Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * Architecture independence:
   6 *   Copyright (c) 2005, Bull S.A.
   7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public Licens
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  21 */
  22
  23/*
  24 * Extents support for EXT4
  25 *
  26 * TODO:
  27 *   - ext4*_error() should be used in some situations
  28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  29 *   - smart tree reduction
  30 */
  31
  32#include <linux/module.h>
  33#include <linux/fs.h>
  34#include <linux/time.h>
  35#include <linux/jbd2.h>
  36#include <linux/highuid.h>
  37#include <linux/pagemap.h>
  38#include <linux/quotaops.h>
  39#include <linux/string.h>
  40#include <linux/slab.h>
  41#include <linux/falloc.h>
  42#include <asm/uaccess.h>
  43#include <linux/fiemap.h>
 
 
  44#include "ext4_jbd2.h"
  45#include "ext4_extents.h"
 
  46
  47#include <trace/events/ext4.h>
  48
  49static int ext4_split_extent(handle_t *handle,
  50				struct inode *inode,
  51				struct ext4_ext_path *path,
  52				struct ext4_map_blocks *map,
  53				int split_flag,
  54				int flags);
  55
  56static int ext4_ext_truncate_extend_restart(handle_t *handle,
  57					    struct inode *inode,
  58					    int needed)
 
 
 
  59{
  60	int err;
 
 
  61
  62	if (!ext4_handle_valid(handle))
  63		return 0;
  64	if (handle->h_buffer_credits > needed)
 
 
 
 
 
 
 
 
 
 
 
 
  65		return 0;
  66	err = ext4_journal_extend(handle, needed);
  67	if (err <= 0)
  68		return err;
  69	err = ext4_truncate_restart_trans(handle, inode, needed);
  70	if (err == 0)
  71		err = -EAGAIN;
  72
  73	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74}
  75
  76/*
  77 * could return:
  78 *  - EROFS
  79 *  - ENOMEM
  80 */
  81static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
  82				struct ext4_ext_path *path)
  83{
  84	if (path->p_bh) {
  85		/* path points to block */
 
  86		return ext4_journal_get_write_access(handle, path->p_bh);
  87	}
  88	/* path points to leaf/index in inode body */
  89	/* we use in-core data, no need to protect them */
  90	return 0;
  91}
  92
  93/*
  94 * could return:
  95 *  - EROFS
  96 *  - ENOMEM
  97 *  - EIO
  98 */
  99static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
 100				struct ext4_ext_path *path)
 
 101{
 102	int err;
 
 
 103	if (path->p_bh) {
 
 104		/* path points to block */
 105		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
 
 106	} else {
 107		/* path points to leaf/index in inode body */
 108		err = ext4_mark_inode_dirty(handle, inode);
 109	}
 110	return err;
 111}
 112
 
 
 
 113static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 114			      struct ext4_ext_path *path,
 115			      ext4_lblk_t block)
 116{
 117	int depth;
 118
 119	if (path) {
 
 120		struct ext4_extent *ex;
 121		depth = path->p_depth;
 122
 123		/*
 124		 * Try to predict block placement assuming that we are
 125		 * filling in a file which will eventually be
 126		 * non-sparse --- i.e., in the case of libbfd writing
 127		 * an ELF object sections out-of-order but in a way
 128		 * the eventually results in a contiguous object or
 129		 * executable file, or some database extending a table
 130		 * space file.  However, this is actually somewhat
 131		 * non-ideal if we are writing a sparse file such as
 132		 * qemu or KVM writing a raw image file that is going
 133		 * to stay fairly sparse, since it will end up
 134		 * fragmenting the file system's free space.  Maybe we
 135		 * should have some hueristics or some way to allow
 136		 * userspace to pass a hint to file system,
 137		 * especially if the latter case turns out to be
 138		 * common.
 139		 */
 140		ex = path[depth].p_ext;
 141		if (ex) {
 142			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 143			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 144
 145			if (block > ext_block)
 146				return ext_pblk + (block - ext_block);
 147			else
 148				return ext_pblk - (ext_block - block);
 149		}
 150
 151		/* it looks like index is empty;
 152		 * try to find starting block from index itself */
 153		if (path[depth].p_bh)
 154			return path[depth].p_bh->b_blocknr;
 155	}
 156
 157	/* OK. use inode's group */
 158	return ext4_inode_to_goal_block(inode);
 159}
 160
 161/*
 162 * Allocation for a meta data block
 163 */
 164static ext4_fsblk_t
 165ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 166			struct ext4_ext_path *path,
 167			struct ext4_extent *ex, int *err, unsigned int flags)
 168{
 169	ext4_fsblk_t goal, newblock;
 170
 171	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 172	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 173					NULL, err);
 174	return newblock;
 175}
 176
 177static inline int ext4_ext_space_block(struct inode *inode, int check)
 178{
 179	int size;
 180
 181	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 182			/ sizeof(struct ext4_extent);
 183	if (!check) {
 184#ifdef AGGRESSIVE_TEST
 185		if (size > 6)
 186			size = 6;
 187#endif
 188	}
 189	return size;
 190}
 191
 192static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 193{
 194	int size;
 195
 196	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 197			/ sizeof(struct ext4_extent_idx);
 198	if (!check) {
 199#ifdef AGGRESSIVE_TEST
 200		if (size > 5)
 201			size = 5;
 202#endif
 203	}
 204	return size;
 205}
 206
 207static inline int ext4_ext_space_root(struct inode *inode, int check)
 208{
 209	int size;
 210
 211	size = sizeof(EXT4_I(inode)->i_data);
 212	size -= sizeof(struct ext4_extent_header);
 213	size /= sizeof(struct ext4_extent);
 214	if (!check) {
 215#ifdef AGGRESSIVE_TEST
 216		if (size > 3)
 217			size = 3;
 218#endif
 219	}
 220	return size;
 221}
 222
 223static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 224{
 225	int size;
 226
 227	size = sizeof(EXT4_I(inode)->i_data);
 228	size -= sizeof(struct ext4_extent_header);
 229	size /= sizeof(struct ext4_extent_idx);
 230	if (!check) {
 231#ifdef AGGRESSIVE_TEST
 232		if (size > 4)
 233			size = 4;
 234#endif
 235	}
 236	return size;
 237}
 238
 239/*
 240 * Calculate the number of metadata blocks needed
 241 * to allocate @blocks
 242 * Worse case is one block per extent
 243 */
 244int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 245{
 246	struct ext4_inode_info *ei = EXT4_I(inode);
 247	int idxs, num = 0;
 248
 249	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 250		/ sizeof(struct ext4_extent_idx));
 251
 252	/*
 253	 * If the new delayed allocation block is contiguous with the
 254	 * previous da block, it can share index blocks with the
 255	 * previous block, so we only need to allocate a new index
 256	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 257	 * an additional index block, and at ldxs**3 blocks, yet
 258	 * another index blocks.
 259	 */
 260	if (ei->i_da_metadata_calc_len &&
 261	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 262		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 263			num++;
 264		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 265			num++;
 266		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 267			num++;
 268			ei->i_da_metadata_calc_len = 0;
 269		} else
 270			ei->i_da_metadata_calc_len++;
 271		ei->i_da_metadata_calc_last_lblock++;
 272		return num;
 273	}
 274
 275	/*
 276	 * In the worst case we need a new set of index blocks at
 277	 * every level of the inode's extent tree.
 278	 */
 279	ei->i_da_metadata_calc_len = 1;
 280	ei->i_da_metadata_calc_last_lblock = lblock;
 281	return ext_depth(inode) + 1;
 282}
 283
 284static int
 285ext4_ext_max_entries(struct inode *inode, int depth)
 286{
 287	int max;
 288
 289	if (depth == ext_depth(inode)) {
 290		if (depth == 0)
 291			max = ext4_ext_space_root(inode, 1);
 292		else
 293			max = ext4_ext_space_root_idx(inode, 1);
 294	} else {
 295		if (depth == 0)
 296			max = ext4_ext_space_block(inode, 1);
 297		else
 298			max = ext4_ext_space_block_idx(inode, 1);
 299	}
 300
 301	return max;
 302}
 303
 304static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 305{
 306	ext4_fsblk_t block = ext4_ext_pblock(ext);
 307	int len = ext4_ext_get_actual_len(ext);
 
 308
 309	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 
 
 
 
 
 
 
 310}
 311
 312static int ext4_valid_extent_idx(struct inode *inode,
 313				struct ext4_extent_idx *ext_idx)
 314{
 315	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 316
 317	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 318}
 319
 320static int ext4_valid_extent_entries(struct inode *inode,
 321				struct ext4_extent_header *eh,
 322				int depth)
 323{
 324	struct ext4_extent *ext;
 325	struct ext4_extent_idx *ext_idx;
 326	unsigned short entries;
 327	if (eh->eh_entries == 0)
 328		return 1;
 329
 330	entries = le16_to_cpu(eh->eh_entries);
 331
 332	if (depth == 0) {
 333		/* leaf entries */
 334		ext = EXT_FIRST_EXTENT(eh);
 
 
 
 335		while (entries) {
 336			if (!ext4_valid_extent(inode, ext))
 337				return 0;
 
 
 
 
 
 
 
 
 338			ext++;
 339			entries--;
 
 340		}
 341	} else {
 342		ext_idx = EXT_FIRST_INDEX(eh);
 343		while (entries) {
 344			if (!ext4_valid_extent_idx(inode, ext_idx))
 345				return 0;
 346			ext_idx++;
 347			entries--;
 348		}
 349	}
 350	return 1;
 351}
 352
 353static int __ext4_ext_check(const char *function, unsigned int line,
 354			    struct inode *inode, struct ext4_extent_header *eh,
 355			    int depth)
 356{
 357	const char *error_msg;
 358	int max = 0;
 359
 360	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 361		error_msg = "invalid magic";
 362		goto corrupted;
 363	}
 364	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 365		error_msg = "unexpected eh_depth";
 366		goto corrupted;
 367	}
 368	if (unlikely(eh->eh_max == 0)) {
 369		error_msg = "invalid eh_max";
 370		goto corrupted;
 371	}
 372	max = ext4_ext_max_entries(inode, depth);
 373	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 374		error_msg = "too large eh_max";
 375		goto corrupted;
 376	}
 377	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 378		error_msg = "invalid eh_entries";
 379		goto corrupted;
 380	}
 381	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 382		error_msg = "invalid extent entries";
 383		goto corrupted;
 384	}
 
 
 
 
 
 
 
 
 
 
 
 385	return 0;
 386
 387corrupted:
 388	ext4_error_inode(inode, function, line, 0,
 389			"bad header/extent: %s - magic %x, "
 390			"entries %u, max %u(%u), depth %u(%u)",
 391			error_msg, le16_to_cpu(eh->eh_magic),
 392			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 393			max, le16_to_cpu(eh->eh_depth), depth);
 394
 395	return -EIO;
 
 396}
 397
 398#define ext4_ext_check(inode, eh, depth)	\
 399	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
 400
 401int ext4_ext_check_inode(struct inode *inode)
 402{
 403	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406#ifdef EXT_DEBUG
 407static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 408{
 409	int k, l = path->p_depth;
 410
 411	ext_debug("path:");
 412	for (k = 0; k <= l; k++, path++) {
 413		if (path->p_idx) {
 414		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 415			    ext4_idx_pblock(path->p_idx));
 
 416		} else if (path->p_ext) {
 417			ext_debug("  %d:[%d]%d:%llu ",
 418				  le32_to_cpu(path->p_ext->ee_block),
 419				  ext4_ext_is_uninitialized(path->p_ext),
 420				  ext4_ext_get_actual_len(path->p_ext),
 421				  ext4_ext_pblock(path->p_ext));
 422		} else
 423			ext_debug("  []");
 424	}
 425	ext_debug("\n");
 426}
 427
 428static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 429{
 430	int depth = ext_depth(inode);
 431	struct ext4_extent_header *eh;
 432	struct ext4_extent *ex;
 433	int i;
 434
 435	if (!path)
 436		return;
 437
 438	eh = path[depth].p_hdr;
 439	ex = EXT_FIRST_EXTENT(eh);
 440
 441	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 442
 443	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 444		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 445			  ext4_ext_is_uninitialized(ex),
 446			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 447	}
 448	ext_debug("\n");
 449}
 450
 451static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 452			ext4_fsblk_t newblock, int level)
 453{
 454	int depth = ext_depth(inode);
 455	struct ext4_extent *ex;
 456
 457	if (depth != level) {
 458		struct ext4_extent_idx *idx;
 459		idx = path[level].p_idx;
 460		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 461			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 462					le32_to_cpu(idx->ei_block),
 463					ext4_idx_pblock(idx),
 464					newblock);
 465			idx++;
 466		}
 467
 468		return;
 469	}
 470
 471	ex = path[depth].p_ext;
 472	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 473		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 474				le32_to_cpu(ex->ee_block),
 475				ext4_ext_pblock(ex),
 476				ext4_ext_is_uninitialized(ex),
 477				ext4_ext_get_actual_len(ex),
 478				newblock);
 479		ex++;
 480	}
 481}
 482
 483#else
 484#define ext4_ext_show_path(inode, path)
 485#define ext4_ext_show_leaf(inode, path)
 486#define ext4_ext_show_move(inode, path, newblock, level)
 487#endif
 488
 489void ext4_ext_drop_refs(struct ext4_ext_path *path)
 490{
 491	int depth = path->p_depth;
 492	int i;
 493
 494	for (i = 0; i <= depth; i++, path++)
 495		if (path->p_bh) {
 496			brelse(path->p_bh);
 497			path->p_bh = NULL;
 498		}
 
 
 499}
 500
 501/*
 502 * ext4_ext_binsearch_idx:
 503 * binary search for the closest index of the given block
 504 * the header must be checked before calling this
 505 */
 506static void
 507ext4_ext_binsearch_idx(struct inode *inode,
 508			struct ext4_ext_path *path, ext4_lblk_t block)
 509{
 510	struct ext4_extent_header *eh = path->p_hdr;
 511	struct ext4_extent_idx *r, *l, *m;
 512
 513
 514	ext_debug("binsearch for %u(idx):  ", block);
 515
 516	l = EXT_FIRST_INDEX(eh) + 1;
 517	r = EXT_LAST_INDEX(eh);
 518	while (l <= r) {
 519		m = l + (r - l) / 2;
 520		if (block < le32_to_cpu(m->ei_block))
 521			r = m - 1;
 522		else
 523			l = m + 1;
 524		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 525				m, le32_to_cpu(m->ei_block),
 526				r, le32_to_cpu(r->ei_block));
 527	}
 528
 529	path->p_idx = l - 1;
 530	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
 531		  ext4_idx_pblock(path->p_idx));
 532
 533#ifdef CHECK_BINSEARCH
 534	{
 535		struct ext4_extent_idx *chix, *ix;
 536		int k;
 537
 538		chix = ix = EXT_FIRST_INDEX(eh);
 539		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 540		  if (k != 0 &&
 541		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 542				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 543				       "first=0x%p\n", k,
 544				       ix, EXT_FIRST_INDEX(eh));
 545				printk(KERN_DEBUG "%u <= %u\n",
 546				       le32_to_cpu(ix->ei_block),
 547				       le32_to_cpu(ix[-1].ei_block));
 548			}
 549			BUG_ON(k && le32_to_cpu(ix->ei_block)
 550					   <= le32_to_cpu(ix[-1].ei_block));
 551			if (block < le32_to_cpu(ix->ei_block))
 552				break;
 553			chix = ix;
 554		}
 555		BUG_ON(chix != path->p_idx);
 556	}
 557#endif
 558
 559}
 560
 561/*
 562 * ext4_ext_binsearch:
 563 * binary search for closest extent of the given block
 564 * the header must be checked before calling this
 565 */
 566static void
 567ext4_ext_binsearch(struct inode *inode,
 568		struct ext4_ext_path *path, ext4_lblk_t block)
 569{
 570	struct ext4_extent_header *eh = path->p_hdr;
 571	struct ext4_extent *r, *l, *m;
 572
 573	if (eh->eh_entries == 0) {
 574		/*
 575		 * this leaf is empty:
 576		 * we get such a leaf in split/add case
 577		 */
 578		return;
 579	}
 580
 581	ext_debug("binsearch for %u:  ", block);
 582
 583	l = EXT_FIRST_EXTENT(eh) + 1;
 584	r = EXT_LAST_EXTENT(eh);
 585
 586	while (l <= r) {
 587		m = l + (r - l) / 2;
 588		if (block < le32_to_cpu(m->ee_block))
 589			r = m - 1;
 590		else
 591			l = m + 1;
 592		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 593				m, le32_to_cpu(m->ee_block),
 594				r, le32_to_cpu(r->ee_block));
 595	}
 596
 597	path->p_ext = l - 1;
 598	ext_debug("  -> %d:%llu:[%d]%d ",
 599			le32_to_cpu(path->p_ext->ee_block),
 600			ext4_ext_pblock(path->p_ext),
 601			ext4_ext_is_uninitialized(path->p_ext),
 602			ext4_ext_get_actual_len(path->p_ext));
 603
 604#ifdef CHECK_BINSEARCH
 605	{
 606		struct ext4_extent *chex, *ex;
 607		int k;
 608
 609		chex = ex = EXT_FIRST_EXTENT(eh);
 610		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 611			BUG_ON(k && le32_to_cpu(ex->ee_block)
 612					  <= le32_to_cpu(ex[-1].ee_block));
 613			if (block < le32_to_cpu(ex->ee_block))
 614				break;
 615			chex = ex;
 616		}
 617		BUG_ON(chex != path->p_ext);
 618	}
 619#endif
 620
 621}
 622
 623int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 624{
 625	struct ext4_extent_header *eh;
 626
 627	eh = ext_inode_hdr(inode);
 628	eh->eh_depth = 0;
 629	eh->eh_entries = 0;
 630	eh->eh_magic = EXT4_EXT_MAGIC;
 631	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 632	ext4_mark_inode_dirty(handle, inode);
 633	ext4_ext_invalidate_cache(inode);
 634	return 0;
 635}
 636
 637struct ext4_ext_path *
 638ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
 639					struct ext4_ext_path *path)
 640{
 641	struct ext4_extent_header *eh;
 642	struct buffer_head *bh;
 643	short int depth, i, ppos = 0, alloc = 0;
 
 
 
 
 
 
 644
 645	eh = ext_inode_hdr(inode);
 646	depth = ext_depth(inode);
 
 
 
 
 
 
 647
 648	/* account possible depth increase */
 
 
 
 
 
 
 649	if (!path) {
 650		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 651				GFP_NOFS);
 652		if (!path)
 
 653			return ERR_PTR(-ENOMEM);
 654		alloc = 1;
 655	}
 656	path[0].p_hdr = eh;
 657	path[0].p_bh = NULL;
 658
 659	i = depth;
 
 
 660	/* walk through the tree */
 661	while (i) {
 662		int need_to_validate = 0;
 663
 664		ext_debug("depth %d: num %d, max %d\n",
 665			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 666
 667		ext4_ext_binsearch_idx(inode, path + ppos, block);
 668		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 669		path[ppos].p_depth = i;
 670		path[ppos].p_ext = NULL;
 671
 672		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
 673		if (unlikely(!bh))
 
 
 674			goto err;
 675		if (!bh_uptodate_or_lock(bh)) {
 676			trace_ext4_ext_load_extent(inode, block,
 677						path[ppos].p_block);
 678			if (bh_submit_read(bh) < 0) {
 679				put_bh(bh);
 680				goto err;
 681			}
 682			/* validate the extent entries */
 683			need_to_validate = 1;
 684		}
 
 685		eh = ext_block_hdr(bh);
 686		ppos++;
 687		if (unlikely(ppos > depth)) {
 688			put_bh(bh);
 689			EXT4_ERROR_INODE(inode,
 690					 "ppos %d > depth %d", ppos, depth);
 691			goto err;
 692		}
 693		path[ppos].p_bh = bh;
 694		path[ppos].p_hdr = eh;
 695		i--;
 696
 697		if (need_to_validate && ext4_ext_check(inode, eh, i))
 698			goto err;
 699	}
 700
 701	path[ppos].p_depth = i;
 702	path[ppos].p_ext = NULL;
 703	path[ppos].p_idx = NULL;
 704
 705	/* find extent */
 706	ext4_ext_binsearch(inode, path + ppos, block);
 707	/* if not an empty leaf */
 708	if (path[ppos].p_ext)
 709		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 710
 711	ext4_ext_show_path(inode, path);
 712
 713	return path;
 714
 715err:
 716	ext4_ext_drop_refs(path);
 717	if (alloc)
 718		kfree(path);
 719	return ERR_PTR(-EIO);
 
 720}
 721
 722/*
 723 * ext4_ext_insert_index:
 724 * insert new index [@logical;@ptr] into the block at @curp;
 725 * check where to insert: before @curp or after @curp
 726 */
 727static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 728				 struct ext4_ext_path *curp,
 729				 int logical, ext4_fsblk_t ptr)
 730{
 731	struct ext4_extent_idx *ix;
 732	int len, err;
 733
 734	err = ext4_ext_get_access(handle, inode, curp);
 735	if (err)
 736		return err;
 737
 738	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 739		EXT4_ERROR_INODE(inode,
 740				 "logical %d == ei_block %d!",
 741				 logical, le32_to_cpu(curp->p_idx->ei_block));
 742		return -EIO;
 743	}
 744
 745	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 746			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 747		EXT4_ERROR_INODE(inode,
 748				 "eh_entries %d >= eh_max %d!",
 749				 le16_to_cpu(curp->p_hdr->eh_entries),
 750				 le16_to_cpu(curp->p_hdr->eh_max));
 751		return -EIO;
 752	}
 753
 754	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
 755	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 756		/* insert after */
 757		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
 758			len = (len - 1) * sizeof(struct ext4_extent_idx);
 759			len = len < 0 ? 0 : len;
 760			ext_debug("insert new index %d after: %llu. "
 761					"move %d from 0x%p to 0x%p\n",
 762					logical, ptr, len,
 763					(curp->p_idx + 1), (curp->p_idx + 2));
 764			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
 765		}
 766		ix = curp->p_idx + 1;
 767	} else {
 768		/* insert before */
 769		len = len * sizeof(struct ext4_extent_idx);
 770		len = len < 0 ? 0 : len;
 771		ext_debug("insert new index %d before: %llu. "
 772				"move %d from 0x%p to 0x%p\n",
 773				logical, ptr, len,
 774				curp->p_idx, (curp->p_idx + 1));
 775		memmove(curp->p_idx + 1, curp->p_idx, len);
 776		ix = curp->p_idx;
 777	}
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779	ix->ei_block = cpu_to_le32(logical);
 780	ext4_idx_store_pblock(ix, ptr);
 781	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 782
 783	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 784		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 785		return -EIO;
 786	}
 787
 788	err = ext4_ext_dirty(handle, inode, curp);
 789	ext4_std_error(inode->i_sb, err);
 790
 791	return err;
 792}
 793
 794/*
 795 * ext4_ext_split:
 796 * inserts new subtree into the path, using free index entry
 797 * at depth @at:
 798 * - allocates all needed blocks (new leaf and all intermediate index blocks)
 799 * - makes decision where to split
 800 * - moves remaining extents and index entries (right to the split point)
 801 *   into the newly allocated blocks
 802 * - initializes subtree
 803 */
 804static int ext4_ext_split(handle_t *handle, struct inode *inode,
 805			  unsigned int flags,
 806			  struct ext4_ext_path *path,
 807			  struct ext4_extent *newext, int at)
 808{
 809	struct buffer_head *bh = NULL;
 810	int depth = ext_depth(inode);
 811	struct ext4_extent_header *neh;
 812	struct ext4_extent_idx *fidx;
 813	int i = at, k, m, a;
 814	ext4_fsblk_t newblock, oldblock;
 815	__le32 border;
 816	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
 
 817	int err = 0;
 
 
 
 
 818
 819	/* make decision: where to split? */
 820	/* FIXME: now decision is simplest: at current extent */
 821
 822	/* if current leaf will be split, then we should use
 823	 * border from split point */
 824	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
 825		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
 826		return -EIO;
 827	}
 828	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
 829		border = path[depth].p_ext[1].ee_block;
 830		ext_debug("leaf will be split."
 831				" next leaf starts at %d\n",
 832				  le32_to_cpu(border));
 833	} else {
 834		border = newext->ee_block;
 835		ext_debug("leaf will be added."
 836				" next leaf starts at %d\n",
 837				le32_to_cpu(border));
 838	}
 839
 840	/*
 841	 * If error occurs, then we break processing
 842	 * and mark filesystem read-only. index won't
 843	 * be inserted and tree will be in consistent
 844	 * state. Next mount will repair buffers too.
 845	 */
 846
 847	/*
 848	 * Get array to track all allocated blocks.
 849	 * We need this to handle errors and free blocks
 850	 * upon them.
 851	 */
 852	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
 853	if (!ablocks)
 854		return -ENOMEM;
 855
 856	/* allocate all needed blocks */
 857	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
 858	for (a = 0; a < depth - at; a++) {
 859		newblock = ext4_ext_new_meta_block(handle, inode, path,
 860						   newext, &err, flags);
 861		if (newblock == 0)
 862			goto cleanup;
 863		ablocks[a] = newblock;
 864	}
 865
 866	/* initialize new leaf */
 867	newblock = ablocks[--a];
 868	if (unlikely(newblock == 0)) {
 869		EXT4_ERROR_INODE(inode, "newblock == 0!");
 870		err = -EIO;
 871		goto cleanup;
 872	}
 873	bh = sb_getblk(inode->i_sb, newblock);
 874	if (!bh) {
 875		err = -EIO;
 876		goto cleanup;
 877	}
 878	lock_buffer(bh);
 879
 880	err = ext4_journal_get_create_access(handle, bh);
 881	if (err)
 882		goto cleanup;
 883
 884	neh = ext_block_hdr(bh);
 885	neh->eh_entries = 0;
 886	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
 887	neh->eh_magic = EXT4_EXT_MAGIC;
 888	neh->eh_depth = 0;
 889
 890	/* move remainder of path[depth] to the new leaf */
 891	if (unlikely(path[depth].p_hdr->eh_entries !=
 892		     path[depth].p_hdr->eh_max)) {
 893		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
 894				 path[depth].p_hdr->eh_entries,
 895				 path[depth].p_hdr->eh_max);
 896		err = -EIO;
 897		goto cleanup;
 898	}
 899	/* start copy from next extent */
 900	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
 901	ext4_ext_show_move(inode, path, newblock, depth);
 902	if (m) {
 903		struct ext4_extent *ex;
 904		ex = EXT_FIRST_EXTENT(neh);
 905		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
 906		le16_add_cpu(&neh->eh_entries, m);
 907	}
 908
 
 
 
 
 
 909	set_buffer_uptodate(bh);
 910	unlock_buffer(bh);
 911
 912	err = ext4_handle_dirty_metadata(handle, inode, bh);
 913	if (err)
 914		goto cleanup;
 915	brelse(bh);
 916	bh = NULL;
 917
 918	/* correct old leaf */
 919	if (m) {
 920		err = ext4_ext_get_access(handle, inode, path + depth);
 921		if (err)
 922			goto cleanup;
 923		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
 924		err = ext4_ext_dirty(handle, inode, path + depth);
 925		if (err)
 926			goto cleanup;
 927
 928	}
 929
 930	/* create intermediate indexes */
 931	k = depth - at - 1;
 932	if (unlikely(k < 0)) {
 933		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
 934		err = -EIO;
 935		goto cleanup;
 936	}
 937	if (k)
 938		ext_debug("create %d intermediate indices\n", k);
 939	/* insert new index into current index block */
 940	/* current depth stored in i var */
 941	i = depth - 1;
 942	while (k--) {
 943		oldblock = newblock;
 944		newblock = ablocks[--a];
 945		bh = sb_getblk(inode->i_sb, newblock);
 946		if (!bh) {
 947			err = -EIO;
 948			goto cleanup;
 949		}
 950		lock_buffer(bh);
 951
 952		err = ext4_journal_get_create_access(handle, bh);
 953		if (err)
 954			goto cleanup;
 955
 956		neh = ext_block_hdr(bh);
 957		neh->eh_entries = cpu_to_le16(1);
 958		neh->eh_magic = EXT4_EXT_MAGIC;
 959		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
 960		neh->eh_depth = cpu_to_le16(depth - i);
 961		fidx = EXT_FIRST_INDEX(neh);
 962		fidx->ei_block = border;
 963		ext4_idx_store_pblock(fidx, oldblock);
 964
 965		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
 966				i, newblock, le32_to_cpu(border), oldblock);
 967
 968		/* move remainder of path[i] to the new index block */
 969		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
 970					EXT_LAST_INDEX(path[i].p_hdr))) {
 971			EXT4_ERROR_INODE(inode,
 972					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
 973					 le32_to_cpu(path[i].p_ext->ee_block));
 974			err = -EIO;
 975			goto cleanup;
 976		}
 977		/* start copy indexes */
 978		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
 979		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
 980				EXT_MAX_INDEX(path[i].p_hdr));
 981		ext4_ext_show_move(inode, path, newblock, i);
 982		if (m) {
 983			memmove(++fidx, path[i].p_idx,
 984				sizeof(struct ext4_extent_idx) * m);
 985			le16_add_cpu(&neh->eh_entries, m);
 986		}
 
 
 
 
 
 
 987		set_buffer_uptodate(bh);
 988		unlock_buffer(bh);
 989
 990		err = ext4_handle_dirty_metadata(handle, inode, bh);
 991		if (err)
 992			goto cleanup;
 993		brelse(bh);
 994		bh = NULL;
 995
 996		/* correct old index */
 997		if (m) {
 998			err = ext4_ext_get_access(handle, inode, path + i);
 999			if (err)
1000				goto cleanup;
1001			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1002			err = ext4_ext_dirty(handle, inode, path + i);
1003			if (err)
1004				goto cleanup;
1005		}
1006
1007		i--;
1008	}
1009
1010	/* insert new index */
1011	err = ext4_ext_insert_index(handle, inode, path + at,
1012				    le32_to_cpu(border), newblock);
1013
1014cleanup:
1015	if (bh) {
1016		if (buffer_locked(bh))
1017			unlock_buffer(bh);
1018		brelse(bh);
1019	}
1020
1021	if (err) {
1022		/* free all allocated blocks in error case */
1023		for (i = 0; i < depth; i++) {
1024			if (!ablocks[i])
1025				continue;
1026			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1027					 EXT4_FREE_BLOCKS_METADATA);
1028		}
1029	}
1030	kfree(ablocks);
1031
1032	return err;
1033}
1034
1035/*
1036 * ext4_ext_grow_indepth:
1037 * implements tree growing procedure:
1038 * - allocates new block
1039 * - moves top-level data (index block or leaf) into the new block
1040 * - initializes new top-level, creating index that points to the
1041 *   just created block
1042 */
1043static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1044				 unsigned int flags,
1045				 struct ext4_ext_path *path,
1046				 struct ext4_extent *newext)
1047{
1048	struct ext4_ext_path *curp = path;
1049	struct ext4_extent_header *neh;
1050	struct buffer_head *bh;
1051	ext4_fsblk_t newblock;
 
1052	int err = 0;
 
1053
1054	newblock = ext4_ext_new_meta_block(handle, inode, path,
1055		newext, &err, flags);
 
 
 
 
 
 
 
 
1056	if (newblock == 0)
1057		return err;
1058
1059	bh = sb_getblk(inode->i_sb, newblock);
1060	if (!bh) {
1061		err = -EIO;
1062		ext4_std_error(inode->i_sb, err);
1063		return err;
1064	}
1065	lock_buffer(bh);
1066
1067	err = ext4_journal_get_create_access(handle, bh);
1068	if (err) {
1069		unlock_buffer(bh);
1070		goto out;
1071	}
1072
 
1073	/* move top-level index/leaf into new block */
1074	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
 
 
1075
1076	/* set size of new block */
1077	neh = ext_block_hdr(bh);
1078	/* old root could have indexes or leaves
1079	 * so calculate e_max right way */
1080	if (ext_depth(inode))
1081		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1082	else
1083		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1084	neh->eh_magic = EXT4_EXT_MAGIC;
 
1085	set_buffer_uptodate(bh);
1086	unlock_buffer(bh);
1087
1088	err = ext4_handle_dirty_metadata(handle, inode, bh);
1089	if (err)
1090		goto out;
1091
1092	/* create index in new top-level index: num,max,pointer */
1093	err = ext4_ext_get_access(handle, inode, curp);
1094	if (err)
1095		goto out;
1096
1097	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1098	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1099	curp->p_hdr->eh_entries = cpu_to_le16(1);
1100	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1101
1102	if (path[0].p_hdr->eh_depth)
1103		curp->p_idx->ei_block =
1104			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1105	else
1106		curp->p_idx->ei_block =
1107			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1108	ext4_idx_store_pblock(curp->p_idx, newblock);
1109
1110	neh = ext_inode_hdr(inode);
1111	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
 
 
 
 
 
 
 
 
1112		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1113		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1114		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1115
1116	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1117	err = ext4_ext_dirty(handle, inode, curp);
1118out:
1119	brelse(bh);
1120
1121	return err;
1122}
1123
1124/*
1125 * ext4_ext_create_new_leaf:
1126 * finds empty index and adds new leaf.
1127 * if no free index is found, then it requests in-depth growing.
1128 */
1129static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1130				    unsigned int flags,
1131				    struct ext4_ext_path *path,
 
1132				    struct ext4_extent *newext)
1133{
 
1134	struct ext4_ext_path *curp;
1135	int depth, i, err = 0;
1136
1137repeat:
1138	i = depth = ext_depth(inode);
1139
1140	/* walk up to the tree and look for free index entry */
1141	curp = path + depth;
1142	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1143		i--;
1144		curp--;
1145	}
1146
1147	/* we use already allocated block for index block,
1148	 * so subsequent data blocks should be contiguous */
1149	if (EXT_HAS_FREE_INDEX(curp)) {
1150		/* if we found index with free entry, then use that
1151		 * entry: create all needed subtree and add new leaf */
1152		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1153		if (err)
1154			goto out;
1155
1156		/* refill path */
1157		ext4_ext_drop_refs(path);
1158		path = ext4_ext_find_extent(inode,
1159				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1160				    path);
1161		if (IS_ERR(path))
1162			err = PTR_ERR(path);
1163	} else {
1164		/* tree is full, time to grow in depth */
1165		err = ext4_ext_grow_indepth(handle, inode, flags,
1166					    path, newext);
1167		if (err)
1168			goto out;
1169
1170		/* refill path */
1171		ext4_ext_drop_refs(path);
1172		path = ext4_ext_find_extent(inode,
1173				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1174				    path);
1175		if (IS_ERR(path)) {
1176			err = PTR_ERR(path);
1177			goto out;
1178		}
1179
1180		/*
1181		 * only first (depth 0 -> 1) produces free space;
1182		 * in all other cases we have to split the grown tree
1183		 */
1184		depth = ext_depth(inode);
1185		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1186			/* now we need to split */
1187			goto repeat;
1188		}
1189	}
1190
1191out:
1192	return err;
1193}
1194
1195/*
1196 * search the closest allocated block to the left for *logical
1197 * and returns it at @logical + it's physical address at @phys
1198 * if *logical is the smallest allocated block, the function
1199 * returns 0 at @phys
1200 * return value contains 0 (success) or error code
1201 */
1202static int ext4_ext_search_left(struct inode *inode,
1203				struct ext4_ext_path *path,
1204				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1205{
1206	struct ext4_extent_idx *ix;
1207	struct ext4_extent *ex;
1208	int depth, ee_len;
1209
1210	if (unlikely(path == NULL)) {
1211		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1212		return -EIO;
1213	}
1214	depth = path->p_depth;
1215	*phys = 0;
1216
1217	if (depth == 0 && path->p_ext == NULL)
1218		return 0;
1219
1220	/* usually extent in the path covers blocks smaller
1221	 * then *logical, but it can be that extent is the
1222	 * first one in the file */
1223
1224	ex = path[depth].p_ext;
1225	ee_len = ext4_ext_get_actual_len(ex);
1226	if (*logical < le32_to_cpu(ex->ee_block)) {
1227		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1228			EXT4_ERROR_INODE(inode,
1229					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1230					 *logical, le32_to_cpu(ex->ee_block));
1231			return -EIO;
1232		}
1233		while (--depth >= 0) {
1234			ix = path[depth].p_idx;
1235			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1236				EXT4_ERROR_INODE(inode,
1237				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1238				  ix != NULL ? ix->ei_block : 0,
1239				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1240				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1241				  depth);
1242				return -EIO;
1243			}
1244		}
1245		return 0;
1246	}
1247
1248	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1249		EXT4_ERROR_INODE(inode,
1250				 "logical %d < ee_block %d + ee_len %d!",
1251				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1252		return -EIO;
1253	}
1254
1255	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1256	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1257	return 0;
1258}
1259
1260/*
1261 * search the closest allocated block to the right for *logical
1262 * and returns it at @logical + it's physical address at @phys
1263 * if *logical is the smallest allocated block, the function
1264 * returns 0 at @phys
1265 * return value contains 0 (success) or error code
1266 */
1267static int ext4_ext_search_right(struct inode *inode,
1268				 struct ext4_ext_path *path,
1269				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
 
1270{
1271	struct buffer_head *bh = NULL;
1272	struct ext4_extent_header *eh;
1273	struct ext4_extent_idx *ix;
1274	struct ext4_extent *ex;
1275	ext4_fsblk_t block;
1276	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1277	int ee_len;
1278
1279	if (unlikely(path == NULL)) {
1280		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1281		return -EIO;
1282	}
1283	depth = path->p_depth;
1284	*phys = 0;
1285
1286	if (depth == 0 && path->p_ext == NULL)
1287		return 0;
1288
1289	/* usually extent in the path covers blocks smaller
1290	 * then *logical, but it can be that extent is the
1291	 * first one in the file */
1292
1293	ex = path[depth].p_ext;
1294	ee_len = ext4_ext_get_actual_len(ex);
1295	if (*logical < le32_to_cpu(ex->ee_block)) {
1296		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1297			EXT4_ERROR_INODE(inode,
1298					 "first_extent(path[%d].p_hdr) != ex",
1299					 depth);
1300			return -EIO;
1301		}
1302		while (--depth >= 0) {
1303			ix = path[depth].p_idx;
1304			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1305				EXT4_ERROR_INODE(inode,
1306						 "ix != EXT_FIRST_INDEX *logical %d!",
1307						 *logical);
1308				return -EIO;
1309			}
1310		}
1311		*logical = le32_to_cpu(ex->ee_block);
1312		*phys = ext4_ext_pblock(ex);
1313		return 0;
1314	}
1315
1316	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1317		EXT4_ERROR_INODE(inode,
1318				 "logical %d < ee_block %d + ee_len %d!",
1319				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1320		return -EIO;
1321	}
1322
1323	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1324		/* next allocated block in this leaf */
1325		ex++;
1326		*logical = le32_to_cpu(ex->ee_block);
1327		*phys = ext4_ext_pblock(ex);
1328		return 0;
1329	}
1330
1331	/* go up and search for index to the right */
1332	while (--depth >= 0) {
1333		ix = path[depth].p_idx;
1334		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1335			goto got_index;
1336	}
1337
1338	/* we've gone up to the root and found no index to the right */
1339	return 0;
1340
1341got_index:
1342	/* we've found index to the right, let's
1343	 * follow it and find the closest allocated
1344	 * block to the right */
1345	ix++;
1346	block = ext4_idx_pblock(ix);
1347	while (++depth < path->p_depth) {
1348		bh = sb_bread(inode->i_sb, block);
1349		if (bh == NULL)
1350			return -EIO;
1351		eh = ext_block_hdr(bh);
1352		/* subtract from p_depth to get proper eh_depth */
1353		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1354			put_bh(bh);
1355			return -EIO;
1356		}
 
1357		ix = EXT_FIRST_INDEX(eh);
1358		block = ext4_idx_pblock(ix);
1359		put_bh(bh);
1360	}
1361
1362	bh = sb_bread(inode->i_sb, block);
1363	if (bh == NULL)
1364		return -EIO;
1365	eh = ext_block_hdr(bh);
1366	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1367		put_bh(bh);
1368		return -EIO;
1369	}
1370	ex = EXT_FIRST_EXTENT(eh);
 
1371	*logical = le32_to_cpu(ex->ee_block);
1372	*phys = ext4_ext_pblock(ex);
1373	put_bh(bh);
 
 
1374	return 0;
1375}
1376
1377/*
1378 * ext4_ext_next_allocated_block:
1379 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1380 * NOTE: it considers block number from index entry as
1381 * allocated block. Thus, index entries have to be consistent
1382 * with leaves.
1383 */
1384static ext4_lblk_t
1385ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1386{
1387	int depth;
1388
1389	BUG_ON(path == NULL);
1390	depth = path->p_depth;
1391
1392	if (depth == 0 && path->p_ext == NULL)
1393		return EXT_MAX_BLOCKS;
1394
1395	while (depth >= 0) {
 
 
1396		if (depth == path->p_depth) {
1397			/* leaf */
1398			if (path[depth].p_ext !=
1399					EXT_LAST_EXTENT(path[depth].p_hdr))
1400			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1401		} else {
1402			/* index */
1403			if (path[depth].p_idx !=
1404					EXT_LAST_INDEX(path[depth].p_hdr))
1405			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1406		}
1407		depth--;
1408	}
1409
1410	return EXT_MAX_BLOCKS;
1411}
1412
1413/*
1414 * ext4_ext_next_leaf_block:
1415 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1416 */
1417static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1418{
1419	int depth;
1420
1421	BUG_ON(path == NULL);
1422	depth = path->p_depth;
1423
1424	/* zero-tree has no leaf blocks at all */
1425	if (depth == 0)
1426		return EXT_MAX_BLOCKS;
1427
1428	/* go to index block */
1429	depth--;
1430
1431	while (depth >= 0) {
1432		if (path[depth].p_idx !=
1433				EXT_LAST_INDEX(path[depth].p_hdr))
1434			return (ext4_lblk_t)
1435				le32_to_cpu(path[depth].p_idx[1].ei_block);
1436		depth--;
1437	}
1438
1439	return EXT_MAX_BLOCKS;
1440}
1441
1442/*
1443 * ext4_ext_correct_indexes:
1444 * if leaf gets modified and modified extent is first in the leaf,
1445 * then we have to correct all indexes above.
1446 * TODO: do we need to correct tree in all cases?
1447 */
1448static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1449				struct ext4_ext_path *path)
1450{
1451	struct ext4_extent_header *eh;
1452	int depth = ext_depth(inode);
1453	struct ext4_extent *ex;
1454	__le32 border;
1455	int k, err = 0;
1456
1457	eh = path[depth].p_hdr;
1458	ex = path[depth].p_ext;
1459
1460	if (unlikely(ex == NULL || eh == NULL)) {
1461		EXT4_ERROR_INODE(inode,
1462				 "ex %p == NULL or eh %p == NULL", ex, eh);
1463		return -EIO;
1464	}
1465
1466	if (depth == 0) {
1467		/* there is no tree at all */
1468		return 0;
1469	}
1470
1471	if (ex != EXT_FIRST_EXTENT(eh)) {
1472		/* we correct tree if first leaf got modified only */
1473		return 0;
1474	}
1475
1476	/*
1477	 * TODO: we need correction if border is smaller than current one
1478	 */
1479	k = depth - 1;
1480	border = path[depth].p_ext->ee_block;
1481	err = ext4_ext_get_access(handle, inode, path + k);
1482	if (err)
1483		return err;
1484	path[k].p_idx->ei_block = border;
1485	err = ext4_ext_dirty(handle, inode, path + k);
1486	if (err)
1487		return err;
1488
1489	while (k--) {
1490		/* change all left-side indexes */
1491		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1492			break;
1493		err = ext4_ext_get_access(handle, inode, path + k);
1494		if (err)
1495			break;
1496		path[k].p_idx->ei_block = border;
1497		err = ext4_ext_dirty(handle, inode, path + k);
1498		if (err)
1499			break;
1500	}
1501
1502	return err;
1503}
1504
1505int
1506ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1507				struct ext4_extent *ex2)
1508{
1509	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1510
1511	/*
1512	 * Make sure that either both extents are uninitialized, or
1513	 * both are _not_.
1514	 */
1515	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1516		return 0;
1517
1518	if (ext4_ext_is_uninitialized(ex1))
1519		max_len = EXT_UNINIT_MAX_LEN;
1520	else
1521		max_len = EXT_INIT_MAX_LEN;
1522
1523	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1524	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1525
1526	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1527			le32_to_cpu(ex2->ee_block))
1528		return 0;
1529
1530	/*
1531	 * To allow future support for preallocated extents to be added
1532	 * as an RO_COMPAT feature, refuse to merge to extents if
1533	 * this can result in the top bit of ee_len being set.
1534	 */
1535	if (ext1_ee_len + ext2_ee_len > max_len)
1536		return 0;
1537#ifdef AGGRESSIVE_TEST
1538	if (ext1_ee_len >= 4)
1539		return 0;
1540#endif
1541
1542	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1543		return 1;
1544	return 0;
1545}
1546
1547/*
1548 * This function tries to merge the "ex" extent to the next extent in the tree.
1549 * It always tries to merge towards right. If you want to merge towards
1550 * left, pass "ex - 1" as argument instead of "ex".
1551 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1552 * 1 if they got merged.
1553 */
1554static int ext4_ext_try_to_merge_right(struct inode *inode,
1555				 struct ext4_ext_path *path,
1556				 struct ext4_extent *ex)
1557{
1558	struct ext4_extent_header *eh;
1559	unsigned int depth, len;
1560	int merge_done = 0;
1561	int uninitialized = 0;
1562
1563	depth = ext_depth(inode);
1564	BUG_ON(path[depth].p_hdr == NULL);
1565	eh = path[depth].p_hdr;
1566
1567	while (ex < EXT_LAST_EXTENT(eh)) {
1568		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1569			break;
1570		/* merge with next extent! */
1571		if (ext4_ext_is_uninitialized(ex))
1572			uninitialized = 1;
1573		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1574				+ ext4_ext_get_actual_len(ex + 1));
1575		if (uninitialized)
1576			ext4_ext_mark_uninitialized(ex);
1577
1578		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1579			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1580				* sizeof(struct ext4_extent);
1581			memmove(ex + 1, ex + 2, len);
1582		}
1583		le16_add_cpu(&eh->eh_entries, -1);
1584		merge_done = 1;
1585		WARN_ON(eh->eh_entries == 0);
1586		if (!eh->eh_entries)
1587			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1588	}
1589
1590	return merge_done;
1591}
1592
1593/*
1594 * This function tries to merge the @ex extent to neighbours in the tree.
1595 * return 1 if merge left else 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596 */
1597static int ext4_ext_try_to_merge(struct inode *inode,
 
1598				  struct ext4_ext_path *path,
1599				  struct ext4_extent *ex) {
 
1600	struct ext4_extent_header *eh;
1601	unsigned int depth;
1602	int merge_done = 0;
1603	int ret = 0;
1604
1605	depth = ext_depth(inode);
1606	BUG_ON(path[depth].p_hdr == NULL);
1607	eh = path[depth].p_hdr;
1608
1609	if (ex > EXT_FIRST_EXTENT(eh))
1610		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1611
1612	if (!merge_done)
1613		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1614
1615	return ret;
1616}
1617
1618/*
1619 * check if a portion of the "newext" extent overlaps with an
1620 * existing extent.
1621 *
1622 * If there is an overlap discovered, it updates the length of the newext
1623 * such that there will be no overlap, and then returns 1.
1624 * If there is no overlap found, it returns 0.
1625 */
1626static unsigned int ext4_ext_check_overlap(struct inode *inode,
 
1627					   struct ext4_extent *newext,
1628					   struct ext4_ext_path *path)
1629{
1630	ext4_lblk_t b1, b2;
1631	unsigned int depth, len1;
1632	unsigned int ret = 0;
1633
1634	b1 = le32_to_cpu(newext->ee_block);
1635	len1 = ext4_ext_get_actual_len(newext);
1636	depth = ext_depth(inode);
1637	if (!path[depth].p_ext)
1638		goto out;
1639	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1640
1641	/*
1642	 * get the next allocated block if the extent in the path
1643	 * is before the requested block(s)
1644	 */
1645	if (b2 < b1) {
1646		b2 = ext4_ext_next_allocated_block(path);
1647		if (b2 == EXT_MAX_BLOCKS)
1648			goto out;
 
1649	}
1650
1651	/* check for wrap through zero on extent logical start block*/
1652	if (b1 + len1 < b1) {
1653		len1 = EXT_MAX_BLOCKS - b1;
1654		newext->ee_len = cpu_to_le16(len1);
1655		ret = 1;
1656	}
1657
1658	/* check for overlap */
1659	if (b1 + len1 > b2) {
1660		newext->ee_len = cpu_to_le16(b2 - b1);
1661		ret = 1;
1662	}
1663out:
1664	return ret;
1665}
1666
1667/*
1668 * ext4_ext_insert_extent:
1669 * tries to merge requsted extent into the existing extent or
1670 * inserts requested extent as new one into the tree,
1671 * creating new leaf in the no-space case.
1672 */
1673int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1674				struct ext4_ext_path *path,
1675				struct ext4_extent *newext, int flag)
1676{
 
1677	struct ext4_extent_header *eh;
1678	struct ext4_extent *ex, *fex;
1679	struct ext4_extent *nearex; /* nearest extent */
1680	struct ext4_ext_path *npath = NULL;
1681	int depth, len, err;
1682	ext4_lblk_t next;
1683	unsigned uninitialized = 0;
1684	int flags = 0;
1685
 
 
1686	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1687		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1688		return -EIO;
1689	}
1690	depth = ext_depth(inode);
1691	ex = path[depth].p_ext;
 
1692	if (unlikely(path[depth].p_hdr == NULL)) {
1693		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1694		return -EIO;
1695	}
1696
1697	/* try to insert block into found extent and return */
1698	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1699		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1700		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1701			  ext4_ext_is_uninitialized(newext),
1702			  ext4_ext_get_actual_len(newext),
1703			  le32_to_cpu(ex->ee_block),
1704			  ext4_ext_is_uninitialized(ex),
1705			  ext4_ext_get_actual_len(ex),
1706			  ext4_ext_pblock(ex));
1707		err = ext4_ext_get_access(handle, inode, path + depth);
1708		if (err)
1709			return err;
1710
1711		/*
1712		 * ext4_can_extents_be_merged should have checked that either
1713		 * both extents are uninitialized, or both aren't. Thus we
1714		 * need to check only one of them here.
 
 
1715		 */
1716		if (ext4_ext_is_uninitialized(ex))
1717			uninitialized = 1;
1718		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719					+ ext4_ext_get_actual_len(newext));
1720		if (uninitialized)
1721			ext4_ext_mark_uninitialized(ex);
1722		eh = path[depth].p_hdr;
1723		nearex = ex;
1724		goto merge;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725	}
1726
1727	depth = ext_depth(inode);
1728	eh = path[depth].p_hdr;
1729	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1730		goto has_space;
1731
1732	/* probably next leaf has space for us? */
1733	fex = EXT_LAST_EXTENT(eh);
1734	next = EXT_MAX_BLOCKS;
1735	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1736		next = ext4_ext_next_leaf_block(path);
1737	if (next != EXT_MAX_BLOCKS) {
1738		ext_debug("next leaf block - %d\n", next);
1739		BUG_ON(npath != NULL);
1740		npath = ext4_ext_find_extent(inode, next, NULL);
1741		if (IS_ERR(npath))
1742			return PTR_ERR(npath);
1743		BUG_ON(npath->p_depth != path->p_depth);
1744		eh = npath[depth].p_hdr;
1745		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1746			ext_debug("next leaf isn't full(%d)\n",
1747				  le16_to_cpu(eh->eh_entries));
1748			path = npath;
1749			goto has_space;
1750		}
1751		ext_debug("next leaf has no free space(%d,%d)\n",
1752			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1753	}
1754
1755	/*
1756	 * There is no free space in the found leaf.
1757	 * We're gonna add a new leaf in the tree.
1758	 */
1759	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1760		flags = EXT4_MB_USE_ROOT_BLOCKS;
1761	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
 
1762	if (err)
1763		goto cleanup;
1764	depth = ext_depth(inode);
1765	eh = path[depth].p_hdr;
1766
1767has_space:
1768	nearex = path[depth].p_ext;
1769
1770	err = ext4_ext_get_access(handle, inode, path + depth);
1771	if (err)
1772		goto cleanup;
1773
1774	if (!nearex) {
1775		/* there is no extent in this leaf, create first one */
1776		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1777				le32_to_cpu(newext->ee_block),
1778				ext4_ext_pblock(newext),
1779				ext4_ext_is_uninitialized(newext),
1780				ext4_ext_get_actual_len(newext));
1781		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1782	} else if (le32_to_cpu(newext->ee_block)
 
1783			   > le32_to_cpu(nearex->ee_block)) {
1784/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1785		if (nearex != EXT_LAST_EXTENT(eh)) {
1786			len = EXT_MAX_EXTENT(eh) - nearex;
1787			len = (len - 1) * sizeof(struct ext4_extent);
1788			len = len < 0 ? 0 : len;
1789			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1790					"move %d from 0x%p to 0x%p\n",
 
 
 
 
 
 
 
1791					le32_to_cpu(newext->ee_block),
1792					ext4_ext_pblock(newext),
1793					ext4_ext_is_uninitialized(newext),
1794					ext4_ext_get_actual_len(newext),
1795					nearex, len, nearex + 1, nearex + 2);
1796			memmove(nearex + 2, nearex + 1, len);
 
 
 
 
 
 
 
 
 
 
 
1797		}
1798		path[depth].p_ext = nearex + 1;
1799	} else {
1800		BUG_ON(newext->ee_block == nearex->ee_block);
1801		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1802		len = len < 0 ? 0 : len;
1803		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1804				"move %d from 0x%p to 0x%p\n",
1805				le32_to_cpu(newext->ee_block),
1806				ext4_ext_pblock(newext),
1807				ext4_ext_is_uninitialized(newext),
1808				ext4_ext_get_actual_len(newext),
1809				nearex, len, nearex, nearex + 1);
1810		memmove(nearex + 1, nearex, len);
1811		path[depth].p_ext = nearex;
1812	}
1813
1814	le16_add_cpu(&eh->eh_entries, 1);
1815	nearex = path[depth].p_ext;
1816	nearex->ee_block = newext->ee_block;
1817	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1818	nearex->ee_len = newext->ee_len;
1819
1820merge:
1821	/* try to merge extents to the right */
1822	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1823		ext4_ext_try_to_merge(inode, path, nearex);
1824
1825	/* try to merge extents to the left */
1826
1827	/* time to correct all indexes above */
1828	err = ext4_ext_correct_indexes(handle, inode, path);
1829	if (err)
1830		goto cleanup;
1831
1832	err = ext4_ext_dirty(handle, inode, path + depth);
1833
1834cleanup:
1835	if (npath) {
1836		ext4_ext_drop_refs(npath);
1837		kfree(npath);
1838	}
1839	ext4_ext_invalidate_cache(inode);
1840	return err;
1841}
1842
1843static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1844			       ext4_lblk_t num, ext_prepare_callback func,
1845			       void *cbdata)
1846{
1847	struct ext4_ext_path *path = NULL;
1848	struct ext4_ext_cache cbex;
1849	struct ext4_extent *ex;
1850	ext4_lblk_t next, start = 0, end = 0;
1851	ext4_lblk_t last = block + num;
1852	int depth, exists, err = 0;
1853
1854	BUG_ON(func == NULL);
1855	BUG_ON(inode == NULL);
1856
1857	while (block < last && block != EXT_MAX_BLOCKS) {
1858		num = last - block;
1859		/* find extent for this block */
1860		down_read(&EXT4_I(inode)->i_data_sem);
1861		path = ext4_ext_find_extent(inode, block, path);
1862		up_read(&EXT4_I(inode)->i_data_sem);
1863		if (IS_ERR(path)) {
1864			err = PTR_ERR(path);
1865			path = NULL;
1866			break;
1867		}
1868
1869		depth = ext_depth(inode);
1870		if (unlikely(path[depth].p_hdr == NULL)) {
1871			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1872			err = -EIO;
1873			break;
1874		}
1875		ex = path[depth].p_ext;
1876		next = ext4_ext_next_allocated_block(path);
1877
1878		exists = 0;
1879		if (!ex) {
1880			/* there is no extent yet, so try to allocate
1881			 * all requested space */
1882			start = block;
1883			end = block + num;
1884		} else if (le32_to_cpu(ex->ee_block) > block) {
1885			/* need to allocate space before found extent */
1886			start = block;
1887			end = le32_to_cpu(ex->ee_block);
1888			if (block + num < end)
1889				end = block + num;
1890		} else if (block >= le32_to_cpu(ex->ee_block)
1891					+ ext4_ext_get_actual_len(ex)) {
1892			/* need to allocate space after found extent */
1893			start = block;
1894			end = block + num;
1895			if (end >= next)
1896				end = next;
1897		} else if (block >= le32_to_cpu(ex->ee_block)) {
1898			/*
1899			 * some part of requested space is covered
1900			 * by found extent
1901			 */
1902			start = block;
1903			end = le32_to_cpu(ex->ee_block)
1904				+ ext4_ext_get_actual_len(ex);
1905			if (block + num < end)
1906				end = block + num;
1907			exists = 1;
1908		} else {
1909			BUG();
1910		}
1911		BUG_ON(end <= start);
1912
1913		if (!exists) {
1914			cbex.ec_block = start;
1915			cbex.ec_len = end - start;
1916			cbex.ec_start = 0;
1917		} else {
1918			cbex.ec_block = le32_to_cpu(ex->ee_block);
1919			cbex.ec_len = ext4_ext_get_actual_len(ex);
1920			cbex.ec_start = ext4_ext_pblock(ex);
1921		}
1922
1923		if (unlikely(cbex.ec_len == 0)) {
1924			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1925			err = -EIO;
1926			break;
1927		}
1928		err = func(inode, next, &cbex, ex, cbdata);
1929		ext4_ext_drop_refs(path);
1930
1931		if (err < 0)
1932			break;
1933
1934		if (err == EXT_REPEAT)
1935			continue;
1936		else if (err == EXT_BREAK) {
1937			err = 0;
1938			break;
1939		}
1940
1941		if (ext_depth(inode) != depth) {
1942			/* depth was changed. we have to realloc path */
1943			kfree(path);
1944			path = NULL;
1945		}
1946
1947		block = cbex.ec_block + cbex.ec_len;
1948	}
1949
1950	if (path) {
1951		ext4_ext_drop_refs(path);
1952		kfree(path);
1953	}
1954
1955	return err;
1956}
1957
1958static void
1959ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1960			__u32 len, ext4_fsblk_t start)
1961{
1962	struct ext4_ext_cache *cex;
1963	BUG_ON(len == 0);
1964	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1965	cex = &EXT4_I(inode)->i_cached_extent;
1966	cex->ec_block = block;
1967	cex->ec_len = len;
1968	cex->ec_start = start;
1969	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1970}
1971
1972/*
1973 * ext4_ext_put_gap_in_cache:
1974 * calculate boundaries of the gap that the requested block fits into
1975 * and cache this gap
 
 
 
 
 
 
 
 
1976 */
1977static void
1978ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1979				ext4_lblk_t block)
1980{
1981	int depth = ext_depth(inode);
1982	unsigned long len;
1983	ext4_lblk_t lblock;
1984	struct ext4_extent *ex;
 
1985
1986	ex = path[depth].p_ext;
1987	if (ex == NULL) {
1988		/* there is no extent yet, so gap is [0;-] */
1989		lblock = 0;
1990		len = EXT_MAX_BLOCKS;
1991		ext_debug("cache gap(whole file):");
1992	} else if (block < le32_to_cpu(ex->ee_block)) {
1993		lblock = block;
1994		len = le32_to_cpu(ex->ee_block) - block;
1995		ext_debug("cache gap(before): %u [%u:%u]",
1996				block,
1997				le32_to_cpu(ex->ee_block),
1998				 ext4_ext_get_actual_len(ex));
1999	} else if (block >= le32_to_cpu(ex->ee_block)
2000			+ ext4_ext_get_actual_len(ex)) {
2001		ext4_lblk_t next;
2002		lblock = le32_to_cpu(ex->ee_block)
2003			+ ext4_ext_get_actual_len(ex);
2004
 
2005		next = ext4_ext_next_allocated_block(path);
2006		ext_debug("cache gap(after): [%u:%u] %u",
2007				le32_to_cpu(ex->ee_block),
2008				ext4_ext_get_actual_len(ex),
2009				block);
2010		BUG_ON(next == lblock);
2011		len = next - lblock;
2012	} else {
2013		lblock = len = 0;
2014		BUG();
2015	}
2016
2017	ext_debug(" -> %u:%lu\n", lblock, len);
2018	ext4_ext_put_in_cache(inode, lblock, len, 0);
2019}
2020
2021/*
2022 * ext4_ext_check_cache()
2023 * Checks to see if the given block is in the cache.
2024 * If it is, the cached extent is stored in the given
2025 * cache extent pointer.  If the cached extent is a hole,
2026 * this routine should be used instead of
2027 * ext4_ext_in_cache if the calling function needs to
2028 * know the size of the hole.
2029 *
2030 * @inode: The files inode
2031 * @block: The block to look for in the cache
2032 * @ex:    Pointer where the cached extent will be stored
2033 *         if it contains block
2034 *
2035 * Return 0 if cache is invalid; 1 if the cache is valid
2036 */
2037static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2038	struct ext4_ext_cache *ex){
2039	struct ext4_ext_cache *cex;
2040	struct ext4_sb_info *sbi;
2041	int ret = 0;
2042
2043	/*
2044	 * We borrow i_block_reservation_lock to protect i_cached_extent
2045	 */
2046	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2047	cex = &EXT4_I(inode)->i_cached_extent;
2048	sbi = EXT4_SB(inode->i_sb);
2049
2050	/* has cache valid data? */
2051	if (cex->ec_len == 0)
2052		goto errout;
2053
2054	if (in_range(block, cex->ec_block, cex->ec_len)) {
2055		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2056		ext_debug("%u cached by %u:%u:%llu\n",
2057				block,
2058				cex->ec_block, cex->ec_len, cex->ec_start);
2059		ret = 1;
2060	}
2061errout:
2062	if (!ret)
2063		sbi->extent_cache_misses++;
2064	else
2065		sbi->extent_cache_hits++;
2066	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2067	return ret;
2068}
2069
2070/*
2071 * ext4_ext_in_cache()
2072 * Checks to see if the given block is in the cache.
2073 * If it is, the cached extent is stored in the given
2074 * extent pointer.
2075 *
2076 * @inode: The files inode
2077 * @block: The block to look for in the cache
2078 * @ex:    Pointer where the cached extent will be stored
2079 *         if it contains block
2080 *
2081 * Return 0 if cache is invalid; 1 if the cache is valid
2082 */
2083static int
2084ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2085			struct ext4_extent *ex)
2086{
2087	struct ext4_ext_cache cex;
2088	int ret = 0;
2089
2090	if (ext4_ext_check_cache(inode, block, &cex)) {
2091		ex->ee_block = cpu_to_le32(cex.ec_block);
2092		ext4_ext_store_pblock(ex, cex.ec_start);
2093		ex->ee_len = cpu_to_le16(cex.ec_len);
2094		ret = 1;
2095	}
2096
2097	return ret;
 
 
 
 
 
 
 
 
 
 
2098}
2099
2100
2101/*
2102 * ext4_ext_rm_idx:
2103 * removes index from the index block.
2104 */
2105static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2106			struct ext4_ext_path *path)
2107{
2108	int err;
2109	ext4_fsblk_t leaf;
2110
2111	/* free index block */
2112	path--;
 
2113	leaf = ext4_idx_pblock(path->p_idx);
2114	if (unlikely(path->p_hdr->eh_entries == 0)) {
2115		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2116		return -EIO;
2117	}
2118	err = ext4_ext_get_access(handle, inode, path);
2119	if (err)
2120		return err;
2121
2122	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2123		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2124		len *= sizeof(struct ext4_extent_idx);
2125		memmove(path->p_idx, path->p_idx + 1, len);
2126	}
2127
2128	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2129	err = ext4_ext_dirty(handle, inode, path);
2130	if (err)
2131		return err;
2132	ext_debug("index is empty, remove it, free block %llu\n", leaf);
 
 
2133	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2134			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
 
 
 
 
 
 
 
 
 
 
 
 
 
2135	return err;
2136}
2137
2138/*
2139 * ext4_ext_calc_credits_for_single_extent:
2140 * This routine returns max. credits that needed to insert an extent
2141 * to the extent tree.
2142 * When pass the actual path, the caller should calculate credits
2143 * under i_data_sem.
2144 */
2145int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2146						struct ext4_ext_path *path)
2147{
2148	if (path) {
2149		int depth = ext_depth(inode);
2150		int ret = 0;
2151
2152		/* probably there is space in leaf? */
2153		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2154				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2155
2156			/*
2157			 *  There are some space in the leaf tree, no
2158			 *  need to account for leaf block credit
2159			 *
2160			 *  bitmaps and block group descriptor blocks
2161			 *  and other metadat blocks still need to be
2162			 *  accounted.
2163			 */
2164			/* 1 bitmap, 1 block group descriptor */
2165			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2166			return ret;
2167		}
2168	}
2169
2170	return ext4_chunk_trans_blocks(inode, nrblocks);
2171}
2172
2173/*
2174 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2175 *
2176 * if nrblocks are fit in a single extent (chunk flag is 1), then
2177 * in the worse case, each tree level index/leaf need to be changed
2178 * if the tree split due to insert a new extent, then the old tree
2179 * index/leaf need to be updated too
2180 *
2181 * If the nrblocks are discontiguous, they could cause
2182 * the whole tree split more than once, but this is really rare.
2183 */
2184int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2185{
2186	int index;
2187	int depth = ext_depth(inode);
 
 
 
 
 
 
2188
2189	if (chunk)
2190		index = depth * 2;
2191	else
2192		index = depth * 3;
2193
2194	return index;
2195}
2196
2197static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2198				struct ext4_extent *ex,
2199				ext4_lblk_t from, ext4_lblk_t to)
2200{
2201	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2202	int flags = EXT4_FREE_BLOCKS_FORGET;
 
 
 
 
 
2203
2204	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2205		flags |= EXT4_FREE_BLOCKS_METADATA;
2206#ifdef EXTENTS_STATS
2207	{
2208		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2209		spin_lock(&sbi->s_ext_stats_lock);
2210		sbi->s_ext_blocks += ee_len;
2211		sbi->s_ext_extents++;
2212		if (ee_len < sbi->s_ext_min)
2213			sbi->s_ext_min = ee_len;
2214		if (ee_len > sbi->s_ext_max)
2215			sbi->s_ext_max = ee_len;
2216		if (ext_depth(inode) > sbi->s_depth_max)
2217			sbi->s_depth_max = ext_depth(inode);
2218		spin_unlock(&sbi->s_ext_stats_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219	}
 
 
 
 
 
 
 
 
 
 
 
 
2220#endif
2221	if (from >= le32_to_cpu(ex->ee_block)
2222	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2223		/* tail removal */
2224		ext4_lblk_t num;
2225		ext4_fsblk_t start;
2226
2227		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2228		start = ext4_ext_pblock(ex) + ee_len - num;
2229		ext_debug("free last %u blocks starting %llu\n", num, start);
2230		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2231	} else if (from == le32_to_cpu(ex->ee_block)
2232		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2233		/* head removal */
2234		ext4_lblk_t num;
2235		ext4_fsblk_t start;
2236
2237		num = to - from;
2238		start = ext4_ext_pblock(ex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239
2240		ext_debug("free first %u blocks starting %llu\n", num, start);
2241		ext4_free_blocks(handle, inode, 0, start, num, flags);
 
2242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243	} else {
2244		printk(KERN_INFO "strange request: removal(2) "
2245				"%u-%u from %u:%u\n",
2246				from, to, le32_to_cpu(ex->ee_block), ee_len);
2247	}
 
2248	return 0;
2249}
2250
2251
2252/*
2253 * ext4_ext_rm_leaf() Removes the extents associated with the
2254 * blocks appearing between "start" and "end", and splits the extents
2255 * if "start" and "end" appear in the same extent
2256 *
2257 * @handle: The journal handle
2258 * @inode:  The files inode
2259 * @path:   The path to the leaf
 
 
 
 
2260 * @start:  The first block to remove
2261 * @end:   The last block to remove
2262 */
2263static int
2264ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2265		struct ext4_ext_path *path, ext4_lblk_t start,
2266		ext4_lblk_t end)
 
2267{
 
2268	int err = 0, correct_index = 0;
2269	int depth = ext_depth(inode), credits;
2270	struct ext4_extent_header *eh;
2271	ext4_lblk_t a, b, block;
2272	unsigned num;
2273	ext4_lblk_t ex_ee_block;
2274	unsigned short ex_ee_len;
2275	unsigned uninitialized = 0;
2276	struct ext4_extent *ex;
2277	struct ext4_map_blocks map;
2278
2279	/* the header must be checked already in ext4_ext_remove_space() */
2280	ext_debug("truncate since %u in leaf\n", start);
2281	if (!path[depth].p_hdr)
2282		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2283	eh = path[depth].p_hdr;
2284	if (unlikely(path[depth].p_hdr == NULL)) {
2285		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2286		return -EIO;
2287	}
2288	/* find where to start removing */
2289	ex = EXT_LAST_EXTENT(eh);
 
 
2290
2291	ex_ee_block = le32_to_cpu(ex->ee_block);
2292	ex_ee_len = ext4_ext_get_actual_len(ex);
2293
 
 
2294	while (ex >= EXT_FIRST_EXTENT(eh) &&
2295			ex_ee_block + ex_ee_len > start) {
2296
2297		if (ext4_ext_is_uninitialized(ex))
2298			uninitialized = 1;
2299		else
2300			uninitialized = 0;
2301
2302		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2303			 uninitialized, ex_ee_len);
2304		path[depth].p_ext = ex;
2305
2306		a = ex_ee_block > start ? ex_ee_block : start;
2307		b = ex_ee_block+ex_ee_len - 1 < end ?
2308			ex_ee_block+ex_ee_len - 1 : end;
2309
2310		ext_debug("  border %u:%u\n", a, b);
2311
2312		/* If this extent is beyond the end of the hole, skip it */
2313		if (end <= ex_ee_block) {
 
 
 
 
 
 
 
 
 
 
 
 
2314			ex--;
2315			ex_ee_block = le32_to_cpu(ex->ee_block);
2316			ex_ee_len = ext4_ext_get_actual_len(ex);
2317			continue;
2318		} else if (a != ex_ee_block &&
2319			b != ex_ee_block + ex_ee_len - 1) {
2320			/*
2321			 * If this is a truncate, then this condition should
2322			 * never happen because at least one of the end points
2323			 * needs to be on the edge of the extent.
2324			 */
2325			if (end == EXT_MAX_BLOCKS - 1) {
2326				ext_debug("  bad truncate %u:%u\n",
2327						start, end);
2328				block = 0;
2329				num = 0;
2330				err = -EIO;
2331				goto out;
2332			}
2333			/*
2334			 * else this is a hole punch, so the extent needs to
2335			 * be split since neither edge of the hole is on the
2336			 * extent edge
2337			 */
2338			else{
2339				map.m_pblk = ext4_ext_pblock(ex);
2340				map.m_lblk = ex_ee_block;
2341				map.m_len = b - ex_ee_block;
2342
2343				err = ext4_split_extent(handle,
2344					inode, path, &map, 0,
2345					EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2346					EXT4_GET_BLOCKS_PRE_IO);
2347
2348				if (err < 0)
2349					goto out;
2350
2351				ex_ee_len = ext4_ext_get_actual_len(ex);
2352
2353				b = ex_ee_block+ex_ee_len - 1 < end ?
2354					ex_ee_block+ex_ee_len - 1 : end;
2355
2356				/* Then remove tail of this extent */
2357				block = ex_ee_block;
2358				num = a - block;
2359			}
2360		} else if (a != ex_ee_block) {
2361			/* remove tail of the extent */
2362			block = ex_ee_block;
2363			num = a - block;
2364		} else if (b != ex_ee_block + ex_ee_len - 1) {
2365			/* remove head of the extent */
2366			block = b;
2367			num =  ex_ee_block + ex_ee_len - b;
2368
2369			/*
2370			 * If this is a truncate, this condition
2371			 * should never happen
2372			 */
2373			if (end == EXT_MAX_BLOCKS - 1) {
2374				ext_debug("  bad truncate %u:%u\n",
2375					start, end);
2376				err = -EIO;
2377				goto out;
2378			}
2379		} else {
2380			/* remove whole extent: excellent! */
2381			block = ex_ee_block;
2382			num = 0;
2383			if (a != ex_ee_block) {
2384				ext_debug("  bad truncate %u:%u\n",
2385					start, end);
2386				err = -EIO;
2387				goto out;
2388			}
2389
2390			if (b != ex_ee_block + ex_ee_len - 1) {
2391				ext_debug("  bad truncate %u:%u\n",
2392					start, end);
2393				err = -EIO;
2394				goto out;
2395			}
2396		}
2397
2398		/*
2399		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2400		 * descriptor) for each block group; assume two block
2401		 * groups plus ex_ee_len/blocks_per_block_group for
2402		 * the worst case
2403		 */
2404		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2405		if (ex == EXT_FIRST_EXTENT(eh)) {
2406			correct_index = 1;
2407			credits += (ext_depth(inode)) + 1;
2408		}
2409		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2410
2411		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2412		if (err)
 
 
 
 
 
 
 
 
 
 
 
 
2413			goto out;
 
2414
2415		err = ext4_ext_get_access(handle, inode, path + depth);
2416		if (err)
2417			goto out;
2418
2419		err = ext4_remove_blocks(handle, inode, ex, a, b);
2420		if (err)
2421			goto out;
2422
2423		if (num == 0) {
2424			/* this extent is removed; mark slot entirely unused */
2425			ext4_ext_store_pblock(ex, 0);
2426		} else if (block != ex_ee_block) {
2427			/*
2428			 * If this was a head removal, then we need to update
2429			 * the physical block since it is now at a different
2430			 * location
2431			 */
2432			ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2433		}
2434
2435		ex->ee_block = cpu_to_le32(block);
2436		ex->ee_len = cpu_to_le16(num);
2437		/*
2438		 * Do not mark uninitialized if all the blocks in the
2439		 * extent have been removed.
2440		 */
2441		if (uninitialized && num)
2442			ext4_ext_mark_uninitialized(ex);
2443
2444		err = ext4_ext_dirty(handle, inode, path + depth);
2445		if (err)
2446			goto out;
2447
2448		/*
2449		 * If the extent was completely released,
2450		 * we need to remove it from the leaf
2451		 */
2452		if (num == 0) {
2453			if (end != EXT_MAX_BLOCKS - 1) {
2454				/*
2455				 * For hole punching, we need to scoot all the
2456				 * extents up when an extent is removed so that
2457				 * we dont have blank extents in the middle
2458				 */
2459				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2460					sizeof(struct ext4_extent));
2461
2462				/* Now get rid of the one at the end */
2463				memset(EXT_LAST_EXTENT(eh), 0,
2464					sizeof(struct ext4_extent));
2465			}
2466			le16_add_cpu(&eh->eh_entries, -1);
2467		}
2468
2469		ext_debug("new extent: %u:%u:%llu\n", block, num,
 
 
 
 
2470				ext4_ext_pblock(ex));
2471		ex--;
2472		ex_ee_block = le32_to_cpu(ex->ee_block);
2473		ex_ee_len = ext4_ext_get_actual_len(ex);
2474	}
2475
2476	if (correct_index && eh->eh_entries)
2477		err = ext4_ext_correct_indexes(handle, inode, path);
2478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479	/* if this leaf is free, then we should
2480	 * remove it from index block above */
2481	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2482		err = ext4_ext_rm_idx(handle, inode, path + depth);
2483
2484out:
2485	return err;
2486}
2487
2488/*
2489 * ext4_ext_more_to_rm:
2490 * returns 1 if current index has to be freed (even partial)
2491 */
2492static int
2493ext4_ext_more_to_rm(struct ext4_ext_path *path)
2494{
2495	BUG_ON(path->p_idx == NULL);
2496
2497	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2498		return 0;
2499
2500	/*
2501	 * if truncate on deeper level happened, it wasn't partial,
2502	 * so we have to consider current index for truncation
2503	 */
2504	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2505		return 0;
2506	return 1;
2507}
2508
2509static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
 
2510{
2511	struct super_block *sb = inode->i_sb;
2512	int depth = ext_depth(inode);
2513	struct ext4_ext_path *path;
 
2514	handle_t *handle;
2515	int i, err;
2516
2517	ext_debug("truncate since %u\n", start);
 
 
 
 
2518
2519	/* probably first extent we're gonna free will be last in block */
2520	handle = ext4_journal_start(inode, depth + 1);
 
 
2521	if (IS_ERR(handle))
2522		return PTR_ERR(handle);
2523
2524again:
2525	ext4_ext_invalidate_cache(inode);
2526
2527	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528	 * We start scanning from right side, freeing all the blocks
2529	 * after i_size and walking into the tree depth-wise.
2530	 */
2531	depth = ext_depth(inode);
2532	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2533	if (path == NULL) {
2534		ext4_journal_stop(handle);
2535		return -ENOMEM;
2536	}
2537	path[0].p_depth = depth;
2538	path[0].p_hdr = ext_inode_hdr(inode);
2539	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2540		err = -EIO;
2541		goto out;
 
 
 
 
 
 
 
 
 
 
2542	}
2543	i = err = 0;
2544
2545	while (i >= 0 && err == 0) {
2546		if (i == depth) {
2547			/* this is leaf block */
2548			err = ext4_ext_rm_leaf(handle, inode, path,
2549					start, EXT_MAX_BLOCKS - 1);
2550			/* root level has p_bh == NULL, brelse() eats this */
2551			brelse(path[i].p_bh);
2552			path[i].p_bh = NULL;
2553			i--;
2554			continue;
2555		}
2556
2557		/* this is index block */
2558		if (!path[i].p_hdr) {
2559			ext_debug("initialize header\n");
2560			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2561		}
2562
2563		if (!path[i].p_idx) {
2564			/* this level hasn't been touched yet */
2565			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2566			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2567			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2568				  path[i].p_hdr,
2569				  le16_to_cpu(path[i].p_hdr->eh_entries));
2570		} else {
2571			/* we were already here, see at next index */
2572			path[i].p_idx--;
2573		}
2574
2575		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2576				i, EXT_FIRST_INDEX(path[i].p_hdr),
2577				path[i].p_idx);
2578		if (ext4_ext_more_to_rm(path + i)) {
2579			struct buffer_head *bh;
2580			/* go to the next level */
2581			ext_debug("move to level %d (block %llu)\n",
2582				  i + 1, ext4_idx_pblock(path[i].p_idx));
2583			memset(path + i + 1, 0, sizeof(*path));
2584			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2585			if (!bh) {
 
 
2586				/* should we reset i_size? */
2587				err = -EIO;
2588				break;
2589			}
 
 
 
2590			if (WARN_ON(i + 1 > depth)) {
2591				err = -EIO;
2592				break;
2593			}
2594			if (ext4_ext_check(inode, ext_block_hdr(bh),
2595							depth - i - 1)) {
2596				err = -EIO;
2597				break;
2598			}
2599			path[i + 1].p_bh = bh;
2600
2601			/* save actual number of indexes since this
2602			 * number is changed at the next iteration */
2603			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2604			i++;
2605		} else {
2606			/* we finished processing this index, go up */
2607			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2608				/* index is empty, remove it;
2609				 * handle must be already prepared by the
2610				 * truncatei_leaf() */
2611				err = ext4_ext_rm_idx(handle, inode, path + i);
2612			}
2613			/* root level has p_bh == NULL, brelse() eats this */
2614			brelse(path[i].p_bh);
2615			path[i].p_bh = NULL;
2616			i--;
2617			ext_debug("return to level %d\n", i);
2618		}
2619	}
2620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621	/* TODO: flexible tree reduction should be here */
2622	if (path->p_hdr->eh_entries == 0) {
2623		/*
2624		 * truncate to zero freed all the tree,
2625		 * so we need to correct eh_depth
2626		 */
2627		err = ext4_ext_get_access(handle, inode, path);
2628		if (err == 0) {
2629			ext_inode_hdr(inode)->eh_depth = 0;
2630			ext_inode_hdr(inode)->eh_max =
2631				cpu_to_le16(ext4_ext_space_root(inode, 0));
2632			err = ext4_ext_dirty(handle, inode, path);
2633		}
2634	}
2635out:
2636	ext4_ext_drop_refs(path);
2637	kfree(path);
 
2638	if (err == -EAGAIN)
2639		goto again;
2640	ext4_journal_stop(handle);
2641
2642	return err;
2643}
2644
2645/*
2646 * called at mount time
2647 */
2648void ext4_ext_init(struct super_block *sb)
2649{
2650	/*
2651	 * possible initialization would be here
2652	 */
2653
2654	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2655#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2656		printk(KERN_INFO "EXT4-fs: file extents enabled");
2657#ifdef AGGRESSIVE_TEST
2658		printk(", aggressive tests");
2659#endif
2660#ifdef CHECK_BINSEARCH
2661		printk(", check binsearch");
2662#endif
2663#ifdef EXTENTS_STATS
2664		printk(", stats");
2665#endif
2666		printk("\n");
2667#endif
2668#ifdef EXTENTS_STATS
2669		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2670		EXT4_SB(sb)->s_ext_min = 1 << 30;
2671		EXT4_SB(sb)->s_ext_max = 0;
2672#endif
2673	}
2674}
2675
2676/*
2677 * called at umount time
2678 */
2679void ext4_ext_release(struct super_block *sb)
2680{
2681	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2682		return;
2683
2684#ifdef EXTENTS_STATS
2685	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2686		struct ext4_sb_info *sbi = EXT4_SB(sb);
2687		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2688			sbi->s_ext_blocks, sbi->s_ext_extents,
2689			sbi->s_ext_blocks / sbi->s_ext_extents);
2690		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2691			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2692	}
2693#endif
2694}
2695
2696/* FIXME!! we need to try to merge to left or right after zero-out  */
2697static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2698{
 
2699	ext4_fsblk_t ee_pblock;
2700	unsigned int ee_len;
2701	int ret;
2702
 
2703	ee_len    = ext4_ext_get_actual_len(ex);
2704	ee_pblock = ext4_ext_pblock(ex);
2705
2706	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2707	if (ret > 0)
2708		ret = 0;
2709
2710	return ret;
 
2711}
2712
2713/*
2714 * used by extent splitting.
2715 */
2716#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2717					due to ENOSPC */
2718#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2719#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
 
 
 
 
2720
2721/*
2722 * ext4_split_extent_at() splits an extent at given block.
2723 *
2724 * @handle: the journal handle
2725 * @inode: the file inode
2726 * @path: the path to the extent
2727 * @split: the logical block where the extent is splitted.
2728 * @split_flags: indicates if the extent could be zeroout if split fails, and
2729 *		 the states(init or uninit) of new extents.
2730 * @flags: flags used to insert new extent to extent tree.
2731 *
2732 *
2733 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2734 * of which are deterimined by split_flag.
2735 *
2736 * There are two cases:
2737 *  a> the extent are splitted into two extent.
2738 *  b> split is not needed, and just mark the extent.
2739 *
2740 * return 0 on success.
2741 */
2742static int ext4_split_extent_at(handle_t *handle,
2743			     struct inode *inode,
2744			     struct ext4_ext_path *path,
2745			     ext4_lblk_t split,
2746			     int split_flag,
2747			     int flags)
2748{
 
2749	ext4_fsblk_t newblock;
2750	ext4_lblk_t ee_block;
2751	struct ext4_extent *ex, newex, orig_ex;
2752	struct ext4_extent *ex2 = NULL;
2753	unsigned int ee_len, depth;
2754	int err = 0;
2755
2756	ext_debug("ext4_split_extents_at: inode %lu, logical"
2757		"block %llu\n", inode->i_ino, (unsigned long long)split);
 
 
2758
2759	ext4_ext_show_leaf(inode, path);
2760
2761	depth = ext_depth(inode);
2762	ex = path[depth].p_ext;
2763	ee_block = le32_to_cpu(ex->ee_block);
2764	ee_len = ext4_ext_get_actual_len(ex);
2765	newblock = split - ee_block + ext4_ext_pblock(ex);
2766
2767	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
 
 
 
 
2768
2769	err = ext4_ext_get_access(handle, inode, path + depth);
2770	if (err)
2771		goto out;
2772
2773	if (split == ee_block) {
2774		/*
2775		 * case b: block @split is the block that the extent begins with
2776		 * then we just change the state of the extent, and splitting
2777		 * is not needed.
2778		 */
2779		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2780			ext4_ext_mark_uninitialized(ex);
2781		else
2782			ext4_ext_mark_initialized(ex);
2783
2784		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2785			ext4_ext_try_to_merge(inode, path, ex);
2786
2787		err = ext4_ext_dirty(handle, inode, path + depth);
2788		goto out;
2789	}
2790
2791	/* case a */
2792	memcpy(&orig_ex, ex, sizeof(orig_ex));
2793	ex->ee_len = cpu_to_le16(split - ee_block);
2794	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2795		ext4_ext_mark_uninitialized(ex);
2796
2797	/*
2798	 * path may lead to new leaf, not to original leaf any more
2799	 * after ext4_ext_insert_extent() returns,
2800	 */
2801	err = ext4_ext_dirty(handle, inode, path + depth);
2802	if (err)
2803		goto fix_extent_len;
2804
2805	ex2 = &newex;
2806	ex2->ee_block = cpu_to_le32(split);
2807	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2808	ext4_ext_store_pblock(ex2, newblock);
2809	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2810		ext4_ext_mark_uninitialized(ex2);
2811
2812	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2813	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2814		err = ext4_ext_zeroout(inode, &orig_ex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815		if (err)
2816			goto fix_extent_len;
2817		/* update the extent length and mark as initialized */
2818		ex->ee_len = cpu_to_le32(ee_len);
2819		ext4_ext_try_to_merge(inode, path, ex);
2820		err = ext4_ext_dirty(handle, inode, path + depth);
 
 
 
 
 
 
2821		goto out;
2822	} else if (err)
2823		goto fix_extent_len;
2824
2825out:
2826	ext4_ext_show_leaf(inode, path);
2827	return err;
2828
2829fix_extent_len:
2830	ex->ee_len = orig_ex.ee_len;
2831	ext4_ext_dirty(handle, inode, path + depth);
 
 
 
 
2832	return err;
2833}
2834
2835/*
2836 * ext4_split_extents() splits an extent and mark extent which is covered
2837 * by @map as split_flags indicates
2838 *
2839 * It may result in splitting the extent into multiple extents (upto three)
2840 * There are three possibilities:
2841 *   a> There is no split required
2842 *   b> Splits in two extents: Split is happening at either end of the extent
2843 *   c> Splits in three extents: Somone is splitting in middle of the extent
2844 *
2845 */
2846static int ext4_split_extent(handle_t *handle,
2847			      struct inode *inode,
2848			      struct ext4_ext_path *path,
2849			      struct ext4_map_blocks *map,
2850			      int split_flag,
2851			      int flags)
2852{
 
2853	ext4_lblk_t ee_block;
2854	struct ext4_extent *ex;
2855	unsigned int ee_len, depth;
2856	int err = 0;
2857	int uninitialized;
2858	int split_flag1, flags1;
 
2859
2860	depth = ext_depth(inode);
2861	ex = path[depth].p_ext;
2862	ee_block = le32_to_cpu(ex->ee_block);
2863	ee_len = ext4_ext_get_actual_len(ex);
2864	uninitialized = ext4_ext_is_uninitialized(ex);
2865
2866	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2867		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2868			      EXT4_EXT_MAY_ZEROOUT : 0;
2869		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2870		if (uninitialized)
2871			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2872				       EXT4_EXT_MARK_UNINIT2;
2873		err = ext4_split_extent_at(handle, inode, path,
 
 
2874				map->m_lblk + map->m_len, split_flag1, flags1);
2875		if (err)
2876			goto out;
 
 
2877	}
2878
2879	ext4_ext_drop_refs(path);
2880	path = ext4_ext_find_extent(inode, map->m_lblk, path);
 
 
2881	if (IS_ERR(path))
2882		return PTR_ERR(path);
 
 
 
 
 
 
 
 
 
2883
2884	if (map->m_lblk >= ee_block) {
2885		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2886			      EXT4_EXT_MAY_ZEROOUT : 0;
2887		if (uninitialized)
2888			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2889		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2890			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2891		err = ext4_split_extent_at(handle, inode, path,
2892				map->m_lblk, split_flag1, flags);
2893		if (err)
2894			goto out;
2895	}
2896
2897	ext4_ext_show_leaf(inode, path);
2898out:
2899	return err ? err : map->m_len;
2900}
2901
2902#define EXT4_EXT_ZERO_LEN 7
2903/*
2904 * This function is called by ext4_ext_map_blocks() if someone tries to write
2905 * to an uninitialized extent. It may result in splitting the uninitialized
2906 * extent into multiple extents (up to three - one initialized and two
2907 * uninitialized).
2908 * There are three possibilities:
2909 *   a> There is no split required: Entire extent should be initialized
2910 *   b> Splits in two extents: Write is happening at either end of the extent
2911 *   c> Splits in three extents: Somone is writing in middle of the extent
 
 
 
 
 
 
 
 
 
 
2912 */
2913static int ext4_ext_convert_to_initialized(handle_t *handle,
2914					   struct inode *inode,
2915					   struct ext4_map_blocks *map,
2916					   struct ext4_ext_path *path)
 
2917{
 
 
 
2918	struct ext4_map_blocks split_map;
2919	struct ext4_extent zero_ex;
2920	struct ext4_extent *ex;
2921	ext4_lblk_t ee_block, eof_block;
2922	unsigned int allocated, ee_len, depth;
 
2923	int err = 0;
2924	int split_flag = 0;
2925
2926	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2927		"block %llu, max_blocks %u\n", inode->i_ino,
2928		(unsigned long long)map->m_lblk, map->m_len);
2929
2930	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2931		inode->i_sb->s_blocksize_bits;
2932	if (eof_block < map->m_lblk + map->m_len)
2933		eof_block = map->m_lblk + map->m_len;
 
2934
2935	depth = ext_depth(inode);
 
2936	ex = path[depth].p_ext;
2937	ee_block = le32_to_cpu(ex->ee_block);
2938	ee_len = ext4_ext_get_actual_len(ex);
2939	allocated = ee_len - (map->m_lblk - ee_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940
2941	WARN_ON(map->m_lblk < ee_block);
2942	/*
2943	 * It is safe to convert extent to initialized via explicit
2944	 * zeroout only if extent is fully insde i_size or new_size.
2945	 */
2946	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2947
2948	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2949	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2950	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2951		err = ext4_ext_zeroout(inode, ex);
2952		if (err)
2953			goto out;
2954
2955		err = ext4_ext_get_access(handle, inode, path + depth);
2956		if (err)
2957			goto out;
2958		ext4_ext_mark_initialized(ex);
2959		ext4_ext_try_to_merge(inode, path, ex);
2960		err = ext4_ext_dirty(handle, inode, path + depth);
2961		goto out;
2962	}
2963
2964	/*
2965	 * four cases:
2966	 * 1. split the extent into three extents.
2967	 * 2. split the extent into two extents, zeroout the first half.
2968	 * 3. split the extent into two extents, zeroout the second half.
 
 
2969	 * 4. split the extent into two extents with out zeroout.
 
 
2970	 */
2971	split_map.m_lblk = map->m_lblk;
2972	split_map.m_len = map->m_len;
2973
2974	if (allocated > map->m_len) {
2975		if (allocated <= EXT4_EXT_ZERO_LEN &&
2976		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2977			/* case 3 */
2978			zero_ex.ee_block =
2979					 cpu_to_le32(map->m_lblk);
2980			zero_ex.ee_len = cpu_to_le16(allocated);
2981			ext4_ext_store_pblock(&zero_ex,
2982				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2983			err = ext4_ext_zeroout(inode, &zero_ex);
 
 
2984			if (err)
2985				goto out;
2986			split_map.m_lblk = map->m_lblk;
2987			split_map.m_len = allocated;
2988		} else if ((map->m_lblk - ee_block + map->m_len <
2989			   EXT4_EXT_ZERO_LEN) &&
2990			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2991			/* case 2 */
2992			if (map->m_lblk != ee_block) {
2993				zero_ex.ee_block = ex->ee_block;
2994				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2995							ee_block);
2996				ext4_ext_store_pblock(&zero_ex,
2997						      ext4_ext_pblock(ex));
2998				err = ext4_ext_zeroout(inode, &zero_ex);
2999				if (err)
3000					goto out;
3001			}
3002
 
3003			split_map.m_lblk = ee_block;
3004			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3005			allocated = map->m_len;
3006		}
3007	}
3008
3009	allocated = ext4_split_extent(handle, inode, path,
3010				       &split_map, split_flag, 0);
3011	if (allocated < 0)
3012		err = allocated;
3013
3014out:
 
 
 
 
 
 
3015	return err ? err : allocated;
3016}
3017
3018/*
3019 * This function is called by ext4_ext_map_blocks() from
3020 * ext4_get_blocks_dio_write() when DIO to write
3021 * to an uninitialized extent.
3022 *
3023 * Writing to an uninitialized extent may result in splitting the uninitialized
3024 * extent into multiple /initialized uninitialized extents (up to three)
3025 * There are three possibilities:
3026 *   a> There is no split required: Entire extent should be uninitialized
3027 *   b> Splits in two extents: Write is happening at either end of the extent
3028 *   c> Splits in three extents: Somone is writing in middle of the extent
3029 *
 
 
3030 * One of more index blocks maybe needed if the extent tree grow after
3031 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3032 * complete, we need to split the uninitialized extent before DIO submit
3033 * the IO. The uninitialized extent called at this time will be split
3034 * into three uninitialized extent(at most). After IO complete, the part
3035 * being filled will be convert to initialized by the end_io callback function
3036 * via ext4_convert_unwritten_extents().
3037 *
3038 * Returns the size of uninitialized extent to be written on success.
3039 */
3040static int ext4_split_unwritten_extents(handle_t *handle,
3041					struct inode *inode,
3042					struct ext4_map_blocks *map,
3043					struct ext4_ext_path *path,
3044					int flags)
3045{
 
3046	ext4_lblk_t eof_block;
3047	ext4_lblk_t ee_block;
3048	struct ext4_extent *ex;
3049	unsigned int ee_len;
3050	int split_flag = 0, depth;
3051
3052	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3053		"block %llu, max_blocks %u\n", inode->i_ino,
3054		(unsigned long long)map->m_lblk, map->m_len);
3055
3056	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3057		inode->i_sb->s_blocksize_bits;
3058	if (eof_block < map->m_lblk + map->m_len)
3059		eof_block = map->m_lblk + map->m_len;
3060	/*
3061	 * It is safe to convert extent to initialized via explicit
3062	 * zeroout only if extent is fully insde i_size or new_size.
3063	 */
3064	depth = ext_depth(inode);
3065	ex = path[depth].p_ext;
3066	ee_block = le32_to_cpu(ex->ee_block);
3067	ee_len = ext4_ext_get_actual_len(ex);
3068
3069	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3070	split_flag |= EXT4_EXT_MARK_UNINIT2;
3071
 
 
 
 
 
 
3072	flags |= EXT4_GET_BLOCKS_PRE_IO;
3073	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3074}
3075
3076static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3077					      struct inode *inode,
3078					      struct ext4_ext_path *path)
 
3079{
 
3080	struct ext4_extent *ex;
 
 
3081	int depth;
3082	int err = 0;
3083
3084	depth = ext_depth(inode);
3085	ex = path[depth].p_ext;
 
 
 
 
 
3086
3087	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3088		"block %llu, max_blocks %u\n", inode->i_ino,
3089		(unsigned long long)le32_to_cpu(ex->ee_block),
3090		ext4_ext_get_actual_len(ex));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091
3092	err = ext4_ext_get_access(handle, inode, path + depth);
3093	if (err)
3094		goto out;
3095	/* first mark the extent as initialized */
3096	ext4_ext_mark_initialized(ex);
3097
3098	/* note: ext4_ext_correct_indexes() isn't needed here because
3099	 * borders are not changed
3100	 */
3101	ext4_ext_try_to_merge(inode, path, ex);
3102
3103	/* Mark modified extent as dirty */
3104	err = ext4_ext_dirty(handle, inode, path + depth);
3105out:
3106	ext4_ext_show_leaf(inode, path);
3107	return err;
3108}
3109
3110static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3111			sector_t block, int count)
3112{
3113	int i;
3114	for (i = 0; i < count; i++)
3115                unmap_underlying_metadata(bdev, block + i);
3116}
3117
3118/*
3119 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3120 */
3121static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3122			      ext4_lblk_t lblk,
3123			      struct ext4_ext_path *path,
3124			      unsigned int len)
3125{
3126	int i, depth;
3127	struct ext4_extent_header *eh;
3128	struct ext4_extent *last_ex;
 
 
 
3129
3130	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3131		return 0;
 
 
 
 
3132
3133	depth = ext_depth(inode);
3134	eh = path[depth].p_hdr;
 
 
3135
3136	if (unlikely(!eh->eh_entries)) {
3137		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3138				 "EOFBLOCKS_FL set");
3139		return -EIO;
3140	}
3141	last_ex = EXT_LAST_EXTENT(eh);
3142	/*
3143	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3144	 * last block in the last extent in the file.  We test this by
3145	 * first checking to see if the caller to
3146	 * ext4_ext_get_blocks() was interested in the last block (or
3147	 * a block beyond the last block) in the current extent.  If
3148	 * this turns out to be false, we can bail out from this
3149	 * function immediately.
3150	 */
3151	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3152	    ext4_ext_get_actual_len(last_ex))
3153		return 0;
3154	/*
3155	 * If the caller does appear to be planning to write at or
3156	 * beyond the end of the current extent, we then test to see
3157	 * if the current extent is the last extent in the file, by
3158	 * checking to make sure it was reached via the rightmost node
3159	 * at each level of the tree.
 
 
 
 
3160	 */
3161	for (i = depth-1; i >= 0; i--)
3162		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3163			return 0;
3164	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3165	return ext4_mark_inode_dirty(handle, inode);
 
 
 
 
 
 
 
 
 
 
3166}
3167
3168static int
3169ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3170			struct ext4_map_blocks *map,
3171			struct ext4_ext_path *path, int flags,
3172			unsigned int allocated, ext4_fsblk_t newblock)
3173{
 
3174	int ret = 0;
3175	int err = 0;
3176	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3177
3178	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3179		  "block %llu, max_blocks %u, flags %d, allocated %u",
3180		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3181		  flags, allocated);
3182	ext4_ext_show_leaf(inode, path);
3183
3184	/* get_block() before submit the IO, split the extent */
3185	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3186		ret = ext4_split_unwritten_extents(handle, inode, map,
3187						   path, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
3188		/*
3189		 * Flag the inode(non aio case) or end_io struct (aio case)
3190		 * that this IO needs to conversion to written when IO is
3191		 * completed
3192		 */
3193		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3194			io->flag = EXT4_IO_END_UNWRITTEN;
3195			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3196		} else
3197			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3198		if (ext4_should_dioread_nolock(inode))
3199			map->m_flags |= EXT4_MAP_UNINIT;
 
3200		goto out;
3201	}
3202	/* IO end_io complete, convert the filled extent to written */
3203	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3204		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3205							path);
3206		if (ret >= 0) {
3207			ext4_update_inode_fsync_trans(handle, inode, 1);
3208			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3209						 path, map->m_len);
3210		} else
3211			err = ret;
3212		goto out2;
3213	}
3214	/* buffered IO case */
3215	/*
3216	 * repeat fallocate creation request
3217	 * we already have an unwritten extent
3218	 */
3219	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
 
3220		goto map_out;
 
3221
3222	/* buffered READ or buffered write_begin() lookup */
3223	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3224		/*
3225		 * We have blocks reserved already.  We
3226		 * return allocated blocks so that delalloc
3227		 * won't do block reservation for us.  But
3228		 * the buffer head will be unmapped so that
3229		 * a read from the block returns 0s.
3230		 */
3231		map->m_flags |= EXT4_MAP_UNWRITTEN;
3232		goto out1;
3233	}
3234
3235	/* buffered write, writepage time, convert*/
3236	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3237	if (ret >= 0) {
3238		ext4_update_inode_fsync_trans(handle, inode, 1);
3239		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3240					 map->m_len);
3241		if (err < 0)
3242			goto out2;
3243	}
3244
3245out:
3246	if (ret <= 0) {
3247		err = ret;
3248		goto out2;
3249	} else
3250		allocated = ret;
3251	map->m_flags |= EXT4_MAP_NEW;
3252	/*
3253	 * if we allocated more blocks than requested
3254	 * we need to make sure we unmap the extra block
3255	 * allocated. The actual needed block will get
3256	 * unmapped later when we find the buffer_head marked
3257	 * new.
3258	 */
3259	if (allocated > map->m_len) {
3260		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3261					newblock + map->m_len,
3262					allocated - map->m_len);
3263		allocated = map->m_len;
3264	}
3265
3266	/*
3267	 * If we have done fallocate with the offset that is already
3268	 * delayed allocated, we would have block reservation
3269	 * and quota reservation done in the delayed write path.
3270	 * But fallocate would have already updated quota and block
3271	 * count for this offset. So cancel these reservation
3272	 */
3273	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3274		ext4_da_update_reserve_space(inode, allocated, 0);
 
 
 
 
3275
 
 
 
3276map_out:
3277	map->m_flags |= EXT4_MAP_MAPPED;
3278out1:
 
3279	if (allocated > map->m_len)
3280		allocated = map->m_len;
3281	ext4_ext_show_leaf(inode, path);
3282	map->m_pblk = newblock;
3283	map->m_len = allocated;
 
3284out2:
3285	if (path) {
3286		ext4_ext_drop_refs(path);
3287		kfree(path);
3288	}
3289	return err ? err : allocated;
3290}
3291
3292/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293 * Block allocation/map/preallocation routine for extents based files
3294 *
3295 *
3296 * Need to be called with
3297 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3298 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3299 *
3300 * return > 0, number of of blocks already mapped/allocated
3301 *          if create == 0 and these are pre-allocated blocks
3302 *          	buffer head is unmapped
3303 *          otherwise blocks are mapped
3304 *
3305 * return = 0, if plain look up failed (blocks have not been allocated)
3306 *          buffer head is unmapped
3307 *
3308 * return < 0, error case.
3309 */
3310int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3311			struct ext4_map_blocks *map, int flags)
3312{
3313	struct ext4_ext_path *path = NULL;
3314	struct ext4_extent newex, *ex;
3315	ext4_fsblk_t newblock = 0;
 
3316	int err = 0, depth, ret;
3317	unsigned int allocated = 0;
3318	unsigned int punched_out = 0;
3319	unsigned int result = 0;
3320	struct ext4_allocation_request ar;
3321	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3322	struct ext4_map_blocks punch_map;
3323
3324	ext_debug("blocks %u/%u requested for inode %lu\n",
3325		  map->m_lblk, map->m_len, inode->i_ino);
3326	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3327
3328	/* check in cache */
3329	if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3330		ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3331		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3332			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3333				/*
3334				 * block isn't allocated yet and
3335				 * user doesn't want to allocate it
3336				 */
3337				goto out2;
3338			}
3339			/* we should allocate requested block */
3340		} else {
3341			/* block is already allocated */
3342			newblock = map->m_lblk
3343				   - le32_to_cpu(newex.ee_block)
3344				   + ext4_ext_pblock(&newex);
3345			/* number of remaining blocks in the extent */
3346			allocated = ext4_ext_get_actual_len(&newex) -
3347				(map->m_lblk - le32_to_cpu(newex.ee_block));
3348			goto out;
3349		}
3350	}
3351
3352	/* find extent for this block */
3353	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3354	if (IS_ERR(path)) {
3355		err = PTR_ERR(path);
3356		path = NULL;
3357		goto out2;
3358	}
3359
3360	depth = ext_depth(inode);
3361
3362	/*
3363	 * consistent leaf must not be empty;
3364	 * this situation is possible, though, _during_ tree modification;
3365	 * this is why assert can't be put in ext4_ext_find_extent()
3366	 */
3367	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3368		EXT4_ERROR_INODE(inode, "bad extent address "
3369				 "lblock: %lu, depth: %d pblock %lld",
3370				 (unsigned long) map->m_lblk, depth,
3371				 path[depth].p_block);
3372		err = -EIO;
3373		goto out2;
3374	}
3375
3376	ex = path[depth].p_ext;
3377	if (ex) {
3378		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3379		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3380		unsigned short ee_len;
3381
 
3382		/*
3383		 * Uninitialized extents are treated as holes, except that
3384		 * we split out initialized portions during a write.
3385		 */
3386		ee_len = ext4_ext_get_actual_len(ex);
 
 
 
3387		/* if found extent covers block, simply return it */
3388		if (in_range(map->m_lblk, ee_block, ee_len)) {
3389			newblock = map->m_lblk - ee_block + ee_start;
3390			/* number of remaining blocks in the extent */
3391			allocated = ee_len - (map->m_lblk - ee_block);
3392			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3393				  ee_block, ee_len, newblock);
3394
3395			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3396				/*
3397				 * Do not put uninitialized extent
3398				 * in the cache
3399				 */
3400				if (!ext4_ext_is_uninitialized(ex)) {
3401					ext4_ext_put_in_cache(inode, ee_block,
3402						ee_len, ee_start);
3403					goto out;
3404				}
3405				ret = ext4_ext_handle_uninitialized_extents(
3406					handle, inode, map, path, flags,
3407					allocated, newblock);
3408				return ret;
3409			}
3410
3411			/*
3412			 * Punch out the map length, but only to the
3413			 * end of the extent
3414			 */
3415			punched_out = allocated < map->m_len ?
3416				allocated : map->m_len;
3417
3418			/*
3419			 * Sense extents need to be converted to
3420			 * uninitialized, they must fit in an
3421			 * uninitialized extent
3422			 */
3423			if (punched_out > EXT_UNINIT_MAX_LEN)
3424				punched_out = EXT_UNINIT_MAX_LEN;
3425
3426			punch_map.m_lblk = map->m_lblk;
3427			punch_map.m_pblk = newblock;
3428			punch_map.m_len = punched_out;
3429			punch_map.m_flags = 0;
3430
3431			/* Check to see if the extent needs to be split */
3432			if (punch_map.m_len != ee_len ||
3433				punch_map.m_lblk != ee_block) {
3434
3435				ret = ext4_split_extent(handle, inode,
3436				path, &punch_map, 0,
3437				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3438				EXT4_GET_BLOCKS_PRE_IO);
3439
3440				if (ret < 0) {
3441					err = ret;
3442					goto out2;
3443				}
3444				/*
3445				 * find extent for the block at
3446				 * the start of the hole
3447				 */
3448				ext4_ext_drop_refs(path);
3449				kfree(path);
3450
3451				path = ext4_ext_find_extent(inode,
3452				map->m_lblk, NULL);
3453				if (IS_ERR(path)) {
3454					err = PTR_ERR(path);
3455					path = NULL;
3456					goto out2;
3457				}
3458
3459				depth = ext_depth(inode);
3460				ex = path[depth].p_ext;
3461				ee_len = ext4_ext_get_actual_len(ex);
3462				ee_block = le32_to_cpu(ex->ee_block);
3463				ee_start = ext4_ext_pblock(ex);
3464
3465			}
3466
3467			ext4_ext_mark_uninitialized(ex);
3468
3469			ext4_ext_invalidate_cache(inode);
3470
3471			err = ext4_ext_rm_leaf(handle, inode, path,
3472				map->m_lblk, map->m_lblk + punched_out);
3473
3474			if (!err && path->p_hdr->eh_entries == 0) {
3475				/*
3476				 * Punch hole freed all of this sub tree,
3477				 * so we need to correct eh_depth
3478				 */
3479				err = ext4_ext_get_access(handle, inode, path);
3480				if (err == 0) {
3481					ext_inode_hdr(inode)->eh_depth = 0;
3482					ext_inode_hdr(inode)->eh_max =
3483					cpu_to_le16(ext4_ext_space_root(
3484						inode, 0));
3485
3486					err = ext4_ext_dirty(
3487						handle, inode, path);
3488				}
3489			}
3490
3491			goto out2;
 
 
 
 
 
 
 
3492		}
3493	}
3494
3495	/*
3496	 * requested block isn't allocated yet;
3497	 * we couldn't try to create block if create flag is zero
3498	 */
3499	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 
 
 
 
3500		/*
3501		 * put just found gap into cache to speed up
3502		 * subsequent requests
3503		 */
3504		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3505		goto out2;
 
 
 
 
 
 
 
3506	}
 
3507	/*
3508	 * Okay, we need to do block allocation.
3509	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
3510
3511	/* find neighbour allocated blocks */
3512	ar.lleft = map->m_lblk;
3513	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3514	if (err)
3515		goto out2;
3516	ar.lright = map->m_lblk;
3517	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
 
3518	if (err)
3519		goto out2;
 
 
 
 
 
 
 
 
 
3520
3521	/*
3522	 * See if request is beyond maximum number of blocks we can have in
3523	 * a single extent. For an initialized extent this limit is
3524	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3525	 * EXT_UNINIT_MAX_LEN.
3526	 */
3527	if (map->m_len > EXT_INIT_MAX_LEN &&
3528	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3529		map->m_len = EXT_INIT_MAX_LEN;
3530	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3531		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3532		map->m_len = EXT_UNINIT_MAX_LEN;
3533
3534	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3535	newex.ee_block = cpu_to_le32(map->m_lblk);
3536	newex.ee_len = cpu_to_le16(map->m_len);
3537	err = ext4_ext_check_overlap(inode, &newex, path);
3538	if (err)
3539		allocated = ext4_ext_get_actual_len(&newex);
3540	else
3541		allocated = map->m_len;
3542
3543	/* allocate new block */
3544	ar.inode = inode;
3545	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3546	ar.logical = map->m_lblk;
3547	ar.len = allocated;
 
 
 
 
 
 
 
 
 
 
 
3548	if (S_ISREG(inode->i_mode))
3549		ar.flags = EXT4_MB_HINT_DATA;
3550	else
3551		/* disable in-core preallocation for non-regular files */
3552		ar.flags = 0;
3553	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3554		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
 
 
 
 
3555	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3556	if (!newblock)
3557		goto out2;
3558	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3559		  ar.goal, newblock, allocated);
 
 
 
 
3560
 
3561	/* try to insert new extent into found leaf and return */
3562	ext4_ext_store_pblock(&newex, newblock);
 
3563	newex.ee_len = cpu_to_le16(ar.len);
3564	/* Mark uninitialized */
3565	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3566		ext4_ext_mark_uninitialized(&newex);
3567		/*
3568		 * io_end structure was created for every IO write to an
3569		 * uninitialized extent. To avoid unnecessary conversion,
3570		 * here we flag the IO that really needs the conversion.
3571		 * For non asycn direct IO case, flag the inode state
3572		 * that we need to perform conversion when IO is done.
3573		 */
3574		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3575			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3576				io->flag = EXT4_IO_END_UNWRITTEN;
3577				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3578			} else
3579				ext4_set_inode_state(inode,
3580						     EXT4_STATE_DIO_UNWRITTEN);
3581		}
3582		if (ext4_should_dioread_nolock(inode))
3583			map->m_flags |= EXT4_MAP_UNINIT;
3584	}
3585
3586	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3587	if (!err)
3588		err = ext4_ext_insert_extent(handle, inode, path,
3589					     &newex, flags);
3590	if (err) {
3591		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3592			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3593		/* free data blocks we just allocated */
3594		/* not a good idea to call discard here directly,
3595		 * but otherwise we'd need to call it every free() */
3596		ext4_discard_preallocations(inode);
3597		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3598				 ext4_ext_get_actual_len(&newex), fb_flags);
3599		goto out2;
3600	}
3601
3602	/* previous routine could use block we allocated */
3603	newblock = ext4_ext_pblock(&newex);
3604	allocated = ext4_ext_get_actual_len(&newex);
3605	if (allocated > map->m_len)
3606		allocated = map->m_len;
3607	map->m_flags |= EXT4_MAP_NEW;
 
 
 
 
 
 
 
 
 
 
 
 
 
3608
3609	/*
3610	 * Update reserved blocks/metadata blocks after successful
3611	 * block allocation which had been deferred till now.
 
 
3612	 */
3613	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3614		ext4_da_update_reserve_space(inode, allocated, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615
3616	/*
3617	 * Cache the extent and update transaction to commit on fdatasync only
3618	 * when it is _not_ an uninitialized extent.
3619	 */
3620	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3621		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3622		ext4_update_inode_fsync_trans(handle, inode, 1);
3623	} else
3624		ext4_update_inode_fsync_trans(handle, inode, 0);
3625out:
3626	if (allocated > map->m_len)
3627		allocated = map->m_len;
 
 
3628	ext4_ext_show_leaf(inode, path);
3629	map->m_flags |= EXT4_MAP_MAPPED;
3630	map->m_pblk = newblock;
3631	map->m_len = allocated;
3632out2:
3633	if (path) {
3634		ext4_ext_drop_refs(path);
3635		kfree(path);
3636	}
3637	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3638		newblock, map->m_len, err ? err : allocated);
3639
3640	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3641			punched_out : allocated;
 
3642
3643	return err ? err : result;
 
 
3644}
3645
3646void ext4_ext_truncate(struct inode *inode)
3647{
3648	struct address_space *mapping = inode->i_mapping;
3649	struct super_block *sb = inode->i_sb;
3650	ext4_lblk_t last_block;
3651	handle_t *handle;
3652	int err = 0;
3653
3654	/*
3655	 * finish any pending end_io work so we won't run the risk of
3656	 * converting any truncated blocks to initialized later
3657	 */
3658	ext4_flush_completed_IO(inode);
3659
3660	/*
3661	 * probably first extent we're gonna free will be last in block
3662	 */
3663	err = ext4_writepage_trans_blocks(inode);
3664	handle = ext4_journal_start(inode, err);
3665	if (IS_ERR(handle))
3666		return;
3667
3668	if (inode->i_size & (sb->s_blocksize - 1))
3669		ext4_block_truncate_page(handle, mapping, inode->i_size);
3670
3671	if (ext4_orphan_add(handle, inode))
3672		goto out_stop;
3673
3674	down_write(&EXT4_I(inode)->i_data_sem);
3675	ext4_ext_invalidate_cache(inode);
3676
3677	ext4_discard_preallocations(inode);
3678
3679	/*
3680	 * TODO: optimization is possible here.
3681	 * Probably we need not scan at all,
3682	 * because page truncation is enough.
3683	 */
3684
3685	/* we have to know where to truncate from in crash case */
3686	EXT4_I(inode)->i_disksize = inode->i_size;
3687	ext4_mark_inode_dirty(handle, inode);
 
 
3688
3689	last_block = (inode->i_size + sb->s_blocksize - 1)
3690			>> EXT4_BLOCK_SIZE_BITS(sb);
3691	err = ext4_ext_remove_space(inode, last_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692
3693	/* In a multi-transaction truncate, we only make the final
3694	 * transaction synchronous.
3695	 */
3696	if (IS_SYNC(inode))
3697		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
3698
3699	up_write(&EXT4_I(inode)->i_data_sem);
 
 
 
 
 
 
 
 
 
3700
3701out_stop:
3702	/*
3703	 * If this was a simple ftruncate() and the file will remain alive,
3704	 * then we need to clear up the orphan record which we created above.
3705	 * However, if this was a real unlink then we were called by
3706	 * ext4_delete_inode(), and we allow that function to clean up the
3707	 * orphan info for us.
3708	 */
3709	if (inode->i_nlink)
3710		ext4_orphan_del(handle, inode);
3711
3712	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3713	ext4_mark_inode_dirty(handle, inode);
3714	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715}
3716
3717static void ext4_falloc_update_inode(struct inode *inode,
3718				int mode, loff_t new_size, int update_ctime)
3719{
3720	struct timespec now;
3721
3722	if (update_ctime) {
3723		now = current_fs_time(inode->i_sb);
3724		if (!timespec_equal(&inode->i_ctime, &now))
3725			inode->i_ctime = now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726	}
 
3727	/*
3728	 * Update only when preallocation was requested beyond
3729	 * the file size.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730	 */
3731	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3732		if (new_size > i_size_read(inode))
3733			i_size_write(inode, new_size);
3734		if (new_size > EXT4_I(inode)->i_disksize)
3735			ext4_update_i_disksize(inode, new_size);
3736	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737		/*
3738		 * Mark that we allocate beyond EOF so the subsequent truncate
3739		 * can proceed even if the new size is the same as i_size.
3740		 */
3741		if (new_size > i_size_read(inode))
3742			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3743	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3744
 
 
 
 
 
 
 
 
3745}
3746
3747/*
3748 * preallocate space for a file. This implements ext4's fallocate file
3749 * operation, which gets called from sys_fallocate system call.
3750 * For block-mapped files, posix_fallocate should fall back to the method
3751 * of writing zeroes to the required new blocks (the same behavior which is
3752 * expected for file systems which do not support fallocate() system call).
3753 */
3754long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3755{
3756	struct inode *inode = file->f_path.dentry->d_inode;
3757	handle_t *handle;
3758	loff_t new_size;
3759	unsigned int max_blocks;
3760	int ret = 0;
3761	int ret2 = 0;
3762	int retries = 0;
3763	struct ext4_map_blocks map;
3764	unsigned int credits, blkbits = inode->i_blkbits;
3765
3766	/*
3767	 * currently supporting (pre)allocate mode for extent-based
3768	 * files _only_
 
 
3769	 */
3770	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 
3771		return -EOPNOTSUPP;
3772
3773	/* Return error if mode is not supported */
3774	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
3775		return -EOPNOTSUPP;
3776
3777	if (mode & FALLOC_FL_PUNCH_HOLE)
3778		return ext4_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
3779
3780	trace_ext4_fallocate_enter(inode, offset, len, mode);
3781	map.m_lblk = offset >> blkbits;
3782	/*
3783	 * We can't just convert len to max_blocks because
3784	 * If blocksize = 4096 offset = 3072 and len = 2048
3785	 */
3786	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3787		- map.m_lblk;
3788	/*
3789	 * credits to insert 1 extent into extent tree
3790	 */
3791	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3792	mutex_lock(&inode->i_mutex);
3793	ret = inode_newsize_ok(inode, (len + offset));
3794	if (ret) {
3795		mutex_unlock(&inode->i_mutex);
3796		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3797		return ret;
3798	}
3799retry:
3800	while (ret >= 0 && ret < max_blocks) {
3801		map.m_lblk = map.m_lblk + ret;
3802		map.m_len = max_blocks = max_blocks - ret;
3803		handle = ext4_journal_start(inode, credits);
3804		if (IS_ERR(handle)) {
3805			ret = PTR_ERR(handle);
3806			break;
3807		}
3808		ret = ext4_map_blocks(handle, inode, &map,
3809				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3810				      EXT4_GET_BLOCKS_NO_NORMALIZE);
3811		if (ret <= 0) {
3812#ifdef EXT4FS_DEBUG
3813			WARN_ON(ret <= 0);
3814			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3815				    "returned error inode#%lu, block=%u, "
3816				    "max_blocks=%u", __func__,
3817				    inode->i_ino, map.m_lblk, max_blocks);
3818#endif
3819			ext4_mark_inode_dirty(handle, inode);
3820			ret2 = ext4_journal_stop(handle);
3821			break;
3822		}
3823		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3824						blkbits) >> blkbits))
3825			new_size = offset + len;
3826		else
3827			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
3828
3829		ext4_falloc_update_inode(inode, mode, new_size,
3830					 (map.m_flags & EXT4_MAP_NEW));
3831		ext4_mark_inode_dirty(handle, inode);
3832		ret2 = ext4_journal_stop(handle);
3833		if (ret2)
3834			break;
 
3835	}
3836	if (ret == -ENOSPC &&
3837			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3838		ret = 0;
3839		goto retry;
 
 
 
 
 
 
 
3840	}
3841	mutex_unlock(&inode->i_mutex);
3842	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3843				ret > 0 ? ret2 : ret);
3844	return ret > 0 ? ret2 : ret;
3845}
3846
3847/*
3848 * This function convert a range of blocks to written extents
3849 * The caller of this function will pass the start offset and the size.
3850 * all unwritten extents within this range will be converted to
3851 * written extents.
3852 *
3853 * This function is called from the direct IO end io call back
3854 * function, to convert the fallocated extents after IO is completed.
3855 * Returns 0 on success.
3856 */
3857int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3858				    ssize_t len)
3859{
3860	handle_t *handle;
3861	unsigned int max_blocks;
3862	int ret = 0;
3863	int ret2 = 0;
3864	struct ext4_map_blocks map;
3865	unsigned int credits, blkbits = inode->i_blkbits;
 
3866
3867	map.m_lblk = offset >> blkbits;
3868	/*
3869	 * We can't just convert len to max_blocks because
3870	 * If blocksize = 4096 offset = 3072 and len = 2048
3871	 */
3872	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3873		      map.m_lblk);
3874	/*
3875	 * credits to insert 1 extent into extent tree
3876	 */
3877	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3878	while (ret >= 0 && ret < max_blocks) {
3879		map.m_lblk += ret;
3880		map.m_len = (max_blocks -= ret);
3881		handle = ext4_journal_start(inode, credits);
3882		if (IS_ERR(handle)) {
3883			ret = PTR_ERR(handle);
3884			break;
 
 
 
3885		}
3886		ret = ext4_map_blocks(handle, inode, &map,
3887				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3888		if (ret <= 0) {
3889			WARN_ON(ret <= 0);
3890			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3891				    "returned error inode#%lu, block=%u, "
3892				    "max_blocks=%u", __func__,
3893				    inode->i_ino, map.m_lblk, map.m_len);
3894		}
3895		ext4_mark_inode_dirty(handle, inode);
3896		ret2 = ext4_journal_stop(handle);
3897		if (ret <= 0 || ret2 )
 
 
 
 
3898			break;
3899	}
3900	return ret > 0 ? ret2 : ret;
3901}
3902
3903/*
3904 * Callback function called for each extent to gather FIEMAP information.
3905 */
3906static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3907		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3908		       void *data)
3909{
3910	__u64	logical;
3911	__u64	physical;
3912	__u64	length;
3913	__u32	flags = 0;
3914	int		ret = 0;
3915	struct fiemap_extent_info *fieinfo = data;
3916	unsigned char blksize_bits;
3917
3918	blksize_bits = inode->i_sb->s_blocksize_bits;
3919	logical = (__u64)newex->ec_block << blksize_bits;
3920
3921	if (newex->ec_start == 0) {
3922		/*
3923		 * No extent in extent-tree contains block @newex->ec_start,
3924		 * then the block may stay in 1)a hole or 2)delayed-extent.
3925		 *
3926		 * Holes or delayed-extents are processed as follows.
3927		 * 1. lookup dirty pages with specified range in pagecache.
3928		 *    If no page is got, then there is no delayed-extent and
3929		 *    return with EXT_CONTINUE.
3930		 * 2. find the 1st mapped buffer,
3931		 * 3. check if the mapped buffer is both in the request range
3932		 *    and a delayed buffer. If not, there is no delayed-extent,
3933		 *    then return.
3934		 * 4. a delayed-extent is found, the extent will be collected.
3935		 */
3936		ext4_lblk_t	end = 0;
3937		pgoff_t		last_offset;
3938		pgoff_t		offset;
3939		pgoff_t		index;
3940		pgoff_t		start_index = 0;
3941		struct page	**pages = NULL;
3942		struct buffer_head *bh = NULL;
3943		struct buffer_head *head = NULL;
3944		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3945
3946		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3947		if (pages == NULL)
3948			return -ENOMEM;
3949
3950		offset = logical >> PAGE_SHIFT;
3951repeat:
3952		last_offset = offset;
3953		head = NULL;
3954		ret = find_get_pages_tag(inode->i_mapping, &offset,
3955					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3956
3957		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3958			/* First time, try to find a mapped buffer. */
3959			if (ret == 0) {
3960out:
3961				for (index = 0; index < ret; index++)
3962					page_cache_release(pages[index]);
3963				/* just a hole. */
3964				kfree(pages);
3965				return EXT_CONTINUE;
3966			}
3967			index = 0;
3968
3969next_page:
3970			/* Try to find the 1st mapped buffer. */
3971			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3972				  blksize_bits;
3973			if (!page_has_buffers(pages[index]))
3974				goto out;
3975			head = page_buffers(pages[index]);
3976			if (!head)
3977				goto out;
3978
3979			index++;
3980			bh = head;
3981			do {
3982				if (end >= newex->ec_block +
3983					newex->ec_len)
3984					/* The buffer is out of
3985					 * the request range.
3986					 */
3987					goto out;
3988
3989				if (buffer_mapped(bh) &&
3990				    end >= newex->ec_block) {
3991					start_index = index - 1;
3992					/* get the 1st mapped buffer. */
3993					goto found_mapped_buffer;
3994				}
3995
3996				bh = bh->b_this_page;
3997				end++;
3998			} while (bh != head);
3999
4000			/* No mapped buffer in the range found in this page,
4001			 * We need to look up next page.
4002			 */
4003			if (index >= ret) {
4004				/* There is no page left, but we need to limit
4005				 * newex->ec_len.
4006				 */
4007				newex->ec_len = end - newex->ec_block;
4008				goto out;
4009			}
4010			goto next_page;
4011		} else {
4012			/*Find contiguous delayed buffers. */
4013			if (ret > 0 && pages[0]->index == last_offset)
4014				head = page_buffers(pages[0]);
4015			bh = head;
4016			index = 1;
4017			start_index = 0;
4018		}
4019
4020found_mapped_buffer:
4021		if (bh != NULL && buffer_delay(bh)) {
4022			/* 1st or contiguous delayed buffer found. */
4023			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4024				/*
4025				 * 1st delayed buffer found, record
4026				 * the start of extent.
4027				 */
4028				flags |= FIEMAP_EXTENT_DELALLOC;
4029				newex->ec_block = end;
4030				logical = (__u64)end << blksize_bits;
4031			}
4032			/* Find contiguous delayed buffers. */
4033			do {
4034				if (!buffer_delay(bh))
4035					goto found_delayed_extent;
4036				bh = bh->b_this_page;
4037				end++;
4038			} while (bh != head);
4039
4040			for (; index < ret; index++) {
4041				if (!page_has_buffers(pages[index])) {
4042					bh = NULL;
4043					break;
4044				}
4045				head = page_buffers(pages[index]);
4046				if (!head) {
4047					bh = NULL;
4048					break;
4049				}
4050
4051				if (pages[index]->index !=
4052				    pages[start_index]->index + index
4053				    - start_index) {
4054					/* Blocks are not contiguous. */
4055					bh = NULL;
4056					break;
4057				}
4058				bh = head;
4059				do {
4060					if (!buffer_delay(bh))
4061						/* Delayed-extent ends. */
4062						goto found_delayed_extent;
4063					bh = bh->b_this_page;
4064					end++;
4065				} while (bh != head);
4066			}
4067		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4068			/* a hole found. */
4069			goto out;
4070
4071found_delayed_extent:
4072		newex->ec_len = min(end - newex->ec_block,
4073						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4074		if (ret == nr_pages && bh != NULL &&
4075			newex->ec_len < EXT_INIT_MAX_LEN &&
4076			buffer_delay(bh)) {
4077			/* Have not collected an extent and continue. */
4078			for (index = 0; index < ret; index++)
4079				page_cache_release(pages[index]);
4080			goto repeat;
4081		}
4082
4083		for (index = 0; index < ret; index++)
4084			page_cache_release(pages[index]);
4085		kfree(pages);
 
 
 
 
 
 
 
4086	}
4087
4088	physical = (__u64)newex->ec_start << blksize_bits;
4089	length =   (__u64)newex->ec_len << blksize_bits;
4090
4091	if (ex && ext4_ext_is_uninitialized(ex))
4092		flags |= FIEMAP_EXTENT_UNWRITTEN;
 
 
4093
4094	if (next == EXT_MAX_BLOCKS)
4095		flags |= FIEMAP_EXTENT_LAST;
4096
4097	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4098					length, flags);
4099	if (ret < 0)
4100		return ret;
4101	if (ret == 1)
4102		return EXT_BREAK;
4103	return EXT_CONTINUE;
4104}
4105
4106/* fiemap flags we can handle specified here */
4107#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4108
4109static int ext4_xattr_fiemap(struct inode *inode,
4110				struct fiemap_extent_info *fieinfo)
4111{
4112	__u64 physical = 0;
4113	__u64 length;
4114	__u32 flags = FIEMAP_EXTENT_LAST;
4115	int blockbits = inode->i_sb->s_blocksize_bits;
4116	int error = 0;
 
4117
4118	/* in-inode? */
4119	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4120		struct ext4_iloc iloc;
4121		int offset;	/* offset of xattr in inode */
4122
4123		error = ext4_get_inode_loc(inode, &iloc);
4124		if (error)
4125			return error;
4126		physical = iloc.bh->b_blocknr << blockbits;
4127		offset = EXT4_GOOD_OLD_INODE_SIZE +
4128				EXT4_I(inode)->i_extra_isize;
4129		physical += offset;
4130		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4131		flags |= FIEMAP_EXTENT_DATA_INLINE;
4132		brelse(iloc.bh);
4133	} else { /* external block */
4134		physical = EXT4_I(inode)->i_file_acl << blockbits;
 
4135		length = inode->i_sb->s_blocksize;
 
 
 
 
 
4136	}
4137
4138	if (physical)
4139		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4140						length, flags);
4141	return (error < 0 ? error : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4142}
4143
4144/*
4145 * ext4_ext_punch_hole
4146 *
4147 * Punches a hole of "length" bytes in a file starting
4148 * at byte "offset"
4149 *
4150 * @inode:  The inode of the file to punch a hole in
4151 * @offset: The starting byte offset of the hole
4152 * @length: The length of the hole
4153 *
4154 * Returns the number of blocks removed or negative on err
4155 */
4156int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4157{
4158	struct inode *inode = file->f_path.dentry->d_inode;
4159	struct super_block *sb = inode->i_sb;
4160	struct ext4_ext_cache cache_ex;
4161	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4162	struct address_space *mapping = inode->i_mapping;
4163	struct ext4_map_blocks map;
4164	handle_t *handle;
4165	loff_t first_block_offset, last_block_offset, block_len;
4166	loff_t first_page, last_page, first_page_offset, last_page_offset;
4167	int ret, credits, blocks_released, err = 0;
4168
4169	first_block = (offset + sb->s_blocksize - 1) >>
4170		EXT4_BLOCK_SIZE_BITS(sb);
4171	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
 
4172
4173	first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4174	last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
 
 
4175
4176	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4177	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
4178
4179	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4180	last_page_offset = last_page << PAGE_CACHE_SHIFT;
 
 
 
 
4181
4182	/*
4183	 * Write out all dirty pages to avoid race conditions
4184	 * Then release them.
 
4185	 */
4186	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4187		err = filemap_write_and_wait_range(mapping,
4188			first_page_offset == 0 ? 0 : first_page_offset-1,
4189			last_page_offset);
4190
4191			if (err)
4192				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4193	}
4194
4195	/* Now release the pages */
4196	if (last_page_offset > first_page_offset) {
4197		truncate_inode_pages_range(mapping, first_page_offset,
4198					   last_page_offset-1);
 
4199	}
4200
4201	/* finish any pending end_io work */
4202	ext4_flush_completed_IO(inode);
 
4203
4204	credits = ext4_writepage_trans_blocks(inode);
4205	handle = ext4_journal_start(inode, credits);
4206	if (IS_ERR(handle))
4207		return PTR_ERR(handle);
4208
4209	err = ext4_orphan_add(handle, inode);
4210	if (err)
4211		goto out;
 
 
4212
4213	/*
4214	 * Now we need to zero out the un block aligned data.
4215	 * If the file is smaller than a block, just
4216	 * zero out the middle
4217	 */
4218	if (first_block > last_block)
4219		ext4_block_zero_page_range(handle, mapping, offset, length);
4220	else {
4221		/* zero out the head of the hole before the first block */
4222		block_len  = first_block_offset - offset;
4223		if (block_len > 0)
4224			ext4_block_zero_page_range(handle, mapping,
4225						   offset, block_len);
4226
4227		/* zero out the tail of the hole after the last block */
4228		block_len = offset + length - last_block_offset;
4229		if (block_len > 0) {
4230			ext4_block_zero_page_range(handle, mapping,
4231					last_block_offset, block_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4232		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4233	}
4234
4235	/* If there are no blocks to remove, return now */
4236	if (first_block >= last_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4237		goto out;
4238
4239	down_write(&EXT4_I(inode)->i_data_sem);
4240	ext4_ext_invalidate_cache(inode);
4241	ext4_discard_preallocations(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4242
4243	/*
4244	 * Loop over all the blocks and identify blocks
4245	 * that need to be punched out
 
4246	 */
4247	iblock = first_block;
4248	blocks_released = 0;
4249	while (iblock < last_block) {
4250		max_blocks = last_block - iblock;
4251		num_blocks = 1;
4252		memset(&map, 0, sizeof(map));
4253		map.m_lblk = iblock;
4254		map.m_len = max_blocks;
4255		ret = ext4_ext_map_blocks(handle, inode, &map,
4256			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4257
4258		if (ret > 0) {
4259			blocks_released += ret;
4260			num_blocks = ret;
4261		} else if (ret == 0) {
4262			/*
4263			 * If map blocks could not find the block,
4264			 * then it is in a hole.  If the hole was
4265			 * not already cached, then map blocks should
4266			 * put it in the cache.  So we can get the hole
4267			 * out of the cache
4268			 */
4269			memset(&cache_ex, 0, sizeof(cache_ex));
4270			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4271				!cache_ex.ec_start) {
4272
4273				/* The hole is cached */
4274				num_blocks = cache_ex.ec_block +
4275				cache_ex.ec_len - iblock;
4276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4277			} else {
4278				/* The block could not be identified */
4279				err = -EIO;
4280				break;
4281			}
4282		} else {
4283			/* Map blocks error */
4284			err = ret;
4285			break;
4286		}
4287
4288		if (num_blocks == 0) {
4289			/* This condition should never happen */
4290			ext_debug("Block lookup failed");
4291			err = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4292			break;
4293		}
 
 
 
 
 
4294
4295		iblock += num_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4296	}
4297
4298	if (blocks_released > 0) {
4299		ext4_ext_invalidate_cache(inode);
4300		ext4_discard_preallocations(inode);
 
 
 
 
 
4301	}
4302
4303	if (IS_SYNC(inode))
4304		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4305
4306	up_write(&EXT4_I(inode)->i_data_sem);
 
 
 
 
 
4307
4308out:
4309	ext4_orphan_del(handle, inode);
4310	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4311	ext4_mark_inode_dirty(handle, inode);
4312	ext4_journal_stop(handle);
4313	return err;
 
 
 
 
4314}
4315int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4316		__u64 start, __u64 len)
 
 
 
 
 
 
 
 
4317{
4318	ext4_lblk_t start_blk;
4319	int error = 0;
 
 
 
 
 
 
4320
4321	/* fallback to generic here if not in extents fmt */
4322	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4323		return generic_block_fiemap(inode, fieinfo, start, len,
4324			ext4_get_block);
 
 
 
4325
4326	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4327		return -EBADR;
 
 
 
 
 
 
 
 
 
 
 
 
 
4328
4329	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4330		error = ext4_xattr_fiemap(inode, fieinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4331	} else {
4332		ext4_lblk_t len_blks;
4333		__u64 last_blk;
 
 
 
 
 
 
 
 
4334
4335		start_blk = start >> inode->i_sb->s_blocksize_bits;
4336		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4337		if (last_blk >= EXT_MAX_BLOCKS)
4338			last_blk = EXT_MAX_BLOCKS-1;
4339		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4341		/*
4342		 * Walk the extent tree gathering extent information.
4343		 * ext4_ext_fiemap_cb will push extents back to user.
 
 
4344		 */
4345		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4346					  ext4_ext_fiemap_cb, fieinfo);
 
 
 
 
 
 
 
 
 
 
 
4347	}
 
 
4348
4349	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4350}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   4 * Written by Alex Tomas <alex@clusterfs.com>
   5 *
   6 * Architecture independence:
   7 *   Copyright (c) 2005, Bull S.A.
   8 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11/*
  12 * Extents support for EXT4
  13 *
  14 * TODO:
  15 *   - ext4*_error() should be used in some situations
  16 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  17 *   - smart tree reduction
  18 */
  19
 
  20#include <linux/fs.h>
  21#include <linux/time.h>
  22#include <linux/jbd2.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/quotaops.h>
  26#include <linux/string.h>
  27#include <linux/slab.h>
  28#include <linux/uaccess.h>
 
  29#include <linux/fiemap.h>
  30#include <linux/backing-dev.h>
  31#include <linux/iomap.h>
  32#include "ext4_jbd2.h"
  33#include "ext4_extents.h"
  34#include "xattr.h"
  35
  36#include <trace/events/ext4.h>
  37
  38/*
  39 * used by extent splitting.
  40 */
  41#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
  42					due to ENOSPC */
  43#define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
  44#define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
  45
  46#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
  47#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
  48
  49static __le32 ext4_extent_block_csum(struct inode *inode,
  50				     struct ext4_extent_header *eh)
  51{
  52	struct ext4_inode_info *ei = EXT4_I(inode);
  53	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54	__u32 csum;
  55
  56	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
  57			   EXT4_EXTENT_TAIL_OFFSET(eh));
  58	return cpu_to_le32(csum);
  59}
  60
  61static int ext4_extent_block_csum_verify(struct inode *inode,
  62					 struct ext4_extent_header *eh)
  63{
  64	struct ext4_extent_tail *et;
  65
  66	if (!ext4_has_metadata_csum(inode->i_sb))
  67		return 1;
  68
  69	et = find_ext4_extent_tail(eh);
  70	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
  71		return 0;
  72	return 1;
  73}
 
 
 
 
  74
  75static void ext4_extent_block_csum_set(struct inode *inode,
  76				       struct ext4_extent_header *eh)
  77{
  78	struct ext4_extent_tail *et;
  79
  80	if (!ext4_has_metadata_csum(inode->i_sb))
  81		return;
  82
  83	et = find_ext4_extent_tail(eh);
  84	et->et_checksum = ext4_extent_block_csum(inode, eh);
  85}
  86
  87static int ext4_split_extent_at(handle_t *handle,
  88			     struct inode *inode,
  89			     struct ext4_ext_path **ppath,
  90			     ext4_lblk_t split,
  91			     int split_flag,
  92			     int flags);
  93
  94static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped)
  95{
  96	/*
  97	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
  98	 * moment, get_block can be called only for blocks inside i_size since
  99	 * page cache has been already dropped and writes are blocked by
 100	 * i_mutex. So we can safely drop the i_data_sem here.
 101	 */
 102	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 103	ext4_discard_preallocations(inode, 0);
 104	up_write(&EXT4_I(inode)->i_data_sem);
 105	*dropped = 1;
 106	return 0;
 107}
 108
 109/*
 110 * Make sure 'handle' has at least 'check_cred' credits. If not, restart
 111 * transaction with 'restart_cred' credits. The function drops i_data_sem
 112 * when restarting transaction and gets it after transaction is restarted.
 113 *
 114 * The function returns 0 on success, 1 if transaction had to be restarted,
 115 * and < 0 in case of fatal error.
 116 */
 117int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode,
 118				int check_cred, int restart_cred,
 119				int revoke_cred)
 120{
 121	int ret;
 122	int dropped = 0;
 123
 124	ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred,
 125		revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped));
 126	if (dropped)
 127		down_write(&EXT4_I(inode)->i_data_sem);
 128	return ret;
 129}
 130
 131/*
 132 * could return:
 133 *  - EROFS
 134 *  - ENOMEM
 135 */
 136static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
 137				struct ext4_ext_path *path)
 138{
 139	if (path->p_bh) {
 140		/* path points to block */
 141		BUFFER_TRACE(path->p_bh, "get_write_access");
 142		return ext4_journal_get_write_access(handle, path->p_bh);
 143	}
 144	/* path points to leaf/index in inode body */
 145	/* we use in-core data, no need to protect them */
 146	return 0;
 147}
 148
 149/*
 150 * could return:
 151 *  - EROFS
 152 *  - ENOMEM
 153 *  - EIO
 154 */
 155static int __ext4_ext_dirty(const char *where, unsigned int line,
 156			    handle_t *handle, struct inode *inode,
 157			    struct ext4_ext_path *path)
 158{
 159	int err;
 160
 161	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 162	if (path->p_bh) {
 163		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
 164		/* path points to block */
 165		err = __ext4_handle_dirty_metadata(where, line, handle,
 166						   inode, path->p_bh);
 167	} else {
 168		/* path points to leaf/index in inode body */
 169		err = ext4_mark_inode_dirty(handle, inode);
 170	}
 171	return err;
 172}
 173
 174#define ext4_ext_dirty(handle, inode, path) \
 175		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
 176
 177static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 178			      struct ext4_ext_path *path,
 179			      ext4_lblk_t block)
 180{
 
 
 181	if (path) {
 182		int depth = path->p_depth;
 183		struct ext4_extent *ex;
 
 184
 185		/*
 186		 * Try to predict block placement assuming that we are
 187		 * filling in a file which will eventually be
 188		 * non-sparse --- i.e., in the case of libbfd writing
 189		 * an ELF object sections out-of-order but in a way
 190		 * the eventually results in a contiguous object or
 191		 * executable file, or some database extending a table
 192		 * space file.  However, this is actually somewhat
 193		 * non-ideal if we are writing a sparse file such as
 194		 * qemu or KVM writing a raw image file that is going
 195		 * to stay fairly sparse, since it will end up
 196		 * fragmenting the file system's free space.  Maybe we
 197		 * should have some hueristics or some way to allow
 198		 * userspace to pass a hint to file system,
 199		 * especially if the latter case turns out to be
 200		 * common.
 201		 */
 202		ex = path[depth].p_ext;
 203		if (ex) {
 204			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 205			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 206
 207			if (block > ext_block)
 208				return ext_pblk + (block - ext_block);
 209			else
 210				return ext_pblk - (ext_block - block);
 211		}
 212
 213		/* it looks like index is empty;
 214		 * try to find starting block from index itself */
 215		if (path[depth].p_bh)
 216			return path[depth].p_bh->b_blocknr;
 217	}
 218
 219	/* OK. use inode's group */
 220	return ext4_inode_to_goal_block(inode);
 221}
 222
 223/*
 224 * Allocation for a meta data block
 225 */
 226static ext4_fsblk_t
 227ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 228			struct ext4_ext_path *path,
 229			struct ext4_extent *ex, int *err, unsigned int flags)
 230{
 231	ext4_fsblk_t goal, newblock;
 232
 233	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 234	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 235					NULL, err);
 236	return newblock;
 237}
 238
 239static inline int ext4_ext_space_block(struct inode *inode, int check)
 240{
 241	int size;
 242
 243	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 244			/ sizeof(struct ext4_extent);
 
 245#ifdef AGGRESSIVE_TEST
 246	if (!check && size > 6)
 247		size = 6;
 248#endif
 
 249	return size;
 250}
 251
 252static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 253{
 254	int size;
 255
 256	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 257			/ sizeof(struct ext4_extent_idx);
 
 258#ifdef AGGRESSIVE_TEST
 259	if (!check && size > 5)
 260		size = 5;
 261#endif
 
 262	return size;
 263}
 264
 265static inline int ext4_ext_space_root(struct inode *inode, int check)
 266{
 267	int size;
 268
 269	size = sizeof(EXT4_I(inode)->i_data);
 270	size -= sizeof(struct ext4_extent_header);
 271	size /= sizeof(struct ext4_extent);
 
 272#ifdef AGGRESSIVE_TEST
 273	if (!check && size > 3)
 274		size = 3;
 275#endif
 
 276	return size;
 277}
 278
 279static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 280{
 281	int size;
 282
 283	size = sizeof(EXT4_I(inode)->i_data);
 284	size -= sizeof(struct ext4_extent_header);
 285	size /= sizeof(struct ext4_extent_idx);
 
 286#ifdef AGGRESSIVE_TEST
 287	if (!check && size > 4)
 288		size = 4;
 289#endif
 
 290	return size;
 291}
 292
 293static inline int
 294ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
 295			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
 296			   int nofail)
 297{
 298	struct ext4_ext_path *path = *ppath;
 299	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
 300	int flags = EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO;
 301
 302	if (nofail)
 303		flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL | EXT4_EX_NOFAIL;
 304
 305	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
 306			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
 307			flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308}
 309
 310static int
 311ext4_ext_max_entries(struct inode *inode, int depth)
 312{
 313	int max;
 314
 315	if (depth == ext_depth(inode)) {
 316		if (depth == 0)
 317			max = ext4_ext_space_root(inode, 1);
 318		else
 319			max = ext4_ext_space_root_idx(inode, 1);
 320	} else {
 321		if (depth == 0)
 322			max = ext4_ext_space_block(inode, 1);
 323		else
 324			max = ext4_ext_space_block_idx(inode, 1);
 325	}
 326
 327	return max;
 328}
 329
 330static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 331{
 332	ext4_fsblk_t block = ext4_ext_pblock(ext);
 333	int len = ext4_ext_get_actual_len(ext);
 334	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
 335
 336	/*
 337	 * We allow neither:
 338	 *  - zero length
 339	 *  - overflow/wrap-around
 340	 */
 341	if (lblock + len <= lblock)
 342		return 0;
 343	return ext4_inode_block_valid(inode, block, len);
 344}
 345
 346static int ext4_valid_extent_idx(struct inode *inode,
 347				struct ext4_extent_idx *ext_idx)
 348{
 349	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 350
 351	return ext4_inode_block_valid(inode, block, 1);
 352}
 353
 354static int ext4_valid_extent_entries(struct inode *inode,
 355				     struct ext4_extent_header *eh,
 356				     ext4_fsblk_t *pblk, int depth)
 357{
 
 
 358	unsigned short entries;
 359	if (eh->eh_entries == 0)
 360		return 1;
 361
 362	entries = le16_to_cpu(eh->eh_entries);
 363
 364	if (depth == 0) {
 365		/* leaf entries */
 366		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
 367		ext4_lblk_t lblock = 0;
 368		ext4_lblk_t prev = 0;
 369		int len = 0;
 370		while (entries) {
 371			if (!ext4_valid_extent(inode, ext))
 372				return 0;
 373
 374			/* Check for overlapping extents */
 375			lblock = le32_to_cpu(ext->ee_block);
 376			len = ext4_ext_get_actual_len(ext);
 377			if ((lblock <= prev) && prev) {
 378				*pblk = ext4_ext_pblock(ext);
 379				return 0;
 380			}
 381			ext++;
 382			entries--;
 383			prev = lblock + len - 1;
 384		}
 385	} else {
 386		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
 387		while (entries) {
 388			if (!ext4_valid_extent_idx(inode, ext_idx))
 389				return 0;
 390			ext_idx++;
 391			entries--;
 392		}
 393	}
 394	return 1;
 395}
 396
 397static int __ext4_ext_check(const char *function, unsigned int line,
 398			    struct inode *inode, struct ext4_extent_header *eh,
 399			    int depth, ext4_fsblk_t pblk)
 400{
 401	const char *error_msg;
 402	int max = 0, err = -EFSCORRUPTED;
 403
 404	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 405		error_msg = "invalid magic";
 406		goto corrupted;
 407	}
 408	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 409		error_msg = "unexpected eh_depth";
 410		goto corrupted;
 411	}
 412	if (unlikely(eh->eh_max == 0)) {
 413		error_msg = "invalid eh_max";
 414		goto corrupted;
 415	}
 416	max = ext4_ext_max_entries(inode, depth);
 417	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 418		error_msg = "too large eh_max";
 419		goto corrupted;
 420	}
 421	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 422		error_msg = "invalid eh_entries";
 423		goto corrupted;
 424	}
 425	if (!ext4_valid_extent_entries(inode, eh, &pblk, depth)) {
 426		error_msg = "invalid extent entries";
 427		goto corrupted;
 428	}
 429	if (unlikely(depth > 32)) {
 430		error_msg = "too large eh_depth";
 431		goto corrupted;
 432	}
 433	/* Verify checksum on non-root extent tree nodes */
 434	if (ext_depth(inode) != depth &&
 435	    !ext4_extent_block_csum_verify(inode, eh)) {
 436		error_msg = "extent tree corrupted";
 437		err = -EFSBADCRC;
 438		goto corrupted;
 439	}
 440	return 0;
 441
 442corrupted:
 443	ext4_error_inode_err(inode, function, line, 0, -err,
 444			     "pblk %llu bad header/extent: %s - magic %x, "
 445			     "entries %u, max %u(%u), depth %u(%u)",
 446			     (unsigned long long) pblk, error_msg,
 447			     le16_to_cpu(eh->eh_magic),
 448			     le16_to_cpu(eh->eh_entries),
 449			     le16_to_cpu(eh->eh_max),
 450			     max, le16_to_cpu(eh->eh_depth), depth);
 451	return err;
 452}
 453
 454#define ext4_ext_check(inode, eh, depth, pblk)			\
 455	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
 456
 457int ext4_ext_check_inode(struct inode *inode)
 458{
 459	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
 460}
 461
 462static void ext4_cache_extents(struct inode *inode,
 463			       struct ext4_extent_header *eh)
 464{
 465	struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
 466	ext4_lblk_t prev = 0;
 467	int i;
 468
 469	for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
 470		unsigned int status = EXTENT_STATUS_WRITTEN;
 471		ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
 472		int len = ext4_ext_get_actual_len(ex);
 473
 474		if (prev && (prev != lblk))
 475			ext4_es_cache_extent(inode, prev, lblk - prev, ~0,
 476					     EXTENT_STATUS_HOLE);
 477
 478		if (ext4_ext_is_unwritten(ex))
 479			status = EXTENT_STATUS_UNWRITTEN;
 480		ext4_es_cache_extent(inode, lblk, len,
 481				     ext4_ext_pblock(ex), status);
 482		prev = lblk + len;
 483	}
 484}
 485
 486static struct buffer_head *
 487__read_extent_tree_block(const char *function, unsigned int line,
 488			 struct inode *inode, ext4_fsblk_t pblk, int depth,
 489			 int flags)
 490{
 491	struct buffer_head		*bh;
 492	int				err;
 493	gfp_t				gfp_flags = __GFP_MOVABLE | GFP_NOFS;
 494
 495	if (flags & EXT4_EX_NOFAIL)
 496		gfp_flags |= __GFP_NOFAIL;
 497
 498	bh = sb_getblk_gfp(inode->i_sb, pblk, gfp_flags);
 499	if (unlikely(!bh))
 500		return ERR_PTR(-ENOMEM);
 501
 502	if (!bh_uptodate_or_lock(bh)) {
 503		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
 504		err = bh_submit_read(bh);
 505		if (err < 0)
 506			goto errout;
 507	}
 508	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
 509		return bh;
 510	err = __ext4_ext_check(function, line, inode,
 511			       ext_block_hdr(bh), depth, pblk);
 512	if (err)
 513		goto errout;
 514	set_buffer_verified(bh);
 515	/*
 516	 * If this is a leaf block, cache all of its entries
 517	 */
 518	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
 519		struct ext4_extent_header *eh = ext_block_hdr(bh);
 520		ext4_cache_extents(inode, eh);
 521	}
 522	return bh;
 523errout:
 524	put_bh(bh);
 525	return ERR_PTR(err);
 526
 527}
 528
 529#define read_extent_tree_block(inode, pblk, depth, flags)		\
 530	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
 531				 (depth), (flags))
 532
 533/*
 534 * This function is called to cache a file's extent information in the
 535 * extent status tree
 536 */
 537int ext4_ext_precache(struct inode *inode)
 538{
 539	struct ext4_inode_info *ei = EXT4_I(inode);
 540	struct ext4_ext_path *path = NULL;
 541	struct buffer_head *bh;
 542	int i = 0, depth, ret = 0;
 543
 544	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 545		return 0;	/* not an extent-mapped inode */
 546
 547	down_read(&ei->i_data_sem);
 548	depth = ext_depth(inode);
 549
 550	/* Don't cache anything if there are no external extent blocks */
 551	if (!depth) {
 552		up_read(&ei->i_data_sem);
 553		return ret;
 554	}
 555
 556	path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
 557		       GFP_NOFS);
 558	if (path == NULL) {
 559		up_read(&ei->i_data_sem);
 560		return -ENOMEM;
 561	}
 562
 563	path[0].p_hdr = ext_inode_hdr(inode);
 564	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
 565	if (ret)
 566		goto out;
 567	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
 568	while (i >= 0) {
 569		/*
 570		 * If this is a leaf block or we've reached the end of
 571		 * the index block, go up
 572		 */
 573		if ((i == depth) ||
 574		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
 575			brelse(path[i].p_bh);
 576			path[i].p_bh = NULL;
 577			i--;
 578			continue;
 579		}
 580		bh = read_extent_tree_block(inode,
 581					    ext4_idx_pblock(path[i].p_idx++),
 582					    depth - i - 1,
 583					    EXT4_EX_FORCE_CACHE);
 584		if (IS_ERR(bh)) {
 585			ret = PTR_ERR(bh);
 586			break;
 587		}
 588		i++;
 589		path[i].p_bh = bh;
 590		path[i].p_hdr = ext_block_hdr(bh);
 591		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
 592	}
 593	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
 594out:
 595	up_read(&ei->i_data_sem);
 596	ext4_ext_drop_refs(path);
 597	kfree(path);
 598	return ret;
 599}
 600
 601#ifdef EXT_DEBUG
 602static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 603{
 604	int k, l = path->p_depth;
 605
 606	ext_debug(inode, "path:");
 607	for (k = 0; k <= l; k++, path++) {
 608		if (path->p_idx) {
 609			ext_debug(inode, "  %d->%llu",
 610				  le32_to_cpu(path->p_idx->ei_block),
 611				  ext4_idx_pblock(path->p_idx));
 612		} else if (path->p_ext) {
 613			ext_debug(inode, "  %d:[%d]%d:%llu ",
 614				  le32_to_cpu(path->p_ext->ee_block),
 615				  ext4_ext_is_unwritten(path->p_ext),
 616				  ext4_ext_get_actual_len(path->p_ext),
 617				  ext4_ext_pblock(path->p_ext));
 618		} else
 619			ext_debug(inode, "  []");
 620	}
 621	ext_debug(inode, "\n");
 622}
 623
 624static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 625{
 626	int depth = ext_depth(inode);
 627	struct ext4_extent_header *eh;
 628	struct ext4_extent *ex;
 629	int i;
 630
 631	if (!path)
 632		return;
 633
 634	eh = path[depth].p_hdr;
 635	ex = EXT_FIRST_EXTENT(eh);
 636
 637	ext_debug(inode, "Displaying leaf extents\n");
 638
 639	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 640		ext_debug(inode, "%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 641			  ext4_ext_is_unwritten(ex),
 642			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 643	}
 644	ext_debug(inode, "\n");
 645}
 646
 647static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 648			ext4_fsblk_t newblock, int level)
 649{
 650	int depth = ext_depth(inode);
 651	struct ext4_extent *ex;
 652
 653	if (depth != level) {
 654		struct ext4_extent_idx *idx;
 655		idx = path[level].p_idx;
 656		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 657			ext_debug(inode, "%d: move %d:%llu in new index %llu\n",
 658				  level, le32_to_cpu(idx->ei_block),
 659				  ext4_idx_pblock(idx), newblock);
 
 660			idx++;
 661		}
 662
 663		return;
 664	}
 665
 666	ex = path[depth].p_ext;
 667	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 668		ext_debug(inode, "move %d:%llu:[%d]%d in new leaf %llu\n",
 669				le32_to_cpu(ex->ee_block),
 670				ext4_ext_pblock(ex),
 671				ext4_ext_is_unwritten(ex),
 672				ext4_ext_get_actual_len(ex),
 673				newblock);
 674		ex++;
 675	}
 676}
 677
 678#else
 679#define ext4_ext_show_path(inode, path)
 680#define ext4_ext_show_leaf(inode, path)
 681#define ext4_ext_show_move(inode, path, newblock, level)
 682#endif
 683
 684void ext4_ext_drop_refs(struct ext4_ext_path *path)
 685{
 686	int depth, i;
 
 687
 688	if (!path)
 689		return;
 690	depth = path->p_depth;
 691	for (i = 0; i <= depth; i++, path++) {
 692		brelse(path->p_bh);
 693		path->p_bh = NULL;
 694	}
 695}
 696
 697/*
 698 * ext4_ext_binsearch_idx:
 699 * binary search for the closest index of the given block
 700 * the header must be checked before calling this
 701 */
 702static void
 703ext4_ext_binsearch_idx(struct inode *inode,
 704			struct ext4_ext_path *path, ext4_lblk_t block)
 705{
 706	struct ext4_extent_header *eh = path->p_hdr;
 707	struct ext4_extent_idx *r, *l, *m;
 708
 709
 710	ext_debug(inode, "binsearch for %u(idx):  ", block);
 711
 712	l = EXT_FIRST_INDEX(eh) + 1;
 713	r = EXT_LAST_INDEX(eh);
 714	while (l <= r) {
 715		m = l + (r - l) / 2;
 716		if (block < le32_to_cpu(m->ei_block))
 717			r = m - 1;
 718		else
 719			l = m + 1;
 720		ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l,
 721			  le32_to_cpu(l->ei_block), m, le32_to_cpu(m->ei_block),
 722			  r, le32_to_cpu(r->ei_block));
 723	}
 724
 725	path->p_idx = l - 1;
 726	ext_debug(inode, "  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
 727		  ext4_idx_pblock(path->p_idx));
 728
 729#ifdef CHECK_BINSEARCH
 730	{
 731		struct ext4_extent_idx *chix, *ix;
 732		int k;
 733
 734		chix = ix = EXT_FIRST_INDEX(eh);
 735		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 736			if (k != 0 && le32_to_cpu(ix->ei_block) <=
 737			    le32_to_cpu(ix[-1].ei_block)) {
 738				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 739				       "first=0x%p\n", k,
 740				       ix, EXT_FIRST_INDEX(eh));
 741				printk(KERN_DEBUG "%u <= %u\n",
 742				       le32_to_cpu(ix->ei_block),
 743				       le32_to_cpu(ix[-1].ei_block));
 744			}
 745			BUG_ON(k && le32_to_cpu(ix->ei_block)
 746					   <= le32_to_cpu(ix[-1].ei_block));
 747			if (block < le32_to_cpu(ix->ei_block))
 748				break;
 749			chix = ix;
 750		}
 751		BUG_ON(chix != path->p_idx);
 752	}
 753#endif
 754
 755}
 756
 757/*
 758 * ext4_ext_binsearch:
 759 * binary search for closest extent of the given block
 760 * the header must be checked before calling this
 761 */
 762static void
 763ext4_ext_binsearch(struct inode *inode,
 764		struct ext4_ext_path *path, ext4_lblk_t block)
 765{
 766	struct ext4_extent_header *eh = path->p_hdr;
 767	struct ext4_extent *r, *l, *m;
 768
 769	if (eh->eh_entries == 0) {
 770		/*
 771		 * this leaf is empty:
 772		 * we get such a leaf in split/add case
 773		 */
 774		return;
 775	}
 776
 777	ext_debug(inode, "binsearch for %u:  ", block);
 778
 779	l = EXT_FIRST_EXTENT(eh) + 1;
 780	r = EXT_LAST_EXTENT(eh);
 781
 782	while (l <= r) {
 783		m = l + (r - l) / 2;
 784		if (block < le32_to_cpu(m->ee_block))
 785			r = m - 1;
 786		else
 787			l = m + 1;
 788		ext_debug(inode, "%p(%u):%p(%u):%p(%u) ", l,
 789			  le32_to_cpu(l->ee_block), m, le32_to_cpu(m->ee_block),
 790			  r, le32_to_cpu(r->ee_block));
 791	}
 792
 793	path->p_ext = l - 1;
 794	ext_debug(inode, "  -> %d:%llu:[%d]%d ",
 795			le32_to_cpu(path->p_ext->ee_block),
 796			ext4_ext_pblock(path->p_ext),
 797			ext4_ext_is_unwritten(path->p_ext),
 798			ext4_ext_get_actual_len(path->p_ext));
 799
 800#ifdef CHECK_BINSEARCH
 801	{
 802		struct ext4_extent *chex, *ex;
 803		int k;
 804
 805		chex = ex = EXT_FIRST_EXTENT(eh);
 806		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 807			BUG_ON(k && le32_to_cpu(ex->ee_block)
 808					  <= le32_to_cpu(ex[-1].ee_block));
 809			if (block < le32_to_cpu(ex->ee_block))
 810				break;
 811			chex = ex;
 812		}
 813		BUG_ON(chex != path->p_ext);
 814	}
 815#endif
 816
 817}
 818
 819void ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 820{
 821	struct ext4_extent_header *eh;
 822
 823	eh = ext_inode_hdr(inode);
 824	eh->eh_depth = 0;
 825	eh->eh_entries = 0;
 826	eh->eh_magic = EXT4_EXT_MAGIC;
 827	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 828	ext4_mark_inode_dirty(handle, inode);
 
 
 829}
 830
 831struct ext4_ext_path *
 832ext4_find_extent(struct inode *inode, ext4_lblk_t block,
 833		 struct ext4_ext_path **orig_path, int flags)
 834{
 835	struct ext4_extent_header *eh;
 836	struct buffer_head *bh;
 837	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
 838	short int depth, i, ppos = 0;
 839	int ret;
 840	gfp_t gfp_flags = GFP_NOFS;
 841
 842	if (flags & EXT4_EX_NOFAIL)
 843		gfp_flags |= __GFP_NOFAIL;
 844
 845	eh = ext_inode_hdr(inode);
 846	depth = ext_depth(inode);
 847	if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) {
 848		EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d",
 849				 depth);
 850		ret = -EFSCORRUPTED;
 851		goto err;
 852	}
 853
 854	if (path) {
 855		ext4_ext_drop_refs(path);
 856		if (depth > path[0].p_maxdepth) {
 857			kfree(path);
 858			*orig_path = path = NULL;
 859		}
 860	}
 861	if (!path) {
 862		/* account possible depth increase */
 863		path = kcalloc(depth + 2, sizeof(struct ext4_ext_path),
 864				gfp_flags);
 865		if (unlikely(!path))
 866			return ERR_PTR(-ENOMEM);
 867		path[0].p_maxdepth = depth + 1;
 868	}
 869	path[0].p_hdr = eh;
 870	path[0].p_bh = NULL;
 871
 872	i = depth;
 873	if (!(flags & EXT4_EX_NOCACHE) && depth == 0)
 874		ext4_cache_extents(inode, eh);
 875	/* walk through the tree */
 876	while (i) {
 877		ext_debug(inode, "depth %d: num %d, max %d\n",
 
 
 878			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 879
 880		ext4_ext_binsearch_idx(inode, path + ppos, block);
 881		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 882		path[ppos].p_depth = i;
 883		path[ppos].p_ext = NULL;
 884
 885		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
 886					    flags);
 887		if (IS_ERR(bh)) {
 888			ret = PTR_ERR(bh);
 889			goto err;
 
 
 
 
 
 
 
 
 
 890		}
 891
 892		eh = ext_block_hdr(bh);
 893		ppos++;
 
 
 
 
 
 
 894		path[ppos].p_bh = bh;
 895		path[ppos].p_hdr = eh;
 
 
 
 
 896	}
 897
 898	path[ppos].p_depth = i;
 899	path[ppos].p_ext = NULL;
 900	path[ppos].p_idx = NULL;
 901
 902	/* find extent */
 903	ext4_ext_binsearch(inode, path + ppos, block);
 904	/* if not an empty leaf */
 905	if (path[ppos].p_ext)
 906		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 907
 908	ext4_ext_show_path(inode, path);
 909
 910	return path;
 911
 912err:
 913	ext4_ext_drop_refs(path);
 914	kfree(path);
 915	if (orig_path)
 916		*orig_path = NULL;
 917	return ERR_PTR(ret);
 918}
 919
 920/*
 921 * ext4_ext_insert_index:
 922 * insert new index [@logical;@ptr] into the block at @curp;
 923 * check where to insert: before @curp or after @curp
 924 */
 925static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 926				 struct ext4_ext_path *curp,
 927				 int logical, ext4_fsblk_t ptr)
 928{
 929	struct ext4_extent_idx *ix;
 930	int len, err;
 931
 932	err = ext4_ext_get_access(handle, inode, curp);
 933	if (err)
 934		return err;
 935
 936	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 937		EXT4_ERROR_INODE(inode,
 938				 "logical %d == ei_block %d!",
 939				 logical, le32_to_cpu(curp->p_idx->ei_block));
 940		return -EFSCORRUPTED;
 941	}
 942
 943	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 944			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 945		EXT4_ERROR_INODE(inode,
 946				 "eh_entries %d >= eh_max %d!",
 947				 le16_to_cpu(curp->p_hdr->eh_entries),
 948				 le16_to_cpu(curp->p_hdr->eh_max));
 949		return -EFSCORRUPTED;
 950	}
 951
 
 952	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 953		/* insert after */
 954		ext_debug(inode, "insert new index %d after: %llu\n",
 955			  logical, ptr);
 
 
 
 
 
 
 
 956		ix = curp->p_idx + 1;
 957	} else {
 958		/* insert before */
 959		ext_debug(inode, "insert new index %d before: %llu\n",
 960			  logical, ptr);
 
 
 
 
 
 961		ix = curp->p_idx;
 962	}
 963
 964	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
 965	BUG_ON(len < 0);
 966	if (len > 0) {
 967		ext_debug(inode, "insert new index %d: "
 968				"move %d indices from 0x%p to 0x%p\n",
 969				logical, len, ix, ix + 1);
 970		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
 971	}
 972
 973	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
 974		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
 975		return -EFSCORRUPTED;
 976	}
 977
 978	ix->ei_block = cpu_to_le32(logical);
 979	ext4_idx_store_pblock(ix, ptr);
 980	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 981
 982	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 983		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 984		return -EFSCORRUPTED;
 985	}
 986
 987	err = ext4_ext_dirty(handle, inode, curp);
 988	ext4_std_error(inode->i_sb, err);
 989
 990	return err;
 991}
 992
 993/*
 994 * ext4_ext_split:
 995 * inserts new subtree into the path, using free index entry
 996 * at depth @at:
 997 * - allocates all needed blocks (new leaf and all intermediate index blocks)
 998 * - makes decision where to split
 999 * - moves remaining extents and index entries (right to the split point)
1000 *   into the newly allocated blocks
1001 * - initializes subtree
1002 */
1003static int ext4_ext_split(handle_t *handle, struct inode *inode,
1004			  unsigned int flags,
1005			  struct ext4_ext_path *path,
1006			  struct ext4_extent *newext, int at)
1007{
1008	struct buffer_head *bh = NULL;
1009	int depth = ext_depth(inode);
1010	struct ext4_extent_header *neh;
1011	struct ext4_extent_idx *fidx;
1012	int i = at, k, m, a;
1013	ext4_fsblk_t newblock, oldblock;
1014	__le32 border;
1015	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1016	gfp_t gfp_flags = GFP_NOFS;
1017	int err = 0;
1018	size_t ext_size = 0;
1019
1020	if (flags & EXT4_EX_NOFAIL)
1021		gfp_flags |= __GFP_NOFAIL;
1022
1023	/* make decision: where to split? */
1024	/* FIXME: now decision is simplest: at current extent */
1025
1026	/* if current leaf will be split, then we should use
1027	 * border from split point */
1028	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1029		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1030		return -EFSCORRUPTED;
1031	}
1032	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1033		border = path[depth].p_ext[1].ee_block;
1034		ext_debug(inode, "leaf will be split."
1035				" next leaf starts at %d\n",
1036				  le32_to_cpu(border));
1037	} else {
1038		border = newext->ee_block;
1039		ext_debug(inode, "leaf will be added."
1040				" next leaf starts at %d\n",
1041				le32_to_cpu(border));
1042	}
1043
1044	/*
1045	 * If error occurs, then we break processing
1046	 * and mark filesystem read-only. index won't
1047	 * be inserted and tree will be in consistent
1048	 * state. Next mount will repair buffers too.
1049	 */
1050
1051	/*
1052	 * Get array to track all allocated blocks.
1053	 * We need this to handle errors and free blocks
1054	 * upon them.
1055	 */
1056	ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), gfp_flags);
1057	if (!ablocks)
1058		return -ENOMEM;
1059
1060	/* allocate all needed blocks */
1061	ext_debug(inode, "allocate %d blocks for indexes/leaf\n", depth - at);
1062	for (a = 0; a < depth - at; a++) {
1063		newblock = ext4_ext_new_meta_block(handle, inode, path,
1064						   newext, &err, flags);
1065		if (newblock == 0)
1066			goto cleanup;
1067		ablocks[a] = newblock;
1068	}
1069
1070	/* initialize new leaf */
1071	newblock = ablocks[--a];
1072	if (unlikely(newblock == 0)) {
1073		EXT4_ERROR_INODE(inode, "newblock == 0!");
1074		err = -EFSCORRUPTED;
1075		goto cleanup;
1076	}
1077	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1078	if (unlikely(!bh)) {
1079		err = -ENOMEM;
1080		goto cleanup;
1081	}
1082	lock_buffer(bh);
1083
1084	err = ext4_journal_get_create_access(handle, bh);
1085	if (err)
1086		goto cleanup;
1087
1088	neh = ext_block_hdr(bh);
1089	neh->eh_entries = 0;
1090	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1091	neh->eh_magic = EXT4_EXT_MAGIC;
1092	neh->eh_depth = 0;
1093
1094	/* move remainder of path[depth] to the new leaf */
1095	if (unlikely(path[depth].p_hdr->eh_entries !=
1096		     path[depth].p_hdr->eh_max)) {
1097		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1098				 path[depth].p_hdr->eh_entries,
1099				 path[depth].p_hdr->eh_max);
1100		err = -EFSCORRUPTED;
1101		goto cleanup;
1102	}
1103	/* start copy from next extent */
1104	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1105	ext4_ext_show_move(inode, path, newblock, depth);
1106	if (m) {
1107		struct ext4_extent *ex;
1108		ex = EXT_FIRST_EXTENT(neh);
1109		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1110		le16_add_cpu(&neh->eh_entries, m);
1111	}
1112
1113	/* zero out unused area in the extent block */
1114	ext_size = sizeof(struct ext4_extent_header) +
1115		sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries);
1116	memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size);
1117	ext4_extent_block_csum_set(inode, neh);
1118	set_buffer_uptodate(bh);
1119	unlock_buffer(bh);
1120
1121	err = ext4_handle_dirty_metadata(handle, inode, bh);
1122	if (err)
1123		goto cleanup;
1124	brelse(bh);
1125	bh = NULL;
1126
1127	/* correct old leaf */
1128	if (m) {
1129		err = ext4_ext_get_access(handle, inode, path + depth);
1130		if (err)
1131			goto cleanup;
1132		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1133		err = ext4_ext_dirty(handle, inode, path + depth);
1134		if (err)
1135			goto cleanup;
1136
1137	}
1138
1139	/* create intermediate indexes */
1140	k = depth - at - 1;
1141	if (unlikely(k < 0)) {
1142		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1143		err = -EFSCORRUPTED;
1144		goto cleanup;
1145	}
1146	if (k)
1147		ext_debug(inode, "create %d intermediate indices\n", k);
1148	/* insert new index into current index block */
1149	/* current depth stored in i var */
1150	i = depth - 1;
1151	while (k--) {
1152		oldblock = newblock;
1153		newblock = ablocks[--a];
1154		bh = sb_getblk(inode->i_sb, newblock);
1155		if (unlikely(!bh)) {
1156			err = -ENOMEM;
1157			goto cleanup;
1158		}
1159		lock_buffer(bh);
1160
1161		err = ext4_journal_get_create_access(handle, bh);
1162		if (err)
1163			goto cleanup;
1164
1165		neh = ext_block_hdr(bh);
1166		neh->eh_entries = cpu_to_le16(1);
1167		neh->eh_magic = EXT4_EXT_MAGIC;
1168		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1169		neh->eh_depth = cpu_to_le16(depth - i);
1170		fidx = EXT_FIRST_INDEX(neh);
1171		fidx->ei_block = border;
1172		ext4_idx_store_pblock(fidx, oldblock);
1173
1174		ext_debug(inode, "int.index at %d (block %llu): %u -> %llu\n",
1175				i, newblock, le32_to_cpu(border), oldblock);
1176
1177		/* move remainder of path[i] to the new index block */
1178		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1179					EXT_LAST_INDEX(path[i].p_hdr))) {
1180			EXT4_ERROR_INODE(inode,
1181					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1182					 le32_to_cpu(path[i].p_ext->ee_block));
1183			err = -EFSCORRUPTED;
1184			goto cleanup;
1185		}
1186		/* start copy indexes */
1187		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1188		ext_debug(inode, "cur 0x%p, last 0x%p\n", path[i].p_idx,
1189				EXT_MAX_INDEX(path[i].p_hdr));
1190		ext4_ext_show_move(inode, path, newblock, i);
1191		if (m) {
1192			memmove(++fidx, path[i].p_idx,
1193				sizeof(struct ext4_extent_idx) * m);
1194			le16_add_cpu(&neh->eh_entries, m);
1195		}
1196		/* zero out unused area in the extent block */
1197		ext_size = sizeof(struct ext4_extent_header) +
1198		   (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries));
1199		memset(bh->b_data + ext_size, 0,
1200			inode->i_sb->s_blocksize - ext_size);
1201		ext4_extent_block_csum_set(inode, neh);
1202		set_buffer_uptodate(bh);
1203		unlock_buffer(bh);
1204
1205		err = ext4_handle_dirty_metadata(handle, inode, bh);
1206		if (err)
1207			goto cleanup;
1208		brelse(bh);
1209		bh = NULL;
1210
1211		/* correct old index */
1212		if (m) {
1213			err = ext4_ext_get_access(handle, inode, path + i);
1214			if (err)
1215				goto cleanup;
1216			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1217			err = ext4_ext_dirty(handle, inode, path + i);
1218			if (err)
1219				goto cleanup;
1220		}
1221
1222		i--;
1223	}
1224
1225	/* insert new index */
1226	err = ext4_ext_insert_index(handle, inode, path + at,
1227				    le32_to_cpu(border), newblock);
1228
1229cleanup:
1230	if (bh) {
1231		if (buffer_locked(bh))
1232			unlock_buffer(bh);
1233		brelse(bh);
1234	}
1235
1236	if (err) {
1237		/* free all allocated blocks in error case */
1238		for (i = 0; i < depth; i++) {
1239			if (!ablocks[i])
1240				continue;
1241			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1242					 EXT4_FREE_BLOCKS_METADATA);
1243		}
1244	}
1245	kfree(ablocks);
1246
1247	return err;
1248}
1249
1250/*
1251 * ext4_ext_grow_indepth:
1252 * implements tree growing procedure:
1253 * - allocates new block
1254 * - moves top-level data (index block or leaf) into the new block
1255 * - initializes new top-level, creating index that points to the
1256 *   just created block
1257 */
1258static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1259				 unsigned int flags)
 
 
1260{
 
1261	struct ext4_extent_header *neh;
1262	struct buffer_head *bh;
1263	ext4_fsblk_t newblock, goal = 0;
1264	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1265	int err = 0;
1266	size_t ext_size = 0;
1267
1268	/* Try to prepend new index to old one */
1269	if (ext_depth(inode))
1270		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1271	if (goal > le32_to_cpu(es->s_first_data_block)) {
1272		flags |= EXT4_MB_HINT_TRY_GOAL;
1273		goal--;
1274	} else
1275		goal = ext4_inode_to_goal_block(inode);
1276	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1277					NULL, &err);
1278	if (newblock == 0)
1279		return err;
1280
1281	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1282	if (unlikely(!bh))
1283		return -ENOMEM;
 
 
 
1284	lock_buffer(bh);
1285
1286	err = ext4_journal_get_create_access(handle, bh);
1287	if (err) {
1288		unlock_buffer(bh);
1289		goto out;
1290	}
1291
1292	ext_size = sizeof(EXT4_I(inode)->i_data);
1293	/* move top-level index/leaf into new block */
1294	memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size);
1295	/* zero out unused area in the extent block */
1296	memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size);
1297
1298	/* set size of new block */
1299	neh = ext_block_hdr(bh);
1300	/* old root could have indexes or leaves
1301	 * so calculate e_max right way */
1302	if (ext_depth(inode))
1303		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1304	else
1305		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1306	neh->eh_magic = EXT4_EXT_MAGIC;
1307	ext4_extent_block_csum_set(inode, neh);
1308	set_buffer_uptodate(bh);
1309	unlock_buffer(bh);
1310
1311	err = ext4_handle_dirty_metadata(handle, inode, bh);
1312	if (err)
1313		goto out;
1314
1315	/* Update top-level index: num,max,pointer */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316	neh = ext_inode_hdr(inode);
1317	neh->eh_entries = cpu_to_le16(1);
1318	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1319	if (neh->eh_depth == 0) {
1320		/* Root extent block becomes index block */
1321		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1322		EXT_FIRST_INDEX(neh)->ei_block =
1323			EXT_FIRST_EXTENT(neh)->ee_block;
1324	}
1325	ext_debug(inode, "new root: num %d(%d), lblock %d, ptr %llu\n",
1326		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1327		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1328		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1329
1330	le16_add_cpu(&neh->eh_depth, 1);
1331	err = ext4_mark_inode_dirty(handle, inode);
1332out:
1333	brelse(bh);
1334
1335	return err;
1336}
1337
1338/*
1339 * ext4_ext_create_new_leaf:
1340 * finds empty index and adds new leaf.
1341 * if no free index is found, then it requests in-depth growing.
1342 */
1343static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1344				    unsigned int mb_flags,
1345				    unsigned int gb_flags,
1346				    struct ext4_ext_path **ppath,
1347				    struct ext4_extent *newext)
1348{
1349	struct ext4_ext_path *path = *ppath;
1350	struct ext4_ext_path *curp;
1351	int depth, i, err = 0;
1352
1353repeat:
1354	i = depth = ext_depth(inode);
1355
1356	/* walk up to the tree and look for free index entry */
1357	curp = path + depth;
1358	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1359		i--;
1360		curp--;
1361	}
1362
1363	/* we use already allocated block for index block,
1364	 * so subsequent data blocks should be contiguous */
1365	if (EXT_HAS_FREE_INDEX(curp)) {
1366		/* if we found index with free entry, then use that
1367		 * entry: create all needed subtree and add new leaf */
1368		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1369		if (err)
1370			goto out;
1371
1372		/* refill path */
1373		path = ext4_find_extent(inode,
 
1374				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1375				    ppath, gb_flags);
1376		if (IS_ERR(path))
1377			err = PTR_ERR(path);
1378	} else {
1379		/* tree is full, time to grow in depth */
1380		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
 
1381		if (err)
1382			goto out;
1383
1384		/* refill path */
1385		path = ext4_find_extent(inode,
 
1386				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1387				    ppath, gb_flags);
1388		if (IS_ERR(path)) {
1389			err = PTR_ERR(path);
1390			goto out;
1391		}
1392
1393		/*
1394		 * only first (depth 0 -> 1) produces free space;
1395		 * in all other cases we have to split the grown tree
1396		 */
1397		depth = ext_depth(inode);
1398		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1399			/* now we need to split */
1400			goto repeat;
1401		}
1402	}
1403
1404out:
1405	return err;
1406}
1407
1408/*
1409 * search the closest allocated block to the left for *logical
1410 * and returns it at @logical + it's physical address at @phys
1411 * if *logical is the smallest allocated block, the function
1412 * returns 0 at @phys
1413 * return value contains 0 (success) or error code
1414 */
1415static int ext4_ext_search_left(struct inode *inode,
1416				struct ext4_ext_path *path,
1417				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1418{
1419	struct ext4_extent_idx *ix;
1420	struct ext4_extent *ex;
1421	int depth, ee_len;
1422
1423	if (unlikely(path == NULL)) {
1424		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1425		return -EFSCORRUPTED;
1426	}
1427	depth = path->p_depth;
1428	*phys = 0;
1429
1430	if (depth == 0 && path->p_ext == NULL)
1431		return 0;
1432
1433	/* usually extent in the path covers blocks smaller
1434	 * then *logical, but it can be that extent is the
1435	 * first one in the file */
1436
1437	ex = path[depth].p_ext;
1438	ee_len = ext4_ext_get_actual_len(ex);
1439	if (*logical < le32_to_cpu(ex->ee_block)) {
1440		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1441			EXT4_ERROR_INODE(inode,
1442					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1443					 *logical, le32_to_cpu(ex->ee_block));
1444			return -EFSCORRUPTED;
1445		}
1446		while (--depth >= 0) {
1447			ix = path[depth].p_idx;
1448			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1449				EXT4_ERROR_INODE(inode,
1450				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1451				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1452				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1453		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1454				  depth);
1455				return -EFSCORRUPTED;
1456			}
1457		}
1458		return 0;
1459	}
1460
1461	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1462		EXT4_ERROR_INODE(inode,
1463				 "logical %d < ee_block %d + ee_len %d!",
1464				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1465		return -EFSCORRUPTED;
1466	}
1467
1468	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1469	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1470	return 0;
1471}
1472
1473/*
1474 * search the closest allocated block to the right for *logical
1475 * and returns it at @logical + it's physical address at @phys
1476 * if *logical is the largest allocated block, the function
1477 * returns 0 at @phys
1478 * return value contains 0 (success) or error code
1479 */
1480static int ext4_ext_search_right(struct inode *inode,
1481				 struct ext4_ext_path *path,
1482				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1483				 struct ext4_extent **ret_ex)
1484{
1485	struct buffer_head *bh = NULL;
1486	struct ext4_extent_header *eh;
1487	struct ext4_extent_idx *ix;
1488	struct ext4_extent *ex;
1489	ext4_fsblk_t block;
1490	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1491	int ee_len;
1492
1493	if (unlikely(path == NULL)) {
1494		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1495		return -EFSCORRUPTED;
1496	}
1497	depth = path->p_depth;
1498	*phys = 0;
1499
1500	if (depth == 0 && path->p_ext == NULL)
1501		return 0;
1502
1503	/* usually extent in the path covers blocks smaller
1504	 * then *logical, but it can be that extent is the
1505	 * first one in the file */
1506
1507	ex = path[depth].p_ext;
1508	ee_len = ext4_ext_get_actual_len(ex);
1509	if (*logical < le32_to_cpu(ex->ee_block)) {
1510		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1511			EXT4_ERROR_INODE(inode,
1512					 "first_extent(path[%d].p_hdr) != ex",
1513					 depth);
1514			return -EFSCORRUPTED;
1515		}
1516		while (--depth >= 0) {
1517			ix = path[depth].p_idx;
1518			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1519				EXT4_ERROR_INODE(inode,
1520						 "ix != EXT_FIRST_INDEX *logical %d!",
1521						 *logical);
1522				return -EFSCORRUPTED;
1523			}
1524		}
1525		goto found_extent;
 
 
1526	}
1527
1528	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1529		EXT4_ERROR_INODE(inode,
1530				 "logical %d < ee_block %d + ee_len %d!",
1531				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1532		return -EFSCORRUPTED;
1533	}
1534
1535	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1536		/* next allocated block in this leaf */
1537		ex++;
1538		goto found_extent;
 
 
1539	}
1540
1541	/* go up and search for index to the right */
1542	while (--depth >= 0) {
1543		ix = path[depth].p_idx;
1544		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1545			goto got_index;
1546	}
1547
1548	/* we've gone up to the root and found no index to the right */
1549	return 0;
1550
1551got_index:
1552	/* we've found index to the right, let's
1553	 * follow it and find the closest allocated
1554	 * block to the right */
1555	ix++;
1556	block = ext4_idx_pblock(ix);
1557	while (++depth < path->p_depth) {
 
 
 
 
1558		/* subtract from p_depth to get proper eh_depth */
1559		bh = read_extent_tree_block(inode, block,
1560					    path->p_depth - depth, 0);
1561		if (IS_ERR(bh))
1562			return PTR_ERR(bh);
1563		eh = ext_block_hdr(bh);
1564		ix = EXT_FIRST_INDEX(eh);
1565		block = ext4_idx_pblock(ix);
1566		put_bh(bh);
1567	}
1568
1569	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1570	if (IS_ERR(bh))
1571		return PTR_ERR(bh);
1572	eh = ext_block_hdr(bh);
 
 
 
 
1573	ex = EXT_FIRST_EXTENT(eh);
1574found_extent:
1575	*logical = le32_to_cpu(ex->ee_block);
1576	*phys = ext4_ext_pblock(ex);
1577	*ret_ex = ex;
1578	if (bh)
1579		put_bh(bh);
1580	return 0;
1581}
1582
1583/*
1584 * ext4_ext_next_allocated_block:
1585 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1586 * NOTE: it considers block number from index entry as
1587 * allocated block. Thus, index entries have to be consistent
1588 * with leaves.
1589 */
1590ext4_lblk_t
1591ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1592{
1593	int depth;
1594
1595	BUG_ON(path == NULL);
1596	depth = path->p_depth;
1597
1598	if (depth == 0 && path->p_ext == NULL)
1599		return EXT_MAX_BLOCKS;
1600
1601	while (depth >= 0) {
1602		struct ext4_ext_path *p = &path[depth];
1603
1604		if (depth == path->p_depth) {
1605			/* leaf */
1606			if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr))
1607				return le32_to_cpu(p->p_ext[1].ee_block);
 
1608		} else {
1609			/* index */
1610			if (p->p_idx != EXT_LAST_INDEX(p->p_hdr))
1611				return le32_to_cpu(p->p_idx[1].ei_block);
 
1612		}
1613		depth--;
1614	}
1615
1616	return EXT_MAX_BLOCKS;
1617}
1618
1619/*
1620 * ext4_ext_next_leaf_block:
1621 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1622 */
1623static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1624{
1625	int depth;
1626
1627	BUG_ON(path == NULL);
1628	depth = path->p_depth;
1629
1630	/* zero-tree has no leaf blocks at all */
1631	if (depth == 0)
1632		return EXT_MAX_BLOCKS;
1633
1634	/* go to index block */
1635	depth--;
1636
1637	while (depth >= 0) {
1638		if (path[depth].p_idx !=
1639				EXT_LAST_INDEX(path[depth].p_hdr))
1640			return (ext4_lblk_t)
1641				le32_to_cpu(path[depth].p_idx[1].ei_block);
1642		depth--;
1643	}
1644
1645	return EXT_MAX_BLOCKS;
1646}
1647
1648/*
1649 * ext4_ext_correct_indexes:
1650 * if leaf gets modified and modified extent is first in the leaf,
1651 * then we have to correct all indexes above.
1652 * TODO: do we need to correct tree in all cases?
1653 */
1654static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1655				struct ext4_ext_path *path)
1656{
1657	struct ext4_extent_header *eh;
1658	int depth = ext_depth(inode);
1659	struct ext4_extent *ex;
1660	__le32 border;
1661	int k, err = 0;
1662
1663	eh = path[depth].p_hdr;
1664	ex = path[depth].p_ext;
1665
1666	if (unlikely(ex == NULL || eh == NULL)) {
1667		EXT4_ERROR_INODE(inode,
1668				 "ex %p == NULL or eh %p == NULL", ex, eh);
1669		return -EFSCORRUPTED;
1670	}
1671
1672	if (depth == 0) {
1673		/* there is no tree at all */
1674		return 0;
1675	}
1676
1677	if (ex != EXT_FIRST_EXTENT(eh)) {
1678		/* we correct tree if first leaf got modified only */
1679		return 0;
1680	}
1681
1682	/*
1683	 * TODO: we need correction if border is smaller than current one
1684	 */
1685	k = depth - 1;
1686	border = path[depth].p_ext->ee_block;
1687	err = ext4_ext_get_access(handle, inode, path + k);
1688	if (err)
1689		return err;
1690	path[k].p_idx->ei_block = border;
1691	err = ext4_ext_dirty(handle, inode, path + k);
1692	if (err)
1693		return err;
1694
1695	while (k--) {
1696		/* change all left-side indexes */
1697		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1698			break;
1699		err = ext4_ext_get_access(handle, inode, path + k);
1700		if (err)
1701			break;
1702		path[k].p_idx->ei_block = border;
1703		err = ext4_ext_dirty(handle, inode, path + k);
1704		if (err)
1705			break;
1706	}
1707
1708	return err;
1709}
1710
1711static int ext4_can_extents_be_merged(struct inode *inode,
1712				      struct ext4_extent *ex1,
1713				      struct ext4_extent *ex2)
1714{
1715	unsigned short ext1_ee_len, ext2_ee_len;
1716
1717	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
 
 
 
 
1718		return 0;
1719
 
 
 
 
 
1720	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1721	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1722
1723	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1724			le32_to_cpu(ex2->ee_block))
1725		return 0;
1726
1727	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1728		return 0;
1729
1730	if (ext4_ext_is_unwritten(ex1) &&
1731	    ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)
 
1732		return 0;
1733#ifdef AGGRESSIVE_TEST
1734	if (ext1_ee_len >= 4)
1735		return 0;
1736#endif
1737
1738	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1739		return 1;
1740	return 0;
1741}
1742
1743/*
1744 * This function tries to merge the "ex" extent to the next extent in the tree.
1745 * It always tries to merge towards right. If you want to merge towards
1746 * left, pass "ex - 1" as argument instead of "ex".
1747 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1748 * 1 if they got merged.
1749 */
1750static int ext4_ext_try_to_merge_right(struct inode *inode,
1751				 struct ext4_ext_path *path,
1752				 struct ext4_extent *ex)
1753{
1754	struct ext4_extent_header *eh;
1755	unsigned int depth, len;
1756	int merge_done = 0, unwritten;
 
1757
1758	depth = ext_depth(inode);
1759	BUG_ON(path[depth].p_hdr == NULL);
1760	eh = path[depth].p_hdr;
1761
1762	while (ex < EXT_LAST_EXTENT(eh)) {
1763		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1764			break;
1765		/* merge with next extent! */
1766		unwritten = ext4_ext_is_unwritten(ex);
 
1767		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1768				+ ext4_ext_get_actual_len(ex + 1));
1769		if (unwritten)
1770			ext4_ext_mark_unwritten(ex);
1771
1772		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1773			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1774				* sizeof(struct ext4_extent);
1775			memmove(ex + 1, ex + 2, len);
1776		}
1777		le16_add_cpu(&eh->eh_entries, -1);
1778		merge_done = 1;
1779		WARN_ON(eh->eh_entries == 0);
1780		if (!eh->eh_entries)
1781			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1782	}
1783
1784	return merge_done;
1785}
1786
1787/*
1788 * This function does a very simple check to see if we can collapse
1789 * an extent tree with a single extent tree leaf block into the inode.
1790 */
1791static void ext4_ext_try_to_merge_up(handle_t *handle,
1792				     struct inode *inode,
1793				     struct ext4_ext_path *path)
1794{
1795	size_t s;
1796	unsigned max_root = ext4_ext_space_root(inode, 0);
1797	ext4_fsblk_t blk;
1798
1799	if ((path[0].p_depth != 1) ||
1800	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1801	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1802		return;
1803
1804	/*
1805	 * We need to modify the block allocation bitmap and the block
1806	 * group descriptor to release the extent tree block.  If we
1807	 * can't get the journal credits, give up.
1808	 */
1809	if (ext4_journal_extend(handle, 2,
1810			ext4_free_metadata_revoke_credits(inode->i_sb, 1)))
1811		return;
1812
1813	/*
1814	 * Copy the extent data up to the inode
1815	 */
1816	blk = ext4_idx_pblock(path[0].p_idx);
1817	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1818		sizeof(struct ext4_extent_idx);
1819	s += sizeof(struct ext4_extent_header);
1820
1821	path[1].p_maxdepth = path[0].p_maxdepth;
1822	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1823	path[0].p_depth = 0;
1824	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1825		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1826	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1827
1828	brelse(path[1].p_bh);
1829	ext4_free_blocks(handle, inode, NULL, blk, 1,
1830			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1831}
1832
1833/*
1834 * This function tries to merge the @ex extent to neighbours in the tree, then
1835 * tries to collapse the extent tree into the inode.
1836 */
1837static void ext4_ext_try_to_merge(handle_t *handle,
1838				  struct inode *inode,
1839				  struct ext4_ext_path *path,
1840				  struct ext4_extent *ex)
1841{
1842	struct ext4_extent_header *eh;
1843	unsigned int depth;
1844	int merge_done = 0;
 
1845
1846	depth = ext_depth(inode);
1847	BUG_ON(path[depth].p_hdr == NULL);
1848	eh = path[depth].p_hdr;
1849
1850	if (ex > EXT_FIRST_EXTENT(eh))
1851		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1852
1853	if (!merge_done)
1854		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1855
1856	ext4_ext_try_to_merge_up(handle, inode, path);
1857}
1858
1859/*
1860 * check if a portion of the "newext" extent overlaps with an
1861 * existing extent.
1862 *
1863 * If there is an overlap discovered, it updates the length of the newext
1864 * such that there will be no overlap, and then returns 1.
1865 * If there is no overlap found, it returns 0.
1866 */
1867static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1868					   struct inode *inode,
1869					   struct ext4_extent *newext,
1870					   struct ext4_ext_path *path)
1871{
1872	ext4_lblk_t b1, b2;
1873	unsigned int depth, len1;
1874	unsigned int ret = 0;
1875
1876	b1 = le32_to_cpu(newext->ee_block);
1877	len1 = ext4_ext_get_actual_len(newext);
1878	depth = ext_depth(inode);
1879	if (!path[depth].p_ext)
1880		goto out;
1881	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1882
1883	/*
1884	 * get the next allocated block if the extent in the path
1885	 * is before the requested block(s)
1886	 */
1887	if (b2 < b1) {
1888		b2 = ext4_ext_next_allocated_block(path);
1889		if (b2 == EXT_MAX_BLOCKS)
1890			goto out;
1891		b2 = EXT4_LBLK_CMASK(sbi, b2);
1892	}
1893
1894	/* check for wrap through zero on extent logical start block*/
1895	if (b1 + len1 < b1) {
1896		len1 = EXT_MAX_BLOCKS - b1;
1897		newext->ee_len = cpu_to_le16(len1);
1898		ret = 1;
1899	}
1900
1901	/* check for overlap */
1902	if (b1 + len1 > b2) {
1903		newext->ee_len = cpu_to_le16(b2 - b1);
1904		ret = 1;
1905	}
1906out:
1907	return ret;
1908}
1909
1910/*
1911 * ext4_ext_insert_extent:
1912 * tries to merge requested extent into the existing extent or
1913 * inserts requested extent as new one into the tree,
1914 * creating new leaf in the no-space case.
1915 */
1916int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1917				struct ext4_ext_path **ppath,
1918				struct ext4_extent *newext, int gb_flags)
1919{
1920	struct ext4_ext_path *path = *ppath;
1921	struct ext4_extent_header *eh;
1922	struct ext4_extent *ex, *fex;
1923	struct ext4_extent *nearex; /* nearest extent */
1924	struct ext4_ext_path *npath = NULL;
1925	int depth, len, err;
1926	ext4_lblk_t next;
1927	int mb_flags = 0, unwritten;
 
1928
1929	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1930		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1931	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1932		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1933		return -EFSCORRUPTED;
1934	}
1935	depth = ext_depth(inode);
1936	ex = path[depth].p_ext;
1937	eh = path[depth].p_hdr;
1938	if (unlikely(path[depth].p_hdr == NULL)) {
1939		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1940		return -EFSCORRUPTED;
1941	}
1942
1943	/* try to insert block into found extent and return */
1944	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
 
 
 
 
 
 
 
 
 
 
 
1945
1946		/*
1947		 * Try to see whether we should rather test the extent on
1948		 * right from ex, or from the left of ex. This is because
1949		 * ext4_find_extent() can return either extent on the
1950		 * left, or on the right from the searched position. This
1951		 * will make merging more effective.
1952		 */
1953		if (ex < EXT_LAST_EXTENT(eh) &&
1954		    (le32_to_cpu(ex->ee_block) +
1955		    ext4_ext_get_actual_len(ex) <
1956		    le32_to_cpu(newext->ee_block))) {
1957			ex += 1;
1958			goto prepend;
1959		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1960			   (le32_to_cpu(newext->ee_block) +
1961			   ext4_ext_get_actual_len(newext) <
1962			   le32_to_cpu(ex->ee_block)))
1963			ex -= 1;
1964
1965		/* Try to append newex to the ex */
1966		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1967			ext_debug(inode, "append [%d]%d block to %u:[%d]%d"
1968				  "(from %llu)\n",
1969				  ext4_ext_is_unwritten(newext),
1970				  ext4_ext_get_actual_len(newext),
1971				  le32_to_cpu(ex->ee_block),
1972				  ext4_ext_is_unwritten(ex),
1973				  ext4_ext_get_actual_len(ex),
1974				  ext4_ext_pblock(ex));
1975			err = ext4_ext_get_access(handle, inode,
1976						  path + depth);
1977			if (err)
1978				return err;
1979			unwritten = ext4_ext_is_unwritten(ex);
1980			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1981					+ ext4_ext_get_actual_len(newext));
1982			if (unwritten)
1983				ext4_ext_mark_unwritten(ex);
1984			eh = path[depth].p_hdr;
1985			nearex = ex;
1986			goto merge;
1987		}
1988
1989prepend:
1990		/* Try to prepend newex to the ex */
1991		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1992			ext_debug(inode, "prepend %u[%d]%d block to %u:[%d]%d"
1993				  "(from %llu)\n",
1994				  le32_to_cpu(newext->ee_block),
1995				  ext4_ext_is_unwritten(newext),
1996				  ext4_ext_get_actual_len(newext),
1997				  le32_to_cpu(ex->ee_block),
1998				  ext4_ext_is_unwritten(ex),
1999				  ext4_ext_get_actual_len(ex),
2000				  ext4_ext_pblock(ex));
2001			err = ext4_ext_get_access(handle, inode,
2002						  path + depth);
2003			if (err)
2004				return err;
2005
2006			unwritten = ext4_ext_is_unwritten(ex);
2007			ex->ee_block = newext->ee_block;
2008			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2009			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2010					+ ext4_ext_get_actual_len(newext));
2011			if (unwritten)
2012				ext4_ext_mark_unwritten(ex);
2013			eh = path[depth].p_hdr;
2014			nearex = ex;
2015			goto merge;
2016		}
2017	}
2018
2019	depth = ext_depth(inode);
2020	eh = path[depth].p_hdr;
2021	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2022		goto has_space;
2023
2024	/* probably next leaf has space for us? */
2025	fex = EXT_LAST_EXTENT(eh);
2026	next = EXT_MAX_BLOCKS;
2027	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2028		next = ext4_ext_next_leaf_block(path);
2029	if (next != EXT_MAX_BLOCKS) {
2030		ext_debug(inode, "next leaf block - %u\n", next);
2031		BUG_ON(npath != NULL);
2032		npath = ext4_find_extent(inode, next, NULL, gb_flags);
2033		if (IS_ERR(npath))
2034			return PTR_ERR(npath);
2035		BUG_ON(npath->p_depth != path->p_depth);
2036		eh = npath[depth].p_hdr;
2037		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2038			ext_debug(inode, "next leaf isn't full(%d)\n",
2039				  le16_to_cpu(eh->eh_entries));
2040			path = npath;
2041			goto has_space;
2042		}
2043		ext_debug(inode, "next leaf has no free space(%d,%d)\n",
2044			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2045	}
2046
2047	/*
2048	 * There is no free space in the found leaf.
2049	 * We're gonna add a new leaf in the tree.
2050	 */
2051	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2052		mb_flags |= EXT4_MB_USE_RESERVED;
2053	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2054				       ppath, newext);
2055	if (err)
2056		goto cleanup;
2057	depth = ext_depth(inode);
2058	eh = path[depth].p_hdr;
2059
2060has_space:
2061	nearex = path[depth].p_ext;
2062
2063	err = ext4_ext_get_access(handle, inode, path + depth);
2064	if (err)
2065		goto cleanup;
2066
2067	if (!nearex) {
2068		/* there is no extent in this leaf, create first one */
2069		ext_debug(inode, "first extent in the leaf: %u:%llu:[%d]%d\n",
2070				le32_to_cpu(newext->ee_block),
2071				ext4_ext_pblock(newext),
2072				ext4_ext_is_unwritten(newext),
2073				ext4_ext_get_actual_len(newext));
2074		nearex = EXT_FIRST_EXTENT(eh);
2075	} else {
2076		if (le32_to_cpu(newext->ee_block)
2077			   > le32_to_cpu(nearex->ee_block)) {
2078			/* Insert after */
2079			ext_debug(inode, "insert %u:%llu:[%d]%d before: "
2080					"nearest %p\n",
2081					le32_to_cpu(newext->ee_block),
2082					ext4_ext_pblock(newext),
2083					ext4_ext_is_unwritten(newext),
2084					ext4_ext_get_actual_len(newext),
2085					nearex);
2086			nearex++;
2087		} else {
2088			/* Insert before */
2089			BUG_ON(newext->ee_block == nearex->ee_block);
2090			ext_debug(inode, "insert %u:%llu:[%d]%d after: "
2091					"nearest %p\n",
2092					le32_to_cpu(newext->ee_block),
2093					ext4_ext_pblock(newext),
2094					ext4_ext_is_unwritten(newext),
2095					ext4_ext_get_actual_len(newext),
2096					nearex);
2097		}
2098		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2099		if (len > 0) {
2100			ext_debug(inode, "insert %u:%llu:[%d]%d: "
2101					"move %d extents from 0x%p to 0x%p\n",
2102					le32_to_cpu(newext->ee_block),
2103					ext4_ext_pblock(newext),
2104					ext4_ext_is_unwritten(newext),
2105					ext4_ext_get_actual_len(newext),
2106					len, nearex, nearex + 1);
2107			memmove(nearex + 1, nearex,
2108				len * sizeof(struct ext4_extent));
2109		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	}
2111
2112	le16_add_cpu(&eh->eh_entries, 1);
2113	path[depth].p_ext = nearex;
2114	nearex->ee_block = newext->ee_block;
2115	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2116	nearex->ee_len = newext->ee_len;
2117
2118merge:
2119	/* try to merge extents */
2120	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2121		ext4_ext_try_to_merge(handle, inode, path, nearex);
2122
 
2123
2124	/* time to correct all indexes above */
2125	err = ext4_ext_correct_indexes(handle, inode, path);
2126	if (err)
2127		goto cleanup;
2128
2129	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2130
2131cleanup:
2132	ext4_ext_drop_refs(npath);
2133	kfree(npath);
 
 
 
2134	return err;
2135}
2136
2137static int ext4_fill_es_cache_info(struct inode *inode,
2138				   ext4_lblk_t block, ext4_lblk_t num,
2139				   struct fiemap_extent_info *fieinfo)
2140{
2141	ext4_lblk_t next, end = block + num - 1;
2142	struct extent_status es;
2143	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2144	unsigned int flags;
2145	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146
2147	while (block <= end) {
2148		next = 0;
2149		flags = 0;
2150		if (!ext4_es_lookup_extent(inode, block, &next, &es))
2151			break;
2152		if (ext4_es_is_unwritten(&es))
2153			flags |= FIEMAP_EXTENT_UNWRITTEN;
2154		if (ext4_es_is_delayed(&es))
2155			flags |= (FIEMAP_EXTENT_DELALLOC |
2156				  FIEMAP_EXTENT_UNKNOWN);
2157		if (ext4_es_is_hole(&es))
2158			flags |= EXT4_FIEMAP_EXTENT_HOLE;
2159		if (next == 0)
2160			flags |= FIEMAP_EXTENT_LAST;
2161		if (flags & (FIEMAP_EXTENT_DELALLOC|
2162			     EXT4_FIEMAP_EXTENT_HOLE))
2163			es.es_pblk = 0;
2164		else
2165			es.es_pblk = ext4_es_pblock(&es);
2166		err = fiemap_fill_next_extent(fieinfo,
2167				(__u64)es.es_lblk << blksize_bits,
2168				(__u64)es.es_pblk << blksize_bits,
2169				(__u64)es.es_len << blksize_bits,
2170				flags);
2171		if (next == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172			break;
2173		block = next;
 
 
 
2174		if (err < 0)
2175			return err;
2176		if (err == 1)
2177			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178	}
2179	return 0;
 
2180}
2181
 
 
 
 
 
 
 
 
 
 
 
 
 
2182
2183/*
2184 * ext4_ext_determine_hole - determine hole around given block
2185 * @inode:	inode we lookup in
2186 * @path:	path in extent tree to @lblk
2187 * @lblk:	pointer to logical block around which we want to determine hole
2188 *
2189 * Determine hole length (and start if easily possible) around given logical
2190 * block. We don't try too hard to find the beginning of the hole but @path
2191 * actually points to extent before @lblk, we provide it.
2192 *
2193 * The function returns the length of a hole starting at @lblk. We update @lblk
2194 * to the beginning of the hole if we managed to find it.
2195 */
2196static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2197					   struct ext4_ext_path *path,
2198					   ext4_lblk_t *lblk)
2199{
2200	int depth = ext_depth(inode);
 
 
2201	struct ext4_extent *ex;
2202	ext4_lblk_t len;
2203
2204	ex = path[depth].p_ext;
2205	if (ex == NULL) {
2206		/* there is no extent yet, so gap is [0;-] */
2207		*lblk = 0;
2208		len = EXT_MAX_BLOCKS;
2209	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2210		len = le32_to_cpu(ex->ee_block) - *lblk;
2211	} else if (*lblk >= le32_to_cpu(ex->ee_block)
 
 
 
 
 
 
2212			+ ext4_ext_get_actual_len(ex)) {
2213		ext4_lblk_t next;
 
 
2214
2215		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2216		next = ext4_ext_next_allocated_block(path);
2217		BUG_ON(next == *lblk);
2218		len = next - *lblk;
 
 
 
 
2219	} else {
 
2220		BUG();
2221	}
2222	return len;
 
 
2223}
2224
2225/*
2226 * ext4_ext_put_gap_in_cache:
2227 * calculate boundaries of the gap that the requested block fits into
2228 * and cache this gap
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229 */
2230static void
2231ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2232			  ext4_lblk_t hole_len)
2233{
2234	struct extent_status es;
 
 
 
 
 
 
 
 
2235
2236	ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start,
2237				  hole_start + hole_len - 1, &es);
2238	if (es.es_len) {
2239		/* There's delayed extent containing lblock? */
2240		if (es.es_lblk <= hole_start)
2241			return;
2242		hole_len = min(es.es_lblk - hole_start, hole_len);
2243	}
2244	ext_debug(inode, " -> %u:%u\n", hole_start, hole_len);
2245	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2246			      EXTENT_STATUS_HOLE);
2247}
2248
 
2249/*
2250 * ext4_ext_rm_idx:
2251 * removes index from the index block.
2252 */
2253static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2254			struct ext4_ext_path *path, int depth)
2255{
2256	int err;
2257	ext4_fsblk_t leaf;
2258
2259	/* free index block */
2260	depth--;
2261	path = path + depth;
2262	leaf = ext4_idx_pblock(path->p_idx);
2263	if (unlikely(path->p_hdr->eh_entries == 0)) {
2264		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2265		return -EFSCORRUPTED;
2266	}
2267	err = ext4_ext_get_access(handle, inode, path);
2268	if (err)
2269		return err;
2270
2271	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2272		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2273		len *= sizeof(struct ext4_extent_idx);
2274		memmove(path->p_idx, path->p_idx + 1, len);
2275	}
2276
2277	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2278	err = ext4_ext_dirty(handle, inode, path);
2279	if (err)
2280		return err;
2281	ext_debug(inode, "index is empty, remove it, free block %llu\n", leaf);
2282	trace_ext4_ext_rm_idx(inode, leaf);
2283
2284	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2285			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2286
2287	while (--depth >= 0) {
2288		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2289			break;
2290		path--;
2291		err = ext4_ext_get_access(handle, inode, path);
2292		if (err)
2293			break;
2294		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2295		err = ext4_ext_dirty(handle, inode, path);
2296		if (err)
2297			break;
2298	}
2299	return err;
2300}
2301
2302/*
2303 * ext4_ext_calc_credits_for_single_extent:
2304 * This routine returns max. credits that needed to insert an extent
2305 * to the extent tree.
2306 * When pass the actual path, the caller should calculate credits
2307 * under i_data_sem.
2308 */
2309int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2310						struct ext4_ext_path *path)
2311{
2312	if (path) {
2313		int depth = ext_depth(inode);
2314		int ret = 0;
2315
2316		/* probably there is space in leaf? */
2317		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2318				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2319
2320			/*
2321			 *  There are some space in the leaf tree, no
2322			 *  need to account for leaf block credit
2323			 *
2324			 *  bitmaps and block group descriptor blocks
2325			 *  and other metadata blocks still need to be
2326			 *  accounted.
2327			 */
2328			/* 1 bitmap, 1 block group descriptor */
2329			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2330			return ret;
2331		}
2332	}
2333
2334	return ext4_chunk_trans_blocks(inode, nrblocks);
2335}
2336
2337/*
2338 * How many index/leaf blocks need to change/allocate to add @extents extents?
2339 *
2340 * If we add a single extent, then in the worse case, each tree level
2341 * index/leaf need to be changed in case of the tree split.
 
 
2342 *
2343 * If more extents are inserted, they could cause the whole tree split more
2344 * than once, but this is really rare.
2345 */
2346int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2347{
2348	int index;
2349	int depth;
2350
2351	/* If we are converting the inline data, only one is needed here. */
2352	if (ext4_has_inline_data(inode))
2353		return 1;
2354
2355	depth = ext_depth(inode);
2356
2357	if (extents <= 1)
2358		index = depth * 2;
2359	else
2360		index = depth * 3;
2361
2362	return index;
2363}
2364
2365static inline int get_default_free_blocks_flags(struct inode *inode)
 
 
2366{
2367	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2368	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2369		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2370	else if (ext4_should_journal_data(inode))
2371		return EXT4_FREE_BLOCKS_FORGET;
2372	return 0;
2373}
2374
2375/*
2376 * ext4_rereserve_cluster - increment the reserved cluster count when
2377 *                          freeing a cluster with a pending reservation
2378 *
2379 * @inode - file containing the cluster
2380 * @lblk - logical block in cluster to be reserved
2381 *
2382 * Increments the reserved cluster count and adjusts quota in a bigalloc
2383 * file system when freeing a partial cluster containing at least one
2384 * delayed and unwritten block.  A partial cluster meeting that
2385 * requirement will have a pending reservation.  If so, the
2386 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to
2387 * defer reserved and allocated space accounting to a subsequent call
2388 * to this function.
2389 */
2390static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk)
2391{
2392	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2393	struct ext4_inode_info *ei = EXT4_I(inode);
2394
2395	dquot_reclaim_block(inode, EXT4_C2B(sbi, 1));
2396
2397	spin_lock(&ei->i_block_reservation_lock);
2398	ei->i_reserved_data_blocks++;
2399	percpu_counter_add(&sbi->s_dirtyclusters_counter, 1);
2400	spin_unlock(&ei->i_block_reservation_lock);
2401
2402	percpu_counter_add(&sbi->s_freeclusters_counter, 1);
2403	ext4_remove_pending(inode, lblk);
2404}
2405
2406static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2407			      struct ext4_extent *ex,
2408			      struct partial_cluster *partial,
2409			      ext4_lblk_t from, ext4_lblk_t to)
2410{
2411	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2412	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2413	ext4_fsblk_t last_pblk, pblk;
2414	ext4_lblk_t num;
2415	int flags;
2416
2417	/* only extent tail removal is allowed */
2418	if (from < le32_to_cpu(ex->ee_block) ||
2419	    to != le32_to_cpu(ex->ee_block) + ee_len - 1) {
2420		ext4_error(sbi->s_sb,
2421			   "strange request: removal(2) %u-%u from %u:%u",
2422			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2423		return 0;
2424	}
2425
2426#ifdef EXTENTS_STATS
2427	spin_lock(&sbi->s_ext_stats_lock);
2428	sbi->s_ext_blocks += ee_len;
2429	sbi->s_ext_extents++;
2430	if (ee_len < sbi->s_ext_min)
2431		sbi->s_ext_min = ee_len;
2432	if (ee_len > sbi->s_ext_max)
2433		sbi->s_ext_max = ee_len;
2434	if (ext_depth(inode) > sbi->s_depth_max)
2435		sbi->s_depth_max = ext_depth(inode);
2436	spin_unlock(&sbi->s_ext_stats_lock);
2437#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438
2439	trace_ext4_remove_blocks(inode, ex, from, to, partial);
2440
2441	/*
2442	 * if we have a partial cluster, and it's different from the
2443	 * cluster of the last block in the extent, we free it
2444	 */
2445	last_pblk = ext4_ext_pblock(ex) + ee_len - 1;
2446
2447	if (partial->state != initial &&
2448	    partial->pclu != EXT4_B2C(sbi, last_pblk)) {
2449		if (partial->state == tofree) {
2450			flags = get_default_free_blocks_flags(inode);
2451			if (ext4_is_pending(inode, partial->lblk))
2452				flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2453			ext4_free_blocks(handle, inode, NULL,
2454					 EXT4_C2B(sbi, partial->pclu),
2455					 sbi->s_cluster_ratio, flags);
2456			if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2457				ext4_rereserve_cluster(inode, partial->lblk);
2458		}
2459		partial->state = initial;
2460	}
2461
2462	num = le32_to_cpu(ex->ee_block) + ee_len - from;
2463	pblk = ext4_ext_pblock(ex) + ee_len - num;
2464
2465	/*
2466	 * We free the partial cluster at the end of the extent (if any),
2467	 * unless the cluster is used by another extent (partial_cluster
2468	 * state is nofree).  If a partial cluster exists here, it must be
2469	 * shared with the last block in the extent.
2470	 */
2471	flags = get_default_free_blocks_flags(inode);
2472
2473	/* partial, left end cluster aligned, right end unaligned */
2474	if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) &&
2475	    (EXT4_LBLK_CMASK(sbi, to) >= from) &&
2476	    (partial->state != nofree)) {
2477		if (ext4_is_pending(inode, to))
2478			flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2479		ext4_free_blocks(handle, inode, NULL,
2480				 EXT4_PBLK_CMASK(sbi, last_pblk),
2481				 sbi->s_cluster_ratio, flags);
2482		if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2483			ext4_rereserve_cluster(inode, to);
2484		partial->state = initial;
2485		flags = get_default_free_blocks_flags(inode);
2486	}
2487
2488	flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2489
2490	/*
2491	 * For bigalloc file systems, we never free a partial cluster
2492	 * at the beginning of the extent.  Instead, we check to see if we
2493	 * need to free it on a subsequent call to ext4_remove_blocks,
2494	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2495	 */
2496	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2497	ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2498
2499	/* reset the partial cluster if we've freed past it */
2500	if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk))
2501		partial->state = initial;
2502
2503	/*
2504	 * If we've freed the entire extent but the beginning is not left
2505	 * cluster aligned and is not marked as ineligible for freeing we
2506	 * record the partial cluster at the beginning of the extent.  It
2507	 * wasn't freed by the preceding ext4_free_blocks() call, and we
2508	 * need to look farther to the left to determine if it's to be freed
2509	 * (not shared with another extent). Else, reset the partial
2510	 * cluster - we're either  done freeing or the beginning of the
2511	 * extent is left cluster aligned.
2512	 */
2513	if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) {
2514		if (partial->state == initial) {
2515			partial->pclu = EXT4_B2C(sbi, pblk);
2516			partial->lblk = from;
2517			partial->state = tofree;
2518		}
2519	} else {
2520		partial->state = initial;
 
 
2521	}
2522
2523	return 0;
2524}
2525
 
2526/*
2527 * ext4_ext_rm_leaf() Removes the extents associated with the
2528 * blocks appearing between "start" and "end".  Both "start"
2529 * and "end" must appear in the same extent or EIO is returned.
2530 *
2531 * @handle: The journal handle
2532 * @inode:  The files inode
2533 * @path:   The path to the leaf
2534 * @partial_cluster: The cluster which we'll have to free if all extents
2535 *                   has been released from it.  However, if this value is
2536 *                   negative, it's a cluster just to the right of the
2537 *                   punched region and it must not be freed.
2538 * @start:  The first block to remove
2539 * @end:   The last block to remove
2540 */
2541static int
2542ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2543		 struct ext4_ext_path *path,
2544		 struct partial_cluster *partial,
2545		 ext4_lblk_t start, ext4_lblk_t end)
2546{
2547	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2548	int err = 0, correct_index = 0;
2549	int depth = ext_depth(inode), credits, revoke_credits;
2550	struct ext4_extent_header *eh;
2551	ext4_lblk_t a, b;
2552	unsigned num;
2553	ext4_lblk_t ex_ee_block;
2554	unsigned short ex_ee_len;
2555	unsigned unwritten = 0;
2556	struct ext4_extent *ex;
2557	ext4_fsblk_t pblk;
2558
2559	/* the header must be checked already in ext4_ext_remove_space() */
2560	ext_debug(inode, "truncate since %u in leaf to %u\n", start, end);
2561	if (!path[depth].p_hdr)
2562		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2563	eh = path[depth].p_hdr;
2564	if (unlikely(path[depth].p_hdr == NULL)) {
2565		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2566		return -EFSCORRUPTED;
2567	}
2568	/* find where to start removing */
2569	ex = path[depth].p_ext;
2570	if (!ex)
2571		ex = EXT_LAST_EXTENT(eh);
2572
2573	ex_ee_block = le32_to_cpu(ex->ee_block);
2574	ex_ee_len = ext4_ext_get_actual_len(ex);
2575
2576	trace_ext4_ext_rm_leaf(inode, start, ex, partial);
2577
2578	while (ex >= EXT_FIRST_EXTENT(eh) &&
2579			ex_ee_block + ex_ee_len > start) {
2580
2581		if (ext4_ext_is_unwritten(ex))
2582			unwritten = 1;
2583		else
2584			unwritten = 0;
2585
2586		ext_debug(inode, "remove ext %u:[%d]%d\n", ex_ee_block,
2587			  unwritten, ex_ee_len);
2588		path[depth].p_ext = ex;
2589
2590		a = ex_ee_block > start ? ex_ee_block : start;
2591		b = ex_ee_block+ex_ee_len - 1 < end ?
2592			ex_ee_block+ex_ee_len - 1 : end;
2593
2594		ext_debug(inode, "  border %u:%u\n", a, b);
2595
2596		/* If this extent is beyond the end of the hole, skip it */
2597		if (end < ex_ee_block) {
2598			/*
2599			 * We're going to skip this extent and move to another,
2600			 * so note that its first cluster is in use to avoid
2601			 * freeing it when removing blocks.  Eventually, the
2602			 * right edge of the truncated/punched region will
2603			 * be just to the left.
2604			 */
2605			if (sbi->s_cluster_ratio > 1) {
2606				pblk = ext4_ext_pblock(ex);
2607				partial->pclu = EXT4_B2C(sbi, pblk);
2608				partial->state = nofree;
2609			}
2610			ex--;
2611			ex_ee_block = le32_to_cpu(ex->ee_block);
2612			ex_ee_len = ext4_ext_get_actual_len(ex);
2613			continue;
2614		} else if (b != ex_ee_block + ex_ee_len - 1) {
2615			EXT4_ERROR_INODE(inode,
2616					 "can not handle truncate %u:%u "
2617					 "on extent %u:%u",
2618					 start, end, ex_ee_block,
2619					 ex_ee_block + ex_ee_len - 1);
2620			err = -EFSCORRUPTED;
2621			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622		} else if (a != ex_ee_block) {
2623			/* remove tail of the extent */
2624			num = a - ex_ee_block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625		} else {
2626			/* remove whole extent: excellent! */
 
2627			num = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2628		}
 
2629		/*
2630		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2631		 * descriptor) for each block group; assume two block
2632		 * groups plus ex_ee_len/blocks_per_block_group for
2633		 * the worst case
2634		 */
2635		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2636		if (ex == EXT_FIRST_EXTENT(eh)) {
2637			correct_index = 1;
2638			credits += (ext_depth(inode)) + 1;
2639		}
2640		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2641		/*
2642		 * We may end up freeing some index blocks and data from the
2643		 * punched range. Note that partial clusters are accounted for
2644		 * by ext4_free_data_revoke_credits().
2645		 */
2646		revoke_credits =
2647			ext4_free_metadata_revoke_credits(inode->i_sb,
2648							  ext_depth(inode)) +
2649			ext4_free_data_revoke_credits(inode, b - a + 1);
2650
2651		err = ext4_datasem_ensure_credits(handle, inode, credits,
2652						  credits, revoke_credits);
2653		if (err) {
2654			if (err > 0)
2655				err = -EAGAIN;
2656			goto out;
2657		}
2658
2659		err = ext4_ext_get_access(handle, inode, path + depth);
2660		if (err)
2661			goto out;
2662
2663		err = ext4_remove_blocks(handle, inode, ex, partial, a, b);
2664		if (err)
2665			goto out;
2666
2667		if (num == 0)
2668			/* this extent is removed; mark slot entirely unused */
2669			ext4_ext_store_pblock(ex, 0);
 
 
 
 
 
 
 
 
2670
 
2671		ex->ee_len = cpu_to_le16(num);
2672		/*
2673		 * Do not mark unwritten if all the blocks in the
2674		 * extent have been removed.
2675		 */
2676		if (unwritten && num)
2677			ext4_ext_mark_unwritten(ex);
 
 
 
 
 
2678		/*
2679		 * If the extent was completely released,
2680		 * we need to remove it from the leaf
2681		 */
2682		if (num == 0) {
2683			if (end != EXT_MAX_BLOCKS - 1) {
2684				/*
2685				 * For hole punching, we need to scoot all the
2686				 * extents up when an extent is removed so that
2687				 * we dont have blank extents in the middle
2688				 */
2689				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2690					sizeof(struct ext4_extent));
2691
2692				/* Now get rid of the one at the end */
2693				memset(EXT_LAST_EXTENT(eh), 0,
2694					sizeof(struct ext4_extent));
2695			}
2696			le16_add_cpu(&eh->eh_entries, -1);
2697		}
2698
2699		err = ext4_ext_dirty(handle, inode, path + depth);
2700		if (err)
2701			goto out;
2702
2703		ext_debug(inode, "new extent: %u:%u:%llu\n", ex_ee_block, num,
2704				ext4_ext_pblock(ex));
2705		ex--;
2706		ex_ee_block = le32_to_cpu(ex->ee_block);
2707		ex_ee_len = ext4_ext_get_actual_len(ex);
2708	}
2709
2710	if (correct_index && eh->eh_entries)
2711		err = ext4_ext_correct_indexes(handle, inode, path);
2712
2713	/*
2714	 * If there's a partial cluster and at least one extent remains in
2715	 * the leaf, free the partial cluster if it isn't shared with the
2716	 * current extent.  If it is shared with the current extent
2717	 * we reset the partial cluster because we've reached the start of the
2718	 * truncated/punched region and we're done removing blocks.
2719	 */
2720	if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) {
2721		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2722		if (partial->pclu != EXT4_B2C(sbi, pblk)) {
2723			int flags = get_default_free_blocks_flags(inode);
2724
2725			if (ext4_is_pending(inode, partial->lblk))
2726				flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2727			ext4_free_blocks(handle, inode, NULL,
2728					 EXT4_C2B(sbi, partial->pclu),
2729					 sbi->s_cluster_ratio, flags);
2730			if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2731				ext4_rereserve_cluster(inode, partial->lblk);
2732		}
2733		partial->state = initial;
2734	}
2735
2736	/* if this leaf is free, then we should
2737	 * remove it from index block above */
2738	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2739		err = ext4_ext_rm_idx(handle, inode, path, depth);
2740
2741out:
2742	return err;
2743}
2744
2745/*
2746 * ext4_ext_more_to_rm:
2747 * returns 1 if current index has to be freed (even partial)
2748 */
2749static int
2750ext4_ext_more_to_rm(struct ext4_ext_path *path)
2751{
2752	BUG_ON(path->p_idx == NULL);
2753
2754	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2755		return 0;
2756
2757	/*
2758	 * if truncate on deeper level happened, it wasn't partial,
2759	 * so we have to consider current index for truncation
2760	 */
2761	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2762		return 0;
2763	return 1;
2764}
2765
2766int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2767			  ext4_lblk_t end)
2768{
2769	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2770	int depth = ext_depth(inode);
2771	struct ext4_ext_path *path = NULL;
2772	struct partial_cluster partial;
2773	handle_t *handle;
2774	int i = 0, err = 0;
2775
2776	partial.pclu = 0;
2777	partial.lblk = 0;
2778	partial.state = initial;
2779
2780	ext_debug(inode, "truncate since %u to %u\n", start, end);
2781
2782	/* probably first extent we're gonna free will be last in block */
2783	handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE,
2784			depth + 1,
2785			ext4_free_metadata_revoke_credits(inode->i_sb, depth));
2786	if (IS_ERR(handle))
2787		return PTR_ERR(handle);
2788
2789again:
2790	trace_ext4_ext_remove_space(inode, start, end, depth);
2791
2792	/*
2793	 * Check if we are removing extents inside the extent tree. If that
2794	 * is the case, we are going to punch a hole inside the extent tree
2795	 * so we have to check whether we need to split the extent covering
2796	 * the last block to remove so we can easily remove the part of it
2797	 * in ext4_ext_rm_leaf().
2798	 */
2799	if (end < EXT_MAX_BLOCKS - 1) {
2800		struct ext4_extent *ex;
2801		ext4_lblk_t ee_block, ex_end, lblk;
2802		ext4_fsblk_t pblk;
2803
2804		/* find extent for or closest extent to this block */
2805		path = ext4_find_extent(inode, end, NULL,
2806					EXT4_EX_NOCACHE | EXT4_EX_NOFAIL);
2807		if (IS_ERR(path)) {
2808			ext4_journal_stop(handle);
2809			return PTR_ERR(path);
2810		}
2811		depth = ext_depth(inode);
2812		/* Leaf not may not exist only if inode has no blocks at all */
2813		ex = path[depth].p_ext;
2814		if (!ex) {
2815			if (depth) {
2816				EXT4_ERROR_INODE(inode,
2817						 "path[%d].p_hdr == NULL",
2818						 depth);
2819				err = -EFSCORRUPTED;
2820			}
2821			goto out;
2822		}
2823
2824		ee_block = le32_to_cpu(ex->ee_block);
2825		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2826
2827		/*
2828		 * See if the last block is inside the extent, if so split
2829		 * the extent at 'end' block so we can easily remove the
2830		 * tail of the first part of the split extent in
2831		 * ext4_ext_rm_leaf().
2832		 */
2833		if (end >= ee_block && end < ex_end) {
2834
2835			/*
2836			 * If we're going to split the extent, note that
2837			 * the cluster containing the block after 'end' is
2838			 * in use to avoid freeing it when removing blocks.
2839			 */
2840			if (sbi->s_cluster_ratio > 1) {
2841				pblk = ext4_ext_pblock(ex) + end - ee_block + 1;
2842				partial.pclu = EXT4_B2C(sbi, pblk);
2843				partial.state = nofree;
2844			}
2845
2846			/*
2847			 * Split the extent in two so that 'end' is the last
2848			 * block in the first new extent. Also we should not
2849			 * fail removing space due to ENOSPC so try to use
2850			 * reserved block if that happens.
2851			 */
2852			err = ext4_force_split_extent_at(handle, inode, &path,
2853							 end + 1, 1);
2854			if (err < 0)
2855				goto out;
2856
2857		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end &&
2858			   partial.state == initial) {
2859			/*
2860			 * If we're punching, there's an extent to the right.
2861			 * If the partial cluster hasn't been set, set it to
2862			 * that extent's first cluster and its state to nofree
2863			 * so it won't be freed should it contain blocks to be
2864			 * removed. If it's already set (tofree/nofree), we're
2865			 * retrying and keep the original partial cluster info
2866			 * so a cluster marked tofree as a result of earlier
2867			 * extent removal is not lost.
2868			 */
2869			lblk = ex_end + 1;
2870			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2871						    &ex);
2872			if (err)
2873				goto out;
2874			if (pblk) {
2875				partial.pclu = EXT4_B2C(sbi, pblk);
2876				partial.state = nofree;
2877			}
2878		}
2879	}
2880	/*
2881	 * We start scanning from right side, freeing all the blocks
2882	 * after i_size and walking into the tree depth-wise.
2883	 */
2884	depth = ext_depth(inode);
2885	if (path) {
2886		int k = i = depth;
2887		while (--k > 0)
2888			path[k].p_block =
2889				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2890	} else {
2891		path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
2892			       GFP_NOFS | __GFP_NOFAIL);
2893		if (path == NULL) {
2894			ext4_journal_stop(handle);
2895			return -ENOMEM;
2896		}
2897		path[0].p_maxdepth = path[0].p_depth = depth;
2898		path[0].p_hdr = ext_inode_hdr(inode);
2899		i = 0;
2900
2901		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2902			err = -EFSCORRUPTED;
2903			goto out;
2904		}
2905	}
2906	err = 0;
2907
2908	while (i >= 0 && err == 0) {
2909		if (i == depth) {
2910			/* this is leaf block */
2911			err = ext4_ext_rm_leaf(handle, inode, path,
2912					       &partial, start, end);
2913			/* root level has p_bh == NULL, brelse() eats this */
2914			brelse(path[i].p_bh);
2915			path[i].p_bh = NULL;
2916			i--;
2917			continue;
2918		}
2919
2920		/* this is index block */
2921		if (!path[i].p_hdr) {
2922			ext_debug(inode, "initialize header\n");
2923			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2924		}
2925
2926		if (!path[i].p_idx) {
2927			/* this level hasn't been touched yet */
2928			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2929			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2930			ext_debug(inode, "init index ptr: hdr 0x%p, num %d\n",
2931				  path[i].p_hdr,
2932				  le16_to_cpu(path[i].p_hdr->eh_entries));
2933		} else {
2934			/* we were already here, see at next index */
2935			path[i].p_idx--;
2936		}
2937
2938		ext_debug(inode, "level %d - index, first 0x%p, cur 0x%p\n",
2939				i, EXT_FIRST_INDEX(path[i].p_hdr),
2940				path[i].p_idx);
2941		if (ext4_ext_more_to_rm(path + i)) {
2942			struct buffer_head *bh;
2943			/* go to the next level */
2944			ext_debug(inode, "move to level %d (block %llu)\n",
2945				  i + 1, ext4_idx_pblock(path[i].p_idx));
2946			memset(path + i + 1, 0, sizeof(*path));
2947			bh = read_extent_tree_block(inode,
2948				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2949				EXT4_EX_NOCACHE);
2950			if (IS_ERR(bh)) {
2951				/* should we reset i_size? */
2952				err = PTR_ERR(bh);
2953				break;
2954			}
2955			/* Yield here to deal with large extent trees.
2956			 * Should be a no-op if we did IO above. */
2957			cond_resched();
2958			if (WARN_ON(i + 1 > depth)) {
2959				err = -EFSCORRUPTED;
 
 
 
 
 
2960				break;
2961			}
2962			path[i + 1].p_bh = bh;
2963
2964			/* save actual number of indexes since this
2965			 * number is changed at the next iteration */
2966			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2967			i++;
2968		} else {
2969			/* we finished processing this index, go up */
2970			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2971				/* index is empty, remove it;
2972				 * handle must be already prepared by the
2973				 * truncatei_leaf() */
2974				err = ext4_ext_rm_idx(handle, inode, path, i);
2975			}
2976			/* root level has p_bh == NULL, brelse() eats this */
2977			brelse(path[i].p_bh);
2978			path[i].p_bh = NULL;
2979			i--;
2980			ext_debug(inode, "return to level %d\n", i);
2981		}
2982	}
2983
2984	trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial,
2985					 path->p_hdr->eh_entries);
2986
2987	/*
2988	 * if there's a partial cluster and we have removed the first extent
2989	 * in the file, then we also free the partial cluster, if any
2990	 */
2991	if (partial.state == tofree && err == 0) {
2992		int flags = get_default_free_blocks_flags(inode);
2993
2994		if (ext4_is_pending(inode, partial.lblk))
2995			flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2996		ext4_free_blocks(handle, inode, NULL,
2997				 EXT4_C2B(sbi, partial.pclu),
2998				 sbi->s_cluster_ratio, flags);
2999		if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
3000			ext4_rereserve_cluster(inode, partial.lblk);
3001		partial.state = initial;
3002	}
3003
3004	/* TODO: flexible tree reduction should be here */
3005	if (path->p_hdr->eh_entries == 0) {
3006		/*
3007		 * truncate to zero freed all the tree,
3008		 * so we need to correct eh_depth
3009		 */
3010		err = ext4_ext_get_access(handle, inode, path);
3011		if (err == 0) {
3012			ext_inode_hdr(inode)->eh_depth = 0;
3013			ext_inode_hdr(inode)->eh_max =
3014				cpu_to_le16(ext4_ext_space_root(inode, 0));
3015			err = ext4_ext_dirty(handle, inode, path);
3016		}
3017	}
3018out:
3019	ext4_ext_drop_refs(path);
3020	kfree(path);
3021	path = NULL;
3022	if (err == -EAGAIN)
3023		goto again;
3024	ext4_journal_stop(handle);
3025
3026	return err;
3027}
3028
3029/*
3030 * called at mount time
3031 */
3032void ext4_ext_init(struct super_block *sb)
3033{
3034	/*
3035	 * possible initialization would be here
3036	 */
3037
3038	if (ext4_has_feature_extents(sb)) {
3039#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3040		printk(KERN_INFO "EXT4-fs: file extents enabled"
3041#ifdef AGGRESSIVE_TEST
3042		       ", aggressive tests"
3043#endif
3044#ifdef CHECK_BINSEARCH
3045		       ", check binsearch"
3046#endif
3047#ifdef EXTENTS_STATS
3048		       ", stats"
3049#endif
3050		       "\n");
3051#endif
3052#ifdef EXTENTS_STATS
3053		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3054		EXT4_SB(sb)->s_ext_min = 1 << 30;
3055		EXT4_SB(sb)->s_ext_max = 0;
3056#endif
3057	}
3058}
3059
3060/*
3061 * called at umount time
3062 */
3063void ext4_ext_release(struct super_block *sb)
3064{
3065	if (!ext4_has_feature_extents(sb))
3066		return;
3067
3068#ifdef EXTENTS_STATS
3069	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3070		struct ext4_sb_info *sbi = EXT4_SB(sb);
3071		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3072			sbi->s_ext_blocks, sbi->s_ext_extents,
3073			sbi->s_ext_blocks / sbi->s_ext_extents);
3074		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3075			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3076	}
3077#endif
3078}
3079
3080static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
 
3081{
3082	ext4_lblk_t  ee_block;
3083	ext4_fsblk_t ee_pblock;
3084	unsigned int ee_len;
 
3085
3086	ee_block  = le32_to_cpu(ex->ee_block);
3087	ee_len    = ext4_ext_get_actual_len(ex);
3088	ee_pblock = ext4_ext_pblock(ex);
3089
3090	if (ee_len == 0)
3091		return 0;
 
3092
3093	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3094				     EXTENT_STATUS_WRITTEN);
3095}
3096
3097/* FIXME!! we need to try to merge to left or right after zero-out  */
3098static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3099{
3100	ext4_fsblk_t ee_pblock;
3101	unsigned int ee_len;
3102
3103	ee_len    = ext4_ext_get_actual_len(ex);
3104	ee_pblock = ext4_ext_pblock(ex);
3105	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3106				  ee_len);
3107}
3108
3109/*
3110 * ext4_split_extent_at() splits an extent at given block.
3111 *
3112 * @handle: the journal handle
3113 * @inode: the file inode
3114 * @path: the path to the extent
3115 * @split: the logical block where the extent is splitted.
3116 * @split_flags: indicates if the extent could be zeroout if split fails, and
3117 *		 the states(init or unwritten) of new extents.
3118 * @flags: flags used to insert new extent to extent tree.
3119 *
3120 *
3121 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3122 * of which are determined by split_flag.
3123 *
3124 * There are two cases:
3125 *  a> the extent are splitted into two extent.
3126 *  b> split is not needed, and just mark the extent.
3127 *
3128 * return 0 on success.
3129 */
3130static int ext4_split_extent_at(handle_t *handle,
3131			     struct inode *inode,
3132			     struct ext4_ext_path **ppath,
3133			     ext4_lblk_t split,
3134			     int split_flag,
3135			     int flags)
3136{
3137	struct ext4_ext_path *path = *ppath;
3138	ext4_fsblk_t newblock;
3139	ext4_lblk_t ee_block;
3140	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3141	struct ext4_extent *ex2 = NULL;
3142	unsigned int ee_len, depth;
3143	int err = 0;
3144
3145	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3146	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3147
3148	ext_debug(inode, "logical block %llu\n", (unsigned long long)split);
3149
3150	ext4_ext_show_leaf(inode, path);
3151
3152	depth = ext_depth(inode);
3153	ex = path[depth].p_ext;
3154	ee_block = le32_to_cpu(ex->ee_block);
3155	ee_len = ext4_ext_get_actual_len(ex);
3156	newblock = split - ee_block + ext4_ext_pblock(ex);
3157
3158	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3159	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3160	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3161			     EXT4_EXT_MARK_UNWRIT1 |
3162			     EXT4_EXT_MARK_UNWRIT2));
3163
3164	err = ext4_ext_get_access(handle, inode, path + depth);
3165	if (err)
3166		goto out;
3167
3168	if (split == ee_block) {
3169		/*
3170		 * case b: block @split is the block that the extent begins with
3171		 * then we just change the state of the extent, and splitting
3172		 * is not needed.
3173		 */
3174		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3175			ext4_ext_mark_unwritten(ex);
3176		else
3177			ext4_ext_mark_initialized(ex);
3178
3179		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3180			ext4_ext_try_to_merge(handle, inode, path, ex);
3181
3182		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3183		goto out;
3184	}
3185
3186	/* case a */
3187	memcpy(&orig_ex, ex, sizeof(orig_ex));
3188	ex->ee_len = cpu_to_le16(split - ee_block);
3189	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3190		ext4_ext_mark_unwritten(ex);
3191
3192	/*
3193	 * path may lead to new leaf, not to original leaf any more
3194	 * after ext4_ext_insert_extent() returns,
3195	 */
3196	err = ext4_ext_dirty(handle, inode, path + depth);
3197	if (err)
3198		goto fix_extent_len;
3199
3200	ex2 = &newex;
3201	ex2->ee_block = cpu_to_le32(split);
3202	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3203	ext4_ext_store_pblock(ex2, newblock);
3204	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3205		ext4_ext_mark_unwritten(ex2);
3206
3207	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3208	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3209		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3210			if (split_flag & EXT4_EXT_DATA_VALID1) {
3211				err = ext4_ext_zeroout(inode, ex2);
3212				zero_ex.ee_block = ex2->ee_block;
3213				zero_ex.ee_len = cpu_to_le16(
3214						ext4_ext_get_actual_len(ex2));
3215				ext4_ext_store_pblock(&zero_ex,
3216						      ext4_ext_pblock(ex2));
3217			} else {
3218				err = ext4_ext_zeroout(inode, ex);
3219				zero_ex.ee_block = ex->ee_block;
3220				zero_ex.ee_len = cpu_to_le16(
3221						ext4_ext_get_actual_len(ex));
3222				ext4_ext_store_pblock(&zero_ex,
3223						      ext4_ext_pblock(ex));
3224			}
3225		} else {
3226			err = ext4_ext_zeroout(inode, &orig_ex);
3227			zero_ex.ee_block = orig_ex.ee_block;
3228			zero_ex.ee_len = cpu_to_le16(
3229						ext4_ext_get_actual_len(&orig_ex));
3230			ext4_ext_store_pblock(&zero_ex,
3231					      ext4_ext_pblock(&orig_ex));
3232		}
3233
3234		if (err)
3235			goto fix_extent_len;
3236		/* update the extent length and mark as initialized */
3237		ex->ee_len = cpu_to_le16(ee_len);
3238		ext4_ext_try_to_merge(handle, inode, path, ex);
3239		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3240		if (err)
3241			goto fix_extent_len;
3242
3243		/* update extent status tree */
3244		err = ext4_zeroout_es(inode, &zero_ex);
3245
3246		goto out;
3247	} else if (err)
3248		goto fix_extent_len;
3249
3250out:
3251	ext4_ext_show_leaf(inode, path);
3252	return err;
3253
3254fix_extent_len:
3255	ex->ee_len = orig_ex.ee_len;
3256	/*
3257	 * Ignore ext4_ext_dirty return value since we are already in error path
3258	 * and err is a non-zero error code.
3259	 */
3260	ext4_ext_dirty(handle, inode, path + path->p_depth);
3261	return err;
3262}
3263
3264/*
3265 * ext4_split_extents() splits an extent and mark extent which is covered
3266 * by @map as split_flags indicates
3267 *
3268 * It may result in splitting the extent into multiple extents (up to three)
3269 * There are three possibilities:
3270 *   a> There is no split required
3271 *   b> Splits in two extents: Split is happening at either end of the extent
3272 *   c> Splits in three extents: Somone is splitting in middle of the extent
3273 *
3274 */
3275static int ext4_split_extent(handle_t *handle,
3276			      struct inode *inode,
3277			      struct ext4_ext_path **ppath,
3278			      struct ext4_map_blocks *map,
3279			      int split_flag,
3280			      int flags)
3281{
3282	struct ext4_ext_path *path = *ppath;
3283	ext4_lblk_t ee_block;
3284	struct ext4_extent *ex;
3285	unsigned int ee_len, depth;
3286	int err = 0;
3287	int unwritten;
3288	int split_flag1, flags1;
3289	int allocated = map->m_len;
3290
3291	depth = ext_depth(inode);
3292	ex = path[depth].p_ext;
3293	ee_block = le32_to_cpu(ex->ee_block);
3294	ee_len = ext4_ext_get_actual_len(ex);
3295	unwritten = ext4_ext_is_unwritten(ex);
3296
3297	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3298		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
 
3299		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3300		if (unwritten)
3301			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3302				       EXT4_EXT_MARK_UNWRIT2;
3303		if (split_flag & EXT4_EXT_DATA_VALID2)
3304			split_flag1 |= EXT4_EXT_DATA_VALID1;
3305		err = ext4_split_extent_at(handle, inode, ppath,
3306				map->m_lblk + map->m_len, split_flag1, flags1);
3307		if (err)
3308			goto out;
3309	} else {
3310		allocated = ee_len - (map->m_lblk - ee_block);
3311	}
3312	/*
3313	 * Update path is required because previous ext4_split_extent_at() may
3314	 * result in split of original leaf or extent zeroout.
3315	 */
3316	path = ext4_find_extent(inode, map->m_lblk, ppath, flags);
3317	if (IS_ERR(path))
3318		return PTR_ERR(path);
3319	depth = ext_depth(inode);
3320	ex = path[depth].p_ext;
3321	if (!ex) {
3322		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3323				 (unsigned long) map->m_lblk);
3324		return -EFSCORRUPTED;
3325	}
3326	unwritten = ext4_ext_is_unwritten(ex);
3327	split_flag1 = 0;
3328
3329	if (map->m_lblk >= ee_block) {
3330		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3331		if (unwritten) {
3332			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3333			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3334						     EXT4_EXT_MARK_UNWRIT2);
3335		}
3336		err = ext4_split_extent_at(handle, inode, ppath,
3337				map->m_lblk, split_flag1, flags);
3338		if (err)
3339			goto out;
3340	}
3341
3342	ext4_ext_show_leaf(inode, path);
3343out:
3344	return err ? err : allocated;
3345}
3346
 
3347/*
3348 * This function is called by ext4_ext_map_blocks() if someone tries to write
3349 * to an unwritten extent. It may result in splitting the unwritten
3350 * extent into multiple extents (up to three - one initialized and two
3351 * unwritten).
3352 * There are three possibilities:
3353 *   a> There is no split required: Entire extent should be initialized
3354 *   b> Splits in two extents: Write is happening at either end of the extent
3355 *   c> Splits in three extents: Somone is writing in middle of the extent
3356 *
3357 * Pre-conditions:
3358 *  - The extent pointed to by 'path' is unwritten.
3359 *  - The extent pointed to by 'path' contains a superset
3360 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3361 *
3362 * Post-conditions on success:
3363 *  - the returned value is the number of blocks beyond map->l_lblk
3364 *    that are allocated and initialized.
3365 *    It is guaranteed to be >= map->m_len.
3366 */
3367static int ext4_ext_convert_to_initialized(handle_t *handle,
3368					   struct inode *inode,
3369					   struct ext4_map_blocks *map,
3370					   struct ext4_ext_path **ppath,
3371					   int flags)
3372{
3373	struct ext4_ext_path *path = *ppath;
3374	struct ext4_sb_info *sbi;
3375	struct ext4_extent_header *eh;
3376	struct ext4_map_blocks split_map;
3377	struct ext4_extent zero_ex1, zero_ex2;
3378	struct ext4_extent *ex, *abut_ex;
3379	ext4_lblk_t ee_block, eof_block;
3380	unsigned int ee_len, depth, map_len = map->m_len;
3381	int allocated = 0, max_zeroout = 0;
3382	int err = 0;
3383	int split_flag = EXT4_EXT_DATA_VALID2;
3384
3385	ext_debug(inode, "logical block %llu, max_blocks %u\n",
3386		  (unsigned long long)map->m_lblk, map_len);
 
3387
3388	sbi = EXT4_SB(inode->i_sb);
3389	eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1)
3390			>> inode->i_sb->s_blocksize_bits;
3391	if (eof_block < map->m_lblk + map_len)
3392		eof_block = map->m_lblk + map_len;
3393
3394	depth = ext_depth(inode);
3395	eh = path[depth].p_hdr;
3396	ex = path[depth].p_ext;
3397	ee_block = le32_to_cpu(ex->ee_block);
3398	ee_len = ext4_ext_get_actual_len(ex);
3399	zero_ex1.ee_len = 0;
3400	zero_ex2.ee_len = 0;
3401
3402	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3403
3404	/* Pre-conditions */
3405	BUG_ON(!ext4_ext_is_unwritten(ex));
3406	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3407
3408	/*
3409	 * Attempt to transfer newly initialized blocks from the currently
3410	 * unwritten extent to its neighbor. This is much cheaper
3411	 * than an insertion followed by a merge as those involve costly
3412	 * memmove() calls. Transferring to the left is the common case in
3413	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3414	 * followed by append writes.
3415	 *
3416	 * Limitations of the current logic:
3417	 *  - L1: we do not deal with writes covering the whole extent.
3418	 *    This would require removing the extent if the transfer
3419	 *    is possible.
3420	 *  - L2: we only attempt to merge with an extent stored in the
3421	 *    same extent tree node.
3422	 */
3423	if ((map->m_lblk == ee_block) &&
3424		/* See if we can merge left */
3425		(map_len < ee_len) &&		/*L1*/
3426		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3427		ext4_lblk_t prev_lblk;
3428		ext4_fsblk_t prev_pblk, ee_pblk;
3429		unsigned int prev_len;
3430
3431		abut_ex = ex - 1;
3432		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3433		prev_len = ext4_ext_get_actual_len(abut_ex);
3434		prev_pblk = ext4_ext_pblock(abut_ex);
3435		ee_pblk = ext4_ext_pblock(ex);
3436
3437		/*
3438		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3439		 * upon those conditions:
3440		 * - C1: abut_ex is initialized,
3441		 * - C2: abut_ex is logically abutting ex,
3442		 * - C3: abut_ex is physically abutting ex,
3443		 * - C4: abut_ex can receive the additional blocks without
3444		 *   overflowing the (initialized) length limit.
3445		 */
3446		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3447			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3448			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3449			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3450			err = ext4_ext_get_access(handle, inode, path + depth);
3451			if (err)
3452				goto out;
3453
3454			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3455				map, ex, abut_ex);
3456
3457			/* Shift the start of ex by 'map_len' blocks */
3458			ex->ee_block = cpu_to_le32(ee_block + map_len);
3459			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3460			ex->ee_len = cpu_to_le16(ee_len - map_len);
3461			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3462
3463			/* Extend abut_ex by 'map_len' blocks */
3464			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3465
3466			/* Result: number of initialized blocks past m_lblk */
3467			allocated = map_len;
3468		}
3469	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3470		   (map_len < ee_len) &&	/*L1*/
3471		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3472		/* See if we can merge right */
3473		ext4_lblk_t next_lblk;
3474		ext4_fsblk_t next_pblk, ee_pblk;
3475		unsigned int next_len;
3476
3477		abut_ex = ex + 1;
3478		next_lblk = le32_to_cpu(abut_ex->ee_block);
3479		next_len = ext4_ext_get_actual_len(abut_ex);
3480		next_pblk = ext4_ext_pblock(abut_ex);
3481		ee_pblk = ext4_ext_pblock(ex);
3482
3483		/*
3484		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3485		 * upon those conditions:
3486		 * - C1: abut_ex is initialized,
3487		 * - C2: abut_ex is logically abutting ex,
3488		 * - C3: abut_ex is physically abutting ex,
3489		 * - C4: abut_ex can receive the additional blocks without
3490		 *   overflowing the (initialized) length limit.
3491		 */
3492		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3493		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3494		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3495		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3496			err = ext4_ext_get_access(handle, inode, path + depth);
3497			if (err)
3498				goto out;
3499
3500			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3501				map, ex, abut_ex);
3502
3503			/* Shift the start of abut_ex by 'map_len' blocks */
3504			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3505			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3506			ex->ee_len = cpu_to_le16(ee_len - map_len);
3507			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3508
3509			/* Extend abut_ex by 'map_len' blocks */
3510			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3511
3512			/* Result: number of initialized blocks past m_lblk */
3513			allocated = map_len;
3514		}
3515	}
3516	if (allocated) {
3517		/* Mark the block containing both extents as dirty */
3518		err = ext4_ext_dirty(handle, inode, path + depth);
3519
3520		/* Update path to point to the right extent */
3521		path[depth].p_ext = abut_ex;
3522		goto out;
3523	} else
3524		allocated = ee_len - (map->m_lblk - ee_block);
3525
3526	WARN_ON(map->m_lblk < ee_block);
3527	/*
3528	 * It is safe to convert extent to initialized via explicit
3529	 * zeroout only if extent is fully inside i_size or new_size.
3530	 */
3531	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3532
3533	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3534		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3535			(inode->i_sb->s_blocksize_bits - 10);
 
 
 
 
 
 
 
 
 
 
 
 
3536
3537	/*
3538	 * five cases:
3539	 * 1. split the extent into three extents.
3540	 * 2. split the extent into two extents, zeroout the head of the first
3541	 *    extent.
3542	 * 3. split the extent into two extents, zeroout the tail of the second
3543	 *    extent.
3544	 * 4. split the extent into two extents with out zeroout.
3545	 * 5. no splitting needed, just possibly zeroout the head and / or the
3546	 *    tail of the extent.
3547	 */
3548	split_map.m_lblk = map->m_lblk;
3549	split_map.m_len = map->m_len;
3550
3551	if (max_zeroout && (allocated > split_map.m_len)) {
3552		if (allocated <= max_zeroout) {
3553			/* case 3 or 5 */
3554			zero_ex1.ee_block =
3555				 cpu_to_le32(split_map.m_lblk +
3556					     split_map.m_len);
3557			zero_ex1.ee_len =
3558				cpu_to_le16(allocated - split_map.m_len);
3559			ext4_ext_store_pblock(&zero_ex1,
3560				ext4_ext_pblock(ex) + split_map.m_lblk +
3561				split_map.m_len - ee_block);
3562			err = ext4_ext_zeroout(inode, &zero_ex1);
3563			if (err)
3564				goto out;
 
3565			split_map.m_len = allocated;
3566		}
3567		if (split_map.m_lblk - ee_block + split_map.m_len <
3568								max_zeroout) {
3569			/* case 2 or 5 */
3570			if (split_map.m_lblk != ee_block) {
3571				zero_ex2.ee_block = ex->ee_block;
3572				zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3573							ee_block);
3574				ext4_ext_store_pblock(&zero_ex2,
3575						      ext4_ext_pblock(ex));
3576				err = ext4_ext_zeroout(inode, &zero_ex2);
3577				if (err)
3578					goto out;
3579			}
3580
3581			split_map.m_len += split_map.m_lblk - ee_block;
3582			split_map.m_lblk = ee_block;
 
3583			allocated = map->m_len;
3584		}
3585	}
3586
3587	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3588				flags);
3589	if (err > 0)
3590		err = 0;
 
3591out:
3592	/* If we have gotten a failure, don't zero out status tree */
3593	if (!err) {
3594		err = ext4_zeroout_es(inode, &zero_ex1);
3595		if (!err)
3596			err = ext4_zeroout_es(inode, &zero_ex2);
3597	}
3598	return err ? err : allocated;
3599}
3600
3601/*
3602 * This function is called by ext4_ext_map_blocks() from
3603 * ext4_get_blocks_dio_write() when DIO to write
3604 * to an unwritten extent.
3605 *
3606 * Writing to an unwritten extent may result in splitting the unwritten
3607 * extent into multiple initialized/unwritten extents (up to three)
3608 * There are three possibilities:
3609 *   a> There is no split required: Entire extent should be unwritten
3610 *   b> Splits in two extents: Write is happening at either end of the extent
3611 *   c> Splits in three extents: Somone is writing in middle of the extent
3612 *
3613 * This works the same way in the case of initialized -> unwritten conversion.
3614 *
3615 * One of more index blocks maybe needed if the extent tree grow after
3616 * the unwritten extent split. To prevent ENOSPC occur at the IO
3617 * complete, we need to split the unwritten extent before DIO submit
3618 * the IO. The unwritten extent called at this time will be split
3619 * into three unwritten extent(at most). After IO complete, the part
3620 * being filled will be convert to initialized by the end_io callback function
3621 * via ext4_convert_unwritten_extents().
3622 *
3623 * Returns the size of unwritten extent to be written on success.
3624 */
3625static int ext4_split_convert_extents(handle_t *handle,
3626					struct inode *inode,
3627					struct ext4_map_blocks *map,
3628					struct ext4_ext_path **ppath,
3629					int flags)
3630{
3631	struct ext4_ext_path *path = *ppath;
3632	ext4_lblk_t eof_block;
3633	ext4_lblk_t ee_block;
3634	struct ext4_extent *ex;
3635	unsigned int ee_len;
3636	int split_flag = 0, depth;
3637
3638	ext_debug(inode, "logical block %llu, max_blocks %u\n",
3639		  (unsigned long long)map->m_lblk, map->m_len);
 
3640
3641	eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1)
3642			>> inode->i_sb->s_blocksize_bits;
3643	if (eof_block < map->m_lblk + map->m_len)
3644		eof_block = map->m_lblk + map->m_len;
3645	/*
3646	 * It is safe to convert extent to initialized via explicit
3647	 * zeroout only if extent is fully inside i_size or new_size.
3648	 */
3649	depth = ext_depth(inode);
3650	ex = path[depth].p_ext;
3651	ee_block = le32_to_cpu(ex->ee_block);
3652	ee_len = ext4_ext_get_actual_len(ex);
3653
3654	/* Convert to unwritten */
3655	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3656		split_flag |= EXT4_EXT_DATA_VALID1;
3657	/* Convert to initialized */
3658	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3659		split_flag |= ee_block + ee_len <= eof_block ?
3660			      EXT4_EXT_MAY_ZEROOUT : 0;
3661		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3662	}
3663	flags |= EXT4_GET_BLOCKS_PRE_IO;
3664	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3665}
3666
3667static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3668						struct inode *inode,
3669						struct ext4_map_blocks *map,
3670						struct ext4_ext_path **ppath)
3671{
3672	struct ext4_ext_path *path = *ppath;
3673	struct ext4_extent *ex;
3674	ext4_lblk_t ee_block;
3675	unsigned int ee_len;
3676	int depth;
3677	int err = 0;
3678
3679	depth = ext_depth(inode);
3680	ex = path[depth].p_ext;
3681	ee_block = le32_to_cpu(ex->ee_block);
3682	ee_len = ext4_ext_get_actual_len(ex);
3683
3684	ext_debug(inode, "logical block %llu, max_blocks %u\n",
3685		  (unsigned long long)ee_block, ee_len);
3686
3687	/* If extent is larger than requested it is a clear sign that we still
3688	 * have some extent state machine issues left. So extent_split is still
3689	 * required.
3690	 * TODO: Once all related issues will be fixed this situation should be
3691	 * illegal.
3692	 */
3693	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3694#ifdef CONFIG_EXT4_DEBUG
3695		ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu,"
3696			     " len %u; IO logical block %llu, len %u",
3697			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3698			     (unsigned long long)map->m_lblk, map->m_len);
3699#endif
3700		err = ext4_split_convert_extents(handle, inode, map, ppath,
3701						 EXT4_GET_BLOCKS_CONVERT);
3702		if (err < 0)
3703			return err;
3704		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3705		if (IS_ERR(path))
3706			return PTR_ERR(path);
3707		depth = ext_depth(inode);
3708		ex = path[depth].p_ext;
3709	}
3710
3711	err = ext4_ext_get_access(handle, inode, path + depth);
3712	if (err)
3713		goto out;
3714	/* first mark the extent as initialized */
3715	ext4_ext_mark_initialized(ex);
3716
3717	/* note: ext4_ext_correct_indexes() isn't needed here because
3718	 * borders are not changed
3719	 */
3720	ext4_ext_try_to_merge(handle, inode, path, ex);
3721
3722	/* Mark modified extent as dirty */
3723	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3724out:
3725	ext4_ext_show_leaf(inode, path);
3726	return err;
3727}
3728
3729static int
3730convert_initialized_extent(handle_t *handle, struct inode *inode,
3731			   struct ext4_map_blocks *map,
3732			   struct ext4_ext_path **ppath,
3733			   unsigned int *allocated)
 
 
 
 
 
 
 
 
 
 
3734{
3735	struct ext4_ext_path *path = *ppath;
3736	struct ext4_extent *ex;
3737	ext4_lblk_t ee_block;
3738	unsigned int ee_len;
3739	int depth;
3740	int err = 0;
3741
3742	/*
3743	 * Make sure that the extent is no bigger than we support with
3744	 * unwritten extent
3745	 */
3746	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3747		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3748
3749	depth = ext_depth(inode);
3750	ex = path[depth].p_ext;
3751	ee_block = le32_to_cpu(ex->ee_block);
3752	ee_len = ext4_ext_get_actual_len(ex);
3753
3754	ext_debug(inode, "logical block %llu, max_blocks %u\n",
3755		  (unsigned long long)ee_block, ee_len);
3756
3757	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3758		err = ext4_split_convert_extents(handle, inode, map, ppath,
3759				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3760		if (err < 0)
3761			return err;
3762		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3763		if (IS_ERR(path))
3764			return PTR_ERR(path);
3765		depth = ext_depth(inode);
3766		ex = path[depth].p_ext;
3767		if (!ex) {
3768			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3769					 (unsigned long) map->m_lblk);
3770			return -EFSCORRUPTED;
3771		}
3772	}
3773
3774	err = ext4_ext_get_access(handle, inode, path + depth);
3775	if (err)
3776		return err;
3777	/* first mark the extent as unwritten */
3778	ext4_ext_mark_unwritten(ex);
3779
3780	/* note: ext4_ext_correct_indexes() isn't needed here because
3781	 * borders are not changed
3782	 */
3783	ext4_ext_try_to_merge(handle, inode, path, ex);
3784
3785	/* Mark modified extent as dirty */
3786	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3787	if (err)
3788		return err;
3789	ext4_ext_show_leaf(inode, path);
3790
3791	ext4_update_inode_fsync_trans(handle, inode, 1);
3792
3793	map->m_flags |= EXT4_MAP_UNWRITTEN;
3794	if (*allocated > map->m_len)
3795		*allocated = map->m_len;
3796	map->m_len = *allocated;
3797	return 0;
3798}
3799
3800static int
3801ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3802			struct ext4_map_blocks *map,
3803			struct ext4_ext_path **ppath, int flags,
3804			unsigned int allocated, ext4_fsblk_t newblock)
3805{
3806	struct ext4_ext_path __maybe_unused *path = *ppath;
3807	int ret = 0;
3808	int err = 0;
 
3809
3810	ext_debug(inode, "logical block %llu, max_blocks %u, flags 0x%x, allocated %u\n",
3811		  (unsigned long long)map->m_lblk, map->m_len, flags,
3812		  allocated);
 
3813	ext4_ext_show_leaf(inode, path);
3814
3815	/*
3816	 * When writing into unwritten space, we should not fail to
3817	 * allocate metadata blocks for the new extent block if needed.
3818	 */
3819	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3820
3821	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
3822						    allocated, newblock);
3823
3824	/* get_block() before submitting IO, split the extent */
3825	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
3826		ret = ext4_split_convert_extents(handle, inode, map, ppath,
3827					 flags | EXT4_GET_BLOCKS_CONVERT);
3828		if (ret < 0) {
3829			err = ret;
3830			goto out2;
3831		}
3832		/*
3833		 * shouldn't get a 0 return when splitting an extent unless
3834		 * m_len is 0 (bug) or extent has been corrupted
 
3835		 */
3836		if (unlikely(ret == 0)) {
3837			EXT4_ERROR_INODE(inode,
3838					 "unexpected ret == 0, m_len = %u",
3839					 map->m_len);
3840			err = -EFSCORRUPTED;
3841			goto out2;
3842		}
3843		map->m_flags |= EXT4_MAP_UNWRITTEN;
3844		goto out;
3845	}
3846	/* IO end_io complete, convert the filled extent to written */
3847	if (flags & EXT4_GET_BLOCKS_CONVERT) {
3848		err = ext4_convert_unwritten_extents_endio(handle, inode, map,
3849							   ppath);
3850		if (err < 0)
3851			goto out2;
3852		ext4_update_inode_fsync_trans(handle, inode, 1);
3853		goto map_out;
 
 
 
3854	}
3855	/* buffered IO cases */
3856	/*
3857	 * repeat fallocate creation request
3858	 * we already have an unwritten extent
3859	 */
3860	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
3861		map->m_flags |= EXT4_MAP_UNWRITTEN;
3862		goto map_out;
3863	}
3864
3865	/* buffered READ or buffered write_begin() lookup */
3866	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3867		/*
3868		 * We have blocks reserved already.  We
3869		 * return allocated blocks so that delalloc
3870		 * won't do block reservation for us.  But
3871		 * the buffer head will be unmapped so that
3872		 * a read from the block returns 0s.
3873		 */
3874		map->m_flags |= EXT4_MAP_UNWRITTEN;
3875		goto out1;
3876	}
3877
3878	/*
3879	 * Default case when (flags & EXT4_GET_BLOCKS_CREATE) == 1.
3880	 * For buffered writes, at writepage time, etc.  Convert a
3881	 * discovered unwritten extent to written.
3882	 */
3883	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
3884	if (ret < 0) {
 
 
 
 
 
3885		err = ret;
3886		goto out2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887	}
3888	ext4_update_inode_fsync_trans(handle, inode, 1);
3889	/*
3890	 * shouldn't get a 0 return when converting an unwritten extent
3891	 * unless m_len is 0 (bug) or extent has been corrupted
 
 
 
3892	 */
3893	if (unlikely(ret == 0)) {
3894		EXT4_ERROR_INODE(inode, "unexpected ret == 0, m_len = %u",
3895				 map->m_len);
3896		err = -EFSCORRUPTED;
3897		goto out2;
3898	}
3899
3900out:
3901	allocated = ret;
3902	map->m_flags |= EXT4_MAP_NEW;
3903map_out:
3904	map->m_flags |= EXT4_MAP_MAPPED;
3905out1:
3906	map->m_pblk = newblock;
3907	if (allocated > map->m_len)
3908		allocated = map->m_len;
 
 
3909	map->m_len = allocated;
3910	ext4_ext_show_leaf(inode, path);
3911out2:
 
 
 
 
3912	return err ? err : allocated;
3913}
3914
3915/*
3916 * get_implied_cluster_alloc - check to see if the requested
3917 * allocation (in the map structure) overlaps with a cluster already
3918 * allocated in an extent.
3919 *	@sb	The filesystem superblock structure
3920 *	@map	The requested lblk->pblk mapping
3921 *	@ex	The extent structure which might contain an implied
3922 *			cluster allocation
3923 *
3924 * This function is called by ext4_ext_map_blocks() after we failed to
3925 * find blocks that were already in the inode's extent tree.  Hence,
3926 * we know that the beginning of the requested region cannot overlap
3927 * the extent from the inode's extent tree.  There are three cases we
3928 * want to catch.  The first is this case:
3929 *
3930 *		 |--- cluster # N--|
3931 *    |--- extent ---|	|---- requested region ---|
3932 *			|==========|
3933 *
3934 * The second case that we need to test for is this one:
3935 *
3936 *   |--------- cluster # N ----------------|
3937 *	   |--- requested region --|   |------- extent ----|
3938 *	   |=======================|
3939 *
3940 * The third case is when the requested region lies between two extents
3941 * within the same cluster:
3942 *          |------------- cluster # N-------------|
3943 * |----- ex -----|                  |---- ex_right ----|
3944 *                  |------ requested region ------|
3945 *                  |================|
3946 *
3947 * In each of the above cases, we need to set the map->m_pblk and
3948 * map->m_len so it corresponds to the return the extent labelled as
3949 * "|====|" from cluster #N, since it is already in use for data in
3950 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3951 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3952 * as a new "allocated" block region.  Otherwise, we will return 0 and
3953 * ext4_ext_map_blocks() will then allocate one or more new clusters
3954 * by calling ext4_mb_new_blocks().
3955 */
3956static int get_implied_cluster_alloc(struct super_block *sb,
3957				     struct ext4_map_blocks *map,
3958				     struct ext4_extent *ex,
3959				     struct ext4_ext_path *path)
3960{
3961	struct ext4_sb_info *sbi = EXT4_SB(sb);
3962	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
3963	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3964	ext4_lblk_t rr_cluster_start;
3965	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3966	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3967	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3968
3969	/* The extent passed in that we are trying to match */
3970	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3971	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3972
3973	/* The requested region passed into ext4_map_blocks() */
3974	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3975
3976	if ((rr_cluster_start == ex_cluster_end) ||
3977	    (rr_cluster_start == ex_cluster_start)) {
3978		if (rr_cluster_start == ex_cluster_end)
3979			ee_start += ee_len - 1;
3980		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
3981		map->m_len = min(map->m_len,
3982				 (unsigned) sbi->s_cluster_ratio - c_offset);
3983		/*
3984		 * Check for and handle this case:
3985		 *
3986		 *   |--------- cluster # N-------------|
3987		 *		       |------- extent ----|
3988		 *	   |--- requested region ---|
3989		 *	   |===========|
3990		 */
3991
3992		if (map->m_lblk < ee_block)
3993			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3994
3995		/*
3996		 * Check for the case where there is already another allocated
3997		 * block to the right of 'ex' but before the end of the cluster.
3998		 *
3999		 *          |------------- cluster # N-------------|
4000		 * |----- ex -----|                  |---- ex_right ----|
4001		 *                  |------ requested region ------|
4002		 *                  |================|
4003		 */
4004		if (map->m_lblk > ee_block) {
4005			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4006			map->m_len = min(map->m_len, next - map->m_lblk);
4007		}
4008
4009		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4010		return 1;
4011	}
4012
4013	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4014	return 0;
4015}
4016
4017
4018/*
4019 * Block allocation/map/preallocation routine for extents based files
4020 *
4021 *
4022 * Need to be called with
4023 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4024 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4025 *
4026 * return > 0, number of of blocks already mapped/allocated
4027 *          if create == 0 and these are pre-allocated blocks
4028 *          	buffer head is unmapped
4029 *          otherwise blocks are mapped
4030 *
4031 * return = 0, if plain look up failed (blocks have not been allocated)
4032 *          buffer head is unmapped
4033 *
4034 * return < 0, error case.
4035 */
4036int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4037			struct ext4_map_blocks *map, int flags)
4038{
4039	struct ext4_ext_path *path = NULL;
4040	struct ext4_extent newex, *ex, *ex2;
4041	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4042	ext4_fsblk_t newblock = 0, pblk;
4043	int err = 0, depth, ret;
4044	unsigned int allocated = 0, offset = 0;
4045	unsigned int allocated_clusters = 0;
 
4046	struct ext4_allocation_request ar;
4047	ext4_lblk_t cluster_offset;
 
4048
4049	ext_debug(inode, "blocks %u/%u requested\n", map->m_lblk, map->m_len);
 
4050	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4052	/* find extent for this block */
4053	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4054	if (IS_ERR(path)) {
4055		err = PTR_ERR(path);
4056		path = NULL;
4057		goto out;
4058	}
4059
4060	depth = ext_depth(inode);
4061
4062	/*
4063	 * consistent leaf must not be empty;
4064	 * this situation is possible, though, _during_ tree modification;
4065	 * this is why assert can't be put in ext4_find_extent()
4066	 */
4067	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4068		EXT4_ERROR_INODE(inode, "bad extent address "
4069				 "lblock: %lu, depth: %d pblock %lld",
4070				 (unsigned long) map->m_lblk, depth,
4071				 path[depth].p_block);
4072		err = -EFSCORRUPTED;
4073		goto out;
4074	}
4075
4076	ex = path[depth].p_ext;
4077	if (ex) {
4078		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4079		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4080		unsigned short ee_len;
4081
4082
4083		/*
4084		 * unwritten extents are treated as holes, except that
4085		 * we split out initialized portions during a write.
4086		 */
4087		ee_len = ext4_ext_get_actual_len(ex);
4088
4089		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4090
4091		/* if found extent covers block, simply return it */
4092		if (in_range(map->m_lblk, ee_block, ee_len)) {
4093			newblock = map->m_lblk - ee_block + ee_start;
4094			/* number of remaining blocks in the extent */
4095			allocated = ee_len - (map->m_lblk - ee_block);
4096			ext_debug(inode, "%u fit into %u:%d -> %llu\n",
4097				  map->m_lblk, ee_block, ee_len, newblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4098
4099			/*
4100			 * If the extent is initialized check whether the
4101			 * caller wants to convert it to unwritten.
4102			 */
4103			if ((!ext4_ext_is_unwritten(ex)) &&
4104			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4105				err = convert_initialized_extent(handle,
4106					inode, map, &path, &allocated);
4107				goto out;
4108			} else if (!ext4_ext_is_unwritten(ex)) {
4109				map->m_flags |= EXT4_MAP_MAPPED;
4110				map->m_pblk = newblock;
4111				if (allocated > map->m_len)
4112					allocated = map->m_len;
4113				map->m_len = allocated;
4114				ext4_ext_show_leaf(inode, path);
4115				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4116			}
4117
4118			ret = ext4_ext_handle_unwritten_extents(
4119				handle, inode, map, &path, flags,
4120				allocated, newblock);
4121			if (ret < 0)
4122				err = ret;
4123			else
4124				allocated = ret;
4125			goto out;
4126		}
4127	}
4128
4129	/*
4130	 * requested block isn't allocated yet;
4131	 * we couldn't try to create block if create flag is zero
4132	 */
4133	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4134		ext4_lblk_t hole_start, hole_len;
4135
4136		hole_start = map->m_lblk;
4137		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4138		/*
4139		 * put just found gap into cache to speed up
4140		 * subsequent requests
4141		 */
4142		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4143
4144		/* Update hole_len to reflect hole size after map->m_lblk */
4145		if (hole_start != map->m_lblk)
4146			hole_len -= map->m_lblk - hole_start;
4147		map->m_pblk = 0;
4148		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4149
4150		goto out;
4151	}
4152
4153	/*
4154	 * Okay, we need to do block allocation.
4155	 */
4156	newex.ee_block = cpu_to_le32(map->m_lblk);
4157	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4158
4159	/*
4160	 * If we are doing bigalloc, check to see if the extent returned
4161	 * by ext4_find_extent() implies a cluster we can use.
4162	 */
4163	if (cluster_offset && ex &&
4164	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4165		ar.len = allocated = map->m_len;
4166		newblock = map->m_pblk;
4167		goto got_allocated_blocks;
4168	}
4169
4170	/* find neighbour allocated blocks */
4171	ar.lleft = map->m_lblk;
4172	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4173	if (err)
4174		goto out;
4175	ar.lright = map->m_lblk;
4176	ex2 = NULL;
4177	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4178	if (err)
4179		goto out;
4180
4181	/* Check if the extent after searching to the right implies a
4182	 * cluster we can use. */
4183	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4184	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4185		ar.len = allocated = map->m_len;
4186		newblock = map->m_pblk;
4187		goto got_allocated_blocks;
4188	}
4189
4190	/*
4191	 * See if request is beyond maximum number of blocks we can have in
4192	 * a single extent. For an initialized extent this limit is
4193	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4194	 * EXT_UNWRITTEN_MAX_LEN.
4195	 */
4196	if (map->m_len > EXT_INIT_MAX_LEN &&
4197	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4198		map->m_len = EXT_INIT_MAX_LEN;
4199	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4200		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4201		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4202
4203	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
 
4204	newex.ee_len = cpu_to_le16(map->m_len);
4205	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4206	if (err)
4207		allocated = ext4_ext_get_actual_len(&newex);
4208	else
4209		allocated = map->m_len;
4210
4211	/* allocate new block */
4212	ar.inode = inode;
4213	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4214	ar.logical = map->m_lblk;
4215	/*
4216	 * We calculate the offset from the beginning of the cluster
4217	 * for the logical block number, since when we allocate a
4218	 * physical cluster, the physical block should start at the
4219	 * same offset from the beginning of the cluster.  This is
4220	 * needed so that future calls to get_implied_cluster_alloc()
4221	 * work correctly.
4222	 */
4223	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4224	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4225	ar.goal -= offset;
4226	ar.logical -= offset;
4227	if (S_ISREG(inode->i_mode))
4228		ar.flags = EXT4_MB_HINT_DATA;
4229	else
4230		/* disable in-core preallocation for non-regular files */
4231		ar.flags = 0;
4232	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4233		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4234	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4235		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4236	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4237		ar.flags |= EXT4_MB_USE_RESERVED;
4238	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4239	if (!newblock)
4240		goto out;
4241	allocated_clusters = ar.len;
4242	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4243	ext_debug(inode, "allocate new block: goal %llu, found %llu/%u, requested %u\n",
4244		  ar.goal, newblock, ar.len, allocated);
4245	if (ar.len > allocated)
4246		ar.len = allocated;
4247
4248got_allocated_blocks:
4249	/* try to insert new extent into found leaf and return */
4250	pblk = newblock + offset;
4251	ext4_ext_store_pblock(&newex, pblk);
4252	newex.ee_len = cpu_to_le16(ar.len);
4253	/* Mark unwritten */
4254	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4255		ext4_ext_mark_unwritten(&newex);
4256		map->m_flags |= EXT4_MAP_UNWRITTEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4257	}
4258
4259	err = ext4_ext_insert_extent(handle, inode, &path, &newex, flags);
4260	if (err) {
4261		if (allocated_clusters) {
4262			int fb_flags = 0;
4263
4264			/*
4265			 * free data blocks we just allocated.
4266			 * not a good idea to call discard here directly,
4267			 * but otherwise we'd need to call it every free().
4268			 */
4269			ext4_discard_preallocations(inode, 0);
4270			if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4271				fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE;
4272			ext4_free_blocks(handle, inode, NULL, newblock,
4273					 EXT4_C2B(sbi, allocated_clusters),
4274					 fb_flags);
4275		}
4276		goto out;
4277	}
4278
4279	/*
4280	 * Reduce the reserved cluster count to reflect successful deferred
4281	 * allocation of delayed allocated clusters or direct allocation of
4282	 * clusters discovered to be delayed allocated.  Once allocated, a
4283	 * cluster is not included in the reserved count.
4284	 */
4285	if (test_opt(inode->i_sb, DELALLOC) && allocated_clusters) {
4286		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4287			/*
4288			 * When allocating delayed allocated clusters, simply
4289			 * reduce the reserved cluster count and claim quota
4290			 */
4291			ext4_da_update_reserve_space(inode, allocated_clusters,
4292							1);
4293		} else {
4294			ext4_lblk_t lblk, len;
4295			unsigned int n;
4296
4297			/*
4298			 * When allocating non-delayed allocated clusters
4299			 * (from fallocate, filemap, DIO, or clusters
4300			 * allocated when delalloc has been disabled by
4301			 * ext4_nonda_switch), reduce the reserved cluster
4302			 * count by the number of allocated clusters that
4303			 * have previously been delayed allocated.  Quota
4304			 * has been claimed by ext4_mb_new_blocks() above,
4305			 * so release the quota reservations made for any
4306			 * previously delayed allocated clusters.
4307			 */
4308			lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk);
4309			len = allocated_clusters << sbi->s_cluster_bits;
4310			n = ext4_es_delayed_clu(inode, lblk, len);
4311			if (n > 0)
4312				ext4_da_update_reserve_space(inode, (int) n, 0);
4313		}
4314	}
4315
4316	/*
4317	 * Cache the extent and update transaction to commit on fdatasync only
4318	 * when it is _not_ an unwritten extent.
4319	 */
4320	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
 
4321		ext4_update_inode_fsync_trans(handle, inode, 1);
4322	else
4323		ext4_update_inode_fsync_trans(handle, inode, 0);
4324
4325	map->m_flags |= (EXT4_MAP_NEW | EXT4_MAP_MAPPED);
4326	map->m_pblk = pblk;
4327	map->m_len = ar.len;
4328	allocated = map->m_len;
4329	ext4_ext_show_leaf(inode, path);
 
 
 
 
 
 
 
 
 
 
4330
4331out:
4332	ext4_ext_drop_refs(path);
4333	kfree(path);
4334
4335	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4336				       err ? err : allocated);
4337	return err ? err : allocated;
4338}
4339
4340int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4341{
 
4342	struct super_block *sb = inode->i_sb;
4343	ext4_lblk_t last_block;
 
4344	int err = 0;
4345
4346	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4347	 * TODO: optimization is possible here.
4348	 * Probably we need not scan at all,
4349	 * because page truncation is enough.
4350	 */
4351
4352	/* we have to know where to truncate from in crash case */
4353	EXT4_I(inode)->i_disksize = inode->i_size;
4354	err = ext4_mark_inode_dirty(handle, inode);
4355	if (err)
4356		return err;
4357
4358	last_block = (inode->i_size + sb->s_blocksize - 1)
4359			>> EXT4_BLOCK_SIZE_BITS(sb);
4360retry:
4361	err = ext4_es_remove_extent(inode, last_block,
4362				    EXT_MAX_BLOCKS - last_block);
4363	if (err == -ENOMEM) {
4364		cond_resched();
4365		congestion_wait(BLK_RW_ASYNC, HZ/50);
4366		goto retry;
4367	}
4368	if (err)
4369		return err;
4370retry_remove_space:
4371	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4372	if (err == -ENOMEM) {
4373		cond_resched();
4374		congestion_wait(BLK_RW_ASYNC, HZ/50);
4375		goto retry_remove_space;
4376	}
4377	return err;
4378}
4379
4380static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4381				  ext4_lblk_t len, loff_t new_size,
4382				  int flags)
4383{
4384	struct inode *inode = file_inode(file);
4385	handle_t *handle;
4386	int ret = 0;
4387	int ret2 = 0, ret3 = 0;
4388	int retries = 0;
4389	int depth = 0;
4390	struct ext4_map_blocks map;
4391	unsigned int credits;
4392	loff_t epos;
4393
4394	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4395	map.m_lblk = offset;
4396	map.m_len = len;
4397	/*
4398	 * Don't normalize the request if it can fit in one extent so
4399	 * that it doesn't get unnecessarily split into multiple
4400	 * extents.
4401	 */
4402	if (len <= EXT_UNWRITTEN_MAX_LEN)
4403		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4404
 
4405	/*
4406	 * credits to insert 1 extent into extent tree
 
 
 
 
4407	 */
4408	credits = ext4_chunk_trans_blocks(inode, len);
4409	depth = ext_depth(inode);
4410
4411retry:
4412	while (ret >= 0 && len) {
4413		/*
4414		 * Recalculate credits when extent tree depth changes.
4415		 */
4416		if (depth != ext_depth(inode)) {
4417			credits = ext4_chunk_trans_blocks(inode, len);
4418			depth = ext_depth(inode);
4419		}
4420
4421		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4422					    credits);
4423		if (IS_ERR(handle)) {
4424			ret = PTR_ERR(handle);
4425			break;
4426		}
4427		ret = ext4_map_blocks(handle, inode, &map, flags);
4428		if (ret <= 0) {
4429			ext4_debug("inode #%lu: block %u: len %u: "
4430				   "ext4_ext_map_blocks returned %d",
4431				   inode->i_ino, map.m_lblk,
4432				   map.m_len, ret);
4433			ext4_mark_inode_dirty(handle, inode);
4434			ret2 = ext4_journal_stop(handle);
4435			break;
4436		}
4437		map.m_lblk += ret;
4438		map.m_len = len = len - ret;
4439		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4440		inode->i_ctime = current_time(inode);
4441		if (new_size) {
4442			if (epos > new_size)
4443				epos = new_size;
4444			if (ext4_update_inode_size(inode, epos) & 0x1)
4445				inode->i_mtime = inode->i_ctime;
4446		}
4447		ret2 = ext4_mark_inode_dirty(handle, inode);
4448		ext4_update_inode_fsync_trans(handle, inode, 1);
4449		ret3 = ext4_journal_stop(handle);
4450		ret2 = ret3 ? ret3 : ret2;
4451		if (unlikely(ret2))
4452			break;
4453	}
4454	if (ret == -ENOSPC &&
4455			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4456		ret = 0;
4457		goto retry;
4458	}
4459
4460	return ret > 0 ? ret2 : ret;
4461}
4462
4463static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len);
 
 
 
4464
4465static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len);
4466
4467static long ext4_zero_range(struct file *file, loff_t offset,
4468			    loff_t len, int mode)
4469{
4470	struct inode *inode = file_inode(file);
4471	handle_t *handle = NULL;
4472	unsigned int max_blocks;
4473	loff_t new_size = 0;
4474	int ret = 0;
4475	int flags;
4476	int credits;
4477	int partial_begin, partial_end;
4478	loff_t start, end;
4479	ext4_lblk_t lblk;
4480	unsigned int blkbits = inode->i_blkbits;
4481
4482	trace_ext4_zero_range(inode, offset, len, mode);
4483
4484	/* Call ext4_force_commit to flush all data in case of data=journal. */
4485	if (ext4_should_journal_data(inode)) {
4486		ret = ext4_force_commit(inode->i_sb);
4487		if (ret)
4488			return ret;
4489	}
4490
4491	/*
4492	 * Round up offset. This is not fallocate, we need to zero out
4493	 * blocks, so convert interior block aligned part of the range to
4494	 * unwritten and possibly manually zero out unaligned parts of the
4495	 * range.
4496	 */
4497	start = round_up(offset, 1 << blkbits);
4498	end = round_down((offset + len), 1 << blkbits);
4499
4500	if (start < offset || end > offset + len)
4501		return -EINVAL;
4502	partial_begin = offset & ((1 << blkbits) - 1);
4503	partial_end = (offset + len) & ((1 << blkbits) - 1);
4504
4505	lblk = start >> blkbits;
4506	max_blocks = (end >> blkbits);
4507	if (max_blocks < lblk)
4508		max_blocks = 0;
4509	else
4510		max_blocks -= lblk;
4511
4512	inode_lock(inode);
4513
4514	/*
4515	 * Indirect files do not support unwritten extents
4516	 */
4517	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4518		ret = -EOPNOTSUPP;
4519		goto out_mutex;
4520	}
4521
4522	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4523	    (offset + len > inode->i_size ||
4524	     offset + len > EXT4_I(inode)->i_disksize)) {
4525		new_size = offset + len;
4526		ret = inode_newsize_ok(inode, new_size);
4527		if (ret)
4528			goto out_mutex;
4529	}
4530
4531	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4532
4533	/* Wait all existing dio workers, newcomers will block on i_mutex */
4534	inode_dio_wait(inode);
4535
4536	/* Preallocate the range including the unaligned edges */
4537	if (partial_begin || partial_end) {
4538		ret = ext4_alloc_file_blocks(file,
4539				round_down(offset, 1 << blkbits) >> blkbits,
4540				(round_up((offset + len), 1 << blkbits) -
4541				 round_down(offset, 1 << blkbits)) >> blkbits,
4542				new_size, flags);
4543		if (ret)
4544			goto out_mutex;
4545
4546	}
4547
4548	/* Zero range excluding the unaligned edges */
4549	if (max_blocks > 0) {
4550		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4551			  EXT4_EX_NOCACHE);
4552
4553		/*
4554		 * Prevent page faults from reinstantiating pages we have
4555		 * released from page cache.
4556		 */
4557		down_write(&EXT4_I(inode)->i_mmap_sem);
4558
4559		ret = ext4_break_layouts(inode);
4560		if (ret) {
4561			up_write(&EXT4_I(inode)->i_mmap_sem);
4562			goto out_mutex;
4563		}
4564
4565		ret = ext4_update_disksize_before_punch(inode, offset, len);
4566		if (ret) {
4567			up_write(&EXT4_I(inode)->i_mmap_sem);
4568			goto out_mutex;
4569		}
4570		/* Now release the pages and zero block aligned part of pages */
4571		truncate_pagecache_range(inode, start, end - 1);
4572		inode->i_mtime = inode->i_ctime = current_time(inode);
4573
4574		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4575					     flags);
4576		up_write(&EXT4_I(inode)->i_mmap_sem);
4577		if (ret)
4578			goto out_mutex;
4579	}
4580	if (!partial_begin && !partial_end)
4581		goto out_mutex;
4582
4583	/*
4584	 * In worst case we have to writeout two nonadjacent unwritten
4585	 * blocks and update the inode
4586	 */
4587	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4588	if (ext4_should_journal_data(inode))
4589		credits += 2;
4590	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4591	if (IS_ERR(handle)) {
4592		ret = PTR_ERR(handle);
4593		ext4_std_error(inode->i_sb, ret);
4594		goto out_mutex;
4595	}
4596
4597	inode->i_mtime = inode->i_ctime = current_time(inode);
4598	if (new_size)
4599		ext4_update_inode_size(inode, new_size);
4600	ret = ext4_mark_inode_dirty(handle, inode);
4601	if (unlikely(ret))
4602		goto out_handle;
4603
4604	/* Zero out partial block at the edges of the range */
4605	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4606	if (ret >= 0)
4607		ext4_update_inode_fsync_trans(handle, inode, 1);
4608
4609	if (file->f_flags & O_SYNC)
4610		ext4_handle_sync(handle);
4611
4612out_handle:
4613	ext4_journal_stop(handle);
4614out_mutex:
4615	inode_unlock(inode);
4616	return ret;
4617}
4618
4619/*
4620 * preallocate space for a file. This implements ext4's fallocate file
4621 * operation, which gets called from sys_fallocate system call.
4622 * For block-mapped files, posix_fallocate should fall back to the method
4623 * of writing zeroes to the required new blocks (the same behavior which is
4624 * expected for file systems which do not support fallocate() system call).
4625 */
4626long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4627{
4628	struct inode *inode = file_inode(file);
4629	loff_t new_size = 0;
 
4630	unsigned int max_blocks;
4631	int ret = 0;
4632	int flags;
4633	ext4_lblk_t lblk;
4634	unsigned int blkbits = inode->i_blkbits;
 
4635
4636	/*
4637	 * Encrypted inodes can't handle collapse range or insert
4638	 * range since we would need to re-encrypt blocks with a
4639	 * different IV or XTS tweak (which are based on the logical
4640	 * block number).
4641	 */
4642	if (IS_ENCRYPTED(inode) &&
4643	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
4644		return -EOPNOTSUPP;
4645
4646	/* Return error if mode is not supported */
4647	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4648		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4649		     FALLOC_FL_INSERT_RANGE))
4650		return -EOPNOTSUPP;
4651
4652	if (mode & FALLOC_FL_PUNCH_HOLE)
4653		return ext4_punch_hole(inode, offset, len);
4654
4655	ret = ext4_convert_inline_data(inode);
4656	if (ret)
4657		return ret;
4658
4659	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4660		return ext4_collapse_range(inode, offset, len);
4661
4662	if (mode & FALLOC_FL_INSERT_RANGE)
4663		return ext4_insert_range(inode, offset, len);
4664
4665	if (mode & FALLOC_FL_ZERO_RANGE)
4666		return ext4_zero_range(file, offset, len, mode);
4667
4668	trace_ext4_fallocate_enter(inode, offset, len, mode);
4669	lblk = offset >> blkbits;
4670
4671	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4672	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4673
4674	inode_lock(inode);
4675
4676	/*
4677	 * We only support preallocation for extent-based files only
4678	 */
4679	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4680		ret = -EOPNOTSUPP;
4681		goto out;
 
 
 
 
4682	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4683
4684	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4685	    (offset + len > inode->i_size ||
4686	     offset + len > EXT4_I(inode)->i_disksize)) {
4687		new_size = offset + len;
4688		ret = inode_newsize_ok(inode, new_size);
4689		if (ret)
4690			goto out;
4691	}
4692
4693	/* Wait all existing dio workers, newcomers will block on i_mutex */
4694	inode_dio_wait(inode);
4695
4696	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4697	if (ret)
4698		goto out;
4699
4700	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4701		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4702						EXT4_I(inode)->i_sync_tid);
4703	}
4704out:
4705	inode_unlock(inode);
4706	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4707	return ret;
4708}
4709
4710/*
4711 * This function convert a range of blocks to written extents
4712 * The caller of this function will pass the start offset and the size.
4713 * all unwritten extents within this range will be converted to
4714 * written extents.
4715 *
4716 * This function is called from the direct IO end io call back
4717 * function, to convert the fallocated extents after IO is completed.
4718 * Returns 0 on success.
4719 */
4720int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4721				   loff_t offset, ssize_t len)
4722{
 
4723	unsigned int max_blocks;
4724	int ret = 0, ret2 = 0, ret3 = 0;
 
4725	struct ext4_map_blocks map;
4726	unsigned int blkbits = inode->i_blkbits;
4727	unsigned int credits = 0;
4728
4729	map.m_lblk = offset >> blkbits;
4730	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4731
4732	if (!handle) {
4733		/*
4734		 * credits to insert 1 extent into extent tree
4735		 */
4736		credits = ext4_chunk_trans_blocks(inode, max_blocks);
4737	}
 
 
4738	while (ret >= 0 && ret < max_blocks) {
4739		map.m_lblk += ret;
4740		map.m_len = (max_blocks -= ret);
4741		if (credits) {
4742			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4743						    credits);
4744			if (IS_ERR(handle)) {
4745				ret = PTR_ERR(handle);
4746				break;
4747			}
4748		}
4749		ret = ext4_map_blocks(handle, inode, &map,
4750				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4751		if (ret <= 0)
4752			ext4_warning(inode->i_sb,
4753				     "inode #%lu: block %u: len %u: "
4754				     "ext4_ext_map_blocks returned %d",
4755				     inode->i_ino, map.m_lblk,
4756				     map.m_len, ret);
4757		ret2 = ext4_mark_inode_dirty(handle, inode);
4758		if (credits) {
4759			ret3 = ext4_journal_stop(handle);
4760			if (unlikely(ret3))
4761				ret2 = ret3;
4762		}
4763
4764		if (ret <= 0 || ret2)
4765			break;
4766	}
4767	return ret > 0 ? ret2 : ret;
4768}
4769
4770int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end)
4771{
4772	int ret, err = 0;
4773	struct ext4_io_end_vec *io_end_vec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4774
4775	/*
4776	 * This is somewhat ugly but the idea is clear: When transaction is
4777	 * reserved, everything goes into it. Otherwise we rather start several
4778	 * smaller transactions for conversion of each extent separately.
4779	 */
4780	if (handle) {
4781		handle = ext4_journal_start_reserved(handle,
4782						     EXT4_HT_EXT_CONVERT);
4783		if (IS_ERR(handle))
4784			return PTR_ERR(handle);
4785	}
4786
4787	list_for_each_entry(io_end_vec, &io_end->list_vec, list) {
4788		ret = ext4_convert_unwritten_extents(handle, io_end->inode,
4789						     io_end_vec->offset,
4790						     io_end_vec->size);
4791		if (ret)
4792			break;
4793	}
4794
4795	if (handle)
4796		err = ext4_journal_stop(handle);
4797
4798	return ret < 0 ? ret : err;
 
 
 
 
 
 
4799}
4800
4801static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap)
 
 
 
 
4802{
4803	__u64 physical = 0;
4804	__u64 length = 0;
 
4805	int blockbits = inode->i_sb->s_blocksize_bits;
4806	int error = 0;
4807	u16 iomap_type;
4808
4809	/* in-inode? */
4810	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4811		struct ext4_iloc iloc;
4812		int offset;	/* offset of xattr in inode */
4813
4814		error = ext4_get_inode_loc(inode, &iloc);
4815		if (error)
4816			return error;
4817		physical = (__u64)iloc.bh->b_blocknr << blockbits;
4818		offset = EXT4_GOOD_OLD_INODE_SIZE +
4819				EXT4_I(inode)->i_extra_isize;
4820		physical += offset;
4821		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
 
4822		brelse(iloc.bh);
4823		iomap_type = IOMAP_INLINE;
4824	} else if (EXT4_I(inode)->i_file_acl) { /* external block */
4825		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4826		length = inode->i_sb->s_blocksize;
4827		iomap_type = IOMAP_MAPPED;
4828	} else {
4829		/* no in-inode or external block for xattr, so return -ENOENT */
4830		error = -ENOENT;
4831		goto out;
4832	}
4833
4834	iomap->addr = physical;
4835	iomap->offset = 0;
4836	iomap->length = length;
4837	iomap->type = iomap_type;
4838	iomap->flags = 0;
4839out:
4840	return error;
4841}
4842
4843static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset,
4844				  loff_t length, unsigned flags,
4845				  struct iomap *iomap, struct iomap *srcmap)
4846{
4847	int error;
4848
4849	error = ext4_iomap_xattr_fiemap(inode, iomap);
4850	if (error == 0 && (offset >= iomap->length))
4851		error = -ENOENT;
4852	return error;
4853}
4854
4855static const struct iomap_ops ext4_iomap_xattr_ops = {
4856	.iomap_begin		= ext4_iomap_xattr_begin,
4857};
4858
4859static int ext4_fiemap_check_ranges(struct inode *inode, u64 start, u64 *len)
 
 
 
 
 
 
 
 
4860{
4861	u64 maxbytes;
 
 
 
 
 
 
 
 
 
4862
4863	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4864		maxbytes = inode->i_sb->s_maxbytes;
4865	else
4866		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
4867
4868	if (*len == 0)
4869		return -EINVAL;
4870	if (start > maxbytes)
4871		return -EFBIG;
4872
4873	/*
4874	 * Shrink request scope to what the fs can actually handle.
4875	 */
4876	if (*len > maxbytes || (maxbytes - *len) < start)
4877		*len = maxbytes - start;
4878	return 0;
4879}
4880
4881int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4882		u64 start, u64 len)
4883{
4884	int error = 0;
4885
4886	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4887		error = ext4_ext_precache(inode);
4888		if (error)
4889			return error;
4890		fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE;
4891	}
4892
4893	/*
4894	 * For bitmap files the maximum size limit could be smaller than
4895	 * s_maxbytes, so check len here manually instead of just relying on the
4896	 * generic check.
4897	 */
4898	error = ext4_fiemap_check_ranges(inode, start, &len);
4899	if (error)
4900		return error;
 
4901
4902	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4903		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
4904		return iomap_fiemap(inode, fieinfo, start, len,
4905				    &ext4_iomap_xattr_ops);
4906	}
4907
4908	return iomap_fiemap(inode, fieinfo, start, len, &ext4_iomap_report_ops);
4909}
4910
4911int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo,
4912		      __u64 start, __u64 len)
4913{
4914	ext4_lblk_t start_blk, len_blks;
4915	__u64 last_blk;
4916	int error = 0;
4917
4918	if (ext4_has_inline_data(inode)) {
4919		int has_inline;
4920
4921		down_read(&EXT4_I(inode)->xattr_sem);
4922		has_inline = ext4_has_inline_data(inode);
4923		up_read(&EXT4_I(inode)->xattr_sem);
4924		if (has_inline)
4925			return 0;
4926	}
4927
4928	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4929		error = ext4_ext_precache(inode);
4930		if (error)
4931			return error;
4932		fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE;
4933	}
4934
4935	error = fiemap_prep(inode, fieinfo, start, &len, 0);
4936	if (error)
4937		return error;
4938
4939	error = ext4_fiemap_check_ranges(inode, start, &len);
4940	if (error)
4941		return error;
 
4942
4943	start_blk = start >> inode->i_sb->s_blocksize_bits;
4944	last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4945	if (last_blk >= EXT_MAX_BLOCKS)
4946		last_blk = EXT_MAX_BLOCKS-1;
4947	len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4948
4949	/*
4950	 * Walk the extent tree gathering extent information
4951	 * and pushing extents back to the user.
4952	 */
4953	return ext4_fill_es_cache_info(inode, start_blk, len_blks, fieinfo);
4954}
4955
4956/*
4957 * ext4_access_path:
4958 * Function to access the path buffer for marking it dirty.
4959 * It also checks if there are sufficient credits left in the journal handle
4960 * to update path.
4961 */
4962static int
4963ext4_access_path(handle_t *handle, struct inode *inode,
4964		struct ext4_ext_path *path)
4965{
4966	int credits, err;
4967
4968	if (!ext4_handle_valid(handle))
4969		return 0;
4970
4971	/*
4972	 * Check if need to extend journal credits
4973	 * 3 for leaf, sb, and inode plus 2 (bmap and group
4974	 * descriptor) for each block group; assume two block
4975	 * groups
4976	 */
4977	credits = ext4_writepage_trans_blocks(inode);
4978	err = ext4_datasem_ensure_credits(handle, inode, 7, credits, 0);
4979	if (err < 0)
4980		return err;
4981
4982	err = ext4_ext_get_access(handle, inode, path);
4983	return err;
4984}
4985
4986/*
4987 * ext4_ext_shift_path_extents:
4988 * Shift the extents of a path structure lying between path[depth].p_ext
4989 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
4990 * if it is right shift or left shift operation.
4991 */
4992static int
4993ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
4994			    struct inode *inode, handle_t *handle,
4995			    enum SHIFT_DIRECTION SHIFT)
4996{
4997	int depth, err = 0;
4998	struct ext4_extent *ex_start, *ex_last;
4999	bool update = false;
5000	depth = path->p_depth;
5001
5002	while (depth >= 0) {
5003		if (depth == path->p_depth) {
5004			ex_start = path[depth].p_ext;
5005			if (!ex_start)
5006				return -EFSCORRUPTED;
5007
5008			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5009
5010			err = ext4_access_path(handle, inode, path + depth);
5011			if (err)
5012				goto out;
5013
5014			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5015				update = true;
5016
5017			while (ex_start <= ex_last) {
5018				if (SHIFT == SHIFT_LEFT) {
5019					le32_add_cpu(&ex_start->ee_block,
5020						-shift);
5021					/* Try to merge to the left. */
5022					if ((ex_start >
5023					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5024					    &&
5025					    ext4_ext_try_to_merge_right(inode,
5026					    path, ex_start - 1))
5027						ex_last--;
5028					else
5029						ex_start++;
5030				} else {
5031					le32_add_cpu(&ex_last->ee_block, shift);
5032					ext4_ext_try_to_merge_right(inode, path,
5033						ex_last);
5034					ex_last--;
5035				}
5036			}
5037			err = ext4_ext_dirty(handle, inode, path + depth);
5038			if (err)
5039				goto out;
5040
5041			if (--depth < 0 || !update)
5042				break;
5043		}
5044
5045		/* Update index too */
5046		err = ext4_access_path(handle, inode, path + depth);
5047		if (err)
5048			goto out;
5049
5050		if (SHIFT == SHIFT_LEFT)
5051			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5052		else
5053			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5054		err = ext4_ext_dirty(handle, inode, path + depth);
5055		if (err)
5056			goto out;
5057
5058		/* we are done if current index is not a starting index */
5059		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5060			break;
5061
5062		depth--;
5063	}
5064
5065out:
5066	return err;
5067}
5068
5069/*
5070 * ext4_ext_shift_extents:
5071 * All the extents which lies in the range from @start to the last allocated
5072 * block for the @inode are shifted either towards left or right (depending
5073 * upon @SHIFT) by @shift blocks.
5074 * On success, 0 is returned, error otherwise.
5075 */
5076static int
5077ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5078		       ext4_lblk_t start, ext4_lblk_t shift,
5079		       enum SHIFT_DIRECTION SHIFT)
5080{
5081	struct ext4_ext_path *path;
5082	int ret = 0, depth;
5083	struct ext4_extent *extent;
5084	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5085
5086	/* Let path point to the last extent */
5087	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5088				EXT4_EX_NOCACHE);
5089	if (IS_ERR(path))
5090		return PTR_ERR(path);
5091
5092	depth = path->p_depth;
5093	extent = path[depth].p_ext;
5094	if (!extent)
5095		goto out;
5096
5097	stop = le32_to_cpu(extent->ee_block);
5098
5099       /*
5100	* For left shifts, make sure the hole on the left is big enough to
5101	* accommodate the shift.  For right shifts, make sure the last extent
5102	* won't be shifted beyond EXT_MAX_BLOCKS.
5103	*/
5104	if (SHIFT == SHIFT_LEFT) {
5105		path = ext4_find_extent(inode, start - 1, &path,
5106					EXT4_EX_NOCACHE);
5107		if (IS_ERR(path))
5108			return PTR_ERR(path);
5109		depth = path->p_depth;
5110		extent =  path[depth].p_ext;
5111		if (extent) {
5112			ex_start = le32_to_cpu(extent->ee_block);
5113			ex_end = le32_to_cpu(extent->ee_block) +
5114				ext4_ext_get_actual_len(extent);
5115		} else {
5116			ex_start = 0;
5117			ex_end = 0;
5118		}
5119
5120		if ((start == ex_start && shift > ex_start) ||
5121		    (shift > start - ex_end)) {
5122			ret = -EINVAL;
5123			goto out;
5124		}
5125	} else {
5126		if (shift > EXT_MAX_BLOCKS -
5127		    (stop + ext4_ext_get_actual_len(extent))) {
5128			ret = -EINVAL;
5129			goto out;
5130		}
5131	}
5132
5133	/*
5134	 * In case of left shift, iterator points to start and it is increased
5135	 * till we reach stop. In case of right shift, iterator points to stop
5136	 * and it is decreased till we reach start.
5137	 */
5138	if (SHIFT == SHIFT_LEFT)
5139		iterator = &start;
5140	else
5141		iterator = &stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5142
5143	/*
5144	 * Its safe to start updating extents.  Start and stop are unsigned, so
5145	 * in case of right shift if extent with 0 block is reached, iterator
5146	 * becomes NULL to indicate the end of the loop.
5147	 */
5148	while (iterator && start <= stop) {
5149		path = ext4_find_extent(inode, *iterator, &path,
5150					EXT4_EX_NOCACHE);
5151		if (IS_ERR(path))
5152			return PTR_ERR(path);
5153		depth = path->p_depth;
5154		extent = path[depth].p_ext;
5155		if (!extent) {
5156			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5157					 (unsigned long) *iterator);
5158			return -EFSCORRUPTED;
5159		}
5160		if (SHIFT == SHIFT_LEFT && *iterator >
5161		    le32_to_cpu(extent->ee_block)) {
5162			/* Hole, move to the next extent */
5163			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5164				path[depth].p_ext++;
5165			} else {
5166				*iterator = ext4_ext_next_allocated_block(path);
5167				continue;
 
5168			}
 
 
 
 
5169		}
5170
5171		if (SHIFT == SHIFT_LEFT) {
5172			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5173			*iterator = le32_to_cpu(extent->ee_block) +
5174					ext4_ext_get_actual_len(extent);
5175		} else {
5176			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5177			if (le32_to_cpu(extent->ee_block) > 0)
5178				*iterator = le32_to_cpu(extent->ee_block) - 1;
5179			else
5180				/* Beginning is reached, end of the loop */
5181				iterator = NULL;
5182			/* Update path extent in case we need to stop */
5183			while (le32_to_cpu(extent->ee_block) < start)
5184				extent++;
5185			path[depth].p_ext = extent;
5186		}
5187		ret = ext4_ext_shift_path_extents(path, shift, inode,
5188				handle, SHIFT);
5189		if (ret)
5190			break;
5191	}
5192out:
5193	ext4_ext_drop_refs(path);
5194	kfree(path);
5195	return ret;
5196}
5197
5198/*
5199 * ext4_collapse_range:
5200 * This implements the fallocate's collapse range functionality for ext4
5201 * Returns: 0 and non-zero on error.
5202 */
5203static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5204{
5205	struct super_block *sb = inode->i_sb;
5206	ext4_lblk_t punch_start, punch_stop;
5207	handle_t *handle;
5208	unsigned int credits;
5209	loff_t new_size, ioffset;
5210	int ret;
5211
5212	/*
5213	 * We need to test this early because xfstests assumes that a
5214	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5215	 * system does not support collapse range.
5216	 */
5217	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5218		return -EOPNOTSUPP;
5219
5220	/* Collapse range works only on fs cluster size aligned regions. */
5221	if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb)))
5222		return -EINVAL;
5223
5224	trace_ext4_collapse_range(inode, offset, len);
5225
5226	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5227	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5228
5229	/* Call ext4_force_commit to flush all data in case of data=journal. */
5230	if (ext4_should_journal_data(inode)) {
5231		ret = ext4_force_commit(inode->i_sb);
5232		if (ret)
5233			return ret;
5234	}
5235
5236	inode_lock(inode);
5237	/*
5238	 * There is no need to overlap collapse range with EOF, in which case
5239	 * it is effectively a truncate operation
5240	 */
5241	if (offset + len >= inode->i_size) {
5242		ret = -EINVAL;
5243		goto out_mutex;
5244	}
5245
5246	/* Currently just for extent based files */
5247	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5248		ret = -EOPNOTSUPP;
5249		goto out_mutex;
5250	}
5251
5252	/* Wait for existing dio to complete */
5253	inode_dio_wait(inode);
5254
5255	/*
5256	 * Prevent page faults from reinstantiating pages we have released from
5257	 * page cache.
5258	 */
5259	down_write(&EXT4_I(inode)->i_mmap_sem);
5260
5261	ret = ext4_break_layouts(inode);
5262	if (ret)
5263		goto out_mmap;
5264
5265	/*
5266	 * Need to round down offset to be aligned with page size boundary
5267	 * for page size > block size.
5268	 */
5269	ioffset = round_down(offset, PAGE_SIZE);
5270	/*
5271	 * Write tail of the last page before removed range since it will get
5272	 * removed from the page cache below.
5273	 */
5274	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5275	if (ret)
5276		goto out_mmap;
5277	/*
5278	 * Write data that will be shifted to preserve them when discarding
5279	 * page cache below. We are also protected from pages becoming dirty
5280	 * by i_mmap_sem.
5281	 */
5282	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5283					   LLONG_MAX);
5284	if (ret)
5285		goto out_mmap;
5286	truncate_pagecache(inode, ioffset);
5287
5288	credits = ext4_writepage_trans_blocks(inode);
5289	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5290	if (IS_ERR(handle)) {
5291		ret = PTR_ERR(handle);
5292		goto out_mmap;
5293	}
5294
5295	down_write(&EXT4_I(inode)->i_data_sem);
5296	ext4_discard_preallocations(inode, 0);
5297
5298	ret = ext4_es_remove_extent(inode, punch_start,
5299				    EXT_MAX_BLOCKS - punch_start);
5300	if (ret) {
5301		up_write(&EXT4_I(inode)->i_data_sem);
5302		goto out_stop;
5303	}
5304
5305	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5306	if (ret) {
5307		up_write(&EXT4_I(inode)->i_data_sem);
5308		goto out_stop;
5309	}
5310	ext4_discard_preallocations(inode, 0);
5311
5312	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5313				     punch_stop - punch_start, SHIFT_LEFT);
5314	if (ret) {
5315		up_write(&EXT4_I(inode)->i_data_sem);
5316		goto out_stop;
5317	}
5318
5319	new_size = inode->i_size - len;
5320	i_size_write(inode, new_size);
5321	EXT4_I(inode)->i_disksize = new_size;
5322
5323	up_write(&EXT4_I(inode)->i_data_sem);
5324	if (IS_SYNC(inode))
5325		ext4_handle_sync(handle);
5326	inode->i_mtime = inode->i_ctime = current_time(inode);
5327	ret = ext4_mark_inode_dirty(handle, inode);
5328	ext4_update_inode_fsync_trans(handle, inode, 1);
5329
5330out_stop:
 
 
 
5331	ext4_journal_stop(handle);
5332out_mmap:
5333	up_write(&EXT4_I(inode)->i_mmap_sem);
5334out_mutex:
5335	inode_unlock(inode);
5336	return ret;
5337}
5338
5339/*
5340 * ext4_insert_range:
5341 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5342 * The data blocks starting from @offset to the EOF are shifted by @len
5343 * towards right to create a hole in the @inode. Inode size is increased
5344 * by len bytes.
5345 * Returns 0 on success, error otherwise.
5346 */
5347static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5348{
5349	struct super_block *sb = inode->i_sb;
5350	handle_t *handle;
5351	struct ext4_ext_path *path;
5352	struct ext4_extent *extent;
5353	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5354	unsigned int credits, ee_len;
5355	int ret = 0, depth, split_flag = 0;
5356	loff_t ioffset;
5357
5358	/*
5359	 * We need to test this early because xfstests assumes that an
5360	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5361	 * system does not support insert range.
5362	 */
5363	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5364		return -EOPNOTSUPP;
5365
5366	/* Insert range works only on fs cluster size aligned regions. */
5367	if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb)))
5368		return -EINVAL;
5369
5370	trace_ext4_insert_range(inode, offset, len);
5371
5372	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5373	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5374
5375	/* Call ext4_force_commit to flush all data in case of data=journal */
5376	if (ext4_should_journal_data(inode)) {
5377		ret = ext4_force_commit(inode->i_sb);
5378		if (ret)
5379			return ret;
5380	}
5381
5382	inode_lock(inode);
5383	/* Currently just for extent based files */
5384	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5385		ret = -EOPNOTSUPP;
5386		goto out_mutex;
5387	}
5388
5389	/* Check whether the maximum file size would be exceeded */
5390	if (len > inode->i_sb->s_maxbytes - inode->i_size) {
5391		ret = -EFBIG;
5392		goto out_mutex;
5393	}
5394
5395	/* Offset must be less than i_size */
5396	if (offset >= inode->i_size) {
5397		ret = -EINVAL;
5398		goto out_mutex;
5399	}
5400
5401	/* Wait for existing dio to complete */
5402	inode_dio_wait(inode);
5403
5404	/*
5405	 * Prevent page faults from reinstantiating pages we have released from
5406	 * page cache.
5407	 */
5408	down_write(&EXT4_I(inode)->i_mmap_sem);
5409
5410	ret = ext4_break_layouts(inode);
5411	if (ret)
5412		goto out_mmap;
5413
5414	/*
5415	 * Need to round down to align start offset to page size boundary
5416	 * for page size > block size.
5417	 */
5418	ioffset = round_down(offset, PAGE_SIZE);
5419	/* Write out all dirty pages */
5420	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5421			LLONG_MAX);
5422	if (ret)
5423		goto out_mmap;
5424	truncate_pagecache(inode, ioffset);
5425
5426	credits = ext4_writepage_trans_blocks(inode);
5427	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5428	if (IS_ERR(handle)) {
5429		ret = PTR_ERR(handle);
5430		goto out_mmap;
5431	}
5432
5433	/* Expand file to avoid data loss if there is error while shifting */
5434	inode->i_size += len;
5435	EXT4_I(inode)->i_disksize += len;
5436	inode->i_mtime = inode->i_ctime = current_time(inode);
5437	ret = ext4_mark_inode_dirty(handle, inode);
5438	if (ret)
5439		goto out_stop;
5440
5441	down_write(&EXT4_I(inode)->i_data_sem);
5442	ext4_discard_preallocations(inode, 0);
5443
5444	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5445	if (IS_ERR(path)) {
5446		up_write(&EXT4_I(inode)->i_data_sem);
5447		goto out_stop;
5448	}
5449
5450	depth = ext_depth(inode);
5451	extent = path[depth].p_ext;
5452	if (extent) {
5453		ee_start_lblk = le32_to_cpu(extent->ee_block);
5454		ee_len = ext4_ext_get_actual_len(extent);
5455
5456		/*
5457		 * If offset_lblk is not the starting block of extent, split
5458		 * the extent @offset_lblk
5459		 */
5460		if ((offset_lblk > ee_start_lblk) &&
5461				(offset_lblk < (ee_start_lblk + ee_len))) {
5462			if (ext4_ext_is_unwritten(extent))
5463				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5464					EXT4_EXT_MARK_UNWRIT2;
5465			ret = ext4_split_extent_at(handle, inode, &path,
5466					offset_lblk, split_flag,
5467					EXT4_EX_NOCACHE |
5468					EXT4_GET_BLOCKS_PRE_IO |
5469					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5470		}
5471
5472		ext4_ext_drop_refs(path);
5473		kfree(path);
5474		if (ret < 0) {
5475			up_write(&EXT4_I(inode)->i_data_sem);
5476			goto out_stop;
5477		}
5478	} else {
5479		ext4_ext_drop_refs(path);
5480		kfree(path);
5481	}
5482
5483	ret = ext4_es_remove_extent(inode, offset_lblk,
5484			EXT_MAX_BLOCKS - offset_lblk);
5485	if (ret) {
5486		up_write(&EXT4_I(inode)->i_data_sem);
5487		goto out_stop;
5488	}
5489
5490	/*
5491	 * if offset_lblk lies in a hole which is at start of file, use
5492	 * ee_start_lblk to shift extents
5493	 */
5494	ret = ext4_ext_shift_extents(inode, handle,
5495		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5496		len_lblk, SHIFT_RIGHT);
5497
5498	up_write(&EXT4_I(inode)->i_data_sem);
5499	if (IS_SYNC(inode))
5500		ext4_handle_sync(handle);
5501	if (ret >= 0)
5502		ext4_update_inode_fsync_trans(handle, inode, 1);
5503
5504out_stop:
5505	ext4_journal_stop(handle);
5506out_mmap:
5507	up_write(&EXT4_I(inode)->i_mmap_sem);
5508out_mutex:
5509	inode_unlock(inode);
5510	return ret;
5511}
5512
5513/**
5514 * ext4_swap_extents() - Swap extents between two inodes
5515 * @handle: handle for this transaction
5516 * @inode1:	First inode
5517 * @inode2:	Second inode
5518 * @lblk1:	Start block for first inode
5519 * @lblk2:	Start block for second inode
5520 * @count:	Number of blocks to swap
5521 * @unwritten: Mark second inode's extents as unwritten after swap
5522 * @erp:	Pointer to save error value
5523 *
5524 * This helper routine does exactly what is promise "swap extents". All other
5525 * stuff such as page-cache locking consistency, bh mapping consistency or
5526 * extent's data copying must be performed by caller.
5527 * Locking:
5528 * 		i_mutex is held for both inodes
5529 * 		i_data_sem is locked for write for both inodes
5530 * Assumptions:
5531 *		All pages from requested range are locked for both inodes
5532 */
5533int
5534ext4_swap_extents(handle_t *handle, struct inode *inode1,
5535		  struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5536		  ext4_lblk_t count, int unwritten, int *erp)
5537{
5538	struct ext4_ext_path *path1 = NULL;
5539	struct ext4_ext_path *path2 = NULL;
5540	int replaced_count = 0;
5541
5542	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5543	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5544	BUG_ON(!inode_is_locked(inode1));
5545	BUG_ON(!inode_is_locked(inode2));
5546
5547	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5548	if (unlikely(*erp))
5549		return 0;
5550	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5551	if (unlikely(*erp))
5552		return 0;
5553
5554	while (count) {
5555		struct ext4_extent *ex1, *ex2, tmp_ex;
5556		ext4_lblk_t e1_blk, e2_blk;
5557		int e1_len, e2_len, len;
5558		int split = 0;
5559
5560		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5561		if (IS_ERR(path1)) {
5562			*erp = PTR_ERR(path1);
5563			path1 = NULL;
5564		finish:
5565			count = 0;
5566			goto repeat;
5567		}
5568		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5569		if (IS_ERR(path2)) {
5570			*erp = PTR_ERR(path2);
5571			path2 = NULL;
5572			goto finish;
5573		}
5574		ex1 = path1[path1->p_depth].p_ext;
5575		ex2 = path2[path2->p_depth].p_ext;
5576		/* Do we have something to swap ? */
5577		if (unlikely(!ex2 || !ex1))
5578			goto finish;
5579
5580		e1_blk = le32_to_cpu(ex1->ee_block);
5581		e2_blk = le32_to_cpu(ex2->ee_block);
5582		e1_len = ext4_ext_get_actual_len(ex1);
5583		e2_len = ext4_ext_get_actual_len(ex2);
5584
5585		/* Hole handling */
5586		if (!in_range(lblk1, e1_blk, e1_len) ||
5587		    !in_range(lblk2, e2_blk, e2_len)) {
5588			ext4_lblk_t next1, next2;
5589
5590			/* if hole after extent, then go to next extent */
5591			next1 = ext4_ext_next_allocated_block(path1);
5592			next2 = ext4_ext_next_allocated_block(path2);
5593			/* If hole before extent, then shift to that extent */
5594			if (e1_blk > lblk1)
5595				next1 = e1_blk;
5596			if (e2_blk > lblk2)
5597				next2 = e2_blk;
5598			/* Do we have something to swap */
5599			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5600				goto finish;
5601			/* Move to the rightest boundary */
5602			len = next1 - lblk1;
5603			if (len < next2 - lblk2)
5604				len = next2 - lblk2;
5605			if (len > count)
5606				len = count;
5607			lblk1 += len;
5608			lblk2 += len;
5609			count -= len;
5610			goto repeat;
5611		}
5612
5613		/* Prepare left boundary */
5614		if (e1_blk < lblk1) {
5615			split = 1;
5616			*erp = ext4_force_split_extent_at(handle, inode1,
5617						&path1, lblk1, 0);
5618			if (unlikely(*erp))
5619				goto finish;
5620		}
5621		if (e2_blk < lblk2) {
5622			split = 1;
5623			*erp = ext4_force_split_extent_at(handle, inode2,
5624						&path2,  lblk2, 0);
5625			if (unlikely(*erp))
5626				goto finish;
5627		}
5628		/* ext4_split_extent_at() may result in leaf extent split,
5629		 * path must to be revalidated. */
5630		if (split)
5631			goto repeat;
5632
5633		/* Prepare right boundary */
5634		len = count;
5635		if (len > e1_blk + e1_len - lblk1)
5636			len = e1_blk + e1_len - lblk1;
5637		if (len > e2_blk + e2_len - lblk2)
5638			len = e2_blk + e2_len - lblk2;
5639
5640		if (len != e1_len) {
5641			split = 1;
5642			*erp = ext4_force_split_extent_at(handle, inode1,
5643						&path1, lblk1 + len, 0);
5644			if (unlikely(*erp))
5645				goto finish;
5646		}
5647		if (len != e2_len) {
5648			split = 1;
5649			*erp = ext4_force_split_extent_at(handle, inode2,
5650						&path2, lblk2 + len, 0);
5651			if (*erp)
5652				goto finish;
5653		}
5654		/* ext4_split_extent_at() may result in leaf extent split,
5655		 * path must to be revalidated. */
5656		if (split)
5657			goto repeat;
5658
5659		BUG_ON(e2_len != e1_len);
5660		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5661		if (unlikely(*erp))
5662			goto finish;
5663		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5664		if (unlikely(*erp))
5665			goto finish;
5666
5667		/* Both extents are fully inside boundaries. Swap it now */
5668		tmp_ex = *ex1;
5669		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5670		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5671		ex1->ee_len = cpu_to_le16(e2_len);
5672		ex2->ee_len = cpu_to_le16(e1_len);
5673		if (unwritten)
5674			ext4_ext_mark_unwritten(ex2);
5675		if (ext4_ext_is_unwritten(&tmp_ex))
5676			ext4_ext_mark_unwritten(ex1);
5677
5678		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5679		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5680		*erp = ext4_ext_dirty(handle, inode2, path2 +
5681				      path2->p_depth);
5682		if (unlikely(*erp))
5683			goto finish;
5684		*erp = ext4_ext_dirty(handle, inode1, path1 +
5685				      path1->p_depth);
5686		/*
5687		 * Looks scarry ah..? second inode already points to new blocks,
5688		 * and it was successfully dirtied. But luckily error may happen
5689		 * only due to journal error, so full transaction will be
5690		 * aborted anyway.
5691		 */
5692		if (unlikely(*erp))
5693			goto finish;
5694		lblk1 += len;
5695		lblk2 += len;
5696		replaced_count += len;
5697		count -= len;
5698
5699	repeat:
5700		ext4_ext_drop_refs(path1);
5701		kfree(path1);
5702		ext4_ext_drop_refs(path2);
5703		kfree(path2);
5704		path1 = path2 = NULL;
5705	}
5706	return replaced_count;
5707}
5708
5709/*
5710 * ext4_clu_mapped - determine whether any block in a logical cluster has
5711 *                   been mapped to a physical cluster
5712 *
5713 * @inode - file containing the logical cluster
5714 * @lclu - logical cluster of interest
5715 *
5716 * Returns 1 if any block in the logical cluster is mapped, signifying
5717 * that a physical cluster has been allocated for it.  Otherwise,
5718 * returns 0.  Can also return negative error codes.  Derived from
5719 * ext4_ext_map_blocks().
5720 */
5721int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu)
5722{
5723	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5724	struct ext4_ext_path *path;
5725	int depth, mapped = 0, err = 0;
5726	struct ext4_extent *extent;
5727	ext4_lblk_t first_lblk, first_lclu, last_lclu;
5728
5729	/* search for the extent closest to the first block in the cluster */
5730	path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0);
5731	if (IS_ERR(path)) {
5732		err = PTR_ERR(path);
5733		path = NULL;
5734		goto out;
5735	}
5736
5737	depth = ext_depth(inode);
5738
5739	/*
5740	 * A consistent leaf must not be empty.  This situation is possible,
5741	 * though, _during_ tree modification, and it's why an assert can't
5742	 * be put in ext4_find_extent().
5743	 */
5744	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
5745		EXT4_ERROR_INODE(inode,
5746		    "bad extent address - lblock: %lu, depth: %d, pblock: %lld",
5747				 (unsigned long) EXT4_C2B(sbi, lclu),
5748				 depth, path[depth].p_block);
5749		err = -EFSCORRUPTED;
5750		goto out;
5751	}
5752
5753	extent = path[depth].p_ext;
5754
5755	/* can't be mapped if the extent tree is empty */
5756	if (extent == NULL)
5757		goto out;
5758
5759	first_lblk = le32_to_cpu(extent->ee_block);
5760	first_lclu = EXT4_B2C(sbi, first_lblk);
5761
5762	/*
5763	 * Three possible outcomes at this point - found extent spanning
5764	 * the target cluster, to the left of the target cluster, or to the
5765	 * right of the target cluster.  The first two cases are handled here.
5766	 * The last case indicates the target cluster is not mapped.
5767	 */
5768	if (lclu >= first_lclu) {
5769		last_lclu = EXT4_B2C(sbi, first_lblk +
5770				     ext4_ext_get_actual_len(extent) - 1);
5771		if (lclu <= last_lclu) {
5772			mapped = 1;
5773		} else {
5774			first_lblk = ext4_ext_next_allocated_block(path);
5775			first_lclu = EXT4_B2C(sbi, first_lblk);
5776			if (lclu == first_lclu)
5777				mapped = 1;
5778		}
5779	}
5780
5781out:
5782	ext4_ext_drop_refs(path);
5783	kfree(path);
5784
5785	return err ? err : mapped;
5786}