}
2088
2089/**
2090 *	vwrite() -  write vmalloc area in a safe way.
2091 *	@buf:		buffer for source data
2092 *	@addr:		vm address.
2093 *	@count:		number of bytes to be read.
2094 *
2095 *	Returns # of bytes which addr and buf should be incresed.
2096 *	(same number to @count).
2097 *	If [addr...addr+count) doesn't includes any intersect with valid
2098 *	vmalloc area, returns 0.
2099 *
2100 *	This function checks that addr is a valid vmalloc'ed area, and
2101 *	copy data from a buffer to the given addr. If specified range of
2102 *	[addr...addr+count) includes some valid address, data is copied from
2103 *	proper area of @buf. If there are memory holes, no copy to hole.
2104 *	IOREMAP area is treated as memory hole and no copy is done.
2105 *
2106 *	If [addr...addr+count) doesn't includes any intersects with alive
2107 *	vm_struct area, returns 0. @buf should be kernel's buffer.
 
 
2108 *
2109 *	Note: In usual ops, vwrite() is never necessary because the caller
2110 *	should know vmalloc() area is valid and can use memcpy().
2111 *	This is for routines which have to access vmalloc area without
2112 *	any informaion, as /dev/kmem.
2113 */
2114
2115long vwrite(char *buf, char *addr, unsigned long count)
2116{
2117	struct vmap_area *va;
2118	struct vm_struct *vm;
2119	char *vaddr;
2120	unsigned long n, buflen;
2121	int copied = 0;
2122
2123	/* Don't allow overflow */
2124	if ((unsigned long) addr + count < count)
2125		count = -(unsigned long) addr;
2126	buflen = count;
2127
2128	spin_lock(&vmap_area_lock);
2129	list_for_each_entry(va, &vmap_area_list, list) {
2130		if (!count)
2131			break;
2132
2133		if (!(va->flags & VM_VM_AREA))
2134			continue;
2135
2136		vm = va->vm;
2137		vaddr = (char *) vm->addr;
2138		if (addr >= vaddr + get_vm_area_size(vm))
2139			continue;
2140		while (addr < vaddr) {
2141			if (count == 0)
2142				goto finished;
2143			buf++;
2144			addr++;
2145			count--;
2146		}
2147		n = vaddr + get_vm_area_size(vm) - addr;
2148		if (n > count)
2149			n = count;
2150		if (!(vm->flags & VM_IOREMAP)) {
2151			aligned_vwrite(buf, addr, n);
2152			copied++;
2153		}
2154		buf += n;
2155		addr += n;
2156		count -= n;
2157	}
2158finished:
2159	spin_unlock(&vmap_area_lock);
2160	if (!copied)
2161		return 0;
2162	return buflen;
2163}
2164
2165/**
2166 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2167 *	@vma:		vma to cover
2168 *	@uaddr:		target user address to start at
2169 *	@kaddr:		virtual address of vmalloc kernel memory
2170 *	@size:		size of map area
2171 *
2172 *	Returns:	0 for success, -Exxx on failure
2173 *
2174 *	This function checks that @kaddr is a valid vmalloc'ed area,
2175 *	and that it is big enough to cover the range starting at
2176 *	@uaddr in @vma. Will return failure if that criteria isn't
2177 *	met.
2178 *
2179 *	Similar to remap_pfn_range() (see mm/memory.c)
2180 */
2181int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2182				void *kaddr, unsigned long size)
2183{
2184	struct vm_struct *area;
 
 
2185
2186	size = PAGE_ALIGN(size);
2187
2188	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2189		return -EINVAL;
2190
2191	area = find_vm_area(kaddr);
2192	if (!area)
2193		return -EINVAL;
2194
2195	if (!(area->flags & VM_USERMAP))
2196		return -EINVAL;
2197
2198	if (kaddr + size > area->addr + area->size)
2199		return -EINVAL;
2200
 
2201	do {
2202		struct page *page = vmalloc_to_page(kaddr);
2203		int ret;
2204
2205		ret = vm_insert_page(vma, uaddr, page);
2206		if (ret)
2207			return ret;
2208
2209		uaddr += PAGE_SIZE;
2210		kaddr += PAGE_SIZE;
2211		size -= PAGE_SIZE;
2212	} while (size > 0);
2213
2214	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
 
2215
2216	return 0;
2217}
2218EXPORT_SYMBOL(remap_vmalloc_range_partial);
2219
2220/**
2221 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2222 *	@vma:		vma to cover (map full range of vma)
2223 *	@addr:		vmalloc memory
2224 *	@pgoff:		number of pages into addr before first page to map
2225 *
2226 *	Returns:	0 for success, -Exxx on failure
2227 *
2228 *	This function checks that addr is a valid vmalloc'ed area, and
2229 *	that it is big enough to cover the vma. Will return failure if
2230 *	that criteria isn't met.
2231 *
2232 *	Similar to remap_pfn_range() (see mm/memory.c)
2233 */
2234int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2235						unsigned long pgoff)
2236{
2237	return remap_vmalloc_range_partial(vma, vma->vm_start,
2238					   addr + (pgoff << PAGE_SHIFT),
2239					   vma->vm_end - vma->vm_start);
2240}
2241EXPORT_SYMBOL(remap_vmalloc_range);
2242
2243/*
2244 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2245 * have one.
2246 */
2247void __weak vmalloc_sync_all(void)
2248{
2249}
2250
2251
2252static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2253{
2254	pte_t ***p = data;
2255
2256	if (p) {
2257		*(*p) = pte;
2258		(*p)++;
2259	}
2260	return 0;
2261}
2262
2263/**
2264 *	alloc_vm_area - allocate a range of kernel address space
2265 *	@size:		size of the area
2266 *	@ptes:		returns the PTEs for the address space
2267 *
2268 *	Returns:	NULL on failure, vm_struct on success
2269 *
2270 *	This function reserves a range of kernel address space, and
2271 *	allocates pagetables to map that range.  No actual mappings
2272 *	are created.
2273 *
2274 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2275 *	allocated for the VM area are returned.
2276 */
2277struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2278{
2279	struct vm_struct *area;
2280
2281	area = get_vm_area_caller(size, VM_IOREMAP,
2282				__builtin_return_address(0));
2283	if (area == NULL)
2284		return NULL;
2285
2286	/*
2287	 * This ensures that page tables are constructed for this region
2288	 * of kernel virtual address space and mapped into init_mm.
2289	 */
2290	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2291				size, f, ptes ? &ptes : NULL)) {
2292		free_vm_area(area);
2293		return NULL;
2294	}
2295
 
 
 
 
 
 
 
 
2296	return area;
2297}
2298EXPORT_SYMBOL_GPL(alloc_vm_area);
2299
2300void free_vm_area(struct vm_struct *area)
2301{
2302	struct vm_struct *ret;
2303	ret = remove_vm_area(area->addr);
2304	BUG_ON(ret != area);
2305	kfree(area);
2306}
2307EXPORT_SYMBOL_GPL(free_vm_area);
2308
2309#ifdef CONFIG_SMP
2310static struct vmap_area *node_to_va(struct rb_node *n)
2311{
2312	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2313}
2314
2315/**
2316 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2317 * @end: target address
2318 * @pnext: out arg for the next vmap_area
2319 * @pprev: out arg for the previous vmap_area
2320 *
2321 * Returns: %true if either or both of next and prev are found,
2322 *	    %false if no vmap_area exists
2323 *
2324 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2325 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2326 */
2327static bool pvm_find_next_prev(unsigned long end,
2328			       struct vmap_area **pnext,
2329			       struct vmap_area **pprev)
2330{
2331	struct rb_node *n = vmap_area_root.rb_node;
2332	struct vmap_area *va = NULL;
2333
2334	while (n) {
2335		va = rb_entry(n, struct vmap_area, rb_node);
2336		if (end < va->va_end)
2337			n = n->rb_left;
2338		else if (end > va->va_end)
2339			n = n->rb_right;
2340		else
2341			break;
2342	}
2343
2344	if (!va)
2345		return false;
2346
2347	if (va->va_end > end) {
2348		*pnext = va;
2349		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2350	} else {
2351		*pprev = va;
2352		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2353	}
2354	return true;
2355}
2356
2357/**
2358 * pvm_determine_end - find the highest aligned address between two vmap_areas
2359 * @pnext: in/out arg for the next vmap_area
2360 * @pprev: in/out arg for the previous vmap_area
2361 * @align: alignment
2362 *
2363 * Returns: determined end address
2364 *
2365 * Find the highest aligned address between *@pnext and *@pprev below
2366 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2367 * down address is between the end addresses of the two vmap_areas.
2368 *
2369 * Please note that the address returned by this function may fall
2370 * inside *@pnext vmap_area.  The caller is responsible for checking
2371 * that.
2372 */
2373static unsigned long pvm_determine_end(struct vmap_area **pnext,
2374				       struct vmap_area **pprev,
2375				       unsigned long align)
2376{
2377	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2378	unsigned long addr;
2379
2380	if (*pnext)
2381		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2382	else
2383		addr = vmalloc_end;
2384
2385	while (*pprev && (*pprev)->va_end > addr) {
2386		*pnext = *pprev;
2387		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2388	}
2389
2390	return addr;
2391}
2392
2393/**
2394 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2395 * @offsets: array containing offset of each area
2396 * @sizes: array containing size of each area
2397 * @nr_vms: the number of areas to allocate
2398 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2399 *
2400 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2401 *	    vm_structs on success, %NULL on failure
2402 *
2403 * Percpu allocator wants to use congruent vm areas so that it can
2404 * maintain the offsets among percpu areas.  This function allocates
2405 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2406 * be scattered pretty far, distance between two areas easily going up
2407 * to gigabytes.  To avoid interacting with regular vmallocs, these
2408 * areas are allocated from top.
2409 *
2410 * Despite its complicated look, this allocator is rather simple.  It
2411 * does everything top-down and scans areas from the end looking for
2412 * matching slot.  While scanning, if any of the areas overlaps with
2413 * existing vmap_area, the base address is pulled down to fit the
2414 * area.  Scanning is repeated till all the areas fit and then all
2415 * necessary data structres are inserted and the result is returned.
2416 */
2417struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2418				     const size_t *sizes, int nr_vms,
2419				     size_t align)
2420{
2421	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2422	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2423	struct vmap_area **vas, *prev, *next;
2424	struct vm_struct **vms;
2425	int area, area2, last_area, term_area;
2426	unsigned long base, start, end, last_end;
2427	bool purged = false;
2428
2429	/* verify parameters and allocate data structures */
2430	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2431	for (last_area = 0, area = 0; area < nr_vms; area++) {
2432		start = offsets[area];
2433		end = start + sizes[area];
2434
2435		/* is everything aligned properly? */
2436		BUG_ON(!IS_ALIGNED(offsets[area], align));
2437		BUG_ON(!IS_ALIGNED(sizes[area], align));
2438
2439		/* detect the area with the highest address */
2440		if (start > offsets[last_area])
2441			last_area = area;
2442
2443		for (area2 = 0; area2 < nr_vms; area2++) {
2444			unsigned long start2 = offsets[area2];
2445			unsigned long end2 = start2 + sizes[area2];
2446
2447			if (area2 == area)
2448				continue;
2449
2450			BUG_ON(start2 >= start && start2 < end);
2451			BUG_ON(end2 <= end && end2 > start);
2452		}
2453	}
2454	last_end = offsets[last_area] + sizes[last_area];
2455
2456	if (vmalloc_end - vmalloc_start < last_end) {
2457		WARN_ON(true);
2458		return NULL;
2459	}
2460
2461	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2462	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2463	if (!vas || !vms)
2464		goto err_free2;
2465
2466	for (area = 0; area < nr_vms; area++) {
2467		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2468		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2469		if (!vas[area] || !vms[area])
2470			goto err_free;
2471	}
2472retry:
2473	spin_lock(&vmap_area_lock);
2474
2475	/* start scanning - we scan from the top, begin with the last area */
2476	area = term_area = last_area;
2477	start = offsets[area];
2478	end = start + sizes[area];
2479
2480	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2481		base = vmalloc_end - last_end;
2482		goto found;
2483	}
2484	base = pvm_determine_end(&next, &prev, align) - end;
2485
2486	while (true) {
2487		BUG_ON(next && next->va_end <= base + end);
2488		BUG_ON(prev && prev->va_end > base + end);
2489
2490		/*
2491		 * base might have underflowed, add last_end before
2492		 * comparing.
2493		 */
2494		if (base + last_end < vmalloc_start + last_end) {
2495			spin_unlock(&vmap_area_lock);
2496			if (!purged) {
2497				purge_vmap_area_lazy();
2498				purged = true;
2499				goto retry;
2500			}
2501			goto err_free;
2502		}
2503
2504		/*
2505		 * If next overlaps, move base downwards so that it's
2506		 * right below next and then recheck.
2507		 */
2508		if (next && next->va_start < base + end) {
2509			base = pvm_determine_end(&next, &prev, align) - end;
2510			term_area = area;
2511			continue;
2512		}
2513
2514		/*
2515		 * If prev overlaps, shift down next and prev and move
2516		 * base so that it's right below new next and then
2517		 * recheck.
2518		 */
2519		if (prev && prev->va_end > base + start)  {
2520			next = prev;
2521			prev = node_to_va(rb_prev(&next->rb_node));
2522			base = pvm_determine_end(&next, &prev, align) - end;
2523			term_area = area;
2524			continue;
2525		}
2526
2527		/*
2528		 * This area fits, move on to the previous one.  If
2529		 * the previous one is the terminal one, we're done.
2530		 */
2531		area = (area + nr_vms - 1) % nr_vms;
2532		if (area == term_area)
2533			break;
2534		start = offsets[area];
2535		end = start + sizes[area];
2536		pvm_find_next_prev(base + end, &next, &prev);
2537	}
2538found:
2539	/* we've found a fitting base, insert all va's */
2540	for (area = 0; area < nr_vms; area++) {
2541		struct vmap_area *va = vas[area];
2542
2543		va->va_start = base + offsets[area];
2544		va->va_end = va->va_start + sizes[area];
2545		__insert_vmap_area(va);
2546	}
2547
2548	vmap_area_pcpu_hole = base + offsets[last_area];
2549
2550	spin_unlock(&vmap_area_lock);
2551
2552	/* insert all vm's */
2553	for (area = 0; area < nr_vms; area++)
2554		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2555				 pcpu_get_vm_areas);
2556
2557	kfree(vas);
2558	return vms;
2559
2560err_free:
2561	for (area = 0; area < nr_vms; area++) {
2562		kfree(vas[area]);
2563		kfree(vms[area]);
 
 
2564	}
2565err_free2:
2566	kfree(vas);
2567	kfree(vms);
2568	return NULL;
2569}
2570
2571/**
2572 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2573 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2574 * @nr_vms: the number of allocated areas
2575 *
2576 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2577 */
2578void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2579{
2580	int i;
2581
2582	for (i = 0; i < nr_vms; i++)
2583		free_vm_area(vms[i]);
2584	kfree(vms);
2585}
2586#endif	/* CONFIG_SMP */
2587
2588#ifdef CONFIG_PROC_FS
2589static void *s_start(struct seq_file *m, loff_t *pos)
2590	__acquires(&vmap_area_lock)
2591{
2592	spin_lock(&vmap_area_lock);
2593	return seq_list_start(&vmap_area_list, *pos);
 
 
 
 
 
 
 
 
 
 
 
 
2594}
2595
2596static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2597{
2598	return seq_list_next(p, &vmap_area_list, pos);
 
 
 
2599}
2600
2601static void s_stop(struct seq_file *m, void *p)
2602	__releases(&vmap_area_lock)
2603{
2604	spin_unlock(&vmap_area_lock);
2605}
2606
2607static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2608{
2609	if (IS_ENABLED(CONFIG_NUMA)) {
2610		unsigned int nr, *counters = m->private;
2611
2612		if (!counters)
2613			return;
2614
2615		if (v->flags & VM_UNINITIALIZED)
2616			return;
2617		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2618		smp_rmb();
2619
2620		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2621
2622		for (nr = 0; nr < v->nr_pages; nr++)
2623			counters[page_to_nid(v->pages[nr])]++;
2624
2625		for_each_node_state(nr, N_HIGH_MEMORY)
2626			if (counters[nr])
2627				seq_printf(m, " N%u=%u", nr, counters[nr]);
2628	}
2629}
2630
2631static int s_show(struct seq_file *m, void *p)
2632{
2633	struct vmap_area *va;
2634	struct vm_struct *v;
2635
2636	va = list_entry(p, struct vmap_area, list);
2637
2638	/*
2639	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2640	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2641	 */
2642	if (!(va->flags & VM_VM_AREA))
2643		return 0;
2644
2645	v = va->vm;
2646
2647	seq_printf(m, "0x%pK-0x%pK %7ld",
2648		v->addr, v->addr + v->size, v->size);
2649
2650	if (v->caller)
2651		seq_printf(m, " %pS", v->caller);
2652
2653	if (v->nr_pages)
2654		seq_printf(m, " pages=%d", v->nr_pages);
2655
2656	if (v->phys_addr)
2657		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2658
2659	if (v->flags & VM_IOREMAP)
2660		seq_puts(m, " ioremap");
2661
2662	if (v->flags & VM_ALLOC)
2663		seq_puts(m, " vmalloc");
2664
2665	if (v->flags & VM_MAP)
2666		seq_puts(m, " vmap");
2667
2668	if (v->flags & VM_USERMAP)
2669		seq_puts(m, " user");
2670
2671	if (is_vmalloc_addr(v->pages))
2672		seq_puts(m, " vpages");
2673
2674	show_numa_info(m, v);
2675	seq_putc(m, '\n');
2676	return 0;
2677}
2678
2679static const struct seq_operations vmalloc_op = {
2680	.start = s_start,
2681	.next = s_next,
2682	.stop = s_stop,
2683	.show = s_show,
2684};
2685
2686static int vmalloc_open(struct inode *inode, struct file *file)
2687{
2688	if (IS_ENABLED(CONFIG_NUMA))
2689		return seq_open_private(file, &vmalloc_op,
2690					nr_node_ids * sizeof(unsigned int));
2691	else
2692		return seq_open(file, &vmalloc_op);
 
 
 
 
 
 
 
 
 
 
2693}
2694
2695static const struct file_operations proc_vmalloc_operations = {
2696	.open		= vmalloc_open,
2697	.read		= seq_read,
2698	.llseek		= seq_lseek,
2699	.release	= seq_release_private,
2700};
2701
2702static int __init proc_vmalloc_init(void)
2703{
2704	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2705	return 0;
2706}
2707module_init(proc_vmalloc_init);
2708
2709#endif
2710