Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * Architecture independence:
   6 *   Copyright (c) 2005, Bull S.A.
   7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public Licens
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  21 */
  22
  23/*
  24 * Extents support for EXT4
  25 *
  26 * TODO:
  27 *   - ext4*_error() should be used in some situations
  28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  29 *   - smart tree reduction
  30 */
  31
  32#include <linux/module.h>
  33#include <linux/fs.h>
  34#include <linux/time.h>
  35#include <linux/jbd2.h>
  36#include <linux/highuid.h>
  37#include <linux/pagemap.h>
  38#include <linux/quotaops.h>
  39#include <linux/string.h>
  40#include <linux/slab.h>
  41#include <linux/falloc.h>
  42#include <asm/uaccess.h>
  43#include <linux/fiemap.h>
 
  44#include "ext4_jbd2.h"
  45#include "ext4_extents.h"
 
  46
  47#include <trace/events/ext4.h>
  48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49static int ext4_split_extent(handle_t *handle,
  50				struct inode *inode,
  51				struct ext4_ext_path *path,
  52				struct ext4_map_blocks *map,
  53				int split_flag,
  54				int flags);
  55
 
 
 
 
 
 
 
 
 
 
  56static int ext4_ext_truncate_extend_restart(handle_t *handle,
  57					    struct inode *inode,
  58					    int needed)
  59{
  60	int err;
  61
  62	if (!ext4_handle_valid(handle))
  63		return 0;
  64	if (handle->h_buffer_credits > needed)
  65		return 0;
  66	err = ext4_journal_extend(handle, needed);
 
 
 
 
 
  67	if (err <= 0)
  68		return err;
  69	err = ext4_truncate_restart_trans(handle, inode, needed);
  70	if (err == 0)
  71		err = -EAGAIN;
  72
  73	return err;
  74}
  75
  76/*
  77 * could return:
  78 *  - EROFS
  79 *  - ENOMEM
  80 */
  81static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
  82				struct ext4_ext_path *path)
  83{
  84	if (path->p_bh) {
  85		/* path points to block */
 
  86		return ext4_journal_get_write_access(handle, path->p_bh);
  87	}
  88	/* path points to leaf/index in inode body */
  89	/* we use in-core data, no need to protect them */
  90	return 0;
  91}
  92
  93/*
  94 * could return:
  95 *  - EROFS
  96 *  - ENOMEM
  97 *  - EIO
  98 */
  99static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
 100				struct ext4_ext_path *path)
 101{
 102	int err;
 
 
 103	if (path->p_bh) {
 
 104		/* path points to block */
 105		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
 
 106	} else {
 107		/* path points to leaf/index in inode body */
 108		err = ext4_mark_inode_dirty(handle, inode);
 109	}
 110	return err;
 111}
 112
 113static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 114			      struct ext4_ext_path *path,
 115			      ext4_lblk_t block)
 116{
 117	int depth;
 118
 119	if (path) {
 
 120		struct ext4_extent *ex;
 121		depth = path->p_depth;
 122
 123		/*
 124		 * Try to predict block placement assuming that we are
 125		 * filling in a file which will eventually be
 126		 * non-sparse --- i.e., in the case of libbfd writing
 127		 * an ELF object sections out-of-order but in a way
 128		 * the eventually results in a contiguous object or
 129		 * executable file, or some database extending a table
 130		 * space file.  However, this is actually somewhat
 131		 * non-ideal if we are writing a sparse file such as
 132		 * qemu or KVM writing a raw image file that is going
 133		 * to stay fairly sparse, since it will end up
 134		 * fragmenting the file system's free space.  Maybe we
 135		 * should have some hueristics or some way to allow
 136		 * userspace to pass a hint to file system,
 137		 * especially if the latter case turns out to be
 138		 * common.
 139		 */
 140		ex = path[depth].p_ext;
 141		if (ex) {
 142			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 143			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 144
 145			if (block > ext_block)
 146				return ext_pblk + (block - ext_block);
 147			else
 148				return ext_pblk - (ext_block - block);
 149		}
 150
 151		/* it looks like index is empty;
 152		 * try to find starting block from index itself */
 153		if (path[depth].p_bh)
 154			return path[depth].p_bh->b_blocknr;
 155	}
 156
 157	/* OK. use inode's group */
 158	return ext4_inode_to_goal_block(inode);
 159}
 160
 161/*
 162 * Allocation for a meta data block
 163 */
 164static ext4_fsblk_t
 165ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 166			struct ext4_ext_path *path,
 167			struct ext4_extent *ex, int *err, unsigned int flags)
 168{
 169	ext4_fsblk_t goal, newblock;
 170
 171	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 172	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 173					NULL, err);
 174	return newblock;
 175}
 176
 177static inline int ext4_ext_space_block(struct inode *inode, int check)
 178{
 179	int size;
 180
 181	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 182			/ sizeof(struct ext4_extent);
 183	if (!check) {
 184#ifdef AGGRESSIVE_TEST
 185		if (size > 6)
 186			size = 6;
 187#endif
 188	}
 189	return size;
 190}
 191
 192static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 193{
 194	int size;
 195
 196	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 197			/ sizeof(struct ext4_extent_idx);
 198	if (!check) {
 199#ifdef AGGRESSIVE_TEST
 200		if (size > 5)
 201			size = 5;
 202#endif
 203	}
 204	return size;
 205}
 206
 207static inline int ext4_ext_space_root(struct inode *inode, int check)
 208{
 209	int size;
 210
 211	size = sizeof(EXT4_I(inode)->i_data);
 212	size -= sizeof(struct ext4_extent_header);
 213	size /= sizeof(struct ext4_extent);
 214	if (!check) {
 215#ifdef AGGRESSIVE_TEST
 216		if (size > 3)
 217			size = 3;
 218#endif
 219	}
 220	return size;
 221}
 222
 223static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 224{
 225	int size;
 226
 227	size = sizeof(EXT4_I(inode)->i_data);
 228	size -= sizeof(struct ext4_extent_header);
 229	size /= sizeof(struct ext4_extent_idx);
 230	if (!check) {
 231#ifdef AGGRESSIVE_TEST
 232		if (size > 4)
 233			size = 4;
 234#endif
 235	}
 236	return size;
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239/*
 240 * Calculate the number of metadata blocks needed
 241 * to allocate @blocks
 242 * Worse case is one block per extent
 243 */
 244int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 245{
 246	struct ext4_inode_info *ei = EXT4_I(inode);
 247	int idxs, num = 0;
 248
 249	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 250		/ sizeof(struct ext4_extent_idx));
 251
 252	/*
 253	 * If the new delayed allocation block is contiguous with the
 254	 * previous da block, it can share index blocks with the
 255	 * previous block, so we only need to allocate a new index
 256	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 257	 * an additional index block, and at ldxs**3 blocks, yet
 258	 * another index blocks.
 259	 */
 260	if (ei->i_da_metadata_calc_len &&
 261	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 
 
 262		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 263			num++;
 264		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 265			num++;
 266		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 267			num++;
 268			ei->i_da_metadata_calc_len = 0;
 269		} else
 270			ei->i_da_metadata_calc_len++;
 271		ei->i_da_metadata_calc_last_lblock++;
 272		return num;
 273	}
 274
 275	/*
 276	 * In the worst case we need a new set of index blocks at
 277	 * every level of the inode's extent tree.
 278	 */
 279	ei->i_da_metadata_calc_len = 1;
 280	ei->i_da_metadata_calc_last_lblock = lblock;
 281	return ext_depth(inode) + 1;
 282}
 283
 284static int
 285ext4_ext_max_entries(struct inode *inode, int depth)
 286{
 287	int max;
 288
 289	if (depth == ext_depth(inode)) {
 290		if (depth == 0)
 291			max = ext4_ext_space_root(inode, 1);
 292		else
 293			max = ext4_ext_space_root_idx(inode, 1);
 294	} else {
 295		if (depth == 0)
 296			max = ext4_ext_space_block(inode, 1);
 297		else
 298			max = ext4_ext_space_block_idx(inode, 1);
 299	}
 300
 301	return max;
 302}
 303
 304static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 305{
 306	ext4_fsblk_t block = ext4_ext_pblock(ext);
 307	int len = ext4_ext_get_actual_len(ext);
 
 308
 
 
 
 
 
 
 
 309	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 310}
 311
 312static int ext4_valid_extent_idx(struct inode *inode,
 313				struct ext4_extent_idx *ext_idx)
 314{
 315	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 316
 317	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 318}
 319
 320static int ext4_valid_extent_entries(struct inode *inode,
 321				struct ext4_extent_header *eh,
 322				int depth)
 323{
 324	struct ext4_extent *ext;
 325	struct ext4_extent_idx *ext_idx;
 326	unsigned short entries;
 327	if (eh->eh_entries == 0)
 328		return 1;
 329
 330	entries = le16_to_cpu(eh->eh_entries);
 331
 332	if (depth == 0) {
 333		/* leaf entries */
 334		ext = EXT_FIRST_EXTENT(eh);
 
 
 
 
 
 335		while (entries) {
 336			if (!ext4_valid_extent(inode, ext))
 337				return 0;
 
 
 
 
 
 
 
 
 
 338			ext++;
 339			entries--;
 
 340		}
 341	} else {
 342		ext_idx = EXT_FIRST_INDEX(eh);
 343		while (entries) {
 344			if (!ext4_valid_extent_idx(inode, ext_idx))
 345				return 0;
 346			ext_idx++;
 347			entries--;
 348		}
 349	}
 350	return 1;
 351}
 352
 353static int __ext4_ext_check(const char *function, unsigned int line,
 354			    struct inode *inode, struct ext4_extent_header *eh,
 355			    int depth)
 356{
 357	const char *error_msg;
 358	int max = 0;
 359
 360	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 361		error_msg = "invalid magic";
 362		goto corrupted;
 363	}
 364	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 365		error_msg = "unexpected eh_depth";
 366		goto corrupted;
 367	}
 368	if (unlikely(eh->eh_max == 0)) {
 369		error_msg = "invalid eh_max";
 370		goto corrupted;
 371	}
 372	max = ext4_ext_max_entries(inode, depth);
 373	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 374		error_msg = "too large eh_max";
 375		goto corrupted;
 376	}
 377	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 378		error_msg = "invalid eh_entries";
 379		goto corrupted;
 380	}
 381	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 382		error_msg = "invalid extent entries";
 383		goto corrupted;
 384	}
 
 
 
 
 
 
 
 
 
 
 
 385	return 0;
 386
 387corrupted:
 388	ext4_error_inode(inode, function, line, 0,
 389			"bad header/extent: %s - magic %x, "
 390			"entries %u, max %u(%u), depth %u(%u)",
 391			error_msg, le16_to_cpu(eh->eh_magic),
 392			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 393			max, le16_to_cpu(eh->eh_depth), depth);
 394
 395	return -EIO;
 396}
 397
 398#define ext4_ext_check(inode, eh, depth)	\
 399	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
 400
 401int ext4_ext_check_inode(struct inode *inode)
 402{
 403	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406#ifdef EXT_DEBUG
 407static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 408{
 409	int k, l = path->p_depth;
 410
 411	ext_debug("path:");
 412	for (k = 0; k <= l; k++, path++) {
 413		if (path->p_idx) {
 414		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 415			    ext4_idx_pblock(path->p_idx));
 416		} else if (path->p_ext) {
 417			ext_debug("  %d:[%d]%d:%llu ",
 418				  le32_to_cpu(path->p_ext->ee_block),
 419				  ext4_ext_is_uninitialized(path->p_ext),
 420				  ext4_ext_get_actual_len(path->p_ext),
 421				  ext4_ext_pblock(path->p_ext));
 422		} else
 423			ext_debug("  []");
 424	}
 425	ext_debug("\n");
 426}
 427
 428static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 429{
 430	int depth = ext_depth(inode);
 431	struct ext4_extent_header *eh;
 432	struct ext4_extent *ex;
 433	int i;
 434
 435	if (!path)
 436		return;
 437
 438	eh = path[depth].p_hdr;
 439	ex = EXT_FIRST_EXTENT(eh);
 440
 441	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 442
 443	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 444		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 445			  ext4_ext_is_uninitialized(ex),
 446			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 447	}
 448	ext_debug("\n");
 449}
 450
 451static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 452			ext4_fsblk_t newblock, int level)
 453{
 454	int depth = ext_depth(inode);
 455	struct ext4_extent *ex;
 456
 457	if (depth != level) {
 458		struct ext4_extent_idx *idx;
 459		idx = path[level].p_idx;
 460		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 461			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 462					le32_to_cpu(idx->ei_block),
 463					ext4_idx_pblock(idx),
 464					newblock);
 465			idx++;
 466		}
 467
 468		return;
 469	}
 470
 471	ex = path[depth].p_ext;
 472	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 473		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 474				le32_to_cpu(ex->ee_block),
 475				ext4_ext_pblock(ex),
 476				ext4_ext_is_uninitialized(ex),
 477				ext4_ext_get_actual_len(ex),
 478				newblock);
 479		ex++;
 480	}
 481}
 482
 483#else
 484#define ext4_ext_show_path(inode, path)
 485#define ext4_ext_show_leaf(inode, path)
 486#define ext4_ext_show_move(inode, path, newblock, level)
 487#endif
 488
 489void ext4_ext_drop_refs(struct ext4_ext_path *path)
 490{
 491	int depth = path->p_depth;
 492	int i;
 493
 
 
 
 494	for (i = 0; i <= depth; i++, path++)
 495		if (path->p_bh) {
 496			brelse(path->p_bh);
 497			path->p_bh = NULL;
 498		}
 499}
 500
 501/*
 502 * ext4_ext_binsearch_idx:
 503 * binary search for the closest index of the given block
 504 * the header must be checked before calling this
 505 */
 506static void
 507ext4_ext_binsearch_idx(struct inode *inode,
 508			struct ext4_ext_path *path, ext4_lblk_t block)
 509{
 510	struct ext4_extent_header *eh = path->p_hdr;
 511	struct ext4_extent_idx *r, *l, *m;
 512
 513
 514	ext_debug("binsearch for %u(idx):  ", block);
 515
 516	l = EXT_FIRST_INDEX(eh) + 1;
 517	r = EXT_LAST_INDEX(eh);
 518	while (l <= r) {
 519		m = l + (r - l) / 2;
 520		if (block < le32_to_cpu(m->ei_block))
 521			r = m - 1;
 522		else
 523			l = m + 1;
 524		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 525				m, le32_to_cpu(m->ei_block),
 526				r, le32_to_cpu(r->ei_block));
 527	}
 528
 529	path->p_idx = l - 1;
 530	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
 531		  ext4_idx_pblock(path->p_idx));
 532
 533#ifdef CHECK_BINSEARCH
 534	{
 535		struct ext4_extent_idx *chix, *ix;
 536		int k;
 537
 538		chix = ix = EXT_FIRST_INDEX(eh);
 539		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 540		  if (k != 0 &&
 541		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 542				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 543				       "first=0x%p\n", k,
 544				       ix, EXT_FIRST_INDEX(eh));
 545				printk(KERN_DEBUG "%u <= %u\n",
 546				       le32_to_cpu(ix->ei_block),
 547				       le32_to_cpu(ix[-1].ei_block));
 548			}
 549			BUG_ON(k && le32_to_cpu(ix->ei_block)
 550					   <= le32_to_cpu(ix[-1].ei_block));
 551			if (block < le32_to_cpu(ix->ei_block))
 552				break;
 553			chix = ix;
 554		}
 555		BUG_ON(chix != path->p_idx);
 556	}
 557#endif
 558
 559}
 560
 561/*
 562 * ext4_ext_binsearch:
 563 * binary search for closest extent of the given block
 564 * the header must be checked before calling this
 565 */
 566static void
 567ext4_ext_binsearch(struct inode *inode,
 568		struct ext4_ext_path *path, ext4_lblk_t block)
 569{
 570	struct ext4_extent_header *eh = path->p_hdr;
 571	struct ext4_extent *r, *l, *m;
 572
 573	if (eh->eh_entries == 0) {
 574		/*
 575		 * this leaf is empty:
 576		 * we get such a leaf in split/add case
 577		 */
 578		return;
 579	}
 580
 581	ext_debug("binsearch for %u:  ", block);
 582
 583	l = EXT_FIRST_EXTENT(eh) + 1;
 584	r = EXT_LAST_EXTENT(eh);
 585
 586	while (l <= r) {
 587		m = l + (r - l) / 2;
 588		if (block < le32_to_cpu(m->ee_block))
 589			r = m - 1;
 590		else
 591			l = m + 1;
 592		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 593				m, le32_to_cpu(m->ee_block),
 594				r, le32_to_cpu(r->ee_block));
 595	}
 596
 597	path->p_ext = l - 1;
 598	ext_debug("  -> %d:%llu:[%d]%d ",
 599			le32_to_cpu(path->p_ext->ee_block),
 600			ext4_ext_pblock(path->p_ext),
 601			ext4_ext_is_uninitialized(path->p_ext),
 602			ext4_ext_get_actual_len(path->p_ext));
 603
 604#ifdef CHECK_BINSEARCH
 605	{
 606		struct ext4_extent *chex, *ex;
 607		int k;
 608
 609		chex = ex = EXT_FIRST_EXTENT(eh);
 610		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 611			BUG_ON(k && le32_to_cpu(ex->ee_block)
 612					  <= le32_to_cpu(ex[-1].ee_block));
 613			if (block < le32_to_cpu(ex->ee_block))
 614				break;
 615			chex = ex;
 616		}
 617		BUG_ON(chex != path->p_ext);
 618	}
 619#endif
 620
 621}
 622
 623int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 624{
 625	struct ext4_extent_header *eh;
 626
 627	eh = ext_inode_hdr(inode);
 628	eh->eh_depth = 0;
 629	eh->eh_entries = 0;
 630	eh->eh_magic = EXT4_EXT_MAGIC;
 631	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 632	ext4_mark_inode_dirty(handle, inode);
 633	ext4_ext_invalidate_cache(inode);
 634	return 0;
 635}
 636
 637struct ext4_ext_path *
 638ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
 639					struct ext4_ext_path *path)
 640{
 641	struct ext4_extent_header *eh;
 642	struct buffer_head *bh;
 643	short int depth, i, ppos = 0, alloc = 0;
 
 
 644
 645	eh = ext_inode_hdr(inode);
 646	depth = ext_depth(inode);
 647
 648	/* account possible depth increase */
 
 
 
 
 
 
 649	if (!path) {
 
 650		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 651				GFP_NOFS);
 652		if (!path)
 653			return ERR_PTR(-ENOMEM);
 654		alloc = 1;
 655	}
 656	path[0].p_hdr = eh;
 657	path[0].p_bh = NULL;
 658
 659	i = depth;
 660	/* walk through the tree */
 661	while (i) {
 662		int need_to_validate = 0;
 663
 664		ext_debug("depth %d: num %d, max %d\n",
 665			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 666
 667		ext4_ext_binsearch_idx(inode, path + ppos, block);
 668		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 669		path[ppos].p_depth = i;
 670		path[ppos].p_ext = NULL;
 671
 672		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
 673		if (unlikely(!bh))
 
 
 674			goto err;
 675		if (!bh_uptodate_or_lock(bh)) {
 676			trace_ext4_ext_load_extent(inode, block,
 677						path[ppos].p_block);
 678			if (bh_submit_read(bh) < 0) {
 679				put_bh(bh);
 680				goto err;
 681			}
 682			/* validate the extent entries */
 683			need_to_validate = 1;
 684		}
 
 685		eh = ext_block_hdr(bh);
 686		ppos++;
 687		if (unlikely(ppos > depth)) {
 688			put_bh(bh);
 689			EXT4_ERROR_INODE(inode,
 690					 "ppos %d > depth %d", ppos, depth);
 691			goto err;
 692		}
 693		path[ppos].p_bh = bh;
 694		path[ppos].p_hdr = eh;
 695		i--;
 696
 697		if (need_to_validate && ext4_ext_check(inode, eh, i))
 698			goto err;
 699	}
 700
 701	path[ppos].p_depth = i;
 702	path[ppos].p_ext = NULL;
 703	path[ppos].p_idx = NULL;
 704
 705	/* find extent */
 706	ext4_ext_binsearch(inode, path + ppos, block);
 707	/* if not an empty leaf */
 708	if (path[ppos].p_ext)
 709		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 710
 711	ext4_ext_show_path(inode, path);
 712
 713	return path;
 714
 715err:
 716	ext4_ext_drop_refs(path);
 717	if (alloc)
 718		kfree(path);
 719	return ERR_PTR(-EIO);
 
 720}
 721
 722/*
 723 * ext4_ext_insert_index:
 724 * insert new index [@logical;@ptr] into the block at @curp;
 725 * check where to insert: before @curp or after @curp
 726 */
 727static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 728				 struct ext4_ext_path *curp,
 729				 int logical, ext4_fsblk_t ptr)
 730{
 731	struct ext4_extent_idx *ix;
 732	int len, err;
 733
 734	err = ext4_ext_get_access(handle, inode, curp);
 735	if (err)
 736		return err;
 737
 738	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 739		EXT4_ERROR_INODE(inode,
 740				 "logical %d == ei_block %d!",
 741				 logical, le32_to_cpu(curp->p_idx->ei_block));
 742		return -EIO;
 743	}
 744
 745	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 746			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 747		EXT4_ERROR_INODE(inode,
 748				 "eh_entries %d >= eh_max %d!",
 749				 le16_to_cpu(curp->p_hdr->eh_entries),
 750				 le16_to_cpu(curp->p_hdr->eh_max));
 751		return -EIO;
 752	}
 753
 754	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
 755	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 756		/* insert after */
 757		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
 758			len = (len - 1) * sizeof(struct ext4_extent_idx);
 759			len = len < 0 ? 0 : len;
 760			ext_debug("insert new index %d after: %llu. "
 761					"move %d from 0x%p to 0x%p\n",
 762					logical, ptr, len,
 763					(curp->p_idx + 1), (curp->p_idx + 2));
 764			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
 765		}
 766		ix = curp->p_idx + 1;
 767	} else {
 768		/* insert before */
 769		len = len * sizeof(struct ext4_extent_idx);
 770		len = len < 0 ? 0 : len;
 771		ext_debug("insert new index %d before: %llu. "
 772				"move %d from 0x%p to 0x%p\n",
 773				logical, ptr, len,
 774				curp->p_idx, (curp->p_idx + 1));
 775		memmove(curp->p_idx + 1, curp->p_idx, len);
 776		ix = curp->p_idx;
 777	}
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779	ix->ei_block = cpu_to_le32(logical);
 780	ext4_idx_store_pblock(ix, ptr);
 781	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 782
 783	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 784		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 785		return -EIO;
 786	}
 787
 788	err = ext4_ext_dirty(handle, inode, curp);
 789	ext4_std_error(inode->i_sb, err);
 790
 791	return err;
 792}
 793
 794/*
 795 * ext4_ext_split:
 796 * inserts new subtree into the path, using free index entry
 797 * at depth @at:
 798 * - allocates all needed blocks (new leaf and all intermediate index blocks)
 799 * - makes decision where to split
 800 * - moves remaining extents and index entries (right to the split point)
 801 *   into the newly allocated blocks
 802 * - initializes subtree
 803 */
 804static int ext4_ext_split(handle_t *handle, struct inode *inode,
 805			  unsigned int flags,
 806			  struct ext4_ext_path *path,
 807			  struct ext4_extent *newext, int at)
 808{
 809	struct buffer_head *bh = NULL;
 810	int depth = ext_depth(inode);
 811	struct ext4_extent_header *neh;
 812	struct ext4_extent_idx *fidx;
 813	int i = at, k, m, a;
 814	ext4_fsblk_t newblock, oldblock;
 815	__le32 border;
 816	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
 817	int err = 0;
 818
 819	/* make decision: where to split? */
 820	/* FIXME: now decision is simplest: at current extent */
 821
 822	/* if current leaf will be split, then we should use
 823	 * border from split point */
 824	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
 825		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
 826		return -EIO;
 827	}
 828	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
 829		border = path[depth].p_ext[1].ee_block;
 830		ext_debug("leaf will be split."
 831				" next leaf starts at %d\n",
 832				  le32_to_cpu(border));
 833	} else {
 834		border = newext->ee_block;
 835		ext_debug("leaf will be added."
 836				" next leaf starts at %d\n",
 837				le32_to_cpu(border));
 838	}
 839
 840	/*
 841	 * If error occurs, then we break processing
 842	 * and mark filesystem read-only. index won't
 843	 * be inserted and tree will be in consistent
 844	 * state. Next mount will repair buffers too.
 845	 */
 846
 847	/*
 848	 * Get array to track all allocated blocks.
 849	 * We need this to handle errors and free blocks
 850	 * upon them.
 851	 */
 852	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
 853	if (!ablocks)
 854		return -ENOMEM;
 855
 856	/* allocate all needed blocks */
 857	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
 858	for (a = 0; a < depth - at; a++) {
 859		newblock = ext4_ext_new_meta_block(handle, inode, path,
 860						   newext, &err, flags);
 861		if (newblock == 0)
 862			goto cleanup;
 863		ablocks[a] = newblock;
 864	}
 865
 866	/* initialize new leaf */
 867	newblock = ablocks[--a];
 868	if (unlikely(newblock == 0)) {
 869		EXT4_ERROR_INODE(inode, "newblock == 0!");
 870		err = -EIO;
 871		goto cleanup;
 872	}
 873	bh = sb_getblk(inode->i_sb, newblock);
 874	if (!bh) {
 875		err = -EIO;
 876		goto cleanup;
 877	}
 878	lock_buffer(bh);
 879
 880	err = ext4_journal_get_create_access(handle, bh);
 881	if (err)
 882		goto cleanup;
 883
 884	neh = ext_block_hdr(bh);
 885	neh->eh_entries = 0;
 886	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
 887	neh->eh_magic = EXT4_EXT_MAGIC;
 888	neh->eh_depth = 0;
 889
 890	/* move remainder of path[depth] to the new leaf */
 891	if (unlikely(path[depth].p_hdr->eh_entries !=
 892		     path[depth].p_hdr->eh_max)) {
 893		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
 894				 path[depth].p_hdr->eh_entries,
 895				 path[depth].p_hdr->eh_max);
 896		err = -EIO;
 897		goto cleanup;
 898	}
 899	/* start copy from next extent */
 900	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
 901	ext4_ext_show_move(inode, path, newblock, depth);
 902	if (m) {
 903		struct ext4_extent *ex;
 904		ex = EXT_FIRST_EXTENT(neh);
 905		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
 906		le16_add_cpu(&neh->eh_entries, m);
 907	}
 908
 
 909	set_buffer_uptodate(bh);
 910	unlock_buffer(bh);
 911
 912	err = ext4_handle_dirty_metadata(handle, inode, bh);
 913	if (err)
 914		goto cleanup;
 915	brelse(bh);
 916	bh = NULL;
 917
 918	/* correct old leaf */
 919	if (m) {
 920		err = ext4_ext_get_access(handle, inode, path + depth);
 921		if (err)
 922			goto cleanup;
 923		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
 924		err = ext4_ext_dirty(handle, inode, path + depth);
 925		if (err)
 926			goto cleanup;
 927
 928	}
 929
 930	/* create intermediate indexes */
 931	k = depth - at - 1;
 932	if (unlikely(k < 0)) {
 933		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
 934		err = -EIO;
 935		goto cleanup;
 936	}
 937	if (k)
 938		ext_debug("create %d intermediate indices\n", k);
 939	/* insert new index into current index block */
 940	/* current depth stored in i var */
 941	i = depth - 1;
 942	while (k--) {
 943		oldblock = newblock;
 944		newblock = ablocks[--a];
 945		bh = sb_getblk(inode->i_sb, newblock);
 946		if (!bh) {
 947			err = -EIO;
 948			goto cleanup;
 949		}
 950		lock_buffer(bh);
 951
 952		err = ext4_journal_get_create_access(handle, bh);
 953		if (err)
 954			goto cleanup;
 955
 956		neh = ext_block_hdr(bh);
 957		neh->eh_entries = cpu_to_le16(1);
 958		neh->eh_magic = EXT4_EXT_MAGIC;
 959		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
 960		neh->eh_depth = cpu_to_le16(depth - i);
 961		fidx = EXT_FIRST_INDEX(neh);
 962		fidx->ei_block = border;
 963		ext4_idx_store_pblock(fidx, oldblock);
 964
 965		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
 966				i, newblock, le32_to_cpu(border), oldblock);
 967
 968		/* move remainder of path[i] to the new index block */
 969		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
 970					EXT_LAST_INDEX(path[i].p_hdr))) {
 971			EXT4_ERROR_INODE(inode,
 972					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
 973					 le32_to_cpu(path[i].p_ext->ee_block));
 974			err = -EIO;
 975			goto cleanup;
 976		}
 977		/* start copy indexes */
 978		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
 979		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
 980				EXT_MAX_INDEX(path[i].p_hdr));
 981		ext4_ext_show_move(inode, path, newblock, i);
 982		if (m) {
 983			memmove(++fidx, path[i].p_idx,
 984				sizeof(struct ext4_extent_idx) * m);
 985			le16_add_cpu(&neh->eh_entries, m);
 986		}
 
 987		set_buffer_uptodate(bh);
 988		unlock_buffer(bh);
 989
 990		err = ext4_handle_dirty_metadata(handle, inode, bh);
 991		if (err)
 992			goto cleanup;
 993		brelse(bh);
 994		bh = NULL;
 995
 996		/* correct old index */
 997		if (m) {
 998			err = ext4_ext_get_access(handle, inode, path + i);
 999			if (err)
1000				goto cleanup;
1001			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1002			err = ext4_ext_dirty(handle, inode, path + i);
1003			if (err)
1004				goto cleanup;
1005		}
1006
1007		i--;
1008	}
1009
1010	/* insert new index */
1011	err = ext4_ext_insert_index(handle, inode, path + at,
1012				    le32_to_cpu(border), newblock);
1013
1014cleanup:
1015	if (bh) {
1016		if (buffer_locked(bh))
1017			unlock_buffer(bh);
1018		brelse(bh);
1019	}
1020
1021	if (err) {
1022		/* free all allocated blocks in error case */
1023		for (i = 0; i < depth; i++) {
1024			if (!ablocks[i])
1025				continue;
1026			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1027					 EXT4_FREE_BLOCKS_METADATA);
1028		}
1029	}
1030	kfree(ablocks);
1031
1032	return err;
1033}
1034
1035/*
1036 * ext4_ext_grow_indepth:
1037 * implements tree growing procedure:
1038 * - allocates new block
1039 * - moves top-level data (index block or leaf) into the new block
1040 * - initializes new top-level, creating index that points to the
1041 *   just created block
1042 */
1043static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1044				 unsigned int flags,
1045				 struct ext4_ext_path *path,
1046				 struct ext4_extent *newext)
1047{
1048	struct ext4_ext_path *curp = path;
1049	struct ext4_extent_header *neh;
1050	struct buffer_head *bh;
1051	ext4_fsblk_t newblock;
 
1052	int err = 0;
1053
1054	newblock = ext4_ext_new_meta_block(handle, inode, path,
1055		newext, &err, flags);
 
 
 
 
 
 
 
 
1056	if (newblock == 0)
1057		return err;
1058
1059	bh = sb_getblk(inode->i_sb, newblock);
1060	if (!bh) {
1061		err = -EIO;
1062		ext4_std_error(inode->i_sb, err);
1063		return err;
1064	}
1065	lock_buffer(bh);
1066
1067	err = ext4_journal_get_create_access(handle, bh);
1068	if (err) {
1069		unlock_buffer(bh);
1070		goto out;
1071	}
1072
1073	/* move top-level index/leaf into new block */
1074	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
 
1075
1076	/* set size of new block */
1077	neh = ext_block_hdr(bh);
1078	/* old root could have indexes or leaves
1079	 * so calculate e_max right way */
1080	if (ext_depth(inode))
1081		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1082	else
1083		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1084	neh->eh_magic = EXT4_EXT_MAGIC;
 
1085	set_buffer_uptodate(bh);
1086	unlock_buffer(bh);
1087
1088	err = ext4_handle_dirty_metadata(handle, inode, bh);
1089	if (err)
1090		goto out;
1091
1092	/* create index in new top-level index: num,max,pointer */
1093	err = ext4_ext_get_access(handle, inode, curp);
1094	if (err)
1095		goto out;
1096
1097	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1098	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1099	curp->p_hdr->eh_entries = cpu_to_le16(1);
1100	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1101
1102	if (path[0].p_hdr->eh_depth)
1103		curp->p_idx->ei_block =
1104			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1105	else
1106		curp->p_idx->ei_block =
1107			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1108	ext4_idx_store_pblock(curp->p_idx, newblock);
1109
1110	neh = ext_inode_hdr(inode);
 
 
 
 
 
 
 
 
1111	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1112		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1113		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1114		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1115
1116	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1117	err = ext4_ext_dirty(handle, inode, curp);
1118out:
1119	brelse(bh);
1120
1121	return err;
1122}
1123
1124/*
1125 * ext4_ext_create_new_leaf:
1126 * finds empty index and adds new leaf.
1127 * if no free index is found, then it requests in-depth growing.
1128 */
1129static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1130				    unsigned int flags,
1131				    struct ext4_ext_path *path,
 
1132				    struct ext4_extent *newext)
1133{
 
1134	struct ext4_ext_path *curp;
1135	int depth, i, err = 0;
1136
1137repeat:
1138	i = depth = ext_depth(inode);
1139
1140	/* walk up to the tree and look for free index entry */
1141	curp = path + depth;
1142	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1143		i--;
1144		curp--;
1145	}
1146
1147	/* we use already allocated block for index block,
1148	 * so subsequent data blocks should be contiguous */
1149	if (EXT_HAS_FREE_INDEX(curp)) {
1150		/* if we found index with free entry, then use that
1151		 * entry: create all needed subtree and add new leaf */
1152		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1153		if (err)
1154			goto out;
1155
1156		/* refill path */
1157		ext4_ext_drop_refs(path);
1158		path = ext4_ext_find_extent(inode,
1159				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1160				    path);
1161		if (IS_ERR(path))
1162			err = PTR_ERR(path);
1163	} else {
1164		/* tree is full, time to grow in depth */
1165		err = ext4_ext_grow_indepth(handle, inode, flags,
1166					    path, newext);
1167		if (err)
1168			goto out;
1169
1170		/* refill path */
1171		ext4_ext_drop_refs(path);
1172		path = ext4_ext_find_extent(inode,
1173				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1174				    path);
1175		if (IS_ERR(path)) {
1176			err = PTR_ERR(path);
1177			goto out;
1178		}
1179
1180		/*
1181		 * only first (depth 0 -> 1) produces free space;
1182		 * in all other cases we have to split the grown tree
1183		 */
1184		depth = ext_depth(inode);
1185		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1186			/* now we need to split */
1187			goto repeat;
1188		}
1189	}
1190
1191out:
1192	return err;
1193}
1194
1195/*
1196 * search the closest allocated block to the left for *logical
1197 * and returns it at @logical + it's physical address at @phys
1198 * if *logical is the smallest allocated block, the function
1199 * returns 0 at @phys
1200 * return value contains 0 (success) or error code
1201 */
1202static int ext4_ext_search_left(struct inode *inode,
1203				struct ext4_ext_path *path,
1204				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1205{
1206	struct ext4_extent_idx *ix;
1207	struct ext4_extent *ex;
1208	int depth, ee_len;
1209
1210	if (unlikely(path == NULL)) {
1211		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1212		return -EIO;
1213	}
1214	depth = path->p_depth;
1215	*phys = 0;
1216
1217	if (depth == 0 && path->p_ext == NULL)
1218		return 0;
1219
1220	/* usually extent in the path covers blocks smaller
1221	 * then *logical, but it can be that extent is the
1222	 * first one in the file */
1223
1224	ex = path[depth].p_ext;
1225	ee_len = ext4_ext_get_actual_len(ex);
1226	if (*logical < le32_to_cpu(ex->ee_block)) {
1227		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1228			EXT4_ERROR_INODE(inode,
1229					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1230					 *logical, le32_to_cpu(ex->ee_block));
1231			return -EIO;
1232		}
1233		while (--depth >= 0) {
1234			ix = path[depth].p_idx;
1235			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1236				EXT4_ERROR_INODE(inode,
1237				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1238				  ix != NULL ? ix->ei_block : 0,
1239				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1240				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1241				  depth);
1242				return -EIO;
1243			}
1244		}
1245		return 0;
1246	}
1247
1248	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1249		EXT4_ERROR_INODE(inode,
1250				 "logical %d < ee_block %d + ee_len %d!",
1251				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1252		return -EIO;
1253	}
1254
1255	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1256	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1257	return 0;
1258}
1259
1260/*
1261 * search the closest allocated block to the right for *logical
1262 * and returns it at @logical + it's physical address at @phys
1263 * if *logical is the smallest allocated block, the function
1264 * returns 0 at @phys
1265 * return value contains 0 (success) or error code
1266 */
1267static int ext4_ext_search_right(struct inode *inode,
1268				 struct ext4_ext_path *path,
1269				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
 
1270{
1271	struct buffer_head *bh = NULL;
1272	struct ext4_extent_header *eh;
1273	struct ext4_extent_idx *ix;
1274	struct ext4_extent *ex;
1275	ext4_fsblk_t block;
1276	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1277	int ee_len;
1278
1279	if (unlikely(path == NULL)) {
1280		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1281		return -EIO;
1282	}
1283	depth = path->p_depth;
1284	*phys = 0;
1285
1286	if (depth == 0 && path->p_ext == NULL)
1287		return 0;
1288
1289	/* usually extent in the path covers blocks smaller
1290	 * then *logical, but it can be that extent is the
1291	 * first one in the file */
1292
1293	ex = path[depth].p_ext;
1294	ee_len = ext4_ext_get_actual_len(ex);
1295	if (*logical < le32_to_cpu(ex->ee_block)) {
1296		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1297			EXT4_ERROR_INODE(inode,
1298					 "first_extent(path[%d].p_hdr) != ex",
1299					 depth);
1300			return -EIO;
1301		}
1302		while (--depth >= 0) {
1303			ix = path[depth].p_idx;
1304			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1305				EXT4_ERROR_INODE(inode,
1306						 "ix != EXT_FIRST_INDEX *logical %d!",
1307						 *logical);
1308				return -EIO;
1309			}
1310		}
1311		*logical = le32_to_cpu(ex->ee_block);
1312		*phys = ext4_ext_pblock(ex);
1313		return 0;
1314	}
1315
1316	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1317		EXT4_ERROR_INODE(inode,
1318				 "logical %d < ee_block %d + ee_len %d!",
1319				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1320		return -EIO;
1321	}
1322
1323	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1324		/* next allocated block in this leaf */
1325		ex++;
1326		*logical = le32_to_cpu(ex->ee_block);
1327		*phys = ext4_ext_pblock(ex);
1328		return 0;
1329	}
1330
1331	/* go up and search for index to the right */
1332	while (--depth >= 0) {
1333		ix = path[depth].p_idx;
1334		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1335			goto got_index;
1336	}
1337
1338	/* we've gone up to the root and found no index to the right */
1339	return 0;
1340
1341got_index:
1342	/* we've found index to the right, let's
1343	 * follow it and find the closest allocated
1344	 * block to the right */
1345	ix++;
1346	block = ext4_idx_pblock(ix);
1347	while (++depth < path->p_depth) {
1348		bh = sb_bread(inode->i_sb, block);
1349		if (bh == NULL)
1350			return -EIO;
1351		eh = ext_block_hdr(bh);
1352		/* subtract from p_depth to get proper eh_depth */
1353		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1354			put_bh(bh);
1355			return -EIO;
1356		}
 
1357		ix = EXT_FIRST_INDEX(eh);
1358		block = ext4_idx_pblock(ix);
1359		put_bh(bh);
1360	}
1361
1362	bh = sb_bread(inode->i_sb, block);
1363	if (bh == NULL)
1364		return -EIO;
1365	eh = ext_block_hdr(bh);
1366	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1367		put_bh(bh);
1368		return -EIO;
1369	}
1370	ex = EXT_FIRST_EXTENT(eh);
 
1371	*logical = le32_to_cpu(ex->ee_block);
1372	*phys = ext4_ext_pblock(ex);
1373	put_bh(bh);
 
 
1374	return 0;
1375}
1376
1377/*
1378 * ext4_ext_next_allocated_block:
1379 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1380 * NOTE: it considers block number from index entry as
1381 * allocated block. Thus, index entries have to be consistent
1382 * with leaves.
1383 */
1384static ext4_lblk_t
1385ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1386{
1387	int depth;
1388
1389	BUG_ON(path == NULL);
1390	depth = path->p_depth;
1391
1392	if (depth == 0 && path->p_ext == NULL)
1393		return EXT_MAX_BLOCKS;
1394
1395	while (depth >= 0) {
1396		if (depth == path->p_depth) {
1397			/* leaf */
1398			if (path[depth].p_ext !=
 
1399					EXT_LAST_EXTENT(path[depth].p_hdr))
1400			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1401		} else {
1402			/* index */
1403			if (path[depth].p_idx !=
1404					EXT_LAST_INDEX(path[depth].p_hdr))
1405			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1406		}
1407		depth--;
1408	}
1409
1410	return EXT_MAX_BLOCKS;
1411}
1412
1413/*
1414 * ext4_ext_next_leaf_block:
1415 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1416 */
1417static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1418{
1419	int depth;
1420
1421	BUG_ON(path == NULL);
1422	depth = path->p_depth;
1423
1424	/* zero-tree has no leaf blocks at all */
1425	if (depth == 0)
1426		return EXT_MAX_BLOCKS;
1427
1428	/* go to index block */
1429	depth--;
1430
1431	while (depth >= 0) {
1432		if (path[depth].p_idx !=
1433				EXT_LAST_INDEX(path[depth].p_hdr))
1434			return (ext4_lblk_t)
1435				le32_to_cpu(path[depth].p_idx[1].ei_block);
1436		depth--;
1437	}
1438
1439	return EXT_MAX_BLOCKS;
1440}
1441
1442/*
1443 * ext4_ext_correct_indexes:
1444 * if leaf gets modified and modified extent is first in the leaf,
1445 * then we have to correct all indexes above.
1446 * TODO: do we need to correct tree in all cases?
1447 */
1448static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1449				struct ext4_ext_path *path)
1450{
1451	struct ext4_extent_header *eh;
1452	int depth = ext_depth(inode);
1453	struct ext4_extent *ex;
1454	__le32 border;
1455	int k, err = 0;
1456
1457	eh = path[depth].p_hdr;
1458	ex = path[depth].p_ext;
1459
1460	if (unlikely(ex == NULL || eh == NULL)) {
1461		EXT4_ERROR_INODE(inode,
1462				 "ex %p == NULL or eh %p == NULL", ex, eh);
1463		return -EIO;
1464	}
1465
1466	if (depth == 0) {
1467		/* there is no tree at all */
1468		return 0;
1469	}
1470
1471	if (ex != EXT_FIRST_EXTENT(eh)) {
1472		/* we correct tree if first leaf got modified only */
1473		return 0;
1474	}
1475
1476	/*
1477	 * TODO: we need correction if border is smaller than current one
1478	 */
1479	k = depth - 1;
1480	border = path[depth].p_ext->ee_block;
1481	err = ext4_ext_get_access(handle, inode, path + k);
1482	if (err)
1483		return err;
1484	path[k].p_idx->ei_block = border;
1485	err = ext4_ext_dirty(handle, inode, path + k);
1486	if (err)
1487		return err;
1488
1489	while (k--) {
1490		/* change all left-side indexes */
1491		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1492			break;
1493		err = ext4_ext_get_access(handle, inode, path + k);
1494		if (err)
1495			break;
1496		path[k].p_idx->ei_block = border;
1497		err = ext4_ext_dirty(handle, inode, path + k);
1498		if (err)
1499			break;
1500	}
1501
1502	return err;
1503}
1504
1505int
1506ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1507				struct ext4_extent *ex2)
1508{
1509	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1510
1511	/*
1512	 * Make sure that either both extents are uninitialized, or
1513	 * both are _not_.
1514	 */
1515	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1516		return 0;
1517
1518	if (ext4_ext_is_uninitialized(ex1))
1519		max_len = EXT_UNINIT_MAX_LEN;
1520	else
1521		max_len = EXT_INIT_MAX_LEN;
1522
1523	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1524	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1525
1526	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1527			le32_to_cpu(ex2->ee_block))
1528		return 0;
1529
1530	/*
1531	 * To allow future support for preallocated extents to be added
1532	 * as an RO_COMPAT feature, refuse to merge to extents if
1533	 * this can result in the top bit of ee_len being set.
1534	 */
1535	if (ext1_ee_len + ext2_ee_len > max_len)
 
 
 
 
 
 
 
 
 
 
 
1536		return 0;
1537#ifdef AGGRESSIVE_TEST
1538	if (ext1_ee_len >= 4)
1539		return 0;
1540#endif
1541
1542	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1543		return 1;
1544	return 0;
1545}
1546
1547/*
1548 * This function tries to merge the "ex" extent to the next extent in the tree.
1549 * It always tries to merge towards right. If you want to merge towards
1550 * left, pass "ex - 1" as argument instead of "ex".
1551 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1552 * 1 if they got merged.
1553 */
1554static int ext4_ext_try_to_merge_right(struct inode *inode,
1555				 struct ext4_ext_path *path,
1556				 struct ext4_extent *ex)
1557{
1558	struct ext4_extent_header *eh;
1559	unsigned int depth, len;
1560	int merge_done = 0;
1561	int uninitialized = 0;
1562
1563	depth = ext_depth(inode);
1564	BUG_ON(path[depth].p_hdr == NULL);
1565	eh = path[depth].p_hdr;
1566
1567	while (ex < EXT_LAST_EXTENT(eh)) {
1568		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1569			break;
1570		/* merge with next extent! */
1571		if (ext4_ext_is_uninitialized(ex))
1572			uninitialized = 1;
1573		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1574				+ ext4_ext_get_actual_len(ex + 1));
1575		if (uninitialized)
1576			ext4_ext_mark_uninitialized(ex);
1577
1578		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1579			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1580				* sizeof(struct ext4_extent);
1581			memmove(ex + 1, ex + 2, len);
1582		}
1583		le16_add_cpu(&eh->eh_entries, -1);
1584		merge_done = 1;
1585		WARN_ON(eh->eh_entries == 0);
1586		if (!eh->eh_entries)
1587			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1588	}
1589
1590	return merge_done;
1591}
1592
1593/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594 * This function tries to merge the @ex extent to neighbours in the tree.
1595 * return 1 if merge left else 0.
1596 */
1597static int ext4_ext_try_to_merge(struct inode *inode,
 
1598				  struct ext4_ext_path *path,
1599				  struct ext4_extent *ex) {
1600	struct ext4_extent_header *eh;
1601	unsigned int depth;
1602	int merge_done = 0;
1603	int ret = 0;
1604
1605	depth = ext_depth(inode);
1606	BUG_ON(path[depth].p_hdr == NULL);
1607	eh = path[depth].p_hdr;
1608
1609	if (ex > EXT_FIRST_EXTENT(eh))
1610		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1611
1612	if (!merge_done)
1613		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1614
1615	return ret;
1616}
1617
1618/*
1619 * check if a portion of the "newext" extent overlaps with an
1620 * existing extent.
1621 *
1622 * If there is an overlap discovered, it updates the length of the newext
1623 * such that there will be no overlap, and then returns 1.
1624 * If there is no overlap found, it returns 0.
1625 */
1626static unsigned int ext4_ext_check_overlap(struct inode *inode,
 
1627					   struct ext4_extent *newext,
1628					   struct ext4_ext_path *path)
1629{
1630	ext4_lblk_t b1, b2;
1631	unsigned int depth, len1;
1632	unsigned int ret = 0;
1633
1634	b1 = le32_to_cpu(newext->ee_block);
1635	len1 = ext4_ext_get_actual_len(newext);
1636	depth = ext_depth(inode);
1637	if (!path[depth].p_ext)
1638		goto out;
1639	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1640
1641	/*
1642	 * get the next allocated block if the extent in the path
1643	 * is before the requested block(s)
1644	 */
1645	if (b2 < b1) {
1646		b2 = ext4_ext_next_allocated_block(path);
1647		if (b2 == EXT_MAX_BLOCKS)
1648			goto out;
 
1649	}
1650
1651	/* check for wrap through zero on extent logical start block*/
1652	if (b1 + len1 < b1) {
1653		len1 = EXT_MAX_BLOCKS - b1;
1654		newext->ee_len = cpu_to_le16(len1);
1655		ret = 1;
1656	}
1657
1658	/* check for overlap */
1659	if (b1 + len1 > b2) {
1660		newext->ee_len = cpu_to_le16(b2 - b1);
1661		ret = 1;
1662	}
1663out:
1664	return ret;
1665}
1666
1667/*
1668 * ext4_ext_insert_extent:
1669 * tries to merge requsted extent into the existing extent or
1670 * inserts requested extent as new one into the tree,
1671 * creating new leaf in the no-space case.
1672 */
1673int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1674				struct ext4_ext_path *path,
1675				struct ext4_extent *newext, int flag)
1676{
 
1677	struct ext4_extent_header *eh;
1678	struct ext4_extent *ex, *fex;
1679	struct ext4_extent *nearex; /* nearest extent */
1680	struct ext4_ext_path *npath = NULL;
1681	int depth, len, err;
1682	ext4_lblk_t next;
1683	unsigned uninitialized = 0;
1684	int flags = 0;
1685
 
 
1686	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1687		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1688		return -EIO;
1689	}
1690	depth = ext_depth(inode);
1691	ex = path[depth].p_ext;
 
1692	if (unlikely(path[depth].p_hdr == NULL)) {
1693		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1694		return -EIO;
1695	}
1696
1697	/* try to insert block into found extent and return */
1698	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1699		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1700		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1701			  ext4_ext_is_uninitialized(newext),
1702			  ext4_ext_get_actual_len(newext),
1703			  le32_to_cpu(ex->ee_block),
1704			  ext4_ext_is_uninitialized(ex),
1705			  ext4_ext_get_actual_len(ex),
1706			  ext4_ext_pblock(ex));
1707		err = ext4_ext_get_access(handle, inode, path + depth);
1708		if (err)
1709			return err;
1710
1711		/*
1712		 * ext4_can_extents_be_merged should have checked that either
1713		 * both extents are uninitialized, or both aren't. Thus we
1714		 * need to check only one of them here.
 
 
1715		 */
1716		if (ext4_ext_is_uninitialized(ex))
1717			uninitialized = 1;
1718		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719					+ ext4_ext_get_actual_len(newext));
1720		if (uninitialized)
1721			ext4_ext_mark_uninitialized(ex);
1722		eh = path[depth].p_hdr;
1723		nearex = ex;
1724		goto merge;
 
1725	}
1726
1727	depth = ext_depth(inode);
1728	eh = path[depth].p_hdr;
1729	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1730		goto has_space;
1731
1732	/* probably next leaf has space for us? */
1733	fex = EXT_LAST_EXTENT(eh);
1734	next = EXT_MAX_BLOCKS;
1735	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1736		next = ext4_ext_next_leaf_block(path);
1737	if (next != EXT_MAX_BLOCKS) {
1738		ext_debug("next leaf block - %d\n", next);
1739		BUG_ON(npath != NULL);
1740		npath = ext4_ext_find_extent(inode, next, NULL);
1741		if (IS_ERR(npath))
1742			return PTR_ERR(npath);
1743		BUG_ON(npath->p_depth != path->p_depth);
1744		eh = npath[depth].p_hdr;
1745		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1746			ext_debug("next leaf isn't full(%d)\n",
1747				  le16_to_cpu(eh->eh_entries));
1748			path = npath;
1749			goto has_space;
1750		}
1751		ext_debug("next leaf has no free space(%d,%d)\n",
1752			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1753	}
1754
1755	/*
1756	 * There is no free space in the found leaf.
1757	 * We're gonna add a new leaf in the tree.
1758	 */
1759	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1760		flags = EXT4_MB_USE_ROOT_BLOCKS;
1761	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
 
1762	if (err)
1763		goto cleanup;
1764	depth = ext_depth(inode);
1765	eh = path[depth].p_hdr;
1766
1767has_space:
1768	nearex = path[depth].p_ext;
1769
1770	err = ext4_ext_get_access(handle, inode, path + depth);
1771	if (err)
1772		goto cleanup;
1773
1774	if (!nearex) {
1775		/* there is no extent in this leaf, create first one */
1776		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1777				le32_to_cpu(newext->ee_block),
1778				ext4_ext_pblock(newext),
1779				ext4_ext_is_uninitialized(newext),
1780				ext4_ext_get_actual_len(newext));
1781		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1782	} else if (le32_to_cpu(newext->ee_block)
 
1783			   > le32_to_cpu(nearex->ee_block)) {
1784/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1785		if (nearex != EXT_LAST_EXTENT(eh)) {
1786			len = EXT_MAX_EXTENT(eh) - nearex;
1787			len = (len - 1) * sizeof(struct ext4_extent);
1788			len = len < 0 ? 0 : len;
1789			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1790					"move %d from 0x%p to 0x%p\n",
 
 
 
 
 
 
 
1791					le32_to_cpu(newext->ee_block),
1792					ext4_ext_pblock(newext),
1793					ext4_ext_is_uninitialized(newext),
1794					ext4_ext_get_actual_len(newext),
1795					nearex, len, nearex + 1, nearex + 2);
1796			memmove(nearex + 2, nearex + 1, len);
 
 
 
 
 
 
 
 
 
 
 
1797		}
1798		path[depth].p_ext = nearex + 1;
1799	} else {
1800		BUG_ON(newext->ee_block == nearex->ee_block);
1801		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1802		len = len < 0 ? 0 : len;
1803		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1804				"move %d from 0x%p to 0x%p\n",
1805				le32_to_cpu(newext->ee_block),
1806				ext4_ext_pblock(newext),
1807				ext4_ext_is_uninitialized(newext),
1808				ext4_ext_get_actual_len(newext),
1809				nearex, len, nearex, nearex + 1);
1810		memmove(nearex + 1, nearex, len);
1811		path[depth].p_ext = nearex;
1812	}
1813
1814	le16_add_cpu(&eh->eh_entries, 1);
1815	nearex = path[depth].p_ext;
1816	nearex->ee_block = newext->ee_block;
1817	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1818	nearex->ee_len = newext->ee_len;
1819
1820merge:
1821	/* try to merge extents to the right */
1822	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1823		ext4_ext_try_to_merge(inode, path, nearex);
1824
1825	/* try to merge extents to the left */
1826
1827	/* time to correct all indexes above */
1828	err = ext4_ext_correct_indexes(handle, inode, path);
1829	if (err)
1830		goto cleanup;
1831
1832	err = ext4_ext_dirty(handle, inode, path + depth);
1833
1834cleanup:
1835	if (npath) {
1836		ext4_ext_drop_refs(npath);
1837		kfree(npath);
1838	}
1839	ext4_ext_invalidate_cache(inode);
1840	return err;
1841}
1842
1843static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1844			       ext4_lblk_t num, ext_prepare_callback func,
1845			       void *cbdata)
1846{
1847	struct ext4_ext_path *path = NULL;
1848	struct ext4_ext_cache cbex;
1849	struct ext4_extent *ex;
1850	ext4_lblk_t next, start = 0, end = 0;
 
1851	ext4_lblk_t last = block + num;
1852	int depth, exists, err = 0;
1853
1854	BUG_ON(func == NULL);
1855	BUG_ON(inode == NULL);
1856
1857	while (block < last && block != EXT_MAX_BLOCKS) {
1858		num = last - block;
1859		/* find extent for this block */
1860		down_read(&EXT4_I(inode)->i_data_sem);
1861		path = ext4_ext_find_extent(inode, block, path);
1862		up_read(&EXT4_I(inode)->i_data_sem);
1863		if (IS_ERR(path)) {
 
1864			err = PTR_ERR(path);
1865			path = NULL;
1866			break;
1867		}
1868
1869		depth = ext_depth(inode);
1870		if (unlikely(path[depth].p_hdr == NULL)) {
 
1871			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1872			err = -EIO;
1873			break;
1874		}
1875		ex = path[depth].p_ext;
1876		next = ext4_ext_next_allocated_block(path);
1877
 
1878		exists = 0;
1879		if (!ex) {
1880			/* there is no extent yet, so try to allocate
1881			 * all requested space */
1882			start = block;
1883			end = block + num;
1884		} else if (le32_to_cpu(ex->ee_block) > block) {
1885			/* need to allocate space before found extent */
1886			start = block;
1887			end = le32_to_cpu(ex->ee_block);
1888			if (block + num < end)
1889				end = block + num;
1890		} else if (block >= le32_to_cpu(ex->ee_block)
1891					+ ext4_ext_get_actual_len(ex)) {
1892			/* need to allocate space after found extent */
1893			start = block;
1894			end = block + num;
1895			if (end >= next)
1896				end = next;
1897		} else if (block >= le32_to_cpu(ex->ee_block)) {
1898			/*
1899			 * some part of requested space is covered
1900			 * by found extent
1901			 */
1902			start = block;
1903			end = le32_to_cpu(ex->ee_block)
1904				+ ext4_ext_get_actual_len(ex);
1905			if (block + num < end)
1906				end = block + num;
1907			exists = 1;
1908		} else {
1909			BUG();
1910		}
1911		BUG_ON(end <= start);
1912
1913		if (!exists) {
1914			cbex.ec_block = start;
1915			cbex.ec_len = end - start;
1916			cbex.ec_start = 0;
1917		} else {
1918			cbex.ec_block = le32_to_cpu(ex->ee_block);
1919			cbex.ec_len = ext4_ext_get_actual_len(ex);
1920			cbex.ec_start = ext4_ext_pblock(ex);
 
 
1921		}
1922
1923		if (unlikely(cbex.ec_len == 0)) {
1924			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1925			err = -EIO;
1926			break;
 
 
 
 
 
 
1927		}
1928		err = func(inode, next, &cbex, ex, cbdata);
1929		ext4_ext_drop_refs(path);
1930
1931		if (err < 0)
1932			break;
1933
1934		if (err == EXT_REPEAT)
1935			continue;
1936		else if (err == EXT_BREAK) {
1937			err = 0;
1938			break;
1939		}
1940
1941		if (ext_depth(inode) != depth) {
1942			/* depth was changed. we have to realloc path */
1943			kfree(path);
1944			path = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945		}
1946
1947		block = cbex.ec_block + cbex.ec_len;
1948	}
 
 
 
 
 
 
 
 
 
 
 
1949
1950	if (path) {
1951		ext4_ext_drop_refs(path);
1952		kfree(path);
1953	}
1954
 
 
1955	return err;
1956}
1957
1958static void
1959ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1960			__u32 len, ext4_fsblk_t start)
1961{
1962	struct ext4_ext_cache *cex;
1963	BUG_ON(len == 0);
1964	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1965	cex = &EXT4_I(inode)->i_cached_extent;
1966	cex->ec_block = block;
1967	cex->ec_len = len;
1968	cex->ec_start = start;
1969	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1970}
1971
1972/*
1973 * ext4_ext_put_gap_in_cache:
1974 * calculate boundaries of the gap that the requested block fits into
1975 * and cache this gap
 
 
 
 
 
 
 
 
1976 */
1977static void
1978ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1979				ext4_lblk_t block)
1980{
1981	int depth = ext_depth(inode);
1982	unsigned long len;
1983	ext4_lblk_t lblock;
1984	struct ext4_extent *ex;
 
1985
1986	ex = path[depth].p_ext;
1987	if (ex == NULL) {
1988		/* there is no extent yet, so gap is [0;-] */
1989		lblock = 0;
1990		len = EXT_MAX_BLOCKS;
1991		ext_debug("cache gap(whole file):");
1992	} else if (block < le32_to_cpu(ex->ee_block)) {
1993		lblock = block;
1994		len = le32_to_cpu(ex->ee_block) - block;
1995		ext_debug("cache gap(before): %u [%u:%u]",
1996				block,
1997				le32_to_cpu(ex->ee_block),
1998				 ext4_ext_get_actual_len(ex));
1999	} else if (block >= le32_to_cpu(ex->ee_block)
2000			+ ext4_ext_get_actual_len(ex)) {
2001		ext4_lblk_t next;
2002		lblock = le32_to_cpu(ex->ee_block)
2003			+ ext4_ext_get_actual_len(ex);
2004
 
2005		next = ext4_ext_next_allocated_block(path);
2006		ext_debug("cache gap(after): [%u:%u] %u",
2007				le32_to_cpu(ex->ee_block),
2008				ext4_ext_get_actual_len(ex),
2009				block);
2010		BUG_ON(next == lblock);
2011		len = next - lblock;
2012	} else {
2013		lblock = len = 0;
2014		BUG();
2015	}
2016
2017	ext_debug(" -> %u:%lu\n", lblock, len);
2018	ext4_ext_put_in_cache(inode, lblock, len, 0);
2019}
2020
2021/*
2022 * ext4_ext_check_cache()
2023 * Checks to see if the given block is in the cache.
2024 * If it is, the cached extent is stored in the given
2025 * cache extent pointer.  If the cached extent is a hole,
2026 * this routine should be used instead of
2027 * ext4_ext_in_cache if the calling function needs to
2028 * know the size of the hole.
2029 *
2030 * @inode: The files inode
2031 * @block: The block to look for in the cache
2032 * @ex:    Pointer where the cached extent will be stored
2033 *         if it contains block
2034 *
2035 * Return 0 if cache is invalid; 1 if the cache is valid
2036 */
2037static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2038	struct ext4_ext_cache *ex){
2039	struct ext4_ext_cache *cex;
2040	struct ext4_sb_info *sbi;
2041	int ret = 0;
2042
2043	/*
2044	 * We borrow i_block_reservation_lock to protect i_cached_extent
2045	 */
2046	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2047	cex = &EXT4_I(inode)->i_cached_extent;
2048	sbi = EXT4_SB(inode->i_sb);
2049
2050	/* has cache valid data? */
2051	if (cex->ec_len == 0)
2052		goto errout;
2053
2054	if (in_range(block, cex->ec_block, cex->ec_len)) {
2055		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2056		ext_debug("%u cached by %u:%u:%llu\n",
2057				block,
2058				cex->ec_block, cex->ec_len, cex->ec_start);
2059		ret = 1;
2060	}
2061errout:
2062	if (!ret)
2063		sbi->extent_cache_misses++;
2064	else
2065		sbi->extent_cache_hits++;
2066	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2067	return ret;
2068}
2069
2070/*
2071 * ext4_ext_in_cache()
2072 * Checks to see if the given block is in the cache.
2073 * If it is, the cached extent is stored in the given
2074 * extent pointer.
2075 *
2076 * @inode: The files inode
2077 * @block: The block to look for in the cache
2078 * @ex:    Pointer where the cached extent will be stored
2079 *         if it contains block
2080 *
2081 * Return 0 if cache is invalid; 1 if the cache is valid
2082 */
2083static int
2084ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2085			struct ext4_extent *ex)
2086{
2087	struct ext4_ext_cache cex;
2088	int ret = 0;
2089
2090	if (ext4_ext_check_cache(inode, block, &cex)) {
2091		ex->ee_block = cpu_to_le32(cex.ec_block);
2092		ext4_ext_store_pblock(ex, cex.ec_start);
2093		ex->ee_len = cpu_to_le16(cex.ec_len);
2094		ret = 1;
2095	}
2096
2097	return ret;
 
 
 
 
 
 
 
 
 
 
2098}
2099
2100
2101/*
2102 * ext4_ext_rm_idx:
2103 * removes index from the index block.
2104 */
2105static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2106			struct ext4_ext_path *path)
2107{
2108	int err;
2109	ext4_fsblk_t leaf;
2110
2111	/* free index block */
2112	path--;
 
2113	leaf = ext4_idx_pblock(path->p_idx);
2114	if (unlikely(path->p_hdr->eh_entries == 0)) {
2115		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2116		return -EIO;
2117	}
2118	err = ext4_ext_get_access(handle, inode, path);
2119	if (err)
2120		return err;
2121
2122	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2123		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2124		len *= sizeof(struct ext4_extent_idx);
2125		memmove(path->p_idx, path->p_idx + 1, len);
2126	}
2127
2128	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2129	err = ext4_ext_dirty(handle, inode, path);
2130	if (err)
2131		return err;
2132	ext_debug("index is empty, remove it, free block %llu\n", leaf);
 
 
2133	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2134			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
 
 
 
 
 
 
 
 
 
 
 
 
 
2135	return err;
2136}
2137
2138/*
2139 * ext4_ext_calc_credits_for_single_extent:
2140 * This routine returns max. credits that needed to insert an extent
2141 * to the extent tree.
2142 * When pass the actual path, the caller should calculate credits
2143 * under i_data_sem.
2144 */
2145int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2146						struct ext4_ext_path *path)
2147{
2148	if (path) {
2149		int depth = ext_depth(inode);
2150		int ret = 0;
2151
2152		/* probably there is space in leaf? */
2153		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2154				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2155
2156			/*
2157			 *  There are some space in the leaf tree, no
2158			 *  need to account for leaf block credit
2159			 *
2160			 *  bitmaps and block group descriptor blocks
2161			 *  and other metadat blocks still need to be
2162			 *  accounted.
2163			 */
2164			/* 1 bitmap, 1 block group descriptor */
2165			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2166			return ret;
2167		}
2168	}
2169
2170	return ext4_chunk_trans_blocks(inode, nrblocks);
2171}
2172
2173/*
2174 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2175 *
2176 * if nrblocks are fit in a single extent (chunk flag is 1), then
2177 * in the worse case, each tree level index/leaf need to be changed
2178 * if the tree split due to insert a new extent, then the old tree
2179 * index/leaf need to be updated too
2180 *
2181 * If the nrblocks are discontiguous, they could cause
2182 * the whole tree split more than once, but this is really rare.
2183 */
2184int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2185{
2186	int index;
2187	int depth = ext_depth(inode);
 
 
 
 
 
 
2188
2189	if (chunk)
2190		index = depth * 2;
2191	else
2192		index = depth * 3;
2193
2194	return index;
2195}
2196
2197static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2198				struct ext4_extent *ex,
2199				ext4_lblk_t from, ext4_lblk_t to)
2200{
2201	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2202	int flags = EXT4_FREE_BLOCKS_FORGET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203
2204	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2205		flags |= EXT4_FREE_BLOCKS_METADATA;
2206#ifdef EXTENTS_STATS
2207	{
2208		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2209		spin_lock(&sbi->s_ext_stats_lock);
2210		sbi->s_ext_blocks += ee_len;
2211		sbi->s_ext_extents++;
2212		if (ee_len < sbi->s_ext_min)
2213			sbi->s_ext_min = ee_len;
2214		if (ee_len > sbi->s_ext_max)
2215			sbi->s_ext_max = ee_len;
2216		if (ext_depth(inode) > sbi->s_depth_max)
2217			sbi->s_depth_max = ext_depth(inode);
2218		spin_unlock(&sbi->s_ext_stats_lock);
2219	}
2220#endif
2221	if (from >= le32_to_cpu(ex->ee_block)
2222	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2223		/* tail removal */
2224		ext4_lblk_t num;
2225		ext4_fsblk_t start;
2226
2227		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2228		start = ext4_ext_pblock(ex) + ee_len - num;
2229		ext_debug("free last %u blocks starting %llu\n", num, start);
2230		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2231	} else if (from == le32_to_cpu(ex->ee_block)
2232		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2233		/* head removal */
2234		ext4_lblk_t num;
2235		ext4_fsblk_t start;
2236
2237		num = to - from;
2238		start = ext4_ext_pblock(ex);
2239
2240		ext_debug("free first %u blocks starting %llu\n", num, start);
2241		ext4_free_blocks(handle, inode, 0, start, num, flags);
2242
2243	} else {
2244		printk(KERN_INFO "strange request: removal(2) "
2245				"%u-%u from %u:%u\n",
2246				from, to, le32_to_cpu(ex->ee_block), ee_len);
2247	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248	return 0;
2249}
2250
2251
2252/*
2253 * ext4_ext_rm_leaf() Removes the extents associated with the
2254 * blocks appearing between "start" and "end", and splits the extents
2255 * if "start" and "end" appear in the same extent
2256 *
2257 * @handle: The journal handle
2258 * @inode:  The files inode
2259 * @path:   The path to the leaf
 
 
 
 
2260 * @start:  The first block to remove
2261 * @end:   The last block to remove
2262 */
2263static int
2264ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2265		struct ext4_ext_path *path, ext4_lblk_t start,
2266		ext4_lblk_t end)
 
2267{
 
2268	int err = 0, correct_index = 0;
2269	int depth = ext_depth(inode), credits;
2270	struct ext4_extent_header *eh;
2271	ext4_lblk_t a, b, block;
2272	unsigned num;
2273	ext4_lblk_t ex_ee_block;
2274	unsigned short ex_ee_len;
2275	unsigned uninitialized = 0;
2276	struct ext4_extent *ex;
2277	struct ext4_map_blocks map;
2278
2279	/* the header must be checked already in ext4_ext_remove_space() */
2280	ext_debug("truncate since %u in leaf\n", start);
2281	if (!path[depth].p_hdr)
2282		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2283	eh = path[depth].p_hdr;
2284	if (unlikely(path[depth].p_hdr == NULL)) {
2285		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2286		return -EIO;
2287	}
2288	/* find where to start removing */
2289	ex = EXT_LAST_EXTENT(eh);
 
 
2290
2291	ex_ee_block = le32_to_cpu(ex->ee_block);
2292	ex_ee_len = ext4_ext_get_actual_len(ex);
2293
 
 
2294	while (ex >= EXT_FIRST_EXTENT(eh) &&
2295			ex_ee_block + ex_ee_len > start) {
2296
2297		if (ext4_ext_is_uninitialized(ex))
2298			uninitialized = 1;
2299		else
2300			uninitialized = 0;
2301
2302		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2303			 uninitialized, ex_ee_len);
2304		path[depth].p_ext = ex;
2305
2306		a = ex_ee_block > start ? ex_ee_block : start;
2307		b = ex_ee_block+ex_ee_len - 1 < end ?
2308			ex_ee_block+ex_ee_len - 1 : end;
2309
2310		ext_debug("  border %u:%u\n", a, b);
2311
2312		/* If this extent is beyond the end of the hole, skip it */
2313		if (end <= ex_ee_block) {
 
 
 
 
 
 
 
 
 
 
 
 
2314			ex--;
2315			ex_ee_block = le32_to_cpu(ex->ee_block);
2316			ex_ee_len = ext4_ext_get_actual_len(ex);
2317			continue;
2318		} else if (a != ex_ee_block &&
2319			b != ex_ee_block + ex_ee_len - 1) {
2320			/*
2321			 * If this is a truncate, then this condition should
2322			 * never happen because at least one of the end points
2323			 * needs to be on the edge of the extent.
2324			 */
2325			if (end == EXT_MAX_BLOCKS - 1) {
2326				ext_debug("  bad truncate %u:%u\n",
2327						start, end);
2328				block = 0;
2329				num = 0;
2330				err = -EIO;
2331				goto out;
2332			}
2333			/*
2334			 * else this is a hole punch, so the extent needs to
2335			 * be split since neither edge of the hole is on the
2336			 * extent edge
2337			 */
2338			else{
2339				map.m_pblk = ext4_ext_pblock(ex);
2340				map.m_lblk = ex_ee_block;
2341				map.m_len = b - ex_ee_block;
2342
2343				err = ext4_split_extent(handle,
2344					inode, path, &map, 0,
2345					EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2346					EXT4_GET_BLOCKS_PRE_IO);
2347
2348				if (err < 0)
2349					goto out;
2350
2351				ex_ee_len = ext4_ext_get_actual_len(ex);
2352
2353				b = ex_ee_block+ex_ee_len - 1 < end ?
2354					ex_ee_block+ex_ee_len - 1 : end;
2355
2356				/* Then remove tail of this extent */
2357				block = ex_ee_block;
2358				num = a - block;
2359			}
2360		} else if (a != ex_ee_block) {
2361			/* remove tail of the extent */
2362			block = ex_ee_block;
2363			num = a - block;
2364		} else if (b != ex_ee_block + ex_ee_len - 1) {
2365			/* remove head of the extent */
2366			block = b;
2367			num =  ex_ee_block + ex_ee_len - b;
2368
2369			/*
2370			 * If this is a truncate, this condition
2371			 * should never happen
2372			 */
2373			if (end == EXT_MAX_BLOCKS - 1) {
2374				ext_debug("  bad truncate %u:%u\n",
2375					start, end);
2376				err = -EIO;
2377				goto out;
2378			}
2379		} else {
2380			/* remove whole extent: excellent! */
2381			block = ex_ee_block;
2382			num = 0;
2383			if (a != ex_ee_block) {
2384				ext_debug("  bad truncate %u:%u\n",
2385					start, end);
2386				err = -EIO;
2387				goto out;
2388			}
2389
2390			if (b != ex_ee_block + ex_ee_len - 1) {
2391				ext_debug("  bad truncate %u:%u\n",
2392					start, end);
2393				err = -EIO;
2394				goto out;
2395			}
2396		}
2397
2398		/*
2399		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2400		 * descriptor) for each block group; assume two block
2401		 * groups plus ex_ee_len/blocks_per_block_group for
2402		 * the worst case
2403		 */
2404		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2405		if (ex == EXT_FIRST_EXTENT(eh)) {
2406			correct_index = 1;
2407			credits += (ext_depth(inode)) + 1;
2408		}
2409		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2410
2411		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2412		if (err)
2413			goto out;
2414
2415		err = ext4_ext_get_access(handle, inode, path + depth);
2416		if (err)
2417			goto out;
2418
2419		err = ext4_remove_blocks(handle, inode, ex, a, b);
 
2420		if (err)
2421			goto out;
2422
2423		if (num == 0) {
2424			/* this extent is removed; mark slot entirely unused */
2425			ext4_ext_store_pblock(ex, 0);
2426		} else if (block != ex_ee_block) {
2427			/*
2428			 * If this was a head removal, then we need to update
2429			 * the physical block since it is now at a different
2430			 * location
2431			 */
2432			ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2433		}
2434
2435		ex->ee_block = cpu_to_le32(block);
2436		ex->ee_len = cpu_to_le16(num);
2437		/*
2438		 * Do not mark uninitialized if all the blocks in the
2439		 * extent have been removed.
2440		 */
2441		if (uninitialized && num)
2442			ext4_ext_mark_uninitialized(ex);
2443
2444		err = ext4_ext_dirty(handle, inode, path + depth);
2445		if (err)
2446			goto out;
2447
2448		/*
2449		 * If the extent was completely released,
2450		 * we need to remove it from the leaf
2451		 */
2452		if (num == 0) {
2453			if (end != EXT_MAX_BLOCKS - 1) {
2454				/*
2455				 * For hole punching, we need to scoot all the
2456				 * extents up when an extent is removed so that
2457				 * we dont have blank extents in the middle
2458				 */
2459				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2460					sizeof(struct ext4_extent));
2461
2462				/* Now get rid of the one at the end */
2463				memset(EXT_LAST_EXTENT(eh), 0,
2464					sizeof(struct ext4_extent));
2465			}
2466			le16_add_cpu(&eh->eh_entries, -1);
2467		}
2468
2469		ext_debug("new extent: %u:%u:%llu\n", block, num,
 
 
 
 
2470				ext4_ext_pblock(ex));
2471		ex--;
2472		ex_ee_block = le32_to_cpu(ex->ee_block);
2473		ex_ee_len = ext4_ext_get_actual_len(ex);
2474	}
2475
2476	if (correct_index && eh->eh_entries)
2477		err = ext4_ext_correct_indexes(handle, inode, path);
2478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479	/* if this leaf is free, then we should
2480	 * remove it from index block above */
2481	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2482		err = ext4_ext_rm_idx(handle, inode, path + depth);
2483
2484out:
2485	return err;
2486}
2487
2488/*
2489 * ext4_ext_more_to_rm:
2490 * returns 1 if current index has to be freed (even partial)
2491 */
2492static int
2493ext4_ext_more_to_rm(struct ext4_ext_path *path)
2494{
2495	BUG_ON(path->p_idx == NULL);
2496
2497	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2498		return 0;
2499
2500	/*
2501	 * if truncate on deeper level happened, it wasn't partial,
2502	 * so we have to consider current index for truncation
2503	 */
2504	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2505		return 0;
2506	return 1;
2507}
2508
2509static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
 
2510{
2511	struct super_block *sb = inode->i_sb;
2512	int depth = ext_depth(inode);
2513	struct ext4_ext_path *path;
 
2514	handle_t *handle;
2515	int i, err;
2516
2517	ext_debug("truncate since %u\n", start);
2518
2519	/* probably first extent we're gonna free will be last in block */
2520	handle = ext4_journal_start(inode, depth + 1);
2521	if (IS_ERR(handle))
2522		return PTR_ERR(handle);
2523
2524again:
2525	ext4_ext_invalidate_cache(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527	/*
2528	 * We start scanning from right side, freeing all the blocks
2529	 * after i_size and walking into the tree depth-wise.
2530	 */
2531	depth = ext_depth(inode);
2532	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2533	if (path == NULL) {
2534		ext4_journal_stop(handle);
2535		return -ENOMEM;
2536	}
2537	path[0].p_depth = depth;
2538	path[0].p_hdr = ext_inode_hdr(inode);
2539	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2540		err = -EIO;
2541		goto out;
 
 
 
 
 
 
 
 
 
 
2542	}
2543	i = err = 0;
2544
2545	while (i >= 0 && err == 0) {
2546		if (i == depth) {
2547			/* this is leaf block */
2548			err = ext4_ext_rm_leaf(handle, inode, path,
2549					start, EXT_MAX_BLOCKS - 1);
 
2550			/* root level has p_bh == NULL, brelse() eats this */
2551			brelse(path[i].p_bh);
2552			path[i].p_bh = NULL;
2553			i--;
2554			continue;
2555		}
2556
2557		/* this is index block */
2558		if (!path[i].p_hdr) {
2559			ext_debug("initialize header\n");
2560			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2561		}
2562
2563		if (!path[i].p_idx) {
2564			/* this level hasn't been touched yet */
2565			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2566			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2567			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2568				  path[i].p_hdr,
2569				  le16_to_cpu(path[i].p_hdr->eh_entries));
2570		} else {
2571			/* we were already here, see at next index */
2572			path[i].p_idx--;
2573		}
2574
2575		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2576				i, EXT_FIRST_INDEX(path[i].p_hdr),
2577				path[i].p_idx);
2578		if (ext4_ext_more_to_rm(path + i)) {
2579			struct buffer_head *bh;
2580			/* go to the next level */
2581			ext_debug("move to level %d (block %llu)\n",
2582				  i + 1, ext4_idx_pblock(path[i].p_idx));
2583			memset(path + i + 1, 0, sizeof(*path));
2584			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2585			if (!bh) {
 
 
2586				/* should we reset i_size? */
2587				err = -EIO;
2588				break;
2589			}
 
 
 
2590			if (WARN_ON(i + 1 > depth)) {
2591				err = -EIO;
2592				break;
2593			}
2594			if (ext4_ext_check(inode, ext_block_hdr(bh),
2595							depth - i - 1)) {
2596				err = -EIO;
2597				break;
2598			}
2599			path[i + 1].p_bh = bh;
2600
2601			/* save actual number of indexes since this
2602			 * number is changed at the next iteration */
2603			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2604			i++;
2605		} else {
2606			/* we finished processing this index, go up */
2607			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2608				/* index is empty, remove it;
2609				 * handle must be already prepared by the
2610				 * truncatei_leaf() */
2611				err = ext4_ext_rm_idx(handle, inode, path + i);
2612			}
2613			/* root level has p_bh == NULL, brelse() eats this */
2614			brelse(path[i].p_bh);
2615			path[i].p_bh = NULL;
2616			i--;
2617			ext_debug("return to level %d\n", i);
2618		}
2619	}
2620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621	/* TODO: flexible tree reduction should be here */
2622	if (path->p_hdr->eh_entries == 0) {
2623		/*
2624		 * truncate to zero freed all the tree,
2625		 * so we need to correct eh_depth
2626		 */
2627		err = ext4_ext_get_access(handle, inode, path);
2628		if (err == 0) {
2629			ext_inode_hdr(inode)->eh_depth = 0;
2630			ext_inode_hdr(inode)->eh_max =
2631				cpu_to_le16(ext4_ext_space_root(inode, 0));
2632			err = ext4_ext_dirty(handle, inode, path);
2633		}
2634	}
2635out:
2636	ext4_ext_drop_refs(path);
2637	kfree(path);
 
2638	if (err == -EAGAIN)
2639		goto again;
2640	ext4_journal_stop(handle);
2641
2642	return err;
2643}
2644
2645/*
2646 * called at mount time
2647 */
2648void ext4_ext_init(struct super_block *sb)
2649{
2650	/*
2651	 * possible initialization would be here
2652	 */
2653
2654	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2655#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2656		printk(KERN_INFO "EXT4-fs: file extents enabled");
2657#ifdef AGGRESSIVE_TEST
2658		printk(", aggressive tests");
2659#endif
2660#ifdef CHECK_BINSEARCH
2661		printk(", check binsearch");
2662#endif
2663#ifdef EXTENTS_STATS
2664		printk(", stats");
2665#endif
2666		printk("\n");
2667#endif
2668#ifdef EXTENTS_STATS
2669		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2670		EXT4_SB(sb)->s_ext_min = 1 << 30;
2671		EXT4_SB(sb)->s_ext_max = 0;
2672#endif
2673	}
2674}
2675
2676/*
2677 * called at umount time
2678 */
2679void ext4_ext_release(struct super_block *sb)
2680{
2681	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2682		return;
2683
2684#ifdef EXTENTS_STATS
2685	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2686		struct ext4_sb_info *sbi = EXT4_SB(sb);
2687		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2688			sbi->s_ext_blocks, sbi->s_ext_extents,
2689			sbi->s_ext_blocks / sbi->s_ext_extents);
2690		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2691			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2692	}
2693#endif
2694}
2695
2696/* FIXME!! we need to try to merge to left or right after zero-out  */
2697static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2698{
 
2699	ext4_fsblk_t ee_pblock;
2700	unsigned int ee_len;
2701	int ret;
2702
 
2703	ee_len    = ext4_ext_get_actual_len(ex);
2704	ee_pblock = ext4_ext_pblock(ex);
2705
2706	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2707	if (ret > 0)
2708		ret = 0;
2709
2710	return ret;
 
2711}
2712
2713/*
2714 * used by extent splitting.
2715 */
2716#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2717					due to ENOSPC */
2718#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2719#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
 
 
 
 
2720
2721/*
2722 * ext4_split_extent_at() splits an extent at given block.
2723 *
2724 * @handle: the journal handle
2725 * @inode: the file inode
2726 * @path: the path to the extent
2727 * @split: the logical block where the extent is splitted.
2728 * @split_flags: indicates if the extent could be zeroout if split fails, and
2729 *		 the states(init or uninit) of new extents.
2730 * @flags: flags used to insert new extent to extent tree.
2731 *
2732 *
2733 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2734 * of which are deterimined by split_flag.
2735 *
2736 * There are two cases:
2737 *  a> the extent are splitted into two extent.
2738 *  b> split is not needed, and just mark the extent.
2739 *
2740 * return 0 on success.
2741 */
2742static int ext4_split_extent_at(handle_t *handle,
2743			     struct inode *inode,
2744			     struct ext4_ext_path *path,
2745			     ext4_lblk_t split,
2746			     int split_flag,
2747			     int flags)
2748{
 
2749	ext4_fsblk_t newblock;
2750	ext4_lblk_t ee_block;
2751	struct ext4_extent *ex, newex, orig_ex;
2752	struct ext4_extent *ex2 = NULL;
2753	unsigned int ee_len, depth;
2754	int err = 0;
2755
 
 
 
2756	ext_debug("ext4_split_extents_at: inode %lu, logical"
2757		"block %llu\n", inode->i_ino, (unsigned long long)split);
2758
2759	ext4_ext_show_leaf(inode, path);
2760
2761	depth = ext_depth(inode);
2762	ex = path[depth].p_ext;
2763	ee_block = le32_to_cpu(ex->ee_block);
2764	ee_len = ext4_ext_get_actual_len(ex);
2765	newblock = split - ee_block + ext4_ext_pblock(ex);
2766
2767	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
 
 
 
 
2768
2769	err = ext4_ext_get_access(handle, inode, path + depth);
2770	if (err)
2771		goto out;
2772
2773	if (split == ee_block) {
2774		/*
2775		 * case b: block @split is the block that the extent begins with
2776		 * then we just change the state of the extent, and splitting
2777		 * is not needed.
2778		 */
2779		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2780			ext4_ext_mark_uninitialized(ex);
2781		else
2782			ext4_ext_mark_initialized(ex);
2783
2784		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2785			ext4_ext_try_to_merge(inode, path, ex);
2786
2787		err = ext4_ext_dirty(handle, inode, path + depth);
2788		goto out;
2789	}
2790
2791	/* case a */
2792	memcpy(&orig_ex, ex, sizeof(orig_ex));
2793	ex->ee_len = cpu_to_le16(split - ee_block);
2794	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2795		ext4_ext_mark_uninitialized(ex);
2796
2797	/*
2798	 * path may lead to new leaf, not to original leaf any more
2799	 * after ext4_ext_insert_extent() returns,
2800	 */
2801	err = ext4_ext_dirty(handle, inode, path + depth);
2802	if (err)
2803		goto fix_extent_len;
2804
2805	ex2 = &newex;
2806	ex2->ee_block = cpu_to_le32(split);
2807	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2808	ext4_ext_store_pblock(ex2, newblock);
2809	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2810		ext4_ext_mark_uninitialized(ex2);
2811
2812	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2813	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2814		err = ext4_ext_zeroout(inode, &orig_ex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815		if (err)
2816			goto fix_extent_len;
2817		/* update the extent length and mark as initialized */
2818		ex->ee_len = cpu_to_le32(ee_len);
2819		ext4_ext_try_to_merge(inode, path, ex);
2820		err = ext4_ext_dirty(handle, inode, path + depth);
 
 
 
 
 
 
2821		goto out;
2822	} else if (err)
2823		goto fix_extent_len;
2824
2825out:
2826	ext4_ext_show_leaf(inode, path);
2827	return err;
2828
2829fix_extent_len:
2830	ex->ee_len = orig_ex.ee_len;
2831	ext4_ext_dirty(handle, inode, path + depth);
2832	return err;
2833}
2834
2835/*
2836 * ext4_split_extents() splits an extent and mark extent which is covered
2837 * by @map as split_flags indicates
2838 *
2839 * It may result in splitting the extent into multiple extents (upto three)
2840 * There are three possibilities:
2841 *   a> There is no split required
2842 *   b> Splits in two extents: Split is happening at either end of the extent
2843 *   c> Splits in three extents: Somone is splitting in middle of the extent
2844 *
2845 */
2846static int ext4_split_extent(handle_t *handle,
2847			      struct inode *inode,
2848			      struct ext4_ext_path *path,
2849			      struct ext4_map_blocks *map,
2850			      int split_flag,
2851			      int flags)
2852{
 
2853	ext4_lblk_t ee_block;
2854	struct ext4_extent *ex;
2855	unsigned int ee_len, depth;
2856	int err = 0;
2857	int uninitialized;
2858	int split_flag1, flags1;
 
2859
2860	depth = ext_depth(inode);
2861	ex = path[depth].p_ext;
2862	ee_block = le32_to_cpu(ex->ee_block);
2863	ee_len = ext4_ext_get_actual_len(ex);
2864	uninitialized = ext4_ext_is_uninitialized(ex);
2865
2866	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2867		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2868			      EXT4_EXT_MAY_ZEROOUT : 0;
2869		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2870		if (uninitialized)
2871			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2872				       EXT4_EXT_MARK_UNINIT2;
2873		err = ext4_split_extent_at(handle, inode, path,
 
 
2874				map->m_lblk + map->m_len, split_flag1, flags1);
2875		if (err)
2876			goto out;
 
 
2877	}
2878
2879	ext4_ext_drop_refs(path);
2880	path = ext4_ext_find_extent(inode, map->m_lblk, path);
 
 
2881	if (IS_ERR(path))
2882		return PTR_ERR(path);
 
 
 
 
 
 
 
 
 
2883
2884	if (map->m_lblk >= ee_block) {
2885		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2886			      EXT4_EXT_MAY_ZEROOUT : 0;
2887		if (uninitialized)
2888			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2889		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2890			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2891		err = ext4_split_extent_at(handle, inode, path,
2892				map->m_lblk, split_flag1, flags);
2893		if (err)
2894			goto out;
2895	}
2896
2897	ext4_ext_show_leaf(inode, path);
2898out:
2899	return err ? err : map->m_len;
2900}
2901
2902#define EXT4_EXT_ZERO_LEN 7
2903/*
2904 * This function is called by ext4_ext_map_blocks() if someone tries to write
2905 * to an uninitialized extent. It may result in splitting the uninitialized
2906 * extent into multiple extents (up to three - one initialized and two
2907 * uninitialized).
2908 * There are three possibilities:
2909 *   a> There is no split required: Entire extent should be initialized
2910 *   b> Splits in two extents: Write is happening at either end of the extent
2911 *   c> Splits in three extents: Somone is writing in middle of the extent
 
 
 
 
 
 
 
 
 
 
2912 */
2913static int ext4_ext_convert_to_initialized(handle_t *handle,
2914					   struct inode *inode,
2915					   struct ext4_map_blocks *map,
2916					   struct ext4_ext_path *path)
 
2917{
 
 
 
2918	struct ext4_map_blocks split_map;
2919	struct ext4_extent zero_ex;
2920	struct ext4_extent *ex;
2921	ext4_lblk_t ee_block, eof_block;
2922	unsigned int allocated, ee_len, depth;
 
2923	int err = 0;
2924	int split_flag = 0;
2925
2926	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2927		"block %llu, max_blocks %u\n", inode->i_ino,
2928		(unsigned long long)map->m_lblk, map->m_len);
2929
 
2930	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2931		inode->i_sb->s_blocksize_bits;
2932	if (eof_block < map->m_lblk + map->m_len)
2933		eof_block = map->m_lblk + map->m_len;
2934
2935	depth = ext_depth(inode);
 
2936	ex = path[depth].p_ext;
2937	ee_block = le32_to_cpu(ex->ee_block);
2938	ee_len = ext4_ext_get_actual_len(ex);
2939	allocated = ee_len - (map->m_lblk - ee_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940
2941	WARN_ON(map->m_lblk < ee_block);
2942	/*
2943	 * It is safe to convert extent to initialized via explicit
2944	 * zeroout only if extent is fully insde i_size or new_size.
2945	 */
2946	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2947
2948	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2949	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2950	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2951		err = ext4_ext_zeroout(inode, ex);
2952		if (err)
2953			goto out;
2954
2955		err = ext4_ext_get_access(handle, inode, path + depth);
2956		if (err)
2957			goto out;
2958		ext4_ext_mark_initialized(ex);
2959		ext4_ext_try_to_merge(inode, path, ex);
2960		err = ext4_ext_dirty(handle, inode, path + depth);
2961		goto out;
2962	}
2963
2964	/*
2965	 * four cases:
2966	 * 1. split the extent into three extents.
2967	 * 2. split the extent into two extents, zeroout the first half.
2968	 * 3. split the extent into two extents, zeroout the second half.
 
 
2969	 * 4. split the extent into two extents with out zeroout.
 
 
2970	 */
2971	split_map.m_lblk = map->m_lblk;
2972	split_map.m_len = map->m_len;
2973
2974	if (allocated > map->m_len) {
2975		if (allocated <= EXT4_EXT_ZERO_LEN &&
2976		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2977			/* case 3 */
2978			zero_ex.ee_block =
2979					 cpu_to_le32(map->m_lblk);
2980			zero_ex.ee_len = cpu_to_le16(allocated);
2981			ext4_ext_store_pblock(&zero_ex,
2982				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2983			err = ext4_ext_zeroout(inode, &zero_ex);
 
 
2984			if (err)
2985				goto out;
2986			split_map.m_lblk = map->m_lblk;
2987			split_map.m_len = allocated;
2988		} else if ((map->m_lblk - ee_block + map->m_len <
2989			   EXT4_EXT_ZERO_LEN) &&
2990			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2991			/* case 2 */
2992			if (map->m_lblk != ee_block) {
2993				zero_ex.ee_block = ex->ee_block;
2994				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2995							ee_block);
2996				ext4_ext_store_pblock(&zero_ex,
2997						      ext4_ext_pblock(ex));
2998				err = ext4_ext_zeroout(inode, &zero_ex);
2999				if (err)
3000					goto out;
3001			}
3002
 
3003			split_map.m_lblk = ee_block;
3004			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3005			allocated = map->m_len;
3006		}
3007	}
3008
3009	allocated = ext4_split_extent(handle, inode, path,
3010				       &split_map, split_flag, 0);
3011	if (allocated < 0)
3012		err = allocated;
3013
3014out:
 
 
 
 
 
 
3015	return err ? err : allocated;
3016}
3017
3018/*
3019 * This function is called by ext4_ext_map_blocks() from
3020 * ext4_get_blocks_dio_write() when DIO to write
3021 * to an uninitialized extent.
3022 *
3023 * Writing to an uninitialized extent may result in splitting the uninitialized
3024 * extent into multiple /initialized uninitialized extents (up to three)
3025 * There are three possibilities:
3026 *   a> There is no split required: Entire extent should be uninitialized
3027 *   b> Splits in two extents: Write is happening at either end of the extent
3028 *   c> Splits in three extents: Somone is writing in middle of the extent
3029 *
 
 
3030 * One of more index blocks maybe needed if the extent tree grow after
3031 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3032 * complete, we need to split the uninitialized extent before DIO submit
3033 * the IO. The uninitialized extent called at this time will be split
3034 * into three uninitialized extent(at most). After IO complete, the part
3035 * being filled will be convert to initialized by the end_io callback function
3036 * via ext4_convert_unwritten_extents().
3037 *
3038 * Returns the size of uninitialized extent to be written on success.
3039 */
3040static int ext4_split_unwritten_extents(handle_t *handle,
3041					struct inode *inode,
3042					struct ext4_map_blocks *map,
3043					struct ext4_ext_path *path,
3044					int flags)
3045{
 
3046	ext4_lblk_t eof_block;
3047	ext4_lblk_t ee_block;
3048	struct ext4_extent *ex;
3049	unsigned int ee_len;
3050	int split_flag = 0, depth;
3051
3052	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3053		"block %llu, max_blocks %u\n", inode->i_ino,
3054		(unsigned long long)map->m_lblk, map->m_len);
3055
3056	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3057		inode->i_sb->s_blocksize_bits;
3058	if (eof_block < map->m_lblk + map->m_len)
3059		eof_block = map->m_lblk + map->m_len;
3060	/*
3061	 * It is safe to convert extent to initialized via explicit
3062	 * zeroout only if extent is fully insde i_size or new_size.
3063	 */
3064	depth = ext_depth(inode);
3065	ex = path[depth].p_ext;
3066	ee_block = le32_to_cpu(ex->ee_block);
3067	ee_len = ext4_ext_get_actual_len(ex);
3068
3069	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3070	split_flag |= EXT4_EXT_MARK_UNINIT2;
3071
 
 
 
 
 
 
3072	flags |= EXT4_GET_BLOCKS_PRE_IO;
3073	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3074}
3075
3076static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3077					      struct inode *inode,
3078					      struct ext4_ext_path *path)
 
3079{
 
3080	struct ext4_extent *ex;
 
 
3081	int depth;
3082	int err = 0;
3083
3084	depth = ext_depth(inode);
3085	ex = path[depth].p_ext;
 
 
3086
3087	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3088		"block %llu, max_blocks %u\n", inode->i_ino,
3089		(unsigned long long)le32_to_cpu(ex->ee_block),
3090		ext4_ext_get_actual_len(ex));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091
3092	err = ext4_ext_get_access(handle, inode, path + depth);
3093	if (err)
3094		goto out;
3095	/* first mark the extent as initialized */
3096	ext4_ext_mark_initialized(ex);
3097
3098	/* note: ext4_ext_correct_indexes() isn't needed here because
3099	 * borders are not changed
3100	 */
3101	ext4_ext_try_to_merge(inode, path, ex);
3102
3103	/* Mark modified extent as dirty */
3104	err = ext4_ext_dirty(handle, inode, path + depth);
3105out:
3106	ext4_ext_show_leaf(inode, path);
3107	return err;
3108}
3109
3110static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3111			sector_t block, int count)
3112{
3113	int i;
3114	for (i = 0; i < count; i++)
3115                unmap_underlying_metadata(bdev, block + i);
3116}
3117
3118/*
3119 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3120 */
3121static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3122			      ext4_lblk_t lblk,
3123			      struct ext4_ext_path *path,
3124			      unsigned int len)
3125{
3126	int i, depth;
3127	struct ext4_extent_header *eh;
3128	struct ext4_extent *last_ex;
3129
3130	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3131		return 0;
3132
3133	depth = ext_depth(inode);
3134	eh = path[depth].p_hdr;
3135
3136	if (unlikely(!eh->eh_entries)) {
3137		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3138				 "EOFBLOCKS_FL set");
3139		return -EIO;
3140	}
 
 
3141	last_ex = EXT_LAST_EXTENT(eh);
3142	/*
3143	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3144	 * last block in the last extent in the file.  We test this by
3145	 * first checking to see if the caller to
3146	 * ext4_ext_get_blocks() was interested in the last block (or
3147	 * a block beyond the last block) in the current extent.  If
3148	 * this turns out to be false, we can bail out from this
3149	 * function immediately.
3150	 */
3151	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3152	    ext4_ext_get_actual_len(last_ex))
3153		return 0;
3154	/*
3155	 * If the caller does appear to be planning to write at or
3156	 * beyond the end of the current extent, we then test to see
3157	 * if the current extent is the last extent in the file, by
3158	 * checking to make sure it was reached via the rightmost node
3159	 * at each level of the tree.
3160	 */
3161	for (i = depth-1; i >= 0; i--)
3162		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3163			return 0;
 
3164	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3165	return ext4_mark_inode_dirty(handle, inode);
3166}
3167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168static int
3169ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3170			struct ext4_map_blocks *map,
3171			struct ext4_ext_path *path, int flags,
3172			unsigned int allocated, ext4_fsblk_t newblock)
3173{
 
3174	int ret = 0;
3175	int err = 0;
3176	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3177
3178	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3179		  "block %llu, max_blocks %u, flags %d, allocated %u",
3180		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3181		  flags, allocated);
3182	ext4_ext_show_leaf(inode, path);
3183
 
 
 
 
 
 
 
 
 
3184	/* get_block() before submit the IO, split the extent */
3185	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3186		ret = ext4_split_unwritten_extents(handle, inode, map,
3187						   path, flags);
3188		/*
3189		 * Flag the inode(non aio case) or end_io struct (aio case)
3190		 * that this IO needs to conversion to written when IO is
3191		 * completed
3192		 */
3193		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3194			io->flag = EXT4_IO_END_UNWRITTEN;
3195			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3196		} else
3197			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3198		if (ext4_should_dioread_nolock(inode))
3199			map->m_flags |= EXT4_MAP_UNINIT;
3200		goto out;
3201	}
3202	/* IO end_io complete, convert the filled extent to written */
3203	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3204		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3205							path);
 
 
 
 
 
 
 
 
3206		if (ret >= 0) {
3207			ext4_update_inode_fsync_trans(handle, inode, 1);
3208			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3209						 path, map->m_len);
3210		} else
3211			err = ret;
 
 
 
 
 
3212		goto out2;
3213	}
3214	/* buffered IO case */
3215	/*
3216	 * repeat fallocate creation request
3217	 * we already have an unwritten extent
3218	 */
3219	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
 
3220		goto map_out;
 
3221
3222	/* buffered READ or buffered write_begin() lookup */
3223	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3224		/*
3225		 * We have blocks reserved already.  We
3226		 * return allocated blocks so that delalloc
3227		 * won't do block reservation for us.  But
3228		 * the buffer head will be unmapped so that
3229		 * a read from the block returns 0s.
3230		 */
3231		map->m_flags |= EXT4_MAP_UNWRITTEN;
3232		goto out1;
3233	}
3234
3235	/* buffered write, writepage time, convert*/
3236	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3237	if (ret >= 0) {
3238		ext4_update_inode_fsync_trans(handle, inode, 1);
3239		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3240					 map->m_len);
3241		if (err < 0)
3242			goto out2;
3243	}
3244
3245out:
3246	if (ret <= 0) {
3247		err = ret;
3248		goto out2;
3249	} else
3250		allocated = ret;
3251	map->m_flags |= EXT4_MAP_NEW;
3252	/*
3253	 * if we allocated more blocks than requested
3254	 * we need to make sure we unmap the extra block
3255	 * allocated. The actual needed block will get
3256	 * unmapped later when we find the buffer_head marked
3257	 * new.
3258	 */
3259	if (allocated > map->m_len) {
3260		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3261					newblock + map->m_len,
3262					allocated - map->m_len);
3263		allocated = map->m_len;
3264	}
 
3265
3266	/*
3267	 * If we have done fallocate with the offset that is already
3268	 * delayed allocated, we would have block reservation
3269	 * and quota reservation done in the delayed write path.
3270	 * But fallocate would have already updated quota and block
3271	 * count for this offset. So cancel these reservation
3272	 */
3273	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3274		ext4_da_update_reserve_space(inode, allocated, 0);
 
 
 
 
 
 
 
3275
3276map_out:
3277	map->m_flags |= EXT4_MAP_MAPPED;
 
 
 
 
 
 
3278out1:
3279	if (allocated > map->m_len)
3280		allocated = map->m_len;
3281	ext4_ext_show_leaf(inode, path);
3282	map->m_pblk = newblock;
3283	map->m_len = allocated;
3284out2:
3285	if (path) {
3286		ext4_ext_drop_refs(path);
3287		kfree(path);
3288	}
3289	return err ? err : allocated;
3290}
3291
3292/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293 * Block allocation/map/preallocation routine for extents based files
3294 *
3295 *
3296 * Need to be called with
3297 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3298 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3299 *
3300 * return > 0, number of of blocks already mapped/allocated
3301 *          if create == 0 and these are pre-allocated blocks
3302 *          	buffer head is unmapped
3303 *          otherwise blocks are mapped
3304 *
3305 * return = 0, if plain look up failed (blocks have not been allocated)
3306 *          buffer head is unmapped
3307 *
3308 * return < 0, error case.
3309 */
3310int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3311			struct ext4_map_blocks *map, int flags)
3312{
3313	struct ext4_ext_path *path = NULL;
3314	struct ext4_extent newex, *ex;
 
3315	ext4_fsblk_t newblock = 0;
3316	int err = 0, depth, ret;
3317	unsigned int allocated = 0;
3318	unsigned int punched_out = 0;
3319	unsigned int result = 0;
3320	struct ext4_allocation_request ar;
3321	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3322	struct ext4_map_blocks punch_map;
3323
3324	ext_debug("blocks %u/%u requested for inode %lu\n",
3325		  map->m_lblk, map->m_len, inode->i_ino);
3326	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3327
3328	/* check in cache */
3329	if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3330		ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3331		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3332			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3333				/*
3334				 * block isn't allocated yet and
3335				 * user doesn't want to allocate it
3336				 */
3337				goto out2;
3338			}
3339			/* we should allocate requested block */
3340		} else {
3341			/* block is already allocated */
3342			newblock = map->m_lblk
3343				   - le32_to_cpu(newex.ee_block)
3344				   + ext4_ext_pblock(&newex);
3345			/* number of remaining blocks in the extent */
3346			allocated = ext4_ext_get_actual_len(&newex) -
3347				(map->m_lblk - le32_to_cpu(newex.ee_block));
3348			goto out;
3349		}
3350	}
3351
3352	/* find extent for this block */
3353	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3354	if (IS_ERR(path)) {
3355		err = PTR_ERR(path);
3356		path = NULL;
3357		goto out2;
3358	}
3359
3360	depth = ext_depth(inode);
3361
3362	/*
3363	 * consistent leaf must not be empty;
3364	 * this situation is possible, though, _during_ tree modification;
3365	 * this is why assert can't be put in ext4_ext_find_extent()
3366	 */
3367	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3368		EXT4_ERROR_INODE(inode, "bad extent address "
3369				 "lblock: %lu, depth: %d pblock %lld",
3370				 (unsigned long) map->m_lblk, depth,
3371				 path[depth].p_block);
3372		err = -EIO;
3373		goto out2;
3374	}
3375
3376	ex = path[depth].p_ext;
3377	if (ex) {
3378		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3379		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3380		unsigned short ee_len;
3381
 
3382		/*
3383		 * Uninitialized extents are treated as holes, except that
3384		 * we split out initialized portions during a write.
3385		 */
3386		ee_len = ext4_ext_get_actual_len(ex);
 
 
 
3387		/* if found extent covers block, simply return it */
3388		if (in_range(map->m_lblk, ee_block, ee_len)) {
3389			newblock = map->m_lblk - ee_block + ee_start;
3390			/* number of remaining blocks in the extent */
3391			allocated = ee_len - (map->m_lblk - ee_block);
3392			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3393				  ee_block, ee_len, newblock);
3394
3395			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3396				/*
3397				 * Do not put uninitialized extent
3398				 * in the cache
3399				 */
3400				if (!ext4_ext_is_uninitialized(ex)) {
3401					ext4_ext_put_in_cache(inode, ee_block,
3402						ee_len, ee_start);
3403					goto out;
3404				}
3405				ret = ext4_ext_handle_uninitialized_extents(
3406					handle, inode, map, path, flags,
3407					allocated, newblock);
3408				return ret;
3409			}
3410
3411			/*
3412			 * Punch out the map length, but only to the
3413			 * end of the extent
3414			 */
3415			punched_out = allocated < map->m_len ?
3416				allocated : map->m_len;
3417
3418			/*
3419			 * Sense extents need to be converted to
3420			 * uninitialized, they must fit in an
3421			 * uninitialized extent
3422			 */
3423			if (punched_out > EXT_UNINIT_MAX_LEN)
3424				punched_out = EXT_UNINIT_MAX_LEN;
3425
3426			punch_map.m_lblk = map->m_lblk;
3427			punch_map.m_pblk = newblock;
3428			punch_map.m_len = punched_out;
3429			punch_map.m_flags = 0;
3430
3431			/* Check to see if the extent needs to be split */
3432			if (punch_map.m_len != ee_len ||
3433				punch_map.m_lblk != ee_block) {
3434
3435				ret = ext4_split_extent(handle, inode,
3436				path, &punch_map, 0,
3437				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3438				EXT4_GET_BLOCKS_PRE_IO);
3439
3440				if (ret < 0) {
3441					err = ret;
3442					goto out2;
3443				}
3444				/*
3445				 * find extent for the block at
3446				 * the start of the hole
3447				 */
3448				ext4_ext_drop_refs(path);
3449				kfree(path);
3450
3451				path = ext4_ext_find_extent(inode,
3452				map->m_lblk, NULL);
3453				if (IS_ERR(path)) {
3454					err = PTR_ERR(path);
3455					path = NULL;
3456					goto out2;
3457				}
3458
3459				depth = ext_depth(inode);
3460				ex = path[depth].p_ext;
3461				ee_len = ext4_ext_get_actual_len(ex);
3462				ee_block = le32_to_cpu(ex->ee_block);
3463				ee_start = ext4_ext_pblock(ex);
3464
3465			}
3466
3467			ext4_ext_mark_uninitialized(ex);
3468
3469			ext4_ext_invalidate_cache(inode);
3470
3471			err = ext4_ext_rm_leaf(handle, inode, path,
3472				map->m_lblk, map->m_lblk + punched_out);
3473
3474			if (!err && path->p_hdr->eh_entries == 0) {
3475				/*
3476				 * Punch hole freed all of this sub tree,
3477				 * so we need to correct eh_depth
3478				 */
3479				err = ext4_ext_get_access(handle, inode, path);
3480				if (err == 0) {
3481					ext_inode_hdr(inode)->eh_depth = 0;
3482					ext_inode_hdr(inode)->eh_max =
3483					cpu_to_le16(ext4_ext_space_root(
3484						inode, 0));
3485
3486					err = ext4_ext_dirty(
3487						handle, inode, path);
3488				}
3489			}
3490
 
 
 
 
 
 
 
3491			goto out2;
3492		}
3493	}
3494
3495	/*
3496	 * requested block isn't allocated yet;
3497	 * we couldn't try to create block if create flag is zero
3498	 */
3499	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 
 
 
 
3500		/*
3501		 * put just found gap into cache to speed up
3502		 * subsequent requests
3503		 */
3504		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
 
 
 
 
 
 
 
3505		goto out2;
3506	}
 
3507	/*
3508	 * Okay, we need to do block allocation.
3509	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510
3511	/* find neighbour allocated blocks */
3512	ar.lleft = map->m_lblk;
3513	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3514	if (err)
3515		goto out2;
3516	ar.lright = map->m_lblk;
3517	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
 
3518	if (err)
3519		goto out2;
3520
 
 
 
 
 
 
 
 
 
 
3521	/*
3522	 * See if request is beyond maximum number of blocks we can have in
3523	 * a single extent. For an initialized extent this limit is
3524	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3525	 * EXT_UNINIT_MAX_LEN.
3526	 */
3527	if (map->m_len > EXT_INIT_MAX_LEN &&
3528	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3529		map->m_len = EXT_INIT_MAX_LEN;
3530	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3531		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3532		map->m_len = EXT_UNINIT_MAX_LEN;
3533
3534	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3535	newex.ee_block = cpu_to_le32(map->m_lblk);
3536	newex.ee_len = cpu_to_le16(map->m_len);
3537	err = ext4_ext_check_overlap(inode, &newex, path);
3538	if (err)
3539		allocated = ext4_ext_get_actual_len(&newex);
3540	else
3541		allocated = map->m_len;
3542
3543	/* allocate new block */
3544	ar.inode = inode;
3545	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3546	ar.logical = map->m_lblk;
3547	ar.len = allocated;
 
 
 
 
 
 
 
 
 
 
 
3548	if (S_ISREG(inode->i_mode))
3549		ar.flags = EXT4_MB_HINT_DATA;
3550	else
3551		/* disable in-core preallocation for non-regular files */
3552		ar.flags = 0;
3553	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3554		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
 
 
 
 
3555	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3556	if (!newblock)
3557		goto out2;
3558	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3559		  ar.goal, newblock, allocated);
 
 
 
 
 
3560
 
3561	/* try to insert new extent into found leaf and return */
3562	ext4_ext_store_pblock(&newex, newblock);
3563	newex.ee_len = cpu_to_le16(ar.len);
3564	/* Mark uninitialized */
3565	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3566		ext4_ext_mark_uninitialized(&newex);
3567		/*
3568		 * io_end structure was created for every IO write to an
3569		 * uninitialized extent. To avoid unnecessary conversion,
3570		 * here we flag the IO that really needs the conversion.
3571		 * For non asycn direct IO case, flag the inode state
3572		 * that we need to perform conversion when IO is done.
3573		 */
3574		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3575			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3576				io->flag = EXT4_IO_END_UNWRITTEN;
3577				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3578			} else
3579				ext4_set_inode_state(inode,
3580						     EXT4_STATE_DIO_UNWRITTEN);
3581		}
3582		if (ext4_should_dioread_nolock(inode))
3583			map->m_flags |= EXT4_MAP_UNINIT;
3584	}
3585
3586	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
 
 
 
3587	if (!err)
3588		err = ext4_ext_insert_extent(handle, inode, path,
3589					     &newex, flags);
3590	if (err) {
 
3591		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3592			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3593		/* free data blocks we just allocated */
3594		/* not a good idea to call discard here directly,
3595		 * but otherwise we'd need to call it every free() */
3596		ext4_discard_preallocations(inode);
3597		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3598				 ext4_ext_get_actual_len(&newex), fb_flags);
3599		goto out2;
3600	}
3601
3602	/* previous routine could use block we allocated */
3603	newblock = ext4_ext_pblock(&newex);
3604	allocated = ext4_ext_get_actual_len(&newex);
3605	if (allocated > map->m_len)
3606		allocated = map->m_len;
3607	map->m_flags |= EXT4_MAP_NEW;
3608
3609	/*
3610	 * Update reserved blocks/metadata blocks after successful
3611	 * block allocation which had been deferred till now.
3612	 */
3613	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3614		ext4_da_update_reserve_space(inode, allocated, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615
3616	/*
3617	 * Cache the extent and update transaction to commit on fdatasync only
3618	 * when it is _not_ an uninitialized extent.
3619	 */
3620	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3621		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3622		ext4_update_inode_fsync_trans(handle, inode, 1);
3623	} else
3624		ext4_update_inode_fsync_trans(handle, inode, 0);
3625out:
3626	if (allocated > map->m_len)
3627		allocated = map->m_len;
3628	ext4_ext_show_leaf(inode, path);
3629	map->m_flags |= EXT4_MAP_MAPPED;
3630	map->m_pblk = newblock;
3631	map->m_len = allocated;
3632out2:
3633	if (path) {
3634		ext4_ext_drop_refs(path);
3635		kfree(path);
3636	}
3637	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3638		newblock, map->m_len, err ? err : allocated);
3639
3640	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3641			punched_out : allocated;
3642
3643	return err ? err : result;
 
 
3644}
3645
3646void ext4_ext_truncate(struct inode *inode)
3647{
3648	struct address_space *mapping = inode->i_mapping;
3649	struct super_block *sb = inode->i_sb;
3650	ext4_lblk_t last_block;
3651	handle_t *handle;
3652	int err = 0;
3653
3654	/*
3655	 * finish any pending end_io work so we won't run the risk of
3656	 * converting any truncated blocks to initialized later
3657	 */
3658	ext4_flush_completed_IO(inode);
3659
3660	/*
3661	 * probably first extent we're gonna free will be last in block
3662	 */
3663	err = ext4_writepage_trans_blocks(inode);
3664	handle = ext4_journal_start(inode, err);
3665	if (IS_ERR(handle))
3666		return;
3667
3668	if (inode->i_size & (sb->s_blocksize - 1))
3669		ext4_block_truncate_page(handle, mapping, inode->i_size);
3670
3671	if (ext4_orphan_add(handle, inode))
3672		goto out_stop;
3673
3674	down_write(&EXT4_I(inode)->i_data_sem);
3675	ext4_ext_invalidate_cache(inode);
3676
3677	ext4_discard_preallocations(inode);
3678
3679	/*
3680	 * TODO: optimization is possible here.
3681	 * Probably we need not scan at all,
3682	 * because page truncation is enough.
3683	 */
3684
3685	/* we have to know where to truncate from in crash case */
3686	EXT4_I(inode)->i_disksize = inode->i_size;
3687	ext4_mark_inode_dirty(handle, inode);
 
 
3688
3689	last_block = (inode->i_size + sb->s_blocksize - 1)
3690			>> EXT4_BLOCK_SIZE_BITS(sb);
3691	err = ext4_ext_remove_space(inode, last_block);
 
 
 
 
 
 
 
 
 
 
 
3692
3693	/* In a multi-transaction truncate, we only make the final
3694	 * transaction synchronous.
3695	 */
3696	if (IS_SYNC(inode))
3697		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
3698
3699	up_write(&EXT4_I(inode)->i_data_sem);
 
 
 
 
 
 
 
 
 
3700
3701out_stop:
3702	/*
3703	 * If this was a simple ftruncate() and the file will remain alive,
3704	 * then we need to clear up the orphan record which we created above.
3705	 * However, if this was a real unlink then we were called by
3706	 * ext4_delete_inode(), and we allow that function to clean up the
3707	 * orphan info for us.
3708	 */
3709	if (inode->i_nlink)
3710		ext4_orphan_del(handle, inode);
3711
3712	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3713	ext4_mark_inode_dirty(handle, inode);
3714	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715}
3716
3717static void ext4_falloc_update_inode(struct inode *inode,
3718				int mode, loff_t new_size, int update_ctime)
3719{
3720	struct timespec now;
3721
3722	if (update_ctime) {
3723		now = current_fs_time(inode->i_sb);
3724		if (!timespec_equal(&inode->i_ctime, &now))
3725			inode->i_ctime = now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726	}
 
3727	/*
3728	 * Update only when preallocation was requested beyond
3729	 * the file size.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730	 */
3731	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3732		if (new_size > i_size_read(inode))
3733			i_size_write(inode, new_size);
3734		if (new_size > EXT4_I(inode)->i_disksize)
3735			ext4_update_i_disksize(inode, new_size);
3736	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737		/*
3738		 * Mark that we allocate beyond EOF so the subsequent truncate
3739		 * can proceed even if the new size is the same as i_size.
3740		 */
3741		if (new_size > i_size_read(inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3743	}
 
 
 
 
 
 
3744
 
 
 
 
 
 
 
3745}
3746
3747/*
3748 * preallocate space for a file. This implements ext4's fallocate file
3749 * operation, which gets called from sys_fallocate system call.
3750 * For block-mapped files, posix_fallocate should fall back to the method
3751 * of writing zeroes to the required new blocks (the same behavior which is
3752 * expected for file systems which do not support fallocate() system call).
3753 */
3754long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3755{
3756	struct inode *inode = file->f_path.dentry->d_inode;
3757	handle_t *handle;
3758	loff_t new_size;
3759	unsigned int max_blocks;
3760	int ret = 0;
3761	int ret2 = 0;
3762	int retries = 0;
3763	struct ext4_map_blocks map;
3764	unsigned int credits, blkbits = inode->i_blkbits;
3765
3766	/*
3767	 * currently supporting (pre)allocate mode for extent-based
3768	 * files _only_
3769	 */
3770	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 
 
 
 
 
 
 
3771		return -EOPNOTSUPP;
3772
3773	/* Return error if mode is not supported */
3774	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
3775		return -EOPNOTSUPP;
3776
3777	if (mode & FALLOC_FL_PUNCH_HOLE)
3778		return ext4_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
3779
3780	trace_ext4_fallocate_enter(inode, offset, len, mode);
3781	map.m_lblk = offset >> blkbits;
3782	/*
3783	 * We can't just convert len to max_blocks because
3784	 * If blocksize = 4096 offset = 3072 and len = 2048
3785	 */
3786	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3787		- map.m_lblk;
 
 
3788	/*
3789	 * credits to insert 1 extent into extent tree
3790	 */
3791	credits = ext4_chunk_trans_blocks(inode, max_blocks);
3792	mutex_lock(&inode->i_mutex);
3793	ret = inode_newsize_ok(inode, (len + offset));
3794	if (ret) {
3795		mutex_unlock(&inode->i_mutex);
3796		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3797		return ret;
3798	}
3799retry:
3800	while (ret >= 0 && ret < max_blocks) {
3801		map.m_lblk = map.m_lblk + ret;
3802		map.m_len = max_blocks = max_blocks - ret;
3803		handle = ext4_journal_start(inode, credits);
3804		if (IS_ERR(handle)) {
3805			ret = PTR_ERR(handle);
3806			break;
3807		}
3808		ret = ext4_map_blocks(handle, inode, &map,
3809				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3810				      EXT4_GET_BLOCKS_NO_NORMALIZE);
3811		if (ret <= 0) {
3812#ifdef EXT4FS_DEBUG
3813			WARN_ON(ret <= 0);
3814			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3815				    "returned error inode#%lu, block=%u, "
3816				    "max_blocks=%u", __func__,
3817				    inode->i_ino, map.m_lblk, max_blocks);
3818#endif
3819			ext4_mark_inode_dirty(handle, inode);
3820			ret2 = ext4_journal_stop(handle);
3821			break;
3822		}
3823		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3824						blkbits) >> blkbits))
3825			new_size = offset + len;
3826		else
3827			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
3828
3829		ext4_falloc_update_inode(inode, mode, new_size,
3830					 (map.m_flags & EXT4_MAP_NEW));
3831		ext4_mark_inode_dirty(handle, inode);
3832		ret2 = ext4_journal_stop(handle);
3833		if (ret2)
3834			break;
 
3835	}
3836	if (ret == -ENOSPC &&
3837			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3838		ret = 0;
3839		goto retry;
 
 
 
 
 
 
 
3840	}
3841	mutex_unlock(&inode->i_mutex);
3842	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3843				ret > 0 ? ret2 : ret);
3844	return ret > 0 ? ret2 : ret;
3845}
3846
3847/*
3848 * This function convert a range of blocks to written extents
3849 * The caller of this function will pass the start offset and the size.
3850 * all unwritten extents within this range will be converted to
3851 * written extents.
3852 *
3853 * This function is called from the direct IO end io call back
3854 * function, to convert the fallocated extents after IO is completed.
3855 * Returns 0 on success.
3856 */
3857int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3858				    ssize_t len)
3859{
3860	handle_t *handle;
3861	unsigned int max_blocks;
3862	int ret = 0;
3863	int ret2 = 0;
3864	struct ext4_map_blocks map;
3865	unsigned int credits, blkbits = inode->i_blkbits;
3866
3867	map.m_lblk = offset >> blkbits;
 
 
3868	/*
3869	 * We can't just convert len to max_blocks because
3870	 * If blocksize = 4096 offset = 3072 and len = 2048
3871	 */
3872	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3873		      map.m_lblk);
3874	/*
3875	 * credits to insert 1 extent into extent tree
3876	 */
3877	credits = ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
3878	while (ret >= 0 && ret < max_blocks) {
3879		map.m_lblk += ret;
3880		map.m_len = (max_blocks -= ret);
3881		handle = ext4_journal_start(inode, credits);
3882		if (IS_ERR(handle)) {
3883			ret = PTR_ERR(handle);
3884			break;
 
 
 
3885		}
3886		ret = ext4_map_blocks(handle, inode, &map,
3887				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3888		if (ret <= 0) {
3889			WARN_ON(ret <= 0);
3890			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3891				    "returned error inode#%lu, block=%u, "
3892				    "max_blocks=%u", __func__,
3893				    inode->i_ino, map.m_lblk, map.m_len);
3894		}
3895		ext4_mark_inode_dirty(handle, inode);
3896		ret2 = ext4_journal_stop(handle);
3897		if (ret <= 0 || ret2 )
 
3898			break;
3899	}
 
 
3900	return ret > 0 ? ret2 : ret;
3901}
3902
3903/*
3904 * Callback function called for each extent to gather FIEMAP information.
3905 */
3906static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3907		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3908		       void *data)
3909{
3910	__u64	logical;
3911	__u64	physical;
3912	__u64	length;
3913	__u32	flags = 0;
3914	int		ret = 0;
3915	struct fiemap_extent_info *fieinfo = data;
3916	unsigned char blksize_bits;
3917
3918	blksize_bits = inode->i_sb->s_blocksize_bits;
3919	logical = (__u64)newex->ec_block << blksize_bits;
 
3920
3921	if (newex->ec_start == 0) {
3922		/*
3923		 * No extent in extent-tree contains block @newex->ec_start,
3924		 * then the block may stay in 1)a hole or 2)delayed-extent.
3925		 *
3926		 * Holes or delayed-extents are processed as follows.
3927		 * 1. lookup dirty pages with specified range in pagecache.
3928		 *    If no page is got, then there is no delayed-extent and
3929		 *    return with EXT_CONTINUE.
3930		 * 2. find the 1st mapped buffer,
3931		 * 3. check if the mapped buffer is both in the request range
3932		 *    and a delayed buffer. If not, there is no delayed-extent,
3933		 *    then return.
3934		 * 4. a delayed-extent is found, the extent will be collected.
3935		 */
3936		ext4_lblk_t	end = 0;
3937		pgoff_t		last_offset;
3938		pgoff_t		offset;
3939		pgoff_t		index;
3940		pgoff_t		start_index = 0;
3941		struct page	**pages = NULL;
3942		struct buffer_head *bh = NULL;
3943		struct buffer_head *head = NULL;
3944		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3945
3946		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3947		if (pages == NULL)
3948			return -ENOMEM;
3949
3950		offset = logical >> PAGE_SHIFT;
3951repeat:
3952		last_offset = offset;
3953		head = NULL;
3954		ret = find_get_pages_tag(inode->i_mapping, &offset,
3955					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3956
3957		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3958			/* First time, try to find a mapped buffer. */
3959			if (ret == 0) {
3960out:
3961				for (index = 0; index < ret; index++)
3962					page_cache_release(pages[index]);
3963				/* just a hole. */
3964				kfree(pages);
3965				return EXT_CONTINUE;
3966			}
3967			index = 0;
3968
3969next_page:
3970			/* Try to find the 1st mapped buffer. */
3971			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3972				  blksize_bits;
3973			if (!page_has_buffers(pages[index]))
3974				goto out;
3975			head = page_buffers(pages[index]);
3976			if (!head)
3977				goto out;
3978
3979			index++;
3980			bh = head;
3981			do {
3982				if (end >= newex->ec_block +
3983					newex->ec_len)
3984					/* The buffer is out of
3985					 * the request range.
3986					 */
3987					goto out;
3988
3989				if (buffer_mapped(bh) &&
3990				    end >= newex->ec_block) {
3991					start_index = index - 1;
3992					/* get the 1st mapped buffer. */
3993					goto found_mapped_buffer;
3994				}
3995
3996				bh = bh->b_this_page;
3997				end++;
3998			} while (bh != head);
3999
4000			/* No mapped buffer in the range found in this page,
4001			 * We need to look up next page.
4002			 */
4003			if (index >= ret) {
4004				/* There is no page left, but we need to limit
4005				 * newex->ec_len.
4006				 */
4007				newex->ec_len = end - newex->ec_block;
4008				goto out;
4009			}
4010			goto next_page;
4011		} else {
4012			/*Find contiguous delayed buffers. */
4013			if (ret > 0 && pages[0]->index == last_offset)
4014				head = page_buffers(pages[0]);
4015			bh = head;
4016			index = 1;
4017			start_index = 0;
4018		}
4019
4020found_mapped_buffer:
4021		if (bh != NULL && buffer_delay(bh)) {
4022			/* 1st or contiguous delayed buffer found. */
4023			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4024				/*
4025				 * 1st delayed buffer found, record
4026				 * the start of extent.
4027				 */
4028				flags |= FIEMAP_EXTENT_DELALLOC;
4029				newex->ec_block = end;
4030				logical = (__u64)end << blksize_bits;
4031			}
4032			/* Find contiguous delayed buffers. */
4033			do {
4034				if (!buffer_delay(bh))
4035					goto found_delayed_extent;
4036				bh = bh->b_this_page;
4037				end++;
4038			} while (bh != head);
4039
4040			for (; index < ret; index++) {
4041				if (!page_has_buffers(pages[index])) {
4042					bh = NULL;
4043					break;
4044				}
4045				head = page_buffers(pages[index]);
4046				if (!head) {
4047					bh = NULL;
4048					break;
4049				}
4050
4051				if (pages[index]->index !=
4052				    pages[start_index]->index + index
4053				    - start_index) {
4054					/* Blocks are not contiguous. */
4055					bh = NULL;
4056					break;
4057				}
4058				bh = head;
4059				do {
4060					if (!buffer_delay(bh))
4061						/* Delayed-extent ends. */
4062						goto found_delayed_extent;
4063					bh = bh->b_this_page;
4064					end++;
4065				} while (bh != head);
4066			}
4067		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4068			/* a hole found. */
4069			goto out;
4070
4071found_delayed_extent:
4072		newex->ec_len = min(end - newex->ec_block,
4073						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4074		if (ret == nr_pages && bh != NULL &&
4075			newex->ec_len < EXT_INIT_MAX_LEN &&
4076			buffer_delay(bh)) {
4077			/* Have not collected an extent and continue. */
4078			for (index = 0; index < ret; index++)
4079				page_cache_release(pages[index]);
4080			goto repeat;
4081		}
4082
4083		for (index = 0; index < ret; index++)
4084			page_cache_release(pages[index]);
4085		kfree(pages);
4086	}
4087
4088	physical = (__u64)newex->ec_start << blksize_bits;
4089	length =   (__u64)newex->ec_len << blksize_bits;
4090
4091	if (ex && ext4_ext_is_uninitialized(ex))
4092		flags |= FIEMAP_EXTENT_UNWRITTEN;
4093
4094	if (next == EXT_MAX_BLOCKS)
4095		flags |= FIEMAP_EXTENT_LAST;
4096
4097	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4098					length, flags);
4099	if (ret < 0)
4100		return ret;
4101	if (ret == 1)
4102		return EXT_BREAK;
4103	return EXT_CONTINUE;
4104}
4105
4106/* fiemap flags we can handle specified here */
4107#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4108
4109static int ext4_xattr_fiemap(struct inode *inode,
4110				struct fiemap_extent_info *fieinfo)
4111{
4112	__u64 physical = 0;
4113	__u64 length;
4114	__u32 flags = FIEMAP_EXTENT_LAST;
4115	int blockbits = inode->i_sb->s_blocksize_bits;
4116	int error = 0;
4117
4118	/* in-inode? */
4119	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4120		struct ext4_iloc iloc;
4121		int offset;	/* offset of xattr in inode */
4122
4123		error = ext4_get_inode_loc(inode, &iloc);
4124		if (error)
4125			return error;
4126		physical = iloc.bh->b_blocknr << blockbits;
4127		offset = EXT4_GOOD_OLD_INODE_SIZE +
4128				EXT4_I(inode)->i_extra_isize;
4129		physical += offset;
4130		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4131		flags |= FIEMAP_EXTENT_DATA_INLINE;
4132		brelse(iloc.bh);
4133	} else { /* external block */
4134		physical = EXT4_I(inode)->i_file_acl << blockbits;
4135		length = inode->i_sb->s_blocksize;
4136	}
4137
4138	if (physical)
4139		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4140						length, flags);
4141	return (error < 0 ? error : 0);
4142}
4143
4144/*
4145 * ext4_ext_punch_hole
4146 *
4147 * Punches a hole of "length" bytes in a file starting
4148 * at byte "offset"
4149 *
4150 * @inode:  The inode of the file to punch a hole in
4151 * @offset: The starting byte offset of the hole
4152 * @length: The length of the hole
4153 *
4154 * Returns the number of blocks removed or negative on err
4155 */
4156int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4157{
4158	struct inode *inode = file->f_path.dentry->d_inode;
4159	struct super_block *sb = inode->i_sb;
4160	struct ext4_ext_cache cache_ex;
4161	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4162	struct address_space *mapping = inode->i_mapping;
4163	struct ext4_map_blocks map;
4164	handle_t *handle;
4165	loff_t first_block_offset, last_block_offset, block_len;
4166	loff_t first_page, last_page, first_page_offset, last_page_offset;
4167	int ret, credits, blocks_released, err = 0;
4168
4169	first_block = (offset + sb->s_blocksize - 1) >>
4170		EXT4_BLOCK_SIZE_BITS(sb);
4171	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4172
4173	first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4174	last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4175
4176	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4177	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
 
4178
4179	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4180	last_page_offset = last_page << PAGE_CACHE_SHIFT;
 
 
 
4181
4182	/*
4183	 * Write out all dirty pages to avoid race conditions
4184	 * Then release them.
4185	 */
4186	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4187		err = filemap_write_and_wait_range(mapping,
4188			first_page_offset == 0 ? 0 : first_page_offset-1,
4189			last_page_offset);
4190
4191			if (err)
4192				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4193	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4194
4195	/* Now release the pages */
4196	if (last_page_offset > first_page_offset) {
4197		truncate_inode_pages_range(mapping, first_page_offset,
4198					   last_page_offset-1);
 
 
 
 
 
 
 
 
4199	}
4200
4201	/* finish any pending end_io work */
4202	ext4_flush_completed_IO(inode);
 
4203
4204	credits = ext4_writepage_trans_blocks(inode);
4205	handle = ext4_journal_start(inode, credits);
4206	if (IS_ERR(handle))
4207		return PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
4208
4209	err = ext4_orphan_add(handle, inode);
4210	if (err)
4211		goto out;
 
 
4212
4213	/*
4214	 * Now we need to zero out the un block aligned data.
4215	 * If the file is smaller than a block, just
4216	 * zero out the middle
4217	 */
4218	if (first_block > last_block)
4219		ext4_block_zero_page_range(handle, mapping, offset, length);
4220	else {
4221		/* zero out the head of the hole before the first block */
4222		block_len  = first_block_offset - offset;
4223		if (block_len > 0)
4224			ext4_block_zero_page_range(handle, mapping,
4225						   offset, block_len);
4226
4227		/* zero out the tail of the hole after the last block */
4228		block_len = offset + length - last_block_offset;
4229		if (block_len > 0) {
4230			ext4_block_zero_page_range(handle, mapping,
4231					last_block_offset, block_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4232		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4233	}
4234
4235	/* If there are no blocks to remove, return now */
4236	if (first_block >= last_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4237		goto out;
4238
4239	down_write(&EXT4_I(inode)->i_data_sem);
4240	ext4_ext_invalidate_cache(inode);
4241	ext4_discard_preallocations(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4242
4243	/*
4244	 * Loop over all the blocks and identify blocks
4245	 * that need to be punched out
 
4246	 */
4247	iblock = first_block;
4248	blocks_released = 0;
4249	while (iblock < last_block) {
4250		max_blocks = last_block - iblock;
4251		num_blocks = 1;
4252		memset(&map, 0, sizeof(map));
4253		map.m_lblk = iblock;
4254		map.m_len = max_blocks;
4255		ret = ext4_ext_map_blocks(handle, inode, &map,
4256			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4257
4258		if (ret > 0) {
4259			blocks_released += ret;
4260			num_blocks = ret;
4261		} else if (ret == 0) {
4262			/*
4263			 * If map blocks could not find the block,
4264			 * then it is in a hole.  If the hole was
4265			 * not already cached, then map blocks should
4266			 * put it in the cache.  So we can get the hole
4267			 * out of the cache
4268			 */
4269			memset(&cache_ex, 0, sizeof(cache_ex));
4270			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4271				!cache_ex.ec_start) {
4272
4273				/* The hole is cached */
4274				num_blocks = cache_ex.ec_block +
4275				cache_ex.ec_len - iblock;
4276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4277			} else {
4278				/* The block could not be identified */
4279				err = -EIO;
4280				break;
4281			}
4282		} else {
4283			/* Map blocks error */
4284			err = ret;
4285			break;
4286		}
4287
4288		if (num_blocks == 0) {
4289			/* This condition should never happen */
4290			ext_debug("Block lookup failed");
4291			err = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4292			break;
4293		}
 
 
 
 
 
4294
4295		iblock += num_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4296	}
4297
4298	if (blocks_released > 0) {
4299		ext4_ext_invalidate_cache(inode);
4300		ext4_discard_preallocations(inode);
 
 
 
 
 
4301	}
4302
4303	if (IS_SYNC(inode))
4304		ext4_handle_sync(handle);
 
 
 
4305
4306	up_write(&EXT4_I(inode)->i_data_sem);
 
4307
4308out:
4309	ext4_orphan_del(handle, inode);
4310	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4311	ext4_mark_inode_dirty(handle, inode);
 
 
 
4312	ext4_journal_stop(handle);
4313	return err;
 
 
 
 
4314}
4315int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4316		__u64 start, __u64 len)
 
 
 
 
 
 
 
 
4317{
4318	ext4_lblk_t start_blk;
4319	int error = 0;
 
 
 
 
 
 
4320
4321	/* fallback to generic here if not in extents fmt */
4322	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4323		return generic_block_fiemap(inode, fieinfo, start, len,
4324			ext4_get_block);
 
 
 
4325
4326	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4327		return -EBADR;
 
 
4328
4329	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4330		error = ext4_xattr_fiemap(inode, fieinfo);
4331	} else {
4332		ext4_lblk_t len_blks;
4333		__u64 last_blk;
4334
4335		start_blk = start >> inode->i_sb->s_blocksize_bits;
4336		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4337		if (last_blk >= EXT_MAX_BLOCKS)
4338			last_blk = EXT_MAX_BLOCKS-1;
4339		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4340
4341		/*
4342		 * Walk the extent tree gathering extent information.
4343		 * ext4_ext_fiemap_cb will push extents back to user.
4344		 */
4345		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4346					  ext4_ext_fiemap_cb, fieinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4347	}
4348
4349	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4350}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   4 * Written by Alex Tomas <alex@clusterfs.com>
   5 *
   6 * Architecture independence:
   7 *   Copyright (c) 2005, Bull S.A.
   8 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11/*
  12 * Extents support for EXT4
  13 *
  14 * TODO:
  15 *   - ext4*_error() should be used in some situations
  16 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  17 *   - smart tree reduction
  18 */
  19
 
  20#include <linux/fs.h>
  21#include <linux/time.h>
  22#include <linux/jbd2.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/quotaops.h>
  26#include <linux/string.h>
  27#include <linux/slab.h>
  28#include <linux/uaccess.h>
 
  29#include <linux/fiemap.h>
  30#include <linux/backing-dev.h>
  31#include "ext4_jbd2.h"
  32#include "ext4_extents.h"
  33#include "xattr.h"
  34
  35#include <trace/events/ext4.h>
  36
  37/*
  38 * used by extent splitting.
  39 */
  40#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
  41					due to ENOSPC */
  42#define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
  43#define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
  44
  45#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
  46#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
  47
  48static __le32 ext4_extent_block_csum(struct inode *inode,
  49				     struct ext4_extent_header *eh)
  50{
  51	struct ext4_inode_info *ei = EXT4_I(inode);
  52	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  53	__u32 csum;
  54
  55	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
  56			   EXT4_EXTENT_TAIL_OFFSET(eh));
  57	return cpu_to_le32(csum);
  58}
  59
  60static int ext4_extent_block_csum_verify(struct inode *inode,
  61					 struct ext4_extent_header *eh)
  62{
  63	struct ext4_extent_tail *et;
  64
  65	if (!ext4_has_metadata_csum(inode->i_sb))
  66		return 1;
  67
  68	et = find_ext4_extent_tail(eh);
  69	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
  70		return 0;
  71	return 1;
  72}
  73
  74static void ext4_extent_block_csum_set(struct inode *inode,
  75				       struct ext4_extent_header *eh)
  76{
  77	struct ext4_extent_tail *et;
  78
  79	if (!ext4_has_metadata_csum(inode->i_sb))
  80		return;
  81
  82	et = find_ext4_extent_tail(eh);
  83	et->et_checksum = ext4_extent_block_csum(inode, eh);
  84}
  85
  86static int ext4_split_extent(handle_t *handle,
  87				struct inode *inode,
  88				struct ext4_ext_path **ppath,
  89				struct ext4_map_blocks *map,
  90				int split_flag,
  91				int flags);
  92
  93static int ext4_split_extent_at(handle_t *handle,
  94			     struct inode *inode,
  95			     struct ext4_ext_path **ppath,
  96			     ext4_lblk_t split,
  97			     int split_flag,
  98			     int flags);
  99
 100static int ext4_find_delayed_extent(struct inode *inode,
 101				    struct extent_status *newes);
 102
 103static int ext4_ext_truncate_extend_restart(handle_t *handle,
 104					    struct inode *inode,
 105					    int needed)
 106{
 107	int err;
 108
 109	if (!ext4_handle_valid(handle))
 110		return 0;
 111	if (handle->h_buffer_credits >= needed)
 112		return 0;
 113	/*
 114	 * If we need to extend the journal get a few extra blocks
 115	 * while we're at it for efficiency's sake.
 116	 */
 117	needed += 3;
 118	err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
 119	if (err <= 0)
 120		return err;
 121	err = ext4_truncate_restart_trans(handle, inode, needed);
 122	if (err == 0)
 123		err = -EAGAIN;
 124
 125	return err;
 126}
 127
 128/*
 129 * could return:
 130 *  - EROFS
 131 *  - ENOMEM
 132 */
 133static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
 134				struct ext4_ext_path *path)
 135{
 136	if (path->p_bh) {
 137		/* path points to block */
 138		BUFFER_TRACE(path->p_bh, "get_write_access");
 139		return ext4_journal_get_write_access(handle, path->p_bh);
 140	}
 141	/* path points to leaf/index in inode body */
 142	/* we use in-core data, no need to protect them */
 143	return 0;
 144}
 145
 146/*
 147 * could return:
 148 *  - EROFS
 149 *  - ENOMEM
 150 *  - EIO
 151 */
 152int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
 153		     struct inode *inode, struct ext4_ext_path *path)
 154{
 155	int err;
 156
 157	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 158	if (path->p_bh) {
 159		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
 160		/* path points to block */
 161		err = __ext4_handle_dirty_metadata(where, line, handle,
 162						   inode, path->p_bh);
 163	} else {
 164		/* path points to leaf/index in inode body */
 165		err = ext4_mark_inode_dirty(handle, inode);
 166	}
 167	return err;
 168}
 169
 170static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 171			      struct ext4_ext_path *path,
 172			      ext4_lblk_t block)
 173{
 
 
 174	if (path) {
 175		int depth = path->p_depth;
 176		struct ext4_extent *ex;
 
 177
 178		/*
 179		 * Try to predict block placement assuming that we are
 180		 * filling in a file which will eventually be
 181		 * non-sparse --- i.e., in the case of libbfd writing
 182		 * an ELF object sections out-of-order but in a way
 183		 * the eventually results in a contiguous object or
 184		 * executable file, or some database extending a table
 185		 * space file.  However, this is actually somewhat
 186		 * non-ideal if we are writing a sparse file such as
 187		 * qemu or KVM writing a raw image file that is going
 188		 * to stay fairly sparse, since it will end up
 189		 * fragmenting the file system's free space.  Maybe we
 190		 * should have some hueristics or some way to allow
 191		 * userspace to pass a hint to file system,
 192		 * especially if the latter case turns out to be
 193		 * common.
 194		 */
 195		ex = path[depth].p_ext;
 196		if (ex) {
 197			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 198			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 199
 200			if (block > ext_block)
 201				return ext_pblk + (block - ext_block);
 202			else
 203				return ext_pblk - (ext_block - block);
 204		}
 205
 206		/* it looks like index is empty;
 207		 * try to find starting block from index itself */
 208		if (path[depth].p_bh)
 209			return path[depth].p_bh->b_blocknr;
 210	}
 211
 212	/* OK. use inode's group */
 213	return ext4_inode_to_goal_block(inode);
 214}
 215
 216/*
 217 * Allocation for a meta data block
 218 */
 219static ext4_fsblk_t
 220ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 221			struct ext4_ext_path *path,
 222			struct ext4_extent *ex, int *err, unsigned int flags)
 223{
 224	ext4_fsblk_t goal, newblock;
 225
 226	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 227	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 228					NULL, err);
 229	return newblock;
 230}
 231
 232static inline int ext4_ext_space_block(struct inode *inode, int check)
 233{
 234	int size;
 235
 236	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 237			/ sizeof(struct ext4_extent);
 
 238#ifdef AGGRESSIVE_TEST
 239	if (!check && size > 6)
 240		size = 6;
 241#endif
 
 242	return size;
 243}
 244
 245static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 246{
 247	int size;
 248
 249	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 250			/ sizeof(struct ext4_extent_idx);
 
 251#ifdef AGGRESSIVE_TEST
 252	if (!check && size > 5)
 253		size = 5;
 254#endif
 
 255	return size;
 256}
 257
 258static inline int ext4_ext_space_root(struct inode *inode, int check)
 259{
 260	int size;
 261
 262	size = sizeof(EXT4_I(inode)->i_data);
 263	size -= sizeof(struct ext4_extent_header);
 264	size /= sizeof(struct ext4_extent);
 
 265#ifdef AGGRESSIVE_TEST
 266	if (!check && size > 3)
 267		size = 3;
 268#endif
 
 269	return size;
 270}
 271
 272static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 273{
 274	int size;
 275
 276	size = sizeof(EXT4_I(inode)->i_data);
 277	size -= sizeof(struct ext4_extent_header);
 278	size /= sizeof(struct ext4_extent_idx);
 
 279#ifdef AGGRESSIVE_TEST
 280	if (!check && size > 4)
 281		size = 4;
 282#endif
 
 283	return size;
 284}
 285
 286static inline int
 287ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
 288			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
 289			   int nofail)
 290{
 291	struct ext4_ext_path *path = *ppath;
 292	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
 293
 294	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
 295			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
 296			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
 297			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
 298}
 299
 300/*
 301 * Calculate the number of metadata blocks needed
 302 * to allocate @blocks
 303 * Worse case is one block per extent
 304 */
 305int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 306{
 307	struct ext4_inode_info *ei = EXT4_I(inode);
 308	int idxs;
 309
 310	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 311		/ sizeof(struct ext4_extent_idx));
 312
 313	/*
 314	 * If the new delayed allocation block is contiguous with the
 315	 * previous da block, it can share index blocks with the
 316	 * previous block, so we only need to allocate a new index
 317	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 318	 * an additional index block, and at ldxs**3 blocks, yet
 319	 * another index blocks.
 320	 */
 321	if (ei->i_da_metadata_calc_len &&
 322	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 323		int num = 0;
 324
 325		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 326			num++;
 327		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 328			num++;
 329		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 330			num++;
 331			ei->i_da_metadata_calc_len = 0;
 332		} else
 333			ei->i_da_metadata_calc_len++;
 334		ei->i_da_metadata_calc_last_lblock++;
 335		return num;
 336	}
 337
 338	/*
 339	 * In the worst case we need a new set of index blocks at
 340	 * every level of the inode's extent tree.
 341	 */
 342	ei->i_da_metadata_calc_len = 1;
 343	ei->i_da_metadata_calc_last_lblock = lblock;
 344	return ext_depth(inode) + 1;
 345}
 346
 347static int
 348ext4_ext_max_entries(struct inode *inode, int depth)
 349{
 350	int max;
 351
 352	if (depth == ext_depth(inode)) {
 353		if (depth == 0)
 354			max = ext4_ext_space_root(inode, 1);
 355		else
 356			max = ext4_ext_space_root_idx(inode, 1);
 357	} else {
 358		if (depth == 0)
 359			max = ext4_ext_space_block(inode, 1);
 360		else
 361			max = ext4_ext_space_block_idx(inode, 1);
 362	}
 363
 364	return max;
 365}
 366
 367static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 368{
 369	ext4_fsblk_t block = ext4_ext_pblock(ext);
 370	int len = ext4_ext_get_actual_len(ext);
 371	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
 372
 373	/*
 374	 * We allow neither:
 375	 *  - zero length
 376	 *  - overflow/wrap-around
 377	 */
 378	if (lblock + len <= lblock)
 379		return 0;
 380	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 381}
 382
 383static int ext4_valid_extent_idx(struct inode *inode,
 384				struct ext4_extent_idx *ext_idx)
 385{
 386	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 387
 388	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 389}
 390
 391static int ext4_valid_extent_entries(struct inode *inode,
 392				struct ext4_extent_header *eh,
 393				int depth)
 394{
 
 
 395	unsigned short entries;
 396	if (eh->eh_entries == 0)
 397		return 1;
 398
 399	entries = le16_to_cpu(eh->eh_entries);
 400
 401	if (depth == 0) {
 402		/* leaf entries */
 403		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
 404		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 405		ext4_fsblk_t pblock = 0;
 406		ext4_lblk_t lblock = 0;
 407		ext4_lblk_t prev = 0;
 408		int len = 0;
 409		while (entries) {
 410			if (!ext4_valid_extent(inode, ext))
 411				return 0;
 412
 413			/* Check for overlapping extents */
 414			lblock = le32_to_cpu(ext->ee_block);
 415			len = ext4_ext_get_actual_len(ext);
 416			if ((lblock <= prev) && prev) {
 417				pblock = ext4_ext_pblock(ext);
 418				es->s_last_error_block = cpu_to_le64(pblock);
 419				return 0;
 420			}
 421			ext++;
 422			entries--;
 423			prev = lblock + len - 1;
 424		}
 425	} else {
 426		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
 427		while (entries) {
 428			if (!ext4_valid_extent_idx(inode, ext_idx))
 429				return 0;
 430			ext_idx++;
 431			entries--;
 432		}
 433	}
 434	return 1;
 435}
 436
 437static int __ext4_ext_check(const char *function, unsigned int line,
 438			    struct inode *inode, struct ext4_extent_header *eh,
 439			    int depth, ext4_fsblk_t pblk)
 440{
 441	const char *error_msg;
 442	int max = 0, err = -EFSCORRUPTED;
 443
 444	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 445		error_msg = "invalid magic";
 446		goto corrupted;
 447	}
 448	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 449		error_msg = "unexpected eh_depth";
 450		goto corrupted;
 451	}
 452	if (unlikely(eh->eh_max == 0)) {
 453		error_msg = "invalid eh_max";
 454		goto corrupted;
 455	}
 456	max = ext4_ext_max_entries(inode, depth);
 457	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 458		error_msg = "too large eh_max";
 459		goto corrupted;
 460	}
 461	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 462		error_msg = "invalid eh_entries";
 463		goto corrupted;
 464	}
 465	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 466		error_msg = "invalid extent entries";
 467		goto corrupted;
 468	}
 469	if (unlikely(depth > 32)) {
 470		error_msg = "too large eh_depth";
 471		goto corrupted;
 472	}
 473	/* Verify checksum on non-root extent tree nodes */
 474	if (ext_depth(inode) != depth &&
 475	    !ext4_extent_block_csum_verify(inode, eh)) {
 476		error_msg = "extent tree corrupted";
 477		err = -EFSBADCRC;
 478		goto corrupted;
 479	}
 480	return 0;
 481
 482corrupted:
 483	ext4_error_inode(inode, function, line, 0,
 484			 "pblk %llu bad header/extent: %s - magic %x, "
 485			 "entries %u, max %u(%u), depth %u(%u)",
 486			 (unsigned long long) pblk, error_msg,
 487			 le16_to_cpu(eh->eh_magic),
 488			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 489			 max, le16_to_cpu(eh->eh_depth), depth);
 490	return err;
 491}
 492
 493#define ext4_ext_check(inode, eh, depth, pblk)			\
 494	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
 495
 496int ext4_ext_check_inode(struct inode *inode)
 497{
 498	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
 499}
 500
 501static struct buffer_head *
 502__read_extent_tree_block(const char *function, unsigned int line,
 503			 struct inode *inode, ext4_fsblk_t pblk, int depth,
 504			 int flags)
 505{
 506	struct buffer_head		*bh;
 507	int				err;
 508
 509	bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
 510	if (unlikely(!bh))
 511		return ERR_PTR(-ENOMEM);
 512
 513	if (!bh_uptodate_or_lock(bh)) {
 514		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
 515		err = bh_submit_read(bh);
 516		if (err < 0)
 517			goto errout;
 518	}
 519	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
 520		return bh;
 521	err = __ext4_ext_check(function, line, inode,
 522			       ext_block_hdr(bh), depth, pblk);
 523	if (err)
 524		goto errout;
 525	set_buffer_verified(bh);
 526	/*
 527	 * If this is a leaf block, cache all of its entries
 528	 */
 529	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
 530		struct ext4_extent_header *eh = ext_block_hdr(bh);
 531		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
 532		ext4_lblk_t prev = 0;
 533		int i;
 534
 535		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
 536			unsigned int status = EXTENT_STATUS_WRITTEN;
 537			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
 538			int len = ext4_ext_get_actual_len(ex);
 539
 540			if (prev && (prev != lblk))
 541				ext4_es_cache_extent(inode, prev,
 542						     lblk - prev, ~0,
 543						     EXTENT_STATUS_HOLE);
 544
 545			if (ext4_ext_is_unwritten(ex))
 546				status = EXTENT_STATUS_UNWRITTEN;
 547			ext4_es_cache_extent(inode, lblk, len,
 548					     ext4_ext_pblock(ex), status);
 549			prev = lblk + len;
 550		}
 551	}
 552	return bh;
 553errout:
 554	put_bh(bh);
 555	return ERR_PTR(err);
 556
 557}
 558
 559#define read_extent_tree_block(inode, pblk, depth, flags)		\
 560	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
 561				 (depth), (flags))
 562
 563/*
 564 * This function is called to cache a file's extent information in the
 565 * extent status tree
 566 */
 567int ext4_ext_precache(struct inode *inode)
 568{
 569	struct ext4_inode_info *ei = EXT4_I(inode);
 570	struct ext4_ext_path *path = NULL;
 571	struct buffer_head *bh;
 572	int i = 0, depth, ret = 0;
 573
 574	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 575		return 0;	/* not an extent-mapped inode */
 576
 577	down_read(&ei->i_data_sem);
 578	depth = ext_depth(inode);
 579
 580	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
 581		       GFP_NOFS);
 582	if (path == NULL) {
 583		up_read(&ei->i_data_sem);
 584		return -ENOMEM;
 585	}
 586
 587	/* Don't cache anything if there are no external extent blocks */
 588	if (depth == 0)
 589		goto out;
 590	path[0].p_hdr = ext_inode_hdr(inode);
 591	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
 592	if (ret)
 593		goto out;
 594	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
 595	while (i >= 0) {
 596		/*
 597		 * If this is a leaf block or we've reached the end of
 598		 * the index block, go up
 599		 */
 600		if ((i == depth) ||
 601		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
 602			brelse(path[i].p_bh);
 603			path[i].p_bh = NULL;
 604			i--;
 605			continue;
 606		}
 607		bh = read_extent_tree_block(inode,
 608					    ext4_idx_pblock(path[i].p_idx++),
 609					    depth - i - 1,
 610					    EXT4_EX_FORCE_CACHE);
 611		if (IS_ERR(bh)) {
 612			ret = PTR_ERR(bh);
 613			break;
 614		}
 615		i++;
 616		path[i].p_bh = bh;
 617		path[i].p_hdr = ext_block_hdr(bh);
 618		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
 619	}
 620	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
 621out:
 622	up_read(&ei->i_data_sem);
 623	ext4_ext_drop_refs(path);
 624	kfree(path);
 625	return ret;
 626}
 627
 628#ifdef EXT_DEBUG
 629static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 630{
 631	int k, l = path->p_depth;
 632
 633	ext_debug("path:");
 634	for (k = 0; k <= l; k++, path++) {
 635		if (path->p_idx) {
 636		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 637			    ext4_idx_pblock(path->p_idx));
 638		} else if (path->p_ext) {
 639			ext_debug("  %d:[%d]%d:%llu ",
 640				  le32_to_cpu(path->p_ext->ee_block),
 641				  ext4_ext_is_unwritten(path->p_ext),
 642				  ext4_ext_get_actual_len(path->p_ext),
 643				  ext4_ext_pblock(path->p_ext));
 644		} else
 645			ext_debug("  []");
 646	}
 647	ext_debug("\n");
 648}
 649
 650static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 651{
 652	int depth = ext_depth(inode);
 653	struct ext4_extent_header *eh;
 654	struct ext4_extent *ex;
 655	int i;
 656
 657	if (!path)
 658		return;
 659
 660	eh = path[depth].p_hdr;
 661	ex = EXT_FIRST_EXTENT(eh);
 662
 663	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 664
 665	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 666		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 667			  ext4_ext_is_unwritten(ex),
 668			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 669	}
 670	ext_debug("\n");
 671}
 672
 673static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 674			ext4_fsblk_t newblock, int level)
 675{
 676	int depth = ext_depth(inode);
 677	struct ext4_extent *ex;
 678
 679	if (depth != level) {
 680		struct ext4_extent_idx *idx;
 681		idx = path[level].p_idx;
 682		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 683			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 684					le32_to_cpu(idx->ei_block),
 685					ext4_idx_pblock(idx),
 686					newblock);
 687			idx++;
 688		}
 689
 690		return;
 691	}
 692
 693	ex = path[depth].p_ext;
 694	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 695		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 696				le32_to_cpu(ex->ee_block),
 697				ext4_ext_pblock(ex),
 698				ext4_ext_is_unwritten(ex),
 699				ext4_ext_get_actual_len(ex),
 700				newblock);
 701		ex++;
 702	}
 703}
 704
 705#else
 706#define ext4_ext_show_path(inode, path)
 707#define ext4_ext_show_leaf(inode, path)
 708#define ext4_ext_show_move(inode, path, newblock, level)
 709#endif
 710
 711void ext4_ext_drop_refs(struct ext4_ext_path *path)
 712{
 713	int depth, i;
 
 714
 715	if (!path)
 716		return;
 717	depth = path->p_depth;
 718	for (i = 0; i <= depth; i++, path++)
 719		if (path->p_bh) {
 720			brelse(path->p_bh);
 721			path->p_bh = NULL;
 722		}
 723}
 724
 725/*
 726 * ext4_ext_binsearch_idx:
 727 * binary search for the closest index of the given block
 728 * the header must be checked before calling this
 729 */
 730static void
 731ext4_ext_binsearch_idx(struct inode *inode,
 732			struct ext4_ext_path *path, ext4_lblk_t block)
 733{
 734	struct ext4_extent_header *eh = path->p_hdr;
 735	struct ext4_extent_idx *r, *l, *m;
 736
 737
 738	ext_debug("binsearch for %u(idx):  ", block);
 739
 740	l = EXT_FIRST_INDEX(eh) + 1;
 741	r = EXT_LAST_INDEX(eh);
 742	while (l <= r) {
 743		m = l + (r - l) / 2;
 744		if (block < le32_to_cpu(m->ei_block))
 745			r = m - 1;
 746		else
 747			l = m + 1;
 748		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 749				m, le32_to_cpu(m->ei_block),
 750				r, le32_to_cpu(r->ei_block));
 751	}
 752
 753	path->p_idx = l - 1;
 754	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
 755		  ext4_idx_pblock(path->p_idx));
 756
 757#ifdef CHECK_BINSEARCH
 758	{
 759		struct ext4_extent_idx *chix, *ix;
 760		int k;
 761
 762		chix = ix = EXT_FIRST_INDEX(eh);
 763		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 764		  if (k != 0 &&
 765		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 766				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 767				       "first=0x%p\n", k,
 768				       ix, EXT_FIRST_INDEX(eh));
 769				printk(KERN_DEBUG "%u <= %u\n",
 770				       le32_to_cpu(ix->ei_block),
 771				       le32_to_cpu(ix[-1].ei_block));
 772			}
 773			BUG_ON(k && le32_to_cpu(ix->ei_block)
 774					   <= le32_to_cpu(ix[-1].ei_block));
 775			if (block < le32_to_cpu(ix->ei_block))
 776				break;
 777			chix = ix;
 778		}
 779		BUG_ON(chix != path->p_idx);
 780	}
 781#endif
 782
 783}
 784
 785/*
 786 * ext4_ext_binsearch:
 787 * binary search for closest extent of the given block
 788 * the header must be checked before calling this
 789 */
 790static void
 791ext4_ext_binsearch(struct inode *inode,
 792		struct ext4_ext_path *path, ext4_lblk_t block)
 793{
 794	struct ext4_extent_header *eh = path->p_hdr;
 795	struct ext4_extent *r, *l, *m;
 796
 797	if (eh->eh_entries == 0) {
 798		/*
 799		 * this leaf is empty:
 800		 * we get such a leaf in split/add case
 801		 */
 802		return;
 803	}
 804
 805	ext_debug("binsearch for %u:  ", block);
 806
 807	l = EXT_FIRST_EXTENT(eh) + 1;
 808	r = EXT_LAST_EXTENT(eh);
 809
 810	while (l <= r) {
 811		m = l + (r - l) / 2;
 812		if (block < le32_to_cpu(m->ee_block))
 813			r = m - 1;
 814		else
 815			l = m + 1;
 816		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 817				m, le32_to_cpu(m->ee_block),
 818				r, le32_to_cpu(r->ee_block));
 819	}
 820
 821	path->p_ext = l - 1;
 822	ext_debug("  -> %d:%llu:[%d]%d ",
 823			le32_to_cpu(path->p_ext->ee_block),
 824			ext4_ext_pblock(path->p_ext),
 825			ext4_ext_is_unwritten(path->p_ext),
 826			ext4_ext_get_actual_len(path->p_ext));
 827
 828#ifdef CHECK_BINSEARCH
 829	{
 830		struct ext4_extent *chex, *ex;
 831		int k;
 832
 833		chex = ex = EXT_FIRST_EXTENT(eh);
 834		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 835			BUG_ON(k && le32_to_cpu(ex->ee_block)
 836					  <= le32_to_cpu(ex[-1].ee_block));
 837			if (block < le32_to_cpu(ex->ee_block))
 838				break;
 839			chex = ex;
 840		}
 841		BUG_ON(chex != path->p_ext);
 842	}
 843#endif
 844
 845}
 846
 847int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 848{
 849	struct ext4_extent_header *eh;
 850
 851	eh = ext_inode_hdr(inode);
 852	eh->eh_depth = 0;
 853	eh->eh_entries = 0;
 854	eh->eh_magic = EXT4_EXT_MAGIC;
 855	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 856	ext4_mark_inode_dirty(handle, inode);
 
 857	return 0;
 858}
 859
 860struct ext4_ext_path *
 861ext4_find_extent(struct inode *inode, ext4_lblk_t block,
 862		 struct ext4_ext_path **orig_path, int flags)
 863{
 864	struct ext4_extent_header *eh;
 865	struct buffer_head *bh;
 866	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
 867	short int depth, i, ppos = 0;
 868	int ret;
 869
 870	eh = ext_inode_hdr(inode);
 871	depth = ext_depth(inode);
 872
 873	if (path) {
 874		ext4_ext_drop_refs(path);
 875		if (depth > path[0].p_maxdepth) {
 876			kfree(path);
 877			*orig_path = path = NULL;
 878		}
 879	}
 880	if (!path) {
 881		/* account possible depth increase */
 882		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 883				GFP_NOFS);
 884		if (unlikely(!path))
 885			return ERR_PTR(-ENOMEM);
 886		path[0].p_maxdepth = depth + 1;
 887	}
 888	path[0].p_hdr = eh;
 889	path[0].p_bh = NULL;
 890
 891	i = depth;
 892	/* walk through the tree */
 893	while (i) {
 
 
 894		ext_debug("depth %d: num %d, max %d\n",
 895			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 896
 897		ext4_ext_binsearch_idx(inode, path + ppos, block);
 898		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 899		path[ppos].p_depth = i;
 900		path[ppos].p_ext = NULL;
 901
 902		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
 903					    flags);
 904		if (IS_ERR(bh)) {
 905			ret = PTR_ERR(bh);
 906			goto err;
 
 
 
 
 
 
 
 
 
 907		}
 908
 909		eh = ext_block_hdr(bh);
 910		ppos++;
 
 
 
 
 
 
 911		path[ppos].p_bh = bh;
 912		path[ppos].p_hdr = eh;
 
 
 
 
 913	}
 914
 915	path[ppos].p_depth = i;
 916	path[ppos].p_ext = NULL;
 917	path[ppos].p_idx = NULL;
 918
 919	/* find extent */
 920	ext4_ext_binsearch(inode, path + ppos, block);
 921	/* if not an empty leaf */
 922	if (path[ppos].p_ext)
 923		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 924
 925	ext4_ext_show_path(inode, path);
 926
 927	return path;
 928
 929err:
 930	ext4_ext_drop_refs(path);
 931	kfree(path);
 932	if (orig_path)
 933		*orig_path = NULL;
 934	return ERR_PTR(ret);
 935}
 936
 937/*
 938 * ext4_ext_insert_index:
 939 * insert new index [@logical;@ptr] into the block at @curp;
 940 * check where to insert: before @curp or after @curp
 941 */
 942static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 943				 struct ext4_ext_path *curp,
 944				 int logical, ext4_fsblk_t ptr)
 945{
 946	struct ext4_extent_idx *ix;
 947	int len, err;
 948
 949	err = ext4_ext_get_access(handle, inode, curp);
 950	if (err)
 951		return err;
 952
 953	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 954		EXT4_ERROR_INODE(inode,
 955				 "logical %d == ei_block %d!",
 956				 logical, le32_to_cpu(curp->p_idx->ei_block));
 957		return -EFSCORRUPTED;
 958	}
 959
 960	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 961			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 962		EXT4_ERROR_INODE(inode,
 963				 "eh_entries %d >= eh_max %d!",
 964				 le16_to_cpu(curp->p_hdr->eh_entries),
 965				 le16_to_cpu(curp->p_hdr->eh_max));
 966		return -EFSCORRUPTED;
 967	}
 968
 
 969	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 970		/* insert after */
 971		ext_debug("insert new index %d after: %llu\n", logical, ptr);
 
 
 
 
 
 
 
 
 972		ix = curp->p_idx + 1;
 973	} else {
 974		/* insert before */
 975		ext_debug("insert new index %d before: %llu\n", logical, ptr);
 
 
 
 
 
 
 976		ix = curp->p_idx;
 977	}
 978
 979	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
 980	BUG_ON(len < 0);
 981	if (len > 0) {
 982		ext_debug("insert new index %d: "
 983				"move %d indices from 0x%p to 0x%p\n",
 984				logical, len, ix, ix + 1);
 985		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
 986	}
 987
 988	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
 989		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
 990		return -EFSCORRUPTED;
 991	}
 992
 993	ix->ei_block = cpu_to_le32(logical);
 994	ext4_idx_store_pblock(ix, ptr);
 995	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 996
 997	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 998		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 999		return -EFSCORRUPTED;
1000	}
1001
1002	err = ext4_ext_dirty(handle, inode, curp);
1003	ext4_std_error(inode->i_sb, err);
1004
1005	return err;
1006}
1007
1008/*
1009 * ext4_ext_split:
1010 * inserts new subtree into the path, using free index entry
1011 * at depth @at:
1012 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1013 * - makes decision where to split
1014 * - moves remaining extents and index entries (right to the split point)
1015 *   into the newly allocated blocks
1016 * - initializes subtree
1017 */
1018static int ext4_ext_split(handle_t *handle, struct inode *inode,
1019			  unsigned int flags,
1020			  struct ext4_ext_path *path,
1021			  struct ext4_extent *newext, int at)
1022{
1023	struct buffer_head *bh = NULL;
1024	int depth = ext_depth(inode);
1025	struct ext4_extent_header *neh;
1026	struct ext4_extent_idx *fidx;
1027	int i = at, k, m, a;
1028	ext4_fsblk_t newblock, oldblock;
1029	__le32 border;
1030	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1031	int err = 0;
1032
1033	/* make decision: where to split? */
1034	/* FIXME: now decision is simplest: at current extent */
1035
1036	/* if current leaf will be split, then we should use
1037	 * border from split point */
1038	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1039		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1040		return -EFSCORRUPTED;
1041	}
1042	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1043		border = path[depth].p_ext[1].ee_block;
1044		ext_debug("leaf will be split."
1045				" next leaf starts at %d\n",
1046				  le32_to_cpu(border));
1047	} else {
1048		border = newext->ee_block;
1049		ext_debug("leaf will be added."
1050				" next leaf starts at %d\n",
1051				le32_to_cpu(border));
1052	}
1053
1054	/*
1055	 * If error occurs, then we break processing
1056	 * and mark filesystem read-only. index won't
1057	 * be inserted and tree will be in consistent
1058	 * state. Next mount will repair buffers too.
1059	 */
1060
1061	/*
1062	 * Get array to track all allocated blocks.
1063	 * We need this to handle errors and free blocks
1064	 * upon them.
1065	 */
1066	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1067	if (!ablocks)
1068		return -ENOMEM;
1069
1070	/* allocate all needed blocks */
1071	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1072	for (a = 0; a < depth - at; a++) {
1073		newblock = ext4_ext_new_meta_block(handle, inode, path,
1074						   newext, &err, flags);
1075		if (newblock == 0)
1076			goto cleanup;
1077		ablocks[a] = newblock;
1078	}
1079
1080	/* initialize new leaf */
1081	newblock = ablocks[--a];
1082	if (unlikely(newblock == 0)) {
1083		EXT4_ERROR_INODE(inode, "newblock == 0!");
1084		err = -EFSCORRUPTED;
1085		goto cleanup;
1086	}
1087	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1088	if (unlikely(!bh)) {
1089		err = -ENOMEM;
1090		goto cleanup;
1091	}
1092	lock_buffer(bh);
1093
1094	err = ext4_journal_get_create_access(handle, bh);
1095	if (err)
1096		goto cleanup;
1097
1098	neh = ext_block_hdr(bh);
1099	neh->eh_entries = 0;
1100	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1101	neh->eh_magic = EXT4_EXT_MAGIC;
1102	neh->eh_depth = 0;
1103
1104	/* move remainder of path[depth] to the new leaf */
1105	if (unlikely(path[depth].p_hdr->eh_entries !=
1106		     path[depth].p_hdr->eh_max)) {
1107		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1108				 path[depth].p_hdr->eh_entries,
1109				 path[depth].p_hdr->eh_max);
1110		err = -EFSCORRUPTED;
1111		goto cleanup;
1112	}
1113	/* start copy from next extent */
1114	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1115	ext4_ext_show_move(inode, path, newblock, depth);
1116	if (m) {
1117		struct ext4_extent *ex;
1118		ex = EXT_FIRST_EXTENT(neh);
1119		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1120		le16_add_cpu(&neh->eh_entries, m);
1121	}
1122
1123	ext4_extent_block_csum_set(inode, neh);
1124	set_buffer_uptodate(bh);
1125	unlock_buffer(bh);
1126
1127	err = ext4_handle_dirty_metadata(handle, inode, bh);
1128	if (err)
1129		goto cleanup;
1130	brelse(bh);
1131	bh = NULL;
1132
1133	/* correct old leaf */
1134	if (m) {
1135		err = ext4_ext_get_access(handle, inode, path + depth);
1136		if (err)
1137			goto cleanup;
1138		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1139		err = ext4_ext_dirty(handle, inode, path + depth);
1140		if (err)
1141			goto cleanup;
1142
1143	}
1144
1145	/* create intermediate indexes */
1146	k = depth - at - 1;
1147	if (unlikely(k < 0)) {
1148		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1149		err = -EFSCORRUPTED;
1150		goto cleanup;
1151	}
1152	if (k)
1153		ext_debug("create %d intermediate indices\n", k);
1154	/* insert new index into current index block */
1155	/* current depth stored in i var */
1156	i = depth - 1;
1157	while (k--) {
1158		oldblock = newblock;
1159		newblock = ablocks[--a];
1160		bh = sb_getblk(inode->i_sb, newblock);
1161		if (unlikely(!bh)) {
1162			err = -ENOMEM;
1163			goto cleanup;
1164		}
1165		lock_buffer(bh);
1166
1167		err = ext4_journal_get_create_access(handle, bh);
1168		if (err)
1169			goto cleanup;
1170
1171		neh = ext_block_hdr(bh);
1172		neh->eh_entries = cpu_to_le16(1);
1173		neh->eh_magic = EXT4_EXT_MAGIC;
1174		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1175		neh->eh_depth = cpu_to_le16(depth - i);
1176		fidx = EXT_FIRST_INDEX(neh);
1177		fidx->ei_block = border;
1178		ext4_idx_store_pblock(fidx, oldblock);
1179
1180		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1181				i, newblock, le32_to_cpu(border), oldblock);
1182
1183		/* move remainder of path[i] to the new index block */
1184		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1185					EXT_LAST_INDEX(path[i].p_hdr))) {
1186			EXT4_ERROR_INODE(inode,
1187					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1188					 le32_to_cpu(path[i].p_ext->ee_block));
1189			err = -EFSCORRUPTED;
1190			goto cleanup;
1191		}
1192		/* start copy indexes */
1193		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1194		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1195				EXT_MAX_INDEX(path[i].p_hdr));
1196		ext4_ext_show_move(inode, path, newblock, i);
1197		if (m) {
1198			memmove(++fidx, path[i].p_idx,
1199				sizeof(struct ext4_extent_idx) * m);
1200			le16_add_cpu(&neh->eh_entries, m);
1201		}
1202		ext4_extent_block_csum_set(inode, neh);
1203		set_buffer_uptodate(bh);
1204		unlock_buffer(bh);
1205
1206		err = ext4_handle_dirty_metadata(handle, inode, bh);
1207		if (err)
1208			goto cleanup;
1209		brelse(bh);
1210		bh = NULL;
1211
1212		/* correct old index */
1213		if (m) {
1214			err = ext4_ext_get_access(handle, inode, path + i);
1215			if (err)
1216				goto cleanup;
1217			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1218			err = ext4_ext_dirty(handle, inode, path + i);
1219			if (err)
1220				goto cleanup;
1221		}
1222
1223		i--;
1224	}
1225
1226	/* insert new index */
1227	err = ext4_ext_insert_index(handle, inode, path + at,
1228				    le32_to_cpu(border), newblock);
1229
1230cleanup:
1231	if (bh) {
1232		if (buffer_locked(bh))
1233			unlock_buffer(bh);
1234		brelse(bh);
1235	}
1236
1237	if (err) {
1238		/* free all allocated blocks in error case */
1239		for (i = 0; i < depth; i++) {
1240			if (!ablocks[i])
1241				continue;
1242			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1243					 EXT4_FREE_BLOCKS_METADATA);
1244		}
1245	}
1246	kfree(ablocks);
1247
1248	return err;
1249}
1250
1251/*
1252 * ext4_ext_grow_indepth:
1253 * implements tree growing procedure:
1254 * - allocates new block
1255 * - moves top-level data (index block or leaf) into the new block
1256 * - initializes new top-level, creating index that points to the
1257 *   just created block
1258 */
1259static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1260				 unsigned int flags)
 
 
1261{
 
1262	struct ext4_extent_header *neh;
1263	struct buffer_head *bh;
1264	ext4_fsblk_t newblock, goal = 0;
1265	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1266	int err = 0;
1267
1268	/* Try to prepend new index to old one */
1269	if (ext_depth(inode))
1270		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1271	if (goal > le32_to_cpu(es->s_first_data_block)) {
1272		flags |= EXT4_MB_HINT_TRY_GOAL;
1273		goal--;
1274	} else
1275		goal = ext4_inode_to_goal_block(inode);
1276	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1277					NULL, &err);
1278	if (newblock == 0)
1279		return err;
1280
1281	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1282	if (unlikely(!bh))
1283		return -ENOMEM;
 
 
 
1284	lock_buffer(bh);
1285
1286	err = ext4_journal_get_create_access(handle, bh);
1287	if (err) {
1288		unlock_buffer(bh);
1289		goto out;
1290	}
1291
1292	/* move top-level index/leaf into new block */
1293	memmove(bh->b_data, EXT4_I(inode)->i_data,
1294		sizeof(EXT4_I(inode)->i_data));
1295
1296	/* set size of new block */
1297	neh = ext_block_hdr(bh);
1298	/* old root could have indexes or leaves
1299	 * so calculate e_max right way */
1300	if (ext_depth(inode))
1301		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1302	else
1303		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1304	neh->eh_magic = EXT4_EXT_MAGIC;
1305	ext4_extent_block_csum_set(inode, neh);
1306	set_buffer_uptodate(bh);
1307	unlock_buffer(bh);
1308
1309	err = ext4_handle_dirty_metadata(handle, inode, bh);
1310	if (err)
1311		goto out;
1312
1313	/* Update top-level index: num,max,pointer */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314	neh = ext_inode_hdr(inode);
1315	neh->eh_entries = cpu_to_le16(1);
1316	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1317	if (neh->eh_depth == 0) {
1318		/* Root extent block becomes index block */
1319		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1320		EXT_FIRST_INDEX(neh)->ei_block =
1321			EXT_FIRST_EXTENT(neh)->ee_block;
1322	}
1323	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1324		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1325		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1326		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1327
1328	le16_add_cpu(&neh->eh_depth, 1);
1329	ext4_mark_inode_dirty(handle, inode);
1330out:
1331	brelse(bh);
1332
1333	return err;
1334}
1335
1336/*
1337 * ext4_ext_create_new_leaf:
1338 * finds empty index and adds new leaf.
1339 * if no free index is found, then it requests in-depth growing.
1340 */
1341static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1342				    unsigned int mb_flags,
1343				    unsigned int gb_flags,
1344				    struct ext4_ext_path **ppath,
1345				    struct ext4_extent *newext)
1346{
1347	struct ext4_ext_path *path = *ppath;
1348	struct ext4_ext_path *curp;
1349	int depth, i, err = 0;
1350
1351repeat:
1352	i = depth = ext_depth(inode);
1353
1354	/* walk up to the tree and look for free index entry */
1355	curp = path + depth;
1356	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1357		i--;
1358		curp--;
1359	}
1360
1361	/* we use already allocated block for index block,
1362	 * so subsequent data blocks should be contiguous */
1363	if (EXT_HAS_FREE_INDEX(curp)) {
1364		/* if we found index with free entry, then use that
1365		 * entry: create all needed subtree and add new leaf */
1366		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1367		if (err)
1368			goto out;
1369
1370		/* refill path */
1371		path = ext4_find_extent(inode,
 
1372				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1373				    ppath, gb_flags);
1374		if (IS_ERR(path))
1375			err = PTR_ERR(path);
1376	} else {
1377		/* tree is full, time to grow in depth */
1378		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
 
1379		if (err)
1380			goto out;
1381
1382		/* refill path */
1383		path = ext4_find_extent(inode,
 
1384				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1385				    ppath, gb_flags);
1386		if (IS_ERR(path)) {
1387			err = PTR_ERR(path);
1388			goto out;
1389		}
1390
1391		/*
1392		 * only first (depth 0 -> 1) produces free space;
1393		 * in all other cases we have to split the grown tree
1394		 */
1395		depth = ext_depth(inode);
1396		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1397			/* now we need to split */
1398			goto repeat;
1399		}
1400	}
1401
1402out:
1403	return err;
1404}
1405
1406/*
1407 * search the closest allocated block to the left for *logical
1408 * and returns it at @logical + it's physical address at @phys
1409 * if *logical is the smallest allocated block, the function
1410 * returns 0 at @phys
1411 * return value contains 0 (success) or error code
1412 */
1413static int ext4_ext_search_left(struct inode *inode,
1414				struct ext4_ext_path *path,
1415				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1416{
1417	struct ext4_extent_idx *ix;
1418	struct ext4_extent *ex;
1419	int depth, ee_len;
1420
1421	if (unlikely(path == NULL)) {
1422		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1423		return -EFSCORRUPTED;
1424	}
1425	depth = path->p_depth;
1426	*phys = 0;
1427
1428	if (depth == 0 && path->p_ext == NULL)
1429		return 0;
1430
1431	/* usually extent in the path covers blocks smaller
1432	 * then *logical, but it can be that extent is the
1433	 * first one in the file */
1434
1435	ex = path[depth].p_ext;
1436	ee_len = ext4_ext_get_actual_len(ex);
1437	if (*logical < le32_to_cpu(ex->ee_block)) {
1438		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1439			EXT4_ERROR_INODE(inode,
1440					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1441					 *logical, le32_to_cpu(ex->ee_block));
1442			return -EFSCORRUPTED;
1443		}
1444		while (--depth >= 0) {
1445			ix = path[depth].p_idx;
1446			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1447				EXT4_ERROR_INODE(inode,
1448				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1449				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1450				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1451		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1452				  depth);
1453				return -EFSCORRUPTED;
1454			}
1455		}
1456		return 0;
1457	}
1458
1459	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1460		EXT4_ERROR_INODE(inode,
1461				 "logical %d < ee_block %d + ee_len %d!",
1462				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1463		return -EFSCORRUPTED;
1464	}
1465
1466	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1467	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1468	return 0;
1469}
1470
1471/*
1472 * search the closest allocated block to the right for *logical
1473 * and returns it at @logical + it's physical address at @phys
1474 * if *logical is the largest allocated block, the function
1475 * returns 0 at @phys
1476 * return value contains 0 (success) or error code
1477 */
1478static int ext4_ext_search_right(struct inode *inode,
1479				 struct ext4_ext_path *path,
1480				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1481				 struct ext4_extent **ret_ex)
1482{
1483	struct buffer_head *bh = NULL;
1484	struct ext4_extent_header *eh;
1485	struct ext4_extent_idx *ix;
1486	struct ext4_extent *ex;
1487	ext4_fsblk_t block;
1488	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1489	int ee_len;
1490
1491	if (unlikely(path == NULL)) {
1492		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1493		return -EFSCORRUPTED;
1494	}
1495	depth = path->p_depth;
1496	*phys = 0;
1497
1498	if (depth == 0 && path->p_ext == NULL)
1499		return 0;
1500
1501	/* usually extent in the path covers blocks smaller
1502	 * then *logical, but it can be that extent is the
1503	 * first one in the file */
1504
1505	ex = path[depth].p_ext;
1506	ee_len = ext4_ext_get_actual_len(ex);
1507	if (*logical < le32_to_cpu(ex->ee_block)) {
1508		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1509			EXT4_ERROR_INODE(inode,
1510					 "first_extent(path[%d].p_hdr) != ex",
1511					 depth);
1512			return -EFSCORRUPTED;
1513		}
1514		while (--depth >= 0) {
1515			ix = path[depth].p_idx;
1516			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1517				EXT4_ERROR_INODE(inode,
1518						 "ix != EXT_FIRST_INDEX *logical %d!",
1519						 *logical);
1520				return -EFSCORRUPTED;
1521			}
1522		}
1523		goto found_extent;
 
 
1524	}
1525
1526	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1527		EXT4_ERROR_INODE(inode,
1528				 "logical %d < ee_block %d + ee_len %d!",
1529				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1530		return -EFSCORRUPTED;
1531	}
1532
1533	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1534		/* next allocated block in this leaf */
1535		ex++;
1536		goto found_extent;
 
 
1537	}
1538
1539	/* go up and search for index to the right */
1540	while (--depth >= 0) {
1541		ix = path[depth].p_idx;
1542		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1543			goto got_index;
1544	}
1545
1546	/* we've gone up to the root and found no index to the right */
1547	return 0;
1548
1549got_index:
1550	/* we've found index to the right, let's
1551	 * follow it and find the closest allocated
1552	 * block to the right */
1553	ix++;
1554	block = ext4_idx_pblock(ix);
1555	while (++depth < path->p_depth) {
 
 
 
 
1556		/* subtract from p_depth to get proper eh_depth */
1557		bh = read_extent_tree_block(inode, block,
1558					    path->p_depth - depth, 0);
1559		if (IS_ERR(bh))
1560			return PTR_ERR(bh);
1561		eh = ext_block_hdr(bh);
1562		ix = EXT_FIRST_INDEX(eh);
1563		block = ext4_idx_pblock(ix);
1564		put_bh(bh);
1565	}
1566
1567	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1568	if (IS_ERR(bh))
1569		return PTR_ERR(bh);
1570	eh = ext_block_hdr(bh);
 
 
 
 
1571	ex = EXT_FIRST_EXTENT(eh);
1572found_extent:
1573	*logical = le32_to_cpu(ex->ee_block);
1574	*phys = ext4_ext_pblock(ex);
1575	*ret_ex = ex;
1576	if (bh)
1577		put_bh(bh);
1578	return 0;
1579}
1580
1581/*
1582 * ext4_ext_next_allocated_block:
1583 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1584 * NOTE: it considers block number from index entry as
1585 * allocated block. Thus, index entries have to be consistent
1586 * with leaves.
1587 */
1588ext4_lblk_t
1589ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1590{
1591	int depth;
1592
1593	BUG_ON(path == NULL);
1594	depth = path->p_depth;
1595
1596	if (depth == 0 && path->p_ext == NULL)
1597		return EXT_MAX_BLOCKS;
1598
1599	while (depth >= 0) {
1600		if (depth == path->p_depth) {
1601			/* leaf */
1602			if (path[depth].p_ext &&
1603				path[depth].p_ext !=
1604					EXT_LAST_EXTENT(path[depth].p_hdr))
1605			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1606		} else {
1607			/* index */
1608			if (path[depth].p_idx !=
1609					EXT_LAST_INDEX(path[depth].p_hdr))
1610			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1611		}
1612		depth--;
1613	}
1614
1615	return EXT_MAX_BLOCKS;
1616}
1617
1618/*
1619 * ext4_ext_next_leaf_block:
1620 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1621 */
1622static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1623{
1624	int depth;
1625
1626	BUG_ON(path == NULL);
1627	depth = path->p_depth;
1628
1629	/* zero-tree has no leaf blocks at all */
1630	if (depth == 0)
1631		return EXT_MAX_BLOCKS;
1632
1633	/* go to index block */
1634	depth--;
1635
1636	while (depth >= 0) {
1637		if (path[depth].p_idx !=
1638				EXT_LAST_INDEX(path[depth].p_hdr))
1639			return (ext4_lblk_t)
1640				le32_to_cpu(path[depth].p_idx[1].ei_block);
1641		depth--;
1642	}
1643
1644	return EXT_MAX_BLOCKS;
1645}
1646
1647/*
1648 * ext4_ext_correct_indexes:
1649 * if leaf gets modified and modified extent is first in the leaf,
1650 * then we have to correct all indexes above.
1651 * TODO: do we need to correct tree in all cases?
1652 */
1653static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1654				struct ext4_ext_path *path)
1655{
1656	struct ext4_extent_header *eh;
1657	int depth = ext_depth(inode);
1658	struct ext4_extent *ex;
1659	__le32 border;
1660	int k, err = 0;
1661
1662	eh = path[depth].p_hdr;
1663	ex = path[depth].p_ext;
1664
1665	if (unlikely(ex == NULL || eh == NULL)) {
1666		EXT4_ERROR_INODE(inode,
1667				 "ex %p == NULL or eh %p == NULL", ex, eh);
1668		return -EFSCORRUPTED;
1669	}
1670
1671	if (depth == 0) {
1672		/* there is no tree at all */
1673		return 0;
1674	}
1675
1676	if (ex != EXT_FIRST_EXTENT(eh)) {
1677		/* we correct tree if first leaf got modified only */
1678		return 0;
1679	}
1680
1681	/*
1682	 * TODO: we need correction if border is smaller than current one
1683	 */
1684	k = depth - 1;
1685	border = path[depth].p_ext->ee_block;
1686	err = ext4_ext_get_access(handle, inode, path + k);
1687	if (err)
1688		return err;
1689	path[k].p_idx->ei_block = border;
1690	err = ext4_ext_dirty(handle, inode, path + k);
1691	if (err)
1692		return err;
1693
1694	while (k--) {
1695		/* change all left-side indexes */
1696		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1697			break;
1698		err = ext4_ext_get_access(handle, inode, path + k);
1699		if (err)
1700			break;
1701		path[k].p_idx->ei_block = border;
1702		err = ext4_ext_dirty(handle, inode, path + k);
1703		if (err)
1704			break;
1705	}
1706
1707	return err;
1708}
1709
1710int
1711ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1712				struct ext4_extent *ex2)
1713{
1714	unsigned short ext1_ee_len, ext2_ee_len;
1715
1716	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
 
 
 
 
1717		return 0;
1718
 
 
 
 
 
1719	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1720	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1721
1722	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1723			le32_to_cpu(ex2->ee_block))
1724		return 0;
1725
1726	/*
1727	 * To allow future support for preallocated extents to be added
1728	 * as an RO_COMPAT feature, refuse to merge to extents if
1729	 * this can result in the top bit of ee_len being set.
1730	 */
1731	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1732		return 0;
1733	/*
1734	 * The check for IO to unwritten extent is somewhat racy as we
1735	 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1736	 * dropping i_data_sem. But reserved blocks should save us in that
1737	 * case.
1738	 */
1739	if (ext4_ext_is_unwritten(ex1) &&
1740	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1741	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1742	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1743		return 0;
1744#ifdef AGGRESSIVE_TEST
1745	if (ext1_ee_len >= 4)
1746		return 0;
1747#endif
1748
1749	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1750		return 1;
1751	return 0;
1752}
1753
1754/*
1755 * This function tries to merge the "ex" extent to the next extent in the tree.
1756 * It always tries to merge towards right. If you want to merge towards
1757 * left, pass "ex - 1" as argument instead of "ex".
1758 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1759 * 1 if they got merged.
1760 */
1761static int ext4_ext_try_to_merge_right(struct inode *inode,
1762				 struct ext4_ext_path *path,
1763				 struct ext4_extent *ex)
1764{
1765	struct ext4_extent_header *eh;
1766	unsigned int depth, len;
1767	int merge_done = 0, unwritten;
 
1768
1769	depth = ext_depth(inode);
1770	BUG_ON(path[depth].p_hdr == NULL);
1771	eh = path[depth].p_hdr;
1772
1773	while (ex < EXT_LAST_EXTENT(eh)) {
1774		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1775			break;
1776		/* merge with next extent! */
1777		unwritten = ext4_ext_is_unwritten(ex);
 
1778		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1779				+ ext4_ext_get_actual_len(ex + 1));
1780		if (unwritten)
1781			ext4_ext_mark_unwritten(ex);
1782
1783		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1784			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1785				* sizeof(struct ext4_extent);
1786			memmove(ex + 1, ex + 2, len);
1787		}
1788		le16_add_cpu(&eh->eh_entries, -1);
1789		merge_done = 1;
1790		WARN_ON(eh->eh_entries == 0);
1791		if (!eh->eh_entries)
1792			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1793	}
1794
1795	return merge_done;
1796}
1797
1798/*
1799 * This function does a very simple check to see if we can collapse
1800 * an extent tree with a single extent tree leaf block into the inode.
1801 */
1802static void ext4_ext_try_to_merge_up(handle_t *handle,
1803				     struct inode *inode,
1804				     struct ext4_ext_path *path)
1805{
1806	size_t s;
1807	unsigned max_root = ext4_ext_space_root(inode, 0);
1808	ext4_fsblk_t blk;
1809
1810	if ((path[0].p_depth != 1) ||
1811	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1812	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1813		return;
1814
1815	/*
1816	 * We need to modify the block allocation bitmap and the block
1817	 * group descriptor to release the extent tree block.  If we
1818	 * can't get the journal credits, give up.
1819	 */
1820	if (ext4_journal_extend(handle, 2))
1821		return;
1822
1823	/*
1824	 * Copy the extent data up to the inode
1825	 */
1826	blk = ext4_idx_pblock(path[0].p_idx);
1827	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1828		sizeof(struct ext4_extent_idx);
1829	s += sizeof(struct ext4_extent_header);
1830
1831	path[1].p_maxdepth = path[0].p_maxdepth;
1832	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1833	path[0].p_depth = 0;
1834	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1835		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1836	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1837
1838	brelse(path[1].p_bh);
1839	ext4_free_blocks(handle, inode, NULL, blk, 1,
1840			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1841}
1842
1843/*
1844 * This function tries to merge the @ex extent to neighbours in the tree.
1845 * return 1 if merge left else 0.
1846 */
1847static void ext4_ext_try_to_merge(handle_t *handle,
1848				  struct inode *inode,
1849				  struct ext4_ext_path *path,
1850				  struct ext4_extent *ex) {
1851	struct ext4_extent_header *eh;
1852	unsigned int depth;
1853	int merge_done = 0;
 
1854
1855	depth = ext_depth(inode);
1856	BUG_ON(path[depth].p_hdr == NULL);
1857	eh = path[depth].p_hdr;
1858
1859	if (ex > EXT_FIRST_EXTENT(eh))
1860		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1861
1862	if (!merge_done)
1863		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1864
1865	ext4_ext_try_to_merge_up(handle, inode, path);
1866}
1867
1868/*
1869 * check if a portion of the "newext" extent overlaps with an
1870 * existing extent.
1871 *
1872 * If there is an overlap discovered, it updates the length of the newext
1873 * such that there will be no overlap, and then returns 1.
1874 * If there is no overlap found, it returns 0.
1875 */
1876static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1877					   struct inode *inode,
1878					   struct ext4_extent *newext,
1879					   struct ext4_ext_path *path)
1880{
1881	ext4_lblk_t b1, b2;
1882	unsigned int depth, len1;
1883	unsigned int ret = 0;
1884
1885	b1 = le32_to_cpu(newext->ee_block);
1886	len1 = ext4_ext_get_actual_len(newext);
1887	depth = ext_depth(inode);
1888	if (!path[depth].p_ext)
1889		goto out;
1890	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1891
1892	/*
1893	 * get the next allocated block if the extent in the path
1894	 * is before the requested block(s)
1895	 */
1896	if (b2 < b1) {
1897		b2 = ext4_ext_next_allocated_block(path);
1898		if (b2 == EXT_MAX_BLOCKS)
1899			goto out;
1900		b2 = EXT4_LBLK_CMASK(sbi, b2);
1901	}
1902
1903	/* check for wrap through zero on extent logical start block*/
1904	if (b1 + len1 < b1) {
1905		len1 = EXT_MAX_BLOCKS - b1;
1906		newext->ee_len = cpu_to_le16(len1);
1907		ret = 1;
1908	}
1909
1910	/* check for overlap */
1911	if (b1 + len1 > b2) {
1912		newext->ee_len = cpu_to_le16(b2 - b1);
1913		ret = 1;
1914	}
1915out:
1916	return ret;
1917}
1918
1919/*
1920 * ext4_ext_insert_extent:
1921 * tries to merge requsted extent into the existing extent or
1922 * inserts requested extent as new one into the tree,
1923 * creating new leaf in the no-space case.
1924 */
1925int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1926				struct ext4_ext_path **ppath,
1927				struct ext4_extent *newext, int gb_flags)
1928{
1929	struct ext4_ext_path *path = *ppath;
1930	struct ext4_extent_header *eh;
1931	struct ext4_extent *ex, *fex;
1932	struct ext4_extent *nearex; /* nearest extent */
1933	struct ext4_ext_path *npath = NULL;
1934	int depth, len, err;
1935	ext4_lblk_t next;
1936	int mb_flags = 0, unwritten;
 
1937
1938	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1939		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1940	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1941		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1942		return -EFSCORRUPTED;
1943	}
1944	depth = ext_depth(inode);
1945	ex = path[depth].p_ext;
1946	eh = path[depth].p_hdr;
1947	if (unlikely(path[depth].p_hdr == NULL)) {
1948		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1949		return -EFSCORRUPTED;
1950	}
1951
1952	/* try to insert block into found extent and return */
1953	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
 
 
 
 
 
 
 
 
 
 
 
1954
1955		/*
1956		 * Try to see whether we should rather test the extent on
1957		 * right from ex, or from the left of ex. This is because
1958		 * ext4_find_extent() can return either extent on the
1959		 * left, or on the right from the searched position. This
1960		 * will make merging more effective.
1961		 */
1962		if (ex < EXT_LAST_EXTENT(eh) &&
1963		    (le32_to_cpu(ex->ee_block) +
1964		    ext4_ext_get_actual_len(ex) <
1965		    le32_to_cpu(newext->ee_block))) {
1966			ex += 1;
1967			goto prepend;
1968		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1969			   (le32_to_cpu(newext->ee_block) +
1970			   ext4_ext_get_actual_len(newext) <
1971			   le32_to_cpu(ex->ee_block)))
1972			ex -= 1;
1973
1974		/* Try to append newex to the ex */
1975		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1976			ext_debug("append [%d]%d block to %u:[%d]%d"
1977				  "(from %llu)\n",
1978				  ext4_ext_is_unwritten(newext),
1979				  ext4_ext_get_actual_len(newext),
1980				  le32_to_cpu(ex->ee_block),
1981				  ext4_ext_is_unwritten(ex),
1982				  ext4_ext_get_actual_len(ex),
1983				  ext4_ext_pblock(ex));
1984			err = ext4_ext_get_access(handle, inode,
1985						  path + depth);
1986			if (err)
1987				return err;
1988			unwritten = ext4_ext_is_unwritten(ex);
1989			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1990					+ ext4_ext_get_actual_len(newext));
1991			if (unwritten)
1992				ext4_ext_mark_unwritten(ex);
1993			eh = path[depth].p_hdr;
1994			nearex = ex;
1995			goto merge;
1996		}
1997
1998prepend:
1999		/* Try to prepend newex to the ex */
2000		if (ext4_can_extents_be_merged(inode, newext, ex)) {
2001			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2002				  "(from %llu)\n",
2003				  le32_to_cpu(newext->ee_block),
2004				  ext4_ext_is_unwritten(newext),
2005				  ext4_ext_get_actual_len(newext),
2006				  le32_to_cpu(ex->ee_block),
2007				  ext4_ext_is_unwritten(ex),
2008				  ext4_ext_get_actual_len(ex),
2009				  ext4_ext_pblock(ex));
2010			err = ext4_ext_get_access(handle, inode,
2011						  path + depth);
2012			if (err)
2013				return err;
2014
2015			unwritten = ext4_ext_is_unwritten(ex);
2016			ex->ee_block = newext->ee_block;
2017			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2018			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2019					+ ext4_ext_get_actual_len(newext));
2020			if (unwritten)
2021				ext4_ext_mark_unwritten(ex);
2022			eh = path[depth].p_hdr;
2023			nearex = ex;
2024			goto merge;
2025		}
2026	}
2027
2028	depth = ext_depth(inode);
2029	eh = path[depth].p_hdr;
2030	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2031		goto has_space;
2032
2033	/* probably next leaf has space for us? */
2034	fex = EXT_LAST_EXTENT(eh);
2035	next = EXT_MAX_BLOCKS;
2036	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2037		next = ext4_ext_next_leaf_block(path);
2038	if (next != EXT_MAX_BLOCKS) {
2039		ext_debug("next leaf block - %u\n", next);
2040		BUG_ON(npath != NULL);
2041		npath = ext4_find_extent(inode, next, NULL, 0);
2042		if (IS_ERR(npath))
2043			return PTR_ERR(npath);
2044		BUG_ON(npath->p_depth != path->p_depth);
2045		eh = npath[depth].p_hdr;
2046		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2047			ext_debug("next leaf isn't full(%d)\n",
2048				  le16_to_cpu(eh->eh_entries));
2049			path = npath;
2050			goto has_space;
2051		}
2052		ext_debug("next leaf has no free space(%d,%d)\n",
2053			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2054	}
2055
2056	/*
2057	 * There is no free space in the found leaf.
2058	 * We're gonna add a new leaf in the tree.
2059	 */
2060	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2061		mb_flags |= EXT4_MB_USE_RESERVED;
2062	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2063				       ppath, newext);
2064	if (err)
2065		goto cleanup;
2066	depth = ext_depth(inode);
2067	eh = path[depth].p_hdr;
2068
2069has_space:
2070	nearex = path[depth].p_ext;
2071
2072	err = ext4_ext_get_access(handle, inode, path + depth);
2073	if (err)
2074		goto cleanup;
2075
2076	if (!nearex) {
2077		/* there is no extent in this leaf, create first one */
2078		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2079				le32_to_cpu(newext->ee_block),
2080				ext4_ext_pblock(newext),
2081				ext4_ext_is_unwritten(newext),
2082				ext4_ext_get_actual_len(newext));
2083		nearex = EXT_FIRST_EXTENT(eh);
2084	} else {
2085		if (le32_to_cpu(newext->ee_block)
2086			   > le32_to_cpu(nearex->ee_block)) {
2087			/* Insert after */
2088			ext_debug("insert %u:%llu:[%d]%d before: "
2089					"nearest %p\n",
2090					le32_to_cpu(newext->ee_block),
2091					ext4_ext_pblock(newext),
2092					ext4_ext_is_unwritten(newext),
2093					ext4_ext_get_actual_len(newext),
2094					nearex);
2095			nearex++;
2096		} else {
2097			/* Insert before */
2098			BUG_ON(newext->ee_block == nearex->ee_block);
2099			ext_debug("insert %u:%llu:[%d]%d after: "
2100					"nearest %p\n",
2101					le32_to_cpu(newext->ee_block),
2102					ext4_ext_pblock(newext),
2103					ext4_ext_is_unwritten(newext),
2104					ext4_ext_get_actual_len(newext),
2105					nearex);
2106		}
2107		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2108		if (len > 0) {
2109			ext_debug("insert %u:%llu:[%d]%d: "
2110					"move %d extents from 0x%p to 0x%p\n",
2111					le32_to_cpu(newext->ee_block),
2112					ext4_ext_pblock(newext),
2113					ext4_ext_is_unwritten(newext),
2114					ext4_ext_get_actual_len(newext),
2115					len, nearex, nearex + 1);
2116			memmove(nearex + 1, nearex,
2117				len * sizeof(struct ext4_extent));
2118		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119	}
2120
2121	le16_add_cpu(&eh->eh_entries, 1);
2122	path[depth].p_ext = nearex;
2123	nearex->ee_block = newext->ee_block;
2124	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2125	nearex->ee_len = newext->ee_len;
2126
2127merge:
2128	/* try to merge extents */
2129	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2130		ext4_ext_try_to_merge(handle, inode, path, nearex);
2131
 
2132
2133	/* time to correct all indexes above */
2134	err = ext4_ext_correct_indexes(handle, inode, path);
2135	if (err)
2136		goto cleanup;
2137
2138	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2139
2140cleanup:
2141	ext4_ext_drop_refs(npath);
2142	kfree(npath);
 
 
 
2143	return err;
2144}
2145
2146static int ext4_fill_fiemap_extents(struct inode *inode,
2147				    ext4_lblk_t block, ext4_lblk_t num,
2148				    struct fiemap_extent_info *fieinfo)
2149{
2150	struct ext4_ext_path *path = NULL;
 
2151	struct ext4_extent *ex;
2152	struct extent_status es;
2153	ext4_lblk_t next, next_del, start = 0, end = 0;
2154	ext4_lblk_t last = block + num;
2155	int exists, depth = 0, err = 0;
2156	unsigned int flags = 0;
2157	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
 
2158
2159	while (block < last && block != EXT_MAX_BLOCKS) {
2160		num = last - block;
2161		/* find extent for this block */
2162		down_read(&EXT4_I(inode)->i_data_sem);
2163
2164		path = ext4_find_extent(inode, block, &path, 0);
2165		if (IS_ERR(path)) {
2166			up_read(&EXT4_I(inode)->i_data_sem);
2167			err = PTR_ERR(path);
2168			path = NULL;
2169			break;
2170		}
2171
2172		depth = ext_depth(inode);
2173		if (unlikely(path[depth].p_hdr == NULL)) {
2174			up_read(&EXT4_I(inode)->i_data_sem);
2175			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2176			err = -EFSCORRUPTED;
2177			break;
2178		}
2179		ex = path[depth].p_ext;
2180		next = ext4_ext_next_allocated_block(path);
2181
2182		flags = 0;
2183		exists = 0;
2184		if (!ex) {
2185			/* there is no extent yet, so try to allocate
2186			 * all requested space */
2187			start = block;
2188			end = block + num;
2189		} else if (le32_to_cpu(ex->ee_block) > block) {
2190			/* need to allocate space before found extent */
2191			start = block;
2192			end = le32_to_cpu(ex->ee_block);
2193			if (block + num < end)
2194				end = block + num;
2195		} else if (block >= le32_to_cpu(ex->ee_block)
2196					+ ext4_ext_get_actual_len(ex)) {
2197			/* need to allocate space after found extent */
2198			start = block;
2199			end = block + num;
2200			if (end >= next)
2201				end = next;
2202		} else if (block >= le32_to_cpu(ex->ee_block)) {
2203			/*
2204			 * some part of requested space is covered
2205			 * by found extent
2206			 */
2207			start = block;
2208			end = le32_to_cpu(ex->ee_block)
2209				+ ext4_ext_get_actual_len(ex);
2210			if (block + num < end)
2211				end = block + num;
2212			exists = 1;
2213		} else {
2214			BUG();
2215		}
2216		BUG_ON(end <= start);
2217
2218		if (!exists) {
2219			es.es_lblk = start;
2220			es.es_len = end - start;
2221			es.es_pblk = 0;
2222		} else {
2223			es.es_lblk = le32_to_cpu(ex->ee_block);
2224			es.es_len = ext4_ext_get_actual_len(ex);
2225			es.es_pblk = ext4_ext_pblock(ex);
2226			if (ext4_ext_is_unwritten(ex))
2227				flags |= FIEMAP_EXTENT_UNWRITTEN;
2228		}
2229
2230		/*
2231		 * Find delayed extent and update es accordingly. We call
2232		 * it even in !exists case to find out whether es is the
2233		 * last existing extent or not.
2234		 */
2235		next_del = ext4_find_delayed_extent(inode, &es);
2236		if (!exists && next_del) {
2237			exists = 1;
2238			flags |= (FIEMAP_EXTENT_DELALLOC |
2239				  FIEMAP_EXTENT_UNKNOWN);
2240		}
2241		up_read(&EXT4_I(inode)->i_data_sem);
 
 
 
 
2242
2243		if (unlikely(es.es_len == 0)) {
2244			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2245			err = -EFSCORRUPTED;
 
2246			break;
2247		}
2248
2249		/*
2250		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2251		 * we need to check next == EXT_MAX_BLOCKS because it is
2252		 * possible that an extent is with unwritten and delayed
2253		 * status due to when an extent is delayed allocated and
2254		 * is allocated by fallocate status tree will track both of
2255		 * them in a extent.
2256		 *
2257		 * So we could return a unwritten and delayed extent, and
2258		 * its block is equal to 'next'.
2259		 */
2260		if (next == next_del && next == EXT_MAX_BLOCKS) {
2261			flags |= FIEMAP_EXTENT_LAST;
2262			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2263				     next != EXT_MAX_BLOCKS)) {
2264				EXT4_ERROR_INODE(inode,
2265						 "next extent == %u, next "
2266						 "delalloc extent = %u",
2267						 next, next_del);
2268				err = -EFSCORRUPTED;
2269				break;
2270			}
2271		}
2272
2273		if (exists) {
2274			err = fiemap_fill_next_extent(fieinfo,
2275				(__u64)es.es_lblk << blksize_bits,
2276				(__u64)es.es_pblk << blksize_bits,
2277				(__u64)es.es_len << blksize_bits,
2278				flags);
2279			if (err < 0)
2280				break;
2281			if (err == 1) {
2282				err = 0;
2283				break;
2284			}
2285		}
2286
2287		block = es.es_lblk + es.es_len;
 
 
2288	}
2289
2290	ext4_ext_drop_refs(path);
2291	kfree(path);
2292	return err;
2293}
2294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295/*
2296 * ext4_ext_determine_hole - determine hole around given block
2297 * @inode:	inode we lookup in
2298 * @path:	path in extent tree to @lblk
2299 * @lblk:	pointer to logical block around which we want to determine hole
2300 *
2301 * Determine hole length (and start if easily possible) around given logical
2302 * block. We don't try too hard to find the beginning of the hole but @path
2303 * actually points to extent before @lblk, we provide it.
2304 *
2305 * The function returns the length of a hole starting at @lblk. We update @lblk
2306 * to the beginning of the hole if we managed to find it.
2307 */
2308static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2309					   struct ext4_ext_path *path,
2310					   ext4_lblk_t *lblk)
2311{
2312	int depth = ext_depth(inode);
 
 
2313	struct ext4_extent *ex;
2314	ext4_lblk_t len;
2315
2316	ex = path[depth].p_ext;
2317	if (ex == NULL) {
2318		/* there is no extent yet, so gap is [0;-] */
2319		*lblk = 0;
2320		len = EXT_MAX_BLOCKS;
2321	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2322		len = le32_to_cpu(ex->ee_block) - *lblk;
2323	} else if (*lblk >= le32_to_cpu(ex->ee_block)
 
 
 
 
 
 
2324			+ ext4_ext_get_actual_len(ex)) {
2325		ext4_lblk_t next;
 
 
2326
2327		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2328		next = ext4_ext_next_allocated_block(path);
2329		BUG_ON(next == *lblk);
2330		len = next - *lblk;
 
 
 
 
2331	} else {
 
2332		BUG();
2333	}
2334	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2335}
2336
2337/*
2338 * ext4_ext_put_gap_in_cache:
2339 * calculate boundaries of the gap that the requested block fits into
2340 * and cache this gap
 
 
 
 
 
 
 
 
2341 */
2342static void
2343ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2344			  ext4_lblk_t hole_len)
2345{
2346	struct extent_status es;
 
 
 
 
 
 
 
 
2347
2348	ext4_es_find_delayed_extent_range(inode, hole_start,
2349					  hole_start + hole_len - 1, &es);
2350	if (es.es_len) {
2351		/* There's delayed extent containing lblock? */
2352		if (es.es_lblk <= hole_start)
2353			return;
2354		hole_len = min(es.es_lblk - hole_start, hole_len);
2355	}
2356	ext_debug(" -> %u:%u\n", hole_start, hole_len);
2357	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2358			      EXTENT_STATUS_HOLE);
2359}
2360
 
2361/*
2362 * ext4_ext_rm_idx:
2363 * removes index from the index block.
2364 */
2365static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2366			struct ext4_ext_path *path, int depth)
2367{
2368	int err;
2369	ext4_fsblk_t leaf;
2370
2371	/* free index block */
2372	depth--;
2373	path = path + depth;
2374	leaf = ext4_idx_pblock(path->p_idx);
2375	if (unlikely(path->p_hdr->eh_entries == 0)) {
2376		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2377		return -EFSCORRUPTED;
2378	}
2379	err = ext4_ext_get_access(handle, inode, path);
2380	if (err)
2381		return err;
2382
2383	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2384		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2385		len *= sizeof(struct ext4_extent_idx);
2386		memmove(path->p_idx, path->p_idx + 1, len);
2387	}
2388
2389	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2390	err = ext4_ext_dirty(handle, inode, path);
2391	if (err)
2392		return err;
2393	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2394	trace_ext4_ext_rm_idx(inode, leaf);
2395
2396	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2397			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2398
2399	while (--depth >= 0) {
2400		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2401			break;
2402		path--;
2403		err = ext4_ext_get_access(handle, inode, path);
2404		if (err)
2405			break;
2406		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2407		err = ext4_ext_dirty(handle, inode, path);
2408		if (err)
2409			break;
2410	}
2411	return err;
2412}
2413
2414/*
2415 * ext4_ext_calc_credits_for_single_extent:
2416 * This routine returns max. credits that needed to insert an extent
2417 * to the extent tree.
2418 * When pass the actual path, the caller should calculate credits
2419 * under i_data_sem.
2420 */
2421int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2422						struct ext4_ext_path *path)
2423{
2424	if (path) {
2425		int depth = ext_depth(inode);
2426		int ret = 0;
2427
2428		/* probably there is space in leaf? */
2429		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2430				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2431
2432			/*
2433			 *  There are some space in the leaf tree, no
2434			 *  need to account for leaf block credit
2435			 *
2436			 *  bitmaps and block group descriptor blocks
2437			 *  and other metadata blocks still need to be
2438			 *  accounted.
2439			 */
2440			/* 1 bitmap, 1 block group descriptor */
2441			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2442			return ret;
2443		}
2444	}
2445
2446	return ext4_chunk_trans_blocks(inode, nrblocks);
2447}
2448
2449/*
2450 * How many index/leaf blocks need to change/allocate to add @extents extents?
2451 *
2452 * If we add a single extent, then in the worse case, each tree level
2453 * index/leaf need to be changed in case of the tree split.
 
 
2454 *
2455 * If more extents are inserted, they could cause the whole tree split more
2456 * than once, but this is really rare.
2457 */
2458int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2459{
2460	int index;
2461	int depth;
2462
2463	/* If we are converting the inline data, only one is needed here. */
2464	if (ext4_has_inline_data(inode))
2465		return 1;
2466
2467	depth = ext_depth(inode);
2468
2469	if (extents <= 1)
2470		index = depth * 2;
2471	else
2472		index = depth * 3;
2473
2474	return index;
2475}
2476
2477static inline int get_default_free_blocks_flags(struct inode *inode)
 
 
2478{
2479	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2480	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2481		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2482	else if (ext4_should_journal_data(inode))
2483		return EXT4_FREE_BLOCKS_FORGET;
2484	return 0;
2485}
2486
2487static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2488			      struct ext4_extent *ex,
2489			      long long *partial_cluster,
2490			      ext4_lblk_t from, ext4_lblk_t to)
2491{
2492	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2493	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2494	ext4_fsblk_t pblk;
2495	int flags = get_default_free_blocks_flags(inode);
2496
2497	/*
2498	 * For bigalloc file systems, we never free a partial cluster
2499	 * at the beginning of the extent.  Instead, we make a note
2500	 * that we tried freeing the cluster, and check to see if we
2501	 * need to free it on a subsequent call to ext4_remove_blocks,
2502	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2503	 */
2504	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2505
2506	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2507	/*
2508	 * If we have a partial cluster, and it's different from the
2509	 * cluster of the last block, we need to explicitly free the
2510	 * partial cluster here.
2511	 */
2512	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2513	if (*partial_cluster > 0 &&
2514	    *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2515		ext4_free_blocks(handle, inode, NULL,
2516				 EXT4_C2B(sbi, *partial_cluster),
2517				 sbi->s_cluster_ratio, flags);
2518		*partial_cluster = 0;
2519	}
2520
 
 
2521#ifdef EXTENTS_STATS
2522	{
2523		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2524		spin_lock(&sbi->s_ext_stats_lock);
2525		sbi->s_ext_blocks += ee_len;
2526		sbi->s_ext_extents++;
2527		if (ee_len < sbi->s_ext_min)
2528			sbi->s_ext_min = ee_len;
2529		if (ee_len > sbi->s_ext_max)
2530			sbi->s_ext_max = ee_len;
2531		if (ext_depth(inode) > sbi->s_depth_max)
2532			sbi->s_depth_max = ext_depth(inode);
2533		spin_unlock(&sbi->s_ext_stats_lock);
2534	}
2535#endif
2536	if (from >= le32_to_cpu(ex->ee_block)
2537	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2538		/* tail removal */
2539		ext4_lblk_t num;
2540		long long first_cluster;
2541
2542		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2543		pblk = ext4_ext_pblock(ex) + ee_len - num;
2544		/*
2545		 * Usually we want to free partial cluster at the end of the
2546		 * extent, except for the situation when the cluster is still
2547		 * used by any other extent (partial_cluster is negative).
2548		 */
2549		if (*partial_cluster < 0 &&
2550		    *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2551			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2552
2553		ext_debug("free last %u blocks starting %llu partial %lld\n",
2554			  num, pblk, *partial_cluster);
2555		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2556		/*
2557		 * If the block range to be freed didn't start at the
2558		 * beginning of a cluster, and we removed the entire
2559		 * extent and the cluster is not used by any other extent,
2560		 * save the partial cluster here, since we might need to
2561		 * delete if we determine that the truncate or punch hole
2562		 * operation has removed all of the blocks in the cluster.
2563		 * If that cluster is used by another extent, preserve its
2564		 * negative value so it isn't freed later on.
2565		 *
2566		 * If the whole extent wasn't freed, we've reached the
2567		 * start of the truncated/punched region and have finished
2568		 * removing blocks.  If there's a partial cluster here it's
2569		 * shared with the remainder of the extent and is no longer
2570		 * a candidate for removal.
2571		 */
2572		if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2573			first_cluster = (long long) EXT4_B2C(sbi, pblk);
2574			if (first_cluster != -*partial_cluster)
2575				*partial_cluster = first_cluster;
2576		} else {
2577			*partial_cluster = 0;
2578		}
2579	} else
2580		ext4_error(sbi->s_sb, "strange request: removal(2) "
2581			   "%u-%u from %u:%u",
2582			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2583	return 0;
2584}
2585
2586
2587/*
2588 * ext4_ext_rm_leaf() Removes the extents associated with the
2589 * blocks appearing between "start" and "end".  Both "start"
2590 * and "end" must appear in the same extent or EIO is returned.
2591 *
2592 * @handle: The journal handle
2593 * @inode:  The files inode
2594 * @path:   The path to the leaf
2595 * @partial_cluster: The cluster which we'll have to free if all extents
2596 *                   has been released from it.  However, if this value is
2597 *                   negative, it's a cluster just to the right of the
2598 *                   punched region and it must not be freed.
2599 * @start:  The first block to remove
2600 * @end:   The last block to remove
2601 */
2602static int
2603ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2604		 struct ext4_ext_path *path,
2605		 long long *partial_cluster,
2606		 ext4_lblk_t start, ext4_lblk_t end)
2607{
2608	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2609	int err = 0, correct_index = 0;
2610	int depth = ext_depth(inode), credits;
2611	struct ext4_extent_header *eh;
2612	ext4_lblk_t a, b;
2613	unsigned num;
2614	ext4_lblk_t ex_ee_block;
2615	unsigned short ex_ee_len;
2616	unsigned unwritten = 0;
2617	struct ext4_extent *ex;
2618	ext4_fsblk_t pblk;
2619
2620	/* the header must be checked already in ext4_ext_remove_space() */
2621	ext_debug("truncate since %u in leaf to %u\n", start, end);
2622	if (!path[depth].p_hdr)
2623		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2624	eh = path[depth].p_hdr;
2625	if (unlikely(path[depth].p_hdr == NULL)) {
2626		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2627		return -EFSCORRUPTED;
2628	}
2629	/* find where to start removing */
2630	ex = path[depth].p_ext;
2631	if (!ex)
2632		ex = EXT_LAST_EXTENT(eh);
2633
2634	ex_ee_block = le32_to_cpu(ex->ee_block);
2635	ex_ee_len = ext4_ext_get_actual_len(ex);
2636
2637	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2638
2639	while (ex >= EXT_FIRST_EXTENT(eh) &&
2640			ex_ee_block + ex_ee_len > start) {
2641
2642		if (ext4_ext_is_unwritten(ex))
2643			unwritten = 1;
2644		else
2645			unwritten = 0;
2646
2647		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2648			  unwritten, ex_ee_len);
2649		path[depth].p_ext = ex;
2650
2651		a = ex_ee_block > start ? ex_ee_block : start;
2652		b = ex_ee_block+ex_ee_len - 1 < end ?
2653			ex_ee_block+ex_ee_len - 1 : end;
2654
2655		ext_debug("  border %u:%u\n", a, b);
2656
2657		/* If this extent is beyond the end of the hole, skip it */
2658		if (end < ex_ee_block) {
2659			/*
2660			 * We're going to skip this extent and move to another,
2661			 * so note that its first cluster is in use to avoid
2662			 * freeing it when removing blocks.  Eventually, the
2663			 * right edge of the truncated/punched region will
2664			 * be just to the left.
2665			 */
2666			if (sbi->s_cluster_ratio > 1) {
2667				pblk = ext4_ext_pblock(ex);
2668				*partial_cluster =
2669					-(long long) EXT4_B2C(sbi, pblk);
2670			}
2671			ex--;
2672			ex_ee_block = le32_to_cpu(ex->ee_block);
2673			ex_ee_len = ext4_ext_get_actual_len(ex);
2674			continue;
2675		} else if (b != ex_ee_block + ex_ee_len - 1) {
2676			EXT4_ERROR_INODE(inode,
2677					 "can not handle truncate %u:%u "
2678					 "on extent %u:%u",
2679					 start, end, ex_ee_block,
2680					 ex_ee_block + ex_ee_len - 1);
2681			err = -EFSCORRUPTED;
2682			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683		} else if (a != ex_ee_block) {
2684			/* remove tail of the extent */
2685			num = a - ex_ee_block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686		} else {
2687			/* remove whole extent: excellent! */
 
2688			num = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2689		}
 
2690		/*
2691		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2692		 * descriptor) for each block group; assume two block
2693		 * groups plus ex_ee_len/blocks_per_block_group for
2694		 * the worst case
2695		 */
2696		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2697		if (ex == EXT_FIRST_EXTENT(eh)) {
2698			correct_index = 1;
2699			credits += (ext_depth(inode)) + 1;
2700		}
2701		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2702
2703		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2704		if (err)
2705			goto out;
2706
2707		err = ext4_ext_get_access(handle, inode, path + depth);
2708		if (err)
2709			goto out;
2710
2711		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2712					 a, b);
2713		if (err)
2714			goto out;
2715
2716		if (num == 0)
2717			/* this extent is removed; mark slot entirely unused */
2718			ext4_ext_store_pblock(ex, 0);
 
 
 
 
 
 
 
 
2719
 
2720		ex->ee_len = cpu_to_le16(num);
2721		/*
2722		 * Do not mark unwritten if all the blocks in the
2723		 * extent have been removed.
2724		 */
2725		if (unwritten && num)
2726			ext4_ext_mark_unwritten(ex);
 
 
 
 
 
2727		/*
2728		 * If the extent was completely released,
2729		 * we need to remove it from the leaf
2730		 */
2731		if (num == 0) {
2732			if (end != EXT_MAX_BLOCKS - 1) {
2733				/*
2734				 * For hole punching, we need to scoot all the
2735				 * extents up when an extent is removed so that
2736				 * we dont have blank extents in the middle
2737				 */
2738				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2739					sizeof(struct ext4_extent));
2740
2741				/* Now get rid of the one at the end */
2742				memset(EXT_LAST_EXTENT(eh), 0,
2743					sizeof(struct ext4_extent));
2744			}
2745			le16_add_cpu(&eh->eh_entries, -1);
2746		}
2747
2748		err = ext4_ext_dirty(handle, inode, path + depth);
2749		if (err)
2750			goto out;
2751
2752		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2753				ext4_ext_pblock(ex));
2754		ex--;
2755		ex_ee_block = le32_to_cpu(ex->ee_block);
2756		ex_ee_len = ext4_ext_get_actual_len(ex);
2757	}
2758
2759	if (correct_index && eh->eh_entries)
2760		err = ext4_ext_correct_indexes(handle, inode, path);
2761
2762	/*
2763	 * If there's a partial cluster and at least one extent remains in
2764	 * the leaf, free the partial cluster if it isn't shared with the
2765	 * current extent.  If it is shared with the current extent
2766	 * we zero partial_cluster because we've reached the start of the
2767	 * truncated/punched region and we're done removing blocks.
2768	 */
2769	if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2770		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2771		if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2772			ext4_free_blocks(handle, inode, NULL,
2773					 EXT4_C2B(sbi, *partial_cluster),
2774					 sbi->s_cluster_ratio,
2775					 get_default_free_blocks_flags(inode));
2776		}
2777		*partial_cluster = 0;
2778	}
2779
2780	/* if this leaf is free, then we should
2781	 * remove it from index block above */
2782	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2783		err = ext4_ext_rm_idx(handle, inode, path, depth);
2784
2785out:
2786	return err;
2787}
2788
2789/*
2790 * ext4_ext_more_to_rm:
2791 * returns 1 if current index has to be freed (even partial)
2792 */
2793static int
2794ext4_ext_more_to_rm(struct ext4_ext_path *path)
2795{
2796	BUG_ON(path->p_idx == NULL);
2797
2798	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2799		return 0;
2800
2801	/*
2802	 * if truncate on deeper level happened, it wasn't partial,
2803	 * so we have to consider current index for truncation
2804	 */
2805	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2806		return 0;
2807	return 1;
2808}
2809
2810int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2811			  ext4_lblk_t end)
2812{
2813	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2814	int depth = ext_depth(inode);
2815	struct ext4_ext_path *path = NULL;
2816	long long partial_cluster = 0;
2817	handle_t *handle;
2818	int i = 0, err = 0;
2819
2820	ext_debug("truncate since %u to %u\n", start, end);
2821
2822	/* probably first extent we're gonna free will be last in block */
2823	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2824	if (IS_ERR(handle))
2825		return PTR_ERR(handle);
2826
2827again:
2828	trace_ext4_ext_remove_space(inode, start, end, depth);
2829
2830	/*
2831	 * Check if we are removing extents inside the extent tree. If that
2832	 * is the case, we are going to punch a hole inside the extent tree
2833	 * so we have to check whether we need to split the extent covering
2834	 * the last block to remove so we can easily remove the part of it
2835	 * in ext4_ext_rm_leaf().
2836	 */
2837	if (end < EXT_MAX_BLOCKS - 1) {
2838		struct ext4_extent *ex;
2839		ext4_lblk_t ee_block, ex_end, lblk;
2840		ext4_fsblk_t pblk;
2841
2842		/* find extent for or closest extent to this block */
2843		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2844		if (IS_ERR(path)) {
2845			ext4_journal_stop(handle);
2846			return PTR_ERR(path);
2847		}
2848		depth = ext_depth(inode);
2849		/* Leaf not may not exist only if inode has no blocks at all */
2850		ex = path[depth].p_ext;
2851		if (!ex) {
2852			if (depth) {
2853				EXT4_ERROR_INODE(inode,
2854						 "path[%d].p_hdr == NULL",
2855						 depth);
2856				err = -EFSCORRUPTED;
2857			}
2858			goto out;
2859		}
2860
2861		ee_block = le32_to_cpu(ex->ee_block);
2862		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2863
2864		/*
2865		 * See if the last block is inside the extent, if so split
2866		 * the extent at 'end' block so we can easily remove the
2867		 * tail of the first part of the split extent in
2868		 * ext4_ext_rm_leaf().
2869		 */
2870		if (end >= ee_block && end < ex_end) {
2871
2872			/*
2873			 * If we're going to split the extent, note that
2874			 * the cluster containing the block after 'end' is
2875			 * in use to avoid freeing it when removing blocks.
2876			 */
2877			if (sbi->s_cluster_ratio > 1) {
2878				pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2879				partial_cluster =
2880					-(long long) EXT4_B2C(sbi, pblk);
2881			}
2882
2883			/*
2884			 * Split the extent in two so that 'end' is the last
2885			 * block in the first new extent. Also we should not
2886			 * fail removing space due to ENOSPC so try to use
2887			 * reserved block if that happens.
2888			 */
2889			err = ext4_force_split_extent_at(handle, inode, &path,
2890							 end + 1, 1);
2891			if (err < 0)
2892				goto out;
2893
2894		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2895			/*
2896			 * If there's an extent to the right its first cluster
2897			 * contains the immediate right boundary of the
2898			 * truncated/punched region.  Set partial_cluster to
2899			 * its negative value so it won't be freed if shared
2900			 * with the current extent.  The end < ee_block case
2901			 * is handled in ext4_ext_rm_leaf().
2902			 */
2903			lblk = ex_end + 1;
2904			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2905						    &ex);
2906			if (err)
2907				goto out;
2908			if (pblk)
2909				partial_cluster =
2910					-(long long) EXT4_B2C(sbi, pblk);
2911		}
2912	}
2913	/*
2914	 * We start scanning from right side, freeing all the blocks
2915	 * after i_size and walking into the tree depth-wise.
2916	 */
2917	depth = ext_depth(inode);
2918	if (path) {
2919		int k = i = depth;
2920		while (--k > 0)
2921			path[k].p_block =
2922				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2923	} else {
2924		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2925			       GFP_NOFS);
2926		if (path == NULL) {
2927			ext4_journal_stop(handle);
2928			return -ENOMEM;
2929		}
2930		path[0].p_maxdepth = path[0].p_depth = depth;
2931		path[0].p_hdr = ext_inode_hdr(inode);
2932		i = 0;
2933
2934		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2935			err = -EFSCORRUPTED;
2936			goto out;
2937		}
2938	}
2939	err = 0;
2940
2941	while (i >= 0 && err == 0) {
2942		if (i == depth) {
2943			/* this is leaf block */
2944			err = ext4_ext_rm_leaf(handle, inode, path,
2945					       &partial_cluster, start,
2946					       end);
2947			/* root level has p_bh == NULL, brelse() eats this */
2948			brelse(path[i].p_bh);
2949			path[i].p_bh = NULL;
2950			i--;
2951			continue;
2952		}
2953
2954		/* this is index block */
2955		if (!path[i].p_hdr) {
2956			ext_debug("initialize header\n");
2957			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2958		}
2959
2960		if (!path[i].p_idx) {
2961			/* this level hasn't been touched yet */
2962			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2963			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2964			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2965				  path[i].p_hdr,
2966				  le16_to_cpu(path[i].p_hdr->eh_entries));
2967		} else {
2968			/* we were already here, see at next index */
2969			path[i].p_idx--;
2970		}
2971
2972		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2973				i, EXT_FIRST_INDEX(path[i].p_hdr),
2974				path[i].p_idx);
2975		if (ext4_ext_more_to_rm(path + i)) {
2976			struct buffer_head *bh;
2977			/* go to the next level */
2978			ext_debug("move to level %d (block %llu)\n",
2979				  i + 1, ext4_idx_pblock(path[i].p_idx));
2980			memset(path + i + 1, 0, sizeof(*path));
2981			bh = read_extent_tree_block(inode,
2982				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2983				EXT4_EX_NOCACHE);
2984			if (IS_ERR(bh)) {
2985				/* should we reset i_size? */
2986				err = PTR_ERR(bh);
2987				break;
2988			}
2989			/* Yield here to deal with large extent trees.
2990			 * Should be a no-op if we did IO above. */
2991			cond_resched();
2992			if (WARN_ON(i + 1 > depth)) {
2993				err = -EFSCORRUPTED;
 
 
 
 
 
2994				break;
2995			}
2996			path[i + 1].p_bh = bh;
2997
2998			/* save actual number of indexes since this
2999			 * number is changed at the next iteration */
3000			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3001			i++;
3002		} else {
3003			/* we finished processing this index, go up */
3004			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3005				/* index is empty, remove it;
3006				 * handle must be already prepared by the
3007				 * truncatei_leaf() */
3008				err = ext4_ext_rm_idx(handle, inode, path, i);
3009			}
3010			/* root level has p_bh == NULL, brelse() eats this */
3011			brelse(path[i].p_bh);
3012			path[i].p_bh = NULL;
3013			i--;
3014			ext_debug("return to level %d\n", i);
3015		}
3016	}
3017
3018	trace_ext4_ext_remove_space_done(inode, start, end, depth,
3019			partial_cluster, path->p_hdr->eh_entries);
3020
3021	/*
3022	 * If we still have something in the partial cluster and we have removed
3023	 * even the first extent, then we should free the blocks in the partial
3024	 * cluster as well.  (This code will only run when there are no leaves
3025	 * to the immediate left of the truncated/punched region.)
3026	 */
3027	if (partial_cluster > 0 && err == 0) {
3028		/* don't zero partial_cluster since it's not used afterwards */
3029		ext4_free_blocks(handle, inode, NULL,
3030				 EXT4_C2B(sbi, partial_cluster),
3031				 sbi->s_cluster_ratio,
3032				 get_default_free_blocks_flags(inode));
3033	}
3034
3035	/* TODO: flexible tree reduction should be here */
3036	if (path->p_hdr->eh_entries == 0) {
3037		/*
3038		 * truncate to zero freed all the tree,
3039		 * so we need to correct eh_depth
3040		 */
3041		err = ext4_ext_get_access(handle, inode, path);
3042		if (err == 0) {
3043			ext_inode_hdr(inode)->eh_depth = 0;
3044			ext_inode_hdr(inode)->eh_max =
3045				cpu_to_le16(ext4_ext_space_root(inode, 0));
3046			err = ext4_ext_dirty(handle, inode, path);
3047		}
3048	}
3049out:
3050	ext4_ext_drop_refs(path);
3051	kfree(path);
3052	path = NULL;
3053	if (err == -EAGAIN)
3054		goto again;
3055	ext4_journal_stop(handle);
3056
3057	return err;
3058}
3059
3060/*
3061 * called at mount time
3062 */
3063void ext4_ext_init(struct super_block *sb)
3064{
3065	/*
3066	 * possible initialization would be here
3067	 */
3068
3069	if (ext4_has_feature_extents(sb)) {
3070#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3071		printk(KERN_INFO "EXT4-fs: file extents enabled"
3072#ifdef AGGRESSIVE_TEST
3073		       ", aggressive tests"
3074#endif
3075#ifdef CHECK_BINSEARCH
3076		       ", check binsearch"
3077#endif
3078#ifdef EXTENTS_STATS
3079		       ", stats"
3080#endif
3081		       "\n");
3082#endif
3083#ifdef EXTENTS_STATS
3084		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3085		EXT4_SB(sb)->s_ext_min = 1 << 30;
3086		EXT4_SB(sb)->s_ext_max = 0;
3087#endif
3088	}
3089}
3090
3091/*
3092 * called at umount time
3093 */
3094void ext4_ext_release(struct super_block *sb)
3095{
3096	if (!ext4_has_feature_extents(sb))
3097		return;
3098
3099#ifdef EXTENTS_STATS
3100	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3101		struct ext4_sb_info *sbi = EXT4_SB(sb);
3102		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3103			sbi->s_ext_blocks, sbi->s_ext_extents,
3104			sbi->s_ext_blocks / sbi->s_ext_extents);
3105		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3106			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3107	}
3108#endif
3109}
3110
3111static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
 
3112{
3113	ext4_lblk_t  ee_block;
3114	ext4_fsblk_t ee_pblock;
3115	unsigned int ee_len;
 
3116
3117	ee_block  = le32_to_cpu(ex->ee_block);
3118	ee_len    = ext4_ext_get_actual_len(ex);
3119	ee_pblock = ext4_ext_pblock(ex);
3120
3121	if (ee_len == 0)
3122		return 0;
 
3123
3124	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3125				     EXTENT_STATUS_WRITTEN);
3126}
3127
3128/* FIXME!! we need to try to merge to left or right after zero-out  */
3129static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3130{
3131	ext4_fsblk_t ee_pblock;
3132	unsigned int ee_len;
3133
3134	ee_len    = ext4_ext_get_actual_len(ex);
3135	ee_pblock = ext4_ext_pblock(ex);
3136	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3137				  ee_len);
3138}
3139
3140/*
3141 * ext4_split_extent_at() splits an extent at given block.
3142 *
3143 * @handle: the journal handle
3144 * @inode: the file inode
3145 * @path: the path to the extent
3146 * @split: the logical block where the extent is splitted.
3147 * @split_flags: indicates if the extent could be zeroout if split fails, and
3148 *		 the states(init or unwritten) of new extents.
3149 * @flags: flags used to insert new extent to extent tree.
3150 *
3151 *
3152 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3153 * of which are deterimined by split_flag.
3154 *
3155 * There are two cases:
3156 *  a> the extent are splitted into two extent.
3157 *  b> split is not needed, and just mark the extent.
3158 *
3159 * return 0 on success.
3160 */
3161static int ext4_split_extent_at(handle_t *handle,
3162			     struct inode *inode,
3163			     struct ext4_ext_path **ppath,
3164			     ext4_lblk_t split,
3165			     int split_flag,
3166			     int flags)
3167{
3168	struct ext4_ext_path *path = *ppath;
3169	ext4_fsblk_t newblock;
3170	ext4_lblk_t ee_block;
3171	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3172	struct ext4_extent *ex2 = NULL;
3173	unsigned int ee_len, depth;
3174	int err = 0;
3175
3176	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3177	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3178
3179	ext_debug("ext4_split_extents_at: inode %lu, logical"
3180		"block %llu\n", inode->i_ino, (unsigned long long)split);
3181
3182	ext4_ext_show_leaf(inode, path);
3183
3184	depth = ext_depth(inode);
3185	ex = path[depth].p_ext;
3186	ee_block = le32_to_cpu(ex->ee_block);
3187	ee_len = ext4_ext_get_actual_len(ex);
3188	newblock = split - ee_block + ext4_ext_pblock(ex);
3189
3190	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3191	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3192	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3193			     EXT4_EXT_MARK_UNWRIT1 |
3194			     EXT4_EXT_MARK_UNWRIT2));
3195
3196	err = ext4_ext_get_access(handle, inode, path + depth);
3197	if (err)
3198		goto out;
3199
3200	if (split == ee_block) {
3201		/*
3202		 * case b: block @split is the block that the extent begins with
3203		 * then we just change the state of the extent, and splitting
3204		 * is not needed.
3205		 */
3206		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3207			ext4_ext_mark_unwritten(ex);
3208		else
3209			ext4_ext_mark_initialized(ex);
3210
3211		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3212			ext4_ext_try_to_merge(handle, inode, path, ex);
3213
3214		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3215		goto out;
3216	}
3217
3218	/* case a */
3219	memcpy(&orig_ex, ex, sizeof(orig_ex));
3220	ex->ee_len = cpu_to_le16(split - ee_block);
3221	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3222		ext4_ext_mark_unwritten(ex);
3223
3224	/*
3225	 * path may lead to new leaf, not to original leaf any more
3226	 * after ext4_ext_insert_extent() returns,
3227	 */
3228	err = ext4_ext_dirty(handle, inode, path + depth);
3229	if (err)
3230		goto fix_extent_len;
3231
3232	ex2 = &newex;
3233	ex2->ee_block = cpu_to_le32(split);
3234	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3235	ext4_ext_store_pblock(ex2, newblock);
3236	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3237		ext4_ext_mark_unwritten(ex2);
3238
3239	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3240	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3241		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3242			if (split_flag & EXT4_EXT_DATA_VALID1) {
3243				err = ext4_ext_zeroout(inode, ex2);
3244				zero_ex.ee_block = ex2->ee_block;
3245				zero_ex.ee_len = cpu_to_le16(
3246						ext4_ext_get_actual_len(ex2));
3247				ext4_ext_store_pblock(&zero_ex,
3248						      ext4_ext_pblock(ex2));
3249			} else {
3250				err = ext4_ext_zeroout(inode, ex);
3251				zero_ex.ee_block = ex->ee_block;
3252				zero_ex.ee_len = cpu_to_le16(
3253						ext4_ext_get_actual_len(ex));
3254				ext4_ext_store_pblock(&zero_ex,
3255						      ext4_ext_pblock(ex));
3256			}
3257		} else {
3258			err = ext4_ext_zeroout(inode, &orig_ex);
3259			zero_ex.ee_block = orig_ex.ee_block;
3260			zero_ex.ee_len = cpu_to_le16(
3261						ext4_ext_get_actual_len(&orig_ex));
3262			ext4_ext_store_pblock(&zero_ex,
3263					      ext4_ext_pblock(&orig_ex));
3264		}
3265
3266		if (err)
3267			goto fix_extent_len;
3268		/* update the extent length and mark as initialized */
3269		ex->ee_len = cpu_to_le16(ee_len);
3270		ext4_ext_try_to_merge(handle, inode, path, ex);
3271		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3272		if (err)
3273			goto fix_extent_len;
3274
3275		/* update extent status tree */
3276		err = ext4_zeroout_es(inode, &zero_ex);
3277
3278		goto out;
3279	} else if (err)
3280		goto fix_extent_len;
3281
3282out:
3283	ext4_ext_show_leaf(inode, path);
3284	return err;
3285
3286fix_extent_len:
3287	ex->ee_len = orig_ex.ee_len;
3288	ext4_ext_dirty(handle, inode, path + path->p_depth);
3289	return err;
3290}
3291
3292/*
3293 * ext4_split_extents() splits an extent and mark extent which is covered
3294 * by @map as split_flags indicates
3295 *
3296 * It may result in splitting the extent into multiple extents (up to three)
3297 * There are three possibilities:
3298 *   a> There is no split required
3299 *   b> Splits in two extents: Split is happening at either end of the extent
3300 *   c> Splits in three extents: Somone is splitting in middle of the extent
3301 *
3302 */
3303static int ext4_split_extent(handle_t *handle,
3304			      struct inode *inode,
3305			      struct ext4_ext_path **ppath,
3306			      struct ext4_map_blocks *map,
3307			      int split_flag,
3308			      int flags)
3309{
3310	struct ext4_ext_path *path = *ppath;
3311	ext4_lblk_t ee_block;
3312	struct ext4_extent *ex;
3313	unsigned int ee_len, depth;
3314	int err = 0;
3315	int unwritten;
3316	int split_flag1, flags1;
3317	int allocated = map->m_len;
3318
3319	depth = ext_depth(inode);
3320	ex = path[depth].p_ext;
3321	ee_block = le32_to_cpu(ex->ee_block);
3322	ee_len = ext4_ext_get_actual_len(ex);
3323	unwritten = ext4_ext_is_unwritten(ex);
3324
3325	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3326		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
 
3327		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3328		if (unwritten)
3329			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3330				       EXT4_EXT_MARK_UNWRIT2;
3331		if (split_flag & EXT4_EXT_DATA_VALID2)
3332			split_flag1 |= EXT4_EXT_DATA_VALID1;
3333		err = ext4_split_extent_at(handle, inode, ppath,
3334				map->m_lblk + map->m_len, split_flag1, flags1);
3335		if (err)
3336			goto out;
3337	} else {
3338		allocated = ee_len - (map->m_lblk - ee_block);
3339	}
3340	/*
3341	 * Update path is required because previous ext4_split_extent_at() may
3342	 * result in split of original leaf or extent zeroout.
3343	 */
3344	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3345	if (IS_ERR(path))
3346		return PTR_ERR(path);
3347	depth = ext_depth(inode);
3348	ex = path[depth].p_ext;
3349	if (!ex) {
3350		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3351				 (unsigned long) map->m_lblk);
3352		return -EFSCORRUPTED;
3353	}
3354	unwritten = ext4_ext_is_unwritten(ex);
3355	split_flag1 = 0;
3356
3357	if (map->m_lblk >= ee_block) {
3358		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3359		if (unwritten) {
3360			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3361			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3362						     EXT4_EXT_MARK_UNWRIT2);
3363		}
3364		err = ext4_split_extent_at(handle, inode, ppath,
3365				map->m_lblk, split_flag1, flags);
3366		if (err)
3367			goto out;
3368	}
3369
3370	ext4_ext_show_leaf(inode, path);
3371out:
3372	return err ? err : allocated;
3373}
3374
 
3375/*
3376 * This function is called by ext4_ext_map_blocks() if someone tries to write
3377 * to an unwritten extent. It may result in splitting the unwritten
3378 * extent into multiple extents (up to three - one initialized and two
3379 * unwritten).
3380 * There are three possibilities:
3381 *   a> There is no split required: Entire extent should be initialized
3382 *   b> Splits in two extents: Write is happening at either end of the extent
3383 *   c> Splits in three extents: Somone is writing in middle of the extent
3384 *
3385 * Pre-conditions:
3386 *  - The extent pointed to by 'path' is unwritten.
3387 *  - The extent pointed to by 'path' contains a superset
3388 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3389 *
3390 * Post-conditions on success:
3391 *  - the returned value is the number of blocks beyond map->l_lblk
3392 *    that are allocated and initialized.
3393 *    It is guaranteed to be >= map->m_len.
3394 */
3395static int ext4_ext_convert_to_initialized(handle_t *handle,
3396					   struct inode *inode,
3397					   struct ext4_map_blocks *map,
3398					   struct ext4_ext_path **ppath,
3399					   int flags)
3400{
3401	struct ext4_ext_path *path = *ppath;
3402	struct ext4_sb_info *sbi;
3403	struct ext4_extent_header *eh;
3404	struct ext4_map_blocks split_map;
3405	struct ext4_extent zero_ex1, zero_ex2;
3406	struct ext4_extent *ex, *abut_ex;
3407	ext4_lblk_t ee_block, eof_block;
3408	unsigned int ee_len, depth, map_len = map->m_len;
3409	int allocated = 0, max_zeroout = 0;
3410	int err = 0;
3411	int split_flag = EXT4_EXT_DATA_VALID2;
3412
3413	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3414		"block %llu, max_blocks %u\n", inode->i_ino,
3415		(unsigned long long)map->m_lblk, map_len);
3416
3417	sbi = EXT4_SB(inode->i_sb);
3418	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3419		inode->i_sb->s_blocksize_bits;
3420	if (eof_block < map->m_lblk + map_len)
3421		eof_block = map->m_lblk + map_len;
3422
3423	depth = ext_depth(inode);
3424	eh = path[depth].p_hdr;
3425	ex = path[depth].p_ext;
3426	ee_block = le32_to_cpu(ex->ee_block);
3427	ee_len = ext4_ext_get_actual_len(ex);
3428	zero_ex1.ee_len = 0;
3429	zero_ex2.ee_len = 0;
3430
3431	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3432
3433	/* Pre-conditions */
3434	BUG_ON(!ext4_ext_is_unwritten(ex));
3435	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3436
3437	/*
3438	 * Attempt to transfer newly initialized blocks from the currently
3439	 * unwritten extent to its neighbor. This is much cheaper
3440	 * than an insertion followed by a merge as those involve costly
3441	 * memmove() calls. Transferring to the left is the common case in
3442	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3443	 * followed by append writes.
3444	 *
3445	 * Limitations of the current logic:
3446	 *  - L1: we do not deal with writes covering the whole extent.
3447	 *    This would require removing the extent if the transfer
3448	 *    is possible.
3449	 *  - L2: we only attempt to merge with an extent stored in the
3450	 *    same extent tree node.
3451	 */
3452	if ((map->m_lblk == ee_block) &&
3453		/* See if we can merge left */
3454		(map_len < ee_len) &&		/*L1*/
3455		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3456		ext4_lblk_t prev_lblk;
3457		ext4_fsblk_t prev_pblk, ee_pblk;
3458		unsigned int prev_len;
3459
3460		abut_ex = ex - 1;
3461		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3462		prev_len = ext4_ext_get_actual_len(abut_ex);
3463		prev_pblk = ext4_ext_pblock(abut_ex);
3464		ee_pblk = ext4_ext_pblock(ex);
3465
3466		/*
3467		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3468		 * upon those conditions:
3469		 * - C1: abut_ex is initialized,
3470		 * - C2: abut_ex is logically abutting ex,
3471		 * - C3: abut_ex is physically abutting ex,
3472		 * - C4: abut_ex can receive the additional blocks without
3473		 *   overflowing the (initialized) length limit.
3474		 */
3475		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3476			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3477			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3478			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3479			err = ext4_ext_get_access(handle, inode, path + depth);
3480			if (err)
3481				goto out;
3482
3483			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3484				map, ex, abut_ex);
3485
3486			/* Shift the start of ex by 'map_len' blocks */
3487			ex->ee_block = cpu_to_le32(ee_block + map_len);
3488			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3489			ex->ee_len = cpu_to_le16(ee_len - map_len);
3490			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3491
3492			/* Extend abut_ex by 'map_len' blocks */
3493			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3494
3495			/* Result: number of initialized blocks past m_lblk */
3496			allocated = map_len;
3497		}
3498	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3499		   (map_len < ee_len) &&	/*L1*/
3500		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3501		/* See if we can merge right */
3502		ext4_lblk_t next_lblk;
3503		ext4_fsblk_t next_pblk, ee_pblk;
3504		unsigned int next_len;
3505
3506		abut_ex = ex + 1;
3507		next_lblk = le32_to_cpu(abut_ex->ee_block);
3508		next_len = ext4_ext_get_actual_len(abut_ex);
3509		next_pblk = ext4_ext_pblock(abut_ex);
3510		ee_pblk = ext4_ext_pblock(ex);
3511
3512		/*
3513		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3514		 * upon those conditions:
3515		 * - C1: abut_ex is initialized,
3516		 * - C2: abut_ex is logically abutting ex,
3517		 * - C3: abut_ex is physically abutting ex,
3518		 * - C4: abut_ex can receive the additional blocks without
3519		 *   overflowing the (initialized) length limit.
3520		 */
3521		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3522		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3523		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3524		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3525			err = ext4_ext_get_access(handle, inode, path + depth);
3526			if (err)
3527				goto out;
3528
3529			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3530				map, ex, abut_ex);
3531
3532			/* Shift the start of abut_ex by 'map_len' blocks */
3533			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3534			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3535			ex->ee_len = cpu_to_le16(ee_len - map_len);
3536			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3537
3538			/* Extend abut_ex by 'map_len' blocks */
3539			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3540
3541			/* Result: number of initialized blocks past m_lblk */
3542			allocated = map_len;
3543		}
3544	}
3545	if (allocated) {
3546		/* Mark the block containing both extents as dirty */
3547		ext4_ext_dirty(handle, inode, path + depth);
3548
3549		/* Update path to point to the right extent */
3550		path[depth].p_ext = abut_ex;
3551		goto out;
3552	} else
3553		allocated = ee_len - (map->m_lblk - ee_block);
3554
3555	WARN_ON(map->m_lblk < ee_block);
3556	/*
3557	 * It is safe to convert extent to initialized via explicit
3558	 * zeroout only if extent is fully inside i_size or new_size.
3559	 */
3560	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3561
3562	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3563		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3564			(inode->i_sb->s_blocksize_bits - 10);
 
 
 
3565
3566	if (ext4_encrypted_inode(inode))
3567		max_zeroout = 0;
 
 
 
 
 
 
3568
3569	/*
3570	 * five cases:
3571	 * 1. split the extent into three extents.
3572	 * 2. split the extent into two extents, zeroout the head of the first
3573	 *    extent.
3574	 * 3. split the extent into two extents, zeroout the tail of the second
3575	 *    extent.
3576	 * 4. split the extent into two extents with out zeroout.
3577	 * 5. no splitting needed, just possibly zeroout the head and / or the
3578	 *    tail of the extent.
3579	 */
3580	split_map.m_lblk = map->m_lblk;
3581	split_map.m_len = map->m_len;
3582
3583	if (max_zeroout && (allocated > split_map.m_len)) {
3584		if (allocated <= max_zeroout) {
3585			/* case 3 or 5 */
3586			zero_ex1.ee_block =
3587				 cpu_to_le32(split_map.m_lblk +
3588					     split_map.m_len);
3589			zero_ex1.ee_len =
3590				cpu_to_le16(allocated - split_map.m_len);
3591			ext4_ext_store_pblock(&zero_ex1,
3592				ext4_ext_pblock(ex) + split_map.m_lblk +
3593				split_map.m_len - ee_block);
3594			err = ext4_ext_zeroout(inode, &zero_ex1);
3595			if (err)
3596				goto out;
 
3597			split_map.m_len = allocated;
3598		}
3599		if (split_map.m_lblk - ee_block + split_map.m_len <
3600								max_zeroout) {
3601			/* case 2 or 5 */
3602			if (split_map.m_lblk != ee_block) {
3603				zero_ex2.ee_block = ex->ee_block;
3604				zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3605							ee_block);
3606				ext4_ext_store_pblock(&zero_ex2,
3607						      ext4_ext_pblock(ex));
3608				err = ext4_ext_zeroout(inode, &zero_ex2);
3609				if (err)
3610					goto out;
3611			}
3612
3613			split_map.m_len += split_map.m_lblk - ee_block;
3614			split_map.m_lblk = ee_block;
 
3615			allocated = map->m_len;
3616		}
3617	}
3618
3619	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3620				flags);
3621	if (err > 0)
3622		err = 0;
 
3623out:
3624	/* If we have gotten a failure, don't zero out status tree */
3625	if (!err) {
3626		err = ext4_zeroout_es(inode, &zero_ex1);
3627		if (!err)
3628			err = ext4_zeroout_es(inode, &zero_ex2);
3629	}
3630	return err ? err : allocated;
3631}
3632
3633/*
3634 * This function is called by ext4_ext_map_blocks() from
3635 * ext4_get_blocks_dio_write() when DIO to write
3636 * to an unwritten extent.
3637 *
3638 * Writing to an unwritten extent may result in splitting the unwritten
3639 * extent into multiple initialized/unwritten extents (up to three)
3640 * There are three possibilities:
3641 *   a> There is no split required: Entire extent should be unwritten
3642 *   b> Splits in two extents: Write is happening at either end of the extent
3643 *   c> Splits in three extents: Somone is writing in middle of the extent
3644 *
3645 * This works the same way in the case of initialized -> unwritten conversion.
3646 *
3647 * One of more index blocks maybe needed if the extent tree grow after
3648 * the unwritten extent split. To prevent ENOSPC occur at the IO
3649 * complete, we need to split the unwritten extent before DIO submit
3650 * the IO. The unwritten extent called at this time will be split
3651 * into three unwritten extent(at most). After IO complete, the part
3652 * being filled will be convert to initialized by the end_io callback function
3653 * via ext4_convert_unwritten_extents().
3654 *
3655 * Returns the size of unwritten extent to be written on success.
3656 */
3657static int ext4_split_convert_extents(handle_t *handle,
3658					struct inode *inode,
3659					struct ext4_map_blocks *map,
3660					struct ext4_ext_path **ppath,
3661					int flags)
3662{
3663	struct ext4_ext_path *path = *ppath;
3664	ext4_lblk_t eof_block;
3665	ext4_lblk_t ee_block;
3666	struct ext4_extent *ex;
3667	unsigned int ee_len;
3668	int split_flag = 0, depth;
3669
3670	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3671		  __func__, inode->i_ino,
3672		  (unsigned long long)map->m_lblk, map->m_len);
3673
3674	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3675		inode->i_sb->s_blocksize_bits;
3676	if (eof_block < map->m_lblk + map->m_len)
3677		eof_block = map->m_lblk + map->m_len;
3678	/*
3679	 * It is safe to convert extent to initialized via explicit
3680	 * zeroout only if extent is fully insde i_size or new_size.
3681	 */
3682	depth = ext_depth(inode);
3683	ex = path[depth].p_ext;
3684	ee_block = le32_to_cpu(ex->ee_block);
3685	ee_len = ext4_ext_get_actual_len(ex);
3686
3687	/* Convert to unwritten */
3688	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3689		split_flag |= EXT4_EXT_DATA_VALID1;
3690	/* Convert to initialized */
3691	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3692		split_flag |= ee_block + ee_len <= eof_block ?
3693			      EXT4_EXT_MAY_ZEROOUT : 0;
3694		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3695	}
3696	flags |= EXT4_GET_BLOCKS_PRE_IO;
3697	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3698}
3699
3700static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3701						struct inode *inode,
3702						struct ext4_map_blocks *map,
3703						struct ext4_ext_path **ppath)
3704{
3705	struct ext4_ext_path *path = *ppath;
3706	struct ext4_extent *ex;
3707	ext4_lblk_t ee_block;
3708	unsigned int ee_len;
3709	int depth;
3710	int err = 0;
3711
3712	depth = ext_depth(inode);
3713	ex = path[depth].p_ext;
3714	ee_block = le32_to_cpu(ex->ee_block);
3715	ee_len = ext4_ext_get_actual_len(ex);
3716
3717	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3718		"block %llu, max_blocks %u\n", inode->i_ino,
3719		  (unsigned long long)ee_block, ee_len);
3720
3721	/* If extent is larger than requested it is a clear sign that we still
3722	 * have some extent state machine issues left. So extent_split is still
3723	 * required.
3724	 * TODO: Once all related issues will be fixed this situation should be
3725	 * illegal.
3726	 */
3727	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3728#ifdef EXT4_DEBUG
3729		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3730			     " len %u; IO logical block %llu, len %u",
3731			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3732			     (unsigned long long)map->m_lblk, map->m_len);
3733#endif
3734		err = ext4_split_convert_extents(handle, inode, map, ppath,
3735						 EXT4_GET_BLOCKS_CONVERT);
3736		if (err < 0)
3737			return err;
3738		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3739		if (IS_ERR(path))
3740			return PTR_ERR(path);
3741		depth = ext_depth(inode);
3742		ex = path[depth].p_ext;
3743	}
3744
3745	err = ext4_ext_get_access(handle, inode, path + depth);
3746	if (err)
3747		goto out;
3748	/* first mark the extent as initialized */
3749	ext4_ext_mark_initialized(ex);
3750
3751	/* note: ext4_ext_correct_indexes() isn't needed here because
3752	 * borders are not changed
3753	 */
3754	ext4_ext_try_to_merge(handle, inode, path, ex);
3755
3756	/* Mark modified extent as dirty */
3757	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3758out:
3759	ext4_ext_show_leaf(inode, path);
3760	return err;
3761}
3762
 
 
 
 
 
 
 
 
3763/*
3764 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3765 */
3766static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3767			      ext4_lblk_t lblk,
3768			      struct ext4_ext_path *path,
3769			      unsigned int len)
3770{
3771	int i, depth;
3772	struct ext4_extent_header *eh;
3773	struct ext4_extent *last_ex;
3774
3775	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3776		return 0;
3777
3778	depth = ext_depth(inode);
3779	eh = path[depth].p_hdr;
3780
3781	/*
3782	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3783	 * do not care for this case anymore. Simply remove the flag
3784	 * if there are no extents.
3785	 */
3786	if (unlikely(!eh->eh_entries))
3787		goto out;
3788	last_ex = EXT_LAST_EXTENT(eh);
3789	/*
3790	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3791	 * last block in the last extent in the file.  We test this by
3792	 * first checking to see if the caller to
3793	 * ext4_ext_get_blocks() was interested in the last block (or
3794	 * a block beyond the last block) in the current extent.  If
3795	 * this turns out to be false, we can bail out from this
3796	 * function immediately.
3797	 */
3798	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3799	    ext4_ext_get_actual_len(last_ex))
3800		return 0;
3801	/*
3802	 * If the caller does appear to be planning to write at or
3803	 * beyond the end of the current extent, we then test to see
3804	 * if the current extent is the last extent in the file, by
3805	 * checking to make sure it was reached via the rightmost node
3806	 * at each level of the tree.
3807	 */
3808	for (i = depth-1; i >= 0; i--)
3809		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3810			return 0;
3811out:
3812	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3813	return ext4_mark_inode_dirty(handle, inode);
3814}
3815
3816/**
3817 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3818 *
3819 * Return 1 if there is a delalloc block in the range, otherwise 0.
3820 */
3821int ext4_find_delalloc_range(struct inode *inode,
3822			     ext4_lblk_t lblk_start,
3823			     ext4_lblk_t lblk_end)
3824{
3825	struct extent_status es;
3826
3827	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3828	if (es.es_len == 0)
3829		return 0; /* there is no delay extent in this tree */
3830	else if (es.es_lblk <= lblk_start &&
3831		 lblk_start < es.es_lblk + es.es_len)
3832		return 1;
3833	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3834		return 1;
3835	else
3836		return 0;
3837}
3838
3839int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3840{
3841	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3842	ext4_lblk_t lblk_start, lblk_end;
3843	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3844	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3845
3846	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3847}
3848
3849/**
3850 * Determines how many complete clusters (out of those specified by the 'map')
3851 * are under delalloc and were reserved quota for.
3852 * This function is called when we are writing out the blocks that were
3853 * originally written with their allocation delayed, but then the space was
3854 * allocated using fallocate() before the delayed allocation could be resolved.
3855 * The cases to look for are:
3856 * ('=' indicated delayed allocated blocks
3857 *  '-' indicates non-delayed allocated blocks)
3858 * (a) partial clusters towards beginning and/or end outside of allocated range
3859 *     are not delalloc'ed.
3860 *	Ex:
3861 *	|----c---=|====c====|====c====|===-c----|
3862 *	         |++++++ allocated ++++++|
3863 *	==> 4 complete clusters in above example
3864 *
3865 * (b) partial cluster (outside of allocated range) towards either end is
3866 *     marked for delayed allocation. In this case, we will exclude that
3867 *     cluster.
3868 *	Ex:
3869 *	|----====c========|========c========|
3870 *	     |++++++ allocated ++++++|
3871 *	==> 1 complete clusters in above example
3872 *
3873 *	Ex:
3874 *	|================c================|
3875 *            |++++++ allocated ++++++|
3876 *	==> 0 complete clusters in above example
3877 *
3878 * The ext4_da_update_reserve_space will be called only if we
3879 * determine here that there were some "entire" clusters that span
3880 * this 'allocated' range.
3881 * In the non-bigalloc case, this function will just end up returning num_blks
3882 * without ever calling ext4_find_delalloc_range.
3883 */
3884static unsigned int
3885get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3886			   unsigned int num_blks)
3887{
3888	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3889	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3890	ext4_lblk_t lblk_from, lblk_to, c_offset;
3891	unsigned int allocated_clusters = 0;
3892
3893	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3894	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3895
3896	/* max possible clusters for this allocation */
3897	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3898
3899	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3900
3901	/* Check towards left side */
3902	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3903	if (c_offset) {
3904		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3905		lblk_to = lblk_from + c_offset - 1;
3906
3907		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3908			allocated_clusters--;
3909	}
3910
3911	/* Now check towards right. */
3912	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3913	if (allocated_clusters && c_offset) {
3914		lblk_from = lblk_start + num_blks;
3915		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3916
3917		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3918			allocated_clusters--;
3919	}
3920
3921	return allocated_clusters;
3922}
3923
3924static int
3925convert_initialized_extent(handle_t *handle, struct inode *inode,
3926			   struct ext4_map_blocks *map,
3927			   struct ext4_ext_path **ppath,
3928			   unsigned int allocated)
3929{
3930	struct ext4_ext_path *path = *ppath;
3931	struct ext4_extent *ex;
3932	ext4_lblk_t ee_block;
3933	unsigned int ee_len;
3934	int depth;
3935	int err = 0;
3936
3937	/*
3938	 * Make sure that the extent is no bigger than we support with
3939	 * unwritten extent
3940	 */
3941	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3942		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3943
3944	depth = ext_depth(inode);
3945	ex = path[depth].p_ext;
3946	ee_block = le32_to_cpu(ex->ee_block);
3947	ee_len = ext4_ext_get_actual_len(ex);
3948
3949	ext_debug("%s: inode %lu, logical"
3950		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3951		  (unsigned long long)ee_block, ee_len);
3952
3953	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3954		err = ext4_split_convert_extents(handle, inode, map, ppath,
3955				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3956		if (err < 0)
3957			return err;
3958		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3959		if (IS_ERR(path))
3960			return PTR_ERR(path);
3961		depth = ext_depth(inode);
3962		ex = path[depth].p_ext;
3963		if (!ex) {
3964			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3965					 (unsigned long) map->m_lblk);
3966			return -EFSCORRUPTED;
3967		}
3968	}
3969
3970	err = ext4_ext_get_access(handle, inode, path + depth);
3971	if (err)
3972		return err;
3973	/* first mark the extent as unwritten */
3974	ext4_ext_mark_unwritten(ex);
3975
3976	/* note: ext4_ext_correct_indexes() isn't needed here because
3977	 * borders are not changed
3978	 */
3979	ext4_ext_try_to_merge(handle, inode, path, ex);
3980
3981	/* Mark modified extent as dirty */
3982	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3983	if (err)
3984		return err;
3985	ext4_ext_show_leaf(inode, path);
3986
3987	ext4_update_inode_fsync_trans(handle, inode, 1);
3988	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3989	if (err)
3990		return err;
3991	map->m_flags |= EXT4_MAP_UNWRITTEN;
3992	if (allocated > map->m_len)
3993		allocated = map->m_len;
3994	map->m_len = allocated;
3995	return allocated;
3996}
3997
3998static int
3999ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4000			struct ext4_map_blocks *map,
4001			struct ext4_ext_path **ppath, int flags,
4002			unsigned int allocated, ext4_fsblk_t newblock)
4003{
4004	struct ext4_ext_path *path = *ppath;
4005	int ret = 0;
4006	int err = 0;
 
4007
4008	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4009		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4010		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4011		  flags, allocated);
4012	ext4_ext_show_leaf(inode, path);
4013
4014	/*
4015	 * When writing into unwritten space, we should not fail to
4016	 * allocate metadata blocks for the new extent block if needed.
4017	 */
4018	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4019
4020	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4021						    allocated, newblock);
4022
4023	/* get_block() before submit the IO, split the extent */
4024	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4025		ret = ext4_split_convert_extents(handle, inode, map, ppath,
4026					 flags | EXT4_GET_BLOCKS_CONVERT);
4027		if (ret <= 0)
4028			goto out;
4029		map->m_flags |= EXT4_MAP_UNWRITTEN;
 
 
 
 
 
 
 
 
 
4030		goto out;
4031	}
4032	/* IO end_io complete, convert the filled extent to written */
4033	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4034		if (flags & EXT4_GET_BLOCKS_ZERO) {
4035			if (allocated > map->m_len)
4036				allocated = map->m_len;
4037			err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4038						 allocated);
4039			if (err < 0)
4040				goto out2;
4041		}
4042		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4043							   ppath);
4044		if (ret >= 0) {
4045			ext4_update_inode_fsync_trans(handle, inode, 1);
4046			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4047						 path, map->m_len);
4048		} else
4049			err = ret;
4050		map->m_flags |= EXT4_MAP_MAPPED;
4051		map->m_pblk = newblock;
4052		if (allocated > map->m_len)
4053			allocated = map->m_len;
4054		map->m_len = allocated;
4055		goto out2;
4056	}
4057	/* buffered IO case */
4058	/*
4059	 * repeat fallocate creation request
4060	 * we already have an unwritten extent
4061	 */
4062	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4063		map->m_flags |= EXT4_MAP_UNWRITTEN;
4064		goto map_out;
4065	}
4066
4067	/* buffered READ or buffered write_begin() lookup */
4068	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4069		/*
4070		 * We have blocks reserved already.  We
4071		 * return allocated blocks so that delalloc
4072		 * won't do block reservation for us.  But
4073		 * the buffer head will be unmapped so that
4074		 * a read from the block returns 0s.
4075		 */
4076		map->m_flags |= EXT4_MAP_UNWRITTEN;
4077		goto out1;
4078	}
4079
4080	/* buffered write, writepage time, convert*/
4081	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4082	if (ret >= 0)
4083		ext4_update_inode_fsync_trans(handle, inode, 1);
 
 
 
 
 
 
4084out:
4085	if (ret <= 0) {
4086		err = ret;
4087		goto out2;
4088	} else
4089		allocated = ret;
4090	map->m_flags |= EXT4_MAP_NEW;
4091	/*
4092	 * if we allocated more blocks than requested
4093	 * we need to make sure we unmap the extra block
4094	 * allocated. The actual needed block will get
4095	 * unmapped later when we find the buffer_head marked
4096	 * new.
4097	 */
4098	if (allocated > map->m_len) {
4099		clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4100				   allocated - map->m_len);
 
4101		allocated = map->m_len;
4102	}
4103	map->m_len = allocated;
4104
4105	/*
4106	 * If we have done fallocate with the offset that is already
4107	 * delayed allocated, we would have block reservation
4108	 * and quota reservation done in the delayed write path.
4109	 * But fallocate would have already updated quota and block
4110	 * count for this offset. So cancel these reservation
4111	 */
4112	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4113		unsigned int reserved_clusters;
4114		reserved_clusters = get_reserved_cluster_alloc(inode,
4115				map->m_lblk, map->m_len);
4116		if (reserved_clusters)
4117			ext4_da_update_reserve_space(inode,
4118						     reserved_clusters,
4119						     0);
4120	}
4121
4122map_out:
4123	map->m_flags |= EXT4_MAP_MAPPED;
4124	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4125		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4126					 map->m_len);
4127		if (err < 0)
4128			goto out2;
4129	}
4130out1:
4131	if (allocated > map->m_len)
4132		allocated = map->m_len;
4133	ext4_ext_show_leaf(inode, path);
4134	map->m_pblk = newblock;
4135	map->m_len = allocated;
4136out2:
 
 
 
 
4137	return err ? err : allocated;
4138}
4139
4140/*
4141 * get_implied_cluster_alloc - check to see if the requested
4142 * allocation (in the map structure) overlaps with a cluster already
4143 * allocated in an extent.
4144 *	@sb	The filesystem superblock structure
4145 *	@map	The requested lblk->pblk mapping
4146 *	@ex	The extent structure which might contain an implied
4147 *			cluster allocation
4148 *
4149 * This function is called by ext4_ext_map_blocks() after we failed to
4150 * find blocks that were already in the inode's extent tree.  Hence,
4151 * we know that the beginning of the requested region cannot overlap
4152 * the extent from the inode's extent tree.  There are three cases we
4153 * want to catch.  The first is this case:
4154 *
4155 *		 |--- cluster # N--|
4156 *    |--- extent ---|	|---- requested region ---|
4157 *			|==========|
4158 *
4159 * The second case that we need to test for is this one:
4160 *
4161 *   |--------- cluster # N ----------------|
4162 *	   |--- requested region --|   |------- extent ----|
4163 *	   |=======================|
4164 *
4165 * The third case is when the requested region lies between two extents
4166 * within the same cluster:
4167 *          |------------- cluster # N-------------|
4168 * |----- ex -----|                  |---- ex_right ----|
4169 *                  |------ requested region ------|
4170 *                  |================|
4171 *
4172 * In each of the above cases, we need to set the map->m_pblk and
4173 * map->m_len so it corresponds to the return the extent labelled as
4174 * "|====|" from cluster #N, since it is already in use for data in
4175 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4176 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4177 * as a new "allocated" block region.  Otherwise, we will return 0 and
4178 * ext4_ext_map_blocks() will then allocate one or more new clusters
4179 * by calling ext4_mb_new_blocks().
4180 */
4181static int get_implied_cluster_alloc(struct super_block *sb,
4182				     struct ext4_map_blocks *map,
4183				     struct ext4_extent *ex,
4184				     struct ext4_ext_path *path)
4185{
4186	struct ext4_sb_info *sbi = EXT4_SB(sb);
4187	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4188	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4189	ext4_lblk_t rr_cluster_start;
4190	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4191	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4192	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4193
4194	/* The extent passed in that we are trying to match */
4195	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4196	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4197
4198	/* The requested region passed into ext4_map_blocks() */
4199	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4200
4201	if ((rr_cluster_start == ex_cluster_end) ||
4202	    (rr_cluster_start == ex_cluster_start)) {
4203		if (rr_cluster_start == ex_cluster_end)
4204			ee_start += ee_len - 1;
4205		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4206		map->m_len = min(map->m_len,
4207				 (unsigned) sbi->s_cluster_ratio - c_offset);
4208		/*
4209		 * Check for and handle this case:
4210		 *
4211		 *   |--------- cluster # N-------------|
4212		 *		       |------- extent ----|
4213		 *	   |--- requested region ---|
4214		 *	   |===========|
4215		 */
4216
4217		if (map->m_lblk < ee_block)
4218			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4219
4220		/*
4221		 * Check for the case where there is already another allocated
4222		 * block to the right of 'ex' but before the end of the cluster.
4223		 *
4224		 *          |------------- cluster # N-------------|
4225		 * |----- ex -----|                  |---- ex_right ----|
4226		 *                  |------ requested region ------|
4227		 *                  |================|
4228		 */
4229		if (map->m_lblk > ee_block) {
4230			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4231			map->m_len = min(map->m_len, next - map->m_lblk);
4232		}
4233
4234		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4235		return 1;
4236	}
4237
4238	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4239	return 0;
4240}
4241
4242
4243/*
4244 * Block allocation/map/preallocation routine for extents based files
4245 *
4246 *
4247 * Need to be called with
4248 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4249 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4250 *
4251 * return > 0, number of of blocks already mapped/allocated
4252 *          if create == 0 and these are pre-allocated blocks
4253 *          	buffer head is unmapped
4254 *          otherwise blocks are mapped
4255 *
4256 * return = 0, if plain look up failed (blocks have not been allocated)
4257 *          buffer head is unmapped
4258 *
4259 * return < 0, error case.
4260 */
4261int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4262			struct ext4_map_blocks *map, int flags)
4263{
4264	struct ext4_ext_path *path = NULL;
4265	struct ext4_extent newex, *ex, *ex2;
4266	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4267	ext4_fsblk_t newblock = 0;
4268	int free_on_err = 0, err = 0, depth, ret;
4269	unsigned int allocated = 0, offset = 0;
4270	unsigned int allocated_clusters = 0;
 
4271	struct ext4_allocation_request ar;
4272	ext4_lblk_t cluster_offset;
4273	bool map_from_cluster = false;
4274
4275	ext_debug("blocks %u/%u requested for inode %lu\n",
4276		  map->m_lblk, map->m_len, inode->i_ino);
4277	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4279	/* find extent for this block */
4280	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4281	if (IS_ERR(path)) {
4282		err = PTR_ERR(path);
4283		path = NULL;
4284		goto out2;
4285	}
4286
4287	depth = ext_depth(inode);
4288
4289	/*
4290	 * consistent leaf must not be empty;
4291	 * this situation is possible, though, _during_ tree modification;
4292	 * this is why assert can't be put in ext4_find_extent()
4293	 */
4294	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4295		EXT4_ERROR_INODE(inode, "bad extent address "
4296				 "lblock: %lu, depth: %d pblock %lld",
4297				 (unsigned long) map->m_lblk, depth,
4298				 path[depth].p_block);
4299		err = -EFSCORRUPTED;
4300		goto out2;
4301	}
4302
4303	ex = path[depth].p_ext;
4304	if (ex) {
4305		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4306		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4307		unsigned short ee_len;
4308
4309
4310		/*
4311		 * unwritten extents are treated as holes, except that
4312		 * we split out initialized portions during a write.
4313		 */
4314		ee_len = ext4_ext_get_actual_len(ex);
4315
4316		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4317
4318		/* if found extent covers block, simply return it */
4319		if (in_range(map->m_lblk, ee_block, ee_len)) {
4320			newblock = map->m_lblk - ee_block + ee_start;
4321			/* number of remaining blocks in the extent */
4322			allocated = ee_len - (map->m_lblk - ee_block);
4323			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4324				  ee_block, ee_len, newblock);
4325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4326			/*
4327			 * If the extent is initialized check whether the
4328			 * caller wants to convert it to unwritten.
4329			 */
4330			if ((!ext4_ext_is_unwritten(ex)) &&
4331			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4332				allocated = convert_initialized_extent(
4333						handle, inode, map, &path,
4334						allocated);
4335				goto out2;
4336			} else if (!ext4_ext_is_unwritten(ex))
4337				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4338
4339			ret = ext4_ext_handle_unwritten_extents(
4340				handle, inode, map, &path, flags,
4341				allocated, newblock);
4342			if (ret < 0)
4343				err = ret;
4344			else
4345				allocated = ret;
4346			goto out2;
4347		}
4348	}
4349
4350	/*
4351	 * requested block isn't allocated yet;
4352	 * we couldn't try to create block if create flag is zero
4353	 */
4354	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4355		ext4_lblk_t hole_start, hole_len;
4356
4357		hole_start = map->m_lblk;
4358		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4359		/*
4360		 * put just found gap into cache to speed up
4361		 * subsequent requests
4362		 */
4363		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4364
4365		/* Update hole_len to reflect hole size after map->m_lblk */
4366		if (hole_start != map->m_lblk)
4367			hole_len -= map->m_lblk - hole_start;
4368		map->m_pblk = 0;
4369		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4370
4371		goto out2;
4372	}
4373
4374	/*
4375	 * Okay, we need to do block allocation.
4376	 */
4377	newex.ee_block = cpu_to_le32(map->m_lblk);
4378	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4379
4380	/*
4381	 * If we are doing bigalloc, check to see if the extent returned
4382	 * by ext4_find_extent() implies a cluster we can use.
4383	 */
4384	if (cluster_offset && ex &&
4385	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4386		ar.len = allocated = map->m_len;
4387		newblock = map->m_pblk;
4388		map_from_cluster = true;
4389		goto got_allocated_blocks;
4390	}
4391
4392	/* find neighbour allocated blocks */
4393	ar.lleft = map->m_lblk;
4394	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4395	if (err)
4396		goto out2;
4397	ar.lright = map->m_lblk;
4398	ex2 = NULL;
4399	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4400	if (err)
4401		goto out2;
4402
4403	/* Check if the extent after searching to the right implies a
4404	 * cluster we can use. */
4405	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4406	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4407		ar.len = allocated = map->m_len;
4408		newblock = map->m_pblk;
4409		map_from_cluster = true;
4410		goto got_allocated_blocks;
4411	}
4412
4413	/*
4414	 * See if request is beyond maximum number of blocks we can have in
4415	 * a single extent. For an initialized extent this limit is
4416	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4417	 * EXT_UNWRITTEN_MAX_LEN.
4418	 */
4419	if (map->m_len > EXT_INIT_MAX_LEN &&
4420	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4421		map->m_len = EXT_INIT_MAX_LEN;
4422	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4423		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4424		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4425
4426	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
 
4427	newex.ee_len = cpu_to_le16(map->m_len);
4428	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4429	if (err)
4430		allocated = ext4_ext_get_actual_len(&newex);
4431	else
4432		allocated = map->m_len;
4433
4434	/* allocate new block */
4435	ar.inode = inode;
4436	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4437	ar.logical = map->m_lblk;
4438	/*
4439	 * We calculate the offset from the beginning of the cluster
4440	 * for the logical block number, since when we allocate a
4441	 * physical cluster, the physical block should start at the
4442	 * same offset from the beginning of the cluster.  This is
4443	 * needed so that future calls to get_implied_cluster_alloc()
4444	 * work correctly.
4445	 */
4446	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4447	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4448	ar.goal -= offset;
4449	ar.logical -= offset;
4450	if (S_ISREG(inode->i_mode))
4451		ar.flags = EXT4_MB_HINT_DATA;
4452	else
4453		/* disable in-core preallocation for non-regular files */
4454		ar.flags = 0;
4455	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4456		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4457	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4458		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4459	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4460		ar.flags |= EXT4_MB_USE_RESERVED;
4461	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4462	if (!newblock)
4463		goto out2;
4464	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4465		  ar.goal, newblock, allocated);
4466	free_on_err = 1;
4467	allocated_clusters = ar.len;
4468	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4469	if (ar.len > allocated)
4470		ar.len = allocated;
4471
4472got_allocated_blocks:
4473	/* try to insert new extent into found leaf and return */
4474	ext4_ext_store_pblock(&newex, newblock + offset);
4475	newex.ee_len = cpu_to_le16(ar.len);
4476	/* Mark unwritten */
4477	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4478		ext4_ext_mark_unwritten(&newex);
4479		map->m_flags |= EXT4_MAP_UNWRITTEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4480	}
4481
4482	err = 0;
4483	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4484		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4485					 path, ar.len);
4486	if (!err)
4487		err = ext4_ext_insert_extent(handle, inode, &path,
4488					     &newex, flags);
4489
4490	if (err && free_on_err) {
4491		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4492			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4493		/* free data blocks we just allocated */
4494		/* not a good idea to call discard here directly,
4495		 * but otherwise we'd need to call it every free() */
4496		ext4_discard_preallocations(inode);
4497		ext4_free_blocks(handle, inode, NULL, newblock,
4498				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4499		goto out2;
4500	}
4501
4502	/* previous routine could use block we allocated */
4503	newblock = ext4_ext_pblock(&newex);
4504	allocated = ext4_ext_get_actual_len(&newex);
4505	if (allocated > map->m_len)
4506		allocated = map->m_len;
4507	map->m_flags |= EXT4_MAP_NEW;
4508
4509	/*
4510	 * Update reserved blocks/metadata blocks after successful
4511	 * block allocation which had been deferred till now.
4512	 */
4513	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4514		unsigned int reserved_clusters;
4515		/*
4516		 * Check how many clusters we had reserved this allocated range
4517		 */
4518		reserved_clusters = get_reserved_cluster_alloc(inode,
4519						map->m_lblk, allocated);
4520		if (!map_from_cluster) {
4521			BUG_ON(allocated_clusters < reserved_clusters);
4522			if (reserved_clusters < allocated_clusters) {
4523				struct ext4_inode_info *ei = EXT4_I(inode);
4524				int reservation = allocated_clusters -
4525						  reserved_clusters;
4526				/*
4527				 * It seems we claimed few clusters outside of
4528				 * the range of this allocation. We should give
4529				 * it back to the reservation pool. This can
4530				 * happen in the following case:
4531				 *
4532				 * * Suppose s_cluster_ratio is 4 (i.e., each
4533				 *   cluster has 4 blocks. Thus, the clusters
4534				 *   are [0-3],[4-7],[8-11]...
4535				 * * First comes delayed allocation write for
4536				 *   logical blocks 10 & 11. Since there were no
4537				 *   previous delayed allocated blocks in the
4538				 *   range [8-11], we would reserve 1 cluster
4539				 *   for this write.
4540				 * * Next comes write for logical blocks 3 to 8.
4541				 *   In this case, we will reserve 2 clusters
4542				 *   (for [0-3] and [4-7]; and not for [8-11] as
4543				 *   that range has a delayed allocated blocks.
4544				 *   Thus total reserved clusters now becomes 3.
4545				 * * Now, during the delayed allocation writeout
4546				 *   time, we will first write blocks [3-8] and
4547				 *   allocate 3 clusters for writing these
4548				 *   blocks. Also, we would claim all these
4549				 *   three clusters above.
4550				 * * Now when we come here to writeout the
4551				 *   blocks [10-11], we would expect to claim
4552				 *   the reservation of 1 cluster we had made
4553				 *   (and we would claim it since there are no
4554				 *   more delayed allocated blocks in the range
4555				 *   [8-11]. But our reserved cluster count had
4556				 *   already gone to 0.
4557				 *
4558				 *   Thus, at the step 4 above when we determine
4559				 *   that there are still some unwritten delayed
4560				 *   allocated blocks outside of our current
4561				 *   block range, we should increment the
4562				 *   reserved clusters count so that when the
4563				 *   remaining blocks finally gets written, we
4564				 *   could claim them.
4565				 */
4566				dquot_reserve_block(inode,
4567						EXT4_C2B(sbi, reservation));
4568				spin_lock(&ei->i_block_reservation_lock);
4569				ei->i_reserved_data_blocks += reservation;
4570				spin_unlock(&ei->i_block_reservation_lock);
4571			}
4572			/*
4573			 * We will claim quota for all newly allocated blocks.
4574			 * We're updating the reserved space *after* the
4575			 * correction above so we do not accidentally free
4576			 * all the metadata reservation because we might
4577			 * actually need it later on.
4578			 */
4579			ext4_da_update_reserve_space(inode, allocated_clusters,
4580							1);
4581		}
4582	}
4583
4584	/*
4585	 * Cache the extent and update transaction to commit on fdatasync only
4586	 * when it is _not_ an unwritten extent.
4587	 */
4588	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
 
4589		ext4_update_inode_fsync_trans(handle, inode, 1);
4590	else
4591		ext4_update_inode_fsync_trans(handle, inode, 0);
4592out:
4593	if (allocated > map->m_len)
4594		allocated = map->m_len;
4595	ext4_ext_show_leaf(inode, path);
4596	map->m_flags |= EXT4_MAP_MAPPED;
4597	map->m_pblk = newblock;
4598	map->m_len = allocated;
4599out2:
4600	ext4_ext_drop_refs(path);
4601	kfree(path);
 
 
 
 
 
 
 
4602
4603	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4604				       err ? err : allocated);
4605	return err ? err : allocated;
4606}
4607
4608int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4609{
 
4610	struct super_block *sb = inode->i_sb;
4611	ext4_lblk_t last_block;
 
4612	int err = 0;
4613
4614	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4615	 * TODO: optimization is possible here.
4616	 * Probably we need not scan at all,
4617	 * because page truncation is enough.
4618	 */
4619
4620	/* we have to know where to truncate from in crash case */
4621	EXT4_I(inode)->i_disksize = inode->i_size;
4622	err = ext4_mark_inode_dirty(handle, inode);
4623	if (err)
4624		return err;
4625
4626	last_block = (inode->i_size + sb->s_blocksize - 1)
4627			>> EXT4_BLOCK_SIZE_BITS(sb);
4628retry:
4629	err = ext4_es_remove_extent(inode, last_block,
4630				    EXT_MAX_BLOCKS - last_block);
4631	if (err == -ENOMEM) {
4632		cond_resched();
4633		congestion_wait(BLK_RW_ASYNC, HZ/50);
4634		goto retry;
4635	}
4636	if (err)
4637		return err;
4638	return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4639}
4640
4641static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4642				  ext4_lblk_t len, loff_t new_size,
4643				  int flags)
4644{
4645	struct inode *inode = file_inode(file);
4646	handle_t *handle;
4647	int ret = 0;
4648	int ret2 = 0;
4649	int retries = 0;
4650	int depth = 0;
4651	struct ext4_map_blocks map;
4652	unsigned int credits;
4653	loff_t epos;
4654
4655	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4656	map.m_lblk = offset;
4657	map.m_len = len;
4658	/*
4659	 * Don't normalize the request if it can fit in one extent so
4660	 * that it doesn't get unnecessarily split into multiple
4661	 * extents.
4662	 */
4663	if (len <= EXT_UNWRITTEN_MAX_LEN)
4664		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4665
 
4666	/*
4667	 * credits to insert 1 extent into extent tree
 
 
 
 
4668	 */
4669	credits = ext4_chunk_trans_blocks(inode, len);
4670	depth = ext_depth(inode);
4671
4672retry:
4673	while (ret >= 0 && len) {
4674		/*
4675		 * Recalculate credits when extent tree depth changes.
4676		 */
4677		if (depth != ext_depth(inode)) {
4678			credits = ext4_chunk_trans_blocks(inode, len);
4679			depth = ext_depth(inode);
4680		}
4681
4682		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4683					    credits);
4684		if (IS_ERR(handle)) {
4685			ret = PTR_ERR(handle);
4686			break;
4687		}
4688		ret = ext4_map_blocks(handle, inode, &map, flags);
4689		if (ret <= 0) {
4690			ext4_debug("inode #%lu: block %u: len %u: "
4691				   "ext4_ext_map_blocks returned %d",
4692				   inode->i_ino, map.m_lblk,
4693				   map.m_len, ret);
4694			ext4_mark_inode_dirty(handle, inode);
4695			ret2 = ext4_journal_stop(handle);
4696			break;
4697		}
4698		map.m_lblk += ret;
4699		map.m_len = len = len - ret;
4700		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4701		inode->i_ctime = current_time(inode);
4702		if (new_size) {
4703			if (epos > new_size)
4704				epos = new_size;
4705			if (ext4_update_inode_size(inode, epos) & 0x1)
4706				inode->i_mtime = inode->i_ctime;
4707		} else {
4708			if (epos > inode->i_size)
4709				ext4_set_inode_flag(inode,
4710						    EXT4_INODE_EOFBLOCKS);
4711		}
4712		ext4_mark_inode_dirty(handle, inode);
4713		ext4_update_inode_fsync_trans(handle, inode, 1);
4714		ret2 = ext4_journal_stop(handle);
4715		if (ret2)
4716			break;
4717	}
4718	if (ret == -ENOSPC &&
4719			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4720		ret = 0;
4721		goto retry;
4722	}
4723
4724	return ret > 0 ? ret2 : ret;
4725}
4726
4727static long ext4_zero_range(struct file *file, loff_t offset,
4728			    loff_t len, int mode)
4729{
4730	struct inode *inode = file_inode(file);
4731	handle_t *handle = NULL;
4732	unsigned int max_blocks;
4733	loff_t new_size = 0;
4734	int ret = 0;
4735	int flags;
4736	int credits;
4737	int partial_begin, partial_end;
4738	loff_t start, end;
4739	ext4_lblk_t lblk;
4740	unsigned int blkbits = inode->i_blkbits;
4741
4742	trace_ext4_zero_range(inode, offset, len, mode);
4743
4744	if (!S_ISREG(inode->i_mode))
4745		return -EINVAL;
4746
4747	/* Call ext4_force_commit to flush all data in case of data=journal. */
4748	if (ext4_should_journal_data(inode)) {
4749		ret = ext4_force_commit(inode->i_sb);
4750		if (ret)
4751			return ret;
4752	}
4753
4754	/*
4755	 * Round up offset. This is not fallocate, we neet to zero out
4756	 * blocks, so convert interior block aligned part of the range to
4757	 * unwritten and possibly manually zero out unaligned parts of the
4758	 * range.
4759	 */
4760	start = round_up(offset, 1 << blkbits);
4761	end = round_down((offset + len), 1 << blkbits);
4762
4763	if (start < offset || end > offset + len)
4764		return -EINVAL;
4765	partial_begin = offset & ((1 << blkbits) - 1);
4766	partial_end = (offset + len) & ((1 << blkbits) - 1);
4767
4768	lblk = start >> blkbits;
4769	max_blocks = (end >> blkbits);
4770	if (max_blocks < lblk)
4771		max_blocks = 0;
4772	else
4773		max_blocks -= lblk;
4774
4775	inode_lock(inode);
4776
4777	/*
4778	 * Indirect files do not support unwritten extnets
4779	 */
4780	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4781		ret = -EOPNOTSUPP;
4782		goto out_mutex;
4783	}
4784
4785	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4786	    (offset + len > i_size_read(inode) ||
4787	     offset + len > EXT4_I(inode)->i_disksize)) {
4788		new_size = offset + len;
4789		ret = inode_newsize_ok(inode, new_size);
4790		if (ret)
4791			goto out_mutex;
4792	}
4793
4794	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4795	if (mode & FALLOC_FL_KEEP_SIZE)
4796		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4797
4798	/* Wait all existing dio workers, newcomers will block on i_mutex */
4799	inode_dio_wait(inode);
4800
4801	/* Preallocate the range including the unaligned edges */
4802	if (partial_begin || partial_end) {
4803		ret = ext4_alloc_file_blocks(file,
4804				round_down(offset, 1 << blkbits) >> blkbits,
4805				(round_up((offset + len), 1 << blkbits) -
4806				 round_down(offset, 1 << blkbits)) >> blkbits,
4807				new_size, flags);
4808		if (ret)
4809			goto out_mutex;
4810
4811	}
4812
4813	/* Zero range excluding the unaligned edges */
4814	if (max_blocks > 0) {
4815		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4816			  EXT4_EX_NOCACHE);
4817
4818		/*
4819		 * Prevent page faults from reinstantiating pages we have
4820		 * released from page cache.
4821		 */
4822		down_write(&EXT4_I(inode)->i_mmap_sem);
4823		ret = ext4_update_disksize_before_punch(inode, offset, len);
4824		if (ret) {
4825			up_write(&EXT4_I(inode)->i_mmap_sem);
4826			goto out_mutex;
4827		}
4828		/* Now release the pages and zero block aligned part of pages */
4829		truncate_pagecache_range(inode, start, end - 1);
4830		inode->i_mtime = inode->i_ctime = current_time(inode);
4831
4832		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4833					     flags);
4834		up_write(&EXT4_I(inode)->i_mmap_sem);
4835		if (ret)
4836			goto out_mutex;
4837	}
4838	if (!partial_begin && !partial_end)
4839		goto out_mutex;
4840
4841	/*
4842	 * In worst case we have to writeout two nonadjacent unwritten
4843	 * blocks and update the inode
4844	 */
4845	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4846	if (ext4_should_journal_data(inode))
4847		credits += 2;
4848	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4849	if (IS_ERR(handle)) {
4850		ret = PTR_ERR(handle);
4851		ext4_std_error(inode->i_sb, ret);
4852		goto out_mutex;
4853	}
4854
4855	inode->i_mtime = inode->i_ctime = current_time(inode);
4856	if (new_size) {
4857		ext4_update_inode_size(inode, new_size);
4858	} else {
4859		/*
4860		* Mark that we allocate beyond EOF so the subsequent truncate
4861		* can proceed even if the new size is the same as i_size.
4862		*/
4863		if ((offset + len) > i_size_read(inode))
4864			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4865	}
4866	ext4_mark_inode_dirty(handle, inode);
4867
4868	/* Zero out partial block at the edges of the range */
4869	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4870	if (ret >= 0)
4871		ext4_update_inode_fsync_trans(handle, inode, 1);
4872
4873	if (file->f_flags & O_SYNC)
4874		ext4_handle_sync(handle);
4875
4876	ext4_journal_stop(handle);
4877out_mutex:
4878	inode_unlock(inode);
4879	return ret;
4880}
4881
4882/*
4883 * preallocate space for a file. This implements ext4's fallocate file
4884 * operation, which gets called from sys_fallocate system call.
4885 * For block-mapped files, posix_fallocate should fall back to the method
4886 * of writing zeroes to the required new blocks (the same behavior which is
4887 * expected for file systems which do not support fallocate() system call).
4888 */
4889long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4890{
4891	struct inode *inode = file_inode(file);
4892	loff_t new_size = 0;
 
4893	unsigned int max_blocks;
4894	int ret = 0;
4895	int flags;
4896	ext4_lblk_t lblk;
4897	unsigned int blkbits = inode->i_blkbits;
4898
4899	/*
4900	 * Encrypted inodes can't handle collapse range or insert
4901	 * range since we would need to re-encrypt blocks with a
4902	 * different IV or XTS tweak (which are based on the logical
4903	 * block number).
4904	 *
4905	 * XXX It's not clear why zero range isn't working, but we'll
4906	 * leave it disabled for encrypted inodes for now.  This is a
4907	 * bug we should fix....
4908	 */
4909	if (ext4_encrypted_inode(inode) &&
4910	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4911		     FALLOC_FL_ZERO_RANGE)))
4912		return -EOPNOTSUPP;
4913
4914	/* Return error if mode is not supported */
4915	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4916		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4917		     FALLOC_FL_INSERT_RANGE))
4918		return -EOPNOTSUPP;
4919
4920	if (mode & FALLOC_FL_PUNCH_HOLE)
4921		return ext4_punch_hole(inode, offset, len);
4922
4923	ret = ext4_convert_inline_data(inode);
4924	if (ret)
4925		return ret;
4926
4927	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4928		return ext4_collapse_range(inode, offset, len);
4929
4930	if (mode & FALLOC_FL_INSERT_RANGE)
4931		return ext4_insert_range(inode, offset, len);
4932
4933	if (mode & FALLOC_FL_ZERO_RANGE)
4934		return ext4_zero_range(file, offset, len, mode);
4935
4936	trace_ext4_fallocate_enter(inode, offset, len, mode);
4937	lblk = offset >> blkbits;
4938
4939	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4940	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4941	if (mode & FALLOC_FL_KEEP_SIZE)
4942		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4943
4944	inode_lock(inode);
4945
4946	/*
4947	 * We only support preallocation for extent-based files only
4948	 */
4949	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4950		ret = -EOPNOTSUPP;
4951		goto out;
 
 
 
 
4952	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4953
4954	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4955	    (offset + len > i_size_read(inode) ||
4956	     offset + len > EXT4_I(inode)->i_disksize)) {
4957		new_size = offset + len;
4958		ret = inode_newsize_ok(inode, new_size);
4959		if (ret)
4960			goto out;
4961	}
4962
4963	/* Wait all existing dio workers, newcomers will block on i_mutex */
4964	inode_dio_wait(inode);
4965
4966	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4967	if (ret)
4968		goto out;
4969
4970	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4971		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4972						EXT4_I(inode)->i_sync_tid);
4973	}
4974out:
4975	inode_unlock(inode);
4976	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4977	return ret;
4978}
4979
4980/*
4981 * This function convert a range of blocks to written extents
4982 * The caller of this function will pass the start offset and the size.
4983 * all unwritten extents within this range will be converted to
4984 * written extents.
4985 *
4986 * This function is called from the direct IO end io call back
4987 * function, to convert the fallocated extents after IO is completed.
4988 * Returns 0 on success.
4989 */
4990int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4991				   loff_t offset, ssize_t len)
4992{
 
4993	unsigned int max_blocks;
4994	int ret = 0;
4995	int ret2 = 0;
4996	struct ext4_map_blocks map;
4997	unsigned int credits, blkbits = inode->i_blkbits;
4998
4999	map.m_lblk = offset >> blkbits;
5000	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5001
5002	/*
5003	 * This is somewhat ugly but the idea is clear: When transaction is
5004	 * reserved, everything goes into it. Otherwise we rather start several
5005	 * smaller transactions for conversion of each extent separately.
5006	 */
5007	if (handle) {
5008		handle = ext4_journal_start_reserved(handle,
5009						     EXT4_HT_EXT_CONVERT);
5010		if (IS_ERR(handle))
5011			return PTR_ERR(handle);
5012		credits = 0;
5013	} else {
5014		/*
5015		 * credits to insert 1 extent into extent tree
5016		 */
5017		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5018	}
5019	while (ret >= 0 && ret < max_blocks) {
5020		map.m_lblk += ret;
5021		map.m_len = (max_blocks -= ret);
5022		if (credits) {
5023			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5024						    credits);
5025			if (IS_ERR(handle)) {
5026				ret = PTR_ERR(handle);
5027				break;
5028			}
5029		}
5030		ret = ext4_map_blocks(handle, inode, &map,
5031				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5032		if (ret <= 0)
5033			ext4_warning(inode->i_sb,
5034				     "inode #%lu: block %u: len %u: "
5035				     "ext4_ext_map_blocks returned %d",
5036				     inode->i_ino, map.m_lblk,
5037				     map.m_len, ret);
 
5038		ext4_mark_inode_dirty(handle, inode);
5039		if (credits)
5040			ret2 = ext4_journal_stop(handle);
5041		if (ret <= 0 || ret2)
5042			break;
5043	}
5044	if (!credits)
5045		ret2 = ext4_journal_stop(handle);
5046	return ret > 0 ? ret2 : ret;
5047}
5048
5049/*
5050 * If newes is not existing extent (newes->ec_pblk equals zero) find
5051 * delayed extent at start of newes and update newes accordingly and
5052 * return start of the next delayed extent.
5053 *
5054 * If newes is existing extent (newes->ec_pblk is not equal zero)
5055 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5056 * extent found. Leave newes unmodified.
5057 */
5058static int ext4_find_delayed_extent(struct inode *inode,
5059				    struct extent_status *newes)
5060{
5061	struct extent_status es;
5062	ext4_lblk_t block, next_del;
5063
5064	if (newes->es_pblk == 0) {
5065		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5066				newes->es_lblk + newes->es_len - 1, &es);
5067
 
5068		/*
5069		 * No extent in extent-tree contains block @newes->es_pblk,
5070		 * then the block may stay in 1)a hole or 2)delayed-extent.
 
 
 
 
 
 
 
 
 
 
5071		 */
5072		if (es.es_len == 0)
5073			/* A hole found. */
5074			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5075
5076		if (es.es_lblk > newes->es_lblk) {
5077			/* A hole found. */
5078			newes->es_len = min(es.es_lblk - newes->es_lblk,
5079					    newes->es_len);
5080			return 0;
 
 
 
 
 
5081		}
5082
5083		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
 
 
5084	}
5085
5086	block = newes->es_lblk + newes->es_len;
5087	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5088	if (es.es_len == 0)
5089		next_del = EXT_MAX_BLOCKS;
5090	else
5091		next_del = es.es_lblk;
 
 
5092
5093	return next_del;
 
 
 
 
 
 
5094}
 
5095/* fiemap flags we can handle specified here */
5096#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5097
5098static int ext4_xattr_fiemap(struct inode *inode,
5099				struct fiemap_extent_info *fieinfo)
5100{
5101	__u64 physical = 0;
5102	__u64 length;
5103	__u32 flags = FIEMAP_EXTENT_LAST;
5104	int blockbits = inode->i_sb->s_blocksize_bits;
5105	int error = 0;
5106
5107	/* in-inode? */
5108	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5109		struct ext4_iloc iloc;
5110		int offset;	/* offset of xattr in inode */
5111
5112		error = ext4_get_inode_loc(inode, &iloc);
5113		if (error)
5114			return error;
5115		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5116		offset = EXT4_GOOD_OLD_INODE_SIZE +
5117				EXT4_I(inode)->i_extra_isize;
5118		physical += offset;
5119		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5120		flags |= FIEMAP_EXTENT_DATA_INLINE;
5121		brelse(iloc.bh);
5122	} else { /* external block */
5123		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5124		length = inode->i_sb->s_blocksize;
5125	}
5126
5127	if (physical)
5128		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5129						length, flags);
5130	return (error < 0 ? error : 0);
5131}
5132
5133int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5134		__u64 start, __u64 len)
 
 
 
 
 
 
 
 
 
 
 
5135{
5136	ext4_lblk_t start_blk;
5137	int error = 0;
 
 
 
 
 
 
 
 
5138
5139	if (ext4_has_inline_data(inode)) {
5140		int has_inline = 1;
 
5141
5142		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5143						start, len);
5144
5145		if (has_inline)
5146			return error;
5147	}
5148
5149	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5150		error = ext4_ext_precache(inode);
5151		if (error)
5152			return error;
5153	}
5154
5155	/* fallback to generic here if not in extents fmt */
5156	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5157		return generic_block_fiemap(inode, fieinfo, start, len,
5158			ext4_get_block);
 
 
 
 
5159
5160	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5161		return -EBADR;
5162
5163	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5164		error = ext4_xattr_fiemap(inode, fieinfo);
5165	} else {
5166		ext4_lblk_t len_blks;
5167		__u64 last_blk;
5168
5169		start_blk = start >> inode->i_sb->s_blocksize_bits;
5170		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5171		if (last_blk >= EXT_MAX_BLOCKS)
5172			last_blk = EXT_MAX_BLOCKS-1;
5173		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5174
5175		/*
5176		 * Walk the extent tree gathering extent information
5177		 * and pushing extents back to the user.
5178		 */
5179		error = ext4_fill_fiemap_extents(inode, start_blk,
5180						 len_blks, fieinfo);
5181	}
5182	return error;
5183}
5184
5185/*
5186 * ext4_access_path:
5187 * Function to access the path buffer for marking it dirty.
5188 * It also checks if there are sufficient credits left in the journal handle
5189 * to update path.
5190 */
5191static int
5192ext4_access_path(handle_t *handle, struct inode *inode,
5193		struct ext4_ext_path *path)
5194{
5195	int credits, err;
5196
5197	if (!ext4_handle_valid(handle))
5198		return 0;
5199
5200	/*
5201	 * Check if need to extend journal credits
5202	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5203	 * descriptor) for each block group; assume two block
5204	 * groups
5205	 */
5206	if (handle->h_buffer_credits < 7) {
5207		credits = ext4_writepage_trans_blocks(inode);
5208		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5209		/* EAGAIN is success */
5210		if (err && err != -EAGAIN)
5211			return err;
5212	}
5213
5214	err = ext4_ext_get_access(handle, inode, path);
5215	return err;
5216}
5217
5218/*
5219 * ext4_ext_shift_path_extents:
5220 * Shift the extents of a path structure lying between path[depth].p_ext
5221 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5222 * if it is right shift or left shift operation.
5223 */
5224static int
5225ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5226			    struct inode *inode, handle_t *handle,
5227			    enum SHIFT_DIRECTION SHIFT)
5228{
5229	int depth, err = 0;
5230	struct ext4_extent *ex_start, *ex_last;
5231	bool update = 0;
5232	depth = path->p_depth;
5233
5234	while (depth >= 0) {
5235		if (depth == path->p_depth) {
5236			ex_start = path[depth].p_ext;
5237			if (!ex_start)
5238				return -EFSCORRUPTED;
5239
5240			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5241
5242			err = ext4_access_path(handle, inode, path + depth);
5243			if (err)
5244				goto out;
5245
5246			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5247				update = 1;
5248
5249			while (ex_start <= ex_last) {
5250				if (SHIFT == SHIFT_LEFT) {
5251					le32_add_cpu(&ex_start->ee_block,
5252						-shift);
5253					/* Try to merge to the left. */
5254					if ((ex_start >
5255					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5256					    &&
5257					    ext4_ext_try_to_merge_right(inode,
5258					    path, ex_start - 1))
5259						ex_last--;
5260					else
5261						ex_start++;
5262				} else {
5263					le32_add_cpu(&ex_last->ee_block, shift);
5264					ext4_ext_try_to_merge_right(inode, path,
5265						ex_last);
5266					ex_last--;
5267				}
5268			}
5269			err = ext4_ext_dirty(handle, inode, path + depth);
5270			if (err)
5271				goto out;
5272
5273			if (--depth < 0 || !update)
5274				break;
5275		}
5276
5277		/* Update index too */
5278		err = ext4_access_path(handle, inode, path + depth);
5279		if (err)
5280			goto out;
5281
5282		if (SHIFT == SHIFT_LEFT)
5283			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5284		else
5285			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5286		err = ext4_ext_dirty(handle, inode, path + depth);
5287		if (err)
5288			goto out;
5289
5290		/* we are done if current index is not a starting index */
5291		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5292			break;
5293
5294		depth--;
5295	}
5296
5297out:
5298	return err;
5299}
5300
5301/*
5302 * ext4_ext_shift_extents:
5303 * All the extents which lies in the range from @start to the last allocated
5304 * block for the @inode are shifted either towards left or right (depending
5305 * upon @SHIFT) by @shift blocks.
5306 * On success, 0 is returned, error otherwise.
5307 */
5308static int
5309ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5310		       ext4_lblk_t start, ext4_lblk_t shift,
5311		       enum SHIFT_DIRECTION SHIFT)
5312{
5313	struct ext4_ext_path *path;
5314	int ret = 0, depth;
5315	struct ext4_extent *extent;
5316	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5317
5318	/* Let path point to the last extent */
5319	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5320				EXT4_EX_NOCACHE);
5321	if (IS_ERR(path))
5322		return PTR_ERR(path);
5323
5324	depth = path->p_depth;
5325	extent = path[depth].p_ext;
5326	if (!extent)
5327		goto out;
5328
5329	stop = le32_to_cpu(extent->ee_block);
5330
5331       /*
5332	* For left shifts, make sure the hole on the left is big enough to
5333	* accommodate the shift.  For right shifts, make sure the last extent
5334	* won't be shifted beyond EXT_MAX_BLOCKS.
5335	*/
5336	if (SHIFT == SHIFT_LEFT) {
5337		path = ext4_find_extent(inode, start - 1, &path,
5338					EXT4_EX_NOCACHE);
5339		if (IS_ERR(path))
5340			return PTR_ERR(path);
5341		depth = path->p_depth;
5342		extent =  path[depth].p_ext;
5343		if (extent) {
5344			ex_start = le32_to_cpu(extent->ee_block);
5345			ex_end = le32_to_cpu(extent->ee_block) +
5346				ext4_ext_get_actual_len(extent);
5347		} else {
5348			ex_start = 0;
5349			ex_end = 0;
5350		}
5351
5352		if ((start == ex_start && shift > ex_start) ||
5353		    (shift > start - ex_end)) {
5354			ret = -EINVAL;
5355			goto out;
5356		}
5357	} else {
5358		if (shift > EXT_MAX_BLOCKS -
5359		    (stop + ext4_ext_get_actual_len(extent))) {
5360			ret = -EINVAL;
5361			goto out;
5362		}
5363	}
5364
5365	/*
5366	 * In case of left shift, iterator points to start and it is increased
5367	 * till we reach stop. In case of right shift, iterator points to stop
5368	 * and it is decreased till we reach start.
5369	 */
5370	if (SHIFT == SHIFT_LEFT)
5371		iterator = &start;
5372	else
5373		iterator = &stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5374
5375	/*
5376	 * Its safe to start updating extents.  Start and stop are unsigned, so
5377	 * in case of right shift if extent with 0 block is reached, iterator
5378	 * becomes NULL to indicate the end of the loop.
5379	 */
5380	while (iterator && start <= stop) {
5381		path = ext4_find_extent(inode, *iterator, &path,
5382					EXT4_EX_NOCACHE);
5383		if (IS_ERR(path))
5384			return PTR_ERR(path);
5385		depth = path->p_depth;
5386		extent = path[depth].p_ext;
5387		if (!extent) {
5388			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5389					 (unsigned long) *iterator);
5390			return -EFSCORRUPTED;
5391		}
5392		if (SHIFT == SHIFT_LEFT && *iterator >
5393		    le32_to_cpu(extent->ee_block)) {
5394			/* Hole, move to the next extent */
5395			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5396				path[depth].p_ext++;
5397			} else {
5398				*iterator = ext4_ext_next_allocated_block(path);
5399				continue;
 
5400			}
 
 
 
 
5401		}
5402
5403		if (SHIFT == SHIFT_LEFT) {
5404			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5405			*iterator = le32_to_cpu(extent->ee_block) +
5406					ext4_ext_get_actual_len(extent);
5407		} else {
5408			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5409			if (le32_to_cpu(extent->ee_block) > 0)
5410				*iterator = le32_to_cpu(extent->ee_block) - 1;
5411			else
5412				/* Beginning is reached, end of the loop */
5413				iterator = NULL;
5414			/* Update path extent in case we need to stop */
5415			while (le32_to_cpu(extent->ee_block) < start)
5416				extent++;
5417			path[depth].p_ext = extent;
5418		}
5419		ret = ext4_ext_shift_path_extents(path, shift, inode,
5420				handle, SHIFT);
5421		if (ret)
5422			break;
5423	}
5424out:
5425	ext4_ext_drop_refs(path);
5426	kfree(path);
5427	return ret;
5428}
5429
5430/*
5431 * ext4_collapse_range:
5432 * This implements the fallocate's collapse range functionality for ext4
5433 * Returns: 0 and non-zero on error.
5434 */
5435int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5436{
5437	struct super_block *sb = inode->i_sb;
5438	ext4_lblk_t punch_start, punch_stop;
5439	handle_t *handle;
5440	unsigned int credits;
5441	loff_t new_size, ioffset;
5442	int ret;
5443
5444	/*
5445	 * We need to test this early because xfstests assumes that a
5446	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5447	 * system does not support collapse range.
5448	 */
5449	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5450		return -EOPNOTSUPP;
5451
5452	/* Collapse range works only on fs block size aligned offsets. */
5453	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5454	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5455		return -EINVAL;
5456
5457	if (!S_ISREG(inode->i_mode))
5458		return -EINVAL;
5459
5460	trace_ext4_collapse_range(inode, offset, len);
5461
5462	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5463	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5464
5465	/* Call ext4_force_commit to flush all data in case of data=journal. */
5466	if (ext4_should_journal_data(inode)) {
5467		ret = ext4_force_commit(inode->i_sb);
5468		if (ret)
5469			return ret;
5470	}
5471
5472	inode_lock(inode);
5473	/*
5474	 * There is no need to overlap collapse range with EOF, in which case
5475	 * it is effectively a truncate operation
5476	 */
5477	if (offset + len >= i_size_read(inode)) {
5478		ret = -EINVAL;
5479		goto out_mutex;
5480	}
5481
5482	/* Currently just for extent based files */
5483	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5484		ret = -EOPNOTSUPP;
5485		goto out_mutex;
5486	}
5487
5488	/* Wait for existing dio to complete */
5489	inode_dio_wait(inode);
5490
5491	/*
5492	 * Prevent page faults from reinstantiating pages we have released from
5493	 * page cache.
5494	 */
5495	down_write(&EXT4_I(inode)->i_mmap_sem);
5496	/*
5497	 * Need to round down offset to be aligned with page size boundary
5498	 * for page size > block size.
5499	 */
5500	ioffset = round_down(offset, PAGE_SIZE);
5501	/*
5502	 * Write tail of the last page before removed range since it will get
5503	 * removed from the page cache below.
5504	 */
5505	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5506	if (ret)
5507		goto out_mmap;
5508	/*
5509	 * Write data that will be shifted to preserve them when discarding
5510	 * page cache below. We are also protected from pages becoming dirty
5511	 * by i_mmap_sem.
5512	 */
5513	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5514					   LLONG_MAX);
5515	if (ret)
5516		goto out_mmap;
5517	truncate_pagecache(inode, ioffset);
5518
5519	credits = ext4_writepage_trans_blocks(inode);
5520	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5521	if (IS_ERR(handle)) {
5522		ret = PTR_ERR(handle);
5523		goto out_mmap;
5524	}
5525
5526	down_write(&EXT4_I(inode)->i_data_sem);
5527	ext4_discard_preallocations(inode);
5528
5529	ret = ext4_es_remove_extent(inode, punch_start,
5530				    EXT_MAX_BLOCKS - punch_start);
5531	if (ret) {
5532		up_write(&EXT4_I(inode)->i_data_sem);
5533		goto out_stop;
5534	}
5535
5536	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5537	if (ret) {
5538		up_write(&EXT4_I(inode)->i_data_sem);
5539		goto out_stop;
5540	}
5541	ext4_discard_preallocations(inode);
5542
5543	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5544				     punch_stop - punch_start, SHIFT_LEFT);
5545	if (ret) {
5546		up_write(&EXT4_I(inode)->i_data_sem);
5547		goto out_stop;
5548	}
5549
5550	new_size = i_size_read(inode) - len;
5551	i_size_write(inode, new_size);
5552	EXT4_I(inode)->i_disksize = new_size;
5553
5554	up_write(&EXT4_I(inode)->i_data_sem);
5555	if (IS_SYNC(inode))
5556		ext4_handle_sync(handle);
5557	inode->i_mtime = inode->i_ctime = current_time(inode);
5558	ext4_mark_inode_dirty(handle, inode);
5559	ext4_update_inode_fsync_trans(handle, inode, 1);
5560
5561out_stop:
5562	ext4_journal_stop(handle);
5563out_mmap:
5564	up_write(&EXT4_I(inode)->i_mmap_sem);
5565out_mutex:
5566	inode_unlock(inode);
5567	return ret;
5568}
5569
5570/*
5571 * ext4_insert_range:
5572 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5573 * The data blocks starting from @offset to the EOF are shifted by @len
5574 * towards right to create a hole in the @inode. Inode size is increased
5575 * by len bytes.
5576 * Returns 0 on success, error otherwise.
5577 */
5578int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5579{
5580	struct super_block *sb = inode->i_sb;
5581	handle_t *handle;
5582	struct ext4_ext_path *path;
5583	struct ext4_extent *extent;
5584	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5585	unsigned int credits, ee_len;
5586	int ret = 0, depth, split_flag = 0;
5587	loff_t ioffset;
5588
5589	/*
5590	 * We need to test this early because xfstests assumes that an
5591	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5592	 * system does not support insert range.
5593	 */
5594	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5595		return -EOPNOTSUPP;
5596
5597	/* Insert range works only on fs block size aligned offsets. */
5598	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5599			len & (EXT4_CLUSTER_SIZE(sb) - 1))
5600		return -EINVAL;
5601
5602	if (!S_ISREG(inode->i_mode))
5603		return -EOPNOTSUPP;
 
 
 
5604
5605	trace_ext4_insert_range(inode, offset, len);
5606
5607	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5608	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5609
5610	/* Call ext4_force_commit to flush all data in case of data=journal */
5611	if (ext4_should_journal_data(inode)) {
5612		ret = ext4_force_commit(inode->i_sb);
5613		if (ret)
5614			return ret;
5615	}
5616
5617	inode_lock(inode);
5618	/* Currently just for extent based files */
5619	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5620		ret = -EOPNOTSUPP;
5621		goto out_mutex;
5622	}
5623
5624	/* Check for wrap through zero */
5625	if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5626		ret = -EFBIG;
5627		goto out_mutex;
5628	}
5629
5630	/* Offset should be less than i_size */
5631	if (offset >= i_size_read(inode)) {
5632		ret = -EINVAL;
5633		goto out_mutex;
5634	}
5635
5636	/* Wait for existing dio to complete */
5637	inode_dio_wait(inode);
5638
5639	/*
5640	 * Prevent page faults from reinstantiating pages we have released from
5641	 * page cache.
5642	 */
5643	down_write(&EXT4_I(inode)->i_mmap_sem);
5644	/*
5645	 * Need to round down to align start offset to page size boundary
5646	 * for page size > block size.
5647	 */
5648	ioffset = round_down(offset, PAGE_SIZE);
5649	/* Write out all dirty pages */
5650	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5651			LLONG_MAX);
5652	if (ret)
5653		goto out_mmap;
5654	truncate_pagecache(inode, ioffset);
5655
5656	credits = ext4_writepage_trans_blocks(inode);
5657	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5658	if (IS_ERR(handle)) {
5659		ret = PTR_ERR(handle);
5660		goto out_mmap;
5661	}
5662
5663	/* Expand file to avoid data loss if there is error while shifting */
5664	inode->i_size += len;
5665	EXT4_I(inode)->i_disksize += len;
5666	inode->i_mtime = inode->i_ctime = current_time(inode);
5667	ret = ext4_mark_inode_dirty(handle, inode);
5668	if (ret)
5669		goto out_stop;
5670
5671	down_write(&EXT4_I(inode)->i_data_sem);
5672	ext4_discard_preallocations(inode);
5673
5674	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5675	if (IS_ERR(path)) {
5676		up_write(&EXT4_I(inode)->i_data_sem);
5677		goto out_stop;
5678	}
5679
5680	depth = ext_depth(inode);
5681	extent = path[depth].p_ext;
5682	if (extent) {
5683		ee_start_lblk = le32_to_cpu(extent->ee_block);
5684		ee_len = ext4_ext_get_actual_len(extent);
5685
5686		/*
5687		 * If offset_lblk is not the starting block of extent, split
5688		 * the extent @offset_lblk
5689		 */
5690		if ((offset_lblk > ee_start_lblk) &&
5691				(offset_lblk < (ee_start_lblk + ee_len))) {
5692			if (ext4_ext_is_unwritten(extent))
5693				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5694					EXT4_EXT_MARK_UNWRIT2;
5695			ret = ext4_split_extent_at(handle, inode, &path,
5696					offset_lblk, split_flag,
5697					EXT4_EX_NOCACHE |
5698					EXT4_GET_BLOCKS_PRE_IO |
5699					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5700		}
5701
5702		ext4_ext_drop_refs(path);
5703		kfree(path);
5704		if (ret < 0) {
5705			up_write(&EXT4_I(inode)->i_data_sem);
5706			goto out_stop;
5707		}
5708	} else {
5709		ext4_ext_drop_refs(path);
5710		kfree(path);
5711	}
5712
5713	ret = ext4_es_remove_extent(inode, offset_lblk,
5714			EXT_MAX_BLOCKS - offset_lblk);
5715	if (ret) {
5716		up_write(&EXT4_I(inode)->i_data_sem);
5717		goto out_stop;
5718	}
5719
5720	/*
5721	 * if offset_lblk lies in a hole which is at start of file, use
5722	 * ee_start_lblk to shift extents
5723	 */
5724	ret = ext4_ext_shift_extents(inode, handle,
5725		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5726		len_lblk, SHIFT_RIGHT);
5727
5728	up_write(&EXT4_I(inode)->i_data_sem);
5729	if (IS_SYNC(inode))
5730		ext4_handle_sync(handle);
5731	if (ret >= 0)
5732		ext4_update_inode_fsync_trans(handle, inode, 1);
5733
5734out_stop:
5735	ext4_journal_stop(handle);
5736out_mmap:
5737	up_write(&EXT4_I(inode)->i_mmap_sem);
5738out_mutex:
5739	inode_unlock(inode);
5740	return ret;
5741}
5742
5743/**
5744 * ext4_swap_extents - Swap extents between two inodes
5745 *
5746 * @inode1:	First inode
5747 * @inode2:	Second inode
5748 * @lblk1:	Start block for first inode
5749 * @lblk2:	Start block for second inode
5750 * @count:	Number of blocks to swap
5751 * @unwritten: Mark second inode's extents as unwritten after swap
5752 * @erp:	Pointer to save error value
5753 *
5754 * This helper routine does exactly what is promise "swap extents". All other
5755 * stuff such as page-cache locking consistency, bh mapping consistency or
5756 * extent's data copying must be performed by caller.
5757 * Locking:
5758 * 		i_mutex is held for both inodes
5759 * 		i_data_sem is locked for write for both inodes
5760 * Assumptions:
5761 *		All pages from requested range are locked for both inodes
5762 */
5763int
5764ext4_swap_extents(handle_t *handle, struct inode *inode1,
5765		  struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5766		  ext4_lblk_t count, int unwritten, int *erp)
5767{
5768	struct ext4_ext_path *path1 = NULL;
5769	struct ext4_ext_path *path2 = NULL;
5770	int replaced_count = 0;
5771
5772	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5773	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5774	BUG_ON(!inode_is_locked(inode1));
5775	BUG_ON(!inode_is_locked(inode2));
5776
5777	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5778	if (unlikely(*erp))
5779		return 0;
5780	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5781	if (unlikely(*erp))
5782		return 0;
5783
5784	while (count) {
5785		struct ext4_extent *ex1, *ex2, tmp_ex;
5786		ext4_lblk_t e1_blk, e2_blk;
5787		int e1_len, e2_len, len;
5788		int split = 0;
5789
5790		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5791		if (IS_ERR(path1)) {
5792			*erp = PTR_ERR(path1);
5793			path1 = NULL;
5794		finish:
5795			count = 0;
5796			goto repeat;
5797		}
5798		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5799		if (IS_ERR(path2)) {
5800			*erp = PTR_ERR(path2);
5801			path2 = NULL;
5802			goto finish;
5803		}
5804		ex1 = path1[path1->p_depth].p_ext;
5805		ex2 = path2[path2->p_depth].p_ext;
5806		/* Do we have somthing to swap ? */
5807		if (unlikely(!ex2 || !ex1))
5808			goto finish;
5809
5810		e1_blk = le32_to_cpu(ex1->ee_block);
5811		e2_blk = le32_to_cpu(ex2->ee_block);
5812		e1_len = ext4_ext_get_actual_len(ex1);
5813		e2_len = ext4_ext_get_actual_len(ex2);
5814
5815		/* Hole handling */
5816		if (!in_range(lblk1, e1_blk, e1_len) ||
5817		    !in_range(lblk2, e2_blk, e2_len)) {
5818			ext4_lblk_t next1, next2;
5819
5820			/* if hole after extent, then go to next extent */
5821			next1 = ext4_ext_next_allocated_block(path1);
5822			next2 = ext4_ext_next_allocated_block(path2);
5823			/* If hole before extent, then shift to that extent */
5824			if (e1_blk > lblk1)
5825				next1 = e1_blk;
5826			if (e2_blk > lblk2)
5827				next2 = e2_blk;
5828			/* Do we have something to swap */
5829			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5830				goto finish;
5831			/* Move to the rightest boundary */
5832			len = next1 - lblk1;
5833			if (len < next2 - lblk2)
5834				len = next2 - lblk2;
5835			if (len > count)
5836				len = count;
5837			lblk1 += len;
5838			lblk2 += len;
5839			count -= len;
5840			goto repeat;
5841		}
5842
5843		/* Prepare left boundary */
5844		if (e1_blk < lblk1) {
5845			split = 1;
5846			*erp = ext4_force_split_extent_at(handle, inode1,
5847						&path1, lblk1, 0);
5848			if (unlikely(*erp))
5849				goto finish;
5850		}
5851		if (e2_blk < lblk2) {
5852			split = 1;
5853			*erp = ext4_force_split_extent_at(handle, inode2,
5854						&path2,  lblk2, 0);
5855			if (unlikely(*erp))
5856				goto finish;
5857		}
5858		/* ext4_split_extent_at() may result in leaf extent split,
5859		 * path must to be revalidated. */
5860		if (split)
5861			goto repeat;
5862
5863		/* Prepare right boundary */
5864		len = count;
5865		if (len > e1_blk + e1_len - lblk1)
5866			len = e1_blk + e1_len - lblk1;
5867		if (len > e2_blk + e2_len - lblk2)
5868			len = e2_blk + e2_len - lblk2;
5869
5870		if (len != e1_len) {
5871			split = 1;
5872			*erp = ext4_force_split_extent_at(handle, inode1,
5873						&path1, lblk1 + len, 0);
5874			if (unlikely(*erp))
5875				goto finish;
5876		}
5877		if (len != e2_len) {
5878			split = 1;
5879			*erp = ext4_force_split_extent_at(handle, inode2,
5880						&path2, lblk2 + len, 0);
5881			if (*erp)
5882				goto finish;
5883		}
5884		/* ext4_split_extent_at() may result in leaf extent split,
5885		 * path must to be revalidated. */
5886		if (split)
5887			goto repeat;
5888
5889		BUG_ON(e2_len != e1_len);
5890		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5891		if (unlikely(*erp))
5892			goto finish;
5893		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5894		if (unlikely(*erp))
5895			goto finish;
5896
5897		/* Both extents are fully inside boundaries. Swap it now */
5898		tmp_ex = *ex1;
5899		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5900		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5901		ex1->ee_len = cpu_to_le16(e2_len);
5902		ex2->ee_len = cpu_to_le16(e1_len);
5903		if (unwritten)
5904			ext4_ext_mark_unwritten(ex2);
5905		if (ext4_ext_is_unwritten(&tmp_ex))
5906			ext4_ext_mark_unwritten(ex1);
5907
5908		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5909		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5910		*erp = ext4_ext_dirty(handle, inode2, path2 +
5911				      path2->p_depth);
5912		if (unlikely(*erp))
5913			goto finish;
5914		*erp = ext4_ext_dirty(handle, inode1, path1 +
5915				      path1->p_depth);
5916		/*
5917		 * Looks scarry ah..? second inode already points to new blocks,
5918		 * and it was successfully dirtied. But luckily error may happen
5919		 * only due to journal error, so full transaction will be
5920		 * aborted anyway.
5921		 */
5922		if (unlikely(*erp))
5923			goto finish;
5924		lblk1 += len;
5925		lblk2 += len;
5926		replaced_count += len;
5927		count -= len;
5928
5929	repeat:
5930		ext4_ext_drop_refs(path1);
5931		kfree(path1);
5932		ext4_ext_drop_refs(path2);
5933		kfree(path2);
5934		path1 = path2 = NULL;
5935	}
5936	return replaced_count;
5937}