Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
 
 
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
 
 
  18
  19#include "gfs2.h"
  20#include "incore.h"
  21#include "glock.h"
  22#include "glops.h"
  23#include "lops.h"
  24#include "meta_io.h"
  25#include "quota.h"
  26#include "rgrp.h"
  27#include "super.h"
  28#include "trans.h"
  29#include "util.h"
  30#include "log.h"
  31#include "inode.h"
  32#include "trace_gfs2.h"
 
  33
  34#define BFITNOENT ((u32)~0)
  35#define NO_BLOCK ((u64)~0)
  36
  37#if BITS_PER_LONG == 32
  38#define LBITMASK   (0x55555555UL)
  39#define LBITSKIP55 (0x55555555UL)
  40#define LBITSKIP00 (0x00000000UL)
  41#else
  42#define LBITMASK   (0x5555555555555555UL)
  43#define LBITSKIP55 (0x5555555555555555UL)
  44#define LBITSKIP00 (0x0000000000000000UL)
  45#endif
  46
  47/*
  48 * These routines are used by the resource group routines (rgrp.c)
  49 * to keep track of block allocation.  Each block is represented by two
  50 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  51 *
  52 * 0 = Free
  53 * 1 = Used (not metadata)
  54 * 2 = Unlinked (still in use) inode
  55 * 3 = Used (metadata)
  56 */
  57
 
 
 
 
 
  58static const char valid_change[16] = {
  59	        /* current */
  60	/* n */ 0, 1, 1, 1,
  61	/* e */ 1, 0, 0, 0,
  62	/* w */ 0, 0, 0, 1,
  63	        1, 0, 0, 0
  64};
  65
  66static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
  67                        unsigned char old_state, unsigned char new_state,
  68			unsigned int *n);
  69
  70/**
  71 * gfs2_setbit - Set a bit in the bitmaps
  72 * @buffer: the buffer that holds the bitmaps
  73 * @buflen: the length (in bytes) of the buffer
  74 * @block: the block to set
  75 * @new_state: the new state of the block
  76 *
  77 */
  78
  79static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
  80			       unsigned char *buf2, unsigned int offset,
  81			       struct gfs2_bitmap *bi, u32 block,
  82			       unsigned char new_state)
  83{
  84	unsigned char *byte1, *byte2, *end, cur_state;
  85	unsigned int buflen = bi->bi_len;
  86	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 
  87
  88	byte1 = buf1 + offset + (block / GFS2_NBBY);
  89	end = buf1 + offset + buflen;
  90
  91	BUG_ON(byte1 >= end);
  92
  93	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  94
  95	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  96		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
  97		       "new_state=%d\n",
  98		       (unsigned long long)block, cur_state, new_state);
  99		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
 100		       (unsigned long long)rgd->rd_addr,
 101		       (unsigned long)bi->bi_start);
 102		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
 103		       (unsigned long)bi->bi_offset,
 104		       (unsigned long)bi->bi_len);
 
 105		dump_stack();
 106		gfs2_consist_rgrpd(rgd);
 107		return;
 108	}
 109	*byte1 ^= (cur_state ^ new_state) << bit;
 110
 111	if (buf2) {
 112		byte2 = buf2 + offset + (block / GFS2_NBBY);
 113		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 114		*byte2 ^= (cur_state ^ new_state) << bit;
 115	}
 116}
 117
 118/**
 119 * gfs2_testbit - test a bit in the bitmaps
 120 * @buffer: the buffer that holds the bitmaps
 121 * @buflen: the length (in bytes) of the buffer
 122 * @block: the block to read
 123 *
 
 
 
 
 124 */
 125
 126static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
 127					 const unsigned char *buffer,
 128					 unsigned int buflen, u32 block)
 129{
 130	const unsigned char *byte, *end;
 131	unsigned char cur_state;
 
 132	unsigned int bit;
 133
 134	byte = buffer + (block / GFS2_NBBY);
 135	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
 136	end = buffer + buflen;
 137
 138	gfs2_assert(rgd->rd_sbd, byte < end);
 139
 140	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
 141
 142	return cur_state;
 143}
 144
 145/**
 146 * gfs2_bit_search
 147 * @ptr: Pointer to bitmap data
 148 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 149 * @state: The state we are searching for
 150 *
 151 * We xor the bitmap data with a patter which is the bitwise opposite
 152 * of what we are looking for, this gives rise to a pattern of ones
 153 * wherever there is a match. Since we have two bits per entry, we
 154 * take this pattern, shift it down by one place and then and it with
 155 * the original. All the even bit positions (0,2,4, etc) then represent
 156 * successful matches, so we mask with 0x55555..... to remove the unwanted
 157 * odd bit positions.
 158 *
 159 * This allows searching of a whole u64 at once (32 blocks) with a
 160 * single test (on 64 bit arches).
 161 */
 162
 163static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 164{
 165	u64 tmp;
 166	static const u64 search[] = {
 167		[0] = 0xffffffffffffffffULL,
 168		[1] = 0xaaaaaaaaaaaaaaaaULL,
 169		[2] = 0x5555555555555555ULL,
 170		[3] = 0x0000000000000000ULL,
 171	};
 172	tmp = le64_to_cpu(*ptr) ^ search[state];
 173	tmp &= (tmp >> 1);
 174	tmp &= mask;
 175	return tmp;
 176}
 177
 178/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 180 *       a block in a given allocation state.
 181 * @buffer: the buffer that holds the bitmaps
 182 * @len: the length (in bytes) of the buffer
 183 * @goal: start search at this block's bit-pair (within @buffer)
 184 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 185 *
 186 * Scope of @goal and returned block number is only within this bitmap buffer,
 187 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 188 * beginning of a bitmap block buffer, skipping any header structures, but
 189 * headers are always a multiple of 64 bits long so that the buffer is
 190 * always aligned to a 64 bit boundary.
 191 *
 192 * The size of the buffer is in bytes, but is it assumed that it is
 193 * always ok to read a complete multiple of 64 bits at the end
 194 * of the block in case the end is no aligned to a natural boundary.
 195 *
 196 * Return: the block number (bitmap buffer scope) that was found
 197 */
 198
 199static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 200		       u32 goal, u8 state)
 201{
 202	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 203	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 204	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 205	u64 tmp;
 206	u64 mask = 0x5555555555555555ULL;
 207	u32 bit;
 208
 209	BUG_ON(state > 3);
 210
 211	/* Mask off bits we don't care about at the start of the search */
 212	mask <<= spoint;
 213	tmp = gfs2_bit_search(ptr, mask, state);
 214	ptr++;
 215	while(tmp == 0 && ptr < end) {
 216		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 217		ptr++;
 218	}
 219	/* Mask off any bits which are more than len bytes from the start */
 220	if (ptr == end && (len & (sizeof(u64) - 1)))
 221		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 222	/* Didn't find anything, so return */
 223	if (tmp == 0)
 224		return BFITNOENT;
 225	ptr--;
 226	bit = __ffs64(tmp);
 227	bit /= 2;	/* two bits per entry in the bitmap */
 228	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 229}
 230
 231/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232 * gfs2_bitcount - count the number of bits in a certain state
 
 233 * @buffer: the buffer that holds the bitmaps
 234 * @buflen: the length (in bytes) of the buffer
 235 * @state: the state of the block we're looking for
 236 *
 237 * Returns: The number of bits
 238 */
 239
 240static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 241			 unsigned int buflen, u8 state)
 242{
 243	const u8 *byte = buffer;
 244	const u8 *end = buffer + buflen;
 245	const u8 state1 = state << 2;
 246	const u8 state2 = state << 4;
 247	const u8 state3 = state << 6;
 248	u32 count = 0;
 249
 250	for (; byte < end; byte++) {
 251		if (((*byte) & 0x03) == state)
 252			count++;
 253		if (((*byte) & 0x0C) == state1)
 254			count++;
 255		if (((*byte) & 0x30) == state2)
 256			count++;
 257		if (((*byte) & 0xC0) == state3)
 258			count++;
 259	}
 260
 261	return count;
 262}
 263
 264/**
 265 * gfs2_rgrp_verify - Verify that a resource group is consistent
 266 * @sdp: the filesystem
 267 * @rgd: the rgrp
 268 *
 269 */
 270
 271void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 272{
 273	struct gfs2_sbd *sdp = rgd->rd_sbd;
 274	struct gfs2_bitmap *bi = NULL;
 275	u32 length = rgd->rd_length;
 276	u32 count[4], tmp;
 277	int buf, x;
 278
 279	memset(count, 0, 4 * sizeof(u32));
 280
 281	/* Count # blocks in each of 4 possible allocation states */
 282	for (buf = 0; buf < length; buf++) {
 283		bi = rgd->rd_bits + buf;
 284		for (x = 0; x < 4; x++)
 285			count[x] += gfs2_bitcount(rgd,
 286						  bi->bi_bh->b_data +
 287						  bi->bi_offset,
 288						  bi->bi_len, x);
 289	}
 290
 291	if (count[0] != rgd->rd_free) {
 292		if (gfs2_consist_rgrpd(rgd))
 293			fs_err(sdp, "free data mismatch:  %u != %u\n",
 294			       count[0], rgd->rd_free);
 295		return;
 296	}
 297
 298	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 299	if (count[1] != tmp) {
 300		if (gfs2_consist_rgrpd(rgd))
 301			fs_err(sdp, "used data mismatch:  %u != %u\n",
 302			       count[1], tmp);
 303		return;
 304	}
 305
 306	if (count[2] + count[3] != rgd->rd_dinodes) {
 307		if (gfs2_consist_rgrpd(rgd))
 308			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 309			       count[2] + count[3], rgd->rd_dinodes);
 310		return;
 311	}
 312}
 313
 314static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 315{
 316	u64 first = rgd->rd_data0;
 317	u64 last = first + rgd->rd_data;
 318	return first <= block && block < last;
 319}
 320
 321/**
 322 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 323 * @sdp: The GFS2 superblock
 324 * @n: The data block number
 
 
 
 
 
 
 
 
 325 *
 326 * Returns: The resource group, or NULL if not found
 327 */
 328
 329struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
 330{
 331	struct gfs2_rgrpd *rgd;
 
 332
 333	spin_lock(&sdp->sd_rindex_spin);
 334
 335	list_for_each_entry(rgd, &sdp->sd_rindex_mru_list, rd_list_mru) {
 336		if (rgrp_contains_block(rgd, blk)) {
 337			list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
 
 
 
 
 
 338			spin_unlock(&sdp->sd_rindex_spin);
 339			return rgd;
 
 
 
 
 
 
 340		}
 
 341	}
 342
 343	spin_unlock(&sdp->sd_rindex_spin);
 344
 345	return NULL;
 346}
 347
 348/**
 349 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 350 * @sdp: The GFS2 superblock
 351 *
 352 * Returns: The first rgrp in the filesystem
 353 */
 354
 355struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 356{
 357	gfs2_assert(sdp, !list_empty(&sdp->sd_rindex_list));
 358	return list_entry(sdp->sd_rindex_list.next, struct gfs2_rgrpd, rd_list);
 
 
 
 
 
 
 
 359}
 360
 361/**
 362 * gfs2_rgrpd_get_next - get the next RG
 363 * @rgd: A RG
 364 *
 365 * Returns: The next rgrp
 366 */
 367
 368struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 369{
 370	if (rgd->rd_list.next == &rgd->rd_sbd->sd_rindex_list)
 
 
 
 
 
 
 
 
 
 371		return NULL;
 372	return list_entry(rgd->rd_list.next, struct gfs2_rgrpd, rd_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373}
 374
 375static void clear_rgrpdi(struct gfs2_sbd *sdp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376{
 377	struct list_head *head;
 378	struct gfs2_rgrpd *rgd;
 379	struct gfs2_glock *gl;
 380
 381	spin_lock(&sdp->sd_rindex_spin);
 382	sdp->sd_rindex_forward = NULL;
 383	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	head = &sdp->sd_rindex_list;
 386	while (!list_empty(head)) {
 387		rgd = list_entry(head->next, struct gfs2_rgrpd, rd_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388		gl = rgd->rd_gl;
 389
 390		list_del(&rgd->rd_list);
 391		list_del(&rgd->rd_list_mru);
 392
 393		if (gl) {
 394			gl->gl_object = NULL;
 395			gfs2_glock_add_to_lru(gl);
 396			gfs2_glock_put(gl);
 397		}
 398
 
 399		kfree(rgd->rd_bits);
 
 
 400		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 401	}
 402}
 403
 404void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 405{
 406	mutex_lock(&sdp->sd_rindex_mutex);
 407	clear_rgrpdi(sdp);
 408	mutex_unlock(&sdp->sd_rindex_mutex);
 409}
 410
 411static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 412{
 413	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 414	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 415	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 416	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 417	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 
 
 418}
 419
 420/**
 421 * gfs2_compute_bitstructs - Compute the bitmap sizes
 422 * @rgd: The resource group descriptor
 423 *
 424 * Calculates bitmap descriptors, one for each block that contains bitmap data
 425 *
 426 * Returns: errno
 427 */
 428
 429static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 430{
 431	struct gfs2_sbd *sdp = rgd->rd_sbd;
 432	struct gfs2_bitmap *bi;
 433	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 434	u32 bytes_left, bytes;
 435	int x;
 436
 437	if (!length)
 438		return -EINVAL;
 439
 440	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 441	if (!rgd->rd_bits)
 442		return -ENOMEM;
 443
 444	bytes_left = rgd->rd_bitbytes;
 445
 446	for (x = 0; x < length; x++) {
 447		bi = rgd->rd_bits + x;
 448
 449		bi->bi_flags = 0;
 450		/* small rgrp; bitmap stored completely in header block */
 451		if (length == 1) {
 452			bytes = bytes_left;
 453			bi->bi_offset = sizeof(struct gfs2_rgrp);
 454			bi->bi_start = 0;
 455			bi->bi_len = bytes;
 
 456		/* header block */
 457		} else if (x == 0) {
 458			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 459			bi->bi_offset = sizeof(struct gfs2_rgrp);
 460			bi->bi_start = 0;
 461			bi->bi_len = bytes;
 
 462		/* last block */
 463		} else if (x + 1 == length) {
 464			bytes = bytes_left;
 465			bi->bi_offset = sizeof(struct gfs2_meta_header);
 466			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 467			bi->bi_len = bytes;
 
 468		/* other blocks */
 469		} else {
 470			bytes = sdp->sd_sb.sb_bsize -
 471				sizeof(struct gfs2_meta_header);
 472			bi->bi_offset = sizeof(struct gfs2_meta_header);
 473			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 474			bi->bi_len = bytes;
 
 475		}
 476
 477		bytes_left -= bytes;
 478	}
 479
 480	if (bytes_left) {
 481		gfs2_consist_rgrpd(rgd);
 482		return -EIO;
 483	}
 484	bi = rgd->rd_bits + (length - 1);
 485	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 486		if (gfs2_consist_rgrpd(rgd)) {
 487			gfs2_rindex_print(rgd);
 488			fs_err(sdp, "start=%u len=%u offset=%u\n",
 489			       bi->bi_start, bi->bi_len, bi->bi_offset);
 490		}
 491		return -EIO;
 492	}
 493
 494	return 0;
 495}
 496
 497/**
 498 * gfs2_ri_total - Total up the file system space, according to the rindex.
 
 499 *
 500 */
 501u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 502{
 503	u64 total_data = 0;	
 504	struct inode *inode = sdp->sd_rindex;
 505	struct gfs2_inode *ip = GFS2_I(inode);
 506	char buf[sizeof(struct gfs2_rindex)];
 507	struct file_ra_state ra_state;
 508	int error, rgrps;
 509
 510	mutex_lock(&sdp->sd_rindex_mutex);
 511	file_ra_state_init(&ra_state, inode->i_mapping);
 512	for (rgrps = 0;; rgrps++) {
 513		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 514
 515		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 516			break;
 517		error = gfs2_internal_read(ip, &ra_state, buf, &pos,
 518					   sizeof(struct gfs2_rindex));
 519		if (error != sizeof(struct gfs2_rindex))
 520			break;
 521		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 522	}
 523	mutex_unlock(&sdp->sd_rindex_mutex);
 524	return total_data;
 525}
 526
 527static void gfs2_rindex_in(struct gfs2_rgrpd *rgd, const void *buf)
 528{
 529	const struct gfs2_rindex *str = buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531	rgd->rd_addr = be64_to_cpu(str->ri_addr);
 532	rgd->rd_length = be32_to_cpu(str->ri_length);
 533	rgd->rd_data0 = be64_to_cpu(str->ri_data0);
 534	rgd->rd_data = be32_to_cpu(str->ri_data);
 535	rgd->rd_bitbytes = be32_to_cpu(str->ri_bitbytes);
 536}
 537
 538/**
 539 * read_rindex_entry - Pull in a new resource index entry from the disk
 540 * @gl: The glock covering the rindex inode
 541 *
 542 * Returns: 0 on success, error code otherwise
 543 */
 544
 545static int read_rindex_entry(struct gfs2_inode *ip,
 546			     struct file_ra_state *ra_state)
 547{
 548	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 549	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 550	char buf[sizeof(struct gfs2_rindex)];
 551	int error;
 552	struct gfs2_rgrpd *rgd;
 553
 554	error = gfs2_internal_read(ip, ra_state, buf, &pos,
 
 
 
 555				   sizeof(struct gfs2_rindex));
 556	if (!error)
 557		return 0;
 558	if (error != sizeof(struct gfs2_rindex)) {
 559		if (error > 0)
 560			error = -EIO;
 561		return error;
 562	}
 563
 564	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 565	error = -ENOMEM;
 566	if (!rgd)
 567		return error;
 568
 569	mutex_init(&rgd->rd_mutex);
 570	lops_init_le(&rgd->rd_le, &gfs2_rg_lops);
 571	rgd->rd_sbd = sdp;
 
 
 
 
 
 
 572
 573	list_add_tail(&rgd->rd_list, &sdp->sd_rindex_list);
 574	list_add_tail(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
 575
 576	gfs2_rindex_in(rgd, buf);
 577	error = compute_bitstructs(rgd);
 578	if (error)
 579		return error;
 580
 581	error = gfs2_glock_get(sdp, rgd->rd_addr,
 582			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 583	if (error)
 584		return error;
 585
 586	rgd->rd_gl->gl_object = rgd;
 587	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588	return error;
 589}
 590
 591/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592 * gfs2_ri_update - Pull in a new resource index from the disk
 593 * @ip: pointer to the rindex inode
 594 *
 595 * Returns: 0 on successful update, error code otherwise
 596 */
 597
 598int gfs2_ri_update(struct gfs2_inode *ip)
 599{
 600	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 601	struct inode *inode = &ip->i_inode;
 602	struct file_ra_state ra_state;
 603	u64 rgrp_count = i_size_read(inode);
 604	struct gfs2_rgrpd *rgd;
 605	unsigned int max_data = 0;
 606	int error;
 607
 608	do_div(rgrp_count, sizeof(struct gfs2_rindex));
 609	clear_rgrpdi(sdp);
 
 610
 611	file_ra_state_init(&ra_state, inode->i_mapping);
 612	for (sdp->sd_rgrps = 0; sdp->sd_rgrps < rgrp_count; sdp->sd_rgrps++) {
 613		error = read_rindex_entry(ip, &ra_state);
 614		if (error) {
 615			clear_rgrpdi(sdp);
 616			return error;
 617		}
 618	}
 619
 620	list_for_each_entry(rgd, &sdp->sd_rindex_list, rd_list)
 621		if (rgd->rd_data > max_data)
 622			max_data = rgd->rd_data;
 623	sdp->sd_max_rg_data = max_data;
 624	sdp->sd_rindex_uptodate = 1;
 625	return 0;
 626}
 627
 628/**
 629 * gfs2_rindex_hold - Grab a lock on the rindex
 630 * @sdp: The GFS2 superblock
 631 * @ri_gh: the glock holder
 632 *
 633 * We grab a lock on the rindex inode to make sure that it doesn't
 634 * change whilst we are performing an operation. We keep this lock
 635 * for quite long periods of time compared to other locks. This
 636 * doesn't matter, since it is shared and it is very, very rarely
 637 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 638 *
 639 * This makes sure that we're using the latest copy of the resource index
 640 * special file, which might have been updated if someone expanded the
 641 * filesystem (via gfs2_grow utility), which adds new resource groups.
 642 *
 643 * Returns: 0 on success, error code otherwise
 644 */
 645
 646int gfs2_rindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ri_gh)
 647{
 648	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 649	struct gfs2_glock *gl = ip->i_gl;
 650	int error;
 651
 652	error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, ri_gh);
 653	if (error)
 654		return error;
 655
 656	/* Read new copy from disk if we don't have the latest */
 657	if (!sdp->sd_rindex_uptodate) {
 658		mutex_lock(&sdp->sd_rindex_mutex);
 659		if (!sdp->sd_rindex_uptodate) {
 660			error = gfs2_ri_update(ip);
 661			if (error)
 662				gfs2_glock_dq_uninit(ri_gh);
 
 663		}
 664		mutex_unlock(&sdp->sd_rindex_mutex);
 
 
 
 665	}
 666
 667	return error;
 668}
 669
 670static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 671{
 672	const struct gfs2_rgrp *str = buf;
 673	u32 rg_flags;
 674
 675	rg_flags = be32_to_cpu(str->rg_flags);
 676	rg_flags &= ~GFS2_RDF_MASK;
 677	rgd->rd_flags &= GFS2_RDF_MASK;
 678	rgd->rd_flags |= rg_flags;
 679	rgd->rd_free = be32_to_cpu(str->rg_free);
 680	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 681	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 
 
 
 
 
 
 
 
 
 
 
 
 
 682}
 683
 684static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 685{
 
 686	struct gfs2_rgrp *str = buf;
 
 687
 688	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 689	str->rg_free = cpu_to_be32(rgd->rd_free);
 690	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 691	str->__pad = cpu_to_be32(0);
 
 
 
 692	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 
 
 
 
 
 
 
 693	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694}
 695
 
 696/**
 697 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
 698 * @rgd: the struct gfs2_rgrpd describing the RG to read in
 699 *
 700 * Read in all of a Resource Group's header and bitmap blocks.
 701 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
 702 *
 703 * Returns: errno
 704 */
 705
 706int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
 707{
 708	struct gfs2_sbd *sdp = rgd->rd_sbd;
 709	struct gfs2_glock *gl = rgd->rd_gl;
 710	unsigned int length = rgd->rd_length;
 711	struct gfs2_bitmap *bi;
 712	unsigned int x, y;
 713	int error;
 714
 715	mutex_lock(&rgd->rd_mutex);
 716
 717	spin_lock(&sdp->sd_rindex_spin);
 718	if (rgd->rd_bh_count) {
 719		rgd->rd_bh_count++;
 720		spin_unlock(&sdp->sd_rindex_spin);
 721		mutex_unlock(&rgd->rd_mutex);
 722		return 0;
 723	}
 724	spin_unlock(&sdp->sd_rindex_spin);
 725
 726	for (x = 0; x < length; x++) {
 727		bi = rgd->rd_bits + x;
 728		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
 729		if (error)
 730			goto fail;
 731	}
 732
 733	for (y = length; y--;) {
 734		bi = rgd->rd_bits + y;
 735		error = gfs2_meta_wait(sdp, bi->bi_bh);
 736		if (error)
 737			goto fail;
 738		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
 739					      GFS2_METATYPE_RG)) {
 740			error = -EIO;
 741			goto fail;
 742		}
 743	}
 744
 745	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
 746		for (x = 0; x < length; x++)
 747			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
 748		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
 749		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750	}
 751
 752	spin_lock(&sdp->sd_rindex_spin);
 753	rgd->rd_free_clone = rgd->rd_free;
 754	rgd->rd_bh_count++;
 755	spin_unlock(&sdp->sd_rindex_spin);
 756
 757	mutex_unlock(&rgd->rd_mutex);
 758
 759	return 0;
 760
 761fail:
 762	while (x--) {
 763		bi = rgd->rd_bits + x;
 764		brelse(bi->bi_bh);
 765		bi->bi_bh = NULL;
 766		gfs2_assert_warn(sdp, !bi->bi_clone);
 767	}
 768	mutex_unlock(&rgd->rd_mutex);
 769
 770	return error;
 771}
 772
 773void gfs2_rgrp_bh_hold(struct gfs2_rgrpd *rgd)
 774{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775	struct gfs2_sbd *sdp = rgd->rd_sbd;
 776
 777	spin_lock(&sdp->sd_rindex_spin);
 778	gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count);
 779	rgd->rd_bh_count++;
 780	spin_unlock(&sdp->sd_rindex_spin);
 781}
 782
 783/**
 784 * gfs2_rgrp_bh_put - Release RG bitmaps read in with gfs2_rgrp_bh_get()
 785 * @rgd: the struct gfs2_rgrpd describing the RG to read in
 786 *
 787 */
 788
 789void gfs2_rgrp_bh_put(struct gfs2_rgrpd *rgd)
 790{
 791	struct gfs2_sbd *sdp = rgd->rd_sbd;
 792	int x, length = rgd->rd_length;
 793
 794	spin_lock(&sdp->sd_rindex_spin);
 795	gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count);
 796	if (--rgd->rd_bh_count) {
 797		spin_unlock(&sdp->sd_rindex_spin);
 798		return;
 799	}
 800
 801	for (x = 0; x < length; x++) {
 802		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 803		kfree(bi->bi_clone);
 804		bi->bi_clone = NULL;
 805		brelse(bi->bi_bh);
 806		bi->bi_bh = NULL;
 807	}
 808
 809	spin_unlock(&sdp->sd_rindex_spin);
 810}
 811
 812static void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
 813				    const struct gfs2_bitmap *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814{
 815	struct super_block *sb = sdp->sd_vfs;
 816	struct block_device *bdev = sb->s_bdev;
 817	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
 818					   bdev_logical_block_size(sb->s_bdev);
 819	u64 blk;
 820	sector_t start = 0;
 821	sector_t nr_sects = 0;
 822	int rv;
 823	unsigned int x;
 
 
 824
 825	for (x = 0; x < bi->bi_len; x++) {
 826		const u8 *orig = bi->bi_bh->b_data + bi->bi_offset + x;
 827		const u8 *clone = bi->bi_clone + bi->bi_offset + x;
 828		u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
 
 
 
 
 
 
 829		diff &= 0x55;
 830		if (diff == 0)
 831			continue;
 832		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 833		blk *= sects_per_blk; /* convert to sectors */
 834		while(diff) {
 835			if (diff & 1) {
 836				if (nr_sects == 0)
 837					goto start_new_extent;
 838				if ((start + nr_sects) != blk) {
 839					rv = blkdev_issue_discard(bdev, start,
 840							    nr_sects, GFP_NOFS,
 841							    0);
 842					if (rv)
 843						goto fail;
 844					nr_sects = 0;
 
 
 
 845start_new_extent:
 846					start = blk;
 847				}
 848				nr_sects += sects_per_blk;
 849			}
 850			diff >>= 2;
 851			blk += sects_per_blk;
 852		}
 853	}
 854	if (nr_sects) {
 855		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
 856		if (rv)
 857			goto fail;
 
 858	}
 859	return;
 
 
 
 860fail:
 861	fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
 
 862	sdp->sd_args.ar_discard = 0;
 
 863}
 864
 865void gfs2_rgrp_repolish_clones(struct gfs2_rgrpd *rgd)
 
 
 
 
 
 
 
 
 866{
 867	struct gfs2_sbd *sdp = rgd->rd_sbd;
 868	unsigned int length = rgd->rd_length;
 
 
 
 
 
 
 
 
 
 
 869	unsigned int x;
 
 870
 871	for (x = 0; x < length; x++) {
 872		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 873		if (!bi->bi_clone)
 874			continue;
 875		if (sdp->sd_args.ar_discard)
 876			gfs2_rgrp_send_discards(sdp, rgd->rd_data0, bi);
 877		clear_bit(GBF_FULL, &bi->bi_flags);
 878		memcpy(bi->bi_clone + bi->bi_offset,
 879		       bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880	}
 881
 882	spin_lock(&sdp->sd_rindex_spin);
 883	rgd->rd_free_clone = rgd->rd_free;
 884	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 885}
 886
 887/**
 888 * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode
 889 * @ip: the incore GFS2 inode structure
 890 *
 891 * Returns: the struct gfs2_alloc
 892 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip)
 
 
 
 
 
 
 
 
 
 
 
 
 895{
 896	BUG_ON(ip->i_alloc != NULL);
 897	ip->i_alloc = kzalloc(sizeof(struct gfs2_alloc), GFP_NOFS);
 898	return ip->i_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899}
 900
 901/**
 902 * try_rgrp_fit - See if a given reservation will fit in a given RG
 903 * @rgd: the RG data
 904 * @al: the struct gfs2_alloc structure describing the reservation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905 *
 906 * If there's room for the requested blocks to be allocated from the RG:
 907 *   Sets the $al_rgd field in @al.
 
 
 
 908 *
 909 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
 910 */
 911
 912static int try_rgrp_fit(struct gfs2_rgrpd *rgd, struct gfs2_alloc *al)
 
 
 
 913{
 914	struct gfs2_sbd *sdp = rgd->rd_sbd;
 915	int ret = 0;
 
 
 916
 917	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
 918		return 0;
 
 
 
 
 
 
 
 919
 920	spin_lock(&sdp->sd_rindex_spin);
 921	if (rgd->rd_free_clone >= al->al_requested) {
 922		al->al_rgd = rgd;
 923		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 924	}
 925	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 926
 927	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929
 930/**
 931 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
 932 * @rgd: The rgrp
 
 
 933 *
 934 * Returns: 0 if no error
 935 *          The inode, if one has been found, in inode.
 936 */
 937
 938static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
 939{
 940	u32 goal = 0, block;
 941	u64 no_addr;
 942	struct gfs2_sbd *sdp = rgd->rd_sbd;
 943	unsigned int n;
 944	struct gfs2_glock *gl;
 945	struct gfs2_inode *ip;
 946	int error;
 947	int found = 0;
 
 948
 949	while (goal < rgd->rd_data) {
 950		down_write(&sdp->sd_log_flush_lock);
 951		n = 1;
 952		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED,
 953				     GFS2_BLKST_UNLINKED, &n);
 954		up_write(&sdp->sd_log_flush_lock);
 955		if (block == BFITNOENT)
 
 
 956			break;
 957		/* rgblk_search can return a block < goal, so we need to
 958		   keep it marching forward. */
 959		no_addr = block + rgd->rd_data0;
 960		goal = max(block + 1, goal + 1);
 961		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
 962			continue;
 963		if (no_addr == skip)
 964			continue;
 965		*last_unlinked = no_addr;
 966
 967		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
 968		if (error)
 969			continue;
 970
 971		/* If the inode is already in cache, we can ignore it here
 972		 * because the existing inode disposal code will deal with
 973		 * it when all refs have gone away. Accessing gl_object like
 974		 * this is not safe in general. Here it is ok because we do
 975		 * not dereference the pointer, and we only need an approx
 976		 * answer to whether it is NULL or not.
 977		 */
 978		ip = gl->gl_object;
 979
 980		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
 981			gfs2_glock_put(gl);
 982		else
 983			found++;
 984
 985		/* Limit reclaim to sensible number of tasks */
 986		if (found > NR_CPUS)
 987			return;
 988	}
 989
 990	rgd->rd_flags &= ~GFS2_RDF_CHECK;
 991	return;
 992}
 993
 994/**
 995 * recent_rgrp_next - get next RG from "recent" list
 996 * @cur_rgd: current rgrp
 997 *
 998 * Returns: The next rgrp in the recent list
 999 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
1001static struct gfs2_rgrpd *recent_rgrp_next(struct gfs2_rgrpd *cur_rgd)
1002{
1003	struct gfs2_sbd *sdp = cur_rgd->rd_sbd;
1004	struct list_head *head;
1005	struct gfs2_rgrpd *rgd;
1006
1007	spin_lock(&sdp->sd_rindex_spin);
1008	head = &sdp->sd_rindex_mru_list;
1009	if (unlikely(cur_rgd->rd_list_mru.next == head)) {
1010		spin_unlock(&sdp->sd_rindex_spin);
1011		return NULL;
1012	}
1013	rgd = list_entry(cur_rgd->rd_list_mru.next, struct gfs2_rgrpd, rd_list_mru);
1014	spin_unlock(&sdp->sd_rindex_spin);
1015	return rgd;
 
 
 
 
1016}
1017
1018/**
1019 * forward_rgrp_get - get an rgrp to try next from full list
1020 * @sdp: The GFS2 superblock
 
1021 *
1022 * Returns: The rgrp to try next
1023 */
1024
1025static struct gfs2_rgrpd *forward_rgrp_get(struct gfs2_sbd *sdp)
1026{
1027	struct gfs2_rgrpd *rgd;
1028	unsigned int journals = gfs2_jindex_size(sdp);
1029	unsigned int rg = 0, x;
1030
1031	spin_lock(&sdp->sd_rindex_spin);
 
1032
1033	rgd = sdp->sd_rindex_forward;
1034	if (!rgd) {
1035		if (sdp->sd_rgrps >= journals)
1036			rg = sdp->sd_rgrps * sdp->sd_jdesc->jd_jid / journals;
1037
1038		for (x = 0, rgd = gfs2_rgrpd_get_first(sdp); x < rg;
1039		     x++, rgd = gfs2_rgrpd_get_next(rgd))
1040			/* Do Nothing */;
1041
1042		sdp->sd_rindex_forward = rgd;
1043	}
1044
1045	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
1046
1047	return rgd;
 
1048}
1049
1050/**
1051 * forward_rgrp_set - set the forward rgrp pointer
1052 * @sdp: the filesystem
1053 * @rgd: The new forward rgrp
1054 *
1055 */
1056
1057static void forward_rgrp_set(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd)
1058{
1059	spin_lock(&sdp->sd_rindex_spin);
1060	sdp->sd_rindex_forward = rgd;
1061	spin_unlock(&sdp->sd_rindex_spin);
 
 
 
 
 
 
 
1062}
1063
1064/**
1065 * get_local_rgrp - Choose and lock a rgrp for allocation
1066 * @ip: the inode to reserve space for
1067 * @rgp: the chosen and locked rgrp
1068 *
1069 * Try to acquire rgrp in way which avoids contending with others.
1070 *
1071 * Returns: errno
 
1072 */
1073
1074static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1075{
1076	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1077	struct gfs2_rgrpd *rgd, *begin = NULL;
1078	struct gfs2_alloc *al = ip->i_alloc;
1079	int flags = LM_FLAG_TRY;
1080	int skipped = 0;
1081	int loops = 0;
1082	int error, rg_locked;
1083
1084	rgd = gfs2_blk2rgrpd(sdp, ip->i_goal);
1085
1086	while (rgd) {
1087		rg_locked = 0;
1088
1089		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1090			rg_locked = 1;
1091			error = 0;
1092		} else {
1093			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1094						   LM_FLAG_TRY, &al->al_rgd_gh);
1095		}
1096		switch (error) {
1097		case 0:
1098			if (try_rgrp_fit(rgd, al))
1099				goto out;
1100			if (rgd->rd_flags & GFS2_RDF_CHECK)
1101				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1102			if (!rg_locked)
1103				gfs2_glock_dq_uninit(&al->al_rgd_gh);
1104			/* fall through */
1105		case GLR_TRYFAILED:
1106			rgd = recent_rgrp_next(rgd);
1107			break;
1108
1109		default:
1110			return error;
1111		}
1112	}
1113
1114	/* Go through full list of rgrps */
1115
1116	begin = rgd = forward_rgrp_get(sdp);
1117
1118	for (;;) {
1119		rg_locked = 0;
1120
1121		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1122			rg_locked = 1;
1123			error = 0;
1124		} else {
1125			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, flags,
1126						   &al->al_rgd_gh);
1127		}
1128		switch (error) {
1129		case 0:
1130			if (try_rgrp_fit(rgd, al))
1131				goto out;
1132			if (rgd->rd_flags & GFS2_RDF_CHECK)
1133				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1134			if (!rg_locked)
1135				gfs2_glock_dq_uninit(&al->al_rgd_gh);
1136			break;
1137
1138		case GLR_TRYFAILED:
1139			skipped++;
1140			break;
1141
1142		default:
1143			return error;
1144		}
1145
1146		rgd = gfs2_rgrpd_get_next(rgd);
1147		if (!rgd)
1148			rgd = gfs2_rgrpd_get_first(sdp);
1149
1150		if (rgd == begin) {
1151			if (++loops >= 3)
1152				return -ENOSPC;
1153			if (!skipped)
1154				loops++;
1155			flags = 0;
1156			if (loops == 2)
1157				gfs2_log_flush(sdp, NULL);
1158		}
1159	}
1160
1161out:
1162	if (begin) {
1163		spin_lock(&sdp->sd_rindex_spin);
1164		list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
1165		spin_unlock(&sdp->sd_rindex_spin);
1166		rgd = gfs2_rgrpd_get_next(rgd);
1167		if (!rgd)
1168			rgd = gfs2_rgrpd_get_first(sdp);
1169		forward_rgrp_set(sdp, rgd);
1170	}
1171
 
 
 
 
 
 
1172	return 0;
1173}
1174
1175/**
1176 * gfs2_inplace_reserve_i - Reserve space in the filesystem
1177 * @ip: the inode to reserve space for
 
1178 *
1179 * Returns: errno
 
 
 
 
 
 
 
 
1180 */
1181
1182int gfs2_inplace_reserve_i(struct gfs2_inode *ip, int hold_rindex,
1183			   char *file, unsigned int line)
1184{
1185	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1186	struct gfs2_alloc *al = ip->i_alloc;
1187	int error = 0;
 
1188	u64 last_unlinked = NO_BLOCK;
1189	int tries = 0;
 
1190
1191	if (gfs2_assert_warn(sdp, al->al_requested))
 
 
1192		return -EINVAL;
1193
1194	if (hold_rindex) {
1195		/* We need to hold the rindex unless the inode we're using is
1196		   the rindex itself, in which case it's already held. */
1197		if (ip != GFS2_I(sdp->sd_rindex))
1198			error = gfs2_rindex_hold(sdp, &al->al_ri_gh);
1199		else if (!sdp->sd_rgrps) /* We may not have the rindex read
1200					    in, so: */
1201			error = gfs2_ri_update(ip);
1202		if (error)
1203			return error;
1204	}
1205
1206try_again:
1207	do {
1208		error = get_local_rgrp(ip, &last_unlinked);
1209		/* If there is no space, flushing the log may release some */
1210		if (error) {
1211			if (ip == GFS2_I(sdp->sd_rindex) &&
1212			    !sdp->sd_rindex_uptodate) {
1213				error = gfs2_ri_update(ip);
1214				if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215					return error;
1216				goto try_again;
1217			}
1218			gfs2_log_flush(sdp, NULL);
1219		}
1220	} while (error && tries++ < 3);
1221
1222	if (error) {
1223		if (hold_rindex && ip != GFS2_I(sdp->sd_rindex))
1224			gfs2_glock_dq_uninit(&al->al_ri_gh);
1225		return error;
1226	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228	/* no error, so we have the rgrp set in the inode's allocation. */
1229	al->al_file = file;
1230	al->al_line = line;
 
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	return 0;
1233}
1234
1235/**
1236 * gfs2_inplace_release - release an inplace reservation
1237 * @ip: the inode the reservation was taken out on
1238 *
1239 * Release a reservation made by gfs2_inplace_reserve().
1240 */
1241
1242void gfs2_inplace_release(struct gfs2_inode *ip)
1243{
1244	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1245	struct gfs2_alloc *al = ip->i_alloc;
1246
1247	if (gfs2_assert_warn(sdp, al->al_alloced <= al->al_requested) == -1)
1248		fs_warn(sdp, "al_alloced = %u, al_requested = %u "
1249			     "al_file = %s, al_line = %u\n",
1250		             al->al_alloced, al->al_requested, al->al_file,
1251			     al->al_line);
1252
1253	al->al_rgd = NULL;
1254	if (al->al_rgd_gh.gh_gl)
1255		gfs2_glock_dq_uninit(&al->al_rgd_gh);
1256	if (ip != GFS2_I(sdp->sd_rindex) && al->al_ri_gh.gh_gl)
1257		gfs2_glock_dq_uninit(&al->al_ri_gh);
1258}
1259
1260/**
1261 * gfs2_get_block_type - Check a block in a RG is of given type
1262 * @rgd: the resource group holding the block
1263 * @block: the block number
1264 *
1265 * Returns: The block type (GFS2_BLKST_*)
1266 */
1267
1268static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1269{
1270	struct gfs2_bitmap *bi = NULL;
1271	u32 length, rgrp_block, buf_block;
1272	unsigned int buf;
1273	unsigned char type;
1274
1275	length = rgd->rd_length;
1276	rgrp_block = block - rgd->rd_data0;
1277
1278	for (buf = 0; buf < length; buf++) {
1279		bi = rgd->rd_bits + buf;
1280		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1281			break;
1282	}
1283
1284	gfs2_assert(rgd->rd_sbd, buf < length);
1285	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1286
1287	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1288			   bi->bi_len, buf_block);
1289
1290	return type;
1291}
1292
1293/**
1294 * rgblk_search - find a block in @old_state, change allocation
1295 *           state to @new_state
1296 * @rgd: the resource group descriptor
1297 * @goal: the goal block within the RG (start here to search for avail block)
1298 * @old_state: GFS2_BLKST_XXX the before-allocation state to find
1299 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1300 * @n: The extent length
1301 *
1302 * Walk rgrp's bitmap to find bits that represent a block in @old_state.
1303 * Add the found bitmap buffer to the transaction.
1304 * Set the found bits to @new_state to change block's allocation state.
1305 *
1306 * This function never fails, because we wouldn't call it unless we
1307 * know (from reservation results, etc.) that a block is available.
1308 *
1309 * Scope of @goal and returned block is just within rgrp, not the whole
1310 * filesystem.
1311 *
1312 * Returns:  the block number allocated
1313 */
1314
1315static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
1316			unsigned char old_state, unsigned char new_state,
1317			unsigned int *n)
1318{
1319	struct gfs2_bitmap *bi = NULL;
1320	const u32 length = rgd->rd_length;
1321	u32 blk = BFITNOENT;
1322	unsigned int buf, x;
1323	const unsigned int elen = *n;
1324	const u8 *buffer = NULL;
1325
1326	*n = 0;
1327	/* Find bitmap block that contains bits for goal block */
1328	for (buf = 0; buf < length; buf++) {
1329		bi = rgd->rd_bits + buf;
1330		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1331		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1332			goal -= bi->bi_start * GFS2_NBBY;
1333			goto do_search;
1334		}
1335	}
1336	buf = 0;
1337	goal = 0;
1338
1339do_search:
1340	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1341	   "x <= length", instead of "x < length", because we typically start
1342	   the search in the middle of a bit block, but if we can't find an
1343	   allocatable block anywhere else, we want to be able wrap around and
1344	   search in the first part of our first-searched bit block.  */
1345	for (x = 0; x <= length; x++) {
1346		bi = rgd->rd_bits + buf;
1347
1348		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1349		    (old_state == GFS2_BLKST_FREE))
1350			goto skip;
1351
1352		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1353		   bitmaps, so we must search the originals for that. */
1354		buffer = bi->bi_bh->b_data + bi->bi_offset;
1355		if (old_state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1356			buffer = bi->bi_clone + bi->bi_offset;
1357
1358		blk = gfs2_bitfit(buffer, bi->bi_len, goal, old_state);
1359		if (blk != BFITNOENT)
1360			break;
1361
1362		if ((goal == 0) && (old_state == GFS2_BLKST_FREE))
1363			set_bit(GBF_FULL, &bi->bi_flags);
1364
1365		/* Try next bitmap block (wrap back to rgrp header if at end) */
1366skip:
1367		buf++;
1368		buf %= length;
1369		goal = 0;
1370	}
1371
1372	if (blk == BFITNOENT)
1373		return blk;
1374	*n = 1;
1375	if (old_state == new_state)
1376		goto out;
1377
1378	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1379	gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1380		    bi, blk, new_state);
1381	goal = blk;
1382	while (*n < elen) {
1383		goal++;
1384		if (goal >= (bi->bi_len * GFS2_NBBY))
1385			break;
1386		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1387		    GFS2_BLKST_FREE)
1388			break;
1389		gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1390			    bi, goal, new_state);
1391		(*n)++;
 
1392	}
1393out:
1394	return (bi->bi_start * GFS2_NBBY) + blk;
1395}
1396
1397/**
1398 * rgblk_free - Change alloc state of given block(s)
1399 * @sdp: the filesystem
 
1400 * @bstart: the start of a run of blocks to free
1401 * @blen: the length of the block run (all must lie within ONE RG!)
1402 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1403 *
1404 * Returns:  Resource group containing the block(s)
1405 */
1406
1407static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1408				     u32 blen, unsigned char new_state)
1409{
1410	struct gfs2_rgrpd *rgd;
1411	struct gfs2_bitmap *bi = NULL;
1412	u32 length, rgrp_blk, buf_blk;
1413	unsigned int buf;
1414
1415	rgd = gfs2_blk2rgrpd(sdp, bstart);
1416	if (!rgd) {
1417		if (gfs2_consist(sdp))
1418			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1419		return NULL;
1420	}
1421
1422	length = rgd->rd_length;
1423
1424	rgrp_blk = bstart - rgd->rd_data0;
1425
 
 
 
1426	while (blen--) {
1427		for (buf = 0; buf < length; buf++) {
1428			bi = rgd->rd_bits + buf;
1429			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1430				break;
 
 
 
 
 
 
 
1431		}
1432
1433		gfs2_assert(rgd->rd_sbd, buf < length);
1434
1435		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1436		rgrp_blk++;
1437
1438		if (!bi->bi_clone) {
1439			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1440					       GFP_NOFS | __GFP_NOFAIL);
1441			memcpy(bi->bi_clone + bi->bi_offset,
1442			       bi->bi_bh->b_data + bi->bi_offset,
1443			       bi->bi_len);
1444		}
1445		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1446		gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
1447			    bi, buf_blk, new_state);
1448	}
1449
1450	return rgd;
1451}
1452
1453/**
1454 * gfs2_rgrp_dump - print out an rgrp
1455 * @seq: The iterator
1456 * @gl: The glock in question
 
1457 *
1458 */
1459
1460int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
 
1461{
1462	const struct gfs2_rgrpd *rgd = gl->gl_object;
 
 
 
1463	if (rgd == NULL)
1464		return 0;
1465	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
 
1466		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1467		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1468	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469}
1470
1471static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1472{
1473	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
1474	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1475		(unsigned long long)rgd->rd_addr);
1476	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1477	gfs2_rgrp_dump(NULL, rgd->rd_gl);
 
1478	rgd->rd_flags |= GFS2_RDF_ERROR;
1479}
1480
1481/**
1482 * gfs2_alloc_block - Allocate one or more blocks
1483 * @ip: the inode to allocate the block for
1484 * @bn: Used to return the starting block number
1485 * @n: requested number of blocks/extent length (value/result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486 *
1487 * Returns: 0 or error
 
 
1488 */
1489
1490int gfs2_alloc_block(struct gfs2_inode *ip, u64 *bn, unsigned int *n)
 
1491{
1492	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1493	struct buffer_head *dibh;
1494	struct gfs2_alloc *al = ip->i_alloc;
1495	struct gfs2_rgrpd *rgd;
1496	u32 goal, blk;
1497	u64 block;
1498	int error;
1499
1500	/* Only happens if there is a bug in gfs2, return something distinctive
1501	 * to ensure that it is noticed.
1502	 */
1503	if (al == NULL)
1504		return -ECANCELED;
1505
1506	rgd = al->al_rgd;
 
 
 
1507
1508	if (rgrp_contains_block(rgd, ip->i_goal))
1509		goal = ip->i_goal - rgd->rd_data0;
1510	else
1511		goal = rgd->rd_last_alloc;
1512
1513	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED, n);
1514
1515	/* Since all blocks are reserved in advance, this shouldn't happen */
1516	if (blk == BFITNOENT)
1517		goto rgrp_error;
1518
1519	rgd->rd_last_alloc = blk;
1520	block = rgd->rd_data0 + blk;
1521	ip->i_goal = block;
1522	error = gfs2_meta_inode_buffer(ip, &dibh);
1523	if (error == 0) {
1524		struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
1525		gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1526		di->di_goal_meta = di->di_goal_data = cpu_to_be64(ip->i_goal);
1527		brelse(dibh);
1528	}
1529	if (rgd->rd_free < *n)
1530		goto rgrp_error;
1531
1532	rgd->rd_free -= *n;
1533
1534	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1535	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1536
1537	al->al_alloced += *n;
1538
1539	gfs2_statfs_change(sdp, 0, -(s64)*n, 0);
1540	gfs2_quota_change(ip, *n, ip->i_inode.i_uid, ip->i_inode.i_gid);
1541
1542	spin_lock(&sdp->sd_rindex_spin);
1543	rgd->rd_free_clone -= *n;
1544	spin_unlock(&sdp->sd_rindex_spin);
1545	trace_gfs2_block_alloc(ip, block, *n, GFS2_BLKST_USED);
1546	*bn = block;
1547	return 0;
1548
1549rgrp_error:
1550	gfs2_rgrp_error(rgd);
1551	return -EIO;
1552}
1553
1554/**
1555 * gfs2_alloc_di - Allocate a dinode
1556 * @dip: the directory that the inode is going in
1557 * @bn: the block number which is allocated
 
 
1558 * @generation: the generation number of the inode
1559 *
1560 * Returns: 0 on success or error
1561 */
1562
1563int gfs2_alloc_di(struct gfs2_inode *dip, u64 *bn, u64 *generation)
 
1564{
1565	struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode);
1566	struct gfs2_alloc *al = dip->i_alloc;
1567	struct gfs2_rgrpd *rgd = al->al_rgd;
1568	u32 blk;
1569	u64 block;
1570	unsigned int n = 1;
1571
1572	blk = rgblk_search(rgd, rgd->rd_last_alloc,
1573			   GFS2_BLKST_FREE, GFS2_BLKST_DINODE, &n);
 
 
 
 
 
1574
1575	/* Since all blocks are reserved in advance, this shouldn't happen */
1576	if (blk == BFITNOENT)
 
 
 
 
1577		goto rgrp_error;
 
1578
1579	rgd->rd_last_alloc = blk;
1580	block = rgd->rd_data0 + blk;
1581	if (rgd->rd_free == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582		goto rgrp_error;
 
1583
1584	rgd->rd_free--;
1585	rgd->rd_dinodes++;
1586	*generation = rgd->rd_igeneration++;
1587	if (*generation == 0)
1588		*generation = rgd->rd_igeneration++;
1589	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1590	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1591
1592	al->al_alloced++;
1593
1594	gfs2_statfs_change(sdp, 0, -1, +1);
1595	gfs2_trans_add_unrevoke(sdp, block, 1);
1596
1597	spin_lock(&sdp->sd_rindex_spin);
1598	rgd->rd_free_clone--;
1599	spin_unlock(&sdp->sd_rindex_spin);
1600	trace_gfs2_block_alloc(dip, block, 1, GFS2_BLKST_DINODE);
 
 
 
1601	*bn = block;
1602	return 0;
1603
1604rgrp_error:
1605	gfs2_rgrp_error(rgd);
1606	return -EIO;
1607}
1608
1609/**
1610 * __gfs2_free_blocks - free a contiguous run of block(s)
1611 * @ip: the inode these blocks are being freed from
 
1612 * @bstart: first block of a run of contiguous blocks
1613 * @blen: the length of the block run
1614 * @meta: 1 if the blocks represent metadata
1615 *
1616 */
1617
1618void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
 
1619{
1620	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1621	struct gfs2_rgrpd *rgd;
1622
1623	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1624	if (!rgd)
1625		return;
1626	trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE);
1627	rgd->rd_free += blen;
1628
1629	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1630	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1631
1632	gfs2_trans_add_rg(rgd);
1633
1634	/* Directories keep their data in the metadata address space */
1635	if (meta || ip->i_depth)
1636		gfs2_meta_wipe(ip, bstart, blen);
1637}
1638
1639/**
1640 * gfs2_free_meta - free a contiguous run of data block(s)
1641 * @ip: the inode these blocks are being freed from
 
1642 * @bstart: first block of a run of contiguous blocks
1643 * @blen: the length of the block run
1644 *
1645 */
1646
1647void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
 
1648{
1649	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1650
1651	__gfs2_free_blocks(ip, bstart, blen, 1);
1652	gfs2_statfs_change(sdp, 0, +blen, 0);
1653	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1654}
1655
1656void gfs2_unlink_di(struct inode *inode)
1657{
1658	struct gfs2_inode *ip = GFS2_I(inode);
1659	struct gfs2_sbd *sdp = GFS2_SB(inode);
1660	struct gfs2_rgrpd *rgd;
1661	u64 blkno = ip->i_no_addr;
1662
1663	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1664	if (!rgd)
1665		return;
1666	trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED);
1667	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
 
1668	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1669	gfs2_trans_add_rg(rgd);
1670}
1671
1672static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1673{
1674	struct gfs2_sbd *sdp = rgd->rd_sbd;
1675	struct gfs2_rgrpd *tmp_rgd;
1676
1677	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1678	if (!tmp_rgd)
1679		return;
1680	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1681
 
1682	if (!rgd->rd_dinodes)
1683		gfs2_consist_rgrpd(rgd);
1684	rgd->rd_dinodes--;
1685	rgd->rd_free++;
1686
1687	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1688	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
 
1689
1690	gfs2_statfs_change(sdp, 0, +1, -1);
1691	gfs2_trans_add_rg(rgd);
1692}
1693
1694
1695void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1696{
1697	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1698	trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1699	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1700	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1701}
1702
1703/**
1704 * gfs2_check_blk_type - Check the type of a block
1705 * @sdp: The superblock
1706 * @no_addr: The block number to check
1707 * @type: The block type we are looking for
1708 *
1709 * Returns: 0 if the block type matches the expected type
1710 *          -ESTALE if it doesn't match
1711 *          or -ve errno if something went wrong while checking
1712 */
1713
1714int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1715{
1716	struct gfs2_rgrpd *rgd;
1717	struct gfs2_holder ri_gh, rgd_gh;
1718	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1719	int ri_locked = 0;
1720	int error;
1721
1722	if (!gfs2_glock_is_locked_by_me(ip->i_gl)) {
1723		error = gfs2_rindex_hold(sdp, &ri_gh);
1724		if (error)
1725			goto fail;
1726		ri_locked = 1;
1727	}
1728
1729	error = -EINVAL;
1730	rgd = gfs2_blk2rgrpd(sdp, no_addr);
1731	if (!rgd)
1732		goto fail_rindex;
1733
1734	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1735	if (error)
1736		goto fail_rindex;
1737
1738	if (gfs2_get_block_type(rgd, no_addr) != type)
 
 
 
 
 
1739		error = -ESTALE;
1740
1741	gfs2_glock_dq_uninit(&rgd_gh);
1742fail_rindex:
1743	if (ri_locked)
1744		gfs2_glock_dq_uninit(&ri_gh);
1745fail:
1746	return error;
1747}
1748
1749/**
1750 * gfs2_rlist_add - add a RG to a list of RGs
1751 * @sdp: the filesystem
1752 * @rlist: the list of resource groups
1753 * @block: the block
1754 *
1755 * Figure out what RG a block belongs to and add that RG to the list
1756 *
1757 * FIXME: Don't use NOFAIL
1758 *
1759 */
1760
1761void gfs2_rlist_add(struct gfs2_sbd *sdp, struct gfs2_rgrp_list *rlist,
1762		    u64 block)
1763{
 
1764	struct gfs2_rgrpd *rgd;
1765	struct gfs2_rgrpd **tmp;
1766	unsigned int new_space;
1767	unsigned int x;
1768
1769	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1770		return;
1771
1772	rgd = gfs2_blk2rgrpd(sdp, block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773	if (!rgd) {
1774		if (gfs2_consist(sdp))
1775			fs_err(sdp, "block = %llu\n", (unsigned long long)block);
1776		return;
1777	}
1778
1779	for (x = 0; x < rlist->rl_rgrps; x++)
1780		if (rlist->rl_rgd[x] == rgd)
 
 
1781			return;
 
 
1782
1783	if (rlist->rl_rgrps == rlist->rl_space) {
1784		new_space = rlist->rl_space + 10;
1785
1786		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1787			      GFP_NOFS | __GFP_NOFAIL);
1788
1789		if (rlist->rl_rgd) {
1790			memcpy(tmp, rlist->rl_rgd,
1791			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1792			kfree(rlist->rl_rgd);
1793		}
1794
1795		rlist->rl_space = new_space;
1796		rlist->rl_rgd = tmp;
1797	}
1798
1799	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1800}
1801
1802/**
1803 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1804 *      and initialize an array of glock holders for them
1805 * @rlist: the list of resource groups
1806 * @state: the lock state to acquire the RG lock in
1807 * @flags: the modifier flags for the holder structures
1808 *
1809 * FIXME: Don't use NOFAIL
1810 *
1811 */
1812
1813void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1814{
1815	unsigned int x;
1816
1817	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1818				GFP_NOFS | __GFP_NOFAIL);
 
1819	for (x = 0; x < rlist->rl_rgrps; x++)
1820		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1821				state, 0,
1822				&rlist->rl_ghs[x]);
1823}
1824
1825/**
1826 * gfs2_rlist_free - free a resource group list
1827 * @list: the list of resource groups
1828 *
1829 */
1830
1831void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1832{
1833	unsigned int x;
1834
1835	kfree(rlist->rl_rgd);
1836
1837	if (rlist->rl_ghs) {
1838		for (x = 0; x < rlist->rl_rgrps; x++)
1839			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1840		kfree(rlist->rl_ghs);
 
1841	}
1842}
1843
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/slab.h>
  10#include <linux/spinlock.h>
  11#include <linux/completion.h>
  12#include <linux/buffer_head.h>
  13#include <linux/fs.h>
  14#include <linux/gfs2_ondisk.h>
  15#include <linux/prefetch.h>
  16#include <linux/blkdev.h>
  17#include <linux/rbtree.h>
  18#include <linux/random.h>
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34#include "dir.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
  39#if BITS_PER_LONG == 32
  40#define LBITMASK   (0x55555555UL)
  41#define LBITSKIP55 (0x55555555UL)
  42#define LBITSKIP00 (0x00000000UL)
  43#else
  44#define LBITMASK   (0x5555555555555555UL)
  45#define LBITSKIP55 (0x5555555555555555UL)
  46#define LBITSKIP00 (0x0000000000000000UL)
  47#endif
  48
  49/*
  50 * These routines are used by the resource group routines (rgrp.c)
  51 * to keep track of block allocation.  Each block is represented by two
  52 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  53 *
  54 * 0 = Free
  55 * 1 = Used (not metadata)
  56 * 2 = Unlinked (still in use) inode
  57 * 3 = Used (metadata)
  58 */
  59
  60struct gfs2_extent {
  61	struct gfs2_rbm rbm;
  62	u32 len;
  63};
  64
  65static const char valid_change[16] = {
  66	        /* current */
  67	/* n */ 0, 1, 1, 1,
  68	/* e */ 1, 0, 0, 0,
  69	/* w */ 0, 0, 0, 1,
  70	        1, 0, 0, 0
  71};
  72
  73static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  74			 const struct gfs2_inode *ip, bool nowrap);
  75
  76
  77/**
  78 * gfs2_setbit - Set a bit in the bitmaps
  79 * @rbm: The position of the bit to set
  80 * @do_clone: Also set the clone bitmap, if it exists
 
  81 * @new_state: the new state of the block
  82 *
  83 */
  84
  85static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
 
 
  86			       unsigned char new_state)
  87{
  88	unsigned char *byte1, *byte2, *end, cur_state;
  89	struct gfs2_bitmap *bi = rbm_bi(rbm);
  90	unsigned int buflen = bi->bi_bytes;
  91	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  92
  93	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  94	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  95
  96	BUG_ON(byte1 >= end);
  97
  98	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  99
 100	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 101		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
 102
 103		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
 104			rbm->offset, cur_state, new_state);
 105		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
 106			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
 107			(unsigned long long)bi->bi_bh->b_blocknr);
 108		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
 109			bi->bi_offset, bi->bi_bytes,
 110			(unsigned long long)gfs2_rbm_to_block(rbm));
 111		dump_stack();
 112		gfs2_consist_rgrpd(rbm->rgd);
 113		return;
 114	}
 115	*byte1 ^= (cur_state ^ new_state) << bit;
 116
 117	if (do_clone && bi->bi_clone) {
 118		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 119		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 120		*byte2 ^= (cur_state ^ new_state) << bit;
 121	}
 122}
 123
 124/**
 125 * gfs2_testbit - test a bit in the bitmaps
 126 * @rbm: The bit to test
 127 * @use_clone: If true, test the clone bitmap, not the official bitmap.
 
 128 *
 129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
 130 * not the "real" bitmaps, to avoid allocating recently freed blocks.
 131 *
 132 * Returns: The two bit block state of the requested bit
 133 */
 134
 135static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
 
 
 136{
 137	struct gfs2_bitmap *bi = rbm_bi(rbm);
 138	const u8 *buffer;
 139	const u8 *byte;
 140	unsigned int bit;
 141
 142	if (use_clone && bi->bi_clone)
 143		buffer = bi->bi_clone;
 144	else
 145		buffer = bi->bi_bh->b_data;
 146	buffer += bi->bi_offset;
 147	byte = buffer + (rbm->offset / GFS2_NBBY);
 148	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 149
 150	return (*byte >> bit) & GFS2_BIT_MASK;
 151}
 152
 153/**
 154 * gfs2_bit_search
 155 * @ptr: Pointer to bitmap data
 156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 157 * @state: The state we are searching for
 158 *
 159 * We xor the bitmap data with a patter which is the bitwise opposite
 160 * of what we are looking for, this gives rise to a pattern of ones
 161 * wherever there is a match. Since we have two bits per entry, we
 162 * take this pattern, shift it down by one place and then and it with
 163 * the original. All the even bit positions (0,2,4, etc) then represent
 164 * successful matches, so we mask with 0x55555..... to remove the unwanted
 165 * odd bit positions.
 166 *
 167 * This allows searching of a whole u64 at once (32 blocks) with a
 168 * single test (on 64 bit arches).
 169 */
 170
 171static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 172{
 173	u64 tmp;
 174	static const u64 search[] = {
 175		[0] = 0xffffffffffffffffULL,
 176		[1] = 0xaaaaaaaaaaaaaaaaULL,
 177		[2] = 0x5555555555555555ULL,
 178		[3] = 0x0000000000000000ULL,
 179	};
 180	tmp = le64_to_cpu(*ptr) ^ search[state];
 181	tmp &= (tmp >> 1);
 182	tmp &= mask;
 183	return tmp;
 184}
 185
 186/**
 187 * rs_cmp - multi-block reservation range compare
 188 * @blk: absolute file system block number of the new reservation
 189 * @len: number of blocks in the new reservation
 190 * @rs: existing reservation to compare against
 191 *
 192 * returns: 1 if the block range is beyond the reach of the reservation
 193 *         -1 if the block range is before the start of the reservation
 194 *          0 if the block range overlaps with the reservation
 195 */
 196static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 197{
 198	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 199
 200	if (blk >= startblk + rs->rs_free)
 201		return 1;
 202	if (blk + len - 1 < startblk)
 203		return -1;
 204	return 0;
 205}
 206
 207/**
 208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 209 *       a block in a given allocation state.
 210 * @buf: the buffer that holds the bitmaps
 211 * @len: the length (in bytes) of the buffer
 212 * @goal: start search at this block's bit-pair (within @buffer)
 213 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 214 *
 215 * Scope of @goal and returned block number is only within this bitmap buffer,
 216 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 217 * beginning of a bitmap block buffer, skipping any header structures, but
 218 * headers are always a multiple of 64 bits long so that the buffer is
 219 * always aligned to a 64 bit boundary.
 220 *
 221 * The size of the buffer is in bytes, but is it assumed that it is
 222 * always ok to read a complete multiple of 64 bits at the end
 223 * of the block in case the end is no aligned to a natural boundary.
 224 *
 225 * Return: the block number (bitmap buffer scope) that was found
 226 */
 227
 228static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 229		       u32 goal, u8 state)
 230{
 231	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 232	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 233	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 234	u64 tmp;
 235	u64 mask = 0x5555555555555555ULL;
 236	u32 bit;
 237
 
 
 238	/* Mask off bits we don't care about at the start of the search */
 239	mask <<= spoint;
 240	tmp = gfs2_bit_search(ptr, mask, state);
 241	ptr++;
 242	while(tmp == 0 && ptr < end) {
 243		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 244		ptr++;
 245	}
 246	/* Mask off any bits which are more than len bytes from the start */
 247	if (ptr == end && (len & (sizeof(u64) - 1)))
 248		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 249	/* Didn't find anything, so return */
 250	if (tmp == 0)
 251		return BFITNOENT;
 252	ptr--;
 253	bit = __ffs64(tmp);
 254	bit /= 2;	/* two bits per entry in the bitmap */
 255	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 256}
 257
 258/**
 259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 260 * @rbm: The rbm with rgd already set correctly
 261 * @block: The block number (filesystem relative)
 262 *
 263 * This sets the bi and offset members of an rbm based on a
 264 * resource group and a filesystem relative block number. The
 265 * resource group must be set in the rbm on entry, the bi and
 266 * offset members will be set by this function.
 267 *
 268 * Returns: 0 on success, or an error code
 269 */
 270
 271static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 272{
 273	if (!rgrp_contains_block(rbm->rgd, block))
 274		return -E2BIG;
 275	rbm->bii = 0;
 276	rbm->offset = block - rbm->rgd->rd_data0;
 277	/* Check if the block is within the first block */
 278	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 279		return 0;
 280
 281	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 282	rbm->offset += (sizeof(struct gfs2_rgrp) -
 283			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 284	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 285	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 286	return 0;
 287}
 288
 289/**
 290 * gfs2_rbm_incr - increment an rbm structure
 291 * @rbm: The rbm with rgd already set correctly
 292 *
 293 * This function takes an existing rbm structure and increments it to the next
 294 * viable block offset.
 295 *
 296 * Returns: If incrementing the offset would cause the rbm to go past the
 297 *          end of the rgrp, true is returned, otherwise false.
 298 *
 299 */
 300
 301static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 302{
 303	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 304		rbm->offset++;
 305		return false;
 306	}
 307	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 308		return true;
 309
 310	rbm->offset = 0;
 311	rbm->bii++;
 312	return false;
 313}
 314
 315/**
 316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 317 * @rbm: Position to search (value/result)
 318 * @n_unaligned: Number of unaligned blocks to check
 319 * @len: Decremented for each block found (terminate on zero)
 320 *
 321 * Returns: true if a non-free block is encountered
 322 */
 323
 324static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 325{
 326	u32 n;
 327	u8 res;
 328
 329	for (n = 0; n < n_unaligned; n++) {
 330		res = gfs2_testbit(rbm, true);
 331		if (res != GFS2_BLKST_FREE)
 332			return true;
 333		(*len)--;
 334		if (*len == 0)
 335			return true;
 336		if (gfs2_rbm_incr(rbm))
 337			return true;
 338	}
 339
 340	return false;
 341}
 342
 343/**
 344 * gfs2_free_extlen - Return extent length of free blocks
 345 * @rrbm: Starting position
 346 * @len: Max length to check
 347 *
 348 * Starting at the block specified by the rbm, see how many free blocks
 349 * there are, not reading more than len blocks ahead. This can be done
 350 * using memchr_inv when the blocks are byte aligned, but has to be done
 351 * on a block by block basis in case of unaligned blocks. Also this
 352 * function can cope with bitmap boundaries (although it must stop on
 353 * a resource group boundary)
 354 *
 355 * Returns: Number of free blocks in the extent
 356 */
 357
 358static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 359{
 360	struct gfs2_rbm rbm = *rrbm;
 361	u32 n_unaligned = rbm.offset & 3;
 362	u32 size = len;
 363	u32 bytes;
 364	u32 chunk_size;
 365	u8 *ptr, *start, *end;
 366	u64 block;
 367	struct gfs2_bitmap *bi;
 368
 369	if (n_unaligned &&
 370	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 371		goto out;
 372
 373	n_unaligned = len & 3;
 374	/* Start is now byte aligned */
 375	while (len > 3) {
 376		bi = rbm_bi(&rbm);
 377		start = bi->bi_bh->b_data;
 378		if (bi->bi_clone)
 379			start = bi->bi_clone;
 380		start += bi->bi_offset;
 381		end = start + bi->bi_bytes;
 382		BUG_ON(rbm.offset & 3);
 383		start += (rbm.offset / GFS2_NBBY);
 384		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 385		ptr = memchr_inv(start, 0, bytes);
 386		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 387		chunk_size *= GFS2_NBBY;
 388		BUG_ON(len < chunk_size);
 389		len -= chunk_size;
 390		block = gfs2_rbm_to_block(&rbm);
 391		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 392			n_unaligned = 0;
 393			break;
 394		}
 395		if (ptr) {
 396			n_unaligned = 3;
 397			break;
 398		}
 399		n_unaligned = len & 3;
 400	}
 401
 402	/* Deal with any bits left over at the end */
 403	if (n_unaligned)
 404		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 405out:
 406	return size - len;
 407}
 408
 409/**
 410 * gfs2_bitcount - count the number of bits in a certain state
 411 * @rgd: the resource group descriptor
 412 * @buffer: the buffer that holds the bitmaps
 413 * @buflen: the length (in bytes) of the buffer
 414 * @state: the state of the block we're looking for
 415 *
 416 * Returns: The number of bits
 417 */
 418
 419static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 420			 unsigned int buflen, u8 state)
 421{
 422	const u8 *byte = buffer;
 423	const u8 *end = buffer + buflen;
 424	const u8 state1 = state << 2;
 425	const u8 state2 = state << 4;
 426	const u8 state3 = state << 6;
 427	u32 count = 0;
 428
 429	for (; byte < end; byte++) {
 430		if (((*byte) & 0x03) == state)
 431			count++;
 432		if (((*byte) & 0x0C) == state1)
 433			count++;
 434		if (((*byte) & 0x30) == state2)
 435			count++;
 436		if (((*byte) & 0xC0) == state3)
 437			count++;
 438	}
 439
 440	return count;
 441}
 442
 443/**
 444 * gfs2_rgrp_verify - Verify that a resource group is consistent
 
 445 * @rgd: the rgrp
 446 *
 447 */
 448
 449void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 450{
 451	struct gfs2_sbd *sdp = rgd->rd_sbd;
 452	struct gfs2_bitmap *bi = NULL;
 453	u32 length = rgd->rd_length;
 454	u32 count[4], tmp;
 455	int buf, x;
 456
 457	memset(count, 0, 4 * sizeof(u32));
 458
 459	/* Count # blocks in each of 4 possible allocation states */
 460	for (buf = 0; buf < length; buf++) {
 461		bi = rgd->rd_bits + buf;
 462		for (x = 0; x < 4; x++)
 463			count[x] += gfs2_bitcount(rgd,
 464						  bi->bi_bh->b_data +
 465						  bi->bi_offset,
 466						  bi->bi_bytes, x);
 467	}
 468
 469	if (count[0] != rgd->rd_free) {
 470		if (gfs2_consist_rgrpd(rgd))
 471			fs_err(sdp, "free data mismatch:  %u != %u\n",
 472			       count[0], rgd->rd_free);
 473		return;
 474	}
 475
 476	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 477	if (count[1] != tmp) {
 478		if (gfs2_consist_rgrpd(rgd))
 479			fs_err(sdp, "used data mismatch:  %u != %u\n",
 480			       count[1], tmp);
 481		return;
 482	}
 483
 484	if (count[2] + count[3] != rgd->rd_dinodes) {
 485		if (gfs2_consist_rgrpd(rgd))
 486			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 487			       count[2] + count[3], rgd->rd_dinodes);
 488		return;
 489	}
 490}
 491
 
 
 
 
 
 
 
 492/**
 493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 494 * @sdp: The GFS2 superblock
 495 * @blk: The data block number
 496 * @exact: True if this needs to be an exact match
 497 *
 498 * The @exact argument should be set to true by most callers. The exception
 499 * is when we need to match blocks which are not represented by the rgrp
 500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 501 * there for alignment purposes. Another way of looking at it is that @exact
 502 * matches only valid data/metadata blocks, but with @exact false, it will
 503 * match any block within the extent of the rgrp.
 504 *
 505 * Returns: The resource group, or NULL if not found
 506 */
 507
 508struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 509{
 510	struct rb_node *n, *next;
 511	struct gfs2_rgrpd *cur;
 512
 513	spin_lock(&sdp->sd_rindex_spin);
 514	n = sdp->sd_rindex_tree.rb_node;
 515	while (n) {
 516		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 517		next = NULL;
 518		if (blk < cur->rd_addr)
 519			next = n->rb_left;
 520		else if (blk >= cur->rd_data0 + cur->rd_data)
 521			next = n->rb_right;
 522		if (next == NULL) {
 523			spin_unlock(&sdp->sd_rindex_spin);
 524			if (exact) {
 525				if (blk < cur->rd_addr)
 526					return NULL;
 527				if (blk >= cur->rd_data0 + cur->rd_data)
 528					return NULL;
 529			}
 530			return cur;
 531		}
 532		n = next;
 533	}
 
 534	spin_unlock(&sdp->sd_rindex_spin);
 535
 536	return NULL;
 537}
 538
 539/**
 540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 541 * @sdp: The GFS2 superblock
 542 *
 543 * Returns: The first rgrp in the filesystem
 544 */
 545
 546struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 547{
 548	const struct rb_node *n;
 549	struct gfs2_rgrpd *rgd;
 550
 551	spin_lock(&sdp->sd_rindex_spin);
 552	n = rb_first(&sdp->sd_rindex_tree);
 553	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 554	spin_unlock(&sdp->sd_rindex_spin);
 555
 556	return rgd;
 557}
 558
 559/**
 560 * gfs2_rgrpd_get_next - get the next RG
 561 * @rgd: the resource group descriptor
 562 *
 563 * Returns: The next rgrp
 564 */
 565
 566struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 567{
 568	struct gfs2_sbd *sdp = rgd->rd_sbd;
 569	const struct rb_node *n;
 570
 571	spin_lock(&sdp->sd_rindex_spin);
 572	n = rb_next(&rgd->rd_node);
 573	if (n == NULL)
 574		n = rb_first(&sdp->sd_rindex_tree);
 575
 576	if (unlikely(&rgd->rd_node == n)) {
 577		spin_unlock(&sdp->sd_rindex_spin);
 578		return NULL;
 579	}
 580	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 581	spin_unlock(&sdp->sd_rindex_spin);
 582	return rgd;
 583}
 584
 585void check_and_update_goal(struct gfs2_inode *ip)
 586{
 587	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 588	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 589		ip->i_goal = ip->i_no_addr;
 590}
 591
 592void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 593{
 594	int x;
 595
 596	for (x = 0; x < rgd->rd_length; x++) {
 597		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 598		kfree(bi->bi_clone);
 599		bi->bi_clone = NULL;
 600	}
 601}
 602
 603/**
 604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 605 *                 plus a quota allocations data structure, if necessary
 606 * @ip: the inode for this reservation
 607 */
 608int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 609{
 610	return gfs2_qa_alloc(ip);
 611}
 612
 613static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
 614		    const char *fs_id_buf)
 615{
 616	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
 617
 618	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
 619		       (unsigned long long)ip->i_no_addr,
 620		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 621		       rs->rs_rbm.offset, rs->rs_free);
 622}
 623
 624/**
 625 * __rs_deltree - remove a multi-block reservation from the rgd tree
 626 * @rs: The reservation to remove
 627 *
 628 */
 629static void __rs_deltree(struct gfs2_blkreserv *rs)
 630{
 
 631	struct gfs2_rgrpd *rgd;
 
 632
 633	if (!gfs2_rs_active(rs))
 634		return;
 635
 636	rgd = rs->rs_rbm.rgd;
 637	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 638	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 639	RB_CLEAR_NODE(&rs->rs_node);
 640
 641	if (rs->rs_free) {
 642		u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
 643				 rs->rs_free - 1;
 644		struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
 645		struct gfs2_bitmap *start, *last;
 646
 647		/* return reserved blocks to the rgrp */
 648		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 649		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 650		/* The rgrp extent failure point is likely not to increase;
 651		   it will only do so if the freed blocks are somehow
 652		   contiguous with a span of free blocks that follows. Still,
 653		   it will force the number to be recalculated later. */
 654		rgd->rd_extfail_pt += rs->rs_free;
 655		rs->rs_free = 0;
 656		if (gfs2_rbm_from_block(&last_rbm, last_block))
 657			return;
 658		start = rbm_bi(&rs->rs_rbm);
 659		last = rbm_bi(&last_rbm);
 660		do
 661			clear_bit(GBF_FULL, &start->bi_flags);
 662		while (start++ != last);
 663	}
 664}
 665
 666/**
 667 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 668 * @rs: The reservation to remove
 669 *
 670 */
 671void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 672{
 673	struct gfs2_rgrpd *rgd;
 674
 675	rgd = rs->rs_rbm.rgd;
 676	if (rgd) {
 677		spin_lock(&rgd->rd_rsspin);
 678		__rs_deltree(rs);
 679		BUG_ON(rs->rs_free);
 680		spin_unlock(&rgd->rd_rsspin);
 681	}
 682}
 683
 684/**
 685 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 686 * @ip: The inode for this reservation
 687 * @wcount: The inode's write count, or NULL
 688 *
 689 */
 690void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 691{
 692	down_write(&ip->i_rw_mutex);
 693	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 694		gfs2_rs_deltree(&ip->i_res);
 695	up_write(&ip->i_rw_mutex);
 696	gfs2_qa_delete(ip, wcount);
 697}
 698
 699/**
 700 * return_all_reservations - return all reserved blocks back to the rgrp.
 701 * @rgd: the rgrp that needs its space back
 702 *
 703 * We previously reserved a bunch of blocks for allocation. Now we need to
 704 * give them back. This leave the reservation structures in tact, but removes
 705 * all of their corresponding "no-fly zones".
 706 */
 707static void return_all_reservations(struct gfs2_rgrpd *rgd)
 708{
 709	struct rb_node *n;
 710	struct gfs2_blkreserv *rs;
 711
 712	spin_lock(&rgd->rd_rsspin);
 713	while ((n = rb_first(&rgd->rd_rstree))) {
 714		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 715		__rs_deltree(rs);
 716	}
 717	spin_unlock(&rgd->rd_rsspin);
 718}
 719
 720void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 721{
 722	struct rb_node *n;
 723	struct gfs2_rgrpd *rgd;
 724	struct gfs2_glock *gl;
 725
 726	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 727		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 728		gl = rgd->rd_gl;
 729
 730		rb_erase(n, &sdp->sd_rindex_tree);
 
 731
 732		if (gl) {
 733			glock_clear_object(gl, rgd);
 734			gfs2_rgrp_brelse(rgd);
 735			gfs2_glock_put(gl);
 736		}
 737
 738		gfs2_free_clones(rgd);
 739		kfree(rgd->rd_bits);
 740		rgd->rd_bits = NULL;
 741		return_all_reservations(rgd);
 742		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 743	}
 744}
 745
 
 
 
 
 
 
 
 746static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 747{
 748	struct gfs2_sbd *sdp = rgd->rd_sbd;
 749
 750	fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 751	fs_info(sdp, "ri_length = %u\n", rgd->rd_length);
 752	fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 753	fs_info(sdp, "ri_data = %u\n", rgd->rd_data);
 754	fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes);
 755}
 756
 757/**
 758 * gfs2_compute_bitstructs - Compute the bitmap sizes
 759 * @rgd: The resource group descriptor
 760 *
 761 * Calculates bitmap descriptors, one for each block that contains bitmap data
 762 *
 763 * Returns: errno
 764 */
 765
 766static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 767{
 768	struct gfs2_sbd *sdp = rgd->rd_sbd;
 769	struct gfs2_bitmap *bi;
 770	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 771	u32 bytes_left, bytes;
 772	int x;
 773
 774	if (!length)
 775		return -EINVAL;
 776
 777	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 778	if (!rgd->rd_bits)
 779		return -ENOMEM;
 780
 781	bytes_left = rgd->rd_bitbytes;
 782
 783	for (x = 0; x < length; x++) {
 784		bi = rgd->rd_bits + x;
 785
 786		bi->bi_flags = 0;
 787		/* small rgrp; bitmap stored completely in header block */
 788		if (length == 1) {
 789			bytes = bytes_left;
 790			bi->bi_offset = sizeof(struct gfs2_rgrp);
 791			bi->bi_start = 0;
 792			bi->bi_bytes = bytes;
 793			bi->bi_blocks = bytes * GFS2_NBBY;
 794		/* header block */
 795		} else if (x == 0) {
 796			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 797			bi->bi_offset = sizeof(struct gfs2_rgrp);
 798			bi->bi_start = 0;
 799			bi->bi_bytes = bytes;
 800			bi->bi_blocks = bytes * GFS2_NBBY;
 801		/* last block */
 802		} else if (x + 1 == length) {
 803			bytes = bytes_left;
 804			bi->bi_offset = sizeof(struct gfs2_meta_header);
 805			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 806			bi->bi_bytes = bytes;
 807			bi->bi_blocks = bytes * GFS2_NBBY;
 808		/* other blocks */
 809		} else {
 810			bytes = sdp->sd_sb.sb_bsize -
 811				sizeof(struct gfs2_meta_header);
 812			bi->bi_offset = sizeof(struct gfs2_meta_header);
 813			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 814			bi->bi_bytes = bytes;
 815			bi->bi_blocks = bytes * GFS2_NBBY;
 816		}
 817
 818		bytes_left -= bytes;
 819	}
 820
 821	if (bytes_left) {
 822		gfs2_consist_rgrpd(rgd);
 823		return -EIO;
 824	}
 825	bi = rgd->rd_bits + (length - 1);
 826	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
 827		if (gfs2_consist_rgrpd(rgd)) {
 828			gfs2_rindex_print(rgd);
 829			fs_err(sdp, "start=%u len=%u offset=%u\n",
 830			       bi->bi_start, bi->bi_bytes, bi->bi_offset);
 831		}
 832		return -EIO;
 833	}
 834
 835	return 0;
 836}
 837
 838/**
 839 * gfs2_ri_total - Total up the file system space, according to the rindex.
 840 * @sdp: the filesystem
 841 *
 842 */
 843u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 844{
 845	u64 total_data = 0;	
 846	struct inode *inode = sdp->sd_rindex;
 847	struct gfs2_inode *ip = GFS2_I(inode);
 848	char buf[sizeof(struct gfs2_rindex)];
 
 849	int error, rgrps;
 850
 
 
 851	for (rgrps = 0;; rgrps++) {
 852		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 853
 854		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 855			break;
 856		error = gfs2_internal_read(ip, buf, &pos,
 857					   sizeof(struct gfs2_rindex));
 858		if (error != sizeof(struct gfs2_rindex))
 859			break;
 860		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 861	}
 
 862	return total_data;
 863}
 864
 865static int rgd_insert(struct gfs2_rgrpd *rgd)
 866{
 867	struct gfs2_sbd *sdp = rgd->rd_sbd;
 868	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 869
 870	/* Figure out where to put new node */
 871	while (*newn) {
 872		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 873						  rd_node);
 874
 875		parent = *newn;
 876		if (rgd->rd_addr < cur->rd_addr)
 877			newn = &((*newn)->rb_left);
 878		else if (rgd->rd_addr > cur->rd_addr)
 879			newn = &((*newn)->rb_right);
 880		else
 881			return -EEXIST;
 882	}
 883
 884	rb_link_node(&rgd->rd_node, parent, newn);
 885	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 886	sdp->sd_rgrps++;
 887	return 0;
 
 888}
 889
 890/**
 891 * read_rindex_entry - Pull in a new resource index entry from the disk
 892 * @ip: Pointer to the rindex inode
 893 *
 894 * Returns: 0 on success, > 0 on EOF, error code otherwise
 895 */
 896
 897static int read_rindex_entry(struct gfs2_inode *ip)
 
 898{
 899	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 900	const unsigned bsize = sdp->sd_sb.sb_bsize;
 901	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 902	struct gfs2_rindex buf;
 903	int error;
 904	struct gfs2_rgrpd *rgd;
 905
 906	if (pos >= i_size_read(&ip->i_inode))
 907		return 1;
 908
 909	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 910				   sizeof(struct gfs2_rindex));
 911
 912	if (error != sizeof(struct gfs2_rindex))
 913		return (error == 0) ? 1 : error;
 
 
 
 
 914
 915	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 916	error = -ENOMEM;
 917	if (!rgd)
 918		return error;
 919
 
 
 920	rgd->rd_sbd = sdp;
 921	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 922	rgd->rd_length = be32_to_cpu(buf.ri_length);
 923	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 924	rgd->rd_data = be32_to_cpu(buf.ri_data);
 925	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 926	spin_lock_init(&rgd->rd_rsspin);
 927
 
 
 
 
 928	error = compute_bitstructs(rgd);
 929	if (error)
 930		goto fail;
 931
 932	error = gfs2_glock_get(sdp, rgd->rd_addr,
 933			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 934	if (error)
 935		goto fail;
 936
 937	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 938	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 939	if (rgd->rd_data > sdp->sd_max_rg_data)
 940		sdp->sd_max_rg_data = rgd->rd_data;
 941	spin_lock(&sdp->sd_rindex_spin);
 942	error = rgd_insert(rgd);
 943	spin_unlock(&sdp->sd_rindex_spin);
 944	if (!error) {
 945		glock_set_object(rgd->rd_gl, rgd);
 946		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 947		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 948						    rgd->rd_length) * bsize) - 1;
 949		return 0;
 950	}
 951
 952	error = 0; /* someone else read in the rgrp; free it and ignore it */
 953	gfs2_glock_put(rgd->rd_gl);
 954
 955fail:
 956	kfree(rgd->rd_bits);
 957	rgd->rd_bits = NULL;
 958	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 959	return error;
 960}
 961
 962/**
 963 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 964 * @sdp: the GFS2 superblock
 965 *
 966 * The purpose of this function is to select a subset of the resource groups
 967 * and mark them as PREFERRED. We do it in such a way that each node prefers
 968 * to use a unique set of rgrps to minimize glock contention.
 969 */
 970static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 971{
 972	struct gfs2_rgrpd *rgd, *first;
 973	int i;
 974
 975	/* Skip an initial number of rgrps, based on this node's journal ID.
 976	   That should start each node out on its own set. */
 977	rgd = gfs2_rgrpd_get_first(sdp);
 978	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 979		rgd = gfs2_rgrpd_get_next(rgd);
 980	first = rgd;
 981
 982	do {
 983		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 984		for (i = 0; i < sdp->sd_journals; i++) {
 985			rgd = gfs2_rgrpd_get_next(rgd);
 986			if (!rgd || rgd == first)
 987				break;
 988		}
 989	} while (rgd && rgd != first);
 990}
 991
 992/**
 993 * gfs2_ri_update - Pull in a new resource index from the disk
 994 * @ip: pointer to the rindex inode
 995 *
 996 * Returns: 0 on successful update, error code otherwise
 997 */
 998
 999static int gfs2_ri_update(struct gfs2_inode *ip)
1000{
1001	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 
 
 
 
1002	int error;
1003
1004	do {
1005		error = read_rindex_entry(ip);
1006	} while (error == 0);
1007
1008	if (error < 0)
1009		return error;
1010
1011	set_rgrp_preferences(sdp);
 
 
 
 
1012
 
 
 
 
1013	sdp->sd_rindex_uptodate = 1;
1014	return 0;
1015}
1016
1017/**
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
 
1020 *
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 *
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 *
1031 * Returns: 0 on succeess, error code otherwise
1032 */
1033
1034int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035{
1036	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037	struct gfs2_glock *gl = ip->i_gl;
1038	struct gfs2_holder ri_gh;
1039	int error = 0;
1040	int unlock_required = 0;
 
 
1041
1042	/* Read new copy from disk if we don't have the latest */
1043	if (!sdp->sd_rindex_uptodate) {
1044		if (!gfs2_glock_is_locked_by_me(gl)) {
1045			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 
1046			if (error)
1047				return error;
1048			unlock_required = 1;
1049		}
1050		if (!sdp->sd_rindex_uptodate)
1051			error = gfs2_ri_update(ip);
1052		if (unlock_required)
1053			gfs2_glock_dq_uninit(&ri_gh);
1054	}
1055
1056	return error;
1057}
1058
1059static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060{
1061	const struct gfs2_rgrp *str = buf;
1062	u32 rg_flags;
1063
1064	rg_flags = be32_to_cpu(str->rg_flags);
1065	rg_flags &= ~GFS2_RDF_MASK;
1066	rgd->rd_flags &= GFS2_RDF_MASK;
1067	rgd->rd_flags |= rg_flags;
1068	rgd->rd_free = be32_to_cpu(str->rg_free);
1069	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072}
1073
1074static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075{
1076	const struct gfs2_rgrp *str = buf;
1077
1078	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079	rgl->rl_flags = str->rg_flags;
1080	rgl->rl_free = str->rg_free;
1081	rgl->rl_dinodes = str->rg_dinodes;
1082	rgl->rl_igeneration = str->rg_igeneration;
1083	rgl->__pad = 0UL;
1084}
1085
1086static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087{
1088	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089	struct gfs2_rgrp *str = buf;
1090	u32 crc;
1091
1092	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093	str->rg_free = cpu_to_be32(rgd->rd_free);
1094	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095	if (next == NULL)
1096		str->rg_skip = 0;
1097	else if (next->rd_addr > rgd->rd_addr)
1098		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101	str->rg_data = cpu_to_be32(rgd->rd_data);
1102	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103	str->rg_crc = 0;
1104	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105	str->rg_crc = cpu_to_be32(crc);
1106
1107	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109}
1110
1111static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112{
1113	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116	int valid = 1;
1117
1118	if (rgl->rl_flags != str->rg_flags) {
1119		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120			(unsigned long long)rgd->rd_addr,
1121		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122		valid = 0;
1123	}
1124	if (rgl->rl_free != str->rg_free) {
1125		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126			(unsigned long long)rgd->rd_addr,
1127			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128		valid = 0;
1129	}
1130	if (rgl->rl_dinodes != str->rg_dinodes) {
1131		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132			(unsigned long long)rgd->rd_addr,
1133			be32_to_cpu(rgl->rl_dinodes),
1134			be32_to_cpu(str->rg_dinodes));
1135		valid = 0;
1136	}
1137	if (rgl->rl_igeneration != str->rg_igeneration) {
1138		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139			(unsigned long long)rgd->rd_addr,
1140			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142		valid = 0;
1143	}
1144	return valid;
1145}
1146
1147static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148{
1149	struct gfs2_bitmap *bi;
1150	const u32 length = rgd->rd_length;
1151	const u8 *buffer = NULL;
1152	u32 i, goal, count = 0;
1153
1154	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155		goal = 0;
1156		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158		while (goal < bi->bi_blocks) {
1159			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160					   GFS2_BLKST_UNLINKED);
1161			if (goal == BFITNOENT)
1162				break;
1163			count++;
1164			goal++;
1165		}
1166	}
1167
1168	return count;
1169}
1170
1171
1172/**
1173 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1174 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1175 *
1176 * Read in all of a Resource Group's header and bitmap blocks.
1177 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1178 *
1179 * Returns: errno
1180 */
1181
1182static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1183{
1184	struct gfs2_sbd *sdp = rgd->rd_sbd;
1185	struct gfs2_glock *gl = rgd->rd_gl;
1186	unsigned int length = rgd->rd_length;
1187	struct gfs2_bitmap *bi;
1188	unsigned int x, y;
1189	int error;
1190
1191	if (rgd->rd_bits[0].bi_bh != NULL)
 
 
 
 
 
 
1192		return 0;
 
 
1193
1194	for (x = 0; x < length; x++) {
1195		bi = rgd->rd_bits + x;
1196		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1197		if (error)
1198			goto fail;
1199	}
1200
1201	for (y = length; y--;) {
1202		bi = rgd->rd_bits + y;
1203		error = gfs2_meta_wait(sdp, bi->bi_bh);
1204		if (error)
1205			goto fail;
1206		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1207					      GFS2_METATYPE_RG)) {
1208			error = -EIO;
1209			goto fail;
1210		}
1211	}
1212
1213	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1214		for (x = 0; x < length; x++)
1215			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1216		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1217		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1218		rgd->rd_free_clone = rgd->rd_free;
1219		/* max out the rgrp allocation failure point */
1220		rgd->rd_extfail_pt = rgd->rd_free;
1221	}
1222	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1223		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1224		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1225				     rgd->rd_bits[0].bi_bh->b_data);
1226	}
1227	else if (sdp->sd_args.ar_rgrplvb) {
1228		if (!gfs2_rgrp_lvb_valid(rgd)){
1229			gfs2_consist_rgrpd(rgd);
1230			error = -EIO;
1231			goto fail;
1232		}
1233		if (rgd->rd_rgl->rl_unlinked == 0)
1234			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1235	}
 
 
 
 
 
 
 
 
1236	return 0;
1237
1238fail:
1239	while (x--) {
1240		bi = rgd->rd_bits + x;
1241		brelse(bi->bi_bh);
1242		bi->bi_bh = NULL;
1243		gfs2_assert_warn(sdp, !bi->bi_clone);
1244	}
 
1245
1246	return error;
1247}
1248
1249static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1250{
1251	u32 rl_flags;
1252
1253	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1254		return 0;
1255
1256	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1257		return gfs2_rgrp_bh_get(rgd);
1258
1259	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1260	rl_flags &= ~GFS2_RDF_MASK;
1261	rgd->rd_flags &= GFS2_RDF_MASK;
1262	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1263	if (rgd->rd_rgl->rl_unlinked == 0)
1264		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1265	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1266	rgd->rd_free_clone = rgd->rd_free;
1267	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1268	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1269	return 0;
1270}
1271
1272int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1273{
1274	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1275	struct gfs2_sbd *sdp = rgd->rd_sbd;
1276
1277	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1278		return 0;
1279	return gfs2_rgrp_bh_get(rgd);
 
1280}
1281
1282/**
1283 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1284 * @rgd: The resource group
1285 *
1286 */
1287
1288void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1289{
 
1290	int x, length = rgd->rd_length;
1291
 
 
 
 
 
 
 
1292	for (x = 0; x < length; x++) {
1293		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1294		if (bi->bi_bh) {
1295			brelse(bi->bi_bh);
1296			bi->bi_bh = NULL;
1297		}
1298	}
1299
 
1300}
1301
1302/**
1303 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1304 * @gh: The glock holder for the resource group
1305 *
1306 */
1307
1308void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1309{
1310	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1311	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1312		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1313
1314	if (rgd && demote_requested)
1315		gfs2_rgrp_brelse(rgd);
1316}
1317
1318int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1319			     struct buffer_head *bh,
1320			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1321{
1322	struct super_block *sb = sdp->sd_vfs;
 
 
 
1323	u64 blk;
1324	sector_t start = 0;
1325	sector_t nr_blks = 0;
1326	int rv;
1327	unsigned int x;
1328	u32 trimmed = 0;
1329	u8 diff;
1330
1331	for (x = 0; x < bi->bi_bytes; x++) {
1332		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1333		clone += bi->bi_offset;
1334		clone += x;
1335		if (bh) {
1336			const u8 *orig = bh->b_data + bi->bi_offset + x;
1337			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1338		} else {
1339			diff = ~(*clone | (*clone >> 1));
1340		}
1341		diff &= 0x55;
1342		if (diff == 0)
1343			continue;
1344		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
 
1345		while(diff) {
1346			if (diff & 1) {
1347				if (nr_blks == 0)
1348					goto start_new_extent;
1349				if ((start + nr_blks) != blk) {
1350					if (nr_blks >= minlen) {
1351						rv = sb_issue_discard(sb,
1352							start, nr_blks,
1353							GFP_NOFS, 0);
1354						if (rv)
1355							goto fail;
1356						trimmed += nr_blks;
1357					}
1358					nr_blks = 0;
1359start_new_extent:
1360					start = blk;
1361				}
1362				nr_blks++;
1363			}
1364			diff >>= 2;
1365			blk++;
1366		}
1367	}
1368	if (nr_blks >= minlen) {
1369		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1370		if (rv)
1371			goto fail;
1372		trimmed += nr_blks;
1373	}
1374	if (ptrimmed)
1375		*ptrimmed = trimmed;
1376	return 0;
1377
1378fail:
1379	if (sdp->sd_args.ar_discard)
1380		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1381	sdp->sd_args.ar_discard = 0;
1382	return -EIO;
1383}
1384
1385/**
1386 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1387 * @filp: Any file on the filesystem
1388 * @argp: Pointer to the arguments (also used to pass result)
1389 *
1390 * Returns: 0 on success, otherwise error code
1391 */
1392
1393int gfs2_fitrim(struct file *filp, void __user *argp)
1394{
1395	struct inode *inode = file_inode(filp);
1396	struct gfs2_sbd *sdp = GFS2_SB(inode);
1397	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1398	struct buffer_head *bh;
1399	struct gfs2_rgrpd *rgd;
1400	struct gfs2_rgrpd *rgd_end;
1401	struct gfs2_holder gh;
1402	struct fstrim_range r;
1403	int ret = 0;
1404	u64 amt;
1405	u64 trimmed = 0;
1406	u64 start, end, minlen;
1407	unsigned int x;
1408	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1409
1410	if (!capable(CAP_SYS_ADMIN))
1411		return -EPERM;
1412
1413	if (!blk_queue_discard(q))
1414		return -EOPNOTSUPP;
1415
1416	if (copy_from_user(&r, argp, sizeof(r)))
1417		return -EFAULT;
1418
1419	ret = gfs2_rindex_update(sdp);
1420	if (ret)
1421		return ret;
1422
1423	start = r.start >> bs_shift;
1424	end = start + (r.len >> bs_shift);
1425	minlen = max_t(u64, r.minlen,
1426		       q->limits.discard_granularity) >> bs_shift;
1427
1428	if (end <= start || minlen > sdp->sd_max_rg_data)
1429		return -EINVAL;
1430
1431	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1432	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1433
1434	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1435	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1436		return -EINVAL; /* start is beyond the end of the fs */
1437
1438	while (1) {
1439
1440		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1441		if (ret)
1442			goto out;
1443
1444		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1445			/* Trim each bitmap in the rgrp */
1446			for (x = 0; x < rgd->rd_length; x++) {
1447				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1448				ret = gfs2_rgrp_send_discards(sdp,
1449						rgd->rd_data0, NULL, bi, minlen,
1450						&amt);
1451				if (ret) {
1452					gfs2_glock_dq_uninit(&gh);
1453					goto out;
1454				}
1455				trimmed += amt;
1456			}
1457
1458			/* Mark rgrp as having been trimmed */
1459			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1460			if (ret == 0) {
1461				bh = rgd->rd_bits[0].bi_bh;
1462				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1463				gfs2_trans_add_meta(rgd->rd_gl, bh);
1464				gfs2_rgrp_out(rgd, bh->b_data);
1465				gfs2_trans_end(sdp);
1466			}
1467		}
1468		gfs2_glock_dq_uninit(&gh);
1469
1470		if (rgd == rgd_end)
1471			break;
1472
1473		rgd = gfs2_rgrpd_get_next(rgd);
1474	}
1475
1476out:
1477	r.len = trimmed << bs_shift;
1478	if (copy_to_user(argp, &r, sizeof(r)))
1479		return -EFAULT;
1480
1481	return ret;
1482}
1483
1484/**
1485 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1486 * @ip: the inode structure
1487 *
 
1488 */
1489static void rs_insert(struct gfs2_inode *ip)
1490{
1491	struct rb_node **newn, *parent = NULL;
1492	int rc;
1493	struct gfs2_blkreserv *rs = &ip->i_res;
1494	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1495	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1496
1497	BUG_ON(gfs2_rs_active(rs));
1498
1499	spin_lock(&rgd->rd_rsspin);
1500	newn = &rgd->rd_rstree.rb_node;
1501	while (*newn) {
1502		struct gfs2_blkreserv *cur =
1503			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1504
1505		parent = *newn;
1506		rc = rs_cmp(fsblock, rs->rs_free, cur);
1507		if (rc > 0)
1508			newn = &((*newn)->rb_right);
1509		else if (rc < 0)
1510			newn = &((*newn)->rb_left);
1511		else {
1512			spin_unlock(&rgd->rd_rsspin);
1513			WARN_ON(1);
1514			return;
1515		}
1516	}
1517
1518	rb_link_node(&rs->rs_node, parent, newn);
1519	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1520
1521	/* Do our rgrp accounting for the reservation */
1522	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1523	spin_unlock(&rgd->rd_rsspin);
1524	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1525}
1526
1527/**
1528 * rgd_free - return the number of free blocks we can allocate.
1529 * @rgd: the resource group
1530 *
1531 * This function returns the number of free blocks for an rgrp.
1532 * That's the clone-free blocks (blocks that are free, not including those
1533 * still being used for unlinked files that haven't been deleted.)
1534 *
1535 * It also subtracts any blocks reserved by someone else, but does not
1536 * include free blocks that are still part of our current reservation,
1537 * because obviously we can (and will) allocate them.
1538 */
1539static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1540{
1541	u32 tot_reserved, tot_free;
1542
1543	if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1544		return 0;
1545	tot_reserved = rgd->rd_reserved - rs->rs_free;
1546
1547	if (rgd->rd_free_clone < tot_reserved)
1548		tot_reserved = 0;
1549
1550	tot_free = rgd->rd_free_clone - tot_reserved;
1551
1552	return tot_free;
1553}
1554
1555/**
1556 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1557 * @rgd: the resource group descriptor
1558 * @ip: pointer to the inode for which we're reserving blocks
1559 * @ap: the allocation parameters
1560 *
1561 */
1562
1563static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1564			   const struct gfs2_alloc_parms *ap)
1565{
1566	struct gfs2_rbm rbm = { .rgd = rgd, };
1567	u64 goal;
1568	struct gfs2_blkreserv *rs = &ip->i_res;
1569	u32 extlen;
1570	u32 free_blocks = rgd_free(rgd, rs);
1571	int ret;
1572	struct inode *inode = &ip->i_inode;
1573
1574	if (S_ISDIR(inode->i_mode))
1575		extlen = 1;
1576	else {
1577		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1578		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1579	}
1580	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1581		return;
1582
1583	/* Find bitmap block that contains bits for goal block */
1584	if (rgrp_contains_block(rgd, ip->i_goal))
1585		goal = ip->i_goal;
1586	else
1587		goal = rgd->rd_last_alloc + rgd->rd_data0;
1588
1589	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1590		return;
1591
1592	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1593	if (ret == 0) {
1594		rs->rs_rbm = rbm;
1595		rs->rs_free = extlen;
1596		rs_insert(ip);
1597	} else {
1598		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1599			rgd->rd_last_alloc = 0;
1600	}
1601}
1602
1603/**
1604 * gfs2_next_unreserved_block - Return next block that is not reserved
1605 * @rgd: The resource group
1606 * @block: The starting block
1607 * @length: The required length
1608 * @ip: Ignore any reservations for this inode
1609 *
1610 * If the block does not appear in any reservation, then return the
1611 * block number unchanged. If it does appear in the reservation, then
1612 * keep looking through the tree of reservations in order to find the
1613 * first block number which is not reserved.
1614 */
1615
1616static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1617				      u32 length,
1618				      const struct gfs2_inode *ip)
1619{
1620	struct gfs2_blkreserv *rs;
1621	struct rb_node *n;
1622	int rc;
1623
1624	spin_lock(&rgd->rd_rsspin);
1625	n = rgd->rd_rstree.rb_node;
1626	while (n) {
1627		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1628		rc = rs_cmp(block, length, rs);
1629		if (rc < 0)
1630			n = n->rb_left;
1631		else if (rc > 0)
1632			n = n->rb_right;
1633		else
1634			break;
1635	}
1636
1637	if (n) {
1638		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1639			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1640			n = n->rb_right;
1641			if (n == NULL)
1642				break;
1643			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1644		}
1645	}
1646
1647	spin_unlock(&rgd->rd_rsspin);
1648	return block;
1649}
1650
1651/**
1652 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1653 * @rbm: The current position in the resource group
1654 * @ip: The inode for which we are searching for blocks
1655 * @minext: The minimum extent length
1656 * @maxext: A pointer to the maximum extent structure
1657 *
1658 * This checks the current position in the rgrp to see whether there is
1659 * a reservation covering this block. If not then this function is a
1660 * no-op. If there is, then the position is moved to the end of the
1661 * contiguous reservation(s) so that we are pointing at the first
1662 * non-reserved block.
1663 *
1664 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1665 */
1666
1667static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1668					     const struct gfs2_inode *ip,
1669					     u32 minext,
1670					     struct gfs2_extent *maxext)
1671{
1672	u64 block = gfs2_rbm_to_block(rbm);
1673	u32 extlen = 1;
1674	u64 nblock;
1675	int ret;
1676
1677	/*
1678	 * If we have a minimum extent length, then skip over any extent
1679	 * which is less than the min extent length in size.
1680	 */
1681	if (minext) {
1682		extlen = gfs2_free_extlen(rbm, minext);
1683		if (extlen <= maxext->len)
1684			goto fail;
1685	}
1686
1687	/*
1688	 * Check the extent which has been found against the reservations
1689	 * and skip if parts of it are already reserved
1690	 */
1691	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1692	if (nblock == block) {
1693		if (!minext || extlen >= minext)
1694			return 0;
1695
1696		if (extlen > maxext->len) {
1697			maxext->len = extlen;
1698			maxext->rbm = *rbm;
1699		}
1700fail:
1701		nblock = block + extlen;
1702	}
1703	ret = gfs2_rbm_from_block(rbm, nblock);
1704	if (ret < 0)
1705		return ret;
1706	return 1;
1707}
1708
1709/**
1710 * gfs2_rbm_find - Look for blocks of a particular state
1711 * @rbm: Value/result starting position and final position
1712 * @state: The state which we want to find
1713 * @minext: Pointer to the requested extent length (NULL for a single block)
1714 *          This is updated to be the actual reservation size.
1715 * @ip: If set, check for reservations
1716 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1717 *          around until we've reached the starting point.
1718 *
1719 * Side effects:
1720 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1721 *   has no free blocks in it.
1722 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1723 *   has come up short on a free block search.
1724 *
1725 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1726 */
1727
1728static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1729			 const struct gfs2_inode *ip, bool nowrap)
1730{
1731	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1732	struct buffer_head *bh;
1733	int last_bii;
1734	u32 offset;
1735	u8 *buffer;
1736	bool wrapped = false;
1737	int ret;
1738	struct gfs2_bitmap *bi;
1739	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1740
1741	/*
1742	 * Determine the last bitmap to search.  If we're not starting at the
1743	 * beginning of a bitmap, we need to search that bitmap twice to scan
1744	 * the entire resource group.
1745	 */
1746	last_bii = rbm->bii - (rbm->offset == 0);
1747
1748	while(1) {
1749		bi = rbm_bi(rbm);
1750		if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1751		    test_bit(GBF_FULL, &bi->bi_flags) &&
1752		    (state == GFS2_BLKST_FREE))
1753			goto next_bitmap;
1754
1755		bh = bi->bi_bh;
1756		buffer = bh->b_data + bi->bi_offset;
1757		WARN_ON(!buffer_uptodate(bh));
1758		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1759			buffer = bi->bi_clone + bi->bi_offset;
1760		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1761		if (offset == BFITNOENT) {
1762			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1763				set_bit(GBF_FULL, &bi->bi_flags);
1764			goto next_bitmap;
1765		}
1766		rbm->offset = offset;
1767		if (ip == NULL)
1768			return 0;
1769
1770		ret = gfs2_reservation_check_and_update(rbm, ip,
1771							minext ? *minext : 0,
1772							&maxext);
1773		if (ret == 0)
1774			return 0;
1775		if (ret > 0)
1776			goto next_iter;
1777		if (ret == -E2BIG) {
1778			rbm->bii = 0;
1779			rbm->offset = 0;
1780			goto res_covered_end_of_rgrp;
1781		}
1782		return ret;
1783
1784next_bitmap:	/* Find next bitmap in the rgrp */
1785		rbm->offset = 0;
1786		rbm->bii++;
1787		if (rbm->bii == rbm->rgd->rd_length)
1788			rbm->bii = 0;
1789res_covered_end_of_rgrp:
1790		if (rbm->bii == 0) {
1791			if (wrapped)
1792				break;
1793			wrapped = true;
1794			if (nowrap)
1795				break;
1796		}
1797next_iter:
1798		/* Have we scanned the entire resource group? */
1799		if (wrapped && rbm->bii > last_bii)
1800			break;
1801	}
1802
1803	if (minext == NULL || state != GFS2_BLKST_FREE)
1804		return -ENOSPC;
1805
1806	/* If the extent was too small, and it's smaller than the smallest
1807	   to have failed before, remember for future reference that it's
1808	   useless to search this rgrp again for this amount or more. */
1809	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1810	    *minext < rbm->rgd->rd_extfail_pt)
1811		rbm->rgd->rd_extfail_pt = *minext;
1812
1813	/* If the maximum extent we found is big enough to fulfill the
1814	   minimum requirements, use it anyway. */
1815	if (maxext.len) {
1816		*rbm = maxext.rbm;
1817		*minext = maxext.len;
1818		return 0;
1819	}
1820
1821	return -ENOSPC;
1822}
1823
1824/**
1825 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1826 * @rgd: The rgrp
1827 * @last_unlinked: block address of the last dinode we unlinked
1828 * @skip: block address we should explicitly not unlink
1829 *
1830 * Returns: 0 if no error
1831 *          The inode, if one has been found, in inode.
1832 */
1833
1834static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1835{
1836	u64 block;
 
1837	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
1838	struct gfs2_glock *gl;
1839	struct gfs2_inode *ip;
1840	int error;
1841	int found = 0;
1842	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1843
1844	while (1) {
1845		down_write(&sdp->sd_log_flush_lock);
1846		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1847				      true);
 
1848		up_write(&sdp->sd_log_flush_lock);
1849		if (error == -ENOSPC)
1850			break;
1851		if (WARN_ON_ONCE(error))
1852			break;
1853
1854		block = gfs2_rbm_to_block(&rbm);
1855		if (gfs2_rbm_from_block(&rbm, block + 1))
1856			break;
1857		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1858			continue;
1859		if (block == skip)
1860			continue;
1861		*last_unlinked = block;
1862
1863		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1864		if (error)
1865			continue;
1866
1867		/* If the inode is already in cache, we can ignore it here
1868		 * because the existing inode disposal code will deal with
1869		 * it when all refs have gone away. Accessing gl_object like
1870		 * this is not safe in general. Here it is ok because we do
1871		 * not dereference the pointer, and we only need an approx
1872		 * answer to whether it is NULL or not.
1873		 */
1874		ip = gl->gl_object;
1875
1876		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1877			gfs2_glock_put(gl);
1878		else
1879			found++;
1880
1881		/* Limit reclaim to sensible number of tasks */
1882		if (found > NR_CPUS)
1883			return;
1884	}
1885
1886	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1887	return;
1888}
1889
1890/**
1891 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1892 * @rgd: The rgrp in question
1893 * @loops: An indication of how picky we can be (0=very, 1=less so)
1894 *
1895 * This function uses the recently added glock statistics in order to
1896 * figure out whether a parciular resource group is suffering from
1897 * contention from multiple nodes. This is done purely on the basis
1898 * of timings, since this is the only data we have to work with and
1899 * our aim here is to reject a resource group which is highly contended
1900 * but (very important) not to do this too often in order to ensure that
1901 * we do not land up introducing fragmentation by changing resource
1902 * groups when not actually required.
1903 *
1904 * The calculation is fairly simple, we want to know whether the SRTTB
1905 * (i.e. smoothed round trip time for blocking operations) to acquire
1906 * the lock for this rgrp's glock is significantly greater than the
1907 * time taken for resource groups on average. We introduce a margin in
1908 * the form of the variable @var which is computed as the sum of the two
1909 * respective variences, and multiplied by a factor depending on @loops
1910 * and whether we have a lot of data to base the decision on. This is
1911 * then tested against the square difference of the means in order to
1912 * decide whether the result is statistically significant or not.
1913 *
1914 * Returns: A boolean verdict on the congestion status
1915 */
1916
1917static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1918{
1919	const struct gfs2_glock *gl = rgd->rd_gl;
1920	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1921	struct gfs2_lkstats *st;
1922	u64 r_dcount, l_dcount;
1923	u64 l_srttb, a_srttb = 0;
1924	s64 srttb_diff;
1925	u64 sqr_diff;
1926	u64 var;
1927	int cpu, nonzero = 0;
1928
1929	preempt_disable();
1930	for_each_present_cpu(cpu) {
1931		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1932		if (st->stats[GFS2_LKS_SRTTB]) {
1933			a_srttb += st->stats[GFS2_LKS_SRTTB];
1934			nonzero++;
1935		}
1936	}
1937	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1938	if (nonzero)
1939		do_div(a_srttb, nonzero);
1940	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1941	var = st->stats[GFS2_LKS_SRTTVARB] +
1942	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1943	preempt_enable();
1944
1945	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1946	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
 
 
 
1947
1948	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1949		return false;
1950
1951	srttb_diff = a_srttb - l_srttb;
1952	sqr_diff = srttb_diff * srttb_diff;
1953
1954	var *= 2;
1955	if (l_dcount < 8 || r_dcount < 8)
1956		var *= 2;
1957	if (loops == 1)
1958		var *= 2;
1959
1960	return ((srttb_diff < 0) && (sqr_diff > var));
1961}
1962
1963/**
1964 * gfs2_rgrp_used_recently
1965 * @rs: The block reservation with the rgrp to test
1966 * @msecs: The time limit in milliseconds
1967 *
1968 * Returns: True if the rgrp glock has been used within the time limit
1969 */
1970static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1971				    u64 msecs)
1972{
1973	u64 tdiff;
 
 
1974
1975	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1976                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1977
1978	return tdiff > (msecs * 1000 * 1000);
1979}
 
 
 
 
 
 
 
 
 
1980
1981static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1982{
1983	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1984	u32 skip;
1985
1986	get_random_bytes(&skip, sizeof(skip));
1987	return skip % sdp->sd_rgrps;
1988}
1989
1990static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
 
 
 
 
 
 
 
1991{
1992	struct gfs2_rgrpd *rgd = *pos;
1993	struct gfs2_sbd *sdp = rgd->rd_sbd;
1994
1995	rgd = gfs2_rgrpd_get_next(rgd);
1996	if (rgd == NULL)
1997		rgd = gfs2_rgrpd_get_first(sdp);
1998	*pos = rgd;
1999	if (rgd != begin) /* If we didn't wrap */
2000		return true;
2001	return false;
2002}
2003
2004/**
2005 * fast_to_acquire - determine if a resource group will be fast to acquire
 
 
 
 
2006 *
2007 * If this is one of our preferred rgrps, it should be quicker to acquire,
2008 * because we tried to set ourselves up as dlm lock master.
2009 */
2010static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
 
2011{
2012	struct gfs2_glock *gl = rgd->rd_gl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013
2014	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2015	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2016	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2017		return 1;
2018	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2019		return 1;
2020	return 0;
2021}
2022
2023/**
2024 * gfs2_inplace_reserve - Reserve space in the filesystem
2025 * @ip: the inode to reserve space for
2026 * @ap: the allocation parameters
2027 *
2028 * We try our best to find an rgrp that has at least ap->target blocks
2029 * available. After a couple of passes (loops == 2), the prospects of finding
2030 * such an rgrp diminish. At this stage, we return the first rgrp that has
2031 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2032 * the number of blocks available in the chosen rgrp.
2033 *
2034 * Returns: 0 on success,
2035 *          -ENOMEM if a suitable rgrp can't be found
2036 *          errno otherwise
2037 */
2038
2039int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
 
2040{
2041	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2042	struct gfs2_rgrpd *begin = NULL;
2043	struct gfs2_blkreserv *rs = &ip->i_res;
2044	int error = 0, rg_locked, flags = 0;
2045	u64 last_unlinked = NO_BLOCK;
2046	int loops = 0;
2047	u32 free_blocks, skip = 0;
2048
2049	if (sdp->sd_args.ar_rgrplvb)
2050		flags |= GL_SKIP;
2051	if (gfs2_assert_warn(sdp, ap->target))
2052		return -EINVAL;
2053	if (gfs2_rs_active(rs)) {
2054		begin = rs->rs_rbm.rgd;
2055	} else if (rs->rs_rbm.rgd &&
2056		   rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2057		begin = rs->rs_rbm.rgd;
2058	} else {
2059		check_and_update_goal(ip);
2060		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2061	}
2062	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2063		skip = gfs2_orlov_skip(ip);
2064	if (rs->rs_rbm.rgd == NULL)
2065		return -EBADSLT;
2066
2067	while (loops < 3) {
2068		rg_locked = 1;
2069
2070		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2071			rg_locked = 0;
2072			if (skip && skip--)
2073				goto next_rgrp;
2074			if (!gfs2_rs_active(rs)) {
2075				if (loops == 0 &&
2076				    !fast_to_acquire(rs->rs_rbm.rgd))
2077					goto next_rgrp;
2078				if ((loops < 2) &&
2079				    gfs2_rgrp_used_recently(rs, 1000) &&
2080				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2081					goto next_rgrp;
2082			}
2083			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2084						   LM_ST_EXCLUSIVE, flags,
2085						   &ip->i_rgd_gh);
2086			if (unlikely(error))
2087				return error;
2088			if (!gfs2_rs_active(rs) && (loops < 2) &&
2089			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2090				goto skip_rgrp;
2091			if (sdp->sd_args.ar_rgrplvb) {
2092				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2093				if (unlikely(error)) {
2094					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2095					return error;
2096				}
2097			}
 
2098		}
 
2099
2100		/* Skip unusable resource groups */
2101		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2102						 GFS2_RDF_ERROR)) ||
2103		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2104			goto skip_rgrp;
2105
2106		if (sdp->sd_args.ar_rgrplvb)
2107			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2108
2109		/* Get a reservation if we don't already have one */
2110		if (!gfs2_rs_active(rs))
2111			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2112
2113		/* Skip rgrps when we can't get a reservation on first pass */
2114		if (!gfs2_rs_active(rs) && (loops < 1))
2115			goto check_rgrp;
2116
2117		/* If rgrp has enough free space, use it */
2118		free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2119		if (free_blocks >= ap->target ||
2120		    (loops == 2 && ap->min_target &&
2121		     free_blocks >= ap->min_target)) {
2122			ap->allowed = free_blocks;
2123			return 0;
2124		}
2125check_rgrp:
2126		/* Check for unlinked inodes which can be reclaimed */
2127		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2128			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2129					ip->i_no_addr);
2130skip_rgrp:
2131		/* Drop reservation, if we couldn't use reserved rgrp */
2132		if (gfs2_rs_active(rs))
2133			gfs2_rs_deltree(rs);
2134
2135		/* Unlock rgrp if required */
2136		if (!rg_locked)
2137			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2138next_rgrp:
2139		/* Find the next rgrp, and continue looking */
2140		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2141			continue;
2142		if (skip)
2143			continue;
2144
2145		/* If we've scanned all the rgrps, but found no free blocks
2146		 * then this checks for some less likely conditions before
2147		 * trying again.
2148		 */
2149		loops++;
2150		/* Check that fs hasn't grown if writing to rindex */
2151		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2152			error = gfs2_ri_update(ip);
2153			if (error)
2154				return error;
2155		}
2156		/* Flushing the log may release space */
2157		if (loops == 2)
2158			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2159				       GFS2_LFC_INPLACE_RESERVE);
2160	}
2161
2162	return -ENOSPC;
2163}
2164
2165/**
2166 * gfs2_inplace_release - release an inplace reservation
2167 * @ip: the inode the reservation was taken out on
2168 *
2169 * Release a reservation made by gfs2_inplace_reserve().
2170 */
2171
2172void gfs2_inplace_release(struct gfs2_inode *ip)
2173{
2174	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2175		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176}
2177
2178/**
2179 * gfs2_alloc_extent - allocate an extent from a given bitmap
2180 * @rbm: the resource group information
2181 * @dinode: TRUE if the first block we allocate is for a dinode
2182 * @n: The extent length (value/result)
 
 
 
2183 *
2184 * Add the bitmap buffer to the transaction.
 
2185 * Set the found bits to @new_state to change block's allocation state.
 
 
 
 
 
 
 
 
2186 */
2187static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2188			     unsigned int *n)
 
 
2189{
2190	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
 
 
 
2191	const unsigned int elen = *n;
2192	u64 block;
2193	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194
 
 
2195	*n = 1;
2196	block = gfs2_rbm_to_block(rbm);
2197	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2198	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2199	block++;
 
 
 
2200	while (*n < elen) {
2201		ret = gfs2_rbm_from_block(&pos, block);
2202		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2203			break;
2204		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2205		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
 
 
 
2206		(*n)++;
2207		block++;
2208	}
 
 
2209}
2210
2211/**
2212 * rgblk_free - Change alloc state of given block(s)
2213 * @sdp: the filesystem
2214 * @rgd: the resource group the blocks are in
2215 * @bstart: the start of a run of blocks to free
2216 * @blen: the length of the block run (all must lie within ONE RG!)
2217 * @new_state: GFS2_BLKST_XXX the after-allocation block state
 
 
2218 */
2219
2220static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2221		       u64 bstart, u32 blen, unsigned char new_state)
2222{
2223	struct gfs2_rbm rbm;
2224	struct gfs2_bitmap *bi, *bi_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226	rbm.rgd = rgd;
2227	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2228		return;
2229	while (blen--) {
2230		bi = rbm_bi(&rbm);
2231		if (bi != bi_prev) {
2232			if (!bi->bi_clone) {
2233				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2234						      GFP_NOFS | __GFP_NOFAIL);
2235				memcpy(bi->bi_clone + bi->bi_offset,
2236				       bi->bi_bh->b_data + bi->bi_offset,
2237				       bi->bi_bytes);
2238			}
2239			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2240			bi_prev = bi;
2241		}
2242		gfs2_setbit(&rbm, false, new_state);
2243		gfs2_rbm_incr(&rbm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244	}
 
 
2245}
2246
2247/**
2248 * gfs2_rgrp_dump - print out an rgrp
2249 * @seq: The iterator
2250 * @gl: The glock in question
2251 * @fs_id_buf: pointer to file system id (if requested)
2252 *
2253 */
2254
2255void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2256		    const char *fs_id_buf)
2257{
2258	struct gfs2_rgrpd *rgd = gl->gl_object;
2259	struct gfs2_blkreserv *trs;
2260	const struct rb_node *n;
2261
2262	if (rgd == NULL)
2263		return;
2264	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2265		       fs_id_buf,
2266		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2267		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2268		       rgd->rd_reserved, rgd->rd_extfail_pt);
2269	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2270		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2271
2272		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2273			       be32_to_cpu(rgl->rl_flags),
2274			       be32_to_cpu(rgl->rl_free),
2275			       be32_to_cpu(rgl->rl_dinodes));
2276	}
2277	spin_lock(&rgd->rd_rsspin);
2278	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2279		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2280		dump_rs(seq, trs, fs_id_buf);
2281	}
2282	spin_unlock(&rgd->rd_rsspin);
2283}
2284
2285static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2286{
2287	struct gfs2_sbd *sdp = rgd->rd_sbd;
2288	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2289
2290	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2291		(unsigned long long)rgd->rd_addr);
2292	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2293	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2294	gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2295	rgd->rd_flags |= GFS2_RDF_ERROR;
2296}
2297
2298/**
2299 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2300 * @ip: The inode we have just allocated blocks for
2301 * @rbm: The start of the allocated blocks
2302 * @len: The extent length
2303 *
2304 * Adjusts a reservation after an allocation has taken place. If the
2305 * reservation does not match the allocation, or if it is now empty
2306 * then it is removed.
2307 */
2308
2309static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2310				    const struct gfs2_rbm *rbm, unsigned len)
2311{
2312	struct gfs2_blkreserv *rs = &ip->i_res;
2313	struct gfs2_rgrpd *rgd = rbm->rgd;
2314	unsigned rlen;
2315	u64 block;
2316	int ret;
2317
2318	spin_lock(&rgd->rd_rsspin);
2319	if (gfs2_rs_active(rs)) {
2320		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2321			block = gfs2_rbm_to_block(rbm);
2322			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2323			rlen = min(rs->rs_free, len);
2324			rs->rs_free -= rlen;
2325			rgd->rd_reserved -= rlen;
2326			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2327			if (rs->rs_free && !ret)
2328				goto out;
2329			/* We used up our block reservation, so we should
2330			   reserve more blocks next time. */
2331			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2332		}
2333		__rs_deltree(rs);
2334	}
2335out:
2336	spin_unlock(&rgd->rd_rsspin);
2337}
2338
2339/**
2340 * gfs2_set_alloc_start - Set starting point for block allocation
2341 * @rbm: The rbm which will be set to the required location
2342 * @ip: The gfs2 inode
2343 * @dinode: Flag to say if allocation includes a new inode
2344 *
2345 * This sets the starting point from the reservation if one is active
2346 * otherwise it falls back to guessing a start point based on the
2347 * inode's goal block or the last allocation point in the rgrp.
2348 */
2349
2350static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2351				 const struct gfs2_inode *ip, bool dinode)
2352{
2353	u64 goal;
 
 
 
 
 
 
 
 
 
 
 
 
2354
2355	if (gfs2_rs_active(&ip->i_res)) {
2356		*rbm = ip->i_res.rs_rbm;
2357		return;
2358	}
2359
2360	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2361		goal = ip->i_goal;
2362	else
2363		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
 
 
 
 
 
 
2364
2365	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2366		rbm->bii = 0;
2367		rbm->offset = 0;
 
 
 
 
 
 
2368	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369}
2370
2371/**
2372 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2373 * @ip: the inode to allocate the block for
2374 * @bn: Used to return the starting block number
2375 * @nblocks: requested number of blocks/extent length (value/result)
2376 * @dinode: 1 if we're allocating a dinode block, else 0
2377 * @generation: the generation number of the inode
2378 *
2379 * Returns: 0 or error
2380 */
2381
2382int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2383		      bool dinode, u64 *generation)
2384{
2385	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2386	struct buffer_head *dibh;
2387	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2388	unsigned int ndata;
2389	u64 block; /* block, within the file system scope */
2390	int error;
2391
2392	gfs2_set_alloc_start(&rbm, ip, dinode);
2393	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2394
2395	if (error == -ENOSPC) {
2396		gfs2_set_alloc_start(&rbm, ip, dinode);
2397		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2398	}
2399
2400	/* Since all blocks are reserved in advance, this shouldn't happen */
2401	if (error) {
2402		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2403			(unsigned long long)ip->i_no_addr, error, *nblocks,
2404			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2405			rbm.rgd->rd_extfail_pt);
2406		goto rgrp_error;
2407	}
2408
2409	gfs2_alloc_extent(&rbm, dinode, nblocks);
2410	block = gfs2_rbm_to_block(&rbm);
2411	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2412	if (gfs2_rs_active(&ip->i_res))
2413		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2414	ndata = *nblocks;
2415	if (dinode)
2416		ndata--;
2417
2418	if (!dinode) {
2419		ip->i_goal = block + ndata - 1;
2420		error = gfs2_meta_inode_buffer(ip, &dibh);
2421		if (error == 0) {
2422			struct gfs2_dinode *di =
2423				(struct gfs2_dinode *)dibh->b_data;
2424			gfs2_trans_add_meta(ip->i_gl, dibh);
2425			di->di_goal_meta = di->di_goal_data =
2426				cpu_to_be64(ip->i_goal);
2427			brelse(dibh);
2428		}
2429	}
2430	if (rbm.rgd->rd_free < *nblocks) {
2431		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2432		goto rgrp_error;
2433	}
2434
2435	rbm.rgd->rd_free -= *nblocks;
2436	if (dinode) {
2437		rbm.rgd->rd_dinodes++;
2438		*generation = rbm.rgd->rd_igeneration++;
2439		if (*generation == 0)
2440			*generation = rbm.rgd->rd_igeneration++;
2441	}
2442
2443	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2444	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2445
2446	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2447	if (dinode)
2448		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2449
2450	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2451
2452	rbm.rgd->rd_free_clone -= *nblocks;
2453	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2454			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2455	*bn = block;
2456	return 0;
2457
2458rgrp_error:
2459	gfs2_rgrp_error(rbm.rgd);
2460	return -EIO;
2461}
2462
2463/**
2464 * __gfs2_free_blocks - free a contiguous run of block(s)
2465 * @ip: the inode these blocks are being freed from
2466 * @rgd: the resource group the blocks are in
2467 * @bstart: first block of a run of contiguous blocks
2468 * @blen: the length of the block run
2469 * @meta: 1 if the blocks represent metadata
2470 *
2471 */
2472
2473void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2474			u64 bstart, u32 blen, int meta)
2475{
2476	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
2477
2478	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2479	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
 
 
2480	rgd->rd_free += blen;
2481	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2482	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484
 
 
2485	/* Directories keep their data in the metadata address space */
2486	if (meta || ip->i_depth)
2487		gfs2_meta_wipe(ip, bstart, blen);
2488}
2489
2490/**
2491 * gfs2_free_meta - free a contiguous run of data block(s)
2492 * @ip: the inode these blocks are being freed from
2493 * @rgd: the resource group the blocks are in
2494 * @bstart: first block of a run of contiguous blocks
2495 * @blen: the length of the block run
2496 *
2497 */
2498
2499void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2500		    u64 bstart, u32 blen)
2501{
2502	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2503
2504	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2505	gfs2_statfs_change(sdp, 0, +blen, 0);
2506	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2507}
2508
2509void gfs2_unlink_di(struct inode *inode)
2510{
2511	struct gfs2_inode *ip = GFS2_I(inode);
2512	struct gfs2_sbd *sdp = GFS2_SB(inode);
2513	struct gfs2_rgrpd *rgd;
2514	u64 blkno = ip->i_no_addr;
2515
2516	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2517	if (!rgd)
2518		return;
2519	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2520	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2521	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2522	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2523	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2524}
2525
2526void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2527{
2528	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
 
 
 
 
2529
2530	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2531	if (!rgd->rd_dinodes)
2532		gfs2_consist_rgrpd(rgd);
2533	rgd->rd_dinodes--;
2534	rgd->rd_free++;
2535
2536	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2537	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2538	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2539
2540	gfs2_statfs_change(sdp, 0, +1, -1);
2541	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
 
 
 
 
 
 
 
2542	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2543	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2544}
2545
2546/**
2547 * gfs2_check_blk_type - Check the type of a block
2548 * @sdp: The superblock
2549 * @no_addr: The block number to check
2550 * @type: The block type we are looking for
2551 *
2552 * Returns: 0 if the block type matches the expected type
2553 *          -ESTALE if it doesn't match
2554 *          or -ve errno if something went wrong while checking
2555 */
2556
2557int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2558{
2559	struct gfs2_rgrpd *rgd;
2560	struct gfs2_holder rgd_gh;
2561	struct gfs2_rbm rbm;
2562	int error = -EINVAL;
 
 
 
 
 
 
 
 
2563
2564	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
 
2565	if (!rgd)
2566		goto fail;
2567
2568	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2569	if (error)
2570		goto fail;
2571
2572	rbm.rgd = rgd;
2573	error = gfs2_rbm_from_block(&rbm, no_addr);
2574	if (WARN_ON_ONCE(error))
2575		goto fail;
2576
2577	if (gfs2_testbit(&rbm, false) != type)
2578		error = -ESTALE;
2579
2580	gfs2_glock_dq_uninit(&rgd_gh);
 
 
 
2581fail:
2582	return error;
2583}
2584
2585/**
2586 * gfs2_rlist_add - add a RG to a list of RGs
2587 * @ip: the inode
2588 * @rlist: the list of resource groups
2589 * @block: the block
2590 *
2591 * Figure out what RG a block belongs to and add that RG to the list
2592 *
2593 * FIXME: Don't use NOFAIL
2594 *
2595 */
2596
2597void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2598		    u64 block)
2599{
2600	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2601	struct gfs2_rgrpd *rgd;
2602	struct gfs2_rgrpd **tmp;
2603	unsigned int new_space;
2604	unsigned int x;
2605
2606	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2607		return;
2608
2609	/*
2610	 * The resource group last accessed is kept in the last position.
2611	 */
2612
2613	if (rlist->rl_rgrps) {
2614		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2615		if (rgrp_contains_block(rgd, block))
2616			return;
2617		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2618	} else {
2619		rgd = ip->i_res.rs_rbm.rgd;
2620		if (!rgd || !rgrp_contains_block(rgd, block))
2621			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2622	}
2623
2624	if (!rgd) {
2625		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2626		       (unsigned long long)block);
2627		return;
2628	}
2629
2630	for (x = 0; x < rlist->rl_rgrps; x++) {
2631		if (rlist->rl_rgd[x] == rgd) {
2632			swap(rlist->rl_rgd[x],
2633			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2634			return;
2635		}
2636	}
2637
2638	if (rlist->rl_rgrps == rlist->rl_space) {
2639		new_space = rlist->rl_space + 10;
2640
2641		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2642			      GFP_NOFS | __GFP_NOFAIL);
2643
2644		if (rlist->rl_rgd) {
2645			memcpy(tmp, rlist->rl_rgd,
2646			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2647			kfree(rlist->rl_rgd);
2648		}
2649
2650		rlist->rl_space = new_space;
2651		rlist->rl_rgd = tmp;
2652	}
2653
2654	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2655}
2656
2657/**
2658 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2659 *      and initialize an array of glock holders for them
2660 * @rlist: the list of resource groups
 
 
2661 *
2662 * FIXME: Don't use NOFAIL
2663 *
2664 */
2665
2666void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2667{
2668	unsigned int x;
2669
2670	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2671				      sizeof(struct gfs2_holder),
2672				      GFP_NOFS | __GFP_NOFAIL);
2673	for (x = 0; x < rlist->rl_rgrps; x++)
2674		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2675				LM_ST_EXCLUSIVE, 0,
2676				&rlist->rl_ghs[x]);
2677}
2678
2679/**
2680 * gfs2_rlist_free - free a resource group list
2681 * @rlist: the list of resource groups
2682 *
2683 */
2684
2685void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2686{
2687	unsigned int x;
2688
2689	kfree(rlist->rl_rgd);
2690
2691	if (rlist->rl_ghs) {
2692		for (x = 0; x < rlist->rl_rgrps; x++)
2693			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2694		kfree(rlist->rl_ghs);
2695		rlist->rl_ghs = NULL;
2696	}
2697}
2698