Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
 
 
  18
  19#include "gfs2.h"
  20#include "incore.h"
  21#include "glock.h"
  22#include "glops.h"
  23#include "lops.h"
  24#include "meta_io.h"
  25#include "quota.h"
  26#include "rgrp.h"
  27#include "super.h"
  28#include "trans.h"
  29#include "util.h"
  30#include "log.h"
  31#include "inode.h"
  32#include "trace_gfs2.h"
 
  33
  34#define BFITNOENT ((u32)~0)
  35#define NO_BLOCK ((u64)~0)
  36
  37#if BITS_PER_LONG == 32
  38#define LBITMASK   (0x55555555UL)
  39#define LBITSKIP55 (0x55555555UL)
  40#define LBITSKIP00 (0x00000000UL)
  41#else
  42#define LBITMASK   (0x5555555555555555UL)
  43#define LBITSKIP55 (0x5555555555555555UL)
  44#define LBITSKIP00 (0x0000000000000000UL)
  45#endif
  46
  47/*
  48 * These routines are used by the resource group routines (rgrp.c)
  49 * to keep track of block allocation.  Each block is represented by two
  50 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  51 *
  52 * 0 = Free
  53 * 1 = Used (not metadata)
  54 * 2 = Unlinked (still in use) inode
  55 * 3 = Used (metadata)
  56 */
  57
 
 
 
 
 
  58static const char valid_change[16] = {
  59	        /* current */
  60	/* n */ 0, 1, 1, 1,
  61	/* e */ 1, 0, 0, 0,
  62	/* w */ 0, 0, 0, 1,
  63	        1, 0, 0, 0
  64};
  65
  66static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  67                        unsigned char old_state, unsigned char new_state,
  68			unsigned int *n);
  69
  70/**
  71 * gfs2_setbit - Set a bit in the bitmaps
  72 * @buffer: the buffer that holds the bitmaps
  73 * @buflen: the length (in bytes) of the buffer
  74 * @block: the block to set
  75 * @new_state: the new state of the block
  76 *
  77 */
  78
  79static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
  80			       unsigned char *buf2, unsigned int offset,
  81			       struct gfs2_bitmap *bi, u32 block,
  82			       unsigned char new_state)
  83{
  84	unsigned char *byte1, *byte2, *end, cur_state;
  85	unsigned int buflen = bi->bi_len;
  86	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 
  87
  88	byte1 = buf1 + offset + (block / GFS2_NBBY);
  89	end = buf1 + offset + buflen;
  90
  91	BUG_ON(byte1 >= end);
  92
  93	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  94
  95	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  96		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  97		       "new_state=%d\n",
  98		       (unsigned long long)block, cur_state, new_state);
  99		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 100		       (unsigned long long)rgd->rd_addr,
 101		       (unsigned long)bi->bi_start);
 102		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 103		       (unsigned long)bi->bi_offset,
 104		       (unsigned long)bi->bi_len);
 
 105		dump_stack();
 106		gfs2_consist_rgrpd(rgd);
 107		return;
 108	}
 109	*byte1 ^= (cur_state ^ new_state) << bit;
 110
 111	if (buf2) {
 112		byte2 = buf2 + offset + (block / GFS2_NBBY);
 113		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 114		*byte2 ^= (cur_state ^ new_state) << bit;
 115	}
 116}
 117
 118/**
 119 * gfs2_testbit - test a bit in the bitmaps
 120 * @buffer: the buffer that holds the bitmaps
 121 * @buflen: the length (in bytes) of the buffer
 122 * @block: the block to read
 
 
 123 *
 
 124 */
 125
 126static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 127					 const unsigned char *buffer,
 128					 unsigned int buflen, u32 block)
 129{
 130	const unsigned char *byte, *end;
 131	unsigned char cur_state;
 
 132	unsigned int bit;
 133
 134	byte = buffer + (block / GFS2_NBBY);
 135	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 136	end = buffer + buflen;
 137
 138	gfs2_assert(rgd->rd_sbd, byte < end);
 139
 140	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 141
 142	return cur_state;
 143}
 144
 145/**
 146 * gfs2_bit_search
 147 * @ptr: Pointer to bitmap data
 148 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 149 * @state: The state we are searching for
 150 *
 151 * We xor the bitmap data with a patter which is the bitwise opposite
 152 * of what we are looking for, this gives rise to a pattern of ones
 153 * wherever there is a match. Since we have two bits per entry, we
 154 * take this pattern, shift it down by one place and then and it with
 155 * the original. All the even bit positions (0,2,4, etc) then represent
 156 * successful matches, so we mask with 0x55555..... to remove the unwanted
 157 * odd bit positions.
 158 *
 159 * This allows searching of a whole u64 at once (32 blocks) with a
 160 * single test (on 64 bit arches).
 161 */
 162
 163static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 164{
 165	u64 tmp;
 166	static const u64 search[] = {
 167		[0] = 0xffffffffffffffffULL,
 168		[1] = 0xaaaaaaaaaaaaaaaaULL,
 169		[2] = 0x5555555555555555ULL,
 170		[3] = 0x0000000000000000ULL,
 171	};
 172	tmp = le64_to_cpu(*ptr) ^ search[state];
 173	tmp &= (tmp >> 1);
 174	tmp &= mask;
 175	return tmp;
 176}
 177
 178/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 180 *       a block in a given allocation state.
 181 * @buffer: the buffer that holds the bitmaps
 182 * @len: the length (in bytes) of the buffer
 183 * @goal: start search at this block's bit-pair (within @buffer)
 184 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 185 *
 186 * Scope of @goal and returned block number is only within this bitmap buffer,
 187 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 188 * beginning of a bitmap block buffer, skipping any header structures, but
 189 * headers are always a multiple of 64 bits long so that the buffer is
 190 * always aligned to a 64 bit boundary.
 191 *
 192 * The size of the buffer is in bytes, but is it assumed that it is
 193 * always ok to read a complete multiple of 64 bits at the end
 194 * of the block in case the end is no aligned to a natural boundary.
 195 *
 196 * Return: the block number (bitmap buffer scope) that was found
 197 */
 198
 199static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 200		       u32 goal, u8 state)
 201{
 202	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 203	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 204	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 205	u64 tmp;
 206	u64 mask = 0x5555555555555555ULL;
 207	u32 bit;
 208
 209	BUG_ON(state > 3);
 210
 211	/* Mask off bits we don't care about at the start of the search */
 212	mask <<= spoint;
 213	tmp = gfs2_bit_search(ptr, mask, state);
 214	ptr++;
 215	while(tmp == 0 && ptr < end) {
 216		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 217		ptr++;
 218	}
 219	/* Mask off any bits which are more than len bytes from the start */
 220	if (ptr == end && (len & (sizeof(u64) - 1)))
 221		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 222	/* Didn't find anything, so return */
 223	if (tmp == 0)
 224		return BFITNOENT;
 225	ptr--;
 226	bit = __ffs64(tmp);
 227	bit /= 2;	/* two bits per entry in the bitmap */
 228	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 229}
 230
 231/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232 * gfs2_bitcount - count the number of bits in a certain state
 
 233 * @buffer: the buffer that holds the bitmaps
 234 * @buflen: the length (in bytes) of the buffer
 235 * @state: the state of the block we're looking for
 236 *
 237 * Returns: The number of bits
 238 */
 239
 240static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 241			 unsigned int buflen, u8 state)
 242{
 243	const u8 *byte = buffer;
 244	const u8 *end = buffer + buflen;
 245	const u8 state1 = state << 2;
 246	const u8 state2 = state << 4;
 247	const u8 state3 = state << 6;
 248	u32 count = 0;
 249
 250	for (; byte < end; byte++) {
 251		if (((*byte) & 0x03) == state)
 252			count++;
 253		if (((*byte) & 0x0C) == state1)
 254			count++;
 255		if (((*byte) & 0x30) == state2)
 256			count++;
 257		if (((*byte) & 0xC0) == state3)
 258			count++;
 259	}
 260
 261	return count;
 262}
 263
 264/**
 265 * gfs2_rgrp_verify - Verify that a resource group is consistent
 266 * @sdp: the filesystem
 267 * @rgd: the rgrp
 268 *
 269 */
 270
 271void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 272{
 273	struct gfs2_sbd *sdp = rgd->rd_sbd;
 274	struct gfs2_bitmap *bi = NULL;
 275	u32 length = rgd->rd_length;
 276	u32 count[4], tmp;
 277	int buf, x;
 278
 279	memset(count, 0, 4 * sizeof(u32));
 280
 281	/* Count # blocks in each of 4 possible allocation states */
 282	for (buf = 0; buf < length; buf++) {
 283		bi = rgd->rd_bits + buf;
 284		for (x = 0; x < 4; x++)
 285			count[x] += gfs2_bitcount(rgd,
 286						  bi->bi_bh->b_data +
 287						  bi->bi_offset,
 288						  bi->bi_len, x);
 289	}
 290
 291	if (count[0] != rgd->rd_free) {
 292		if (gfs2_consist_rgrpd(rgd))
 293			fs_err(sdp, "free data mismatch:  %u != %u\n",
 294			       count[0], rgd->rd_free);
 295		return;
 296	}
 297
 298	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 299	if (count[1] != tmp) {
 300		if (gfs2_consist_rgrpd(rgd))
 301			fs_err(sdp, "used data mismatch:  %u != %u\n",
 302			       count[1], tmp);
 303		return;
 304	}
 305
 306	if (count[2] + count[3] != rgd->rd_dinodes) {
 307		if (gfs2_consist_rgrpd(rgd))
 308			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 309			       count[2] + count[3], rgd->rd_dinodes);
 310		return;
 311	}
 312}
 313
 314static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 315{
 316	u64 first = rgd->rd_data0;
 317	u64 last = first + rgd->rd_data;
 318	return first <= block && block < last;
 319}
 320
 321/**
 322 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 323 * @sdp: The GFS2 superblock
 324 * @n: The data block number
 
 
 
 
 
 
 
 
 325 *
 326 * Returns: The resource group, or NULL if not found
 327 */
 328
 329struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
 330{
 331	struct gfs2_rgrpd *rgd;
 
 332
 333	spin_lock(&sdp->sd_rindex_spin);
 334
 335	list_for_each_entry(rgd, &sdp->sd_rindex_mru_list, rd_list_mru) {
 336		if (rgrp_contains_block(rgd, blk)) {
 337			list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
 
 
 
 
 
 338			spin_unlock(&sdp->sd_rindex_spin);
 339			return rgd;
 
 
 
 
 
 
 340		}
 
 341	}
 342
 343	spin_unlock(&sdp->sd_rindex_spin);
 344
 345	return NULL;
 346}
 347
 348/**
 349 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 350 * @sdp: The GFS2 superblock
 351 *
 352 * Returns: The first rgrp in the filesystem
 353 */
 354
 355struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 356{
 357	gfs2_assert(sdp, !list_empty(&sdp->sd_rindex_list));
 358	return list_entry(sdp->sd_rindex_list.next, struct gfs2_rgrpd, rd_list);
 
 
 
 
 
 
 
 359}
 360
 361/**
 362 * gfs2_rgrpd_get_next - get the next RG
 363 * @rgd: A RG
 364 *
 365 * Returns: The next rgrp
 366 */
 367
 368struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 369{
 370	if (rgd->rd_list.next == &rgd->rd_sbd->sd_rindex_list)
 
 
 
 
 
 
 
 
 
 371		return NULL;
 372	return list_entry(rgd->rd_list.next, struct gfs2_rgrpd, rd_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373}
 374
 375static void clear_rgrpdi(struct gfs2_sbd *sdp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376{
 377	struct list_head *head;
 378	struct gfs2_rgrpd *rgd;
 379	struct gfs2_glock *gl;
 380
 381	spin_lock(&sdp->sd_rindex_spin);
 382	sdp->sd_rindex_forward = NULL;
 383	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	head = &sdp->sd_rindex_list;
 386	while (!list_empty(head)) {
 387		rgd = list_entry(head->next, struct gfs2_rgrpd, rd_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388		gl = rgd->rd_gl;
 389
 390		list_del(&rgd->rd_list);
 391		list_del(&rgd->rd_list_mru);
 392
 393		if (gl) {
 394			gl->gl_object = NULL;
 395			gfs2_glock_add_to_lru(gl);
 
 
 
 
 396			gfs2_glock_put(gl);
 397		}
 398
 
 399		kfree(rgd->rd_bits);
 
 
 400		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 401	}
 402}
 403
 404void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 405{
 406	mutex_lock(&sdp->sd_rindex_mutex);
 407	clear_rgrpdi(sdp);
 408	mutex_unlock(&sdp->sd_rindex_mutex);
 409}
 410
 411static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 412{
 413	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 414	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 415	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 416	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 417	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 418}
 419
 420/**
 421 * gfs2_compute_bitstructs - Compute the bitmap sizes
 422 * @rgd: The resource group descriptor
 423 *
 424 * Calculates bitmap descriptors, one for each block that contains bitmap data
 425 *
 426 * Returns: errno
 427 */
 428
 429static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 430{
 431	struct gfs2_sbd *sdp = rgd->rd_sbd;
 432	struct gfs2_bitmap *bi;
 433	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 434	u32 bytes_left, bytes;
 435	int x;
 436
 437	if (!length)
 438		return -EINVAL;
 439
 440	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 441	if (!rgd->rd_bits)
 442		return -ENOMEM;
 443
 444	bytes_left = rgd->rd_bitbytes;
 445
 446	for (x = 0; x < length; x++) {
 447		bi = rgd->rd_bits + x;
 448
 449		bi->bi_flags = 0;
 450		/* small rgrp; bitmap stored completely in header block */
 451		if (length == 1) {
 452			bytes = bytes_left;
 453			bi->bi_offset = sizeof(struct gfs2_rgrp);
 454			bi->bi_start = 0;
 455			bi->bi_len = bytes;
 
 456		/* header block */
 457		} else if (x == 0) {
 458			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 459			bi->bi_offset = sizeof(struct gfs2_rgrp);
 460			bi->bi_start = 0;
 461			bi->bi_len = bytes;
 
 462		/* last block */
 463		} else if (x + 1 == length) {
 464			bytes = bytes_left;
 465			bi->bi_offset = sizeof(struct gfs2_meta_header);
 466			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 467			bi->bi_len = bytes;
 
 468		/* other blocks */
 469		} else {
 470			bytes = sdp->sd_sb.sb_bsize -
 471				sizeof(struct gfs2_meta_header);
 472			bi->bi_offset = sizeof(struct gfs2_meta_header);
 473			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 474			bi->bi_len = bytes;
 
 475		}
 476
 477		bytes_left -= bytes;
 478	}
 479
 480	if (bytes_left) {
 481		gfs2_consist_rgrpd(rgd);
 482		return -EIO;
 483	}
 484	bi = rgd->rd_bits + (length - 1);
 485	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 486		if (gfs2_consist_rgrpd(rgd)) {
 487			gfs2_rindex_print(rgd);
 488			fs_err(sdp, "start=%u len=%u offset=%u\n",
 489			       bi->bi_start, bi->bi_len, bi->bi_offset);
 490		}
 
 
 
 
 
 
 
 
 
 491		return -EIO;
 492	}
 493
 494	return 0;
 495}
 496
 497/**
 498 * gfs2_ri_total - Total up the file system space, according to the rindex.
 
 499 *
 500 */
 501u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 502{
 503	u64 total_data = 0;	
 504	struct inode *inode = sdp->sd_rindex;
 505	struct gfs2_inode *ip = GFS2_I(inode);
 506	char buf[sizeof(struct gfs2_rindex)];
 507	struct file_ra_state ra_state;
 508	int error, rgrps;
 509
 510	mutex_lock(&sdp->sd_rindex_mutex);
 511	file_ra_state_init(&ra_state, inode->i_mapping);
 512	for (rgrps = 0;; rgrps++) {
 513		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 514
 515		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 516			break;
 517		error = gfs2_internal_read(ip, &ra_state, buf, &pos,
 518					   sizeof(struct gfs2_rindex));
 519		if (error != sizeof(struct gfs2_rindex))
 520			break;
 521		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 522	}
 523	mutex_unlock(&sdp->sd_rindex_mutex);
 524	return total_data;
 525}
 526
 527static void gfs2_rindex_in(struct gfs2_rgrpd *rgd, const void *buf)
 528{
 529	const struct gfs2_rindex *str = buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	rgd->rd_addr = be64_to_cpu(str->ri_addr);
 532	rgd->rd_length = be32_to_cpu(str->ri_length);
 533	rgd->rd_data0 = be64_to_cpu(str->ri_data0);
 534	rgd->rd_data = be32_to_cpu(str->ri_data);
 535	rgd->rd_bitbytes = be32_to_cpu(str->ri_bitbytes);
 536}
 537
 538/**
 539 * read_rindex_entry - Pull in a new resource index entry from the disk
 540 * @gl: The glock covering the rindex inode
 541 *
 542 * Returns: 0 on success, error code otherwise
 543 */
 544
 545static int read_rindex_entry(struct gfs2_inode *ip,
 546			     struct file_ra_state *ra_state)
 547{
 548	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 549	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 550	char buf[sizeof(struct gfs2_rindex)];
 551	int error;
 552	struct gfs2_rgrpd *rgd;
 553
 554	error = gfs2_internal_read(ip, ra_state, buf, &pos,
 
 
 
 555				   sizeof(struct gfs2_rindex));
 556	if (!error)
 557		return 0;
 558	if (error != sizeof(struct gfs2_rindex)) {
 559		if (error > 0)
 560			error = -EIO;
 561		return error;
 562	}
 563
 564	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 565	error = -ENOMEM;
 566	if (!rgd)
 567		return error;
 568
 569	mutex_init(&rgd->rd_mutex);
 570	lops_init_le(&rgd->rd_le, &gfs2_rg_lops);
 571	rgd->rd_sbd = sdp;
 
 
 
 
 
 
 572
 573	list_add_tail(&rgd->rd_list, &sdp->sd_rindex_list);
 574	list_add_tail(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
 575
 576	gfs2_rindex_in(rgd, buf);
 577	error = compute_bitstructs(rgd);
 578	if (error)
 579		return error;
 580
 581	error = gfs2_glock_get(sdp, rgd->rd_addr,
 582			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 583	if (error)
 584		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586	rgd->rd_gl->gl_object = rgd;
 587	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 
 
 588	return error;
 589}
 590
 591/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592 * gfs2_ri_update - Pull in a new resource index from the disk
 593 * @ip: pointer to the rindex inode
 594 *
 595 * Returns: 0 on successful update, error code otherwise
 596 */
 597
 598int gfs2_ri_update(struct gfs2_inode *ip)
 599{
 600	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 601	struct inode *inode = &ip->i_inode;
 602	struct file_ra_state ra_state;
 603	u64 rgrp_count = i_size_read(inode);
 604	struct gfs2_rgrpd *rgd;
 605	unsigned int max_data = 0;
 606	int error;
 607
 608	do_div(rgrp_count, sizeof(struct gfs2_rindex));
 609	clear_rgrpdi(sdp);
 
 610
 611	file_ra_state_init(&ra_state, inode->i_mapping);
 612	for (sdp->sd_rgrps = 0; sdp->sd_rgrps < rgrp_count; sdp->sd_rgrps++) {
 613		error = read_rindex_entry(ip, &ra_state);
 614		if (error) {
 615			clear_rgrpdi(sdp);
 616			return error;
 617		}
 618	}
 619
 620	list_for_each_entry(rgd, &sdp->sd_rindex_list, rd_list)
 621		if (rgd->rd_data > max_data)
 622			max_data = rgd->rd_data;
 623	sdp->sd_max_rg_data = max_data;
 624	sdp->sd_rindex_uptodate = 1;
 625	return 0;
 626}
 627
 628/**
 629 * gfs2_rindex_hold - Grab a lock on the rindex
 630 * @sdp: The GFS2 superblock
 631 * @ri_gh: the glock holder
 632 *
 633 * We grab a lock on the rindex inode to make sure that it doesn't
 634 * change whilst we are performing an operation. We keep this lock
 635 * for quite long periods of time compared to other locks. This
 636 * doesn't matter, since it is shared and it is very, very rarely
 637 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 638 *
 639 * This makes sure that we're using the latest copy of the resource index
 640 * special file, which might have been updated if someone expanded the
 641 * filesystem (via gfs2_grow utility), which adds new resource groups.
 642 *
 643 * Returns: 0 on success, error code otherwise
 644 */
 645
 646int gfs2_rindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ri_gh)
 647{
 648	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 649	struct gfs2_glock *gl = ip->i_gl;
 650	int error;
 651
 652	error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, ri_gh);
 653	if (error)
 654		return error;
 655
 656	/* Read new copy from disk if we don't have the latest */
 657	if (!sdp->sd_rindex_uptodate) {
 658		mutex_lock(&sdp->sd_rindex_mutex);
 659		if (!sdp->sd_rindex_uptodate) {
 660			error = gfs2_ri_update(ip);
 661			if (error)
 662				gfs2_glock_dq_uninit(ri_gh);
 
 663		}
 664		mutex_unlock(&sdp->sd_rindex_mutex);
 
 
 
 665	}
 666
 667	return error;
 668}
 669
 670static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 671{
 672	const struct gfs2_rgrp *str = buf;
 673	u32 rg_flags;
 674
 675	rg_flags = be32_to_cpu(str->rg_flags);
 676	rg_flags &= ~GFS2_RDF_MASK;
 677	rgd->rd_flags &= GFS2_RDF_MASK;
 678	rgd->rd_flags |= rg_flags;
 679	rgd->rd_free = be32_to_cpu(str->rg_free);
 680	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 681	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 
 
 
 
 
 
 
 
 
 
 
 
 
 682}
 683
 684static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 685{
 
 686	struct gfs2_rgrp *str = buf;
 
 687
 688	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 689	str->rg_free = cpu_to_be32(rgd->rd_free);
 690	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 691	str->__pad = cpu_to_be32(0);
 
 
 
 692	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 
 
 
 
 
 
 
 693	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 
 694}
 695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696/**
 697 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
 698 * @rgd: the struct gfs2_rgrpd describing the RG to read in
 699 *
 700 * Read in all of a Resource Group's header and bitmap blocks.
 701 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 702 *
 703 * Returns: errno
 704 */
 705
 706int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
 707{
 708	struct gfs2_sbd *sdp = rgd->rd_sbd;
 709	struct gfs2_glock *gl = rgd->rd_gl;
 710	unsigned int length = rgd->rd_length;
 711	struct gfs2_bitmap *bi;
 712	unsigned int x, y;
 713	int error;
 714
 715	mutex_lock(&rgd->rd_mutex);
 716
 717	spin_lock(&sdp->sd_rindex_spin);
 718	if (rgd->rd_bh_count) {
 719		rgd->rd_bh_count++;
 720		spin_unlock(&sdp->sd_rindex_spin);
 721		mutex_unlock(&rgd->rd_mutex);
 722		return 0;
 723	}
 724	spin_unlock(&sdp->sd_rindex_spin);
 725
 726	for (x = 0; x < length; x++) {
 727		bi = rgd->rd_bits + x;
 728		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 729		if (error)
 730			goto fail;
 731	}
 732
 733	for (y = length; y--;) {
 734		bi = rgd->rd_bits + y;
 735		error = gfs2_meta_wait(sdp, bi->bi_bh);
 736		if (error)
 737			goto fail;
 738		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 739					      GFS2_METATYPE_RG)) {
 740			error = -EIO;
 741			goto fail;
 742		}
 743	}
 744
 745	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 746		for (x = 0; x < length; x++)
 747			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 748		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 749		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750	}
 751
 752	spin_lock(&sdp->sd_rindex_spin);
 753	rgd->rd_free_clone = rgd->rd_free;
 754	rgd->rd_bh_count++;
 755	spin_unlock(&sdp->sd_rindex_spin);
 756
 757	mutex_unlock(&rgd->rd_mutex);
 758
 759	return 0;
 760
 761fail:
 762	while (x--) {
 763		bi = rgd->rd_bits + x;
 764		brelse(bi->bi_bh);
 765		bi->bi_bh = NULL;
 766		gfs2_assert_warn(sdp, !bi->bi_clone);
 767	}
 768	mutex_unlock(&rgd->rd_mutex);
 769
 770	return error;
 771}
 772
 773void gfs2_rgrp_bh_hold(struct gfs2_rgrpd *rgd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774{
 
 775	struct gfs2_sbd *sdp = rgd->rd_sbd;
 776
 777	spin_lock(&sdp->sd_rindex_spin);
 778	gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count);
 779	rgd->rd_bh_count++;
 780	spin_unlock(&sdp->sd_rindex_spin);
 781}
 782
 783/**
 784 * gfs2_rgrp_bh_put - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 785 * @rgd: the struct gfs2_rgrpd describing the RG to read in
 786 *
 787 */
 788
 789void gfs2_rgrp_bh_put(struct gfs2_rgrpd *rgd)
 790{
 791	struct gfs2_sbd *sdp = rgd->rd_sbd;
 792	int x, length = rgd->rd_length;
 793
 794	spin_lock(&sdp->sd_rindex_spin);
 795	gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count);
 796	if (--rgd->rd_bh_count) {
 797		spin_unlock(&sdp->sd_rindex_spin);
 798		return;
 799	}
 800
 801	for (x = 0; x < length; x++) {
 802		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 803		kfree(bi->bi_clone);
 804		bi->bi_clone = NULL;
 805		brelse(bi->bi_bh);
 806		bi->bi_bh = NULL;
 807	}
 808
 809	spin_unlock(&sdp->sd_rindex_spin);
 810}
 811
 812static void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 813				    const struct gfs2_bitmap *bi)
 
 814{
 815	struct super_block *sb = sdp->sd_vfs;
 816	struct block_device *bdev = sb->s_bdev;
 817	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 818					   bdev_logical_block_size(sb->s_bdev);
 819	u64 blk;
 820	sector_t start = 0;
 821	sector_t nr_sects = 0;
 822	int rv;
 823	unsigned int x;
 
 
 824
 825	for (x = 0; x < bi->bi_len; x++) {
 826		const u8 *orig = bi->bi_bh->b_data + bi->bi_offset + x;
 827		const u8 *clone = bi->bi_clone + bi->bi_offset + x;
 828		u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 
 
 
 
 
 
 829		diff &= 0x55;
 830		if (diff == 0)
 831			continue;
 832		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 833		blk *= sects_per_blk; /* convert to sectors */
 834		while(diff) {
 835			if (diff & 1) {
 836				if (nr_sects == 0)
 837					goto start_new_extent;
 838				if ((start + nr_sects) != blk) {
 839					rv = blkdev_issue_discard(bdev, start,
 840							    nr_sects, GFP_NOFS,
 841							    0);
 842					if (rv)
 843						goto fail;
 844					nr_sects = 0;
 
 
 
 845start_new_extent:
 846					start = blk;
 847				}
 848				nr_sects += sects_per_blk;
 849			}
 850			diff >>= 2;
 851			blk += sects_per_blk;
 852		}
 853	}
 854	if (nr_sects) {
 855		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 856		if (rv)
 857			goto fail;
 
 858	}
 859	return;
 
 
 
 860fail:
 861	fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 
 862	sdp->sd_args.ar_discard = 0;
 
 863}
 864
 865void gfs2_rgrp_repolish_clones(struct gfs2_rgrpd *rgd)
 
 
 
 
 
 
 
 
 866{
 867	struct gfs2_sbd *sdp = rgd->rd_sbd;
 868	unsigned int length = rgd->rd_length;
 
 
 
 
 
 
 
 
 
 
 869	unsigned int x;
 
 870
 871	for (x = 0; x < length; x++) {
 872		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 873		if (!bi->bi_clone)
 874			continue;
 875		if (sdp->sd_args.ar_discard)
 876			gfs2_rgrp_send_discards(sdp, rgd->rd_data0, bi);
 877		clear_bit(GBF_FULL, &bi->bi_flags);
 878		memcpy(bi->bi_clone + bi->bi_offset,
 879		       bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880	}
 881
 882	spin_lock(&sdp->sd_rindex_spin);
 883	rgd->rd_free_clone = rgd->rd_free;
 884	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885}
 886
 887/**
 888 * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode
 889 * @ip: the incore GFS2 inode structure
 
 
 890 *
 891 * Returns: the struct gfs2_alloc
 892 */
 893
 894struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip)
 
 895{
 896	BUG_ON(ip->i_alloc != NULL);
 897	ip->i_alloc = kzalloc(sizeof(struct gfs2_alloc), GFP_NOFS);
 898	return ip->i_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899}
 900
 901/**
 902 * try_rgrp_fit - See if a given reservation will fit in a given RG
 903 * @rgd: the RG data
 904 * @al: the struct gfs2_alloc structure describing the reservation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905 *
 906 * If there's room for the requested blocks to be allocated from the RG:
 907 *   Sets the $al_rgd field in @al.
 
 
 
 908 *
 909 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
 910 */
 911
 912static int try_rgrp_fit(struct gfs2_rgrpd *rgd, struct gfs2_alloc *al)
 
 
 
 913{
 914	struct gfs2_sbd *sdp = rgd->rd_sbd;
 915	int ret = 0;
 
 
 916
 917	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
 918		return 0;
 
 
 
 
 
 
 
 919
 920	spin_lock(&sdp->sd_rindex_spin);
 921	if (rgd->rd_free_clone >= al->al_requested) {
 922		al->al_rgd = rgd;
 923		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 924	}
 925	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 926
 927	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929
 930/**
 931 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
 932 * @rgd: The rgrp
 
 
 933 *
 934 * Returns: 0 if no error
 935 *          The inode, if one has been found, in inode.
 936 */
 937
 938static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
 939{
 940	u32 goal = 0, block;
 941	u64 no_addr;
 942	struct gfs2_sbd *sdp = rgd->rd_sbd;
 943	unsigned int n;
 944	struct gfs2_glock *gl;
 945	struct gfs2_inode *ip;
 946	int error;
 947	int found = 0;
 
 
 
 
 
 
 
 
 
 948
 949	while (goal < rgd->rd_data) {
 950		down_write(&sdp->sd_log_flush_lock);
 951		n = 1;
 952		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED,
 953				     GFS2_BLKST_UNLINKED, &n);
 954		up_write(&sdp->sd_log_flush_lock);
 955		if (block == BFITNOENT)
 956			break;
 957		/* rgblk_search can return a block < goal, so we need to
 958		   keep it marching forward. */
 959		no_addr = block + rgd->rd_data0;
 960		goal = max(block + 1, goal + 1);
 961		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
 962			continue;
 963		if (no_addr == skip)
 964			continue;
 965		*last_unlinked = no_addr;
 966
 967		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
 968		if (error)
 969			continue;
 970
 971		/* If the inode is already in cache, we can ignore it here
 972		 * because the existing inode disposal code will deal with
 973		 * it when all refs have gone away. Accessing gl_object like
 974		 * this is not safe in general. Here it is ok because we do
 975		 * not dereference the pointer, and we only need an approx
 976		 * answer to whether it is NULL or not.
 977		 */
 978		ip = gl->gl_object;
 979
 980		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
 981			gfs2_glock_put(gl);
 982		else
 983			found++;
 984
 985		/* Limit reclaim to sensible number of tasks */
 986		if (found > NR_CPUS)
 987			return;
 988	}
 989
 990	rgd->rd_flags &= ~GFS2_RDF_CHECK;
 991	return;
 992}
 993
 994/**
 995 * recent_rgrp_next - get next RG from "recent" list
 996 * @cur_rgd: current rgrp
 997 *
 998 * Returns: The next rgrp in the recent list
 999 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
1001static struct gfs2_rgrpd *recent_rgrp_next(struct gfs2_rgrpd *cur_rgd)
1002{
1003	struct gfs2_sbd *sdp = cur_rgd->rd_sbd;
1004	struct list_head *head;
1005	struct gfs2_rgrpd *rgd;
1006
1007	spin_lock(&sdp->sd_rindex_spin);
1008	head = &sdp->sd_rindex_mru_list;
1009	if (unlikely(cur_rgd->rd_list_mru.next == head)) {
1010		spin_unlock(&sdp->sd_rindex_spin);
1011		return NULL;
1012	}
1013	rgd = list_entry(cur_rgd->rd_list_mru.next, struct gfs2_rgrpd, rd_list_mru);
1014	spin_unlock(&sdp->sd_rindex_spin);
1015	return rgd;
 
 
 
 
1016}
1017
1018/**
1019 * forward_rgrp_get - get an rgrp to try next from full list
1020 * @sdp: The GFS2 superblock
 
1021 *
1022 * Returns: The rgrp to try next
1023 */
1024
1025static struct gfs2_rgrpd *forward_rgrp_get(struct gfs2_sbd *sdp)
1026{
1027	struct gfs2_rgrpd *rgd;
1028	unsigned int journals = gfs2_jindex_size(sdp);
1029	unsigned int rg = 0, x;
1030
1031	spin_lock(&sdp->sd_rindex_spin);
 
1032
1033	rgd = sdp->sd_rindex_forward;
1034	if (!rgd) {
1035		if (sdp->sd_rgrps >= journals)
1036			rg = sdp->sd_rgrps * sdp->sd_jdesc->jd_jid / journals;
1037
1038		for (x = 0, rgd = gfs2_rgrpd_get_first(sdp); x < rg;
1039		     x++, rgd = gfs2_rgrpd_get_next(rgd))
1040			/* Do Nothing */;
1041
1042		sdp->sd_rindex_forward = rgd;
1043	}
1044
1045	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
1046
1047	return rgd;
 
1048}
1049
1050/**
1051 * forward_rgrp_set - set the forward rgrp pointer
1052 * @sdp: the filesystem
1053 * @rgd: The new forward rgrp
1054 *
1055 */
1056
1057static void forward_rgrp_set(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd)
1058{
1059	spin_lock(&sdp->sd_rindex_spin);
1060	sdp->sd_rindex_forward = rgd;
1061	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 
 
 
1062}
1063
1064/**
1065 * get_local_rgrp - Choose and lock a rgrp for allocation
1066 * @ip: the inode to reserve space for
1067 * @rgp: the chosen and locked rgrp
1068 *
1069 * Try to acquire rgrp in way which avoids contending with others.
1070 *
1071 * Returns: errno
1072 */
1073
1074static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1075{
1076	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1077	struct gfs2_rgrpd *rgd, *begin = NULL;
1078	struct gfs2_alloc *al = ip->i_alloc;
1079	int flags = LM_FLAG_TRY;
1080	int skipped = 0;
1081	int loops = 0;
1082	int error, rg_locked;
1083
1084	rgd = gfs2_blk2rgrpd(sdp, ip->i_goal);
1085
1086	while (rgd) {
1087		rg_locked = 0;
1088
1089		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1090			rg_locked = 1;
1091			error = 0;
1092		} else {
1093			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1094						   LM_FLAG_TRY, &al->al_rgd_gh);
1095		}
1096		switch (error) {
1097		case 0:
1098			if (try_rgrp_fit(rgd, al))
1099				goto out;
1100			if (rgd->rd_flags & GFS2_RDF_CHECK)
1101				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1102			if (!rg_locked)
1103				gfs2_glock_dq_uninit(&al->al_rgd_gh);
1104			/* fall through */
1105		case GLR_TRYFAILED:
1106			rgd = recent_rgrp_next(rgd);
1107			break;
1108
1109		default:
1110			return error;
1111		}
1112	}
1113
1114	/* Go through full list of rgrps */
1115
1116	begin = rgd = forward_rgrp_get(sdp);
1117
1118	for (;;) {
1119		rg_locked = 0;
1120
1121		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1122			rg_locked = 1;
1123			error = 0;
1124		} else {
1125			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, flags,
1126						   &al->al_rgd_gh);
1127		}
1128		switch (error) {
1129		case 0:
1130			if (try_rgrp_fit(rgd, al))
1131				goto out;
1132			if (rgd->rd_flags & GFS2_RDF_CHECK)
1133				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1134			if (!rg_locked)
1135				gfs2_glock_dq_uninit(&al->al_rgd_gh);
1136			break;
1137
1138		case GLR_TRYFAILED:
1139			skipped++;
1140			break;
1141
1142		default:
1143			return error;
1144		}
1145
1146		rgd = gfs2_rgrpd_get_next(rgd);
1147		if (!rgd)
1148			rgd = gfs2_rgrpd_get_first(sdp);
1149
1150		if (rgd == begin) {
1151			if (++loops >= 3)
1152				return -ENOSPC;
1153			if (!skipped)
1154				loops++;
1155			flags = 0;
1156			if (loops == 2)
1157				gfs2_log_flush(sdp, NULL);
1158		}
1159	}
1160
1161out:
1162	if (begin) {
1163		spin_lock(&sdp->sd_rindex_spin);
1164		list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
1165		spin_unlock(&sdp->sd_rindex_spin);
1166		rgd = gfs2_rgrpd_get_next(rgd);
1167		if (!rgd)
1168			rgd = gfs2_rgrpd_get_first(sdp);
1169		forward_rgrp_set(sdp, rgd);
1170	}
1171
 
 
 
 
 
 
1172	return 0;
1173}
1174
1175/**
1176 * gfs2_inplace_reserve_i - Reserve space in the filesystem
1177 * @ip: the inode to reserve space for
 
1178 *
1179 * Returns: errno
 
 
 
 
 
 
 
 
1180 */
1181
1182int gfs2_inplace_reserve_i(struct gfs2_inode *ip, int hold_rindex,
1183			   char *file, unsigned int line)
1184{
1185	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1186	struct gfs2_alloc *al = ip->i_alloc;
1187	int error = 0;
 
1188	u64 last_unlinked = NO_BLOCK;
1189	int tries = 0;
 
1190
1191	if (gfs2_assert_warn(sdp, al->al_requested))
 
 
1192		return -EINVAL;
1193
1194	if (hold_rindex) {
1195		/* We need to hold the rindex unless the inode we're using is
1196		   the rindex itself, in which case it's already held. */
1197		if (ip != GFS2_I(sdp->sd_rindex))
1198			error = gfs2_rindex_hold(sdp, &al->al_ri_gh);
1199		else if (!sdp->sd_rgrps) /* We may not have the rindex read
1200					    in, so: */
1201			error = gfs2_ri_update(ip);
1202		if (error)
1203			return error;
1204	}
1205
1206try_again:
1207	do {
1208		error = get_local_rgrp(ip, &last_unlinked);
1209		/* If there is no space, flushing the log may release some */
1210		if (error) {
1211			if (ip == GFS2_I(sdp->sd_rindex) &&
1212			    !sdp->sd_rindex_uptodate) {
1213				error = gfs2_ri_update(ip);
1214				if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215					return error;
1216				goto try_again;
1217			}
1218			gfs2_log_flush(sdp, NULL);
1219		}
1220	} while (error && tries++ < 3);
1221
1222	if (error) {
1223		if (hold_rindex && ip != GFS2_I(sdp->sd_rindex))
1224			gfs2_glock_dq_uninit(&al->al_ri_gh);
1225		return error;
1226	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228	/* no error, so we have the rgrp set in the inode's allocation. */
1229	al->al_file = file;
1230	al->al_line = line;
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	return 0;
1233}
1234
1235/**
1236 * gfs2_inplace_release - release an inplace reservation
1237 * @ip: the inode the reservation was taken out on
1238 *
1239 * Release a reservation made by gfs2_inplace_reserve().
1240 */
1241
1242void gfs2_inplace_release(struct gfs2_inode *ip)
1243{
1244	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1245	struct gfs2_alloc *al = ip->i_alloc;
1246
1247	if (gfs2_assert_warn(sdp, al->al_alloced <= al->al_requested) == -1)
1248		fs_warn(sdp, "al_alloced = %u, al_requested = %u "
1249			     "al_file = %s, al_line = %u\n",
1250		             al->al_alloced, al->al_requested, al->al_file,
1251			     al->al_line);
1252
1253	al->al_rgd = NULL;
1254	if (al->al_rgd_gh.gh_gl)
1255		gfs2_glock_dq_uninit(&al->al_rgd_gh);
1256	if (ip != GFS2_I(sdp->sd_rindex) && al->al_ri_gh.gh_gl)
1257		gfs2_glock_dq_uninit(&al->al_ri_gh);
1258}
1259
1260/**
1261 * gfs2_get_block_type - Check a block in a RG is of given type
1262 * @rgd: the resource group holding the block
1263 * @block: the block number
1264 *
1265 * Returns: The block type (GFS2_BLKST_*)
1266 */
1267
1268static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1269{
1270	struct gfs2_bitmap *bi = NULL;
1271	u32 length, rgrp_block, buf_block;
1272	unsigned int buf;
1273	unsigned char type;
1274
1275	length = rgd->rd_length;
1276	rgrp_block = block - rgd->rd_data0;
1277
1278	for (buf = 0; buf < length; buf++) {
1279		bi = rgd->rd_bits + buf;
1280		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1281			break;
1282	}
1283
1284	gfs2_assert(rgd->rd_sbd, buf < length);
1285	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1286
1287	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1288			   bi->bi_len, buf_block);
1289
1290	return type;
1291}
1292
1293/**
1294 * rgblk_search - find a block in @old_state, change allocation
1295 *           state to @new_state
1296 * @rgd: the resource group descriptor
1297 * @goal: the goal block within the RG (start here to search for avail block)
1298 * @old_state: GFS2_BLKST_XXX the before-allocation state to find
1299 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1300 * @n: The extent length
1301 *
1302 * Walk rgrp's bitmap to find bits that represent a block in @old_state.
1303 * Add the found bitmap buffer to the transaction.
1304 * Set the found bits to @new_state to change block's allocation state.
1305 *
1306 * This function never fails, because we wouldn't call it unless we
1307 * know (from reservation results, etc.) that a block is available.
1308 *
1309 * Scope of @goal and returned block is just within rgrp, not the whole
1310 * filesystem.
1311 *
1312 * Returns:  the block number allocated
1313 */
1314
1315static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
1316			unsigned char old_state, unsigned char new_state,
1317			unsigned int *n)
1318{
1319	struct gfs2_bitmap *bi = NULL;
1320	const u32 length = rgd->rd_length;
1321	u32 blk = BFITNOENT;
1322	unsigned int buf, x;
1323	const unsigned int elen = *n;
1324	const u8 *buffer = NULL;
1325
1326	*n = 0;
1327	/* Find bitmap block that contains bits for goal block */
1328	for (buf = 0; buf < length; buf++) {
1329		bi = rgd->rd_bits + buf;
1330		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1331		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1332			goal -= bi->bi_start * GFS2_NBBY;
1333			goto do_search;
1334		}
1335	}
1336	buf = 0;
1337	goal = 0;
1338
1339do_search:
1340	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1341	   "x <= length", instead of "x < length", because we typically start
1342	   the search in the middle of a bit block, but if we can't find an
1343	   allocatable block anywhere else, we want to be able wrap around and
1344	   search in the first part of our first-searched bit block.  */
1345	for (x = 0; x <= length; x++) {
1346		bi = rgd->rd_bits + buf;
1347
1348		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1349		    (old_state == GFS2_BLKST_FREE))
1350			goto skip;
1351
1352		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1353		   bitmaps, so we must search the originals for that. */
1354		buffer = bi->bi_bh->b_data + bi->bi_offset;
1355		if (old_state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1356			buffer = bi->bi_clone + bi->bi_offset;
1357
1358		blk = gfs2_bitfit(buffer, bi->bi_len, goal, old_state);
1359		if (blk != BFITNOENT)
1360			break;
1361
1362		if ((goal == 0) && (old_state == GFS2_BLKST_FREE))
1363			set_bit(GBF_FULL, &bi->bi_flags);
1364
1365		/* Try next bitmap block (wrap back to rgrp header if at end) */
1366skip:
1367		buf++;
1368		buf %= length;
1369		goal = 0;
1370	}
1371
1372	if (blk == BFITNOENT)
1373		return blk;
1374	*n = 1;
1375	if (old_state == new_state)
1376		goto out;
1377
1378	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1379	gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1380		    bi, blk, new_state);
1381	goal = blk;
1382	while (*n < elen) {
1383		goal++;
1384		if (goal >= (bi->bi_len * GFS2_NBBY))
1385			break;
1386		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1387		    GFS2_BLKST_FREE)
1388			break;
1389		gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1390			    bi, goal, new_state);
1391		(*n)++;
 
1392	}
1393out:
1394	return (bi->bi_start * GFS2_NBBY) + blk;
1395}
1396
1397/**
1398 * rgblk_free - Change alloc state of given block(s)
1399 * @sdp: the filesystem
 
1400 * @bstart: the start of a run of blocks to free
1401 * @blen: the length of the block run (all must lie within ONE RG!)
1402 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1403 *
1404 * Returns:  Resource group containing the block(s)
1405 */
1406
1407static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1408				     u32 blen, unsigned char new_state)
1409{
1410	struct gfs2_rgrpd *rgd;
1411	struct gfs2_bitmap *bi = NULL;
1412	u32 length, rgrp_blk, buf_blk;
1413	unsigned int buf;
1414
1415	rgd = gfs2_blk2rgrpd(sdp, bstart);
1416	if (!rgd) {
1417		if (gfs2_consist(sdp))
1418			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1419		return NULL;
1420	}
1421
1422	length = rgd->rd_length;
1423
1424	rgrp_blk = bstart - rgd->rd_data0;
1425
 
 
 
1426	while (blen--) {
1427		for (buf = 0; buf < length; buf++) {
1428			bi = rgd->rd_bits + buf;
1429			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1430				break;
 
 
 
 
 
 
 
1431		}
1432
1433		gfs2_assert(rgd->rd_sbd, buf < length);
1434
1435		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1436		rgrp_blk++;
1437
1438		if (!bi->bi_clone) {
1439			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1440					       GFP_NOFS | __GFP_NOFAIL);
1441			memcpy(bi->bi_clone + bi->bi_offset,
1442			       bi->bi_bh->b_data + bi->bi_offset,
1443			       bi->bi_len);
1444		}
1445		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1446		gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
1447			    bi, buf_blk, new_state);
1448	}
1449
1450	return rgd;
1451}
1452
1453/**
1454 * gfs2_rgrp_dump - print out an rgrp
1455 * @seq: The iterator
1456 * @gl: The glock in question
 
1457 *
1458 */
1459
1460int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
 
1461{
1462	const struct gfs2_rgrpd *rgd = gl->gl_object;
 
 
 
1463	if (rgd == NULL)
1464		return 0;
1465	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
 
1466		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1467		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1468	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469}
1470
1471static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1472{
1473	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
1474	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1475		(unsigned long long)rgd->rd_addr);
1476	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1477	gfs2_rgrp_dump(NULL, rgd->rd_gl);
 
1478	rgd->rd_flags |= GFS2_RDF_ERROR;
1479}
1480
1481/**
1482 * gfs2_alloc_block - Allocate one or more blocks
1483 * @ip: the inode to allocate the block for
1484 * @bn: Used to return the starting block number
1485 * @n: requested number of blocks/extent length (value/result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486 *
1487 * Returns: 0 or error
 
 
1488 */
1489
1490int gfs2_alloc_block(struct gfs2_inode *ip, u64 *bn, unsigned int *n)
 
1491{
1492	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1493	struct buffer_head *dibh;
1494	struct gfs2_alloc *al = ip->i_alloc;
1495	struct gfs2_rgrpd *rgd;
1496	u32 goal, blk;
1497	u64 block;
1498	int error;
1499
1500	/* Only happens if there is a bug in gfs2, return something distinctive
1501	 * to ensure that it is noticed.
1502	 */
1503	if (al == NULL)
1504		return -ECANCELED;
1505
1506	rgd = al->al_rgd;
 
 
 
1507
1508	if (rgrp_contains_block(rgd, ip->i_goal))
1509		goal = ip->i_goal - rgd->rd_data0;
1510	else
1511		goal = rgd->rd_last_alloc;
1512
1513	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED, n);
1514
1515	/* Since all blocks are reserved in advance, this shouldn't happen */
1516	if (blk == BFITNOENT)
1517		goto rgrp_error;
1518
1519	rgd->rd_last_alloc = blk;
1520	block = rgd->rd_data0 + blk;
1521	ip->i_goal = block;
1522	error = gfs2_meta_inode_buffer(ip, &dibh);
1523	if (error == 0) {
1524		struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
1525		gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1526		di->di_goal_meta = di->di_goal_data = cpu_to_be64(ip->i_goal);
1527		brelse(dibh);
1528	}
1529	if (rgd->rd_free < *n)
1530		goto rgrp_error;
1531
1532	rgd->rd_free -= *n;
1533
1534	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1535	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1536
1537	al->al_alloced += *n;
1538
1539	gfs2_statfs_change(sdp, 0, -(s64)*n, 0);
1540	gfs2_quota_change(ip, *n, ip->i_inode.i_uid, ip->i_inode.i_gid);
1541
1542	spin_lock(&sdp->sd_rindex_spin);
1543	rgd->rd_free_clone -= *n;
1544	spin_unlock(&sdp->sd_rindex_spin);
1545	trace_gfs2_block_alloc(ip, block, *n, GFS2_BLKST_USED);
1546	*bn = block;
1547	return 0;
1548
1549rgrp_error:
1550	gfs2_rgrp_error(rgd);
1551	return -EIO;
1552}
1553
1554/**
1555 * gfs2_alloc_di - Allocate a dinode
1556 * @dip: the directory that the inode is going in
1557 * @bn: the block number which is allocated
 
 
1558 * @generation: the generation number of the inode
1559 *
1560 * Returns: 0 on success or error
1561 */
1562
1563int gfs2_alloc_di(struct gfs2_inode *dip, u64 *bn, u64 *generation)
 
1564{
1565	struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode);
1566	struct gfs2_alloc *al = dip->i_alloc;
1567	struct gfs2_rgrpd *rgd = al->al_rgd;
1568	u32 blk;
1569	u64 block;
1570	unsigned int n = 1;
1571
1572	blk = rgblk_search(rgd, rgd->rd_last_alloc,
1573			   GFS2_BLKST_FREE, GFS2_BLKST_DINODE, &n);
 
 
 
 
 
1574
1575	/* Since all blocks are reserved in advance, this shouldn't happen */
1576	if (blk == BFITNOENT)
 
 
 
 
1577		goto rgrp_error;
 
1578
1579	rgd->rd_last_alloc = blk;
1580	block = rgd->rd_data0 + blk;
1581	if (rgd->rd_free == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582		goto rgrp_error;
 
1583
1584	rgd->rd_free--;
1585	rgd->rd_dinodes++;
1586	*generation = rgd->rd_igeneration++;
1587	if (*generation == 0)
1588		*generation = rgd->rd_igeneration++;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1591
1592	al->al_alloced++;
1593
1594	gfs2_statfs_change(sdp, 0, -1, +1);
1595	gfs2_trans_add_unrevoke(sdp, block, 1);
1596
1597	spin_lock(&sdp->sd_rindex_spin);
1598	rgd->rd_free_clone--;
1599	spin_unlock(&sdp->sd_rindex_spin);
1600	trace_gfs2_block_alloc(dip, block, 1, GFS2_BLKST_DINODE);
 
 
 
1601	*bn = block;
1602	return 0;
1603
1604rgrp_error:
1605	gfs2_rgrp_error(rgd);
1606	return -EIO;
1607}
1608
1609/**
1610 * __gfs2_free_blocks - free a contiguous run of block(s)
1611 * @ip: the inode these blocks are being freed from
 
1612 * @bstart: first block of a run of contiguous blocks
1613 * @blen: the length of the block run
1614 * @meta: 1 if the blocks represent metadata
1615 *
1616 */
1617
1618void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
 
1619{
1620	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1621	struct gfs2_rgrpd *rgd;
1622
1623	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1624	if (!rgd)
1625		return;
1626	trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE);
1627	rgd->rd_free += blen;
1628
1629	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1630	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1631
1632	gfs2_trans_add_rg(rgd);
1633
1634	/* Directories keep their data in the metadata address space */
1635	if (meta || ip->i_depth)
1636		gfs2_meta_wipe(ip, bstart, blen);
1637}
1638
1639/**
1640 * gfs2_free_meta - free a contiguous run of data block(s)
1641 * @ip: the inode these blocks are being freed from
 
1642 * @bstart: first block of a run of contiguous blocks
1643 * @blen: the length of the block run
1644 *
1645 */
1646
1647void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
 
1648{
1649	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1650
1651	__gfs2_free_blocks(ip, bstart, blen, 1);
1652	gfs2_statfs_change(sdp, 0, +blen, 0);
1653	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1654}
1655
1656void gfs2_unlink_di(struct inode *inode)
1657{
1658	struct gfs2_inode *ip = GFS2_I(inode);
1659	struct gfs2_sbd *sdp = GFS2_SB(inode);
1660	struct gfs2_rgrpd *rgd;
1661	u64 blkno = ip->i_no_addr;
1662
1663	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1664	if (!rgd)
1665		return;
1666	trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED);
1667	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
 
1668	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1669	gfs2_trans_add_rg(rgd);
1670}
1671
1672static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1673{
1674	struct gfs2_sbd *sdp = rgd->rd_sbd;
1675	struct gfs2_rgrpd *tmp_rgd;
1676
1677	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1678	if (!tmp_rgd)
1679		return;
1680	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1681
 
1682	if (!rgd->rd_dinodes)
1683		gfs2_consist_rgrpd(rgd);
1684	rgd->rd_dinodes--;
1685	rgd->rd_free++;
1686
1687	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1688	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1689
1690	gfs2_statfs_change(sdp, 0, +1, -1);
1691	gfs2_trans_add_rg(rgd);
1692}
1693
1694
1695void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1696{
1697	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1698	trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1699	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1700	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1701}
1702
1703/**
1704 * gfs2_check_blk_type - Check the type of a block
1705 * @sdp: The superblock
1706 * @no_addr: The block number to check
1707 * @type: The block type we are looking for
1708 *
1709 * Returns: 0 if the block type matches the expected type
1710 *          -ESTALE if it doesn't match
1711 *          or -ve errno if something went wrong while checking
1712 */
1713
1714int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1715{
1716	struct gfs2_rgrpd *rgd;
1717	struct gfs2_holder ri_gh, rgd_gh;
1718	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1719	int ri_locked = 0;
1720	int error;
1721
1722	if (!gfs2_glock_is_locked_by_me(ip->i_gl)) {
1723		error = gfs2_rindex_hold(sdp, &ri_gh);
1724		if (error)
1725			goto fail;
1726		ri_locked = 1;
1727	}
1728
1729	error = -EINVAL;
1730	rgd = gfs2_blk2rgrpd(sdp, no_addr);
1731	if (!rgd)
1732		goto fail_rindex;
1733
1734	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1735	if (error)
1736		goto fail_rindex;
1737
1738	if (gfs2_get_block_type(rgd, no_addr) != type)
 
 
 
 
 
1739		error = -ESTALE;
1740
1741	gfs2_glock_dq_uninit(&rgd_gh);
1742fail_rindex:
1743	if (ri_locked)
1744		gfs2_glock_dq_uninit(&ri_gh);
1745fail:
1746	return error;
1747}
1748
1749/**
1750 * gfs2_rlist_add - add a RG to a list of RGs
1751 * @sdp: the filesystem
1752 * @rlist: the list of resource groups
1753 * @block: the block
1754 *
1755 * Figure out what RG a block belongs to and add that RG to the list
1756 *
1757 * FIXME: Don't use NOFAIL
1758 *
1759 */
1760
1761void gfs2_rlist_add(struct gfs2_sbd *sdp, struct gfs2_rgrp_list *rlist,
1762		    u64 block)
1763{
 
1764	struct gfs2_rgrpd *rgd;
1765	struct gfs2_rgrpd **tmp;
1766	unsigned int new_space;
1767	unsigned int x;
1768
1769	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1770		return;
1771
1772	rgd = gfs2_blk2rgrpd(sdp, block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773	if (!rgd) {
1774		if (gfs2_consist(sdp))
1775			fs_err(sdp, "block = %llu\n", (unsigned long long)block);
1776		return;
1777	}
1778
1779	for (x = 0; x < rlist->rl_rgrps; x++)
1780		if (rlist->rl_rgd[x] == rgd)
 
 
1781			return;
 
 
1782
1783	if (rlist->rl_rgrps == rlist->rl_space) {
1784		new_space = rlist->rl_space + 10;
1785
1786		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1787			      GFP_NOFS | __GFP_NOFAIL);
1788
1789		if (rlist->rl_rgd) {
1790			memcpy(tmp, rlist->rl_rgd,
1791			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1792			kfree(rlist->rl_rgd);
1793		}
1794
1795		rlist->rl_space = new_space;
1796		rlist->rl_rgd = tmp;
1797	}
1798
1799	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1800}
1801
1802/**
1803 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1804 *      and initialize an array of glock holders for them
1805 * @rlist: the list of resource groups
1806 * @state: the lock state to acquire the RG lock in
1807 * @flags: the modifier flags for the holder structures
1808 *
1809 * FIXME: Don't use NOFAIL
1810 *
1811 */
1812
1813void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1814{
1815	unsigned int x;
1816
1817	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1818				GFP_NOFS | __GFP_NOFAIL);
 
1819	for (x = 0; x < rlist->rl_rgrps; x++)
1820		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1821				state, 0,
1822				&rlist->rl_ghs[x]);
1823}
1824
1825/**
1826 * gfs2_rlist_free - free a resource group list
1827 * @list: the list of resource groups
1828 *
1829 */
1830
1831void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1832{
1833	unsigned int x;
1834
1835	kfree(rlist->rl_rgd);
1836
1837	if (rlist->rl_ghs) {
1838		for (x = 0; x < rlist->rl_rgrps; x++)
1839			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1840		kfree(rlist->rl_ghs);
 
1841	}
1842}
1843
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/slab.h>
  10#include <linux/spinlock.h>
  11#include <linux/completion.h>
  12#include <linux/buffer_head.h>
  13#include <linux/fs.h>
  14#include <linux/gfs2_ondisk.h>
  15#include <linux/prefetch.h>
  16#include <linux/blkdev.h>
  17#include <linux/rbtree.h>
  18#include <linux/random.h>
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34#include "dir.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
 
 
 
 
 
 
 
 
 
 
  39/*
  40 * These routines are used by the resource group routines (rgrp.c)
  41 * to keep track of block allocation.  Each block is represented by two
  42 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  43 *
  44 * 0 = Free
  45 * 1 = Used (not metadata)
  46 * 2 = Unlinked (still in use) inode
  47 * 3 = Used (metadata)
  48 */
  49
  50struct gfs2_extent {
  51	struct gfs2_rbm rbm;
  52	u32 len;
  53};
  54
  55static const char valid_change[16] = {
  56	        /* current */
  57	/* n */ 0, 1, 1, 1,
  58	/* e */ 1, 0, 0, 0,
  59	/* w */ 0, 0, 0, 1,
  60	        1, 0, 0, 0
  61};
  62
  63static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  64			 const struct gfs2_inode *ip, bool nowrap);
  65
  66
  67/**
  68 * gfs2_setbit - Set a bit in the bitmaps
  69 * @rbm: The position of the bit to set
  70 * @do_clone: Also set the clone bitmap, if it exists
 
  71 * @new_state: the new state of the block
  72 *
  73 */
  74
  75static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
 
  76			       unsigned char new_state)
  77{
  78	unsigned char *byte1, *byte2, *end, cur_state;
  79	struct gfs2_bitmap *bi = rbm_bi(rbm);
  80	unsigned int buflen = bi->bi_bytes;
  81	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  82
  83	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  84	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  85
  86	BUG_ON(byte1 >= end);
  87
  88	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  89
  90	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  91		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
  92
  93		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
  94			rbm->offset, cur_state, new_state);
  95		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
  96			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
  97			(unsigned long long)bi->bi_bh->b_blocknr);
  98		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
  99			bi->bi_offset, bi->bi_bytes,
 100			(unsigned long long)gfs2_rbm_to_block(rbm));
 101		dump_stack();
 102		gfs2_consist_rgrpd(rbm->rgd);
 103		return;
 104	}
 105	*byte1 ^= (cur_state ^ new_state) << bit;
 106
 107	if (do_clone && bi->bi_clone) {
 108		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 109		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 110		*byte2 ^= (cur_state ^ new_state) << bit;
 111	}
 112}
 113
 114/**
 115 * gfs2_testbit - test a bit in the bitmaps
 116 * @rbm: The bit to test
 117 * @use_clone: If true, test the clone bitmap, not the official bitmap.
 118 *
 119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
 120 * not the "real" bitmaps, to avoid allocating recently freed blocks.
 121 *
 122 * Returns: The two bit block state of the requested bit
 123 */
 124
 125static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
 
 
 126{
 127	struct gfs2_bitmap *bi = rbm_bi(rbm);
 128	const u8 *buffer;
 129	const u8 *byte;
 130	unsigned int bit;
 131
 132	if (use_clone && bi->bi_clone)
 133		buffer = bi->bi_clone;
 134	else
 135		buffer = bi->bi_bh->b_data;
 136	buffer += bi->bi_offset;
 137	byte = buffer + (rbm->offset / GFS2_NBBY);
 138	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 139
 140	return (*byte >> bit) & GFS2_BIT_MASK;
 141}
 142
 143/**
 144 * gfs2_bit_search
 145 * @ptr: Pointer to bitmap data
 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 147 * @state: The state we are searching for
 148 *
 149 * We xor the bitmap data with a patter which is the bitwise opposite
 150 * of what we are looking for, this gives rise to a pattern of ones
 151 * wherever there is a match. Since we have two bits per entry, we
 152 * take this pattern, shift it down by one place and then and it with
 153 * the original. All the even bit positions (0,2,4, etc) then represent
 154 * successful matches, so we mask with 0x55555..... to remove the unwanted
 155 * odd bit positions.
 156 *
 157 * This allows searching of a whole u64 at once (32 blocks) with a
 158 * single test (on 64 bit arches).
 159 */
 160
 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 162{
 163	u64 tmp;
 164	static const u64 search[] = {
 165		[0] = 0xffffffffffffffffULL,
 166		[1] = 0xaaaaaaaaaaaaaaaaULL,
 167		[2] = 0x5555555555555555ULL,
 168		[3] = 0x0000000000000000ULL,
 169	};
 170	tmp = le64_to_cpu(*ptr) ^ search[state];
 171	tmp &= (tmp >> 1);
 172	tmp &= mask;
 173	return tmp;
 174}
 175
 176/**
 177 * rs_cmp - multi-block reservation range compare
 178 * @blk: absolute file system block number of the new reservation
 179 * @len: number of blocks in the new reservation
 180 * @rs: existing reservation to compare against
 181 *
 182 * returns: 1 if the block range is beyond the reach of the reservation
 183 *         -1 if the block range is before the start of the reservation
 184 *          0 if the block range overlaps with the reservation
 185 */
 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 187{
 188	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 189
 190	if (blk >= startblk + rs->rs_free)
 191		return 1;
 192	if (blk + len - 1 < startblk)
 193		return -1;
 194	return 0;
 195}
 196
 197/**
 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 199 *       a block in a given allocation state.
 200 * @buf: the buffer that holds the bitmaps
 201 * @len: the length (in bytes) of the buffer
 202 * @goal: start search at this block's bit-pair (within @buffer)
 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 204 *
 205 * Scope of @goal and returned block number is only within this bitmap buffer,
 206 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 207 * beginning of a bitmap block buffer, skipping any header structures, but
 208 * headers are always a multiple of 64 bits long so that the buffer is
 209 * always aligned to a 64 bit boundary.
 210 *
 211 * The size of the buffer is in bytes, but is it assumed that it is
 212 * always ok to read a complete multiple of 64 bits at the end
 213 * of the block in case the end is no aligned to a natural boundary.
 214 *
 215 * Return: the block number (bitmap buffer scope) that was found
 216 */
 217
 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 219		       u32 goal, u8 state)
 220{
 221	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 222	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 223	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 224	u64 tmp;
 225	u64 mask = 0x5555555555555555ULL;
 226	u32 bit;
 227
 
 
 228	/* Mask off bits we don't care about at the start of the search */
 229	mask <<= spoint;
 230	tmp = gfs2_bit_search(ptr, mask, state);
 231	ptr++;
 232	while(tmp == 0 && ptr < end) {
 233		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 234		ptr++;
 235	}
 236	/* Mask off any bits which are more than len bytes from the start */
 237	if (ptr == end && (len & (sizeof(u64) - 1)))
 238		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 239	/* Didn't find anything, so return */
 240	if (tmp == 0)
 241		return BFITNOENT;
 242	ptr--;
 243	bit = __ffs64(tmp);
 244	bit /= 2;	/* two bits per entry in the bitmap */
 245	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 246}
 247
 248/**
 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 250 * @rbm: The rbm with rgd already set correctly
 251 * @block: The block number (filesystem relative)
 252 *
 253 * This sets the bi and offset members of an rbm based on a
 254 * resource group and a filesystem relative block number. The
 255 * resource group must be set in the rbm on entry, the bi and
 256 * offset members will be set by this function.
 257 *
 258 * Returns: 0 on success, or an error code
 259 */
 260
 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 262{
 263	if (!rgrp_contains_block(rbm->rgd, block))
 264		return -E2BIG;
 265	rbm->bii = 0;
 266	rbm->offset = block - rbm->rgd->rd_data0;
 267	/* Check if the block is within the first block */
 268	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 269		return 0;
 270
 271	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 272	rbm->offset += (sizeof(struct gfs2_rgrp) -
 273			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 274	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 275	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 276	return 0;
 277}
 278
 279/**
 280 * gfs2_rbm_incr - increment an rbm structure
 281 * @rbm: The rbm with rgd already set correctly
 282 *
 283 * This function takes an existing rbm structure and increments it to the next
 284 * viable block offset.
 285 *
 286 * Returns: If incrementing the offset would cause the rbm to go past the
 287 *          end of the rgrp, true is returned, otherwise false.
 288 *
 289 */
 290
 291static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 292{
 293	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 294		rbm->offset++;
 295		return false;
 296	}
 297	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 298		return true;
 299
 300	rbm->offset = 0;
 301	rbm->bii++;
 302	return false;
 303}
 304
 305/**
 306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 307 * @rbm: Position to search (value/result)
 308 * @n_unaligned: Number of unaligned blocks to check
 309 * @len: Decremented for each block found (terminate on zero)
 310 *
 311 * Returns: true if a non-free block is encountered
 312 */
 313
 314static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 315{
 316	u32 n;
 317	u8 res;
 318
 319	for (n = 0; n < n_unaligned; n++) {
 320		res = gfs2_testbit(rbm, true);
 321		if (res != GFS2_BLKST_FREE)
 322			return true;
 323		(*len)--;
 324		if (*len == 0)
 325			return true;
 326		if (gfs2_rbm_incr(rbm))
 327			return true;
 328	}
 329
 330	return false;
 331}
 332
 333/**
 334 * gfs2_free_extlen - Return extent length of free blocks
 335 * @rrbm: Starting position
 336 * @len: Max length to check
 337 *
 338 * Starting at the block specified by the rbm, see how many free blocks
 339 * there are, not reading more than len blocks ahead. This can be done
 340 * using memchr_inv when the blocks are byte aligned, but has to be done
 341 * on a block by block basis in case of unaligned blocks. Also this
 342 * function can cope with bitmap boundaries (although it must stop on
 343 * a resource group boundary)
 344 *
 345 * Returns: Number of free blocks in the extent
 346 */
 347
 348static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 349{
 350	struct gfs2_rbm rbm = *rrbm;
 351	u32 n_unaligned = rbm.offset & 3;
 352	u32 size = len;
 353	u32 bytes;
 354	u32 chunk_size;
 355	u8 *ptr, *start, *end;
 356	u64 block;
 357	struct gfs2_bitmap *bi;
 358
 359	if (n_unaligned &&
 360	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 361		goto out;
 362
 363	n_unaligned = len & 3;
 364	/* Start is now byte aligned */
 365	while (len > 3) {
 366		bi = rbm_bi(&rbm);
 367		start = bi->bi_bh->b_data;
 368		if (bi->bi_clone)
 369			start = bi->bi_clone;
 370		start += bi->bi_offset;
 371		end = start + bi->bi_bytes;
 372		BUG_ON(rbm.offset & 3);
 373		start += (rbm.offset / GFS2_NBBY);
 374		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 375		ptr = memchr_inv(start, 0, bytes);
 376		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 377		chunk_size *= GFS2_NBBY;
 378		BUG_ON(len < chunk_size);
 379		len -= chunk_size;
 380		block = gfs2_rbm_to_block(&rbm);
 381		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 382			n_unaligned = 0;
 383			break;
 384		}
 385		if (ptr) {
 386			n_unaligned = 3;
 387			break;
 388		}
 389		n_unaligned = len & 3;
 390	}
 391
 392	/* Deal with any bits left over at the end */
 393	if (n_unaligned)
 394		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 395out:
 396	return size - len;
 397}
 398
 399/**
 400 * gfs2_bitcount - count the number of bits in a certain state
 401 * @rgd: the resource group descriptor
 402 * @buffer: the buffer that holds the bitmaps
 403 * @buflen: the length (in bytes) of the buffer
 404 * @state: the state of the block we're looking for
 405 *
 406 * Returns: The number of bits
 407 */
 408
 409static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 410			 unsigned int buflen, u8 state)
 411{
 412	const u8 *byte = buffer;
 413	const u8 *end = buffer + buflen;
 414	const u8 state1 = state << 2;
 415	const u8 state2 = state << 4;
 416	const u8 state3 = state << 6;
 417	u32 count = 0;
 418
 419	for (; byte < end; byte++) {
 420		if (((*byte) & 0x03) == state)
 421			count++;
 422		if (((*byte) & 0x0C) == state1)
 423			count++;
 424		if (((*byte) & 0x30) == state2)
 425			count++;
 426		if (((*byte) & 0xC0) == state3)
 427			count++;
 428	}
 429
 430	return count;
 431}
 432
 433/**
 434 * gfs2_rgrp_verify - Verify that a resource group is consistent
 
 435 * @rgd: the rgrp
 436 *
 437 */
 438
 439void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 440{
 441	struct gfs2_sbd *sdp = rgd->rd_sbd;
 442	struct gfs2_bitmap *bi = NULL;
 443	u32 length = rgd->rd_length;
 444	u32 count[4], tmp;
 445	int buf, x;
 446
 447	memset(count, 0, 4 * sizeof(u32));
 448
 449	/* Count # blocks in each of 4 possible allocation states */
 450	for (buf = 0; buf < length; buf++) {
 451		bi = rgd->rd_bits + buf;
 452		for (x = 0; x < 4; x++)
 453			count[x] += gfs2_bitcount(rgd,
 454						  bi->bi_bh->b_data +
 455						  bi->bi_offset,
 456						  bi->bi_bytes, x);
 457	}
 458
 459	if (count[0] != rgd->rd_free) {
 460		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
 461			count[0], rgd->rd_free);
 462		gfs2_consist_rgrpd(rgd);
 463		return;
 464	}
 465
 466	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 467	if (count[1] != tmp) {
 468		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
 469			count[1], tmp);
 470		gfs2_consist_rgrpd(rgd);
 471		return;
 472	}
 473
 474	if (count[2] + count[3] != rgd->rd_dinodes) {
 475		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
 476			count[2] + count[3], rgd->rd_dinodes);
 477		gfs2_consist_rgrpd(rgd);
 478		return;
 479	}
 480}
 481
 
 
 
 
 
 
 
 482/**
 483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 484 * @sdp: The GFS2 superblock
 485 * @blk: The data block number
 486 * @exact: True if this needs to be an exact match
 487 *
 488 * The @exact argument should be set to true by most callers. The exception
 489 * is when we need to match blocks which are not represented by the rgrp
 490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 491 * there for alignment purposes. Another way of looking at it is that @exact
 492 * matches only valid data/metadata blocks, but with @exact false, it will
 493 * match any block within the extent of the rgrp.
 494 *
 495 * Returns: The resource group, or NULL if not found
 496 */
 497
 498struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 499{
 500	struct rb_node *n, *next;
 501	struct gfs2_rgrpd *cur;
 502
 503	spin_lock(&sdp->sd_rindex_spin);
 504	n = sdp->sd_rindex_tree.rb_node;
 505	while (n) {
 506		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 507		next = NULL;
 508		if (blk < cur->rd_addr)
 509			next = n->rb_left;
 510		else if (blk >= cur->rd_data0 + cur->rd_data)
 511			next = n->rb_right;
 512		if (next == NULL) {
 513			spin_unlock(&sdp->sd_rindex_spin);
 514			if (exact) {
 515				if (blk < cur->rd_addr)
 516					return NULL;
 517				if (blk >= cur->rd_data0 + cur->rd_data)
 518					return NULL;
 519			}
 520			return cur;
 521		}
 522		n = next;
 523	}
 
 524	spin_unlock(&sdp->sd_rindex_spin);
 525
 526	return NULL;
 527}
 528
 529/**
 530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 531 * @sdp: The GFS2 superblock
 532 *
 533 * Returns: The first rgrp in the filesystem
 534 */
 535
 536struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 537{
 538	const struct rb_node *n;
 539	struct gfs2_rgrpd *rgd;
 540
 541	spin_lock(&sdp->sd_rindex_spin);
 542	n = rb_first(&sdp->sd_rindex_tree);
 543	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 544	spin_unlock(&sdp->sd_rindex_spin);
 545
 546	return rgd;
 547}
 548
 549/**
 550 * gfs2_rgrpd_get_next - get the next RG
 551 * @rgd: the resource group descriptor
 552 *
 553 * Returns: The next rgrp
 554 */
 555
 556struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 557{
 558	struct gfs2_sbd *sdp = rgd->rd_sbd;
 559	const struct rb_node *n;
 560
 561	spin_lock(&sdp->sd_rindex_spin);
 562	n = rb_next(&rgd->rd_node);
 563	if (n == NULL)
 564		n = rb_first(&sdp->sd_rindex_tree);
 565
 566	if (unlikely(&rgd->rd_node == n)) {
 567		spin_unlock(&sdp->sd_rindex_spin);
 568		return NULL;
 569	}
 570	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 571	spin_unlock(&sdp->sd_rindex_spin);
 572	return rgd;
 573}
 574
 575void check_and_update_goal(struct gfs2_inode *ip)
 576{
 577	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 578	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 579		ip->i_goal = ip->i_no_addr;
 580}
 581
 582void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 583{
 584	int x;
 585
 586	for (x = 0; x < rgd->rd_length; x++) {
 587		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 588		kfree(bi->bi_clone);
 589		bi->bi_clone = NULL;
 590	}
 591}
 592
 593static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
 594		    const char *fs_id_buf)
 595{
 596	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
 597
 598	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
 599		       (unsigned long long)ip->i_no_addr,
 600		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 601		       rs->rs_rbm.offset, rs->rs_free);
 602}
 603
 604/**
 605 * __rs_deltree - remove a multi-block reservation from the rgd tree
 606 * @rs: The reservation to remove
 607 *
 608 */
 609static void __rs_deltree(struct gfs2_blkreserv *rs)
 610{
 
 611	struct gfs2_rgrpd *rgd;
 
 612
 613	if (!gfs2_rs_active(rs))
 614		return;
 615
 616	rgd = rs->rs_rbm.rgd;
 617	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 618	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 619	RB_CLEAR_NODE(&rs->rs_node);
 620
 621	if (rs->rs_free) {
 622		u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
 623				 rs->rs_free - 1;
 624		struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
 625		struct gfs2_bitmap *start, *last;
 626
 627		/* return reserved blocks to the rgrp */
 628		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 629		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 630		/* The rgrp extent failure point is likely not to increase;
 631		   it will only do so if the freed blocks are somehow
 632		   contiguous with a span of free blocks that follows. Still,
 633		   it will force the number to be recalculated later. */
 634		rgd->rd_extfail_pt += rs->rs_free;
 635		rs->rs_free = 0;
 636		if (gfs2_rbm_from_block(&last_rbm, last_block))
 637			return;
 638		start = rbm_bi(&rs->rs_rbm);
 639		last = rbm_bi(&last_rbm);
 640		do
 641			clear_bit(GBF_FULL, &start->bi_flags);
 642		while (start++ != last);
 643	}
 644}
 645
 646/**
 647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 648 * @rs: The reservation to remove
 649 *
 650 */
 651void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 652{
 653	struct gfs2_rgrpd *rgd;
 654
 655	rgd = rs->rs_rbm.rgd;
 656	if (rgd) {
 657		spin_lock(&rgd->rd_rsspin);
 658		__rs_deltree(rs);
 659		BUG_ON(rs->rs_free);
 660		spin_unlock(&rgd->rd_rsspin);
 661	}
 662}
 663
 664/**
 665 * gfs2_rs_delete - delete a multi-block reservation
 666 * @ip: The inode for this reservation
 667 * @wcount: The inode's write count, or NULL
 668 *
 669 */
 670void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
 671{
 672	down_write(&ip->i_rw_mutex);
 673	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 674		gfs2_rs_deltree(&ip->i_res);
 675	up_write(&ip->i_rw_mutex);
 676}
 677
 678/**
 679 * return_all_reservations - return all reserved blocks back to the rgrp.
 680 * @rgd: the rgrp that needs its space back
 681 *
 682 * We previously reserved a bunch of blocks for allocation. Now we need to
 683 * give them back. This leave the reservation structures in tact, but removes
 684 * all of their corresponding "no-fly zones".
 685 */
 686static void return_all_reservations(struct gfs2_rgrpd *rgd)
 687{
 688	struct rb_node *n;
 689	struct gfs2_blkreserv *rs;
 690
 691	spin_lock(&rgd->rd_rsspin);
 692	while ((n = rb_first(&rgd->rd_rstree))) {
 693		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 694		__rs_deltree(rs);
 695	}
 696	spin_unlock(&rgd->rd_rsspin);
 697}
 698
 699void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 700{
 701	struct rb_node *n;
 702	struct gfs2_rgrpd *rgd;
 703	struct gfs2_glock *gl;
 704
 705	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 706		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 707		gl = rgd->rd_gl;
 708
 709		rb_erase(n, &sdp->sd_rindex_tree);
 
 710
 711		if (gl) {
 712			if (gl->gl_state != LM_ST_UNLOCKED) {
 713				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
 714				flush_delayed_work(&gl->gl_work);
 715			}
 716			gfs2_rgrp_brelse(rgd);
 717			glock_clear_object(gl, rgd);
 718			gfs2_glock_put(gl);
 719		}
 720
 721		gfs2_free_clones(rgd);
 722		kfree(rgd->rd_bits);
 723		rgd->rd_bits = NULL;
 724		return_all_reservations(rgd);
 725		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 726	}
 727}
 728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729/**
 730 * gfs2_compute_bitstructs - Compute the bitmap sizes
 731 * @rgd: The resource group descriptor
 732 *
 733 * Calculates bitmap descriptors, one for each block that contains bitmap data
 734 *
 735 * Returns: errno
 736 */
 737
 738static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 739{
 740	struct gfs2_sbd *sdp = rgd->rd_sbd;
 741	struct gfs2_bitmap *bi;
 742	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 743	u32 bytes_left, bytes;
 744	int x;
 745
 746	if (!length)
 747		return -EINVAL;
 748
 749	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 750	if (!rgd->rd_bits)
 751		return -ENOMEM;
 752
 753	bytes_left = rgd->rd_bitbytes;
 754
 755	for (x = 0; x < length; x++) {
 756		bi = rgd->rd_bits + x;
 757
 758		bi->bi_flags = 0;
 759		/* small rgrp; bitmap stored completely in header block */
 760		if (length == 1) {
 761			bytes = bytes_left;
 762			bi->bi_offset = sizeof(struct gfs2_rgrp);
 763			bi->bi_start = 0;
 764			bi->bi_bytes = bytes;
 765			bi->bi_blocks = bytes * GFS2_NBBY;
 766		/* header block */
 767		} else if (x == 0) {
 768			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 769			bi->bi_offset = sizeof(struct gfs2_rgrp);
 770			bi->bi_start = 0;
 771			bi->bi_bytes = bytes;
 772			bi->bi_blocks = bytes * GFS2_NBBY;
 773		/* last block */
 774		} else if (x + 1 == length) {
 775			bytes = bytes_left;
 776			bi->bi_offset = sizeof(struct gfs2_meta_header);
 777			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 778			bi->bi_bytes = bytes;
 779			bi->bi_blocks = bytes * GFS2_NBBY;
 780		/* other blocks */
 781		} else {
 782			bytes = sdp->sd_sb.sb_bsize -
 783				sizeof(struct gfs2_meta_header);
 784			bi->bi_offset = sizeof(struct gfs2_meta_header);
 785			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 786			bi->bi_bytes = bytes;
 787			bi->bi_blocks = bytes * GFS2_NBBY;
 788		}
 789
 790		bytes_left -= bytes;
 791	}
 792
 793	if (bytes_left) {
 794		gfs2_consist_rgrpd(rgd);
 795		return -EIO;
 796	}
 797	bi = rgd->rd_bits + (length - 1);
 798	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
 799		gfs2_lm(sdp,
 800			"ri_addr = %llu\n"
 801			"ri_length = %u\n"
 802			"ri_data0 = %llu\n"
 803			"ri_data = %u\n"
 804			"ri_bitbytes = %u\n"
 805			"start=%u len=%u offset=%u\n",
 806			(unsigned long long)rgd->rd_addr,
 807			rgd->rd_length,
 808			(unsigned long long)rgd->rd_data0,
 809			rgd->rd_data,
 810			rgd->rd_bitbytes,
 811			bi->bi_start, bi->bi_bytes, bi->bi_offset);
 812		gfs2_consist_rgrpd(rgd);
 813		return -EIO;
 814	}
 815
 816	return 0;
 817}
 818
 819/**
 820 * gfs2_ri_total - Total up the file system space, according to the rindex.
 821 * @sdp: the filesystem
 822 *
 823 */
 824u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 825{
 826	u64 total_data = 0;	
 827	struct inode *inode = sdp->sd_rindex;
 828	struct gfs2_inode *ip = GFS2_I(inode);
 829	char buf[sizeof(struct gfs2_rindex)];
 
 830	int error, rgrps;
 831
 
 
 832	for (rgrps = 0;; rgrps++) {
 833		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 834
 835		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 836			break;
 837		error = gfs2_internal_read(ip, buf, &pos,
 838					   sizeof(struct gfs2_rindex));
 839		if (error != sizeof(struct gfs2_rindex))
 840			break;
 841		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 842	}
 
 843	return total_data;
 844}
 845
 846static int rgd_insert(struct gfs2_rgrpd *rgd)
 847{
 848	struct gfs2_sbd *sdp = rgd->rd_sbd;
 849	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 850
 851	/* Figure out where to put new node */
 852	while (*newn) {
 853		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 854						  rd_node);
 855
 856		parent = *newn;
 857		if (rgd->rd_addr < cur->rd_addr)
 858			newn = &((*newn)->rb_left);
 859		else if (rgd->rd_addr > cur->rd_addr)
 860			newn = &((*newn)->rb_right);
 861		else
 862			return -EEXIST;
 863	}
 864
 865	rb_link_node(&rgd->rd_node, parent, newn);
 866	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 867	sdp->sd_rgrps++;
 868	return 0;
 
 869}
 870
 871/**
 872 * read_rindex_entry - Pull in a new resource index entry from the disk
 873 * @ip: Pointer to the rindex inode
 874 *
 875 * Returns: 0 on success, > 0 on EOF, error code otherwise
 876 */
 877
 878static int read_rindex_entry(struct gfs2_inode *ip)
 
 879{
 880	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 881	const unsigned bsize = sdp->sd_sb.sb_bsize;
 882	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 883	struct gfs2_rindex buf;
 884	int error;
 885	struct gfs2_rgrpd *rgd;
 886
 887	if (pos >= i_size_read(&ip->i_inode))
 888		return 1;
 889
 890	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 891				   sizeof(struct gfs2_rindex));
 892
 893	if (error != sizeof(struct gfs2_rindex))
 894		return (error == 0) ? 1 : error;
 
 
 
 
 895
 896	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 897	error = -ENOMEM;
 898	if (!rgd)
 899		return error;
 900
 
 
 901	rgd->rd_sbd = sdp;
 902	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 903	rgd->rd_length = be32_to_cpu(buf.ri_length);
 904	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 905	rgd->rd_data = be32_to_cpu(buf.ri_data);
 906	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 907	spin_lock_init(&rgd->rd_rsspin);
 908
 
 
 
 
 909	error = compute_bitstructs(rgd);
 910	if (error)
 911		goto fail;
 912
 913	error = gfs2_glock_get(sdp, rgd->rd_addr,
 914			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 915	if (error)
 916		goto fail;
 917
 918	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 919	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 920	if (rgd->rd_data > sdp->sd_max_rg_data)
 921		sdp->sd_max_rg_data = rgd->rd_data;
 922	spin_lock(&sdp->sd_rindex_spin);
 923	error = rgd_insert(rgd);
 924	spin_unlock(&sdp->sd_rindex_spin);
 925	if (!error) {
 926		glock_set_object(rgd->rd_gl, rgd);
 927		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 928		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 929						    rgd->rd_length) * bsize) - 1;
 930		return 0;
 931	}
 932
 933	error = 0; /* someone else read in the rgrp; free it and ignore it */
 934	gfs2_glock_put(rgd->rd_gl);
 935
 936fail:
 937	kfree(rgd->rd_bits);
 938	rgd->rd_bits = NULL;
 939	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 940	return error;
 941}
 942
 943/**
 944 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 945 * @sdp: the GFS2 superblock
 946 *
 947 * The purpose of this function is to select a subset of the resource groups
 948 * and mark them as PREFERRED. We do it in such a way that each node prefers
 949 * to use a unique set of rgrps to minimize glock contention.
 950 */
 951static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 952{
 953	struct gfs2_rgrpd *rgd, *first;
 954	int i;
 955
 956	/* Skip an initial number of rgrps, based on this node's journal ID.
 957	   That should start each node out on its own set. */
 958	rgd = gfs2_rgrpd_get_first(sdp);
 959	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 960		rgd = gfs2_rgrpd_get_next(rgd);
 961	first = rgd;
 962
 963	do {
 964		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 965		for (i = 0; i < sdp->sd_journals; i++) {
 966			rgd = gfs2_rgrpd_get_next(rgd);
 967			if (!rgd || rgd == first)
 968				break;
 969		}
 970	} while (rgd && rgd != first);
 971}
 972
 973/**
 974 * gfs2_ri_update - Pull in a new resource index from the disk
 975 * @ip: pointer to the rindex inode
 976 *
 977 * Returns: 0 on successful update, error code otherwise
 978 */
 979
 980static int gfs2_ri_update(struct gfs2_inode *ip)
 981{
 982	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 
 
 
 
 983	int error;
 984
 985	do {
 986		error = read_rindex_entry(ip);
 987	} while (error == 0);
 988
 989	if (error < 0)
 990		return error;
 991
 992	set_rgrp_preferences(sdp);
 
 
 
 
 993
 
 
 
 
 994	sdp->sd_rindex_uptodate = 1;
 995	return 0;
 996}
 997
 998/**
 999 * gfs2_rindex_update - Update the rindex if required
1000 * @sdp: The GFS2 superblock
 
1001 *
1002 * We grab a lock on the rindex inode to make sure that it doesn't
1003 * change whilst we are performing an operation. We keep this lock
1004 * for quite long periods of time compared to other locks. This
1005 * doesn't matter, since it is shared and it is very, very rarely
1006 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1007 *
1008 * This makes sure that we're using the latest copy of the resource index
1009 * special file, which might have been updated if someone expanded the
1010 * filesystem (via gfs2_grow utility), which adds new resource groups.
1011 *
1012 * Returns: 0 on succeess, error code otherwise
1013 */
1014
1015int gfs2_rindex_update(struct gfs2_sbd *sdp)
1016{
1017	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1018	struct gfs2_glock *gl = ip->i_gl;
1019	struct gfs2_holder ri_gh;
1020	int error = 0;
1021	int unlock_required = 0;
 
 
1022
1023	/* Read new copy from disk if we don't have the latest */
1024	if (!sdp->sd_rindex_uptodate) {
1025		if (!gfs2_glock_is_locked_by_me(gl)) {
1026			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 
1027			if (error)
1028				return error;
1029			unlock_required = 1;
1030		}
1031		if (!sdp->sd_rindex_uptodate)
1032			error = gfs2_ri_update(ip);
1033		if (unlock_required)
1034			gfs2_glock_dq_uninit(&ri_gh);
1035	}
1036
1037	return error;
1038}
1039
1040static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1041{
1042	const struct gfs2_rgrp *str = buf;
1043	u32 rg_flags;
1044
1045	rg_flags = be32_to_cpu(str->rg_flags);
1046	rg_flags &= ~GFS2_RDF_MASK;
1047	rgd->rd_flags &= GFS2_RDF_MASK;
1048	rgd->rd_flags |= rg_flags;
1049	rgd->rd_free = be32_to_cpu(str->rg_free);
1050	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1051	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1052	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1053}
1054
1055static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1056{
1057	const struct gfs2_rgrp *str = buf;
1058
1059	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1060	rgl->rl_flags = str->rg_flags;
1061	rgl->rl_free = str->rg_free;
1062	rgl->rl_dinodes = str->rg_dinodes;
1063	rgl->rl_igeneration = str->rg_igeneration;
1064	rgl->__pad = 0UL;
1065}
1066
1067static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1068{
1069	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1070	struct gfs2_rgrp *str = buf;
1071	u32 crc;
1072
1073	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1074	str->rg_free = cpu_to_be32(rgd->rd_free);
1075	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1076	if (next == NULL)
1077		str->rg_skip = 0;
1078	else if (next->rd_addr > rgd->rd_addr)
1079		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1080	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1081	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1082	str->rg_data = cpu_to_be32(rgd->rd_data);
1083	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1084	str->rg_crc = 0;
1085	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1086	str->rg_crc = cpu_to_be32(crc);
1087
1088	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1089	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1090}
1091
1092static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1093{
1094	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1095	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1096	struct gfs2_sbd *sdp = rgd->rd_sbd;
1097	int valid = 1;
1098
1099	if (rgl->rl_flags != str->rg_flags) {
1100		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1101			(unsigned long long)rgd->rd_addr,
1102		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1103		valid = 0;
1104	}
1105	if (rgl->rl_free != str->rg_free) {
1106		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1107			(unsigned long long)rgd->rd_addr,
1108			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1109		valid = 0;
1110	}
1111	if (rgl->rl_dinodes != str->rg_dinodes) {
1112		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1113			(unsigned long long)rgd->rd_addr,
1114			be32_to_cpu(rgl->rl_dinodes),
1115			be32_to_cpu(str->rg_dinodes));
1116		valid = 0;
1117	}
1118	if (rgl->rl_igeneration != str->rg_igeneration) {
1119		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1120			(unsigned long long)rgd->rd_addr,
1121			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1122			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1123		valid = 0;
1124	}
1125	return valid;
1126}
1127
1128static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1129{
1130	struct gfs2_bitmap *bi;
1131	const u32 length = rgd->rd_length;
1132	const u8 *buffer = NULL;
1133	u32 i, goal, count = 0;
1134
1135	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1136		goal = 0;
1137		buffer = bi->bi_bh->b_data + bi->bi_offset;
1138		WARN_ON(!buffer_uptodate(bi->bi_bh));
1139		while (goal < bi->bi_blocks) {
1140			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1141					   GFS2_BLKST_UNLINKED);
1142			if (goal == BFITNOENT)
1143				break;
1144			count++;
1145			goal++;
1146		}
1147	}
1148
1149	return count;
1150}
1151
1152
1153/**
1154 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1155 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1156 *
1157 * Read in all of a Resource Group's header and bitmap blocks.
1158 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1159 *
1160 * Returns: errno
1161 */
1162
1163static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1164{
1165	struct gfs2_sbd *sdp = rgd->rd_sbd;
1166	struct gfs2_glock *gl = rgd->rd_gl;
1167	unsigned int length = rgd->rd_length;
1168	struct gfs2_bitmap *bi;
1169	unsigned int x, y;
1170	int error;
1171
1172	if (rgd->rd_bits[0].bi_bh != NULL)
 
 
 
 
 
 
1173		return 0;
 
 
1174
1175	for (x = 0; x < length; x++) {
1176		bi = rgd->rd_bits + x;
1177		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1178		if (error)
1179			goto fail;
1180	}
1181
1182	for (y = length; y--;) {
1183		bi = rgd->rd_bits + y;
1184		error = gfs2_meta_wait(sdp, bi->bi_bh);
1185		if (error)
1186			goto fail;
1187		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1188					      GFS2_METATYPE_RG)) {
1189			error = -EIO;
1190			goto fail;
1191		}
1192	}
1193
1194	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1195		for (x = 0; x < length; x++)
1196			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1197		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1198		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1199		rgd->rd_free_clone = rgd->rd_free;
1200		/* max out the rgrp allocation failure point */
1201		rgd->rd_extfail_pt = rgd->rd_free;
1202	}
1203	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1204		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1205		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1206				     rgd->rd_bits[0].bi_bh->b_data);
1207	}
1208	else if (sdp->sd_args.ar_rgrplvb) {
1209		if (!gfs2_rgrp_lvb_valid(rgd)){
1210			gfs2_consist_rgrpd(rgd);
1211			error = -EIO;
1212			goto fail;
1213		}
1214		if (rgd->rd_rgl->rl_unlinked == 0)
1215			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1216	}
 
 
 
 
 
 
 
 
1217	return 0;
1218
1219fail:
1220	while (x--) {
1221		bi = rgd->rd_bits + x;
1222		brelse(bi->bi_bh);
1223		bi->bi_bh = NULL;
1224		gfs2_assert_warn(sdp, !bi->bi_clone);
1225	}
 
1226
1227	return error;
1228}
1229
1230static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1231{
1232	u32 rl_flags;
1233
1234	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1235		return 0;
1236
1237	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1238		return gfs2_rgrp_bh_get(rgd);
1239
1240	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1241	rl_flags &= ~GFS2_RDF_MASK;
1242	rgd->rd_flags &= GFS2_RDF_MASK;
1243	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1244	if (rgd->rd_rgl->rl_unlinked == 0)
1245		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1246	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1247	rgd->rd_free_clone = rgd->rd_free;
1248	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1249	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1250	return 0;
1251}
1252
1253int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1254{
1255	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1256	struct gfs2_sbd *sdp = rgd->rd_sbd;
1257
1258	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1259		return 0;
1260	return gfs2_rgrp_bh_get(rgd);
 
1261}
1262
1263/**
1264 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1265 * @rgd: The resource group
1266 *
1267 */
1268
1269void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1270{
 
1271	int x, length = rgd->rd_length;
1272
 
 
 
 
 
 
 
1273	for (x = 0; x < length; x++) {
1274		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1275		if (bi->bi_bh) {
1276			brelse(bi->bi_bh);
1277			bi->bi_bh = NULL;
1278		}
1279	}
 
 
1280}
1281
1282int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1283			     struct buffer_head *bh,
1284			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1285{
1286	struct super_block *sb = sdp->sd_vfs;
 
 
 
1287	u64 blk;
1288	sector_t start = 0;
1289	sector_t nr_blks = 0;
1290	int rv;
1291	unsigned int x;
1292	u32 trimmed = 0;
1293	u8 diff;
1294
1295	for (x = 0; x < bi->bi_bytes; x++) {
1296		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1297		clone += bi->bi_offset;
1298		clone += x;
1299		if (bh) {
1300			const u8 *orig = bh->b_data + bi->bi_offset + x;
1301			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1302		} else {
1303			diff = ~(*clone | (*clone >> 1));
1304		}
1305		diff &= 0x55;
1306		if (diff == 0)
1307			continue;
1308		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1309		while(diff) {
1310			if (diff & 1) {
1311				if (nr_blks == 0)
1312					goto start_new_extent;
1313				if ((start + nr_blks) != blk) {
1314					if (nr_blks >= minlen) {
1315						rv = sb_issue_discard(sb,
1316							start, nr_blks,
1317							GFP_NOFS, 0);
1318						if (rv)
1319							goto fail;
1320						trimmed += nr_blks;
1321					}
1322					nr_blks = 0;
1323start_new_extent:
1324					start = blk;
1325				}
1326				nr_blks++;
1327			}
1328			diff >>= 2;
1329			blk++;
1330		}
1331	}
1332	if (nr_blks >= minlen) {
1333		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1334		if (rv)
1335			goto fail;
1336		trimmed += nr_blks;
1337	}
1338	if (ptrimmed)
1339		*ptrimmed = trimmed;
1340	return 0;
1341
1342fail:
1343	if (sdp->sd_args.ar_discard)
1344		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1345	sdp->sd_args.ar_discard = 0;
1346	return -EIO;
1347}
1348
1349/**
1350 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1351 * @filp: Any file on the filesystem
1352 * @argp: Pointer to the arguments (also used to pass result)
1353 *
1354 * Returns: 0 on success, otherwise error code
1355 */
1356
1357int gfs2_fitrim(struct file *filp, void __user *argp)
1358{
1359	struct inode *inode = file_inode(filp);
1360	struct gfs2_sbd *sdp = GFS2_SB(inode);
1361	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1362	struct buffer_head *bh;
1363	struct gfs2_rgrpd *rgd;
1364	struct gfs2_rgrpd *rgd_end;
1365	struct gfs2_holder gh;
1366	struct fstrim_range r;
1367	int ret = 0;
1368	u64 amt;
1369	u64 trimmed = 0;
1370	u64 start, end, minlen;
1371	unsigned int x;
1372	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1373
1374	if (!capable(CAP_SYS_ADMIN))
1375		return -EPERM;
1376
1377	if (!blk_queue_discard(q))
1378		return -EOPNOTSUPP;
1379
1380	if (copy_from_user(&r, argp, sizeof(r)))
1381		return -EFAULT;
1382
1383	ret = gfs2_rindex_update(sdp);
1384	if (ret)
1385		return ret;
1386
1387	start = r.start >> bs_shift;
1388	end = start + (r.len >> bs_shift);
1389	minlen = max_t(u64, r.minlen,
1390		       q->limits.discard_granularity) >> bs_shift;
1391
1392	if (end <= start || minlen > sdp->sd_max_rg_data)
1393		return -EINVAL;
1394
1395	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1396	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1397
1398	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1399	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1400		return -EINVAL; /* start is beyond the end of the fs */
1401
1402	while (1) {
1403
1404		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1405		if (ret)
1406			goto out;
1407
1408		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1409			/* Trim each bitmap in the rgrp */
1410			for (x = 0; x < rgd->rd_length; x++) {
1411				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1412				ret = gfs2_rgrp_send_discards(sdp,
1413						rgd->rd_data0, NULL, bi, minlen,
1414						&amt);
1415				if (ret) {
1416					gfs2_glock_dq_uninit(&gh);
1417					goto out;
1418				}
1419				trimmed += amt;
1420			}
1421
1422			/* Mark rgrp as having been trimmed */
1423			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1424			if (ret == 0) {
1425				bh = rgd->rd_bits[0].bi_bh;
1426				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1427				gfs2_trans_add_meta(rgd->rd_gl, bh);
1428				gfs2_rgrp_out(rgd, bh->b_data);
1429				gfs2_trans_end(sdp);
1430			}
1431		}
1432		gfs2_glock_dq_uninit(&gh);
1433
1434		if (rgd == rgd_end)
1435			break;
1436
1437		rgd = gfs2_rgrpd_get_next(rgd);
1438	}
1439
1440out:
1441	r.len = trimmed << bs_shift;
1442	if (copy_to_user(argp, &r, sizeof(r)))
1443		return -EFAULT;
1444
1445	return ret;
1446}
1447
1448/**
1449 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1450 * @ip: the inode structure
1451 *
1452 */
1453static void rs_insert(struct gfs2_inode *ip)
1454{
1455	struct rb_node **newn, *parent = NULL;
1456	int rc;
1457	struct gfs2_blkreserv *rs = &ip->i_res;
1458	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1459	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1460
1461	BUG_ON(gfs2_rs_active(rs));
1462
1463	spin_lock(&rgd->rd_rsspin);
1464	newn = &rgd->rd_rstree.rb_node;
1465	while (*newn) {
1466		struct gfs2_blkreserv *cur =
1467			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1468
1469		parent = *newn;
1470		rc = rs_cmp(fsblock, rs->rs_free, cur);
1471		if (rc > 0)
1472			newn = &((*newn)->rb_right);
1473		else if (rc < 0)
1474			newn = &((*newn)->rb_left);
1475		else {
1476			spin_unlock(&rgd->rd_rsspin);
1477			WARN_ON(1);
1478			return;
1479		}
1480	}
1481
1482	rb_link_node(&rs->rs_node, parent, newn);
1483	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1484
1485	/* Do our rgrp accounting for the reservation */
1486	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1487	spin_unlock(&rgd->rd_rsspin);
1488	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1489}
1490
1491/**
1492 * rgd_free - return the number of free blocks we can allocate.
1493 * @rgd: the resource group
1494 *
1495 * This function returns the number of free blocks for an rgrp.
1496 * That's the clone-free blocks (blocks that are free, not including those
1497 * still being used for unlinked files that haven't been deleted.)
1498 *
1499 * It also subtracts any blocks reserved by someone else, but does not
1500 * include free blocks that are still part of our current reservation,
1501 * because obviously we can (and will) allocate them.
1502 */
1503static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1504{
1505	u32 tot_reserved, tot_free;
1506
1507	if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1508		return 0;
1509	tot_reserved = rgd->rd_reserved - rs->rs_free;
1510
1511	if (rgd->rd_free_clone < tot_reserved)
1512		tot_reserved = 0;
1513
1514	tot_free = rgd->rd_free_clone - tot_reserved;
1515
1516	return tot_free;
1517}
1518
1519/**
1520 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1521 * @rgd: the resource group descriptor
1522 * @ip: pointer to the inode for which we're reserving blocks
1523 * @ap: the allocation parameters
1524 *
 
1525 */
1526
1527static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1528			   const struct gfs2_alloc_parms *ap)
1529{
1530	struct gfs2_rbm rbm = { .rgd = rgd, };
1531	u64 goal;
1532	struct gfs2_blkreserv *rs = &ip->i_res;
1533	u32 extlen;
1534	u32 free_blocks = rgd_free(rgd, rs);
1535	int ret;
1536	struct inode *inode = &ip->i_inode;
1537
1538	if (S_ISDIR(inode->i_mode))
1539		extlen = 1;
1540	else {
1541		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1542		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1543	}
1544	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1545		return;
1546
1547	/* Find bitmap block that contains bits for goal block */
1548	if (rgrp_contains_block(rgd, ip->i_goal))
1549		goal = ip->i_goal;
1550	else
1551		goal = rgd->rd_last_alloc + rgd->rd_data0;
1552
1553	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1554		return;
1555
1556	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1557	if (ret == 0) {
1558		rs->rs_rbm = rbm;
1559		rs->rs_free = extlen;
1560		rs_insert(ip);
1561	} else {
1562		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1563			rgd->rd_last_alloc = 0;
1564	}
1565}
1566
1567/**
1568 * gfs2_next_unreserved_block - Return next block that is not reserved
1569 * @rgd: The resource group
1570 * @block: The starting block
1571 * @length: The required length
1572 * @ip: Ignore any reservations for this inode
1573 *
1574 * If the block does not appear in any reservation, then return the
1575 * block number unchanged. If it does appear in the reservation, then
1576 * keep looking through the tree of reservations in order to find the
1577 * first block number which is not reserved.
1578 */
1579
1580static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1581				      u32 length,
1582				      const struct gfs2_inode *ip)
1583{
1584	struct gfs2_blkreserv *rs;
1585	struct rb_node *n;
1586	int rc;
1587
1588	spin_lock(&rgd->rd_rsspin);
1589	n = rgd->rd_rstree.rb_node;
1590	while (n) {
1591		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1592		rc = rs_cmp(block, length, rs);
1593		if (rc < 0)
1594			n = n->rb_left;
1595		else if (rc > 0)
1596			n = n->rb_right;
1597		else
1598			break;
1599	}
1600
1601	if (n) {
1602		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1603			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1604			n = n->rb_right;
1605			if (n == NULL)
1606				break;
1607			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1608		}
1609	}
1610
1611	spin_unlock(&rgd->rd_rsspin);
1612	return block;
1613}
1614
1615/**
1616 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1617 * @rbm: The current position in the resource group
1618 * @ip: The inode for which we are searching for blocks
1619 * @minext: The minimum extent length
1620 * @maxext: A pointer to the maximum extent structure
1621 *
1622 * This checks the current position in the rgrp to see whether there is
1623 * a reservation covering this block. If not then this function is a
1624 * no-op. If there is, then the position is moved to the end of the
1625 * contiguous reservation(s) so that we are pointing at the first
1626 * non-reserved block.
1627 *
1628 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1629 */
1630
1631static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1632					     const struct gfs2_inode *ip,
1633					     u32 minext,
1634					     struct gfs2_extent *maxext)
1635{
1636	u64 block = gfs2_rbm_to_block(rbm);
1637	u32 extlen = 1;
1638	u64 nblock;
1639	int ret;
1640
1641	/*
1642	 * If we have a minimum extent length, then skip over any extent
1643	 * which is less than the min extent length in size.
1644	 */
1645	if (minext) {
1646		extlen = gfs2_free_extlen(rbm, minext);
1647		if (extlen <= maxext->len)
1648			goto fail;
1649	}
1650
1651	/*
1652	 * Check the extent which has been found against the reservations
1653	 * and skip if parts of it are already reserved
1654	 */
1655	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1656	if (nblock == block) {
1657		if (!minext || extlen >= minext)
1658			return 0;
1659
1660		if (extlen > maxext->len) {
1661			maxext->len = extlen;
1662			maxext->rbm = *rbm;
1663		}
1664fail:
1665		nblock = block + extlen;
1666	}
1667	ret = gfs2_rbm_from_block(rbm, nblock);
1668	if (ret < 0)
1669		return ret;
1670	return 1;
1671}
1672
1673/**
1674 * gfs2_rbm_find - Look for blocks of a particular state
1675 * @rbm: Value/result starting position and final position
1676 * @state: The state which we want to find
1677 * @minext: Pointer to the requested extent length (NULL for a single block)
1678 *          This is updated to be the actual reservation size.
1679 * @ip: If set, check for reservations
1680 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1681 *          around until we've reached the starting point.
1682 *
1683 * Side effects:
1684 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1685 *   has no free blocks in it.
1686 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1687 *   has come up short on a free block search.
1688 *
1689 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1690 */
1691
1692static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1693			 const struct gfs2_inode *ip, bool nowrap)
1694{
1695	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1696	struct buffer_head *bh;
1697	int last_bii;
1698	u32 offset;
1699	u8 *buffer;
1700	bool wrapped = false;
1701	int ret;
1702	struct gfs2_bitmap *bi;
1703	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1704
1705	/*
1706	 * Determine the last bitmap to search.  If we're not starting at the
1707	 * beginning of a bitmap, we need to search that bitmap twice to scan
1708	 * the entire resource group.
1709	 */
1710	last_bii = rbm->bii - (rbm->offset == 0);
1711
1712	while(1) {
1713		bi = rbm_bi(rbm);
1714		if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1715		    test_bit(GBF_FULL, &bi->bi_flags) &&
1716		    (state == GFS2_BLKST_FREE))
1717			goto next_bitmap;
1718
1719		bh = bi->bi_bh;
1720		buffer = bh->b_data + bi->bi_offset;
1721		WARN_ON(!buffer_uptodate(bh));
1722		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1723			buffer = bi->bi_clone + bi->bi_offset;
1724		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1725		if (offset == BFITNOENT) {
1726			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1727				set_bit(GBF_FULL, &bi->bi_flags);
1728			goto next_bitmap;
1729		}
1730		rbm->offset = offset;
1731		if (ip == NULL)
1732			return 0;
1733
1734		ret = gfs2_reservation_check_and_update(rbm, ip,
1735							minext ? *minext : 0,
1736							&maxext);
1737		if (ret == 0)
1738			return 0;
1739		if (ret > 0)
1740			goto next_iter;
1741		if (ret == -E2BIG) {
1742			rbm->bii = 0;
1743			rbm->offset = 0;
1744			goto res_covered_end_of_rgrp;
1745		}
1746		return ret;
1747
1748next_bitmap:	/* Find next bitmap in the rgrp */
1749		rbm->offset = 0;
1750		rbm->bii++;
1751		if (rbm->bii == rbm->rgd->rd_length)
1752			rbm->bii = 0;
1753res_covered_end_of_rgrp:
1754		if (rbm->bii == 0) {
1755			if (wrapped)
1756				break;
1757			wrapped = true;
1758			if (nowrap)
1759				break;
1760		}
1761next_iter:
1762		/* Have we scanned the entire resource group? */
1763		if (wrapped && rbm->bii > last_bii)
1764			break;
1765	}
1766
1767	if (minext == NULL || state != GFS2_BLKST_FREE)
1768		return -ENOSPC;
1769
1770	/* If the extent was too small, and it's smaller than the smallest
1771	   to have failed before, remember for future reference that it's
1772	   useless to search this rgrp again for this amount or more. */
1773	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1774	    *minext < rbm->rgd->rd_extfail_pt)
1775		rbm->rgd->rd_extfail_pt = *minext;
1776
1777	/* If the maximum extent we found is big enough to fulfill the
1778	   minimum requirements, use it anyway. */
1779	if (maxext.len) {
1780		*rbm = maxext.rbm;
1781		*minext = maxext.len;
1782		return 0;
1783	}
1784
1785	return -ENOSPC;
1786}
1787
1788/**
1789 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1790 * @rgd: The rgrp
1791 * @last_unlinked: block address of the last dinode we unlinked
1792 * @skip: block address we should explicitly not unlink
1793 *
1794 * Returns: 0 if no error
1795 *          The inode, if one has been found, in inode.
1796 */
1797
1798static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1799{
1800	u64 block;
 
1801	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
1802	struct gfs2_glock *gl;
1803	struct gfs2_inode *ip;
1804	int error;
1805	int found = 0;
1806	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1807
1808	while (1) {
1809		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1810				      true);
1811		if (error == -ENOSPC)
1812			break;
1813		if (WARN_ON_ONCE(error))
1814			break;
1815
1816		block = gfs2_rbm_to_block(&rbm);
1817		if (gfs2_rbm_from_block(&rbm, block + 1))
 
 
 
 
 
1818			break;
1819		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
 
 
 
 
1820			continue;
1821		if (block == skip)
1822			continue;
1823		*last_unlinked = block;
1824
1825		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1826		if (error)
1827			continue;
1828
1829		/* If the inode is already in cache, we can ignore it here
1830		 * because the existing inode disposal code will deal with
1831		 * it when all refs have gone away. Accessing gl_object like
1832		 * this is not safe in general. Here it is ok because we do
1833		 * not dereference the pointer, and we only need an approx
1834		 * answer to whether it is NULL or not.
1835		 */
1836		ip = gl->gl_object;
1837
1838		if (ip || !gfs2_queue_delete_work(gl, 0))
1839			gfs2_glock_put(gl);
1840		else
1841			found++;
1842
1843		/* Limit reclaim to sensible number of tasks */
1844		if (found > NR_CPUS)
1845			return;
1846	}
1847
1848	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1849	return;
1850}
1851
1852/**
1853 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1854 * @rgd: The rgrp in question
1855 * @loops: An indication of how picky we can be (0=very, 1=less so)
1856 *
1857 * This function uses the recently added glock statistics in order to
1858 * figure out whether a parciular resource group is suffering from
1859 * contention from multiple nodes. This is done purely on the basis
1860 * of timings, since this is the only data we have to work with and
1861 * our aim here is to reject a resource group which is highly contended
1862 * but (very important) not to do this too often in order to ensure that
1863 * we do not land up introducing fragmentation by changing resource
1864 * groups when not actually required.
1865 *
1866 * The calculation is fairly simple, we want to know whether the SRTTB
1867 * (i.e. smoothed round trip time for blocking operations) to acquire
1868 * the lock for this rgrp's glock is significantly greater than the
1869 * time taken for resource groups on average. We introduce a margin in
1870 * the form of the variable @var which is computed as the sum of the two
1871 * respective variences, and multiplied by a factor depending on @loops
1872 * and whether we have a lot of data to base the decision on. This is
1873 * then tested against the square difference of the means in order to
1874 * decide whether the result is statistically significant or not.
1875 *
1876 * Returns: A boolean verdict on the congestion status
1877 */
1878
1879static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1880{
1881	const struct gfs2_glock *gl = rgd->rd_gl;
1882	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1883	struct gfs2_lkstats *st;
1884	u64 r_dcount, l_dcount;
1885	u64 l_srttb, a_srttb = 0;
1886	s64 srttb_diff;
1887	u64 sqr_diff;
1888	u64 var;
1889	int cpu, nonzero = 0;
1890
1891	preempt_disable();
1892	for_each_present_cpu(cpu) {
1893		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1894		if (st->stats[GFS2_LKS_SRTTB]) {
1895			a_srttb += st->stats[GFS2_LKS_SRTTB];
1896			nonzero++;
1897		}
1898	}
1899	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1900	if (nonzero)
1901		do_div(a_srttb, nonzero);
1902	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1903	var = st->stats[GFS2_LKS_SRTTVARB] +
1904	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1905	preempt_enable();
1906
1907	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1908	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
 
 
 
1909
1910	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1911		return false;
1912
1913	srttb_diff = a_srttb - l_srttb;
1914	sqr_diff = srttb_diff * srttb_diff;
1915
1916	var *= 2;
1917	if (l_dcount < 8 || r_dcount < 8)
1918		var *= 2;
1919	if (loops == 1)
1920		var *= 2;
1921
1922	return ((srttb_diff < 0) && (sqr_diff > var));
1923}
1924
1925/**
1926 * gfs2_rgrp_used_recently
1927 * @rs: The block reservation with the rgrp to test
1928 * @msecs: The time limit in milliseconds
1929 *
1930 * Returns: True if the rgrp glock has been used within the time limit
1931 */
1932static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1933				    u64 msecs)
1934{
1935	u64 tdiff;
 
 
1936
1937	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1938                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1939
1940	return tdiff > (msecs * 1000 * 1000);
1941}
 
 
 
 
 
 
 
 
 
1942
1943static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1944{
1945	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1946	u32 skip;
1947
1948	get_random_bytes(&skip, sizeof(skip));
1949	return skip % sdp->sd_rgrps;
1950}
1951
1952static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
 
 
 
 
 
 
 
1953{
1954	struct gfs2_rgrpd *rgd = *pos;
1955	struct gfs2_sbd *sdp = rgd->rd_sbd;
1956
1957	rgd = gfs2_rgrpd_get_next(rgd);
1958	if (rgd == NULL)
1959		rgd = gfs2_rgrpd_get_first(sdp);
1960	*pos = rgd;
1961	if (rgd != begin) /* If we didn't wrap */
1962		return true;
1963	return false;
1964}
1965
1966/**
1967 * fast_to_acquire - determine if a resource group will be fast to acquire
 
 
1968 *
1969 * If this is one of our preferred rgrps, it should be quicker to acquire,
1970 * because we tried to set ourselves up as dlm lock master.
 
1971 */
1972static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
 
1973{
1974	struct gfs2_glock *gl = rgd->rd_gl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975
1976	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1977	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1978	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1979		return 1;
1980	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1981		return 1;
1982	return 0;
1983}
1984
1985/**
1986 * gfs2_inplace_reserve - Reserve space in the filesystem
1987 * @ip: the inode to reserve space for
1988 * @ap: the allocation parameters
1989 *
1990 * We try our best to find an rgrp that has at least ap->target blocks
1991 * available. After a couple of passes (loops == 2), the prospects of finding
1992 * such an rgrp diminish. At this stage, we return the first rgrp that has
1993 * at least ap->min_target blocks available. Either way, we set ap->allowed to
1994 * the number of blocks available in the chosen rgrp.
1995 *
1996 * Returns: 0 on success,
1997 *          -ENOMEM if a suitable rgrp can't be found
1998 *          errno otherwise
1999 */
2000
2001int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
 
2002{
2003	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2004	struct gfs2_rgrpd *begin = NULL;
2005	struct gfs2_blkreserv *rs = &ip->i_res;
2006	int error = 0, rg_locked, flags = 0;
2007	u64 last_unlinked = NO_BLOCK;
2008	int loops = 0;
2009	u32 free_blocks, skip = 0;
2010
2011	if (sdp->sd_args.ar_rgrplvb)
2012		flags |= GL_SKIP;
2013	if (gfs2_assert_warn(sdp, ap->target))
2014		return -EINVAL;
2015	if (gfs2_rs_active(rs)) {
2016		begin = rs->rs_rbm.rgd;
2017	} else if (rs->rs_rbm.rgd &&
2018		   rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2019		begin = rs->rs_rbm.rgd;
2020	} else {
2021		check_and_update_goal(ip);
2022		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2023	}
2024	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2025		skip = gfs2_orlov_skip(ip);
2026	if (rs->rs_rbm.rgd == NULL)
2027		return -EBADSLT;
2028
2029	while (loops < 3) {
2030		rg_locked = 1;
2031
2032		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2033			rg_locked = 0;
2034			if (skip && skip--)
2035				goto next_rgrp;
2036			if (!gfs2_rs_active(rs)) {
2037				if (loops == 0 &&
2038				    !fast_to_acquire(rs->rs_rbm.rgd))
2039					goto next_rgrp;
2040				if ((loops < 2) &&
2041				    gfs2_rgrp_used_recently(rs, 1000) &&
2042				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2043					goto next_rgrp;
2044			}
2045			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2046						   LM_ST_EXCLUSIVE, flags,
2047						   &ip->i_rgd_gh);
2048			if (unlikely(error))
2049				return error;
2050			if (!gfs2_rs_active(rs) && (loops < 2) &&
2051			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2052				goto skip_rgrp;
2053			if (sdp->sd_args.ar_rgrplvb) {
2054				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2055				if (unlikely(error)) {
2056					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2057					return error;
2058				}
2059			}
 
2060		}
 
2061
2062		/* Skip unusable resource groups */
2063		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2064						 GFS2_RDF_ERROR)) ||
2065		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2066			goto skip_rgrp;
2067
2068		if (sdp->sd_args.ar_rgrplvb)
2069			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2070
2071		/* Get a reservation if we don't already have one */
2072		if (!gfs2_rs_active(rs))
2073			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2074
2075		/* Skip rgrps when we can't get a reservation on first pass */
2076		if (!gfs2_rs_active(rs) && (loops < 1))
2077			goto check_rgrp;
2078
2079		/* If rgrp has enough free space, use it */
2080		free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2081		if (free_blocks >= ap->target ||
2082		    (loops == 2 && ap->min_target &&
2083		     free_blocks >= ap->min_target)) {
2084			ap->allowed = free_blocks;
2085			return 0;
2086		}
2087check_rgrp:
2088		/* Check for unlinked inodes which can be reclaimed */
2089		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2090			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2091					ip->i_no_addr);
2092skip_rgrp:
2093		/* Drop reservation, if we couldn't use reserved rgrp */
2094		if (gfs2_rs_active(rs))
2095			gfs2_rs_deltree(rs);
2096
2097		/* Unlock rgrp if required */
2098		if (!rg_locked)
2099			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2100next_rgrp:
2101		/* Find the next rgrp, and continue looking */
2102		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2103			continue;
2104		if (skip)
2105			continue;
2106
2107		/* If we've scanned all the rgrps, but found no free blocks
2108		 * then this checks for some less likely conditions before
2109		 * trying again.
2110		 */
2111		loops++;
2112		/* Check that fs hasn't grown if writing to rindex */
2113		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2114			error = gfs2_ri_update(ip);
2115			if (error)
2116				return error;
2117		}
2118		/* Flushing the log may release space */
2119		if (loops == 2)
2120			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2121				       GFS2_LFC_INPLACE_RESERVE);
2122	}
2123
2124	return -ENOSPC;
2125}
2126
2127/**
2128 * gfs2_inplace_release - release an inplace reservation
2129 * @ip: the inode the reservation was taken out on
2130 *
2131 * Release a reservation made by gfs2_inplace_reserve().
2132 */
2133
2134void gfs2_inplace_release(struct gfs2_inode *ip)
2135{
2136	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2137		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138}
2139
2140/**
2141 * gfs2_alloc_extent - allocate an extent from a given bitmap
2142 * @rbm: the resource group information
2143 * @dinode: TRUE if the first block we allocate is for a dinode
2144 * @n: The extent length (value/result)
 
 
 
2145 *
2146 * Add the bitmap buffer to the transaction.
 
2147 * Set the found bits to @new_state to change block's allocation state.
 
 
 
 
 
 
 
 
2148 */
2149static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2150			     unsigned int *n)
 
 
2151{
2152	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
 
 
 
2153	const unsigned int elen = *n;
2154	u64 block;
2155	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156
 
 
2157	*n = 1;
2158	block = gfs2_rbm_to_block(rbm);
2159	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2160	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2161	block++;
 
 
 
2162	while (*n < elen) {
2163		ret = gfs2_rbm_from_block(&pos, block);
2164		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
 
 
 
2165			break;
2166		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2167		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2168		(*n)++;
2169		block++;
2170	}
 
 
2171}
2172
2173/**
2174 * rgblk_free - Change alloc state of given block(s)
2175 * @sdp: the filesystem
2176 * @rgd: the resource group the blocks are in
2177 * @bstart: the start of a run of blocks to free
2178 * @blen: the length of the block run (all must lie within ONE RG!)
2179 * @new_state: GFS2_BLKST_XXX the after-allocation block state
 
 
2180 */
2181
2182static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2183		       u64 bstart, u32 blen, unsigned char new_state)
2184{
2185	struct gfs2_rbm rbm;
2186	struct gfs2_bitmap *bi, *bi_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2187
2188	rbm.rgd = rgd;
2189	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2190		return;
2191	while (blen--) {
2192		bi = rbm_bi(&rbm);
2193		if (bi != bi_prev) {
2194			if (!bi->bi_clone) {
2195				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2196						      GFP_NOFS | __GFP_NOFAIL);
2197				memcpy(bi->bi_clone + bi->bi_offset,
2198				       bi->bi_bh->b_data + bi->bi_offset,
2199				       bi->bi_bytes);
2200			}
2201			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2202			bi_prev = bi;
2203		}
2204		gfs2_setbit(&rbm, false, new_state);
2205		gfs2_rbm_incr(&rbm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2206	}
 
 
2207}
2208
2209/**
2210 * gfs2_rgrp_dump - print out an rgrp
2211 * @seq: The iterator
2212 * @gl: The glock in question
2213 * @fs_id_buf: pointer to file system id (if requested)
2214 *
2215 */
2216
2217void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2218		    const char *fs_id_buf)
2219{
2220	struct gfs2_rgrpd *rgd = gl->gl_object;
2221	struct gfs2_blkreserv *trs;
2222	const struct rb_node *n;
2223
2224	if (rgd == NULL)
2225		return;
2226	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2227		       fs_id_buf,
2228		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2229		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2230		       rgd->rd_reserved, rgd->rd_extfail_pt);
2231	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2232		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2233
2234		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2235			       be32_to_cpu(rgl->rl_flags),
2236			       be32_to_cpu(rgl->rl_free),
2237			       be32_to_cpu(rgl->rl_dinodes));
2238	}
2239	spin_lock(&rgd->rd_rsspin);
2240	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2241		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2242		dump_rs(seq, trs, fs_id_buf);
2243	}
2244	spin_unlock(&rgd->rd_rsspin);
2245}
2246
2247static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2248{
2249	struct gfs2_sbd *sdp = rgd->rd_sbd;
2250	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2251
2252	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2253		(unsigned long long)rgd->rd_addr);
2254	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2255	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2256	gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2257	rgd->rd_flags |= GFS2_RDF_ERROR;
2258}
2259
2260/**
2261 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2262 * @ip: The inode we have just allocated blocks for
2263 * @rbm: The start of the allocated blocks
2264 * @len: The extent length
2265 *
2266 * Adjusts a reservation after an allocation has taken place. If the
2267 * reservation does not match the allocation, or if it is now empty
2268 * then it is removed.
2269 */
2270
2271static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2272				    const struct gfs2_rbm *rbm, unsigned len)
2273{
2274	struct gfs2_blkreserv *rs = &ip->i_res;
2275	struct gfs2_rgrpd *rgd = rbm->rgd;
2276	unsigned rlen;
2277	u64 block;
2278	int ret;
2279
2280	spin_lock(&rgd->rd_rsspin);
2281	if (gfs2_rs_active(rs)) {
2282		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2283			block = gfs2_rbm_to_block(rbm);
2284			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2285			rlen = min(rs->rs_free, len);
2286			rs->rs_free -= rlen;
2287			rgd->rd_reserved -= rlen;
2288			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2289			if (rs->rs_free && !ret)
2290				goto out;
2291			/* We used up our block reservation, so we should
2292			   reserve more blocks next time. */
2293			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2294		}
2295		__rs_deltree(rs);
2296	}
2297out:
2298	spin_unlock(&rgd->rd_rsspin);
2299}
2300
2301/**
2302 * gfs2_set_alloc_start - Set starting point for block allocation
2303 * @rbm: The rbm which will be set to the required location
2304 * @ip: The gfs2 inode
2305 * @dinode: Flag to say if allocation includes a new inode
2306 *
2307 * This sets the starting point from the reservation if one is active
2308 * otherwise it falls back to guessing a start point based on the
2309 * inode's goal block or the last allocation point in the rgrp.
2310 */
2311
2312static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2313				 const struct gfs2_inode *ip, bool dinode)
2314{
2315	u64 goal;
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317	if (gfs2_rs_active(&ip->i_res)) {
2318		*rbm = ip->i_res.rs_rbm;
2319		return;
2320	}
2321
2322	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2323		goal = ip->i_goal;
2324	else
2325		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
 
 
 
 
 
 
2326
2327	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2328		rbm->bii = 0;
2329		rbm->offset = 0;
 
 
 
 
 
 
2330	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331}
2332
2333/**
2334 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2335 * @ip: the inode to allocate the block for
2336 * @bn: Used to return the starting block number
2337 * @nblocks: requested number of blocks/extent length (value/result)
2338 * @dinode: 1 if we're allocating a dinode block, else 0
2339 * @generation: the generation number of the inode
2340 *
2341 * Returns: 0 or error
2342 */
2343
2344int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2345		      bool dinode, u64 *generation)
2346{
2347	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2348	struct buffer_head *dibh;
2349	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2350	unsigned int ndata;
2351	u64 block; /* block, within the file system scope */
2352	int error;
2353
2354	gfs2_set_alloc_start(&rbm, ip, dinode);
2355	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2356
2357	if (error == -ENOSPC) {
2358		gfs2_set_alloc_start(&rbm, ip, dinode);
2359		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2360	}
2361
2362	/* Since all blocks are reserved in advance, this shouldn't happen */
2363	if (error) {
2364		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2365			(unsigned long long)ip->i_no_addr, error, *nblocks,
2366			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2367			rbm.rgd->rd_extfail_pt);
2368		goto rgrp_error;
2369	}
2370
2371	gfs2_alloc_extent(&rbm, dinode, nblocks);
2372	block = gfs2_rbm_to_block(&rbm);
2373	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2374	if (gfs2_rs_active(&ip->i_res))
2375		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2376	ndata = *nblocks;
2377	if (dinode)
2378		ndata--;
2379
2380	if (!dinode) {
2381		ip->i_goal = block + ndata - 1;
2382		error = gfs2_meta_inode_buffer(ip, &dibh);
2383		if (error == 0) {
2384			struct gfs2_dinode *di =
2385				(struct gfs2_dinode *)dibh->b_data;
2386			gfs2_trans_add_meta(ip->i_gl, dibh);
2387			di->di_goal_meta = di->di_goal_data =
2388				cpu_to_be64(ip->i_goal);
2389			brelse(dibh);
2390		}
2391	}
2392	if (rbm.rgd->rd_free < *nblocks) {
2393		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2394		goto rgrp_error;
2395	}
2396
2397	rbm.rgd->rd_free -= *nblocks;
2398	if (dinode) {
2399		rbm.rgd->rd_dinodes++;
2400		*generation = rbm.rgd->rd_igeneration++;
2401		if (*generation == 0)
2402			*generation = rbm.rgd->rd_igeneration++;
2403	}
2404
2405	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2406	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2407
2408	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2409	if (dinode)
2410		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2411
2412	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2413
2414	rbm.rgd->rd_free_clone -= *nblocks;
2415	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2416			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2417	*bn = block;
2418	return 0;
2419
2420rgrp_error:
2421	gfs2_rgrp_error(rbm.rgd);
2422	return -EIO;
2423}
2424
2425/**
2426 * __gfs2_free_blocks - free a contiguous run of block(s)
2427 * @ip: the inode these blocks are being freed from
2428 * @rgd: the resource group the blocks are in
2429 * @bstart: first block of a run of contiguous blocks
2430 * @blen: the length of the block run
2431 * @meta: 1 if the blocks represent metadata
2432 *
2433 */
2434
2435void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2436			u64 bstart, u32 blen, int meta)
2437{
2438	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
2439
2440	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2441	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
 
 
2442	rgd->rd_free += blen;
2443	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2444	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2445	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2446
 
 
2447	/* Directories keep their data in the metadata address space */
2448	if (meta || ip->i_depth)
2449		gfs2_meta_wipe(ip, bstart, blen);
2450}
2451
2452/**
2453 * gfs2_free_meta - free a contiguous run of data block(s)
2454 * @ip: the inode these blocks are being freed from
2455 * @rgd: the resource group the blocks are in
2456 * @bstart: first block of a run of contiguous blocks
2457 * @blen: the length of the block run
2458 *
2459 */
2460
2461void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2462		    u64 bstart, u32 blen)
2463{
2464	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2465
2466	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2467	gfs2_statfs_change(sdp, 0, +blen, 0);
2468	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2469}
2470
2471void gfs2_unlink_di(struct inode *inode)
2472{
2473	struct gfs2_inode *ip = GFS2_I(inode);
2474	struct gfs2_sbd *sdp = GFS2_SB(inode);
2475	struct gfs2_rgrpd *rgd;
2476	u64 blkno = ip->i_no_addr;
2477
2478	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2479	if (!rgd)
2480		return;
2481	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2482	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2483	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2484	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2485	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2486}
2487
2488void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2489{
2490	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
 
 
 
 
2491
2492	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2493	if (!rgd->rd_dinodes)
2494		gfs2_consist_rgrpd(rgd);
2495	rgd->rd_dinodes--;
2496	rgd->rd_free++;
2497
2498	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2499	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2500	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2501
2502	gfs2_statfs_change(sdp, 0, +1, -1);
2503	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
 
 
 
 
 
 
 
2504	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2505	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2506}
2507
2508/**
2509 * gfs2_check_blk_type - Check the type of a block
2510 * @sdp: The superblock
2511 * @no_addr: The block number to check
2512 * @type: The block type we are looking for
2513 *
2514 * Returns: 0 if the block type matches the expected type
2515 *          -ESTALE if it doesn't match
2516 *          or -ve errno if something went wrong while checking
2517 */
2518
2519int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2520{
2521	struct gfs2_rgrpd *rgd;
2522	struct gfs2_holder rgd_gh;
2523	struct gfs2_rbm rbm;
2524	int error = -EINVAL;
 
 
 
 
 
 
 
 
2525
2526	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
 
2527	if (!rgd)
2528		goto fail;
2529
2530	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2531	if (error)
2532		goto fail;
2533
2534	rbm.rgd = rgd;
2535	error = gfs2_rbm_from_block(&rbm, no_addr);
2536	if (WARN_ON_ONCE(error))
2537		goto fail;
2538
2539	if (gfs2_testbit(&rbm, false) != type)
2540		error = -ESTALE;
2541
2542	gfs2_glock_dq_uninit(&rgd_gh);
 
 
 
2543fail:
2544	return error;
2545}
2546
2547/**
2548 * gfs2_rlist_add - add a RG to a list of RGs
2549 * @ip: the inode
2550 * @rlist: the list of resource groups
2551 * @block: the block
2552 *
2553 * Figure out what RG a block belongs to and add that RG to the list
2554 *
2555 * FIXME: Don't use NOFAIL
2556 *
2557 */
2558
2559void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2560		    u64 block)
2561{
2562	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2563	struct gfs2_rgrpd *rgd;
2564	struct gfs2_rgrpd **tmp;
2565	unsigned int new_space;
2566	unsigned int x;
2567
2568	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2569		return;
2570
2571	/*
2572	 * The resource group last accessed is kept in the last position.
2573	 */
2574
2575	if (rlist->rl_rgrps) {
2576		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2577		if (rgrp_contains_block(rgd, block))
2578			return;
2579		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2580	} else {
2581		rgd = ip->i_res.rs_rbm.rgd;
2582		if (!rgd || !rgrp_contains_block(rgd, block))
2583			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2584	}
2585
2586	if (!rgd) {
2587		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2588		       (unsigned long long)block);
2589		return;
2590	}
2591
2592	for (x = 0; x < rlist->rl_rgrps; x++) {
2593		if (rlist->rl_rgd[x] == rgd) {
2594			swap(rlist->rl_rgd[x],
2595			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2596			return;
2597		}
2598	}
2599
2600	if (rlist->rl_rgrps == rlist->rl_space) {
2601		new_space = rlist->rl_space + 10;
2602
2603		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2604			      GFP_NOFS | __GFP_NOFAIL);
2605
2606		if (rlist->rl_rgd) {
2607			memcpy(tmp, rlist->rl_rgd,
2608			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2609			kfree(rlist->rl_rgd);
2610		}
2611
2612		rlist->rl_space = new_space;
2613		rlist->rl_rgd = tmp;
2614	}
2615
2616	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2617}
2618
2619/**
2620 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2621 *      and initialize an array of glock holders for them
2622 * @rlist: the list of resource groups
 
 
2623 *
2624 * FIXME: Don't use NOFAIL
2625 *
2626 */
2627
2628void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2629{
2630	unsigned int x;
2631
2632	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2633				      sizeof(struct gfs2_holder),
2634				      GFP_NOFS | __GFP_NOFAIL);
2635	for (x = 0; x < rlist->rl_rgrps; x++)
2636		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2637				LM_ST_EXCLUSIVE, 0,
2638				&rlist->rl_ghs[x]);
2639}
2640
2641/**
2642 * gfs2_rlist_free - free a resource group list
2643 * @rlist: the list of resource groups
2644 *
2645 */
2646
2647void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2648{
2649	unsigned int x;
2650
2651	kfree(rlist->rl_rgd);
2652
2653	if (rlist->rl_ghs) {
2654		for (x = 0; x < rlist->rl_rgrps; x++)
2655			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2656		kfree(rlist->rl_ghs);
2657		rlist->rl_ghs = NULL;
2658	}
2659}
2660