Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v3.1
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * Architecture independence:
   6 *   Copyright (c) 2005, Bull S.A.
   7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public Licens
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  21 */
  22
  23/*
  24 * Extents support for EXT4
  25 *
  26 * TODO:
  27 *   - ext4*_error() should be used in some situations
  28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  29 *   - smart tree reduction
  30 */
  31
  32#include <linux/module.h>
  33#include <linux/fs.h>
  34#include <linux/time.h>
  35#include <linux/jbd2.h>
  36#include <linux/highuid.h>
  37#include <linux/pagemap.h>
  38#include <linux/quotaops.h>
  39#include <linux/string.h>
  40#include <linux/slab.h>
  41#include <linux/falloc.h>
  42#include <asm/uaccess.h>
  43#include <linux/fiemap.h>
  44#include "ext4_jbd2.h"
  45#include "ext4_extents.h"
 
  46
  47#include <trace/events/ext4.h>
  48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49static int ext4_split_extent(handle_t *handle,
  50				struct inode *inode,
  51				struct ext4_ext_path *path,
  52				struct ext4_map_blocks *map,
  53				int split_flag,
  54				int flags);
  55
 
 
 
 
 
 
 
 
 
 
  56static int ext4_ext_truncate_extend_restart(handle_t *handle,
  57					    struct inode *inode,
  58					    int needed)
  59{
  60	int err;
  61
  62	if (!ext4_handle_valid(handle))
  63		return 0;
  64	if (handle->h_buffer_credits > needed)
  65		return 0;
  66	err = ext4_journal_extend(handle, needed);
  67	if (err <= 0)
  68		return err;
  69	err = ext4_truncate_restart_trans(handle, inode, needed);
  70	if (err == 0)
  71		err = -EAGAIN;
  72
  73	return err;
  74}
  75
  76/*
  77 * could return:
  78 *  - EROFS
  79 *  - ENOMEM
  80 */
  81static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
  82				struct ext4_ext_path *path)
  83{
  84	if (path->p_bh) {
  85		/* path points to block */
  86		return ext4_journal_get_write_access(handle, path->p_bh);
  87	}
  88	/* path points to leaf/index in inode body */
  89	/* we use in-core data, no need to protect them */
  90	return 0;
  91}
  92
  93/*
  94 * could return:
  95 *  - EROFS
  96 *  - ENOMEM
  97 *  - EIO
  98 */
  99static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
 100				struct ext4_ext_path *path)
 101{
 102	int err;
 103	if (path->p_bh) {
 
 104		/* path points to block */
 105		err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
 
 106	} else {
 107		/* path points to leaf/index in inode body */
 108		err = ext4_mark_inode_dirty(handle, inode);
 109	}
 110	return err;
 111}
 112
 113static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 114			      struct ext4_ext_path *path,
 115			      ext4_lblk_t block)
 116{
 117	int depth;
 118
 119	if (path) {
 
 120		struct ext4_extent *ex;
 121		depth = path->p_depth;
 122
 123		/*
 124		 * Try to predict block placement assuming that we are
 125		 * filling in a file which will eventually be
 126		 * non-sparse --- i.e., in the case of libbfd writing
 127		 * an ELF object sections out-of-order but in a way
 128		 * the eventually results in a contiguous object or
 129		 * executable file, or some database extending a table
 130		 * space file.  However, this is actually somewhat
 131		 * non-ideal if we are writing a sparse file such as
 132		 * qemu or KVM writing a raw image file that is going
 133		 * to stay fairly sparse, since it will end up
 134		 * fragmenting the file system's free space.  Maybe we
 135		 * should have some hueristics or some way to allow
 136		 * userspace to pass a hint to file system,
 137		 * especially if the latter case turns out to be
 138		 * common.
 139		 */
 140		ex = path[depth].p_ext;
 141		if (ex) {
 142			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 143			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 144
 145			if (block > ext_block)
 146				return ext_pblk + (block - ext_block);
 147			else
 148				return ext_pblk - (ext_block - block);
 149		}
 150
 151		/* it looks like index is empty;
 152		 * try to find starting block from index itself */
 153		if (path[depth].p_bh)
 154			return path[depth].p_bh->b_blocknr;
 155	}
 156
 157	/* OK. use inode's group */
 158	return ext4_inode_to_goal_block(inode);
 159}
 160
 161/*
 162 * Allocation for a meta data block
 163 */
 164static ext4_fsblk_t
 165ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 166			struct ext4_ext_path *path,
 167			struct ext4_extent *ex, int *err, unsigned int flags)
 168{
 169	ext4_fsblk_t goal, newblock;
 170
 171	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 172	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 173					NULL, err);
 174	return newblock;
 175}
 176
 177static inline int ext4_ext_space_block(struct inode *inode, int check)
 178{
 179	int size;
 180
 181	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 182			/ sizeof(struct ext4_extent);
 183	if (!check) {
 184#ifdef AGGRESSIVE_TEST
 185		if (size > 6)
 186			size = 6;
 187#endif
 188	}
 189	return size;
 190}
 191
 192static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 193{
 194	int size;
 195
 196	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 197			/ sizeof(struct ext4_extent_idx);
 198	if (!check) {
 199#ifdef AGGRESSIVE_TEST
 200		if (size > 5)
 201			size = 5;
 202#endif
 203	}
 204	return size;
 205}
 206
 207static inline int ext4_ext_space_root(struct inode *inode, int check)
 208{
 209	int size;
 210
 211	size = sizeof(EXT4_I(inode)->i_data);
 212	size -= sizeof(struct ext4_extent_header);
 213	size /= sizeof(struct ext4_extent);
 214	if (!check) {
 215#ifdef AGGRESSIVE_TEST
 216		if (size > 3)
 217			size = 3;
 218#endif
 219	}
 220	return size;
 221}
 222
 223static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 224{
 225	int size;
 226
 227	size = sizeof(EXT4_I(inode)->i_data);
 228	size -= sizeof(struct ext4_extent_header);
 229	size /= sizeof(struct ext4_extent_idx);
 230	if (!check) {
 231#ifdef AGGRESSIVE_TEST
 232		if (size > 4)
 233			size = 4;
 234#endif
 235	}
 236	return size;
 237}
 238
 239/*
 240 * Calculate the number of metadata blocks needed
 241 * to allocate @blocks
 242 * Worse case is one block per extent
 243 */
 244int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 245{
 246	struct ext4_inode_info *ei = EXT4_I(inode);
 247	int idxs, num = 0;
 248
 249	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 250		/ sizeof(struct ext4_extent_idx));
 251
 252	/*
 253	 * If the new delayed allocation block is contiguous with the
 254	 * previous da block, it can share index blocks with the
 255	 * previous block, so we only need to allocate a new index
 256	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 257	 * an additional index block, and at ldxs**3 blocks, yet
 258	 * another index blocks.
 259	 */
 260	if (ei->i_da_metadata_calc_len &&
 261	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 
 
 262		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 263			num++;
 264		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 265			num++;
 266		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 267			num++;
 268			ei->i_da_metadata_calc_len = 0;
 269		} else
 270			ei->i_da_metadata_calc_len++;
 271		ei->i_da_metadata_calc_last_lblock++;
 272		return num;
 273	}
 274
 275	/*
 276	 * In the worst case we need a new set of index blocks at
 277	 * every level of the inode's extent tree.
 278	 */
 279	ei->i_da_metadata_calc_len = 1;
 280	ei->i_da_metadata_calc_last_lblock = lblock;
 281	return ext_depth(inode) + 1;
 282}
 283
 284static int
 285ext4_ext_max_entries(struct inode *inode, int depth)
 286{
 287	int max;
 288
 289	if (depth == ext_depth(inode)) {
 290		if (depth == 0)
 291			max = ext4_ext_space_root(inode, 1);
 292		else
 293			max = ext4_ext_space_root_idx(inode, 1);
 294	} else {
 295		if (depth == 0)
 296			max = ext4_ext_space_block(inode, 1);
 297		else
 298			max = ext4_ext_space_block_idx(inode, 1);
 299	}
 300
 301	return max;
 302}
 303
 304static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 305{
 306	ext4_fsblk_t block = ext4_ext_pblock(ext);
 307	int len = ext4_ext_get_actual_len(ext);
 
 
 308
 
 
 309	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 310}
 311
 312static int ext4_valid_extent_idx(struct inode *inode,
 313				struct ext4_extent_idx *ext_idx)
 314{
 315	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 316
 317	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 318}
 319
 320static int ext4_valid_extent_entries(struct inode *inode,
 321				struct ext4_extent_header *eh,
 322				int depth)
 323{
 324	struct ext4_extent *ext;
 325	struct ext4_extent_idx *ext_idx;
 326	unsigned short entries;
 327	if (eh->eh_entries == 0)
 328		return 1;
 329
 330	entries = le16_to_cpu(eh->eh_entries);
 331
 332	if (depth == 0) {
 333		/* leaf entries */
 334		ext = EXT_FIRST_EXTENT(eh);
 
 
 
 
 
 335		while (entries) {
 336			if (!ext4_valid_extent(inode, ext))
 337				return 0;
 
 
 
 
 
 
 
 
 
 338			ext++;
 339			entries--;
 
 340		}
 341	} else {
 342		ext_idx = EXT_FIRST_INDEX(eh);
 343		while (entries) {
 344			if (!ext4_valid_extent_idx(inode, ext_idx))
 345				return 0;
 346			ext_idx++;
 347			entries--;
 348		}
 349	}
 350	return 1;
 351}
 352
 353static int __ext4_ext_check(const char *function, unsigned int line,
 354			    struct inode *inode, struct ext4_extent_header *eh,
 355			    int depth)
 356{
 357	const char *error_msg;
 358	int max = 0;
 359
 360	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 361		error_msg = "invalid magic";
 362		goto corrupted;
 363	}
 364	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 365		error_msg = "unexpected eh_depth";
 366		goto corrupted;
 367	}
 368	if (unlikely(eh->eh_max == 0)) {
 369		error_msg = "invalid eh_max";
 370		goto corrupted;
 371	}
 372	max = ext4_ext_max_entries(inode, depth);
 373	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 374		error_msg = "too large eh_max";
 375		goto corrupted;
 376	}
 377	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 378		error_msg = "invalid eh_entries";
 379		goto corrupted;
 380	}
 381	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 382		error_msg = "invalid extent entries";
 383		goto corrupted;
 384	}
 
 
 
 
 
 
 385	return 0;
 386
 387corrupted:
 388	ext4_error_inode(inode, function, line, 0,
 389			"bad header/extent: %s - magic %x, "
 390			"entries %u, max %u(%u), depth %u(%u)",
 391			error_msg, le16_to_cpu(eh->eh_magic),
 392			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 393			max, le16_to_cpu(eh->eh_depth), depth);
 394
 395	return -EIO;
 396}
 397
 398#define ext4_ext_check(inode, eh, depth)	\
 399	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
 400
 401int ext4_ext_check_inode(struct inode *inode)
 402{
 403	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406#ifdef EXT_DEBUG
 407static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 408{
 409	int k, l = path->p_depth;
 410
 411	ext_debug("path:");
 412	for (k = 0; k <= l; k++, path++) {
 413		if (path->p_idx) {
 414		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 415			    ext4_idx_pblock(path->p_idx));
 416		} else if (path->p_ext) {
 417			ext_debug("  %d:[%d]%d:%llu ",
 418				  le32_to_cpu(path->p_ext->ee_block),
 419				  ext4_ext_is_uninitialized(path->p_ext),
 420				  ext4_ext_get_actual_len(path->p_ext),
 421				  ext4_ext_pblock(path->p_ext));
 422		} else
 423			ext_debug("  []");
 424	}
 425	ext_debug("\n");
 426}
 427
 428static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 429{
 430	int depth = ext_depth(inode);
 431	struct ext4_extent_header *eh;
 432	struct ext4_extent *ex;
 433	int i;
 434
 435	if (!path)
 436		return;
 437
 438	eh = path[depth].p_hdr;
 439	ex = EXT_FIRST_EXTENT(eh);
 440
 441	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 442
 443	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 444		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 445			  ext4_ext_is_uninitialized(ex),
 446			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 447	}
 448	ext_debug("\n");
 449}
 450
 451static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 452			ext4_fsblk_t newblock, int level)
 453{
 454	int depth = ext_depth(inode);
 455	struct ext4_extent *ex;
 456
 457	if (depth != level) {
 458		struct ext4_extent_idx *idx;
 459		idx = path[level].p_idx;
 460		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 461			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 462					le32_to_cpu(idx->ei_block),
 463					ext4_idx_pblock(idx),
 464					newblock);
 465			idx++;
 466		}
 467
 468		return;
 469	}
 470
 471	ex = path[depth].p_ext;
 472	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 473		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 474				le32_to_cpu(ex->ee_block),
 475				ext4_ext_pblock(ex),
 476				ext4_ext_is_uninitialized(ex),
 477				ext4_ext_get_actual_len(ex),
 478				newblock);
 479		ex++;
 480	}
 481}
 482
 483#else
 484#define ext4_ext_show_path(inode, path)
 485#define ext4_ext_show_leaf(inode, path)
 486#define ext4_ext_show_move(inode, path, newblock, level)
 487#endif
 488
 489void ext4_ext_drop_refs(struct ext4_ext_path *path)
 490{
 491	int depth = path->p_depth;
 492	int i;
 493
 494	for (i = 0; i <= depth; i++, path++)
 495		if (path->p_bh) {
 496			brelse(path->p_bh);
 497			path->p_bh = NULL;
 498		}
 499}
 500
 501/*
 502 * ext4_ext_binsearch_idx:
 503 * binary search for the closest index of the given block
 504 * the header must be checked before calling this
 505 */
 506static void
 507ext4_ext_binsearch_idx(struct inode *inode,
 508			struct ext4_ext_path *path, ext4_lblk_t block)
 509{
 510	struct ext4_extent_header *eh = path->p_hdr;
 511	struct ext4_extent_idx *r, *l, *m;
 512
 513
 514	ext_debug("binsearch for %u(idx):  ", block);
 515
 516	l = EXT_FIRST_INDEX(eh) + 1;
 517	r = EXT_LAST_INDEX(eh);
 518	while (l <= r) {
 519		m = l + (r - l) / 2;
 520		if (block < le32_to_cpu(m->ei_block))
 521			r = m - 1;
 522		else
 523			l = m + 1;
 524		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 525				m, le32_to_cpu(m->ei_block),
 526				r, le32_to_cpu(r->ei_block));
 527	}
 528
 529	path->p_idx = l - 1;
 530	ext_debug("  -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
 531		  ext4_idx_pblock(path->p_idx));
 532
 533#ifdef CHECK_BINSEARCH
 534	{
 535		struct ext4_extent_idx *chix, *ix;
 536		int k;
 537
 538		chix = ix = EXT_FIRST_INDEX(eh);
 539		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 540		  if (k != 0 &&
 541		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 542				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 543				       "first=0x%p\n", k,
 544				       ix, EXT_FIRST_INDEX(eh));
 545				printk(KERN_DEBUG "%u <= %u\n",
 546				       le32_to_cpu(ix->ei_block),
 547				       le32_to_cpu(ix[-1].ei_block));
 548			}
 549			BUG_ON(k && le32_to_cpu(ix->ei_block)
 550					   <= le32_to_cpu(ix[-1].ei_block));
 551			if (block < le32_to_cpu(ix->ei_block))
 552				break;
 553			chix = ix;
 554		}
 555		BUG_ON(chix != path->p_idx);
 556	}
 557#endif
 558
 559}
 560
 561/*
 562 * ext4_ext_binsearch:
 563 * binary search for closest extent of the given block
 564 * the header must be checked before calling this
 565 */
 566static void
 567ext4_ext_binsearch(struct inode *inode,
 568		struct ext4_ext_path *path, ext4_lblk_t block)
 569{
 570	struct ext4_extent_header *eh = path->p_hdr;
 571	struct ext4_extent *r, *l, *m;
 572
 573	if (eh->eh_entries == 0) {
 574		/*
 575		 * this leaf is empty:
 576		 * we get such a leaf in split/add case
 577		 */
 578		return;
 579	}
 580
 581	ext_debug("binsearch for %u:  ", block);
 582
 583	l = EXT_FIRST_EXTENT(eh) + 1;
 584	r = EXT_LAST_EXTENT(eh);
 585
 586	while (l <= r) {
 587		m = l + (r - l) / 2;
 588		if (block < le32_to_cpu(m->ee_block))
 589			r = m - 1;
 590		else
 591			l = m + 1;
 592		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 593				m, le32_to_cpu(m->ee_block),
 594				r, le32_to_cpu(r->ee_block));
 595	}
 596
 597	path->p_ext = l - 1;
 598	ext_debug("  -> %d:%llu:[%d]%d ",
 599			le32_to_cpu(path->p_ext->ee_block),
 600			ext4_ext_pblock(path->p_ext),
 601			ext4_ext_is_uninitialized(path->p_ext),
 602			ext4_ext_get_actual_len(path->p_ext));
 603
 604#ifdef CHECK_BINSEARCH
 605	{
 606		struct ext4_extent *chex, *ex;
 607		int k;
 608
 609		chex = ex = EXT_FIRST_EXTENT(eh);
 610		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 611			BUG_ON(k && le32_to_cpu(ex->ee_block)
 612					  <= le32_to_cpu(ex[-1].ee_block));
 613			if (block < le32_to_cpu(ex->ee_block))
 614				break;
 615			chex = ex;
 616		}
 617		BUG_ON(chex != path->p_ext);
 618	}
 619#endif
 620
 621}
 622
 623int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 624{
 625	struct ext4_extent_header *eh;
 626
 627	eh = ext_inode_hdr(inode);
 628	eh->eh_depth = 0;
 629	eh->eh_entries = 0;
 630	eh->eh_magic = EXT4_EXT_MAGIC;
 631	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 632	ext4_mark_inode_dirty(handle, inode);
 633	ext4_ext_invalidate_cache(inode);
 634	return 0;
 635}
 636
 637struct ext4_ext_path *
 638ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
 639					struct ext4_ext_path *path)
 640{
 641	struct ext4_extent_header *eh;
 642	struct buffer_head *bh;
 643	short int depth, i, ppos = 0, alloc = 0;
 
 644
 645	eh = ext_inode_hdr(inode);
 646	depth = ext_depth(inode);
 647
 648	/* account possible depth increase */
 649	if (!path) {
 650		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 651				GFP_NOFS);
 652		if (!path)
 653			return ERR_PTR(-ENOMEM);
 654		alloc = 1;
 655	}
 656	path[0].p_hdr = eh;
 657	path[0].p_bh = NULL;
 658
 659	i = depth;
 660	/* walk through the tree */
 661	while (i) {
 662		int need_to_validate = 0;
 663
 664		ext_debug("depth %d: num %d, max %d\n",
 665			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 666
 667		ext4_ext_binsearch_idx(inode, path + ppos, block);
 668		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 669		path[ppos].p_depth = i;
 670		path[ppos].p_ext = NULL;
 671
 672		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
 673		if (unlikely(!bh))
 
 
 674			goto err;
 675		if (!bh_uptodate_or_lock(bh)) {
 676			trace_ext4_ext_load_extent(inode, block,
 677						path[ppos].p_block);
 678			if (bh_submit_read(bh) < 0) {
 679				put_bh(bh);
 680				goto err;
 681			}
 682			/* validate the extent entries */
 683			need_to_validate = 1;
 684		}
 
 685		eh = ext_block_hdr(bh);
 686		ppos++;
 687		if (unlikely(ppos > depth)) {
 688			put_bh(bh);
 689			EXT4_ERROR_INODE(inode,
 690					 "ppos %d > depth %d", ppos, depth);
 
 691			goto err;
 692		}
 693		path[ppos].p_bh = bh;
 694		path[ppos].p_hdr = eh;
 695		i--;
 696
 697		if (need_to_validate && ext4_ext_check(inode, eh, i))
 698			goto err;
 699	}
 700
 701	path[ppos].p_depth = i;
 702	path[ppos].p_ext = NULL;
 703	path[ppos].p_idx = NULL;
 704
 705	/* find extent */
 706	ext4_ext_binsearch(inode, path + ppos, block);
 707	/* if not an empty leaf */
 708	if (path[ppos].p_ext)
 709		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 710
 711	ext4_ext_show_path(inode, path);
 712
 713	return path;
 714
 715err:
 716	ext4_ext_drop_refs(path);
 717	if (alloc)
 718		kfree(path);
 719	return ERR_PTR(-EIO);
 720}
 721
 722/*
 723 * ext4_ext_insert_index:
 724 * insert new index [@logical;@ptr] into the block at @curp;
 725 * check where to insert: before @curp or after @curp
 726 */
 727static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 728				 struct ext4_ext_path *curp,
 729				 int logical, ext4_fsblk_t ptr)
 730{
 731	struct ext4_extent_idx *ix;
 732	int len, err;
 733
 734	err = ext4_ext_get_access(handle, inode, curp);
 735	if (err)
 736		return err;
 737
 738	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 739		EXT4_ERROR_INODE(inode,
 740				 "logical %d == ei_block %d!",
 741				 logical, le32_to_cpu(curp->p_idx->ei_block));
 742		return -EIO;
 743	}
 744
 745	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 746			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 747		EXT4_ERROR_INODE(inode,
 748				 "eh_entries %d >= eh_max %d!",
 749				 le16_to_cpu(curp->p_hdr->eh_entries),
 750				 le16_to_cpu(curp->p_hdr->eh_max));
 751		return -EIO;
 752	}
 753
 754	len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
 755	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 756		/* insert after */
 757		if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
 758			len = (len - 1) * sizeof(struct ext4_extent_idx);
 759			len = len < 0 ? 0 : len;
 760			ext_debug("insert new index %d after: %llu. "
 761					"move %d from 0x%p to 0x%p\n",
 762					logical, ptr, len,
 763					(curp->p_idx + 1), (curp->p_idx + 2));
 764			memmove(curp->p_idx + 2, curp->p_idx + 1, len);
 765		}
 766		ix = curp->p_idx + 1;
 767	} else {
 768		/* insert before */
 769		len = len * sizeof(struct ext4_extent_idx);
 770		len = len < 0 ? 0 : len;
 771		ext_debug("insert new index %d before: %llu. "
 772				"move %d from 0x%p to 0x%p\n",
 773				logical, ptr, len,
 774				curp->p_idx, (curp->p_idx + 1));
 775		memmove(curp->p_idx + 1, curp->p_idx, len);
 776		ix = curp->p_idx;
 777	}
 778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779	ix->ei_block = cpu_to_le32(logical);
 780	ext4_idx_store_pblock(ix, ptr);
 781	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 782
 783	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 784		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 785		return -EIO;
 786	}
 787
 788	err = ext4_ext_dirty(handle, inode, curp);
 789	ext4_std_error(inode->i_sb, err);
 790
 791	return err;
 792}
 793
 794/*
 795 * ext4_ext_split:
 796 * inserts new subtree into the path, using free index entry
 797 * at depth @at:
 798 * - allocates all needed blocks (new leaf and all intermediate index blocks)
 799 * - makes decision where to split
 800 * - moves remaining extents and index entries (right to the split point)
 801 *   into the newly allocated blocks
 802 * - initializes subtree
 803 */
 804static int ext4_ext_split(handle_t *handle, struct inode *inode,
 805			  unsigned int flags,
 806			  struct ext4_ext_path *path,
 807			  struct ext4_extent *newext, int at)
 808{
 809	struct buffer_head *bh = NULL;
 810	int depth = ext_depth(inode);
 811	struct ext4_extent_header *neh;
 812	struct ext4_extent_idx *fidx;
 813	int i = at, k, m, a;
 814	ext4_fsblk_t newblock, oldblock;
 815	__le32 border;
 816	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
 817	int err = 0;
 818
 819	/* make decision: where to split? */
 820	/* FIXME: now decision is simplest: at current extent */
 821
 822	/* if current leaf will be split, then we should use
 823	 * border from split point */
 824	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
 825		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
 826		return -EIO;
 827	}
 828	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
 829		border = path[depth].p_ext[1].ee_block;
 830		ext_debug("leaf will be split."
 831				" next leaf starts at %d\n",
 832				  le32_to_cpu(border));
 833	} else {
 834		border = newext->ee_block;
 835		ext_debug("leaf will be added."
 836				" next leaf starts at %d\n",
 837				le32_to_cpu(border));
 838	}
 839
 840	/*
 841	 * If error occurs, then we break processing
 842	 * and mark filesystem read-only. index won't
 843	 * be inserted and tree will be in consistent
 844	 * state. Next mount will repair buffers too.
 845	 */
 846
 847	/*
 848	 * Get array to track all allocated blocks.
 849	 * We need this to handle errors and free blocks
 850	 * upon them.
 851	 */
 852	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
 853	if (!ablocks)
 854		return -ENOMEM;
 855
 856	/* allocate all needed blocks */
 857	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
 858	for (a = 0; a < depth - at; a++) {
 859		newblock = ext4_ext_new_meta_block(handle, inode, path,
 860						   newext, &err, flags);
 861		if (newblock == 0)
 862			goto cleanup;
 863		ablocks[a] = newblock;
 864	}
 865
 866	/* initialize new leaf */
 867	newblock = ablocks[--a];
 868	if (unlikely(newblock == 0)) {
 869		EXT4_ERROR_INODE(inode, "newblock == 0!");
 870		err = -EIO;
 871		goto cleanup;
 872	}
 873	bh = sb_getblk(inode->i_sb, newblock);
 874	if (!bh) {
 875		err = -EIO;
 876		goto cleanup;
 877	}
 878	lock_buffer(bh);
 879
 880	err = ext4_journal_get_create_access(handle, bh);
 881	if (err)
 882		goto cleanup;
 883
 884	neh = ext_block_hdr(bh);
 885	neh->eh_entries = 0;
 886	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
 887	neh->eh_magic = EXT4_EXT_MAGIC;
 888	neh->eh_depth = 0;
 889
 890	/* move remainder of path[depth] to the new leaf */
 891	if (unlikely(path[depth].p_hdr->eh_entries !=
 892		     path[depth].p_hdr->eh_max)) {
 893		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
 894				 path[depth].p_hdr->eh_entries,
 895				 path[depth].p_hdr->eh_max);
 896		err = -EIO;
 897		goto cleanup;
 898	}
 899	/* start copy from next extent */
 900	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
 901	ext4_ext_show_move(inode, path, newblock, depth);
 902	if (m) {
 903		struct ext4_extent *ex;
 904		ex = EXT_FIRST_EXTENT(neh);
 905		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
 906		le16_add_cpu(&neh->eh_entries, m);
 907	}
 908
 
 909	set_buffer_uptodate(bh);
 910	unlock_buffer(bh);
 911
 912	err = ext4_handle_dirty_metadata(handle, inode, bh);
 913	if (err)
 914		goto cleanup;
 915	brelse(bh);
 916	bh = NULL;
 917
 918	/* correct old leaf */
 919	if (m) {
 920		err = ext4_ext_get_access(handle, inode, path + depth);
 921		if (err)
 922			goto cleanup;
 923		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
 924		err = ext4_ext_dirty(handle, inode, path + depth);
 925		if (err)
 926			goto cleanup;
 927
 928	}
 929
 930	/* create intermediate indexes */
 931	k = depth - at - 1;
 932	if (unlikely(k < 0)) {
 933		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
 934		err = -EIO;
 935		goto cleanup;
 936	}
 937	if (k)
 938		ext_debug("create %d intermediate indices\n", k);
 939	/* insert new index into current index block */
 940	/* current depth stored in i var */
 941	i = depth - 1;
 942	while (k--) {
 943		oldblock = newblock;
 944		newblock = ablocks[--a];
 945		bh = sb_getblk(inode->i_sb, newblock);
 946		if (!bh) {
 947			err = -EIO;
 948			goto cleanup;
 949		}
 950		lock_buffer(bh);
 951
 952		err = ext4_journal_get_create_access(handle, bh);
 953		if (err)
 954			goto cleanup;
 955
 956		neh = ext_block_hdr(bh);
 957		neh->eh_entries = cpu_to_le16(1);
 958		neh->eh_magic = EXT4_EXT_MAGIC;
 959		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
 960		neh->eh_depth = cpu_to_le16(depth - i);
 961		fidx = EXT_FIRST_INDEX(neh);
 962		fidx->ei_block = border;
 963		ext4_idx_store_pblock(fidx, oldblock);
 964
 965		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
 966				i, newblock, le32_to_cpu(border), oldblock);
 967
 968		/* move remainder of path[i] to the new index block */
 969		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
 970					EXT_LAST_INDEX(path[i].p_hdr))) {
 971			EXT4_ERROR_INODE(inode,
 972					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
 973					 le32_to_cpu(path[i].p_ext->ee_block));
 974			err = -EIO;
 975			goto cleanup;
 976		}
 977		/* start copy indexes */
 978		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
 979		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
 980				EXT_MAX_INDEX(path[i].p_hdr));
 981		ext4_ext_show_move(inode, path, newblock, i);
 982		if (m) {
 983			memmove(++fidx, path[i].p_idx,
 984				sizeof(struct ext4_extent_idx) * m);
 985			le16_add_cpu(&neh->eh_entries, m);
 986		}
 
 987		set_buffer_uptodate(bh);
 988		unlock_buffer(bh);
 989
 990		err = ext4_handle_dirty_metadata(handle, inode, bh);
 991		if (err)
 992			goto cleanup;
 993		brelse(bh);
 994		bh = NULL;
 995
 996		/* correct old index */
 997		if (m) {
 998			err = ext4_ext_get_access(handle, inode, path + i);
 999			if (err)
1000				goto cleanup;
1001			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1002			err = ext4_ext_dirty(handle, inode, path + i);
1003			if (err)
1004				goto cleanup;
1005		}
1006
1007		i--;
1008	}
1009
1010	/* insert new index */
1011	err = ext4_ext_insert_index(handle, inode, path + at,
1012				    le32_to_cpu(border), newblock);
1013
1014cleanup:
1015	if (bh) {
1016		if (buffer_locked(bh))
1017			unlock_buffer(bh);
1018		brelse(bh);
1019	}
1020
1021	if (err) {
1022		/* free all allocated blocks in error case */
1023		for (i = 0; i < depth; i++) {
1024			if (!ablocks[i])
1025				continue;
1026			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1027					 EXT4_FREE_BLOCKS_METADATA);
1028		}
1029	}
1030	kfree(ablocks);
1031
1032	return err;
1033}
1034
1035/*
1036 * ext4_ext_grow_indepth:
1037 * implements tree growing procedure:
1038 * - allocates new block
1039 * - moves top-level data (index block or leaf) into the new block
1040 * - initializes new top-level, creating index that points to the
1041 *   just created block
1042 */
1043static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1044				 unsigned int flags,
1045				 struct ext4_ext_path *path,
1046				 struct ext4_extent *newext)
1047{
1048	struct ext4_ext_path *curp = path;
1049	struct ext4_extent_header *neh;
1050	struct buffer_head *bh;
1051	ext4_fsblk_t newblock;
1052	int err = 0;
1053
1054	newblock = ext4_ext_new_meta_block(handle, inode, path,
1055		newext, &err, flags);
1056	if (newblock == 0)
1057		return err;
1058
1059	bh = sb_getblk(inode->i_sb, newblock);
1060	if (!bh) {
1061		err = -EIO;
1062		ext4_std_error(inode->i_sb, err);
1063		return err;
1064	}
1065	lock_buffer(bh);
1066
1067	err = ext4_journal_get_create_access(handle, bh);
1068	if (err) {
1069		unlock_buffer(bh);
1070		goto out;
1071	}
1072
1073	/* move top-level index/leaf into new block */
1074	memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
 
1075
1076	/* set size of new block */
1077	neh = ext_block_hdr(bh);
1078	/* old root could have indexes or leaves
1079	 * so calculate e_max right way */
1080	if (ext_depth(inode))
1081		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1082	else
1083		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1084	neh->eh_magic = EXT4_EXT_MAGIC;
 
1085	set_buffer_uptodate(bh);
1086	unlock_buffer(bh);
1087
1088	err = ext4_handle_dirty_metadata(handle, inode, bh);
1089	if (err)
1090		goto out;
1091
1092	/* create index in new top-level index: num,max,pointer */
1093	err = ext4_ext_get_access(handle, inode, curp);
1094	if (err)
1095		goto out;
1096
1097	curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1098	curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1099	curp->p_hdr->eh_entries = cpu_to_le16(1);
1100	curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1101
1102	if (path[0].p_hdr->eh_depth)
1103		curp->p_idx->ei_block =
1104			EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1105	else
1106		curp->p_idx->ei_block =
1107			EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1108	ext4_idx_store_pblock(curp->p_idx, newblock);
1109
1110	neh = ext_inode_hdr(inode);
 
 
 
 
 
 
 
 
1111	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1112		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1113		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1114		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1115
1116	neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1117	err = ext4_ext_dirty(handle, inode, curp);
1118out:
1119	brelse(bh);
1120
1121	return err;
1122}
1123
1124/*
1125 * ext4_ext_create_new_leaf:
1126 * finds empty index and adds new leaf.
1127 * if no free index is found, then it requests in-depth growing.
1128 */
1129static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1130				    unsigned int flags,
 
1131				    struct ext4_ext_path *path,
1132				    struct ext4_extent *newext)
1133{
1134	struct ext4_ext_path *curp;
1135	int depth, i, err = 0;
1136
1137repeat:
1138	i = depth = ext_depth(inode);
1139
1140	/* walk up to the tree and look for free index entry */
1141	curp = path + depth;
1142	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1143		i--;
1144		curp--;
1145	}
1146
1147	/* we use already allocated block for index block,
1148	 * so subsequent data blocks should be contiguous */
1149	if (EXT_HAS_FREE_INDEX(curp)) {
1150		/* if we found index with free entry, then use that
1151		 * entry: create all needed subtree and add new leaf */
1152		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1153		if (err)
1154			goto out;
1155
1156		/* refill path */
1157		ext4_ext_drop_refs(path);
1158		path = ext4_ext_find_extent(inode,
1159				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1160				    path);
1161		if (IS_ERR(path))
1162			err = PTR_ERR(path);
1163	} else {
1164		/* tree is full, time to grow in depth */
1165		err = ext4_ext_grow_indepth(handle, inode, flags,
1166					    path, newext);
1167		if (err)
1168			goto out;
1169
1170		/* refill path */
1171		ext4_ext_drop_refs(path);
1172		path = ext4_ext_find_extent(inode,
1173				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1174				    path);
1175		if (IS_ERR(path)) {
1176			err = PTR_ERR(path);
1177			goto out;
1178		}
1179
1180		/*
1181		 * only first (depth 0 -> 1) produces free space;
1182		 * in all other cases we have to split the grown tree
1183		 */
1184		depth = ext_depth(inode);
1185		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1186			/* now we need to split */
1187			goto repeat;
1188		}
1189	}
1190
1191out:
1192	return err;
1193}
1194
1195/*
1196 * search the closest allocated block to the left for *logical
1197 * and returns it at @logical + it's physical address at @phys
1198 * if *logical is the smallest allocated block, the function
1199 * returns 0 at @phys
1200 * return value contains 0 (success) or error code
1201 */
1202static int ext4_ext_search_left(struct inode *inode,
1203				struct ext4_ext_path *path,
1204				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1205{
1206	struct ext4_extent_idx *ix;
1207	struct ext4_extent *ex;
1208	int depth, ee_len;
1209
1210	if (unlikely(path == NULL)) {
1211		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1212		return -EIO;
1213	}
1214	depth = path->p_depth;
1215	*phys = 0;
1216
1217	if (depth == 0 && path->p_ext == NULL)
1218		return 0;
1219
1220	/* usually extent in the path covers blocks smaller
1221	 * then *logical, but it can be that extent is the
1222	 * first one in the file */
1223
1224	ex = path[depth].p_ext;
1225	ee_len = ext4_ext_get_actual_len(ex);
1226	if (*logical < le32_to_cpu(ex->ee_block)) {
1227		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1228			EXT4_ERROR_INODE(inode,
1229					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1230					 *logical, le32_to_cpu(ex->ee_block));
1231			return -EIO;
1232		}
1233		while (--depth >= 0) {
1234			ix = path[depth].p_idx;
1235			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1236				EXT4_ERROR_INODE(inode,
1237				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1238				  ix != NULL ? ix->ei_block : 0,
1239				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1240				    EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1241				  depth);
1242				return -EIO;
1243			}
1244		}
1245		return 0;
1246	}
1247
1248	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1249		EXT4_ERROR_INODE(inode,
1250				 "logical %d < ee_block %d + ee_len %d!",
1251				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1252		return -EIO;
1253	}
1254
1255	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1256	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1257	return 0;
1258}
1259
1260/*
1261 * search the closest allocated block to the right for *logical
1262 * and returns it at @logical + it's physical address at @phys
1263 * if *logical is the smallest allocated block, the function
1264 * returns 0 at @phys
1265 * return value contains 0 (success) or error code
1266 */
1267static int ext4_ext_search_right(struct inode *inode,
1268				 struct ext4_ext_path *path,
1269				 ext4_lblk_t *logical, ext4_fsblk_t *phys)
 
1270{
1271	struct buffer_head *bh = NULL;
1272	struct ext4_extent_header *eh;
1273	struct ext4_extent_idx *ix;
1274	struct ext4_extent *ex;
1275	ext4_fsblk_t block;
1276	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1277	int ee_len;
1278
1279	if (unlikely(path == NULL)) {
1280		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1281		return -EIO;
1282	}
1283	depth = path->p_depth;
1284	*phys = 0;
1285
1286	if (depth == 0 && path->p_ext == NULL)
1287		return 0;
1288
1289	/* usually extent in the path covers blocks smaller
1290	 * then *logical, but it can be that extent is the
1291	 * first one in the file */
1292
1293	ex = path[depth].p_ext;
1294	ee_len = ext4_ext_get_actual_len(ex);
1295	if (*logical < le32_to_cpu(ex->ee_block)) {
1296		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1297			EXT4_ERROR_INODE(inode,
1298					 "first_extent(path[%d].p_hdr) != ex",
1299					 depth);
1300			return -EIO;
1301		}
1302		while (--depth >= 0) {
1303			ix = path[depth].p_idx;
1304			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1305				EXT4_ERROR_INODE(inode,
1306						 "ix != EXT_FIRST_INDEX *logical %d!",
1307						 *logical);
1308				return -EIO;
1309			}
1310		}
1311		*logical = le32_to_cpu(ex->ee_block);
1312		*phys = ext4_ext_pblock(ex);
1313		return 0;
1314	}
1315
1316	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1317		EXT4_ERROR_INODE(inode,
1318				 "logical %d < ee_block %d + ee_len %d!",
1319				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1320		return -EIO;
1321	}
1322
1323	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1324		/* next allocated block in this leaf */
1325		ex++;
1326		*logical = le32_to_cpu(ex->ee_block);
1327		*phys = ext4_ext_pblock(ex);
1328		return 0;
1329	}
1330
1331	/* go up and search for index to the right */
1332	while (--depth >= 0) {
1333		ix = path[depth].p_idx;
1334		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1335			goto got_index;
1336	}
1337
1338	/* we've gone up to the root and found no index to the right */
1339	return 0;
1340
1341got_index:
1342	/* we've found index to the right, let's
1343	 * follow it and find the closest allocated
1344	 * block to the right */
1345	ix++;
1346	block = ext4_idx_pblock(ix);
1347	while (++depth < path->p_depth) {
1348		bh = sb_bread(inode->i_sb, block);
1349		if (bh == NULL)
1350			return -EIO;
1351		eh = ext_block_hdr(bh);
1352		/* subtract from p_depth to get proper eh_depth */
1353		if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1354			put_bh(bh);
1355			return -EIO;
1356		}
 
1357		ix = EXT_FIRST_INDEX(eh);
1358		block = ext4_idx_pblock(ix);
1359		put_bh(bh);
1360	}
1361
1362	bh = sb_bread(inode->i_sb, block);
1363	if (bh == NULL)
1364		return -EIO;
1365	eh = ext_block_hdr(bh);
1366	if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1367		put_bh(bh);
1368		return -EIO;
1369	}
1370	ex = EXT_FIRST_EXTENT(eh);
 
1371	*logical = le32_to_cpu(ex->ee_block);
1372	*phys = ext4_ext_pblock(ex);
1373	put_bh(bh);
 
 
1374	return 0;
1375}
1376
1377/*
1378 * ext4_ext_next_allocated_block:
1379 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1380 * NOTE: it considers block number from index entry as
1381 * allocated block. Thus, index entries have to be consistent
1382 * with leaves.
1383 */
1384static ext4_lblk_t
1385ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1386{
1387	int depth;
1388
1389	BUG_ON(path == NULL);
1390	depth = path->p_depth;
1391
1392	if (depth == 0 && path->p_ext == NULL)
1393		return EXT_MAX_BLOCKS;
1394
1395	while (depth >= 0) {
1396		if (depth == path->p_depth) {
1397			/* leaf */
1398			if (path[depth].p_ext !=
 
1399					EXT_LAST_EXTENT(path[depth].p_hdr))
1400			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1401		} else {
1402			/* index */
1403			if (path[depth].p_idx !=
1404					EXT_LAST_INDEX(path[depth].p_hdr))
1405			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1406		}
1407		depth--;
1408	}
1409
1410	return EXT_MAX_BLOCKS;
1411}
1412
1413/*
1414 * ext4_ext_next_leaf_block:
1415 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1416 */
1417static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1418{
1419	int depth;
1420
1421	BUG_ON(path == NULL);
1422	depth = path->p_depth;
1423
1424	/* zero-tree has no leaf blocks at all */
1425	if (depth == 0)
1426		return EXT_MAX_BLOCKS;
1427
1428	/* go to index block */
1429	depth--;
1430
1431	while (depth >= 0) {
1432		if (path[depth].p_idx !=
1433				EXT_LAST_INDEX(path[depth].p_hdr))
1434			return (ext4_lblk_t)
1435				le32_to_cpu(path[depth].p_idx[1].ei_block);
1436		depth--;
1437	}
1438
1439	return EXT_MAX_BLOCKS;
1440}
1441
1442/*
1443 * ext4_ext_correct_indexes:
1444 * if leaf gets modified and modified extent is first in the leaf,
1445 * then we have to correct all indexes above.
1446 * TODO: do we need to correct tree in all cases?
1447 */
1448static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1449				struct ext4_ext_path *path)
1450{
1451	struct ext4_extent_header *eh;
1452	int depth = ext_depth(inode);
1453	struct ext4_extent *ex;
1454	__le32 border;
1455	int k, err = 0;
1456
1457	eh = path[depth].p_hdr;
1458	ex = path[depth].p_ext;
1459
1460	if (unlikely(ex == NULL || eh == NULL)) {
1461		EXT4_ERROR_INODE(inode,
1462				 "ex %p == NULL or eh %p == NULL", ex, eh);
1463		return -EIO;
1464	}
1465
1466	if (depth == 0) {
1467		/* there is no tree at all */
1468		return 0;
1469	}
1470
1471	if (ex != EXT_FIRST_EXTENT(eh)) {
1472		/* we correct tree if first leaf got modified only */
1473		return 0;
1474	}
1475
1476	/*
1477	 * TODO: we need correction if border is smaller than current one
1478	 */
1479	k = depth - 1;
1480	border = path[depth].p_ext->ee_block;
1481	err = ext4_ext_get_access(handle, inode, path + k);
1482	if (err)
1483		return err;
1484	path[k].p_idx->ei_block = border;
1485	err = ext4_ext_dirty(handle, inode, path + k);
1486	if (err)
1487		return err;
1488
1489	while (k--) {
1490		/* change all left-side indexes */
1491		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1492			break;
1493		err = ext4_ext_get_access(handle, inode, path + k);
1494		if (err)
1495			break;
1496		path[k].p_idx->ei_block = border;
1497		err = ext4_ext_dirty(handle, inode, path + k);
1498		if (err)
1499			break;
1500	}
1501
1502	return err;
1503}
1504
1505int
1506ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1507				struct ext4_extent *ex2)
1508{
1509	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1510
1511	/*
1512	 * Make sure that either both extents are uninitialized, or
1513	 * both are _not_.
 
 
1514	 */
1515	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1516		return 0;
1517
1518	if (ext4_ext_is_uninitialized(ex1))
1519		max_len = EXT_UNINIT_MAX_LEN;
1520	else
1521		max_len = EXT_INIT_MAX_LEN;
1522
1523	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1524	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1525
1526	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1527			le32_to_cpu(ex2->ee_block))
1528		return 0;
1529
1530	/*
1531	 * To allow future support for preallocated extents to be added
1532	 * as an RO_COMPAT feature, refuse to merge to extents if
1533	 * this can result in the top bit of ee_len being set.
1534	 */
1535	if (ext1_ee_len + ext2_ee_len > max_len)
 
 
 
 
 
1536		return 0;
1537#ifdef AGGRESSIVE_TEST
1538	if (ext1_ee_len >= 4)
1539		return 0;
1540#endif
1541
1542	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1543		return 1;
1544	return 0;
1545}
1546
1547/*
1548 * This function tries to merge the "ex" extent to the next extent in the tree.
1549 * It always tries to merge towards right. If you want to merge towards
1550 * left, pass "ex - 1" as argument instead of "ex".
1551 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1552 * 1 if they got merged.
1553 */
1554static int ext4_ext_try_to_merge_right(struct inode *inode,
1555				 struct ext4_ext_path *path,
1556				 struct ext4_extent *ex)
1557{
1558	struct ext4_extent_header *eh;
1559	unsigned int depth, len;
1560	int merge_done = 0;
1561	int uninitialized = 0;
1562
1563	depth = ext_depth(inode);
1564	BUG_ON(path[depth].p_hdr == NULL);
1565	eh = path[depth].p_hdr;
1566
1567	while (ex < EXT_LAST_EXTENT(eh)) {
1568		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1569			break;
1570		/* merge with next extent! */
1571		if (ext4_ext_is_uninitialized(ex))
1572			uninitialized = 1;
1573		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1574				+ ext4_ext_get_actual_len(ex + 1));
1575		if (uninitialized)
1576			ext4_ext_mark_uninitialized(ex);
1577
1578		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1579			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1580				* sizeof(struct ext4_extent);
1581			memmove(ex + 1, ex + 2, len);
1582		}
1583		le16_add_cpu(&eh->eh_entries, -1);
1584		merge_done = 1;
1585		WARN_ON(eh->eh_entries == 0);
1586		if (!eh->eh_entries)
1587			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1588	}
1589
1590	return merge_done;
1591}
1592
1593/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594 * This function tries to merge the @ex extent to neighbours in the tree.
1595 * return 1 if merge left else 0.
1596 */
1597static int ext4_ext_try_to_merge(struct inode *inode,
 
1598				  struct ext4_ext_path *path,
1599				  struct ext4_extent *ex) {
1600	struct ext4_extent_header *eh;
1601	unsigned int depth;
1602	int merge_done = 0;
1603	int ret = 0;
1604
1605	depth = ext_depth(inode);
1606	BUG_ON(path[depth].p_hdr == NULL);
1607	eh = path[depth].p_hdr;
1608
1609	if (ex > EXT_FIRST_EXTENT(eh))
1610		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1611
1612	if (!merge_done)
1613		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1614
1615	return ret;
1616}
1617
1618/*
1619 * check if a portion of the "newext" extent overlaps with an
1620 * existing extent.
1621 *
1622 * If there is an overlap discovered, it updates the length of the newext
1623 * such that there will be no overlap, and then returns 1.
1624 * If there is no overlap found, it returns 0.
1625 */
1626static unsigned int ext4_ext_check_overlap(struct inode *inode,
 
1627					   struct ext4_extent *newext,
1628					   struct ext4_ext_path *path)
1629{
1630	ext4_lblk_t b1, b2;
1631	unsigned int depth, len1;
1632	unsigned int ret = 0;
1633
1634	b1 = le32_to_cpu(newext->ee_block);
1635	len1 = ext4_ext_get_actual_len(newext);
1636	depth = ext_depth(inode);
1637	if (!path[depth].p_ext)
1638		goto out;
1639	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1640
1641	/*
1642	 * get the next allocated block if the extent in the path
1643	 * is before the requested block(s)
1644	 */
1645	if (b2 < b1) {
1646		b2 = ext4_ext_next_allocated_block(path);
1647		if (b2 == EXT_MAX_BLOCKS)
1648			goto out;
 
1649	}
1650
1651	/* check for wrap through zero on extent logical start block*/
1652	if (b1 + len1 < b1) {
1653		len1 = EXT_MAX_BLOCKS - b1;
1654		newext->ee_len = cpu_to_le16(len1);
1655		ret = 1;
1656	}
1657
1658	/* check for overlap */
1659	if (b1 + len1 > b2) {
1660		newext->ee_len = cpu_to_le16(b2 - b1);
1661		ret = 1;
1662	}
1663out:
1664	return ret;
1665}
1666
1667/*
1668 * ext4_ext_insert_extent:
1669 * tries to merge requsted extent into the existing extent or
1670 * inserts requested extent as new one into the tree,
1671 * creating new leaf in the no-space case.
1672 */
1673int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1674				struct ext4_ext_path *path,
1675				struct ext4_extent *newext, int flag)
1676{
1677	struct ext4_extent_header *eh;
1678	struct ext4_extent *ex, *fex;
1679	struct ext4_extent *nearex; /* nearest extent */
1680	struct ext4_ext_path *npath = NULL;
1681	int depth, len, err;
1682	ext4_lblk_t next;
1683	unsigned uninitialized = 0;
1684	int flags = 0;
1685
1686	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1687		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1688		return -EIO;
1689	}
1690	depth = ext_depth(inode);
1691	ex = path[depth].p_ext;
 
1692	if (unlikely(path[depth].p_hdr == NULL)) {
1693		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1694		return -EIO;
1695	}
1696
1697	/* try to insert block into found extent and return */
1698	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1699		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1700		ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1701			  ext4_ext_is_uninitialized(newext),
1702			  ext4_ext_get_actual_len(newext),
1703			  le32_to_cpu(ex->ee_block),
1704			  ext4_ext_is_uninitialized(ex),
1705			  ext4_ext_get_actual_len(ex),
1706			  ext4_ext_pblock(ex));
1707		err = ext4_ext_get_access(handle, inode, path + depth);
1708		if (err)
1709			return err;
1710
1711		/*
1712		 * ext4_can_extents_be_merged should have checked that either
1713		 * both extents are uninitialized, or both aren't. Thus we
1714		 * need to check only one of them here.
 
 
1715		 */
1716		if (ext4_ext_is_uninitialized(ex))
1717			uninitialized = 1;
1718		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719					+ ext4_ext_get_actual_len(newext));
1720		if (uninitialized)
1721			ext4_ext_mark_uninitialized(ex);
1722		eh = path[depth].p_hdr;
1723		nearex = ex;
1724		goto merge;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725	}
1726
1727	depth = ext_depth(inode);
1728	eh = path[depth].p_hdr;
1729	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1730		goto has_space;
1731
1732	/* probably next leaf has space for us? */
1733	fex = EXT_LAST_EXTENT(eh);
1734	next = EXT_MAX_BLOCKS;
1735	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1736		next = ext4_ext_next_leaf_block(path);
1737	if (next != EXT_MAX_BLOCKS) {
1738		ext_debug("next leaf block - %d\n", next);
1739		BUG_ON(npath != NULL);
1740		npath = ext4_ext_find_extent(inode, next, NULL);
1741		if (IS_ERR(npath))
1742			return PTR_ERR(npath);
1743		BUG_ON(npath->p_depth != path->p_depth);
1744		eh = npath[depth].p_hdr;
1745		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1746			ext_debug("next leaf isn't full(%d)\n",
1747				  le16_to_cpu(eh->eh_entries));
1748			path = npath;
1749			goto has_space;
1750		}
1751		ext_debug("next leaf has no free space(%d,%d)\n",
1752			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1753	}
1754
1755	/*
1756	 * There is no free space in the found leaf.
1757	 * We're gonna add a new leaf in the tree.
1758	 */
1759	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1760		flags = EXT4_MB_USE_ROOT_BLOCKS;
1761	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
 
1762	if (err)
1763		goto cleanup;
1764	depth = ext_depth(inode);
1765	eh = path[depth].p_hdr;
1766
1767has_space:
1768	nearex = path[depth].p_ext;
1769
1770	err = ext4_ext_get_access(handle, inode, path + depth);
1771	if (err)
1772		goto cleanup;
1773
1774	if (!nearex) {
1775		/* there is no extent in this leaf, create first one */
1776		ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1777				le32_to_cpu(newext->ee_block),
1778				ext4_ext_pblock(newext),
1779				ext4_ext_is_uninitialized(newext),
1780				ext4_ext_get_actual_len(newext));
1781		path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1782	} else if (le32_to_cpu(newext->ee_block)
 
1783			   > le32_to_cpu(nearex->ee_block)) {
1784/*		BUG_ON(newext->ee_block == nearex->ee_block); */
1785		if (nearex != EXT_LAST_EXTENT(eh)) {
1786			len = EXT_MAX_EXTENT(eh) - nearex;
1787			len = (len - 1) * sizeof(struct ext4_extent);
1788			len = len < 0 ? 0 : len;
1789			ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1790					"move %d from 0x%p to 0x%p\n",
 
 
 
 
 
 
 
1791					le32_to_cpu(newext->ee_block),
1792					ext4_ext_pblock(newext),
1793					ext4_ext_is_uninitialized(newext),
1794					ext4_ext_get_actual_len(newext),
1795					nearex, len, nearex + 1, nearex + 2);
1796			memmove(nearex + 2, nearex + 1, len);
 
 
 
 
 
 
 
 
 
 
 
1797		}
1798		path[depth].p_ext = nearex + 1;
1799	} else {
1800		BUG_ON(newext->ee_block == nearex->ee_block);
1801		len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1802		len = len < 0 ? 0 : len;
1803		ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1804				"move %d from 0x%p to 0x%p\n",
1805				le32_to_cpu(newext->ee_block),
1806				ext4_ext_pblock(newext),
1807				ext4_ext_is_uninitialized(newext),
1808				ext4_ext_get_actual_len(newext),
1809				nearex, len, nearex, nearex + 1);
1810		memmove(nearex + 1, nearex, len);
1811		path[depth].p_ext = nearex;
1812	}
1813
1814	le16_add_cpu(&eh->eh_entries, 1);
1815	nearex = path[depth].p_ext;
1816	nearex->ee_block = newext->ee_block;
1817	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1818	nearex->ee_len = newext->ee_len;
1819
1820merge:
1821	/* try to merge extents to the right */
1822	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1823		ext4_ext_try_to_merge(inode, path, nearex);
1824
1825	/* try to merge extents to the left */
1826
1827	/* time to correct all indexes above */
1828	err = ext4_ext_correct_indexes(handle, inode, path);
1829	if (err)
1830		goto cleanup;
1831
1832	err = ext4_ext_dirty(handle, inode, path + depth);
1833
1834cleanup:
1835	if (npath) {
1836		ext4_ext_drop_refs(npath);
1837		kfree(npath);
1838	}
1839	ext4_ext_invalidate_cache(inode);
1840	return err;
1841}
1842
1843static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1844			       ext4_lblk_t num, ext_prepare_callback func,
1845			       void *cbdata)
1846{
1847	struct ext4_ext_path *path = NULL;
1848	struct ext4_ext_cache cbex;
1849	struct ext4_extent *ex;
1850	ext4_lblk_t next, start = 0, end = 0;
 
1851	ext4_lblk_t last = block + num;
1852	int depth, exists, err = 0;
1853
1854	BUG_ON(func == NULL);
1855	BUG_ON(inode == NULL);
1856
1857	while (block < last && block != EXT_MAX_BLOCKS) {
1858		num = last - block;
1859		/* find extent for this block */
1860		down_read(&EXT4_I(inode)->i_data_sem);
1861		path = ext4_ext_find_extent(inode, block, path);
1862		up_read(&EXT4_I(inode)->i_data_sem);
 
 
 
 
 
 
1863		if (IS_ERR(path)) {
 
1864			err = PTR_ERR(path);
1865			path = NULL;
1866			break;
1867		}
1868
1869		depth = ext_depth(inode);
1870		if (unlikely(path[depth].p_hdr == NULL)) {
 
1871			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1872			err = -EIO;
1873			break;
1874		}
1875		ex = path[depth].p_ext;
1876		next = ext4_ext_next_allocated_block(path);
 
1877
 
1878		exists = 0;
1879		if (!ex) {
1880			/* there is no extent yet, so try to allocate
1881			 * all requested space */
1882			start = block;
1883			end = block + num;
1884		} else if (le32_to_cpu(ex->ee_block) > block) {
1885			/* need to allocate space before found extent */
1886			start = block;
1887			end = le32_to_cpu(ex->ee_block);
1888			if (block + num < end)
1889				end = block + num;
1890		} else if (block >= le32_to_cpu(ex->ee_block)
1891					+ ext4_ext_get_actual_len(ex)) {
1892			/* need to allocate space after found extent */
1893			start = block;
1894			end = block + num;
1895			if (end >= next)
1896				end = next;
1897		} else if (block >= le32_to_cpu(ex->ee_block)) {
1898			/*
1899			 * some part of requested space is covered
1900			 * by found extent
1901			 */
1902			start = block;
1903			end = le32_to_cpu(ex->ee_block)
1904				+ ext4_ext_get_actual_len(ex);
1905			if (block + num < end)
1906				end = block + num;
1907			exists = 1;
1908		} else {
1909			BUG();
1910		}
1911		BUG_ON(end <= start);
1912
1913		if (!exists) {
1914			cbex.ec_block = start;
1915			cbex.ec_len = end - start;
1916			cbex.ec_start = 0;
1917		} else {
1918			cbex.ec_block = le32_to_cpu(ex->ee_block);
1919			cbex.ec_len = ext4_ext_get_actual_len(ex);
1920			cbex.ec_start = ext4_ext_pblock(ex);
 
 
1921		}
1922
1923		if (unlikely(cbex.ec_len == 0)) {
1924			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1925			err = -EIO;
1926			break;
 
 
 
 
 
 
1927		}
1928		err = func(inode, next, &cbex, ex, cbdata);
1929		ext4_ext_drop_refs(path);
1930
1931		if (err < 0)
 
 
1932			break;
 
1933
1934		if (err == EXT_REPEAT)
1935			continue;
1936		else if (err == EXT_BREAK) {
1937			err = 0;
1938			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939		}
1940
1941		if (ext_depth(inode) != depth) {
1942			/* depth was changed. we have to realloc path */
1943			kfree(path);
1944			path = NULL;
 
 
 
 
 
 
 
 
1945		}
1946
1947		block = cbex.ec_block + cbex.ec_len;
1948	}
1949
1950	if (path) {
1951		ext4_ext_drop_refs(path);
1952		kfree(path);
1953	}
1954
1955	return err;
1956}
1957
1958static void
1959ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1960			__u32 len, ext4_fsblk_t start)
1961{
1962	struct ext4_ext_cache *cex;
1963	BUG_ON(len == 0);
1964	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1965	cex = &EXT4_I(inode)->i_cached_extent;
1966	cex->ec_block = block;
1967	cex->ec_len = len;
1968	cex->ec_start = start;
1969	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1970}
1971
1972/*
1973 * ext4_ext_put_gap_in_cache:
1974 * calculate boundaries of the gap that the requested block fits into
1975 * and cache this gap
1976 */
1977static void
1978ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1979				ext4_lblk_t block)
1980{
1981	int depth = ext_depth(inode);
1982	unsigned long len;
1983	ext4_lblk_t lblock;
1984	struct ext4_extent *ex;
1985
1986	ex = path[depth].p_ext;
1987	if (ex == NULL) {
1988		/* there is no extent yet, so gap is [0;-] */
1989		lblock = 0;
1990		len = EXT_MAX_BLOCKS;
 
1991		ext_debug("cache gap(whole file):");
1992	} else if (block < le32_to_cpu(ex->ee_block)) {
1993		lblock = block;
1994		len = le32_to_cpu(ex->ee_block) - block;
1995		ext_debug("cache gap(before): %u [%u:%u]",
1996				block,
1997				le32_to_cpu(ex->ee_block),
1998				 ext4_ext_get_actual_len(ex));
 
 
 
1999	} else if (block >= le32_to_cpu(ex->ee_block)
2000			+ ext4_ext_get_actual_len(ex)) {
2001		ext4_lblk_t next;
2002		lblock = le32_to_cpu(ex->ee_block)
2003			+ ext4_ext_get_actual_len(ex);
2004
2005		next = ext4_ext_next_allocated_block(path);
2006		ext_debug("cache gap(after): [%u:%u] %u",
2007				le32_to_cpu(ex->ee_block),
2008				ext4_ext_get_actual_len(ex),
2009				block);
2010		BUG_ON(next == lblock);
2011		len = next - lblock;
 
 
 
2012	} else {
2013		lblock = len = 0;
2014		BUG();
2015	}
2016
2017	ext_debug(" -> %u:%lu\n", lblock, len);
2018	ext4_ext_put_in_cache(inode, lblock, len, 0);
2019}
2020
2021/*
2022 * ext4_ext_check_cache()
2023 * Checks to see if the given block is in the cache.
2024 * If it is, the cached extent is stored in the given
2025 * cache extent pointer.  If the cached extent is a hole,
2026 * this routine should be used instead of
2027 * ext4_ext_in_cache if the calling function needs to
2028 * know the size of the hole.
2029 *
2030 * @inode: The files inode
2031 * @block: The block to look for in the cache
2032 * @ex:    Pointer where the cached extent will be stored
2033 *         if it contains block
2034 *
2035 * Return 0 if cache is invalid; 1 if the cache is valid
2036 */
2037static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2038	struct ext4_ext_cache *ex){
2039	struct ext4_ext_cache *cex;
2040	struct ext4_sb_info *sbi;
2041	int ret = 0;
2042
2043	/*
2044	 * We borrow i_block_reservation_lock to protect i_cached_extent
2045	 */
2046	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2047	cex = &EXT4_I(inode)->i_cached_extent;
2048	sbi = EXT4_SB(inode->i_sb);
2049
2050	/* has cache valid data? */
2051	if (cex->ec_len == 0)
2052		goto errout;
2053
2054	if (in_range(block, cex->ec_block, cex->ec_len)) {
2055		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2056		ext_debug("%u cached by %u:%u:%llu\n",
2057				block,
2058				cex->ec_block, cex->ec_len, cex->ec_start);
2059		ret = 1;
2060	}
2061errout:
2062	if (!ret)
2063		sbi->extent_cache_misses++;
2064	else
2065		sbi->extent_cache_hits++;
2066	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2067	return ret;
2068}
2069
2070/*
2071 * ext4_ext_in_cache()
2072 * Checks to see if the given block is in the cache.
2073 * If it is, the cached extent is stored in the given
2074 * extent pointer.
2075 *
2076 * @inode: The files inode
2077 * @block: The block to look for in the cache
2078 * @ex:    Pointer where the cached extent will be stored
2079 *         if it contains block
2080 *
2081 * Return 0 if cache is invalid; 1 if the cache is valid
2082 */
2083static int
2084ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2085			struct ext4_extent *ex)
2086{
2087	struct ext4_ext_cache cex;
2088	int ret = 0;
2089
2090	if (ext4_ext_check_cache(inode, block, &cex)) {
2091		ex->ee_block = cpu_to_le32(cex.ec_block);
2092		ext4_ext_store_pblock(ex, cex.ec_start);
2093		ex->ee_len = cpu_to_le16(cex.ec_len);
2094		ret = 1;
2095	}
2096
2097	return ret;
2098}
2099
2100
2101/*
2102 * ext4_ext_rm_idx:
2103 * removes index from the index block.
2104 */
2105static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2106			struct ext4_ext_path *path)
2107{
2108	int err;
2109	ext4_fsblk_t leaf;
2110
2111	/* free index block */
2112	path--;
 
2113	leaf = ext4_idx_pblock(path->p_idx);
2114	if (unlikely(path->p_hdr->eh_entries == 0)) {
2115		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2116		return -EIO;
2117	}
2118	err = ext4_ext_get_access(handle, inode, path);
2119	if (err)
2120		return err;
2121
2122	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2123		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2124		len *= sizeof(struct ext4_extent_idx);
2125		memmove(path->p_idx, path->p_idx + 1, len);
2126	}
2127
2128	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2129	err = ext4_ext_dirty(handle, inode, path);
2130	if (err)
2131		return err;
2132	ext_debug("index is empty, remove it, free block %llu\n", leaf);
 
 
2133	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2134			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
 
 
 
 
 
 
 
 
 
 
 
 
 
2135	return err;
2136}
2137
2138/*
2139 * ext4_ext_calc_credits_for_single_extent:
2140 * This routine returns max. credits that needed to insert an extent
2141 * to the extent tree.
2142 * When pass the actual path, the caller should calculate credits
2143 * under i_data_sem.
2144 */
2145int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2146						struct ext4_ext_path *path)
2147{
2148	if (path) {
2149		int depth = ext_depth(inode);
2150		int ret = 0;
2151
2152		/* probably there is space in leaf? */
2153		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2154				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2155
2156			/*
2157			 *  There are some space in the leaf tree, no
2158			 *  need to account for leaf block credit
2159			 *
2160			 *  bitmaps and block group descriptor blocks
2161			 *  and other metadat blocks still need to be
2162			 *  accounted.
2163			 */
2164			/* 1 bitmap, 1 block group descriptor */
2165			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2166			return ret;
2167		}
2168	}
2169
2170	return ext4_chunk_trans_blocks(inode, nrblocks);
2171}
2172
2173/*
2174 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2175 *
2176 * if nrblocks are fit in a single extent (chunk flag is 1), then
2177 * in the worse case, each tree level index/leaf need to be changed
2178 * if the tree split due to insert a new extent, then the old tree
2179 * index/leaf need to be updated too
2180 *
2181 * If the nrblocks are discontiguous, they could cause
2182 * the whole tree split more than once, but this is really rare.
2183 */
2184int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2185{
2186	int index;
2187	int depth = ext_depth(inode);
 
 
 
 
 
 
2188
2189	if (chunk)
2190		index = depth * 2;
2191	else
2192		index = depth * 3;
2193
2194	return index;
2195}
2196
 
 
 
 
 
 
 
 
 
2197static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2198				struct ext4_extent *ex,
2199				ext4_lblk_t from, ext4_lblk_t to)
 
2200{
 
2201	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2202	int flags = EXT4_FREE_BLOCKS_FORGET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203
2204	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2205		flags |= EXT4_FREE_BLOCKS_METADATA;
2206#ifdef EXTENTS_STATS
2207	{
2208		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2209		spin_lock(&sbi->s_ext_stats_lock);
2210		sbi->s_ext_blocks += ee_len;
2211		sbi->s_ext_extents++;
2212		if (ee_len < sbi->s_ext_min)
2213			sbi->s_ext_min = ee_len;
2214		if (ee_len > sbi->s_ext_max)
2215			sbi->s_ext_max = ee_len;
2216		if (ext_depth(inode) > sbi->s_depth_max)
2217			sbi->s_depth_max = ext_depth(inode);
2218		spin_unlock(&sbi->s_ext_stats_lock);
2219	}
2220#endif
2221	if (from >= le32_to_cpu(ex->ee_block)
2222	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2223		/* tail removal */
2224		ext4_lblk_t num;
2225		ext4_fsblk_t start;
2226
2227		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2228		start = ext4_ext_pblock(ex) + ee_len - num;
2229		ext_debug("free last %u blocks starting %llu\n", num, start);
2230		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2231	} else if (from == le32_to_cpu(ex->ee_block)
2232		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2233		/* head removal */
2234		ext4_lblk_t num;
2235		ext4_fsblk_t start;
2236
2237		num = to - from;
2238		start = ext4_ext_pblock(ex);
2239
2240		ext_debug("free first %u blocks starting %llu\n", num, start);
2241		ext4_free_blocks(handle, inode, 0, start, num, flags);
2242
2243	} else {
2244		printk(KERN_INFO "strange request: removal(2) "
2245				"%u-%u from %u:%u\n",
2246				from, to, le32_to_cpu(ex->ee_block), ee_len);
2247	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248	return 0;
2249}
2250
2251
2252/*
2253 * ext4_ext_rm_leaf() Removes the extents associated with the
2254 * blocks appearing between "start" and "end", and splits the extents
2255 * if "start" and "end" appear in the same extent
2256 *
2257 * @handle: The journal handle
2258 * @inode:  The files inode
2259 * @path:   The path to the leaf
 
 
 
2260 * @start:  The first block to remove
2261 * @end:   The last block to remove
2262 */
2263static int
2264ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2265		struct ext4_ext_path *path, ext4_lblk_t start,
2266		ext4_lblk_t end)
 
2267{
 
2268	int err = 0, correct_index = 0;
2269	int depth = ext_depth(inode), credits;
2270	struct ext4_extent_header *eh;
2271	ext4_lblk_t a, b, block;
2272	unsigned num;
2273	ext4_lblk_t ex_ee_block;
2274	unsigned short ex_ee_len;
2275	unsigned uninitialized = 0;
2276	struct ext4_extent *ex;
2277	struct ext4_map_blocks map;
2278
2279	/* the header must be checked already in ext4_ext_remove_space() */
2280	ext_debug("truncate since %u in leaf\n", start);
2281	if (!path[depth].p_hdr)
2282		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2283	eh = path[depth].p_hdr;
2284	if (unlikely(path[depth].p_hdr == NULL)) {
2285		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2286		return -EIO;
2287	}
2288	/* find where to start removing */
2289	ex = EXT_LAST_EXTENT(eh);
 
 
2290
2291	ex_ee_block = le32_to_cpu(ex->ee_block);
2292	ex_ee_len = ext4_ext_get_actual_len(ex);
2293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294	while (ex >= EXT_FIRST_EXTENT(eh) &&
2295			ex_ee_block + ex_ee_len > start) {
2296
2297		if (ext4_ext_is_uninitialized(ex))
2298			uninitialized = 1;
2299		else
2300			uninitialized = 0;
2301
2302		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2303			 uninitialized, ex_ee_len);
2304		path[depth].p_ext = ex;
2305
2306		a = ex_ee_block > start ? ex_ee_block : start;
2307		b = ex_ee_block+ex_ee_len - 1 < end ?
2308			ex_ee_block+ex_ee_len - 1 : end;
2309
2310		ext_debug("  border %u:%u\n", a, b);
2311
2312		/* If this extent is beyond the end of the hole, skip it */
2313		if (end <= ex_ee_block) {
 
 
 
 
 
 
 
 
 
 
2314			ex--;
2315			ex_ee_block = le32_to_cpu(ex->ee_block);
2316			ex_ee_len = ext4_ext_get_actual_len(ex);
2317			continue;
2318		} else if (a != ex_ee_block &&
2319			b != ex_ee_block + ex_ee_len - 1) {
2320			/*
2321			 * If this is a truncate, then this condition should
2322			 * never happen because at least one of the end points
2323			 * needs to be on the edge of the extent.
2324			 */
2325			if (end == EXT_MAX_BLOCKS - 1) {
2326				ext_debug("  bad truncate %u:%u\n",
2327						start, end);
2328				block = 0;
2329				num = 0;
2330				err = -EIO;
2331				goto out;
2332			}
2333			/*
2334			 * else this is a hole punch, so the extent needs to
2335			 * be split since neither edge of the hole is on the
2336			 * extent edge
2337			 */
2338			else{
2339				map.m_pblk = ext4_ext_pblock(ex);
2340				map.m_lblk = ex_ee_block;
2341				map.m_len = b - ex_ee_block;
2342
2343				err = ext4_split_extent(handle,
2344					inode, path, &map, 0,
2345					EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2346					EXT4_GET_BLOCKS_PRE_IO);
2347
2348				if (err < 0)
2349					goto out;
2350
2351				ex_ee_len = ext4_ext_get_actual_len(ex);
2352
2353				b = ex_ee_block+ex_ee_len - 1 < end ?
2354					ex_ee_block+ex_ee_len - 1 : end;
2355
2356				/* Then remove tail of this extent */
2357				block = ex_ee_block;
2358				num = a - block;
2359			}
2360		} else if (a != ex_ee_block) {
2361			/* remove tail of the extent */
2362			block = ex_ee_block;
2363			num = a - block;
2364		} else if (b != ex_ee_block + ex_ee_len - 1) {
2365			/* remove head of the extent */
2366			block = b;
2367			num =  ex_ee_block + ex_ee_len - b;
2368
2369			/*
2370			 * If this is a truncate, this condition
2371			 * should never happen
2372			 */
2373			if (end == EXT_MAX_BLOCKS - 1) {
2374				ext_debug("  bad truncate %u:%u\n",
2375					start, end);
2376				err = -EIO;
2377				goto out;
2378			}
2379		} else {
2380			/* remove whole extent: excellent! */
2381			block = ex_ee_block;
2382			num = 0;
2383			if (a != ex_ee_block) {
2384				ext_debug("  bad truncate %u:%u\n",
2385					start, end);
2386				err = -EIO;
2387				goto out;
2388			}
2389
2390			if (b != ex_ee_block + ex_ee_len - 1) {
2391				ext_debug("  bad truncate %u:%u\n",
2392					start, end);
2393				err = -EIO;
2394				goto out;
2395			}
2396		}
2397
2398		/*
2399		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2400		 * descriptor) for each block group; assume two block
2401		 * groups plus ex_ee_len/blocks_per_block_group for
2402		 * the worst case
2403		 */
2404		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2405		if (ex == EXT_FIRST_EXTENT(eh)) {
2406			correct_index = 1;
2407			credits += (ext_depth(inode)) + 1;
2408		}
2409		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2410
2411		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2412		if (err)
2413			goto out;
2414
2415		err = ext4_ext_get_access(handle, inode, path + depth);
2416		if (err)
2417			goto out;
2418
2419		err = ext4_remove_blocks(handle, inode, ex, a, b);
 
2420		if (err)
2421			goto out;
2422
2423		if (num == 0) {
2424			/* this extent is removed; mark slot entirely unused */
2425			ext4_ext_store_pblock(ex, 0);
2426		} else if (block != ex_ee_block) {
2427			/*
2428			 * If this was a head removal, then we need to update
2429			 * the physical block since it is now at a different
2430			 * location
2431			 */
2432			ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2433		}
2434
2435		ex->ee_block = cpu_to_le32(block);
2436		ex->ee_len = cpu_to_le16(num);
2437		/*
2438		 * Do not mark uninitialized if all the blocks in the
2439		 * extent have been removed.
2440		 */
2441		if (uninitialized && num)
2442			ext4_ext_mark_uninitialized(ex);
2443
2444		err = ext4_ext_dirty(handle, inode, path + depth);
2445		if (err)
2446			goto out;
2447
2448		/*
2449		 * If the extent was completely released,
2450		 * we need to remove it from the leaf
2451		 */
2452		if (num == 0) {
2453			if (end != EXT_MAX_BLOCKS - 1) {
2454				/*
2455				 * For hole punching, we need to scoot all the
2456				 * extents up when an extent is removed so that
2457				 * we dont have blank extents in the middle
2458				 */
2459				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2460					sizeof(struct ext4_extent));
2461
2462				/* Now get rid of the one at the end */
2463				memset(EXT_LAST_EXTENT(eh), 0,
2464					sizeof(struct ext4_extent));
2465			}
2466			le16_add_cpu(&eh->eh_entries, -1);
2467		}
 
 
 
 
 
2468
2469		ext_debug("new extent: %u:%u:%llu\n", block, num,
2470				ext4_ext_pblock(ex));
2471		ex--;
2472		ex_ee_block = le32_to_cpu(ex->ee_block);
2473		ex_ee_len = ext4_ext_get_actual_len(ex);
2474	}
2475
2476	if (correct_index && eh->eh_entries)
2477		err = ext4_ext_correct_indexes(handle, inode, path);
2478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479	/* if this leaf is free, then we should
2480	 * remove it from index block above */
2481	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2482		err = ext4_ext_rm_idx(handle, inode, path + depth);
2483
2484out:
2485	return err;
2486}
2487
2488/*
2489 * ext4_ext_more_to_rm:
2490 * returns 1 if current index has to be freed (even partial)
2491 */
2492static int
2493ext4_ext_more_to_rm(struct ext4_ext_path *path)
2494{
2495	BUG_ON(path->p_idx == NULL);
2496
2497	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2498		return 0;
2499
2500	/*
2501	 * if truncate on deeper level happened, it wasn't partial,
2502	 * so we have to consider current index for truncation
2503	 */
2504	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2505		return 0;
2506	return 1;
2507}
2508
2509static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
 
2510{
2511	struct super_block *sb = inode->i_sb;
2512	int depth = ext_depth(inode);
2513	struct ext4_ext_path *path;
 
2514	handle_t *handle;
2515	int i, err;
2516
2517	ext_debug("truncate since %u\n", start);
2518
2519	/* probably first extent we're gonna free will be last in block */
2520	handle = ext4_journal_start(inode, depth + 1);
2521	if (IS_ERR(handle))
2522		return PTR_ERR(handle);
2523
2524again:
2525	ext4_ext_invalidate_cache(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526
 
 
 
 
2527	/*
2528	 * We start scanning from right side, freeing all the blocks
2529	 * after i_size and walking into the tree depth-wise.
2530	 */
2531	depth = ext_depth(inode);
2532	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2533	if (path == NULL) {
2534		ext4_journal_stop(handle);
2535		return -ENOMEM;
2536	}
2537	path[0].p_depth = depth;
2538	path[0].p_hdr = ext_inode_hdr(inode);
2539	if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2540		err = -EIO;
2541		goto out;
 
 
 
 
 
 
 
 
 
 
2542	}
2543	i = err = 0;
2544
2545	while (i >= 0 && err == 0) {
2546		if (i == depth) {
2547			/* this is leaf block */
2548			err = ext4_ext_rm_leaf(handle, inode, path,
2549					start, EXT_MAX_BLOCKS - 1);
 
2550			/* root level has p_bh == NULL, brelse() eats this */
2551			brelse(path[i].p_bh);
2552			path[i].p_bh = NULL;
2553			i--;
2554			continue;
2555		}
2556
2557		/* this is index block */
2558		if (!path[i].p_hdr) {
2559			ext_debug("initialize header\n");
2560			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2561		}
2562
2563		if (!path[i].p_idx) {
2564			/* this level hasn't been touched yet */
2565			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2566			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2567			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2568				  path[i].p_hdr,
2569				  le16_to_cpu(path[i].p_hdr->eh_entries));
2570		} else {
2571			/* we were already here, see at next index */
2572			path[i].p_idx--;
2573		}
2574
2575		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2576				i, EXT_FIRST_INDEX(path[i].p_hdr),
2577				path[i].p_idx);
2578		if (ext4_ext_more_to_rm(path + i)) {
2579			struct buffer_head *bh;
2580			/* go to the next level */
2581			ext_debug("move to level %d (block %llu)\n",
2582				  i + 1, ext4_idx_pblock(path[i].p_idx));
2583			memset(path + i + 1, 0, sizeof(*path));
2584			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2585			if (!bh) {
 
 
2586				/* should we reset i_size? */
2587				err = -EIO;
2588				break;
2589			}
 
 
 
2590			if (WARN_ON(i + 1 > depth)) {
2591				err = -EIO;
2592				break;
2593			}
2594			if (ext4_ext_check(inode, ext_block_hdr(bh),
2595							depth - i - 1)) {
2596				err = -EIO;
2597				break;
2598			}
2599			path[i + 1].p_bh = bh;
2600
2601			/* save actual number of indexes since this
2602			 * number is changed at the next iteration */
2603			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2604			i++;
2605		} else {
2606			/* we finished processing this index, go up */
2607			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2608				/* index is empty, remove it;
2609				 * handle must be already prepared by the
2610				 * truncatei_leaf() */
2611				err = ext4_ext_rm_idx(handle, inode, path + i);
2612			}
2613			/* root level has p_bh == NULL, brelse() eats this */
2614			brelse(path[i].p_bh);
2615			path[i].p_bh = NULL;
2616			i--;
2617			ext_debug("return to level %d\n", i);
2618		}
2619	}
2620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621	/* TODO: flexible tree reduction should be here */
2622	if (path->p_hdr->eh_entries == 0) {
2623		/*
2624		 * truncate to zero freed all the tree,
2625		 * so we need to correct eh_depth
2626		 */
2627		err = ext4_ext_get_access(handle, inode, path);
2628		if (err == 0) {
2629			ext_inode_hdr(inode)->eh_depth = 0;
2630			ext_inode_hdr(inode)->eh_max =
2631				cpu_to_le16(ext4_ext_space_root(inode, 0));
2632			err = ext4_ext_dirty(handle, inode, path);
2633		}
2634	}
2635out:
2636	ext4_ext_drop_refs(path);
2637	kfree(path);
2638	if (err == -EAGAIN)
 
2639		goto again;
 
2640	ext4_journal_stop(handle);
2641
2642	return err;
2643}
2644
2645/*
2646 * called at mount time
2647 */
2648void ext4_ext_init(struct super_block *sb)
2649{
2650	/*
2651	 * possible initialization would be here
2652	 */
2653
2654	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2655#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2656		printk(KERN_INFO "EXT4-fs: file extents enabled");
2657#ifdef AGGRESSIVE_TEST
2658		printk(", aggressive tests");
2659#endif
2660#ifdef CHECK_BINSEARCH
2661		printk(", check binsearch");
2662#endif
2663#ifdef EXTENTS_STATS
2664		printk(", stats");
2665#endif
2666		printk("\n");
2667#endif
2668#ifdef EXTENTS_STATS
2669		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2670		EXT4_SB(sb)->s_ext_min = 1 << 30;
2671		EXT4_SB(sb)->s_ext_max = 0;
2672#endif
2673	}
2674}
2675
2676/*
2677 * called at umount time
2678 */
2679void ext4_ext_release(struct super_block *sb)
2680{
2681	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2682		return;
2683
2684#ifdef EXTENTS_STATS
2685	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2686		struct ext4_sb_info *sbi = EXT4_SB(sb);
2687		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2688			sbi->s_ext_blocks, sbi->s_ext_extents,
2689			sbi->s_ext_blocks / sbi->s_ext_extents);
2690		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2691			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2692	}
2693#endif
2694}
2695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2696/* FIXME!! we need to try to merge to left or right after zero-out  */
2697static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2698{
2699	ext4_fsblk_t ee_pblock;
2700	unsigned int ee_len;
2701	int ret;
2702
2703	ee_len    = ext4_ext_get_actual_len(ex);
2704	ee_pblock = ext4_ext_pblock(ex);
2705
2706	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2707	if (ret > 0)
2708		ret = 0;
2709
2710	return ret;
2711}
2712
2713/*
2714 * used by extent splitting.
2715 */
2716#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
2717					due to ENOSPC */
2718#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
2719#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
2720
2721/*
2722 * ext4_split_extent_at() splits an extent at given block.
2723 *
2724 * @handle: the journal handle
2725 * @inode: the file inode
2726 * @path: the path to the extent
2727 * @split: the logical block where the extent is splitted.
2728 * @split_flags: indicates if the extent could be zeroout if split fails, and
2729 *		 the states(init or uninit) of new extents.
2730 * @flags: flags used to insert new extent to extent tree.
2731 *
2732 *
2733 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2734 * of which are deterimined by split_flag.
2735 *
2736 * There are two cases:
2737 *  a> the extent are splitted into two extent.
2738 *  b> split is not needed, and just mark the extent.
2739 *
2740 * return 0 on success.
2741 */
2742static int ext4_split_extent_at(handle_t *handle,
2743			     struct inode *inode,
2744			     struct ext4_ext_path *path,
2745			     ext4_lblk_t split,
2746			     int split_flag,
2747			     int flags)
2748{
2749	ext4_fsblk_t newblock;
2750	ext4_lblk_t ee_block;
2751	struct ext4_extent *ex, newex, orig_ex;
2752	struct ext4_extent *ex2 = NULL;
2753	unsigned int ee_len, depth;
2754	int err = 0;
2755
 
 
 
2756	ext_debug("ext4_split_extents_at: inode %lu, logical"
2757		"block %llu\n", inode->i_ino, (unsigned long long)split);
2758
2759	ext4_ext_show_leaf(inode, path);
2760
2761	depth = ext_depth(inode);
2762	ex = path[depth].p_ext;
2763	ee_block = le32_to_cpu(ex->ee_block);
2764	ee_len = ext4_ext_get_actual_len(ex);
2765	newblock = split - ee_block + ext4_ext_pblock(ex);
2766
2767	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
 
 
 
 
2768
2769	err = ext4_ext_get_access(handle, inode, path + depth);
2770	if (err)
2771		goto out;
2772
2773	if (split == ee_block) {
2774		/*
2775		 * case b: block @split is the block that the extent begins with
2776		 * then we just change the state of the extent, and splitting
2777		 * is not needed.
2778		 */
2779		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2780			ext4_ext_mark_uninitialized(ex);
2781		else
2782			ext4_ext_mark_initialized(ex);
2783
2784		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2785			ext4_ext_try_to_merge(inode, path, ex);
2786
2787		err = ext4_ext_dirty(handle, inode, path + depth);
2788		goto out;
2789	}
2790
2791	/* case a */
2792	memcpy(&orig_ex, ex, sizeof(orig_ex));
2793	ex->ee_len = cpu_to_le16(split - ee_block);
2794	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2795		ext4_ext_mark_uninitialized(ex);
2796
2797	/*
2798	 * path may lead to new leaf, not to original leaf any more
2799	 * after ext4_ext_insert_extent() returns,
2800	 */
2801	err = ext4_ext_dirty(handle, inode, path + depth);
2802	if (err)
2803		goto fix_extent_len;
2804
2805	ex2 = &newex;
2806	ex2->ee_block = cpu_to_le32(split);
2807	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2808	ext4_ext_store_pblock(ex2, newblock);
2809	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2810		ext4_ext_mark_uninitialized(ex2);
2811
2812	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2813	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2814		err = ext4_ext_zeroout(inode, &orig_ex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815		if (err)
2816			goto fix_extent_len;
2817		/* update the extent length and mark as initialized */
2818		ex->ee_len = cpu_to_le32(ee_len);
2819		ext4_ext_try_to_merge(inode, path, ex);
2820		err = ext4_ext_dirty(handle, inode, path + depth);
 
 
 
 
 
 
2821		goto out;
2822	} else if (err)
2823		goto fix_extent_len;
2824
2825out:
2826	ext4_ext_show_leaf(inode, path);
2827	return err;
2828
2829fix_extent_len:
2830	ex->ee_len = orig_ex.ee_len;
2831	ext4_ext_dirty(handle, inode, path + depth);
2832	return err;
2833}
2834
2835/*
2836 * ext4_split_extents() splits an extent and mark extent which is covered
2837 * by @map as split_flags indicates
2838 *
2839 * It may result in splitting the extent into multiple extents (upto three)
2840 * There are three possibilities:
2841 *   a> There is no split required
2842 *   b> Splits in two extents: Split is happening at either end of the extent
2843 *   c> Splits in three extents: Somone is splitting in middle of the extent
2844 *
2845 */
2846static int ext4_split_extent(handle_t *handle,
2847			      struct inode *inode,
2848			      struct ext4_ext_path *path,
2849			      struct ext4_map_blocks *map,
2850			      int split_flag,
2851			      int flags)
2852{
2853	ext4_lblk_t ee_block;
2854	struct ext4_extent *ex;
2855	unsigned int ee_len, depth;
2856	int err = 0;
2857	int uninitialized;
2858	int split_flag1, flags1;
 
2859
2860	depth = ext_depth(inode);
2861	ex = path[depth].p_ext;
2862	ee_block = le32_to_cpu(ex->ee_block);
2863	ee_len = ext4_ext_get_actual_len(ex);
2864	uninitialized = ext4_ext_is_uninitialized(ex);
2865
2866	if (map->m_lblk + map->m_len < ee_block + ee_len) {
2867		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2868			      EXT4_EXT_MAY_ZEROOUT : 0;
2869		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2870		if (uninitialized)
2871			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2872				       EXT4_EXT_MARK_UNINIT2;
 
 
2873		err = ext4_split_extent_at(handle, inode, path,
2874				map->m_lblk + map->m_len, split_flag1, flags1);
2875		if (err)
2876			goto out;
 
 
2877	}
2878
 
 
 
2879	ext4_ext_drop_refs(path);
2880	path = ext4_ext_find_extent(inode, map->m_lblk, path);
2881	if (IS_ERR(path))
2882		return PTR_ERR(path);
 
 
 
 
 
 
 
 
 
2883
2884	if (map->m_lblk >= ee_block) {
2885		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2886			      EXT4_EXT_MAY_ZEROOUT : 0;
2887		if (uninitialized)
2888			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2889		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2890			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
 
2891		err = ext4_split_extent_at(handle, inode, path,
2892				map->m_lblk, split_flag1, flags);
2893		if (err)
2894			goto out;
2895	}
2896
2897	ext4_ext_show_leaf(inode, path);
2898out:
2899	return err ? err : map->m_len;
2900}
2901
2902#define EXT4_EXT_ZERO_LEN 7
2903/*
2904 * This function is called by ext4_ext_map_blocks() if someone tries to write
2905 * to an uninitialized extent. It may result in splitting the uninitialized
2906 * extent into multiple extents (up to three - one initialized and two
2907 * uninitialized).
2908 * There are three possibilities:
2909 *   a> There is no split required: Entire extent should be initialized
2910 *   b> Splits in two extents: Write is happening at either end of the extent
2911 *   c> Splits in three extents: Somone is writing in middle of the extent
 
 
 
 
 
 
 
 
 
 
2912 */
2913static int ext4_ext_convert_to_initialized(handle_t *handle,
2914					   struct inode *inode,
2915					   struct ext4_map_blocks *map,
2916					   struct ext4_ext_path *path)
 
2917{
 
 
2918	struct ext4_map_blocks split_map;
2919	struct ext4_extent zero_ex;
2920	struct ext4_extent *ex;
2921	ext4_lblk_t ee_block, eof_block;
2922	unsigned int allocated, ee_len, depth;
 
2923	int err = 0;
2924	int split_flag = 0;
2925
2926	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2927		"block %llu, max_blocks %u\n", inode->i_ino,
2928		(unsigned long long)map->m_lblk, map->m_len);
2929
 
2930	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2931		inode->i_sb->s_blocksize_bits;
2932	if (eof_block < map->m_lblk + map->m_len)
2933		eof_block = map->m_lblk + map->m_len;
2934
2935	depth = ext_depth(inode);
 
2936	ex = path[depth].p_ext;
2937	ee_block = le32_to_cpu(ex->ee_block);
2938	ee_len = ext4_ext_get_actual_len(ex);
2939	allocated = ee_len - (map->m_lblk - ee_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940
2941	WARN_ON(map->m_lblk < ee_block);
2942	/*
2943	 * It is safe to convert extent to initialized via explicit
2944	 * zeroout only if extent is fully insde i_size or new_size.
2945	 */
2946	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2947
2948	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2949	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2950	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
 
 
 
2951		err = ext4_ext_zeroout(inode, ex);
2952		if (err)
2953			goto out;
 
 
 
2954
2955		err = ext4_ext_get_access(handle, inode, path + depth);
2956		if (err)
2957			goto out;
2958		ext4_ext_mark_initialized(ex);
2959		ext4_ext_try_to_merge(inode, path, ex);
2960		err = ext4_ext_dirty(handle, inode, path + depth);
2961		goto out;
2962	}
2963
2964	/*
2965	 * four cases:
2966	 * 1. split the extent into three extents.
2967	 * 2. split the extent into two extents, zeroout the first half.
2968	 * 3. split the extent into two extents, zeroout the second half.
2969	 * 4. split the extent into two extents with out zeroout.
2970	 */
2971	split_map.m_lblk = map->m_lblk;
2972	split_map.m_len = map->m_len;
2973
2974	if (allocated > map->m_len) {
2975		if (allocated <= EXT4_EXT_ZERO_LEN &&
2976		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2977			/* case 3 */
2978			zero_ex.ee_block =
2979					 cpu_to_le32(map->m_lblk);
2980			zero_ex.ee_len = cpu_to_le16(allocated);
2981			ext4_ext_store_pblock(&zero_ex,
2982				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2983			err = ext4_ext_zeroout(inode, &zero_ex);
2984			if (err)
2985				goto out;
2986			split_map.m_lblk = map->m_lblk;
2987			split_map.m_len = allocated;
2988		} else if ((map->m_lblk - ee_block + map->m_len <
2989			   EXT4_EXT_ZERO_LEN) &&
2990			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2991			/* case 2 */
2992			if (map->m_lblk != ee_block) {
2993				zero_ex.ee_block = ex->ee_block;
2994				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2995							ee_block);
2996				ext4_ext_store_pblock(&zero_ex,
2997						      ext4_ext_pblock(ex));
2998				err = ext4_ext_zeroout(inode, &zero_ex);
2999				if (err)
3000					goto out;
3001			}
3002
3003			split_map.m_lblk = ee_block;
3004			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3005			allocated = map->m_len;
3006		}
3007	}
3008
3009	allocated = ext4_split_extent(handle, inode, path,
3010				       &split_map, split_flag, 0);
3011	if (allocated < 0)
3012		err = allocated;
3013
3014out:
 
 
 
3015	return err ? err : allocated;
3016}
3017
3018/*
3019 * This function is called by ext4_ext_map_blocks() from
3020 * ext4_get_blocks_dio_write() when DIO to write
3021 * to an uninitialized extent.
3022 *
3023 * Writing to an uninitialized extent may result in splitting the uninitialized
3024 * extent into multiple /initialized uninitialized extents (up to three)
3025 * There are three possibilities:
3026 *   a> There is no split required: Entire extent should be uninitialized
3027 *   b> Splits in two extents: Write is happening at either end of the extent
3028 *   c> Splits in three extents: Somone is writing in middle of the extent
3029 *
 
 
3030 * One of more index blocks maybe needed if the extent tree grow after
3031 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3032 * complete, we need to split the uninitialized extent before DIO submit
3033 * the IO. The uninitialized extent called at this time will be split
3034 * into three uninitialized extent(at most). After IO complete, the part
3035 * being filled will be convert to initialized by the end_io callback function
3036 * via ext4_convert_unwritten_extents().
3037 *
3038 * Returns the size of uninitialized extent to be written on success.
3039 */
3040static int ext4_split_unwritten_extents(handle_t *handle,
3041					struct inode *inode,
3042					struct ext4_map_blocks *map,
3043					struct ext4_ext_path *path,
3044					int flags)
3045{
3046	ext4_lblk_t eof_block;
3047	ext4_lblk_t ee_block;
3048	struct ext4_extent *ex;
3049	unsigned int ee_len;
3050	int split_flag = 0, depth;
3051
3052	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3053		"block %llu, max_blocks %u\n", inode->i_ino,
3054		(unsigned long long)map->m_lblk, map->m_len);
3055
3056	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3057		inode->i_sb->s_blocksize_bits;
3058	if (eof_block < map->m_lblk + map->m_len)
3059		eof_block = map->m_lblk + map->m_len;
3060	/*
3061	 * It is safe to convert extent to initialized via explicit
3062	 * zeroout only if extent is fully insde i_size or new_size.
3063	 */
3064	depth = ext_depth(inode);
3065	ex = path[depth].p_ext;
3066	ee_block = le32_to_cpu(ex->ee_block);
3067	ee_len = ext4_ext_get_actual_len(ex);
3068
3069	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3070	split_flag |= EXT4_EXT_MARK_UNINIT2;
3071
 
 
 
 
 
 
3072	flags |= EXT4_GET_BLOCKS_PRE_IO;
3073	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3074}
3075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3076static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3077					      struct inode *inode,
3078					      struct ext4_ext_path *path)
 
3079{
3080	struct ext4_extent *ex;
 
 
3081	int depth;
3082	int err = 0;
3083
3084	depth = ext_depth(inode);
3085	ex = path[depth].p_ext;
 
 
3086
3087	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3088		"block %llu, max_blocks %u\n", inode->i_ino,
3089		(unsigned long long)le32_to_cpu(ex->ee_block),
3090		ext4_ext_get_actual_len(ex));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091
3092	err = ext4_ext_get_access(handle, inode, path + depth);
3093	if (err)
3094		goto out;
3095	/* first mark the extent as initialized */
3096	ext4_ext_mark_initialized(ex);
3097
3098	/* note: ext4_ext_correct_indexes() isn't needed here because
3099	 * borders are not changed
3100	 */
3101	ext4_ext_try_to_merge(inode, path, ex);
3102
3103	/* Mark modified extent as dirty */
3104	err = ext4_ext_dirty(handle, inode, path + depth);
3105out:
3106	ext4_ext_show_leaf(inode, path);
3107	return err;
3108}
3109
3110static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3111			sector_t block, int count)
3112{
3113	int i;
3114	for (i = 0; i < count; i++)
3115                unmap_underlying_metadata(bdev, block + i);
3116}
3117
3118/*
3119 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3120 */
3121static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3122			      ext4_lblk_t lblk,
3123			      struct ext4_ext_path *path,
3124			      unsigned int len)
3125{
3126	int i, depth;
3127	struct ext4_extent_header *eh;
3128	struct ext4_extent *last_ex;
3129
3130	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3131		return 0;
3132
3133	depth = ext_depth(inode);
3134	eh = path[depth].p_hdr;
3135
3136	if (unlikely(!eh->eh_entries)) {
3137		EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3138				 "EOFBLOCKS_FL set");
3139		return -EIO;
3140	}
 
 
3141	last_ex = EXT_LAST_EXTENT(eh);
3142	/*
3143	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3144	 * last block in the last extent in the file.  We test this by
3145	 * first checking to see if the caller to
3146	 * ext4_ext_get_blocks() was interested in the last block (or
3147	 * a block beyond the last block) in the current extent.  If
3148	 * this turns out to be false, we can bail out from this
3149	 * function immediately.
3150	 */
3151	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3152	    ext4_ext_get_actual_len(last_ex))
3153		return 0;
3154	/*
3155	 * If the caller does appear to be planning to write at or
3156	 * beyond the end of the current extent, we then test to see
3157	 * if the current extent is the last extent in the file, by
3158	 * checking to make sure it was reached via the rightmost node
3159	 * at each level of the tree.
3160	 */
3161	for (i = depth-1; i >= 0; i--)
3162		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3163			return 0;
 
3164	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3165	return ext4_mark_inode_dirty(handle, inode);
3166}
3167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168static int
3169ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3170			struct ext4_map_blocks *map,
3171			struct ext4_ext_path *path, int flags,
3172			unsigned int allocated, ext4_fsblk_t newblock)
3173{
3174	int ret = 0;
3175	int err = 0;
3176	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3177
3178	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3179		  "block %llu, max_blocks %u, flags %d, allocated %u",
3180		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3181		  flags, allocated);
3182	ext4_ext_show_leaf(inode, path);
3183
 
 
 
 
 
 
 
 
 
3184	/* get_block() before submit the IO, split the extent */
3185	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3186		ret = ext4_split_unwritten_extents(handle, inode, map,
3187						   path, flags);
 
 
3188		/*
3189		 * Flag the inode(non aio case) or end_io struct (aio case)
3190		 * that this IO needs to conversion to written when IO is
3191		 * completed
3192		 */
3193		if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3194			io->flag = EXT4_IO_END_UNWRITTEN;
3195			atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3196		} else
3197			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 
3198		if (ext4_should_dioread_nolock(inode))
3199			map->m_flags |= EXT4_MAP_UNINIT;
3200		goto out;
3201	}
3202	/* IO end_io complete, convert the filled extent to written */
3203	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3204		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3205							path);
3206		if (ret >= 0) {
3207			ext4_update_inode_fsync_trans(handle, inode, 1);
3208			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3209						 path, map->m_len);
3210		} else
3211			err = ret;
 
 
 
 
 
3212		goto out2;
3213	}
3214	/* buffered IO case */
3215	/*
3216	 * repeat fallocate creation request
3217	 * we already have an unwritten extent
3218	 */
3219	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
 
3220		goto map_out;
 
3221
3222	/* buffered READ or buffered write_begin() lookup */
3223	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3224		/*
3225		 * We have blocks reserved already.  We
3226		 * return allocated blocks so that delalloc
3227		 * won't do block reservation for us.  But
3228		 * the buffer head will be unmapped so that
3229		 * a read from the block returns 0s.
3230		 */
3231		map->m_flags |= EXT4_MAP_UNWRITTEN;
3232		goto out1;
3233	}
3234
3235	/* buffered write, writepage time, convert*/
3236	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3237	if (ret >= 0) {
3238		ext4_update_inode_fsync_trans(handle, inode, 1);
3239		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3240					 map->m_len);
3241		if (err < 0)
3242			goto out2;
3243	}
3244
3245out:
3246	if (ret <= 0) {
3247		err = ret;
3248		goto out2;
3249	} else
3250		allocated = ret;
3251	map->m_flags |= EXT4_MAP_NEW;
3252	/*
3253	 * if we allocated more blocks than requested
3254	 * we need to make sure we unmap the extra block
3255	 * allocated. The actual needed block will get
3256	 * unmapped later when we find the buffer_head marked
3257	 * new.
3258	 */
3259	if (allocated > map->m_len) {
3260		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3261					newblock + map->m_len,
3262					allocated - map->m_len);
3263		allocated = map->m_len;
3264	}
 
3265
3266	/*
3267	 * If we have done fallocate with the offset that is already
3268	 * delayed allocated, we would have block reservation
3269	 * and quota reservation done in the delayed write path.
3270	 * But fallocate would have already updated quota and block
3271	 * count for this offset. So cancel these reservation
3272	 */
3273	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3274		ext4_da_update_reserve_space(inode, allocated, 0);
 
 
 
 
 
 
 
3275
3276map_out:
3277	map->m_flags |= EXT4_MAP_MAPPED;
 
 
 
 
 
 
3278out1:
3279	if (allocated > map->m_len)
3280		allocated = map->m_len;
3281	ext4_ext_show_leaf(inode, path);
3282	map->m_pblk = newblock;
3283	map->m_len = allocated;
3284out2:
3285	if (path) {
3286		ext4_ext_drop_refs(path);
3287		kfree(path);
3288	}
3289	return err ? err : allocated;
3290}
3291
3292/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293 * Block allocation/map/preallocation routine for extents based files
3294 *
3295 *
3296 * Need to be called with
3297 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3298 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3299 *
3300 * return > 0, number of of blocks already mapped/allocated
3301 *          if create == 0 and these are pre-allocated blocks
3302 *          	buffer head is unmapped
3303 *          otherwise blocks are mapped
3304 *
3305 * return = 0, if plain look up failed (blocks have not been allocated)
3306 *          buffer head is unmapped
3307 *
3308 * return < 0, error case.
3309 */
3310int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3311			struct ext4_map_blocks *map, int flags)
3312{
3313	struct ext4_ext_path *path = NULL;
3314	struct ext4_extent newex, *ex;
 
3315	ext4_fsblk_t newblock = 0;
3316	int err = 0, depth, ret;
3317	unsigned int allocated = 0;
3318	unsigned int punched_out = 0;
3319	unsigned int result = 0;
3320	struct ext4_allocation_request ar;
3321	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3322	struct ext4_map_blocks punch_map;
 
3323
3324	ext_debug("blocks %u/%u requested for inode %lu\n",
3325		  map->m_lblk, map->m_len, inode->i_ino);
3326	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3327
3328	/* check in cache */
3329	if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3330		ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3331		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3332			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3333				/*
3334				 * block isn't allocated yet and
3335				 * user doesn't want to allocate it
3336				 */
3337				goto out2;
3338			}
3339			/* we should allocate requested block */
3340		} else {
3341			/* block is already allocated */
3342			newblock = map->m_lblk
3343				   - le32_to_cpu(newex.ee_block)
3344				   + ext4_ext_pblock(&newex);
3345			/* number of remaining blocks in the extent */
3346			allocated = ext4_ext_get_actual_len(&newex) -
3347				(map->m_lblk - le32_to_cpu(newex.ee_block));
3348			goto out;
3349		}
3350	}
3351
3352	/* find extent for this block */
3353	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3354	if (IS_ERR(path)) {
3355		err = PTR_ERR(path);
3356		path = NULL;
3357		goto out2;
3358	}
3359
3360	depth = ext_depth(inode);
3361
3362	/*
3363	 * consistent leaf must not be empty;
3364	 * this situation is possible, though, _during_ tree modification;
3365	 * this is why assert can't be put in ext4_ext_find_extent()
3366	 */
3367	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3368		EXT4_ERROR_INODE(inode, "bad extent address "
3369				 "lblock: %lu, depth: %d pblock %lld",
3370				 (unsigned long) map->m_lblk, depth,
3371				 path[depth].p_block);
3372		err = -EIO;
3373		goto out2;
3374	}
3375
3376	ex = path[depth].p_ext;
3377	if (ex) {
3378		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3379		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3380		unsigned short ee_len;
3381
 
3382		/*
3383		 * Uninitialized extents are treated as holes, except that
3384		 * we split out initialized portions during a write.
3385		 */
3386		ee_len = ext4_ext_get_actual_len(ex);
 
 
 
3387		/* if found extent covers block, simply return it */
3388		if (in_range(map->m_lblk, ee_block, ee_len)) {
3389			newblock = map->m_lblk - ee_block + ee_start;
3390			/* number of remaining blocks in the extent */
3391			allocated = ee_len - (map->m_lblk - ee_block);
3392			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3393				  ee_block, ee_len, newblock);
3394
3395			if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3396				/*
3397				 * Do not put uninitialized extent
3398				 * in the cache
3399				 */
3400				if (!ext4_ext_is_uninitialized(ex)) {
3401					ext4_ext_put_in_cache(inode, ee_block,
3402						ee_len, ee_start);
3403					goto out;
3404				}
3405				ret = ext4_ext_handle_uninitialized_extents(
3406					handle, inode, map, path, flags,
3407					allocated, newblock);
3408				return ret;
3409			}
3410
3411			/*
3412			 * Punch out the map length, but only to the
3413			 * end of the extent
3414			 */
3415			punched_out = allocated < map->m_len ?
3416				allocated : map->m_len;
3417
3418			/*
3419			 * Sense extents need to be converted to
3420			 * uninitialized, they must fit in an
3421			 * uninitialized extent
3422			 */
3423			if (punched_out > EXT_UNINIT_MAX_LEN)
3424				punched_out = EXT_UNINIT_MAX_LEN;
3425
3426			punch_map.m_lblk = map->m_lblk;
3427			punch_map.m_pblk = newblock;
3428			punch_map.m_len = punched_out;
3429			punch_map.m_flags = 0;
3430
3431			/* Check to see if the extent needs to be split */
3432			if (punch_map.m_len != ee_len ||
3433				punch_map.m_lblk != ee_block) {
3434
3435				ret = ext4_split_extent(handle, inode,
3436				path, &punch_map, 0,
3437				EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3438				EXT4_GET_BLOCKS_PRE_IO);
3439
3440				if (ret < 0) {
3441					err = ret;
3442					goto out2;
3443				}
3444				/*
3445				 * find extent for the block at
3446				 * the start of the hole
3447				 */
3448				ext4_ext_drop_refs(path);
3449				kfree(path);
3450
3451				path = ext4_ext_find_extent(inode,
3452				map->m_lblk, NULL);
3453				if (IS_ERR(path)) {
3454					err = PTR_ERR(path);
3455					path = NULL;
3456					goto out2;
3457				}
3458
3459				depth = ext_depth(inode);
3460				ex = path[depth].p_ext;
3461				ee_len = ext4_ext_get_actual_len(ex);
3462				ee_block = le32_to_cpu(ex->ee_block);
3463				ee_start = ext4_ext_pblock(ex);
3464
3465			}
3466
3467			ext4_ext_mark_uninitialized(ex);
3468
3469			ext4_ext_invalidate_cache(inode);
3470
3471			err = ext4_ext_rm_leaf(handle, inode, path,
3472				map->m_lblk, map->m_lblk + punched_out);
3473
3474			if (!err && path->p_hdr->eh_entries == 0) {
3475				/*
3476				 * Punch hole freed all of this sub tree,
3477				 * so we need to correct eh_depth
3478				 */
3479				err = ext4_ext_get_access(handle, inode, path);
3480				if (err == 0) {
3481					ext_inode_hdr(inode)->eh_depth = 0;
3482					ext_inode_hdr(inode)->eh_max =
3483					cpu_to_le16(ext4_ext_space_root(
3484						inode, 0));
3485
3486					err = ext4_ext_dirty(
3487						handle, inode, path);
3488				}
3489			}
3490
 
 
 
 
 
 
 
3491			goto out2;
3492		}
3493	}
3494
 
 
 
 
3495	/*
3496	 * requested block isn't allocated yet;
3497	 * we couldn't try to create block if create flag is zero
3498	 */
3499	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3500		/*
3501		 * put just found gap into cache to speed up
3502		 * subsequent requests
3503		 */
3504		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
 
3505		goto out2;
3506	}
 
3507	/*
3508	 * Okay, we need to do block allocation.
3509	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510
3511	/* find neighbour allocated blocks */
3512	ar.lleft = map->m_lblk;
3513	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3514	if (err)
3515		goto out2;
3516	ar.lright = map->m_lblk;
3517	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
 
3518	if (err)
3519		goto out2;
3520
 
 
 
 
 
 
 
 
 
 
3521	/*
3522	 * See if request is beyond maximum number of blocks we can have in
3523	 * a single extent. For an initialized extent this limit is
3524	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3525	 * EXT_UNINIT_MAX_LEN.
3526	 */
3527	if (map->m_len > EXT_INIT_MAX_LEN &&
3528	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3529		map->m_len = EXT_INIT_MAX_LEN;
3530	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3531		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3532		map->m_len = EXT_UNINIT_MAX_LEN;
3533
3534	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3535	newex.ee_block = cpu_to_le32(map->m_lblk);
3536	newex.ee_len = cpu_to_le16(map->m_len);
3537	err = ext4_ext_check_overlap(inode, &newex, path);
3538	if (err)
3539		allocated = ext4_ext_get_actual_len(&newex);
3540	else
3541		allocated = map->m_len;
3542
3543	/* allocate new block */
3544	ar.inode = inode;
3545	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3546	ar.logical = map->m_lblk;
3547	ar.len = allocated;
 
 
 
 
 
 
 
 
 
 
 
3548	if (S_ISREG(inode->i_mode))
3549		ar.flags = EXT4_MB_HINT_DATA;
3550	else
3551		/* disable in-core preallocation for non-regular files */
3552		ar.flags = 0;
3553	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3554		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3555	newblock = ext4_mb_new_blocks(handle, &ar, &err);
3556	if (!newblock)
3557		goto out2;
3558	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3559		  ar.goal, newblock, allocated);
 
 
 
 
 
3560
 
3561	/* try to insert new extent into found leaf and return */
3562	ext4_ext_store_pblock(&newex, newblock);
3563	newex.ee_len = cpu_to_le16(ar.len);
3564	/* Mark uninitialized */
3565	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3566		ext4_ext_mark_uninitialized(&newex);
 
3567		/*
3568		 * io_end structure was created for every IO write to an
3569		 * uninitialized extent. To avoid unnecessary conversion,
3570		 * here we flag the IO that really needs the conversion.
3571		 * For non asycn direct IO case, flag the inode state
3572		 * that we need to perform conversion when IO is done.
3573		 */
3574		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3575			if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3576				io->flag = EXT4_IO_END_UNWRITTEN;
3577				atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3578			} else
3579				ext4_set_inode_state(inode,
3580						     EXT4_STATE_DIO_UNWRITTEN);
3581		}
3582		if (ext4_should_dioread_nolock(inode))
3583			map->m_flags |= EXT4_MAP_UNINIT;
3584	}
3585
3586	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
 
 
 
3587	if (!err)
3588		err = ext4_ext_insert_extent(handle, inode, path,
3589					     &newex, flags);
3590	if (err) {
 
 
 
 
 
 
 
 
 
3591		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3592			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3593		/* free data blocks we just allocated */
3594		/* not a good idea to call discard here directly,
3595		 * but otherwise we'd need to call it every free() */
3596		ext4_discard_preallocations(inode);
3597		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3598				 ext4_ext_get_actual_len(&newex), fb_flags);
3599		goto out2;
3600	}
3601
3602	/* previous routine could use block we allocated */
3603	newblock = ext4_ext_pblock(&newex);
3604	allocated = ext4_ext_get_actual_len(&newex);
3605	if (allocated > map->m_len)
3606		allocated = map->m_len;
3607	map->m_flags |= EXT4_MAP_NEW;
3608
3609	/*
3610	 * Update reserved blocks/metadata blocks after successful
3611	 * block allocation which had been deferred till now.
3612	 */
3613	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3614		ext4_da_update_reserve_space(inode, allocated, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615
3616	/*
3617	 * Cache the extent and update transaction to commit on fdatasync only
3618	 * when it is _not_ an uninitialized extent.
3619	 */
3620	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3621		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3622		ext4_update_inode_fsync_trans(handle, inode, 1);
3623	} else
3624		ext4_update_inode_fsync_trans(handle, inode, 0);
3625out:
3626	if (allocated > map->m_len)
3627		allocated = map->m_len;
3628	ext4_ext_show_leaf(inode, path);
3629	map->m_flags |= EXT4_MAP_MAPPED;
3630	map->m_pblk = newblock;
3631	map->m_len = allocated;
3632out2:
3633	if (path) {
3634		ext4_ext_drop_refs(path);
3635		kfree(path);
3636	}
3637	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3638		newblock, map->m_len, err ? err : allocated);
3639
3640	result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3641			punched_out : allocated;
3642
3643	return err ? err : result;
3644}
3645
3646void ext4_ext_truncate(struct inode *inode)
3647{
3648	struct address_space *mapping = inode->i_mapping;
3649	struct super_block *sb = inode->i_sb;
3650	ext4_lblk_t last_block;
3651	handle_t *handle;
3652	int err = 0;
3653
3654	/*
3655	 * finish any pending end_io work so we won't run the risk of
3656	 * converting any truncated blocks to initialized later
3657	 */
3658	ext4_flush_completed_IO(inode);
3659
3660	/*
3661	 * probably first extent we're gonna free will be last in block
3662	 */
3663	err = ext4_writepage_trans_blocks(inode);
3664	handle = ext4_journal_start(inode, err);
3665	if (IS_ERR(handle))
3666		return;
3667
3668	if (inode->i_size & (sb->s_blocksize - 1))
3669		ext4_block_truncate_page(handle, mapping, inode->i_size);
3670
3671	if (ext4_orphan_add(handle, inode))
3672		goto out_stop;
3673
3674	down_write(&EXT4_I(inode)->i_data_sem);
3675	ext4_ext_invalidate_cache(inode);
3676
3677	ext4_discard_preallocations(inode);
3678
3679	/*
3680	 * TODO: optimization is possible here.
3681	 * Probably we need not scan at all,
3682	 * because page truncation is enough.
3683	 */
3684
3685	/* we have to know where to truncate from in crash case */
3686	EXT4_I(inode)->i_disksize = inode->i_size;
3687	ext4_mark_inode_dirty(handle, inode);
3688
3689	last_block = (inode->i_size + sb->s_blocksize - 1)
3690			>> EXT4_BLOCK_SIZE_BITS(sb);
3691	err = ext4_ext_remove_space(inode, last_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692
3693	/* In a multi-transaction truncate, we only make the final
3694	 * transaction synchronous.
3695	 */
3696	if (IS_SYNC(inode))
3697		ext4_handle_sync(handle);
 
 
 
 
 
3698
3699	up_write(&EXT4_I(inode)->i_data_sem);
 
 
 
 
 
 
 
3700
3701out_stop:
3702	/*
3703	 * If this was a simple ftruncate() and the file will remain alive,
3704	 * then we need to clear up the orphan record which we created above.
3705	 * However, if this was a real unlink then we were called by
3706	 * ext4_delete_inode(), and we allow that function to clean up the
3707	 * orphan info for us.
3708	 */
3709	if (inode->i_nlink)
3710		ext4_orphan_del(handle, inode);
3711
3712	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3713	ext4_mark_inode_dirty(handle, inode);
3714	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715}
3716
3717static void ext4_falloc_update_inode(struct inode *inode,
3718				int mode, loff_t new_size, int update_ctime)
3719{
3720	struct timespec now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721
3722	if (update_ctime) {
3723		now = current_fs_time(inode->i_sb);
3724		if (!timespec_equal(&inode->i_ctime, &now))
3725			inode->i_ctime = now;
 
 
 
 
 
3726	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3727	/*
3728	 * Update only when preallocation was requested beyond
3729	 * the file size.
3730	 */
3731	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732		if (new_size > i_size_read(inode))
3733			i_size_write(inode, new_size);
3734		if (new_size > EXT4_I(inode)->i_disksize)
3735			ext4_update_i_disksize(inode, new_size);
3736	} else {
3737		/*
3738		 * Mark that we allocate beyond EOF so the subsequent truncate
3739		 * can proceed even if the new size is the same as i_size.
3740		 */
3741		if (new_size > i_size_read(inode))
3742			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3743	}
3744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3745}
3746
3747/*
3748 * preallocate space for a file. This implements ext4's fallocate file
3749 * operation, which gets called from sys_fallocate system call.
3750 * For block-mapped files, posix_fallocate should fall back to the method
3751 * of writing zeroes to the required new blocks (the same behavior which is
3752 * expected for file systems which do not support fallocate() system call).
3753 */
3754long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3755{
3756	struct inode *inode = file->f_path.dentry->d_inode;
3757	handle_t *handle;
3758	loff_t new_size;
3759	unsigned int max_blocks;
3760	int ret = 0;
3761	int ret2 = 0;
3762	int retries = 0;
3763	struct ext4_map_blocks map;
3764	unsigned int credits, blkbits = inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
3765
3766	/*
3767	 * currently supporting (pre)allocate mode for extent-based
3768	 * files _only_
3769	 */
3770	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3771		return -EOPNOTSUPP;
3772
3773	/* Return error if mode is not supported */
3774	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3775		return -EOPNOTSUPP;
3776
3777	if (mode & FALLOC_FL_PUNCH_HOLE)
3778		return ext4_punch_hole(file, offset, len);
3779
3780	trace_ext4_fallocate_enter(inode, offset, len, mode);
3781	map.m_lblk = offset >> blkbits;
3782	/*
3783	 * We can't just convert len to max_blocks because
3784	 * If blocksize = 4096 offset = 3072 and len = 2048
3785	 */
3786	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3787		- map.m_lblk;
3788	/*
3789	 * credits to insert 1 extent into extent tree
3790	 */
3791	credits = ext4_chunk_trans_blocks(inode, max_blocks);
 
3792	mutex_lock(&inode->i_mutex);
3793	ret = inode_newsize_ok(inode, (len + offset));
3794	if (ret) {
3795		mutex_unlock(&inode->i_mutex);
3796		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3797		return ret;
3798	}
3799retry:
3800	while (ret >= 0 && ret < max_blocks) {
3801		map.m_lblk = map.m_lblk + ret;
3802		map.m_len = max_blocks = max_blocks - ret;
3803		handle = ext4_journal_start(inode, credits);
3804		if (IS_ERR(handle)) {
3805			ret = PTR_ERR(handle);
3806			break;
3807		}
3808		ret = ext4_map_blocks(handle, inode, &map,
3809				      EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3810				      EXT4_GET_BLOCKS_NO_NORMALIZE);
3811		if (ret <= 0) {
3812#ifdef EXT4FS_DEBUG
3813			WARN_ON(ret <= 0);
3814			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3815				    "returned error inode#%lu, block=%u, "
3816				    "max_blocks=%u", __func__,
3817				    inode->i_ino, map.m_lblk, max_blocks);
3818#endif
3819			ext4_mark_inode_dirty(handle, inode);
3820			ret2 = ext4_journal_stop(handle);
3821			break;
3822		}
3823		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3824						blkbits) >> blkbits))
3825			new_size = offset + len;
3826		else
3827			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
3828
3829		ext4_falloc_update_inode(inode, mode, new_size,
3830					 (map.m_flags & EXT4_MAP_NEW));
3831		ext4_mark_inode_dirty(handle, inode);
3832		ret2 = ext4_journal_stop(handle);
3833		if (ret2)
3834			break;
3835	}
3836	if (ret == -ENOSPC &&
3837			ext4_should_retry_alloc(inode->i_sb, &retries)) {
3838		ret = 0;
3839		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3840	}
 
 
 
 
 
 
3841	mutex_unlock(&inode->i_mutex);
3842	trace_ext4_fallocate_exit(inode, offset, max_blocks,
3843				ret > 0 ? ret2 : ret);
3844	return ret > 0 ? ret2 : ret;
3845}
3846
3847/*
3848 * This function convert a range of blocks to written extents
3849 * The caller of this function will pass the start offset and the size.
3850 * all unwritten extents within this range will be converted to
3851 * written extents.
3852 *
3853 * This function is called from the direct IO end io call back
3854 * function, to convert the fallocated extents after IO is completed.
3855 * Returns 0 on success.
3856 */
3857int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3858				    ssize_t len)
3859{
3860	handle_t *handle;
3861	unsigned int max_blocks;
3862	int ret = 0;
3863	int ret2 = 0;
3864	struct ext4_map_blocks map;
3865	unsigned int credits, blkbits = inode->i_blkbits;
3866
3867	map.m_lblk = offset >> blkbits;
3868	/*
3869	 * We can't just convert len to max_blocks because
3870	 * If blocksize = 4096 offset = 3072 and len = 2048
3871	 */
3872	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3873		      map.m_lblk);
3874	/*
3875	 * credits to insert 1 extent into extent tree
3876	 */
3877	credits = ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
3878	while (ret >= 0 && ret < max_blocks) {
3879		map.m_lblk += ret;
3880		map.m_len = (max_blocks -= ret);
3881		handle = ext4_journal_start(inode, credits);
3882		if (IS_ERR(handle)) {
3883			ret = PTR_ERR(handle);
3884			break;
 
 
 
3885		}
3886		ret = ext4_map_blocks(handle, inode, &map,
3887				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3888		if (ret <= 0) {
3889			WARN_ON(ret <= 0);
3890			printk(KERN_ERR "%s: ext4_ext_map_blocks "
3891				    "returned error inode#%lu, block=%u, "
3892				    "max_blocks=%u", __func__,
3893				    inode->i_ino, map.m_lblk, map.m_len);
3894		}
3895		ext4_mark_inode_dirty(handle, inode);
3896		ret2 = ext4_journal_stop(handle);
3897		if (ret <= 0 || ret2 )
 
3898			break;
3899	}
 
 
3900	return ret > 0 ? ret2 : ret;
3901}
3902
3903/*
3904 * Callback function called for each extent to gather FIEMAP information.
 
 
 
 
 
 
3905 */
3906static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3907		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
3908		       void *data)
3909{
3910	__u64	logical;
3911	__u64	physical;
3912	__u64	length;
3913	__u32	flags = 0;
3914	int		ret = 0;
3915	struct fiemap_extent_info *fieinfo = data;
3916	unsigned char blksize_bits;
3917
3918	blksize_bits = inode->i_sb->s_blocksize_bits;
3919	logical = (__u64)newex->ec_block << blksize_bits;
 
3920
3921	if (newex->ec_start == 0) {
3922		/*
3923		 * No extent in extent-tree contains block @newex->ec_start,
3924		 * then the block may stay in 1)a hole or 2)delayed-extent.
3925		 *
3926		 * Holes or delayed-extents are processed as follows.
3927		 * 1. lookup dirty pages with specified range in pagecache.
3928		 *    If no page is got, then there is no delayed-extent and
3929		 *    return with EXT_CONTINUE.
3930		 * 2. find the 1st mapped buffer,
3931		 * 3. check if the mapped buffer is both in the request range
3932		 *    and a delayed buffer. If not, there is no delayed-extent,
3933		 *    then return.
3934		 * 4. a delayed-extent is found, the extent will be collected.
3935		 */
3936		ext4_lblk_t	end = 0;
3937		pgoff_t		last_offset;
3938		pgoff_t		offset;
3939		pgoff_t		index;
3940		pgoff_t		start_index = 0;
3941		struct page	**pages = NULL;
3942		struct buffer_head *bh = NULL;
3943		struct buffer_head *head = NULL;
3944		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3945
3946		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3947		if (pages == NULL)
3948			return -ENOMEM;
3949
3950		offset = logical >> PAGE_SHIFT;
3951repeat:
3952		last_offset = offset;
3953		head = NULL;
3954		ret = find_get_pages_tag(inode->i_mapping, &offset,
3955					PAGECACHE_TAG_DIRTY, nr_pages, pages);
3956
3957		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3958			/* First time, try to find a mapped buffer. */
3959			if (ret == 0) {
3960out:
3961				for (index = 0; index < ret; index++)
3962					page_cache_release(pages[index]);
3963				/* just a hole. */
3964				kfree(pages);
3965				return EXT_CONTINUE;
3966			}
3967			index = 0;
3968
3969next_page:
3970			/* Try to find the 1st mapped buffer. */
3971			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3972				  blksize_bits;
3973			if (!page_has_buffers(pages[index]))
3974				goto out;
3975			head = page_buffers(pages[index]);
3976			if (!head)
3977				goto out;
3978
3979			index++;
3980			bh = head;
3981			do {
3982				if (end >= newex->ec_block +
3983					newex->ec_len)
3984					/* The buffer is out of
3985					 * the request range.
3986					 */
3987					goto out;
3988
3989				if (buffer_mapped(bh) &&
3990				    end >= newex->ec_block) {
3991					start_index = index - 1;
3992					/* get the 1st mapped buffer. */
3993					goto found_mapped_buffer;
3994				}
3995
3996				bh = bh->b_this_page;
3997				end++;
3998			} while (bh != head);
3999
4000			/* No mapped buffer in the range found in this page,
4001			 * We need to look up next page.
4002			 */
4003			if (index >= ret) {
4004				/* There is no page left, but we need to limit
4005				 * newex->ec_len.
4006				 */
4007				newex->ec_len = end - newex->ec_block;
4008				goto out;
4009			}
4010			goto next_page;
4011		} else {
4012			/*Find contiguous delayed buffers. */
4013			if (ret > 0 && pages[0]->index == last_offset)
4014				head = page_buffers(pages[0]);
4015			bh = head;
4016			index = 1;
4017			start_index = 0;
4018		}
4019
4020found_mapped_buffer:
4021		if (bh != NULL && buffer_delay(bh)) {
4022			/* 1st or contiguous delayed buffer found. */
4023			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4024				/*
4025				 * 1st delayed buffer found, record
4026				 * the start of extent.
4027				 */
4028				flags |= FIEMAP_EXTENT_DELALLOC;
4029				newex->ec_block = end;
4030				logical = (__u64)end << blksize_bits;
4031			}
4032			/* Find contiguous delayed buffers. */
4033			do {
4034				if (!buffer_delay(bh))
4035					goto found_delayed_extent;
4036				bh = bh->b_this_page;
4037				end++;
4038			} while (bh != head);
4039
4040			for (; index < ret; index++) {
4041				if (!page_has_buffers(pages[index])) {
4042					bh = NULL;
4043					break;
4044				}
4045				head = page_buffers(pages[index]);
4046				if (!head) {
4047					bh = NULL;
4048					break;
4049				}
4050
4051				if (pages[index]->index !=
4052				    pages[start_index]->index + index
4053				    - start_index) {
4054					/* Blocks are not contiguous. */
4055					bh = NULL;
4056					break;
4057				}
4058				bh = head;
4059				do {
4060					if (!buffer_delay(bh))
4061						/* Delayed-extent ends. */
4062						goto found_delayed_extent;
4063					bh = bh->b_this_page;
4064					end++;
4065				} while (bh != head);
4066			}
4067		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4068			/* a hole found. */
4069			goto out;
4070
4071found_delayed_extent:
4072		newex->ec_len = min(end - newex->ec_block,
4073						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4074		if (ret == nr_pages && bh != NULL &&
4075			newex->ec_len < EXT_INIT_MAX_LEN &&
4076			buffer_delay(bh)) {
4077			/* Have not collected an extent and continue. */
4078			for (index = 0; index < ret; index++)
4079				page_cache_release(pages[index]);
4080			goto repeat;
4081		}
4082
4083		for (index = 0; index < ret; index++)
4084			page_cache_release(pages[index]);
4085		kfree(pages);
4086	}
4087
4088	physical = (__u64)newex->ec_start << blksize_bits;
4089	length =   (__u64)newex->ec_len << blksize_bits;
4090
4091	if (ex && ext4_ext_is_uninitialized(ex))
4092		flags |= FIEMAP_EXTENT_UNWRITTEN;
4093
4094	if (next == EXT_MAX_BLOCKS)
4095		flags |= FIEMAP_EXTENT_LAST;
4096
4097	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4098					length, flags);
4099	if (ret < 0)
4100		return ret;
4101	if (ret == 1)
4102		return EXT_BREAK;
4103	return EXT_CONTINUE;
4104}
4105
4106/* fiemap flags we can handle specified here */
4107#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4108
4109static int ext4_xattr_fiemap(struct inode *inode,
4110				struct fiemap_extent_info *fieinfo)
4111{
4112	__u64 physical = 0;
4113	__u64 length;
4114	__u32 flags = FIEMAP_EXTENT_LAST;
4115	int blockbits = inode->i_sb->s_blocksize_bits;
4116	int error = 0;
4117
4118	/* in-inode? */
4119	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4120		struct ext4_iloc iloc;
4121		int offset;	/* offset of xattr in inode */
4122
4123		error = ext4_get_inode_loc(inode, &iloc);
4124		if (error)
4125			return error;
4126		physical = iloc.bh->b_blocknr << blockbits;
4127		offset = EXT4_GOOD_OLD_INODE_SIZE +
4128				EXT4_I(inode)->i_extra_isize;
4129		physical += offset;
4130		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4131		flags |= FIEMAP_EXTENT_DATA_INLINE;
4132		brelse(iloc.bh);
4133	} else { /* external block */
4134		physical = EXT4_I(inode)->i_file_acl << blockbits;
4135		length = inode->i_sb->s_blocksize;
4136	}
4137
4138	if (physical)
4139		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4140						length, flags);
4141	return (error < 0 ? error : 0);
4142}
4143
4144/*
4145 * ext4_ext_punch_hole
4146 *
4147 * Punches a hole of "length" bytes in a file starting
4148 * at byte "offset"
4149 *
4150 * @inode:  The inode of the file to punch a hole in
4151 * @offset: The starting byte offset of the hole
4152 * @length: The length of the hole
4153 *
4154 * Returns the number of blocks removed or negative on err
4155 */
4156int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4157{
4158	struct inode *inode = file->f_path.dentry->d_inode;
4159	struct super_block *sb = inode->i_sb;
4160	struct ext4_ext_cache cache_ex;
4161	ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4162	struct address_space *mapping = inode->i_mapping;
4163	struct ext4_map_blocks map;
4164	handle_t *handle;
4165	loff_t first_block_offset, last_block_offset, block_len;
4166	loff_t first_page, last_page, first_page_offset, last_page_offset;
4167	int ret, credits, blocks_released, err = 0;
4168
4169	first_block = (offset + sb->s_blocksize - 1) >>
4170		EXT4_BLOCK_SIZE_BITS(sb);
4171	last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4172
4173	first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4174	last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4175
4176	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4177	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
4178
4179	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4180	last_page_offset = last_page << PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4181
4182	/*
4183	 * Write out all dirty pages to avoid race conditions
4184	 * Then release them.
 
 
4185	 */
4186	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4187		err = filemap_write_and_wait_range(mapping,
4188			first_page_offset == 0 ? 0 : first_page_offset-1,
4189			last_page_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4190
 
 
 
 
 
4191			if (err)
4192				return err;
4193	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4194
4195	/* Now release the pages */
4196	if (last_page_offset > first_page_offset) {
4197		truncate_inode_pages_range(mapping, first_page_offset,
4198					   last_page_offset-1);
 
4199	}
4200
4201	/* finish any pending end_io work */
4202	ext4_flush_completed_IO(inode);
 
4203
4204	credits = ext4_writepage_trans_blocks(inode);
4205	handle = ext4_journal_start(inode, credits);
4206	if (IS_ERR(handle))
4207		return PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
4208
4209	err = ext4_orphan_add(handle, inode);
4210	if (err)
4211		goto out;
 
4212
4213	/*
4214	 * Now we need to zero out the un block aligned data.
4215	 * If the file is smaller than a block, just
4216	 * zero out the middle
4217	 */
4218	if (first_block > last_block)
4219		ext4_block_zero_page_range(handle, mapping, offset, length);
4220	else {
4221		/* zero out the head of the hole before the first block */
4222		block_len  = first_block_offset - offset;
4223		if (block_len > 0)
4224			ext4_block_zero_page_range(handle, mapping,
4225						   offset, block_len);
4226
4227		/* zero out the tail of the hole after the last block */
4228		block_len = offset + length - last_block_offset;
4229		if (block_len > 0) {
4230			ext4_block_zero_page_range(handle, mapping,
4231					last_block_offset, block_len);
4232		}
4233	}
4234
4235	/* If there are no blocks to remove, return now */
4236	if (first_block >= last_block)
4237		goto out;
 
4238
4239	down_write(&EXT4_I(inode)->i_data_sem);
4240	ext4_ext_invalidate_cache(inode);
4241	ext4_discard_preallocations(inode);
4242
4243	/*
4244	 * Loop over all the blocks and identify blocks
4245	 * that need to be punched out
4246	 */
4247	iblock = first_block;
4248	blocks_released = 0;
4249	while (iblock < last_block) {
4250		max_blocks = last_block - iblock;
4251		num_blocks = 1;
4252		memset(&map, 0, sizeof(map));
4253		map.m_lblk = iblock;
4254		map.m_len = max_blocks;
4255		ret = ext4_ext_map_blocks(handle, inode, &map,
4256			EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4257
4258		if (ret > 0) {
4259			blocks_released += ret;
4260			num_blocks = ret;
4261		} else if (ret == 0) {
4262			/*
4263			 * If map blocks could not find the block,
4264			 * then it is in a hole.  If the hole was
4265			 * not already cached, then map blocks should
4266			 * put it in the cache.  So we can get the hole
4267			 * out of the cache
4268			 */
4269			memset(&cache_ex, 0, sizeof(cache_ex));
4270			if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4271				!cache_ex.ec_start) {
4272
4273				/* The hole is cached */
4274				num_blocks = cache_ex.ec_block +
4275				cache_ex.ec_len - iblock;
4276
4277			} else {
4278				/* The block could not be identified */
4279				err = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280				break;
4281			}
4282		} else {
4283			/* Map blocks error */
4284			err = ret;
4285			break;
4286		}
4287
4288		if (num_blocks == 0) {
4289			/* This condition should never happen */
4290			ext_debug("Block lookup failed");
4291			err = -EIO;
4292			break;
4293		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4294
4295		iblock += num_blocks;
 
 
 
 
4296	}
4297
4298	if (blocks_released > 0) {
4299		ext4_ext_invalidate_cache(inode);
4300		ext4_discard_preallocations(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4301	}
4302
4303	if (IS_SYNC(inode))
4304		ext4_handle_sync(handle);
 
 
 
4305
4306	up_write(&EXT4_I(inode)->i_data_sem);
4307
4308out:
4309	ext4_orphan_del(handle, inode);
4310	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4311	ext4_mark_inode_dirty(handle, inode);
4312	ext4_journal_stop(handle);
4313	return err;
4314}
4315int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4316		__u64 start, __u64 len)
4317{
4318	ext4_lblk_t start_blk;
4319	int error = 0;
4320
4321	/* fallback to generic here if not in extents fmt */
4322	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4323		return generic_block_fiemap(inode, fieinfo, start, len,
4324			ext4_get_block);
 
 
4325
4326	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4327		return -EBADR;
4328
4329	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4330		error = ext4_xattr_fiemap(inode, fieinfo);
4331	} else {
4332		ext4_lblk_t len_blks;
4333		__u64 last_blk;
 
4334
4335		start_blk = start >> inode->i_sb->s_blocksize_bits;
4336		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4337		if (last_blk >= EXT_MAX_BLOCKS)
4338			last_blk = EXT_MAX_BLOCKS-1;
4339		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
 
4340
4341		/*
4342		 * Walk the extent tree gathering extent information.
4343		 * ext4_ext_fiemap_cb will push extents back to user.
4344		 */
4345		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4346					  ext4_ext_fiemap_cb, fieinfo);
4347	}
4348
4349	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4350}
v3.15
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * Architecture independence:
   6 *   Copyright (c) 2005, Bull S.A.
   7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public Licens
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  21 */
  22
  23/*
  24 * Extents support for EXT4
  25 *
  26 * TODO:
  27 *   - ext4*_error() should be used in some situations
  28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  29 *   - smart tree reduction
  30 */
  31
 
  32#include <linux/fs.h>
  33#include <linux/time.h>
  34#include <linux/jbd2.h>
  35#include <linux/highuid.h>
  36#include <linux/pagemap.h>
  37#include <linux/quotaops.h>
  38#include <linux/string.h>
  39#include <linux/slab.h>
 
  40#include <asm/uaccess.h>
  41#include <linux/fiemap.h>
  42#include "ext4_jbd2.h"
  43#include "ext4_extents.h"
  44#include "xattr.h"
  45
  46#include <trace/events/ext4.h>
  47
  48/*
  49 * used by extent splitting.
  50 */
  51#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
  52					due to ENOSPC */
  53#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
  54#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
  55
  56#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
  57#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
  58
  59static __le32 ext4_extent_block_csum(struct inode *inode,
  60				     struct ext4_extent_header *eh)
  61{
  62	struct ext4_inode_info *ei = EXT4_I(inode);
  63	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  64	__u32 csum;
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
  67			   EXT4_EXTENT_TAIL_OFFSET(eh));
  68	return cpu_to_le32(csum);
  69}
  70
  71static int ext4_extent_block_csum_verify(struct inode *inode,
  72					 struct ext4_extent_header *eh)
  73{
  74	struct ext4_extent_tail *et;
  75
  76	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  77		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  78		return 1;
  79
  80	et = find_ext4_extent_tail(eh);
  81	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
  82		return 0;
  83	return 1;
  84}
  85
  86static void ext4_extent_block_csum_set(struct inode *inode,
  87				       struct ext4_extent_header *eh)
  88{
  89	struct ext4_extent_tail *et;
  90
  91	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  92		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  93		return;
  94
  95	et = find_ext4_extent_tail(eh);
  96	et->et_checksum = ext4_extent_block_csum(inode, eh);
  97}
  98
  99static int ext4_split_extent(handle_t *handle,
 100				struct inode *inode,
 101				struct ext4_ext_path *path,
 102				struct ext4_map_blocks *map,
 103				int split_flag,
 104				int flags);
 105
 106static int ext4_split_extent_at(handle_t *handle,
 107			     struct inode *inode,
 108			     struct ext4_ext_path *path,
 109			     ext4_lblk_t split,
 110			     int split_flag,
 111			     int flags);
 112
 113static int ext4_find_delayed_extent(struct inode *inode,
 114				    struct extent_status *newes);
 115
 116static int ext4_ext_truncate_extend_restart(handle_t *handle,
 117					    struct inode *inode,
 118					    int needed)
 119{
 120	int err;
 121
 122	if (!ext4_handle_valid(handle))
 123		return 0;
 124	if (handle->h_buffer_credits > needed)
 125		return 0;
 126	err = ext4_journal_extend(handle, needed);
 127	if (err <= 0)
 128		return err;
 129	err = ext4_truncate_restart_trans(handle, inode, needed);
 130	if (err == 0)
 131		err = -EAGAIN;
 132
 133	return err;
 134}
 135
 136/*
 137 * could return:
 138 *  - EROFS
 139 *  - ENOMEM
 140 */
 141static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
 142				struct ext4_ext_path *path)
 143{
 144	if (path->p_bh) {
 145		/* path points to block */
 146		return ext4_journal_get_write_access(handle, path->p_bh);
 147	}
 148	/* path points to leaf/index in inode body */
 149	/* we use in-core data, no need to protect them */
 150	return 0;
 151}
 152
 153/*
 154 * could return:
 155 *  - EROFS
 156 *  - ENOMEM
 157 *  - EIO
 158 */
 159int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
 160		     struct inode *inode, struct ext4_ext_path *path)
 161{
 162	int err;
 163	if (path->p_bh) {
 164		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
 165		/* path points to block */
 166		err = __ext4_handle_dirty_metadata(where, line, handle,
 167						   inode, path->p_bh);
 168	} else {
 169		/* path points to leaf/index in inode body */
 170		err = ext4_mark_inode_dirty(handle, inode);
 171	}
 172	return err;
 173}
 174
 175static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 176			      struct ext4_ext_path *path,
 177			      ext4_lblk_t block)
 178{
 
 
 179	if (path) {
 180		int depth = path->p_depth;
 181		struct ext4_extent *ex;
 
 182
 183		/*
 184		 * Try to predict block placement assuming that we are
 185		 * filling in a file which will eventually be
 186		 * non-sparse --- i.e., in the case of libbfd writing
 187		 * an ELF object sections out-of-order but in a way
 188		 * the eventually results in a contiguous object or
 189		 * executable file, or some database extending a table
 190		 * space file.  However, this is actually somewhat
 191		 * non-ideal if we are writing a sparse file such as
 192		 * qemu or KVM writing a raw image file that is going
 193		 * to stay fairly sparse, since it will end up
 194		 * fragmenting the file system's free space.  Maybe we
 195		 * should have some hueristics or some way to allow
 196		 * userspace to pass a hint to file system,
 197		 * especially if the latter case turns out to be
 198		 * common.
 199		 */
 200		ex = path[depth].p_ext;
 201		if (ex) {
 202			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 203			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 204
 205			if (block > ext_block)
 206				return ext_pblk + (block - ext_block);
 207			else
 208				return ext_pblk - (ext_block - block);
 209		}
 210
 211		/* it looks like index is empty;
 212		 * try to find starting block from index itself */
 213		if (path[depth].p_bh)
 214			return path[depth].p_bh->b_blocknr;
 215	}
 216
 217	/* OK. use inode's group */
 218	return ext4_inode_to_goal_block(inode);
 219}
 220
 221/*
 222 * Allocation for a meta data block
 223 */
 224static ext4_fsblk_t
 225ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 226			struct ext4_ext_path *path,
 227			struct ext4_extent *ex, int *err, unsigned int flags)
 228{
 229	ext4_fsblk_t goal, newblock;
 230
 231	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 232	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 233					NULL, err);
 234	return newblock;
 235}
 236
 237static inline int ext4_ext_space_block(struct inode *inode, int check)
 238{
 239	int size;
 240
 241	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 242			/ sizeof(struct ext4_extent);
 
 243#ifdef AGGRESSIVE_TEST
 244	if (!check && size > 6)
 245		size = 6;
 246#endif
 
 247	return size;
 248}
 249
 250static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 251{
 252	int size;
 253
 254	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 255			/ sizeof(struct ext4_extent_idx);
 
 256#ifdef AGGRESSIVE_TEST
 257	if (!check && size > 5)
 258		size = 5;
 259#endif
 
 260	return size;
 261}
 262
 263static inline int ext4_ext_space_root(struct inode *inode, int check)
 264{
 265	int size;
 266
 267	size = sizeof(EXT4_I(inode)->i_data);
 268	size -= sizeof(struct ext4_extent_header);
 269	size /= sizeof(struct ext4_extent);
 
 270#ifdef AGGRESSIVE_TEST
 271	if (!check && size > 3)
 272		size = 3;
 273#endif
 
 274	return size;
 275}
 276
 277static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 278{
 279	int size;
 280
 281	size = sizeof(EXT4_I(inode)->i_data);
 282	size -= sizeof(struct ext4_extent_header);
 283	size /= sizeof(struct ext4_extent_idx);
 
 284#ifdef AGGRESSIVE_TEST
 285	if (!check && size > 4)
 286		size = 4;
 287#endif
 
 288	return size;
 289}
 290
 291/*
 292 * Calculate the number of metadata blocks needed
 293 * to allocate @blocks
 294 * Worse case is one block per extent
 295 */
 296int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 297{
 298	struct ext4_inode_info *ei = EXT4_I(inode);
 299	int idxs;
 300
 301	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 302		/ sizeof(struct ext4_extent_idx));
 303
 304	/*
 305	 * If the new delayed allocation block is contiguous with the
 306	 * previous da block, it can share index blocks with the
 307	 * previous block, so we only need to allocate a new index
 308	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 309	 * an additional index block, and at ldxs**3 blocks, yet
 310	 * another index blocks.
 311	 */
 312	if (ei->i_da_metadata_calc_len &&
 313	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 314		int num = 0;
 315
 316		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 317			num++;
 318		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 319			num++;
 320		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 321			num++;
 322			ei->i_da_metadata_calc_len = 0;
 323		} else
 324			ei->i_da_metadata_calc_len++;
 325		ei->i_da_metadata_calc_last_lblock++;
 326		return num;
 327	}
 328
 329	/*
 330	 * In the worst case we need a new set of index blocks at
 331	 * every level of the inode's extent tree.
 332	 */
 333	ei->i_da_metadata_calc_len = 1;
 334	ei->i_da_metadata_calc_last_lblock = lblock;
 335	return ext_depth(inode) + 1;
 336}
 337
 338static int
 339ext4_ext_max_entries(struct inode *inode, int depth)
 340{
 341	int max;
 342
 343	if (depth == ext_depth(inode)) {
 344		if (depth == 0)
 345			max = ext4_ext_space_root(inode, 1);
 346		else
 347			max = ext4_ext_space_root_idx(inode, 1);
 348	} else {
 349		if (depth == 0)
 350			max = ext4_ext_space_block(inode, 1);
 351		else
 352			max = ext4_ext_space_block_idx(inode, 1);
 353	}
 354
 355	return max;
 356}
 357
 358static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 359{
 360	ext4_fsblk_t block = ext4_ext_pblock(ext);
 361	int len = ext4_ext_get_actual_len(ext);
 362	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
 363	ext4_lblk_t last = lblock + len - 1;
 364
 365	if (lblock > last)
 366		return 0;
 367	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 368}
 369
 370static int ext4_valid_extent_idx(struct inode *inode,
 371				struct ext4_extent_idx *ext_idx)
 372{
 373	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 374
 375	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 376}
 377
 378static int ext4_valid_extent_entries(struct inode *inode,
 379				struct ext4_extent_header *eh,
 380				int depth)
 381{
 
 
 382	unsigned short entries;
 383	if (eh->eh_entries == 0)
 384		return 1;
 385
 386	entries = le16_to_cpu(eh->eh_entries);
 387
 388	if (depth == 0) {
 389		/* leaf entries */
 390		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
 391		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 392		ext4_fsblk_t pblock = 0;
 393		ext4_lblk_t lblock = 0;
 394		ext4_lblk_t prev = 0;
 395		int len = 0;
 396		while (entries) {
 397			if (!ext4_valid_extent(inode, ext))
 398				return 0;
 399
 400			/* Check for overlapping extents */
 401			lblock = le32_to_cpu(ext->ee_block);
 402			len = ext4_ext_get_actual_len(ext);
 403			if ((lblock <= prev) && prev) {
 404				pblock = ext4_ext_pblock(ext);
 405				es->s_last_error_block = cpu_to_le64(pblock);
 406				return 0;
 407			}
 408			ext++;
 409			entries--;
 410			prev = lblock + len - 1;
 411		}
 412	} else {
 413		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
 414		while (entries) {
 415			if (!ext4_valid_extent_idx(inode, ext_idx))
 416				return 0;
 417			ext_idx++;
 418			entries--;
 419		}
 420	}
 421	return 1;
 422}
 423
 424static int __ext4_ext_check(const char *function, unsigned int line,
 425			    struct inode *inode, struct ext4_extent_header *eh,
 426			    int depth, ext4_fsblk_t pblk)
 427{
 428	const char *error_msg;
 429	int max = 0;
 430
 431	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 432		error_msg = "invalid magic";
 433		goto corrupted;
 434	}
 435	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 436		error_msg = "unexpected eh_depth";
 437		goto corrupted;
 438	}
 439	if (unlikely(eh->eh_max == 0)) {
 440		error_msg = "invalid eh_max";
 441		goto corrupted;
 442	}
 443	max = ext4_ext_max_entries(inode, depth);
 444	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 445		error_msg = "too large eh_max";
 446		goto corrupted;
 447	}
 448	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 449		error_msg = "invalid eh_entries";
 450		goto corrupted;
 451	}
 452	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 453		error_msg = "invalid extent entries";
 454		goto corrupted;
 455	}
 456	/* Verify checksum on non-root extent tree nodes */
 457	if (ext_depth(inode) != depth &&
 458	    !ext4_extent_block_csum_verify(inode, eh)) {
 459		error_msg = "extent tree corrupted";
 460		goto corrupted;
 461	}
 462	return 0;
 463
 464corrupted:
 465	ext4_error_inode(inode, function, line, 0,
 466			 "pblk %llu bad header/extent: %s - magic %x, "
 467			 "entries %u, max %u(%u), depth %u(%u)",
 468			 (unsigned long long) pblk, error_msg,
 469			 le16_to_cpu(eh->eh_magic),
 470			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 471			 max, le16_to_cpu(eh->eh_depth), depth);
 472	return -EIO;
 473}
 474
 475#define ext4_ext_check(inode, eh, depth, pblk)			\
 476	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
 477
 478int ext4_ext_check_inode(struct inode *inode)
 479{
 480	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
 481}
 482
 483static struct buffer_head *
 484__read_extent_tree_block(const char *function, unsigned int line,
 485			 struct inode *inode, ext4_fsblk_t pblk, int depth,
 486			 int flags)
 487{
 488	struct buffer_head		*bh;
 489	int				err;
 490
 491	bh = sb_getblk(inode->i_sb, pblk);
 492	if (unlikely(!bh))
 493		return ERR_PTR(-ENOMEM);
 494
 495	if (!bh_uptodate_or_lock(bh)) {
 496		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
 497		err = bh_submit_read(bh);
 498		if (err < 0)
 499			goto errout;
 500	}
 501	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
 502		return bh;
 503	err = __ext4_ext_check(function, line, inode,
 504			       ext_block_hdr(bh), depth, pblk);
 505	if (err)
 506		goto errout;
 507	set_buffer_verified(bh);
 508	/*
 509	 * If this is a leaf block, cache all of its entries
 510	 */
 511	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
 512		struct ext4_extent_header *eh = ext_block_hdr(bh);
 513		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
 514		ext4_lblk_t prev = 0;
 515		int i;
 516
 517		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
 518			unsigned int status = EXTENT_STATUS_WRITTEN;
 519			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
 520			int len = ext4_ext_get_actual_len(ex);
 521
 522			if (prev && (prev != lblk))
 523				ext4_es_cache_extent(inode, prev,
 524						     lblk - prev, ~0,
 525						     EXTENT_STATUS_HOLE);
 526
 527			if (ext4_ext_is_uninitialized(ex))
 528				status = EXTENT_STATUS_UNWRITTEN;
 529			ext4_es_cache_extent(inode, lblk, len,
 530					     ext4_ext_pblock(ex), status);
 531			prev = lblk + len;
 532		}
 533	}
 534	return bh;
 535errout:
 536	put_bh(bh);
 537	return ERR_PTR(err);
 538
 539}
 540
 541#define read_extent_tree_block(inode, pblk, depth, flags)		\
 542	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
 543				 (depth), (flags))
 544
 545/*
 546 * This function is called to cache a file's extent information in the
 547 * extent status tree
 548 */
 549int ext4_ext_precache(struct inode *inode)
 550{
 551	struct ext4_inode_info *ei = EXT4_I(inode);
 552	struct ext4_ext_path *path = NULL;
 553	struct buffer_head *bh;
 554	int i = 0, depth, ret = 0;
 555
 556	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 557		return 0;	/* not an extent-mapped inode */
 558
 559	down_read(&ei->i_data_sem);
 560	depth = ext_depth(inode);
 561
 562	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
 563		       GFP_NOFS);
 564	if (path == NULL) {
 565		up_read(&ei->i_data_sem);
 566		return -ENOMEM;
 567	}
 568
 569	/* Don't cache anything if there are no external extent blocks */
 570	if (depth == 0)
 571		goto out;
 572	path[0].p_hdr = ext_inode_hdr(inode);
 573	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
 574	if (ret)
 575		goto out;
 576	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
 577	while (i >= 0) {
 578		/*
 579		 * If this is a leaf block or we've reached the end of
 580		 * the index block, go up
 581		 */
 582		if ((i == depth) ||
 583		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
 584			brelse(path[i].p_bh);
 585			path[i].p_bh = NULL;
 586			i--;
 587			continue;
 588		}
 589		bh = read_extent_tree_block(inode,
 590					    ext4_idx_pblock(path[i].p_idx++),
 591					    depth - i - 1,
 592					    EXT4_EX_FORCE_CACHE);
 593		if (IS_ERR(bh)) {
 594			ret = PTR_ERR(bh);
 595			break;
 596		}
 597		i++;
 598		path[i].p_bh = bh;
 599		path[i].p_hdr = ext_block_hdr(bh);
 600		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
 601	}
 602	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
 603out:
 604	up_read(&ei->i_data_sem);
 605	ext4_ext_drop_refs(path);
 606	kfree(path);
 607	return ret;
 608}
 609
 610#ifdef EXT_DEBUG
 611static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 612{
 613	int k, l = path->p_depth;
 614
 615	ext_debug("path:");
 616	for (k = 0; k <= l; k++, path++) {
 617		if (path->p_idx) {
 618		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 619			    ext4_idx_pblock(path->p_idx));
 620		} else if (path->p_ext) {
 621			ext_debug("  %d:[%d]%d:%llu ",
 622				  le32_to_cpu(path->p_ext->ee_block),
 623				  ext4_ext_is_uninitialized(path->p_ext),
 624				  ext4_ext_get_actual_len(path->p_ext),
 625				  ext4_ext_pblock(path->p_ext));
 626		} else
 627			ext_debug("  []");
 628	}
 629	ext_debug("\n");
 630}
 631
 632static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 633{
 634	int depth = ext_depth(inode);
 635	struct ext4_extent_header *eh;
 636	struct ext4_extent *ex;
 637	int i;
 638
 639	if (!path)
 640		return;
 641
 642	eh = path[depth].p_hdr;
 643	ex = EXT_FIRST_EXTENT(eh);
 644
 645	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 646
 647	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 648		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 649			  ext4_ext_is_uninitialized(ex),
 650			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 651	}
 652	ext_debug("\n");
 653}
 654
 655static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 656			ext4_fsblk_t newblock, int level)
 657{
 658	int depth = ext_depth(inode);
 659	struct ext4_extent *ex;
 660
 661	if (depth != level) {
 662		struct ext4_extent_idx *idx;
 663		idx = path[level].p_idx;
 664		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 665			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 666					le32_to_cpu(idx->ei_block),
 667					ext4_idx_pblock(idx),
 668					newblock);
 669			idx++;
 670		}
 671
 672		return;
 673	}
 674
 675	ex = path[depth].p_ext;
 676	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 677		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 678				le32_to_cpu(ex->ee_block),
 679				ext4_ext_pblock(ex),
 680				ext4_ext_is_uninitialized(ex),
 681				ext4_ext_get_actual_len(ex),
 682				newblock);
 683		ex++;
 684	}
 685}
 686
 687#else
 688#define ext4_ext_show_path(inode, path)
 689#define ext4_ext_show_leaf(inode, path)
 690#define ext4_ext_show_move(inode, path, newblock, level)
 691#endif
 692
 693void ext4_ext_drop_refs(struct ext4_ext_path *path)
 694{
 695	int depth = path->p_depth;
 696	int i;
 697
 698	for (i = 0; i <= depth; i++, path++)
 699		if (path->p_bh) {
 700			brelse(path->p_bh);
 701			path->p_bh = NULL;
 702		}
 703}
 704
 705/*
 706 * ext4_ext_binsearch_idx:
 707 * binary search for the closest index of the given block
 708 * the header must be checked before calling this
 709 */
 710static void
 711ext4_ext_binsearch_idx(struct inode *inode,
 712			struct ext4_ext_path *path, ext4_lblk_t block)
 713{
 714	struct ext4_extent_header *eh = path->p_hdr;
 715	struct ext4_extent_idx *r, *l, *m;
 716
 717
 718	ext_debug("binsearch for %u(idx):  ", block);
 719
 720	l = EXT_FIRST_INDEX(eh) + 1;
 721	r = EXT_LAST_INDEX(eh);
 722	while (l <= r) {
 723		m = l + (r - l) / 2;
 724		if (block < le32_to_cpu(m->ei_block))
 725			r = m - 1;
 726		else
 727			l = m + 1;
 728		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 729				m, le32_to_cpu(m->ei_block),
 730				r, le32_to_cpu(r->ei_block));
 731	}
 732
 733	path->p_idx = l - 1;
 734	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
 735		  ext4_idx_pblock(path->p_idx));
 736
 737#ifdef CHECK_BINSEARCH
 738	{
 739		struct ext4_extent_idx *chix, *ix;
 740		int k;
 741
 742		chix = ix = EXT_FIRST_INDEX(eh);
 743		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 744		  if (k != 0 &&
 745		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 746				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 747				       "first=0x%p\n", k,
 748				       ix, EXT_FIRST_INDEX(eh));
 749				printk(KERN_DEBUG "%u <= %u\n",
 750				       le32_to_cpu(ix->ei_block),
 751				       le32_to_cpu(ix[-1].ei_block));
 752			}
 753			BUG_ON(k && le32_to_cpu(ix->ei_block)
 754					   <= le32_to_cpu(ix[-1].ei_block));
 755			if (block < le32_to_cpu(ix->ei_block))
 756				break;
 757			chix = ix;
 758		}
 759		BUG_ON(chix != path->p_idx);
 760	}
 761#endif
 762
 763}
 764
 765/*
 766 * ext4_ext_binsearch:
 767 * binary search for closest extent of the given block
 768 * the header must be checked before calling this
 769 */
 770static void
 771ext4_ext_binsearch(struct inode *inode,
 772		struct ext4_ext_path *path, ext4_lblk_t block)
 773{
 774	struct ext4_extent_header *eh = path->p_hdr;
 775	struct ext4_extent *r, *l, *m;
 776
 777	if (eh->eh_entries == 0) {
 778		/*
 779		 * this leaf is empty:
 780		 * we get such a leaf in split/add case
 781		 */
 782		return;
 783	}
 784
 785	ext_debug("binsearch for %u:  ", block);
 786
 787	l = EXT_FIRST_EXTENT(eh) + 1;
 788	r = EXT_LAST_EXTENT(eh);
 789
 790	while (l <= r) {
 791		m = l + (r - l) / 2;
 792		if (block < le32_to_cpu(m->ee_block))
 793			r = m - 1;
 794		else
 795			l = m + 1;
 796		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 797				m, le32_to_cpu(m->ee_block),
 798				r, le32_to_cpu(r->ee_block));
 799	}
 800
 801	path->p_ext = l - 1;
 802	ext_debug("  -> %d:%llu:[%d]%d ",
 803			le32_to_cpu(path->p_ext->ee_block),
 804			ext4_ext_pblock(path->p_ext),
 805			ext4_ext_is_uninitialized(path->p_ext),
 806			ext4_ext_get_actual_len(path->p_ext));
 807
 808#ifdef CHECK_BINSEARCH
 809	{
 810		struct ext4_extent *chex, *ex;
 811		int k;
 812
 813		chex = ex = EXT_FIRST_EXTENT(eh);
 814		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 815			BUG_ON(k && le32_to_cpu(ex->ee_block)
 816					  <= le32_to_cpu(ex[-1].ee_block));
 817			if (block < le32_to_cpu(ex->ee_block))
 818				break;
 819			chex = ex;
 820		}
 821		BUG_ON(chex != path->p_ext);
 822	}
 823#endif
 824
 825}
 826
 827int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 828{
 829	struct ext4_extent_header *eh;
 830
 831	eh = ext_inode_hdr(inode);
 832	eh->eh_depth = 0;
 833	eh->eh_entries = 0;
 834	eh->eh_magic = EXT4_EXT_MAGIC;
 835	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 836	ext4_mark_inode_dirty(handle, inode);
 
 837	return 0;
 838}
 839
 840struct ext4_ext_path *
 841ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
 842		     struct ext4_ext_path *path, int flags)
 843{
 844	struct ext4_extent_header *eh;
 845	struct buffer_head *bh;
 846	short int depth, i, ppos = 0, alloc = 0;
 847	int ret;
 848
 849	eh = ext_inode_hdr(inode);
 850	depth = ext_depth(inode);
 851
 852	/* account possible depth increase */
 853	if (!path) {
 854		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 855				GFP_NOFS);
 856		if (!path)
 857			return ERR_PTR(-ENOMEM);
 858		alloc = 1;
 859	}
 860	path[0].p_hdr = eh;
 861	path[0].p_bh = NULL;
 862
 863	i = depth;
 864	/* walk through the tree */
 865	while (i) {
 
 
 866		ext_debug("depth %d: num %d, max %d\n",
 867			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 868
 869		ext4_ext_binsearch_idx(inode, path + ppos, block);
 870		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 871		path[ppos].p_depth = i;
 872		path[ppos].p_ext = NULL;
 873
 874		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
 875					    flags);
 876		if (IS_ERR(bh)) {
 877			ret = PTR_ERR(bh);
 878			goto err;
 
 
 
 
 
 
 
 
 
 879		}
 880
 881		eh = ext_block_hdr(bh);
 882		ppos++;
 883		if (unlikely(ppos > depth)) {
 884			put_bh(bh);
 885			EXT4_ERROR_INODE(inode,
 886					 "ppos %d > depth %d", ppos, depth);
 887			ret = -EIO;
 888			goto err;
 889		}
 890		path[ppos].p_bh = bh;
 891		path[ppos].p_hdr = eh;
 
 
 
 
 892	}
 893
 894	path[ppos].p_depth = i;
 895	path[ppos].p_ext = NULL;
 896	path[ppos].p_idx = NULL;
 897
 898	/* find extent */
 899	ext4_ext_binsearch(inode, path + ppos, block);
 900	/* if not an empty leaf */
 901	if (path[ppos].p_ext)
 902		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 903
 904	ext4_ext_show_path(inode, path);
 905
 906	return path;
 907
 908err:
 909	ext4_ext_drop_refs(path);
 910	if (alloc)
 911		kfree(path);
 912	return ERR_PTR(ret);
 913}
 914
 915/*
 916 * ext4_ext_insert_index:
 917 * insert new index [@logical;@ptr] into the block at @curp;
 918 * check where to insert: before @curp or after @curp
 919 */
 920static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 921				 struct ext4_ext_path *curp,
 922				 int logical, ext4_fsblk_t ptr)
 923{
 924	struct ext4_extent_idx *ix;
 925	int len, err;
 926
 927	err = ext4_ext_get_access(handle, inode, curp);
 928	if (err)
 929		return err;
 930
 931	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 932		EXT4_ERROR_INODE(inode,
 933				 "logical %d == ei_block %d!",
 934				 logical, le32_to_cpu(curp->p_idx->ei_block));
 935		return -EIO;
 936	}
 937
 938	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 939			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 940		EXT4_ERROR_INODE(inode,
 941				 "eh_entries %d >= eh_max %d!",
 942				 le16_to_cpu(curp->p_hdr->eh_entries),
 943				 le16_to_cpu(curp->p_hdr->eh_max));
 944		return -EIO;
 945	}
 946
 
 947	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 948		/* insert after */
 949		ext_debug("insert new index %d after: %llu\n", logical, ptr);
 
 
 
 
 
 
 
 
 950		ix = curp->p_idx + 1;
 951	} else {
 952		/* insert before */
 953		ext_debug("insert new index %d before: %llu\n", logical, ptr);
 
 
 
 
 
 
 954		ix = curp->p_idx;
 955	}
 956
 957	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
 958	BUG_ON(len < 0);
 959	if (len > 0) {
 960		ext_debug("insert new index %d: "
 961				"move %d indices from 0x%p to 0x%p\n",
 962				logical, len, ix, ix + 1);
 963		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
 964	}
 965
 966	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
 967		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
 968		return -EIO;
 969	}
 970
 971	ix->ei_block = cpu_to_le32(logical);
 972	ext4_idx_store_pblock(ix, ptr);
 973	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 974
 975	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 976		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 977		return -EIO;
 978	}
 979
 980	err = ext4_ext_dirty(handle, inode, curp);
 981	ext4_std_error(inode->i_sb, err);
 982
 983	return err;
 984}
 985
 986/*
 987 * ext4_ext_split:
 988 * inserts new subtree into the path, using free index entry
 989 * at depth @at:
 990 * - allocates all needed blocks (new leaf and all intermediate index blocks)
 991 * - makes decision where to split
 992 * - moves remaining extents and index entries (right to the split point)
 993 *   into the newly allocated blocks
 994 * - initializes subtree
 995 */
 996static int ext4_ext_split(handle_t *handle, struct inode *inode,
 997			  unsigned int flags,
 998			  struct ext4_ext_path *path,
 999			  struct ext4_extent *newext, int at)
1000{
1001	struct buffer_head *bh = NULL;
1002	int depth = ext_depth(inode);
1003	struct ext4_extent_header *neh;
1004	struct ext4_extent_idx *fidx;
1005	int i = at, k, m, a;
1006	ext4_fsblk_t newblock, oldblock;
1007	__le32 border;
1008	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1009	int err = 0;
1010
1011	/* make decision: where to split? */
1012	/* FIXME: now decision is simplest: at current extent */
1013
1014	/* if current leaf will be split, then we should use
1015	 * border from split point */
1016	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1017		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1018		return -EIO;
1019	}
1020	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1021		border = path[depth].p_ext[1].ee_block;
1022		ext_debug("leaf will be split."
1023				" next leaf starts at %d\n",
1024				  le32_to_cpu(border));
1025	} else {
1026		border = newext->ee_block;
1027		ext_debug("leaf will be added."
1028				" next leaf starts at %d\n",
1029				le32_to_cpu(border));
1030	}
1031
1032	/*
1033	 * If error occurs, then we break processing
1034	 * and mark filesystem read-only. index won't
1035	 * be inserted and tree will be in consistent
1036	 * state. Next mount will repair buffers too.
1037	 */
1038
1039	/*
1040	 * Get array to track all allocated blocks.
1041	 * We need this to handle errors and free blocks
1042	 * upon them.
1043	 */
1044	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1045	if (!ablocks)
1046		return -ENOMEM;
1047
1048	/* allocate all needed blocks */
1049	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1050	for (a = 0; a < depth - at; a++) {
1051		newblock = ext4_ext_new_meta_block(handle, inode, path,
1052						   newext, &err, flags);
1053		if (newblock == 0)
1054			goto cleanup;
1055		ablocks[a] = newblock;
1056	}
1057
1058	/* initialize new leaf */
1059	newblock = ablocks[--a];
1060	if (unlikely(newblock == 0)) {
1061		EXT4_ERROR_INODE(inode, "newblock == 0!");
1062		err = -EIO;
1063		goto cleanup;
1064	}
1065	bh = sb_getblk(inode->i_sb, newblock);
1066	if (unlikely(!bh)) {
1067		err = -ENOMEM;
1068		goto cleanup;
1069	}
1070	lock_buffer(bh);
1071
1072	err = ext4_journal_get_create_access(handle, bh);
1073	if (err)
1074		goto cleanup;
1075
1076	neh = ext_block_hdr(bh);
1077	neh->eh_entries = 0;
1078	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1079	neh->eh_magic = EXT4_EXT_MAGIC;
1080	neh->eh_depth = 0;
1081
1082	/* move remainder of path[depth] to the new leaf */
1083	if (unlikely(path[depth].p_hdr->eh_entries !=
1084		     path[depth].p_hdr->eh_max)) {
1085		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1086				 path[depth].p_hdr->eh_entries,
1087				 path[depth].p_hdr->eh_max);
1088		err = -EIO;
1089		goto cleanup;
1090	}
1091	/* start copy from next extent */
1092	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1093	ext4_ext_show_move(inode, path, newblock, depth);
1094	if (m) {
1095		struct ext4_extent *ex;
1096		ex = EXT_FIRST_EXTENT(neh);
1097		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1098		le16_add_cpu(&neh->eh_entries, m);
1099	}
1100
1101	ext4_extent_block_csum_set(inode, neh);
1102	set_buffer_uptodate(bh);
1103	unlock_buffer(bh);
1104
1105	err = ext4_handle_dirty_metadata(handle, inode, bh);
1106	if (err)
1107		goto cleanup;
1108	brelse(bh);
1109	bh = NULL;
1110
1111	/* correct old leaf */
1112	if (m) {
1113		err = ext4_ext_get_access(handle, inode, path + depth);
1114		if (err)
1115			goto cleanup;
1116		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1117		err = ext4_ext_dirty(handle, inode, path + depth);
1118		if (err)
1119			goto cleanup;
1120
1121	}
1122
1123	/* create intermediate indexes */
1124	k = depth - at - 1;
1125	if (unlikely(k < 0)) {
1126		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1127		err = -EIO;
1128		goto cleanup;
1129	}
1130	if (k)
1131		ext_debug("create %d intermediate indices\n", k);
1132	/* insert new index into current index block */
1133	/* current depth stored in i var */
1134	i = depth - 1;
1135	while (k--) {
1136		oldblock = newblock;
1137		newblock = ablocks[--a];
1138		bh = sb_getblk(inode->i_sb, newblock);
1139		if (unlikely(!bh)) {
1140			err = -ENOMEM;
1141			goto cleanup;
1142		}
1143		lock_buffer(bh);
1144
1145		err = ext4_journal_get_create_access(handle, bh);
1146		if (err)
1147			goto cleanup;
1148
1149		neh = ext_block_hdr(bh);
1150		neh->eh_entries = cpu_to_le16(1);
1151		neh->eh_magic = EXT4_EXT_MAGIC;
1152		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1153		neh->eh_depth = cpu_to_le16(depth - i);
1154		fidx = EXT_FIRST_INDEX(neh);
1155		fidx->ei_block = border;
1156		ext4_idx_store_pblock(fidx, oldblock);
1157
1158		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1159				i, newblock, le32_to_cpu(border), oldblock);
1160
1161		/* move remainder of path[i] to the new index block */
1162		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1163					EXT_LAST_INDEX(path[i].p_hdr))) {
1164			EXT4_ERROR_INODE(inode,
1165					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1166					 le32_to_cpu(path[i].p_ext->ee_block));
1167			err = -EIO;
1168			goto cleanup;
1169		}
1170		/* start copy indexes */
1171		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1172		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1173				EXT_MAX_INDEX(path[i].p_hdr));
1174		ext4_ext_show_move(inode, path, newblock, i);
1175		if (m) {
1176			memmove(++fidx, path[i].p_idx,
1177				sizeof(struct ext4_extent_idx) * m);
1178			le16_add_cpu(&neh->eh_entries, m);
1179		}
1180		ext4_extent_block_csum_set(inode, neh);
1181		set_buffer_uptodate(bh);
1182		unlock_buffer(bh);
1183
1184		err = ext4_handle_dirty_metadata(handle, inode, bh);
1185		if (err)
1186			goto cleanup;
1187		brelse(bh);
1188		bh = NULL;
1189
1190		/* correct old index */
1191		if (m) {
1192			err = ext4_ext_get_access(handle, inode, path + i);
1193			if (err)
1194				goto cleanup;
1195			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1196			err = ext4_ext_dirty(handle, inode, path + i);
1197			if (err)
1198				goto cleanup;
1199		}
1200
1201		i--;
1202	}
1203
1204	/* insert new index */
1205	err = ext4_ext_insert_index(handle, inode, path + at,
1206				    le32_to_cpu(border), newblock);
1207
1208cleanup:
1209	if (bh) {
1210		if (buffer_locked(bh))
1211			unlock_buffer(bh);
1212		brelse(bh);
1213	}
1214
1215	if (err) {
1216		/* free all allocated blocks in error case */
1217		for (i = 0; i < depth; i++) {
1218			if (!ablocks[i])
1219				continue;
1220			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1221					 EXT4_FREE_BLOCKS_METADATA);
1222		}
1223	}
1224	kfree(ablocks);
1225
1226	return err;
1227}
1228
1229/*
1230 * ext4_ext_grow_indepth:
1231 * implements tree growing procedure:
1232 * - allocates new block
1233 * - moves top-level data (index block or leaf) into the new block
1234 * - initializes new top-level, creating index that points to the
1235 *   just created block
1236 */
1237static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1238				 unsigned int flags,
 
1239				 struct ext4_extent *newext)
1240{
 
1241	struct ext4_extent_header *neh;
1242	struct buffer_head *bh;
1243	ext4_fsblk_t newblock;
1244	int err = 0;
1245
1246	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1247		newext, &err, flags);
1248	if (newblock == 0)
1249		return err;
1250
1251	bh = sb_getblk(inode->i_sb, newblock);
1252	if (unlikely(!bh))
1253		return -ENOMEM;
 
 
 
1254	lock_buffer(bh);
1255
1256	err = ext4_journal_get_create_access(handle, bh);
1257	if (err) {
1258		unlock_buffer(bh);
1259		goto out;
1260	}
1261
1262	/* move top-level index/leaf into new block */
1263	memmove(bh->b_data, EXT4_I(inode)->i_data,
1264		sizeof(EXT4_I(inode)->i_data));
1265
1266	/* set size of new block */
1267	neh = ext_block_hdr(bh);
1268	/* old root could have indexes or leaves
1269	 * so calculate e_max right way */
1270	if (ext_depth(inode))
1271		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1272	else
1273		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1274	neh->eh_magic = EXT4_EXT_MAGIC;
1275	ext4_extent_block_csum_set(inode, neh);
1276	set_buffer_uptodate(bh);
1277	unlock_buffer(bh);
1278
1279	err = ext4_handle_dirty_metadata(handle, inode, bh);
1280	if (err)
1281		goto out;
1282
1283	/* Update top-level index: num,max,pointer */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284	neh = ext_inode_hdr(inode);
1285	neh->eh_entries = cpu_to_le16(1);
1286	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1287	if (neh->eh_depth == 0) {
1288		/* Root extent block becomes index block */
1289		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1290		EXT_FIRST_INDEX(neh)->ei_block =
1291			EXT_FIRST_EXTENT(neh)->ee_block;
1292	}
1293	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1294		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1295		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1296		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1297
1298	le16_add_cpu(&neh->eh_depth, 1);
1299	ext4_mark_inode_dirty(handle, inode);
1300out:
1301	brelse(bh);
1302
1303	return err;
1304}
1305
1306/*
1307 * ext4_ext_create_new_leaf:
1308 * finds empty index and adds new leaf.
1309 * if no free index is found, then it requests in-depth growing.
1310 */
1311static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1312				    unsigned int mb_flags,
1313				    unsigned int gb_flags,
1314				    struct ext4_ext_path *path,
1315				    struct ext4_extent *newext)
1316{
1317	struct ext4_ext_path *curp;
1318	int depth, i, err = 0;
1319
1320repeat:
1321	i = depth = ext_depth(inode);
1322
1323	/* walk up to the tree and look for free index entry */
1324	curp = path + depth;
1325	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1326		i--;
1327		curp--;
1328	}
1329
1330	/* we use already allocated block for index block,
1331	 * so subsequent data blocks should be contiguous */
1332	if (EXT_HAS_FREE_INDEX(curp)) {
1333		/* if we found index with free entry, then use that
1334		 * entry: create all needed subtree and add new leaf */
1335		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1336		if (err)
1337			goto out;
1338
1339		/* refill path */
1340		ext4_ext_drop_refs(path);
1341		path = ext4_ext_find_extent(inode,
1342				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1343				    path, gb_flags);
1344		if (IS_ERR(path))
1345			err = PTR_ERR(path);
1346	} else {
1347		/* tree is full, time to grow in depth */
1348		err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
 
1349		if (err)
1350			goto out;
1351
1352		/* refill path */
1353		ext4_ext_drop_refs(path);
1354		path = ext4_ext_find_extent(inode,
1355				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1356				    path, gb_flags);
1357		if (IS_ERR(path)) {
1358			err = PTR_ERR(path);
1359			goto out;
1360		}
1361
1362		/*
1363		 * only first (depth 0 -> 1) produces free space;
1364		 * in all other cases we have to split the grown tree
1365		 */
1366		depth = ext_depth(inode);
1367		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1368			/* now we need to split */
1369			goto repeat;
1370		}
1371	}
1372
1373out:
1374	return err;
1375}
1376
1377/*
1378 * search the closest allocated block to the left for *logical
1379 * and returns it at @logical + it's physical address at @phys
1380 * if *logical is the smallest allocated block, the function
1381 * returns 0 at @phys
1382 * return value contains 0 (success) or error code
1383 */
1384static int ext4_ext_search_left(struct inode *inode,
1385				struct ext4_ext_path *path,
1386				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1387{
1388	struct ext4_extent_idx *ix;
1389	struct ext4_extent *ex;
1390	int depth, ee_len;
1391
1392	if (unlikely(path == NULL)) {
1393		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1394		return -EIO;
1395	}
1396	depth = path->p_depth;
1397	*phys = 0;
1398
1399	if (depth == 0 && path->p_ext == NULL)
1400		return 0;
1401
1402	/* usually extent in the path covers blocks smaller
1403	 * then *logical, but it can be that extent is the
1404	 * first one in the file */
1405
1406	ex = path[depth].p_ext;
1407	ee_len = ext4_ext_get_actual_len(ex);
1408	if (*logical < le32_to_cpu(ex->ee_block)) {
1409		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1410			EXT4_ERROR_INODE(inode,
1411					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1412					 *logical, le32_to_cpu(ex->ee_block));
1413			return -EIO;
1414		}
1415		while (--depth >= 0) {
1416			ix = path[depth].p_idx;
1417			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1418				EXT4_ERROR_INODE(inode,
1419				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1420				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1421				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1422		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1423				  depth);
1424				return -EIO;
1425			}
1426		}
1427		return 0;
1428	}
1429
1430	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1431		EXT4_ERROR_INODE(inode,
1432				 "logical %d < ee_block %d + ee_len %d!",
1433				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1434		return -EIO;
1435	}
1436
1437	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1438	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1439	return 0;
1440}
1441
1442/*
1443 * search the closest allocated block to the right for *logical
1444 * and returns it at @logical + it's physical address at @phys
1445 * if *logical is the largest allocated block, the function
1446 * returns 0 at @phys
1447 * return value contains 0 (success) or error code
1448 */
1449static int ext4_ext_search_right(struct inode *inode,
1450				 struct ext4_ext_path *path,
1451				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1452				 struct ext4_extent **ret_ex)
1453{
1454	struct buffer_head *bh = NULL;
1455	struct ext4_extent_header *eh;
1456	struct ext4_extent_idx *ix;
1457	struct ext4_extent *ex;
1458	ext4_fsblk_t block;
1459	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1460	int ee_len;
1461
1462	if (unlikely(path == NULL)) {
1463		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1464		return -EIO;
1465	}
1466	depth = path->p_depth;
1467	*phys = 0;
1468
1469	if (depth == 0 && path->p_ext == NULL)
1470		return 0;
1471
1472	/* usually extent in the path covers blocks smaller
1473	 * then *logical, but it can be that extent is the
1474	 * first one in the file */
1475
1476	ex = path[depth].p_ext;
1477	ee_len = ext4_ext_get_actual_len(ex);
1478	if (*logical < le32_to_cpu(ex->ee_block)) {
1479		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1480			EXT4_ERROR_INODE(inode,
1481					 "first_extent(path[%d].p_hdr) != ex",
1482					 depth);
1483			return -EIO;
1484		}
1485		while (--depth >= 0) {
1486			ix = path[depth].p_idx;
1487			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1488				EXT4_ERROR_INODE(inode,
1489						 "ix != EXT_FIRST_INDEX *logical %d!",
1490						 *logical);
1491				return -EIO;
1492			}
1493		}
1494		goto found_extent;
 
 
1495	}
1496
1497	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1498		EXT4_ERROR_INODE(inode,
1499				 "logical %d < ee_block %d + ee_len %d!",
1500				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1501		return -EIO;
1502	}
1503
1504	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1505		/* next allocated block in this leaf */
1506		ex++;
1507		goto found_extent;
 
 
1508	}
1509
1510	/* go up and search for index to the right */
1511	while (--depth >= 0) {
1512		ix = path[depth].p_idx;
1513		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1514			goto got_index;
1515	}
1516
1517	/* we've gone up to the root and found no index to the right */
1518	return 0;
1519
1520got_index:
1521	/* we've found index to the right, let's
1522	 * follow it and find the closest allocated
1523	 * block to the right */
1524	ix++;
1525	block = ext4_idx_pblock(ix);
1526	while (++depth < path->p_depth) {
 
 
 
 
1527		/* subtract from p_depth to get proper eh_depth */
1528		bh = read_extent_tree_block(inode, block,
1529					    path->p_depth - depth, 0);
1530		if (IS_ERR(bh))
1531			return PTR_ERR(bh);
1532		eh = ext_block_hdr(bh);
1533		ix = EXT_FIRST_INDEX(eh);
1534		block = ext4_idx_pblock(ix);
1535		put_bh(bh);
1536	}
1537
1538	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1539	if (IS_ERR(bh))
1540		return PTR_ERR(bh);
1541	eh = ext_block_hdr(bh);
 
 
 
 
1542	ex = EXT_FIRST_EXTENT(eh);
1543found_extent:
1544	*logical = le32_to_cpu(ex->ee_block);
1545	*phys = ext4_ext_pblock(ex);
1546	*ret_ex = ex;
1547	if (bh)
1548		put_bh(bh);
1549	return 0;
1550}
1551
1552/*
1553 * ext4_ext_next_allocated_block:
1554 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1555 * NOTE: it considers block number from index entry as
1556 * allocated block. Thus, index entries have to be consistent
1557 * with leaves.
1558 */
1559static ext4_lblk_t
1560ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1561{
1562	int depth;
1563
1564	BUG_ON(path == NULL);
1565	depth = path->p_depth;
1566
1567	if (depth == 0 && path->p_ext == NULL)
1568		return EXT_MAX_BLOCKS;
1569
1570	while (depth >= 0) {
1571		if (depth == path->p_depth) {
1572			/* leaf */
1573			if (path[depth].p_ext &&
1574				path[depth].p_ext !=
1575					EXT_LAST_EXTENT(path[depth].p_hdr))
1576			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1577		} else {
1578			/* index */
1579			if (path[depth].p_idx !=
1580					EXT_LAST_INDEX(path[depth].p_hdr))
1581			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1582		}
1583		depth--;
1584	}
1585
1586	return EXT_MAX_BLOCKS;
1587}
1588
1589/*
1590 * ext4_ext_next_leaf_block:
1591 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1592 */
1593static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1594{
1595	int depth;
1596
1597	BUG_ON(path == NULL);
1598	depth = path->p_depth;
1599
1600	/* zero-tree has no leaf blocks at all */
1601	if (depth == 0)
1602		return EXT_MAX_BLOCKS;
1603
1604	/* go to index block */
1605	depth--;
1606
1607	while (depth >= 0) {
1608		if (path[depth].p_idx !=
1609				EXT_LAST_INDEX(path[depth].p_hdr))
1610			return (ext4_lblk_t)
1611				le32_to_cpu(path[depth].p_idx[1].ei_block);
1612		depth--;
1613	}
1614
1615	return EXT_MAX_BLOCKS;
1616}
1617
1618/*
1619 * ext4_ext_correct_indexes:
1620 * if leaf gets modified and modified extent is first in the leaf,
1621 * then we have to correct all indexes above.
1622 * TODO: do we need to correct tree in all cases?
1623 */
1624static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1625				struct ext4_ext_path *path)
1626{
1627	struct ext4_extent_header *eh;
1628	int depth = ext_depth(inode);
1629	struct ext4_extent *ex;
1630	__le32 border;
1631	int k, err = 0;
1632
1633	eh = path[depth].p_hdr;
1634	ex = path[depth].p_ext;
1635
1636	if (unlikely(ex == NULL || eh == NULL)) {
1637		EXT4_ERROR_INODE(inode,
1638				 "ex %p == NULL or eh %p == NULL", ex, eh);
1639		return -EIO;
1640	}
1641
1642	if (depth == 0) {
1643		/* there is no tree at all */
1644		return 0;
1645	}
1646
1647	if (ex != EXT_FIRST_EXTENT(eh)) {
1648		/* we correct tree if first leaf got modified only */
1649		return 0;
1650	}
1651
1652	/*
1653	 * TODO: we need correction if border is smaller than current one
1654	 */
1655	k = depth - 1;
1656	border = path[depth].p_ext->ee_block;
1657	err = ext4_ext_get_access(handle, inode, path + k);
1658	if (err)
1659		return err;
1660	path[k].p_idx->ei_block = border;
1661	err = ext4_ext_dirty(handle, inode, path + k);
1662	if (err)
1663		return err;
1664
1665	while (k--) {
1666		/* change all left-side indexes */
1667		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1668			break;
1669		err = ext4_ext_get_access(handle, inode, path + k);
1670		if (err)
1671			break;
1672		path[k].p_idx->ei_block = border;
1673		err = ext4_ext_dirty(handle, inode, path + k);
1674		if (err)
1675			break;
1676	}
1677
1678	return err;
1679}
1680
1681int
1682ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1683				struct ext4_extent *ex2)
1684{
1685	unsigned short ext1_ee_len, ext2_ee_len;
1686
1687	/*
1688	 * Make sure that both extents are initialized. We don't merge
1689	 * uninitialized extents so that we can be sure that end_io code has
1690	 * the extent that was written properly split out and conversion to
1691	 * initialized is trivial.
1692	 */
1693	if (ext4_ext_is_uninitialized(ex1) != ext4_ext_is_uninitialized(ex2))
1694		return 0;
1695
 
 
 
 
 
1696	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1697	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1698
1699	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1700			le32_to_cpu(ex2->ee_block))
1701		return 0;
1702
1703	/*
1704	 * To allow future support for preallocated extents to be added
1705	 * as an RO_COMPAT feature, refuse to merge to extents if
1706	 * this can result in the top bit of ee_len being set.
1707	 */
1708	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1709		return 0;
1710	if (ext4_ext_is_uninitialized(ex1) &&
1711	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1712	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1713	     (ext1_ee_len + ext2_ee_len > EXT_UNINIT_MAX_LEN)))
1714		return 0;
1715#ifdef AGGRESSIVE_TEST
1716	if (ext1_ee_len >= 4)
1717		return 0;
1718#endif
1719
1720	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1721		return 1;
1722	return 0;
1723}
1724
1725/*
1726 * This function tries to merge the "ex" extent to the next extent in the tree.
1727 * It always tries to merge towards right. If you want to merge towards
1728 * left, pass "ex - 1" as argument instead of "ex".
1729 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1730 * 1 if they got merged.
1731 */
1732static int ext4_ext_try_to_merge_right(struct inode *inode,
1733				 struct ext4_ext_path *path,
1734				 struct ext4_extent *ex)
1735{
1736	struct ext4_extent_header *eh;
1737	unsigned int depth, len;
1738	int merge_done = 0, uninit;
 
1739
1740	depth = ext_depth(inode);
1741	BUG_ON(path[depth].p_hdr == NULL);
1742	eh = path[depth].p_hdr;
1743
1744	while (ex < EXT_LAST_EXTENT(eh)) {
1745		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1746			break;
1747		/* merge with next extent! */
1748		uninit = ext4_ext_is_uninitialized(ex);
 
1749		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1750				+ ext4_ext_get_actual_len(ex + 1));
1751		if (uninit)
1752			ext4_ext_mark_uninitialized(ex);
1753
1754		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1755			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1756				* sizeof(struct ext4_extent);
1757			memmove(ex + 1, ex + 2, len);
1758		}
1759		le16_add_cpu(&eh->eh_entries, -1);
1760		merge_done = 1;
1761		WARN_ON(eh->eh_entries == 0);
1762		if (!eh->eh_entries)
1763			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1764	}
1765
1766	return merge_done;
1767}
1768
1769/*
1770 * This function does a very simple check to see if we can collapse
1771 * an extent tree with a single extent tree leaf block into the inode.
1772 */
1773static void ext4_ext_try_to_merge_up(handle_t *handle,
1774				     struct inode *inode,
1775				     struct ext4_ext_path *path)
1776{
1777	size_t s;
1778	unsigned max_root = ext4_ext_space_root(inode, 0);
1779	ext4_fsblk_t blk;
1780
1781	if ((path[0].p_depth != 1) ||
1782	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1783	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1784		return;
1785
1786	/*
1787	 * We need to modify the block allocation bitmap and the block
1788	 * group descriptor to release the extent tree block.  If we
1789	 * can't get the journal credits, give up.
1790	 */
1791	if (ext4_journal_extend(handle, 2))
1792		return;
1793
1794	/*
1795	 * Copy the extent data up to the inode
1796	 */
1797	blk = ext4_idx_pblock(path[0].p_idx);
1798	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1799		sizeof(struct ext4_extent_idx);
1800	s += sizeof(struct ext4_extent_header);
1801
1802	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1803	path[0].p_depth = 0;
1804	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1805		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1806	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1807
1808	brelse(path[1].p_bh);
1809	ext4_free_blocks(handle, inode, NULL, blk, 1,
1810			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1811			 EXT4_FREE_BLOCKS_RESERVE);
1812}
1813
1814/*
1815 * This function tries to merge the @ex extent to neighbours in the tree.
1816 * return 1 if merge left else 0.
1817 */
1818static void ext4_ext_try_to_merge(handle_t *handle,
1819				  struct inode *inode,
1820				  struct ext4_ext_path *path,
1821				  struct ext4_extent *ex) {
1822	struct ext4_extent_header *eh;
1823	unsigned int depth;
1824	int merge_done = 0;
 
1825
1826	depth = ext_depth(inode);
1827	BUG_ON(path[depth].p_hdr == NULL);
1828	eh = path[depth].p_hdr;
1829
1830	if (ex > EXT_FIRST_EXTENT(eh))
1831		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1832
1833	if (!merge_done)
1834		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1835
1836	ext4_ext_try_to_merge_up(handle, inode, path);
1837}
1838
1839/*
1840 * check if a portion of the "newext" extent overlaps with an
1841 * existing extent.
1842 *
1843 * If there is an overlap discovered, it updates the length of the newext
1844 * such that there will be no overlap, and then returns 1.
1845 * If there is no overlap found, it returns 0.
1846 */
1847static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1848					   struct inode *inode,
1849					   struct ext4_extent *newext,
1850					   struct ext4_ext_path *path)
1851{
1852	ext4_lblk_t b1, b2;
1853	unsigned int depth, len1;
1854	unsigned int ret = 0;
1855
1856	b1 = le32_to_cpu(newext->ee_block);
1857	len1 = ext4_ext_get_actual_len(newext);
1858	depth = ext_depth(inode);
1859	if (!path[depth].p_ext)
1860		goto out;
1861	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1862
1863	/*
1864	 * get the next allocated block if the extent in the path
1865	 * is before the requested block(s)
1866	 */
1867	if (b2 < b1) {
1868		b2 = ext4_ext_next_allocated_block(path);
1869		if (b2 == EXT_MAX_BLOCKS)
1870			goto out;
1871		b2 = EXT4_LBLK_CMASK(sbi, b2);
1872	}
1873
1874	/* check for wrap through zero on extent logical start block*/
1875	if (b1 + len1 < b1) {
1876		len1 = EXT_MAX_BLOCKS - b1;
1877		newext->ee_len = cpu_to_le16(len1);
1878		ret = 1;
1879	}
1880
1881	/* check for overlap */
1882	if (b1 + len1 > b2) {
1883		newext->ee_len = cpu_to_le16(b2 - b1);
1884		ret = 1;
1885	}
1886out:
1887	return ret;
1888}
1889
1890/*
1891 * ext4_ext_insert_extent:
1892 * tries to merge requsted extent into the existing extent or
1893 * inserts requested extent as new one into the tree,
1894 * creating new leaf in the no-space case.
1895 */
1896int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1897				struct ext4_ext_path *path,
1898				struct ext4_extent *newext, int gb_flags)
1899{
1900	struct ext4_extent_header *eh;
1901	struct ext4_extent *ex, *fex;
1902	struct ext4_extent *nearex; /* nearest extent */
1903	struct ext4_ext_path *npath = NULL;
1904	int depth, len, err;
1905	ext4_lblk_t next;
1906	int mb_flags = 0, uninit;
 
1907
1908	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1909		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1910		return -EIO;
1911	}
1912	depth = ext_depth(inode);
1913	ex = path[depth].p_ext;
1914	eh = path[depth].p_hdr;
1915	if (unlikely(path[depth].p_hdr == NULL)) {
1916		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1917		return -EIO;
1918	}
1919
1920	/* try to insert block into found extent and return */
1921	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
 
 
 
 
 
 
 
 
 
 
 
1922
1923		/*
1924		 * Try to see whether we should rather test the extent on
1925		 * right from ex, or from the left of ex. This is because
1926		 * ext4_ext_find_extent() can return either extent on the
1927		 * left, or on the right from the searched position. This
1928		 * will make merging more effective.
1929		 */
1930		if (ex < EXT_LAST_EXTENT(eh) &&
1931		    (le32_to_cpu(ex->ee_block) +
1932		    ext4_ext_get_actual_len(ex) <
1933		    le32_to_cpu(newext->ee_block))) {
1934			ex += 1;
1935			goto prepend;
1936		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1937			   (le32_to_cpu(newext->ee_block) +
1938			   ext4_ext_get_actual_len(newext) <
1939			   le32_to_cpu(ex->ee_block)))
1940			ex -= 1;
1941
1942		/* Try to append newex to the ex */
1943		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1944			ext_debug("append [%d]%d block to %u:[%d]%d"
1945				  "(from %llu)\n",
1946				  ext4_ext_is_uninitialized(newext),
1947				  ext4_ext_get_actual_len(newext),
1948				  le32_to_cpu(ex->ee_block),
1949				  ext4_ext_is_uninitialized(ex),
1950				  ext4_ext_get_actual_len(ex),
1951				  ext4_ext_pblock(ex));
1952			err = ext4_ext_get_access(handle, inode,
1953						  path + depth);
1954			if (err)
1955				return err;
1956			uninit = ext4_ext_is_uninitialized(ex);
1957			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1958					+ ext4_ext_get_actual_len(newext));
1959			if (uninit)
1960				ext4_ext_mark_uninitialized(ex);
1961			eh = path[depth].p_hdr;
1962			nearex = ex;
1963			goto merge;
1964		}
1965
1966prepend:
1967		/* Try to prepend newex to the ex */
1968		if (ext4_can_extents_be_merged(inode, newext, ex)) {
1969			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1970				  "(from %llu)\n",
1971				  le32_to_cpu(newext->ee_block),
1972				  ext4_ext_is_uninitialized(newext),
1973				  ext4_ext_get_actual_len(newext),
1974				  le32_to_cpu(ex->ee_block),
1975				  ext4_ext_is_uninitialized(ex),
1976				  ext4_ext_get_actual_len(ex),
1977				  ext4_ext_pblock(ex));
1978			err = ext4_ext_get_access(handle, inode,
1979						  path + depth);
1980			if (err)
1981				return err;
1982
1983			uninit = ext4_ext_is_uninitialized(ex);
1984			ex->ee_block = newext->ee_block;
1985			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1986			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1987					+ ext4_ext_get_actual_len(newext));
1988			if (uninit)
1989				ext4_ext_mark_uninitialized(ex);
1990			eh = path[depth].p_hdr;
1991			nearex = ex;
1992			goto merge;
1993		}
1994	}
1995
1996	depth = ext_depth(inode);
1997	eh = path[depth].p_hdr;
1998	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1999		goto has_space;
2000
2001	/* probably next leaf has space for us? */
2002	fex = EXT_LAST_EXTENT(eh);
2003	next = EXT_MAX_BLOCKS;
2004	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2005		next = ext4_ext_next_leaf_block(path);
2006	if (next != EXT_MAX_BLOCKS) {
2007		ext_debug("next leaf block - %u\n", next);
2008		BUG_ON(npath != NULL);
2009		npath = ext4_ext_find_extent(inode, next, NULL, 0);
2010		if (IS_ERR(npath))
2011			return PTR_ERR(npath);
2012		BUG_ON(npath->p_depth != path->p_depth);
2013		eh = npath[depth].p_hdr;
2014		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2015			ext_debug("next leaf isn't full(%d)\n",
2016				  le16_to_cpu(eh->eh_entries));
2017			path = npath;
2018			goto has_space;
2019		}
2020		ext_debug("next leaf has no free space(%d,%d)\n",
2021			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2022	}
2023
2024	/*
2025	 * There is no free space in the found leaf.
2026	 * We're gonna add a new leaf in the tree.
2027	 */
2028	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2029		mb_flags = EXT4_MB_USE_RESERVED;
2030	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2031				       path, newext);
2032	if (err)
2033		goto cleanup;
2034	depth = ext_depth(inode);
2035	eh = path[depth].p_hdr;
2036
2037has_space:
2038	nearex = path[depth].p_ext;
2039
2040	err = ext4_ext_get_access(handle, inode, path + depth);
2041	if (err)
2042		goto cleanup;
2043
2044	if (!nearex) {
2045		/* there is no extent in this leaf, create first one */
2046		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2047				le32_to_cpu(newext->ee_block),
2048				ext4_ext_pblock(newext),
2049				ext4_ext_is_uninitialized(newext),
2050				ext4_ext_get_actual_len(newext));
2051		nearex = EXT_FIRST_EXTENT(eh);
2052	} else {
2053		if (le32_to_cpu(newext->ee_block)
2054			   > le32_to_cpu(nearex->ee_block)) {
2055			/* Insert after */
2056			ext_debug("insert %u:%llu:[%d]%d before: "
2057					"nearest %p\n",
2058					le32_to_cpu(newext->ee_block),
2059					ext4_ext_pblock(newext),
2060					ext4_ext_is_uninitialized(newext),
2061					ext4_ext_get_actual_len(newext),
2062					nearex);
2063			nearex++;
2064		} else {
2065			/* Insert before */
2066			BUG_ON(newext->ee_block == nearex->ee_block);
2067			ext_debug("insert %u:%llu:[%d]%d after: "
2068					"nearest %p\n",
2069					le32_to_cpu(newext->ee_block),
2070					ext4_ext_pblock(newext),
2071					ext4_ext_is_uninitialized(newext),
2072					ext4_ext_get_actual_len(newext),
2073					nearex);
2074		}
2075		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2076		if (len > 0) {
2077			ext_debug("insert %u:%llu:[%d]%d: "
2078					"move %d extents from 0x%p to 0x%p\n",
2079					le32_to_cpu(newext->ee_block),
2080					ext4_ext_pblock(newext),
2081					ext4_ext_is_uninitialized(newext),
2082					ext4_ext_get_actual_len(newext),
2083					len, nearex, nearex + 1);
2084			memmove(nearex + 1, nearex,
2085				len * sizeof(struct ext4_extent));
2086		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087	}
2088
2089	le16_add_cpu(&eh->eh_entries, 1);
2090	path[depth].p_ext = nearex;
2091	nearex->ee_block = newext->ee_block;
2092	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2093	nearex->ee_len = newext->ee_len;
2094
2095merge:
2096	/* try to merge extents */
2097	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2098		ext4_ext_try_to_merge(handle, inode, path, nearex);
2099
 
2100
2101	/* time to correct all indexes above */
2102	err = ext4_ext_correct_indexes(handle, inode, path);
2103	if (err)
2104		goto cleanup;
2105
2106	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2107
2108cleanup:
2109	if (npath) {
2110		ext4_ext_drop_refs(npath);
2111		kfree(npath);
2112	}
 
2113	return err;
2114}
2115
2116static int ext4_fill_fiemap_extents(struct inode *inode,
2117				    ext4_lblk_t block, ext4_lblk_t num,
2118				    struct fiemap_extent_info *fieinfo)
2119{
2120	struct ext4_ext_path *path = NULL;
 
2121	struct ext4_extent *ex;
2122	struct extent_status es;
2123	ext4_lblk_t next, next_del, start = 0, end = 0;
2124	ext4_lblk_t last = block + num;
2125	int exists, depth = 0, err = 0;
2126	unsigned int flags = 0;
2127	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
 
2128
2129	while (block < last && block != EXT_MAX_BLOCKS) {
2130		num = last - block;
2131		/* find extent for this block */
2132		down_read(&EXT4_I(inode)->i_data_sem);
2133
2134		if (path && ext_depth(inode) != depth) {
2135			/* depth was changed. we have to realloc path */
2136			kfree(path);
2137			path = NULL;
2138		}
2139
2140		path = ext4_ext_find_extent(inode, block, path, 0);
2141		if (IS_ERR(path)) {
2142			up_read(&EXT4_I(inode)->i_data_sem);
2143			err = PTR_ERR(path);
2144			path = NULL;
2145			break;
2146		}
2147
2148		depth = ext_depth(inode);
2149		if (unlikely(path[depth].p_hdr == NULL)) {
2150			up_read(&EXT4_I(inode)->i_data_sem);
2151			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2152			err = -EIO;
2153			break;
2154		}
2155		ex = path[depth].p_ext;
2156		next = ext4_ext_next_allocated_block(path);
2157		ext4_ext_drop_refs(path);
2158
2159		flags = 0;
2160		exists = 0;
2161		if (!ex) {
2162			/* there is no extent yet, so try to allocate
2163			 * all requested space */
2164			start = block;
2165			end = block + num;
2166		} else if (le32_to_cpu(ex->ee_block) > block) {
2167			/* need to allocate space before found extent */
2168			start = block;
2169			end = le32_to_cpu(ex->ee_block);
2170			if (block + num < end)
2171				end = block + num;
2172		} else if (block >= le32_to_cpu(ex->ee_block)
2173					+ ext4_ext_get_actual_len(ex)) {
2174			/* need to allocate space after found extent */
2175			start = block;
2176			end = block + num;
2177			if (end >= next)
2178				end = next;
2179		} else if (block >= le32_to_cpu(ex->ee_block)) {
2180			/*
2181			 * some part of requested space is covered
2182			 * by found extent
2183			 */
2184			start = block;
2185			end = le32_to_cpu(ex->ee_block)
2186				+ ext4_ext_get_actual_len(ex);
2187			if (block + num < end)
2188				end = block + num;
2189			exists = 1;
2190		} else {
2191			BUG();
2192		}
2193		BUG_ON(end <= start);
2194
2195		if (!exists) {
2196			es.es_lblk = start;
2197			es.es_len = end - start;
2198			es.es_pblk = 0;
2199		} else {
2200			es.es_lblk = le32_to_cpu(ex->ee_block);
2201			es.es_len = ext4_ext_get_actual_len(ex);
2202			es.es_pblk = ext4_ext_pblock(ex);
2203			if (ext4_ext_is_uninitialized(ex))
2204				flags |= FIEMAP_EXTENT_UNWRITTEN;
2205		}
2206
2207		/*
2208		 * Find delayed extent and update es accordingly. We call
2209		 * it even in !exists case to find out whether es is the
2210		 * last existing extent or not.
2211		 */
2212		next_del = ext4_find_delayed_extent(inode, &es);
2213		if (!exists && next_del) {
2214			exists = 1;
2215			flags |= (FIEMAP_EXTENT_DELALLOC |
2216				  FIEMAP_EXTENT_UNKNOWN);
2217		}
2218		up_read(&EXT4_I(inode)->i_data_sem);
 
2219
2220		if (unlikely(es.es_len == 0)) {
2221			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2222			err = -EIO;
2223			break;
2224		}
2225
2226		/*
2227		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2228		 * we need to check next == EXT_MAX_BLOCKS because it is
2229		 * possible that an extent is with unwritten and delayed
2230		 * status due to when an extent is delayed allocated and
2231		 * is allocated by fallocate status tree will track both of
2232		 * them in a extent.
2233		 *
2234		 * So we could return a unwritten and delayed extent, and
2235		 * its block is equal to 'next'.
2236		 */
2237		if (next == next_del && next == EXT_MAX_BLOCKS) {
2238			flags |= FIEMAP_EXTENT_LAST;
2239			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2240				     next != EXT_MAX_BLOCKS)) {
2241				EXT4_ERROR_INODE(inode,
2242						 "next extent == %u, next "
2243						 "delalloc extent = %u",
2244						 next, next_del);
2245				err = -EIO;
2246				break;
2247			}
2248		}
2249
2250		if (exists) {
2251			err = fiemap_fill_next_extent(fieinfo,
2252				(__u64)es.es_lblk << blksize_bits,
2253				(__u64)es.es_pblk << blksize_bits,
2254				(__u64)es.es_len << blksize_bits,
2255				flags);
2256			if (err < 0)
2257				break;
2258			if (err == 1) {
2259				err = 0;
2260				break;
2261			}
2262		}
2263
2264		block = es.es_lblk + es.es_len;
2265	}
2266
2267	if (path) {
2268		ext4_ext_drop_refs(path);
2269		kfree(path);
2270	}
2271
2272	return err;
2273}
2274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275/*
2276 * ext4_ext_put_gap_in_cache:
2277 * calculate boundaries of the gap that the requested block fits into
2278 * and cache this gap
2279 */
2280static void
2281ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2282				ext4_lblk_t block)
2283{
2284	int depth = ext_depth(inode);
2285	unsigned long len = 0;
2286	ext4_lblk_t lblock = 0;
2287	struct ext4_extent *ex;
2288
2289	ex = path[depth].p_ext;
2290	if (ex == NULL) {
2291		/*
2292		 * there is no extent yet, so gap is [0;-] and we
2293		 * don't cache it
2294		 */
2295		ext_debug("cache gap(whole file):");
2296	} else if (block < le32_to_cpu(ex->ee_block)) {
2297		lblock = block;
2298		len = le32_to_cpu(ex->ee_block) - block;
2299		ext_debug("cache gap(before): %u [%u:%u]",
2300				block,
2301				le32_to_cpu(ex->ee_block),
2302				 ext4_ext_get_actual_len(ex));
2303		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2304			ext4_es_insert_extent(inode, lblock, len, ~0,
2305					      EXTENT_STATUS_HOLE);
2306	} else if (block >= le32_to_cpu(ex->ee_block)
2307			+ ext4_ext_get_actual_len(ex)) {
2308		ext4_lblk_t next;
2309		lblock = le32_to_cpu(ex->ee_block)
2310			+ ext4_ext_get_actual_len(ex);
2311
2312		next = ext4_ext_next_allocated_block(path);
2313		ext_debug("cache gap(after): [%u:%u] %u",
2314				le32_to_cpu(ex->ee_block),
2315				ext4_ext_get_actual_len(ex),
2316				block);
2317		BUG_ON(next == lblock);
2318		len = next - lblock;
2319		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320			ext4_es_insert_extent(inode, lblock, len, ~0,
2321					      EXTENT_STATUS_HOLE);
2322	} else {
 
2323		BUG();
2324	}
2325
2326	ext_debug(" -> %u:%lu\n", lblock, len);
 
2327}
2328
2329/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330 * ext4_ext_rm_idx:
2331 * removes index from the index block.
2332 */
2333static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2334			struct ext4_ext_path *path, int depth)
2335{
2336	int err;
2337	ext4_fsblk_t leaf;
2338
2339	/* free index block */
2340	depth--;
2341	path = path + depth;
2342	leaf = ext4_idx_pblock(path->p_idx);
2343	if (unlikely(path->p_hdr->eh_entries == 0)) {
2344		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2345		return -EIO;
2346	}
2347	err = ext4_ext_get_access(handle, inode, path);
2348	if (err)
2349		return err;
2350
2351	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2352		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2353		len *= sizeof(struct ext4_extent_idx);
2354		memmove(path->p_idx, path->p_idx + 1, len);
2355	}
2356
2357	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2358	err = ext4_ext_dirty(handle, inode, path);
2359	if (err)
2360		return err;
2361	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2362	trace_ext4_ext_rm_idx(inode, leaf);
2363
2364	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2365			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2366
2367	while (--depth >= 0) {
2368		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2369			break;
2370		path--;
2371		err = ext4_ext_get_access(handle, inode, path);
2372		if (err)
2373			break;
2374		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2375		err = ext4_ext_dirty(handle, inode, path);
2376		if (err)
2377			break;
2378	}
2379	return err;
2380}
2381
2382/*
2383 * ext4_ext_calc_credits_for_single_extent:
2384 * This routine returns max. credits that needed to insert an extent
2385 * to the extent tree.
2386 * When pass the actual path, the caller should calculate credits
2387 * under i_data_sem.
2388 */
2389int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2390						struct ext4_ext_path *path)
2391{
2392	if (path) {
2393		int depth = ext_depth(inode);
2394		int ret = 0;
2395
2396		/* probably there is space in leaf? */
2397		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2398				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2399
2400			/*
2401			 *  There are some space in the leaf tree, no
2402			 *  need to account for leaf block credit
2403			 *
2404			 *  bitmaps and block group descriptor blocks
2405			 *  and other metadata blocks still need to be
2406			 *  accounted.
2407			 */
2408			/* 1 bitmap, 1 block group descriptor */
2409			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2410			return ret;
2411		}
2412	}
2413
2414	return ext4_chunk_trans_blocks(inode, nrblocks);
2415}
2416
2417/*
2418 * How many index/leaf blocks need to change/allocate to add @extents extents?
2419 *
2420 * If we add a single extent, then in the worse case, each tree level
2421 * index/leaf need to be changed in case of the tree split.
 
 
2422 *
2423 * If more extents are inserted, they could cause the whole tree split more
2424 * than once, but this is really rare.
2425 */
2426int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2427{
2428	int index;
2429	int depth;
2430
2431	/* If we are converting the inline data, only one is needed here. */
2432	if (ext4_has_inline_data(inode))
2433		return 1;
2434
2435	depth = ext_depth(inode);
2436
2437	if (extents <= 1)
2438		index = depth * 2;
2439	else
2440		index = depth * 3;
2441
2442	return index;
2443}
2444
2445static inline int get_default_free_blocks_flags(struct inode *inode)
2446{
2447	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2449	else if (ext4_should_journal_data(inode))
2450		return EXT4_FREE_BLOCKS_FORGET;
2451	return 0;
2452}
2453
2454static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2455			      struct ext4_extent *ex,
2456			      long long *partial_cluster,
2457			      ext4_lblk_t from, ext4_lblk_t to)
2458{
2459	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2460	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2461	ext4_fsblk_t pblk;
2462	int flags = get_default_free_blocks_flags(inode);
2463
2464	/*
2465	 * For bigalloc file systems, we never free a partial cluster
2466	 * at the beginning of the extent.  Instead, we make a note
2467	 * that we tried freeing the cluster, and check to see if we
2468	 * need to free it on a subsequent call to ext4_remove_blocks,
2469	 * or at the end of the ext4_truncate() operation.
2470	 */
2471	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2472
2473	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2474	/*
2475	 * If we have a partial cluster, and it's different from the
2476	 * cluster of the last block, we need to explicitly free the
2477	 * partial cluster here.
2478	 */
2479	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2480	if ((*partial_cluster > 0) &&
2481	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2482		ext4_free_blocks(handle, inode, NULL,
2483				 EXT4_C2B(sbi, *partial_cluster),
2484				 sbi->s_cluster_ratio, flags);
2485		*partial_cluster = 0;
2486	}
2487
 
 
2488#ifdef EXTENTS_STATS
2489	{
2490		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2491		spin_lock(&sbi->s_ext_stats_lock);
2492		sbi->s_ext_blocks += ee_len;
2493		sbi->s_ext_extents++;
2494		if (ee_len < sbi->s_ext_min)
2495			sbi->s_ext_min = ee_len;
2496		if (ee_len > sbi->s_ext_max)
2497			sbi->s_ext_max = ee_len;
2498		if (ext_depth(inode) > sbi->s_depth_max)
2499			sbi->s_depth_max = ext_depth(inode);
2500		spin_unlock(&sbi->s_ext_stats_lock);
2501	}
2502#endif
2503	if (from >= le32_to_cpu(ex->ee_block)
2504	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2505		/* tail removal */
2506		ext4_lblk_t num;
2507		unsigned int unaligned;
2508
2509		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2510		pblk = ext4_ext_pblock(ex) + ee_len - num;
2511		/*
2512		 * Usually we want to free partial cluster at the end of the
2513		 * extent, except for the situation when the cluster is still
2514		 * used by any other extent (partial_cluster is negative).
2515		 */
2516		if (*partial_cluster < 0 &&
2517		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2518			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2519
2520		ext_debug("free last %u blocks starting %llu partial %lld\n",
2521			  num, pblk, *partial_cluster);
2522		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2523		/*
2524		 * If the block range to be freed didn't start at the
2525		 * beginning of a cluster, and we removed the entire
2526		 * extent and the cluster is not used by any other extent,
2527		 * save the partial cluster here, since we might need to
2528		 * delete if we determine that the truncate operation has
2529		 * removed all of the blocks in the cluster.
2530		 *
2531		 * On the other hand, if we did not manage to free the whole
2532		 * extent, we have to mark the cluster as used (store negative
2533		 * cluster number in partial_cluster).
2534		 */
2535		unaligned = EXT4_PBLK_COFF(sbi, pblk);
2536		if (unaligned && (ee_len == num) &&
2537		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2538			*partial_cluster = EXT4_B2C(sbi, pblk);
2539		else if (unaligned)
2540			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2541		else if (*partial_cluster > 0)
2542			*partial_cluster = 0;
2543	} else
2544		ext4_error(sbi->s_sb, "strange request: removal(2) "
2545			   "%u-%u from %u:%u\n",
2546			   from, to, le32_to_cpu(ex->ee_block), ee_len);
2547	return 0;
2548}
2549
2550
2551/*
2552 * ext4_ext_rm_leaf() Removes the extents associated with the
2553 * blocks appearing between "start" and "end", and splits the extents
2554 * if "start" and "end" appear in the same extent
2555 *
2556 * @handle: The journal handle
2557 * @inode:  The files inode
2558 * @path:   The path to the leaf
2559 * @partial_cluster: The cluster which we'll have to free if all extents
2560 *                   has been released from it. It gets negative in case
2561 *                   that the cluster is still used.
2562 * @start:  The first block to remove
2563 * @end:   The last block to remove
2564 */
2565static int
2566ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2567		 struct ext4_ext_path *path,
2568		 long long *partial_cluster,
2569		 ext4_lblk_t start, ext4_lblk_t end)
2570{
2571	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2572	int err = 0, correct_index = 0;
2573	int depth = ext_depth(inode), credits;
2574	struct ext4_extent_header *eh;
2575	ext4_lblk_t a, b;
2576	unsigned num;
2577	ext4_lblk_t ex_ee_block;
2578	unsigned short ex_ee_len;
2579	unsigned uninitialized = 0;
2580	struct ext4_extent *ex;
2581	ext4_fsblk_t pblk;
2582
2583	/* the header must be checked already in ext4_ext_remove_space() */
2584	ext_debug("truncate since %u in leaf to %u\n", start, end);
2585	if (!path[depth].p_hdr)
2586		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2587	eh = path[depth].p_hdr;
2588	if (unlikely(path[depth].p_hdr == NULL)) {
2589		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2590		return -EIO;
2591	}
2592	/* find where to start removing */
2593	ex = path[depth].p_ext;
2594	if (!ex)
2595		ex = EXT_LAST_EXTENT(eh);
2596
2597	ex_ee_block = le32_to_cpu(ex->ee_block);
2598	ex_ee_len = ext4_ext_get_actual_len(ex);
2599
2600	/*
2601	 * If we're starting with an extent other than the last one in the
2602	 * node, we need to see if it shares a cluster with the extent to
2603	 * the right (towards the end of the file). If its leftmost cluster
2604	 * is this extent's rightmost cluster and it is not cluster aligned,
2605	 * we'll mark it as a partial that is not to be deallocated.
2606	 */
2607
2608	if (ex != EXT_LAST_EXTENT(eh)) {
2609		ext4_fsblk_t current_pblk, right_pblk;
2610		long long current_cluster, right_cluster;
2611
2612		current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2613		current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2614		right_pblk = ext4_ext_pblock(ex + 1);
2615		right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2616		if (current_cluster == right_cluster &&
2617			EXT4_PBLK_COFF(sbi, right_pblk))
2618			*partial_cluster = -right_cluster;
2619	}
2620
2621	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2622
2623	while (ex >= EXT_FIRST_EXTENT(eh) &&
2624			ex_ee_block + ex_ee_len > start) {
2625
2626		if (ext4_ext_is_uninitialized(ex))
2627			uninitialized = 1;
2628		else
2629			uninitialized = 0;
2630
2631		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2632			 uninitialized, ex_ee_len);
2633		path[depth].p_ext = ex;
2634
2635		a = ex_ee_block > start ? ex_ee_block : start;
2636		b = ex_ee_block+ex_ee_len - 1 < end ?
2637			ex_ee_block+ex_ee_len - 1 : end;
2638
2639		ext_debug("  border %u:%u\n", a, b);
2640
2641		/* If this extent is beyond the end of the hole, skip it */
2642		if (end < ex_ee_block) {
2643			/*
2644			 * We're going to skip this extent and move to another,
2645			 * so if this extent is not cluster aligned we have
2646			 * to mark the current cluster as used to avoid
2647			 * accidentally freeing it later on
2648			 */
2649			pblk = ext4_ext_pblock(ex);
2650			if (EXT4_PBLK_COFF(sbi, pblk))
2651				*partial_cluster =
2652					-((long long)EXT4_B2C(sbi, pblk));
2653			ex--;
2654			ex_ee_block = le32_to_cpu(ex->ee_block);
2655			ex_ee_len = ext4_ext_get_actual_len(ex);
2656			continue;
2657		} else if (b != ex_ee_block + ex_ee_len - 1) {
2658			EXT4_ERROR_INODE(inode,
2659					 "can not handle truncate %u:%u "
2660					 "on extent %u:%u",
2661					 start, end, ex_ee_block,
2662					 ex_ee_block + ex_ee_len - 1);
2663			err = -EIO;
2664			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665		} else if (a != ex_ee_block) {
2666			/* remove tail of the extent */
2667			num = a - ex_ee_block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2668		} else {
2669			/* remove whole extent: excellent! */
 
2670			num = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2671		}
 
2672		/*
2673		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2674		 * descriptor) for each block group; assume two block
2675		 * groups plus ex_ee_len/blocks_per_block_group for
2676		 * the worst case
2677		 */
2678		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2679		if (ex == EXT_FIRST_EXTENT(eh)) {
2680			correct_index = 1;
2681			credits += (ext_depth(inode)) + 1;
2682		}
2683		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2684
2685		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2686		if (err)
2687			goto out;
2688
2689		err = ext4_ext_get_access(handle, inode, path + depth);
2690		if (err)
2691			goto out;
2692
2693		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2694					 a, b);
2695		if (err)
2696			goto out;
2697
2698		if (num == 0)
2699			/* this extent is removed; mark slot entirely unused */
2700			ext4_ext_store_pblock(ex, 0);
 
 
 
 
 
 
 
 
2701
 
2702		ex->ee_len = cpu_to_le16(num);
2703		/*
2704		 * Do not mark uninitialized if all the blocks in the
2705		 * extent have been removed.
2706		 */
2707		if (uninitialized && num)
2708			ext4_ext_mark_uninitialized(ex);
 
 
 
 
 
2709		/*
2710		 * If the extent was completely released,
2711		 * we need to remove it from the leaf
2712		 */
2713		if (num == 0) {
2714			if (end != EXT_MAX_BLOCKS - 1) {
2715				/*
2716				 * For hole punching, we need to scoot all the
2717				 * extents up when an extent is removed so that
2718				 * we dont have blank extents in the middle
2719				 */
2720				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2721					sizeof(struct ext4_extent));
2722
2723				/* Now get rid of the one at the end */
2724				memset(EXT_LAST_EXTENT(eh), 0,
2725					sizeof(struct ext4_extent));
2726			}
2727			le16_add_cpu(&eh->eh_entries, -1);
2728		} else if (*partial_cluster > 0)
2729			*partial_cluster = 0;
2730
2731		err = ext4_ext_dirty(handle, inode, path + depth);
2732		if (err)
2733			goto out;
2734
2735		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2736				ext4_ext_pblock(ex));
2737		ex--;
2738		ex_ee_block = le32_to_cpu(ex->ee_block);
2739		ex_ee_len = ext4_ext_get_actual_len(ex);
2740	}
2741
2742	if (correct_index && eh->eh_entries)
2743		err = ext4_ext_correct_indexes(handle, inode, path);
2744
2745	/*
2746	 * If there's a partial cluster and at least one extent remains in
2747	 * the leaf, free the partial cluster if it isn't shared with the
2748	 * current extent.  If there's a partial cluster and no extents
2749	 * remain in the leaf, it can't be freed here.  It can only be
2750	 * freed when it's possible to determine if it's not shared with
2751	 * any other extent - when the next leaf is processed or when space
2752	 * removal is complete.
2753	 */
2754	if (*partial_cluster > 0 && eh->eh_entries &&
2755	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2756	     *partial_cluster)) {
2757		int flags = get_default_free_blocks_flags(inode);
2758
2759		ext4_free_blocks(handle, inode, NULL,
2760				 EXT4_C2B(sbi, *partial_cluster),
2761				 sbi->s_cluster_ratio, flags);
2762		*partial_cluster = 0;
2763	}
2764
2765	/* if this leaf is free, then we should
2766	 * remove it from index block above */
2767	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2768		err = ext4_ext_rm_idx(handle, inode, path, depth);
2769
2770out:
2771	return err;
2772}
2773
2774/*
2775 * ext4_ext_more_to_rm:
2776 * returns 1 if current index has to be freed (even partial)
2777 */
2778static int
2779ext4_ext_more_to_rm(struct ext4_ext_path *path)
2780{
2781	BUG_ON(path->p_idx == NULL);
2782
2783	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2784		return 0;
2785
2786	/*
2787	 * if truncate on deeper level happened, it wasn't partial,
2788	 * so we have to consider current index for truncation
2789	 */
2790	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2791		return 0;
2792	return 1;
2793}
2794
2795int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2796			  ext4_lblk_t end)
2797{
2798	struct super_block *sb = inode->i_sb;
2799	int depth = ext_depth(inode);
2800	struct ext4_ext_path *path = NULL;
2801	long long partial_cluster = 0;
2802	handle_t *handle;
2803	int i = 0, err = 0;
2804
2805	ext_debug("truncate since %u to %u\n", start, end);
2806
2807	/* probably first extent we're gonna free will be last in block */
2808	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2809	if (IS_ERR(handle))
2810		return PTR_ERR(handle);
2811
2812again:
2813	trace_ext4_ext_remove_space(inode, start, end, depth);
2814
2815	/*
2816	 * Check if we are removing extents inside the extent tree. If that
2817	 * is the case, we are going to punch a hole inside the extent tree
2818	 * so we have to check whether we need to split the extent covering
2819	 * the last block to remove so we can easily remove the part of it
2820	 * in ext4_ext_rm_leaf().
2821	 */
2822	if (end < EXT_MAX_BLOCKS - 1) {
2823		struct ext4_extent *ex;
2824		ext4_lblk_t ee_block;
2825
2826		/* find extent for this block */
2827		path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2828		if (IS_ERR(path)) {
2829			ext4_journal_stop(handle);
2830			return PTR_ERR(path);
2831		}
2832		depth = ext_depth(inode);
2833		/* Leaf not may not exist only if inode has no blocks at all */
2834		ex = path[depth].p_ext;
2835		if (!ex) {
2836			if (depth) {
2837				EXT4_ERROR_INODE(inode,
2838						 "path[%d].p_hdr == NULL",
2839						 depth);
2840				err = -EIO;
2841			}
2842			goto out;
2843		}
2844
2845		ee_block = le32_to_cpu(ex->ee_block);
2846
2847		/*
2848		 * See if the last block is inside the extent, if so split
2849		 * the extent at 'end' block so we can easily remove the
2850		 * tail of the first part of the split extent in
2851		 * ext4_ext_rm_leaf().
2852		 */
2853		if (end >= ee_block &&
2854		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2855			int split_flag = 0;
2856
2857			if (ext4_ext_is_uninitialized(ex))
2858				split_flag = EXT4_EXT_MARK_UNINIT1 |
2859					     EXT4_EXT_MARK_UNINIT2;
2860
2861			/*
2862			 * Split the extent in two so that 'end' is the last
2863			 * block in the first new extent. Also we should not
2864			 * fail removing space due to ENOSPC so try to use
2865			 * reserved block if that happens.
2866			 */
2867			err = ext4_split_extent_at(handle, inode, path,
2868					end + 1, split_flag,
2869					EXT4_EX_NOCACHE |
2870					EXT4_GET_BLOCKS_PRE_IO |
2871					EXT4_GET_BLOCKS_METADATA_NOFAIL);
2872
2873			if (err < 0)
2874				goto out;
2875		}
2876	}
2877	/*
2878	 * We start scanning from right side, freeing all the blocks
2879	 * after i_size and walking into the tree depth-wise.
2880	 */
2881	depth = ext_depth(inode);
2882	if (path) {
2883		int k = i = depth;
2884		while (--k > 0)
2885			path[k].p_block =
2886				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2887	} else {
2888		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2889			       GFP_NOFS);
2890		if (path == NULL) {
2891			ext4_journal_stop(handle);
2892			return -ENOMEM;
2893		}
2894		path[0].p_depth = depth;
2895		path[0].p_hdr = ext_inode_hdr(inode);
2896		i = 0;
2897
2898		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2899			err = -EIO;
2900			goto out;
2901		}
2902	}
2903	err = 0;
2904
2905	while (i >= 0 && err == 0) {
2906		if (i == depth) {
2907			/* this is leaf block */
2908			err = ext4_ext_rm_leaf(handle, inode, path,
2909					       &partial_cluster, start,
2910					       end);
2911			/* root level has p_bh == NULL, brelse() eats this */
2912			brelse(path[i].p_bh);
2913			path[i].p_bh = NULL;
2914			i--;
2915			continue;
2916		}
2917
2918		/* this is index block */
2919		if (!path[i].p_hdr) {
2920			ext_debug("initialize header\n");
2921			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2922		}
2923
2924		if (!path[i].p_idx) {
2925			/* this level hasn't been touched yet */
2926			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2927			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2928			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2929				  path[i].p_hdr,
2930				  le16_to_cpu(path[i].p_hdr->eh_entries));
2931		} else {
2932			/* we were already here, see at next index */
2933			path[i].p_idx--;
2934		}
2935
2936		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2937				i, EXT_FIRST_INDEX(path[i].p_hdr),
2938				path[i].p_idx);
2939		if (ext4_ext_more_to_rm(path + i)) {
2940			struct buffer_head *bh;
2941			/* go to the next level */
2942			ext_debug("move to level %d (block %llu)\n",
2943				  i + 1, ext4_idx_pblock(path[i].p_idx));
2944			memset(path + i + 1, 0, sizeof(*path));
2945			bh = read_extent_tree_block(inode,
2946				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2947				EXT4_EX_NOCACHE);
2948			if (IS_ERR(bh)) {
2949				/* should we reset i_size? */
2950				err = PTR_ERR(bh);
2951				break;
2952			}
2953			/* Yield here to deal with large extent trees.
2954			 * Should be a no-op if we did IO above. */
2955			cond_resched();
2956			if (WARN_ON(i + 1 > depth)) {
2957				err = -EIO;
2958				break;
2959			}
 
 
 
 
 
2960			path[i + 1].p_bh = bh;
2961
2962			/* save actual number of indexes since this
2963			 * number is changed at the next iteration */
2964			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2965			i++;
2966		} else {
2967			/* we finished processing this index, go up */
2968			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2969				/* index is empty, remove it;
2970				 * handle must be already prepared by the
2971				 * truncatei_leaf() */
2972				err = ext4_ext_rm_idx(handle, inode, path, i);
2973			}
2974			/* root level has p_bh == NULL, brelse() eats this */
2975			brelse(path[i].p_bh);
2976			path[i].p_bh = NULL;
2977			i--;
2978			ext_debug("return to level %d\n", i);
2979		}
2980	}
2981
2982	trace_ext4_ext_remove_space_done(inode, start, end, depth,
2983			partial_cluster, path->p_hdr->eh_entries);
2984
2985	/* If we still have something in the partial cluster and we have removed
2986	 * even the first extent, then we should free the blocks in the partial
2987	 * cluster as well. */
2988	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2989		int flags = get_default_free_blocks_flags(inode);
2990
2991		ext4_free_blocks(handle, inode, NULL,
2992				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2993				 EXT4_SB(sb)->s_cluster_ratio, flags);
2994		partial_cluster = 0;
2995	}
2996
2997	/* TODO: flexible tree reduction should be here */
2998	if (path->p_hdr->eh_entries == 0) {
2999		/*
3000		 * truncate to zero freed all the tree,
3001		 * so we need to correct eh_depth
3002		 */
3003		err = ext4_ext_get_access(handle, inode, path);
3004		if (err == 0) {
3005			ext_inode_hdr(inode)->eh_depth = 0;
3006			ext_inode_hdr(inode)->eh_max =
3007				cpu_to_le16(ext4_ext_space_root(inode, 0));
3008			err = ext4_ext_dirty(handle, inode, path);
3009		}
3010	}
3011out:
3012	ext4_ext_drop_refs(path);
3013	kfree(path);
3014	if (err == -EAGAIN) {
3015		path = NULL;
3016		goto again;
3017	}
3018	ext4_journal_stop(handle);
3019
3020	return err;
3021}
3022
3023/*
3024 * called at mount time
3025 */
3026void ext4_ext_init(struct super_block *sb)
3027{
3028	/*
3029	 * possible initialization would be here
3030	 */
3031
3032	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3033#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3034		printk(KERN_INFO "EXT4-fs: file extents enabled"
3035#ifdef AGGRESSIVE_TEST
3036		       ", aggressive tests"
3037#endif
3038#ifdef CHECK_BINSEARCH
3039		       ", check binsearch"
3040#endif
3041#ifdef EXTENTS_STATS
3042		       ", stats"
3043#endif
3044		       "\n");
3045#endif
3046#ifdef EXTENTS_STATS
3047		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3048		EXT4_SB(sb)->s_ext_min = 1 << 30;
3049		EXT4_SB(sb)->s_ext_max = 0;
3050#endif
3051	}
3052}
3053
3054/*
3055 * called at umount time
3056 */
3057void ext4_ext_release(struct super_block *sb)
3058{
3059	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3060		return;
3061
3062#ifdef EXTENTS_STATS
3063	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3064		struct ext4_sb_info *sbi = EXT4_SB(sb);
3065		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3066			sbi->s_ext_blocks, sbi->s_ext_extents,
3067			sbi->s_ext_blocks / sbi->s_ext_extents);
3068		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3069			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3070	}
3071#endif
3072}
3073
3074static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3075{
3076	ext4_lblk_t  ee_block;
3077	ext4_fsblk_t ee_pblock;
3078	unsigned int ee_len;
3079
3080	ee_block  = le32_to_cpu(ex->ee_block);
3081	ee_len    = ext4_ext_get_actual_len(ex);
3082	ee_pblock = ext4_ext_pblock(ex);
3083
3084	if (ee_len == 0)
3085		return 0;
3086
3087	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3088				     EXTENT_STATUS_WRITTEN);
3089}
3090
3091/* FIXME!! we need to try to merge to left or right after zero-out  */
3092static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3093{
3094	ext4_fsblk_t ee_pblock;
3095	unsigned int ee_len;
3096	int ret;
3097
3098	ee_len    = ext4_ext_get_actual_len(ex);
3099	ee_pblock = ext4_ext_pblock(ex);
3100
3101	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3102	if (ret > 0)
3103		ret = 0;
3104
3105	return ret;
3106}
3107
3108/*
 
 
 
 
 
 
 
 
3109 * ext4_split_extent_at() splits an extent at given block.
3110 *
3111 * @handle: the journal handle
3112 * @inode: the file inode
3113 * @path: the path to the extent
3114 * @split: the logical block where the extent is splitted.
3115 * @split_flags: indicates if the extent could be zeroout if split fails, and
3116 *		 the states(init or uninit) of new extents.
3117 * @flags: flags used to insert new extent to extent tree.
3118 *
3119 *
3120 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3121 * of which are deterimined by split_flag.
3122 *
3123 * There are two cases:
3124 *  a> the extent are splitted into two extent.
3125 *  b> split is not needed, and just mark the extent.
3126 *
3127 * return 0 on success.
3128 */
3129static int ext4_split_extent_at(handle_t *handle,
3130			     struct inode *inode,
3131			     struct ext4_ext_path *path,
3132			     ext4_lblk_t split,
3133			     int split_flag,
3134			     int flags)
3135{
3136	ext4_fsblk_t newblock;
3137	ext4_lblk_t ee_block;
3138	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3139	struct ext4_extent *ex2 = NULL;
3140	unsigned int ee_len, depth;
3141	int err = 0;
3142
3143	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3144	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3145
3146	ext_debug("ext4_split_extents_at: inode %lu, logical"
3147		"block %llu\n", inode->i_ino, (unsigned long long)split);
3148
3149	ext4_ext_show_leaf(inode, path);
3150
3151	depth = ext_depth(inode);
3152	ex = path[depth].p_ext;
3153	ee_block = le32_to_cpu(ex->ee_block);
3154	ee_len = ext4_ext_get_actual_len(ex);
3155	newblock = split - ee_block + ext4_ext_pblock(ex);
3156
3157	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3158	BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3159	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3160			     EXT4_EXT_MARK_UNINIT1 |
3161			     EXT4_EXT_MARK_UNINIT2));
3162
3163	err = ext4_ext_get_access(handle, inode, path + depth);
3164	if (err)
3165		goto out;
3166
3167	if (split == ee_block) {
3168		/*
3169		 * case b: block @split is the block that the extent begins with
3170		 * then we just change the state of the extent, and splitting
3171		 * is not needed.
3172		 */
3173		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3174			ext4_ext_mark_uninitialized(ex);
3175		else
3176			ext4_ext_mark_initialized(ex);
3177
3178		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3179			ext4_ext_try_to_merge(handle, inode, path, ex);
3180
3181		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3182		goto out;
3183	}
3184
3185	/* case a */
3186	memcpy(&orig_ex, ex, sizeof(orig_ex));
3187	ex->ee_len = cpu_to_le16(split - ee_block);
3188	if (split_flag & EXT4_EXT_MARK_UNINIT1)
3189		ext4_ext_mark_uninitialized(ex);
3190
3191	/*
3192	 * path may lead to new leaf, not to original leaf any more
3193	 * after ext4_ext_insert_extent() returns,
3194	 */
3195	err = ext4_ext_dirty(handle, inode, path + depth);
3196	if (err)
3197		goto fix_extent_len;
3198
3199	ex2 = &newex;
3200	ex2->ee_block = cpu_to_le32(split);
3201	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3202	ext4_ext_store_pblock(ex2, newblock);
3203	if (split_flag & EXT4_EXT_MARK_UNINIT2)
3204		ext4_ext_mark_uninitialized(ex2);
3205
3206	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3207	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3208		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3209			if (split_flag & EXT4_EXT_DATA_VALID1) {
3210				err = ext4_ext_zeroout(inode, ex2);
3211				zero_ex.ee_block = ex2->ee_block;
3212				zero_ex.ee_len = cpu_to_le16(
3213						ext4_ext_get_actual_len(ex2));
3214				ext4_ext_store_pblock(&zero_ex,
3215						      ext4_ext_pblock(ex2));
3216			} else {
3217				err = ext4_ext_zeroout(inode, ex);
3218				zero_ex.ee_block = ex->ee_block;
3219				zero_ex.ee_len = cpu_to_le16(
3220						ext4_ext_get_actual_len(ex));
3221				ext4_ext_store_pblock(&zero_ex,
3222						      ext4_ext_pblock(ex));
3223			}
3224		} else {
3225			err = ext4_ext_zeroout(inode, &orig_ex);
3226			zero_ex.ee_block = orig_ex.ee_block;
3227			zero_ex.ee_len = cpu_to_le16(
3228						ext4_ext_get_actual_len(&orig_ex));
3229			ext4_ext_store_pblock(&zero_ex,
3230					      ext4_ext_pblock(&orig_ex));
3231		}
3232
3233		if (err)
3234			goto fix_extent_len;
3235		/* update the extent length and mark as initialized */
3236		ex->ee_len = cpu_to_le16(ee_len);
3237		ext4_ext_try_to_merge(handle, inode, path, ex);
3238		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3239		if (err)
3240			goto fix_extent_len;
3241
3242		/* update extent status tree */
3243		err = ext4_zeroout_es(inode, &zero_ex);
3244
3245		goto out;
3246	} else if (err)
3247		goto fix_extent_len;
3248
3249out:
3250	ext4_ext_show_leaf(inode, path);
3251	return err;
3252
3253fix_extent_len:
3254	ex->ee_len = orig_ex.ee_len;
3255	ext4_ext_dirty(handle, inode, path + depth);
3256	return err;
3257}
3258
3259/*
3260 * ext4_split_extents() splits an extent and mark extent which is covered
3261 * by @map as split_flags indicates
3262 *
3263 * It may result in splitting the extent into multiple extents (up to three)
3264 * There are three possibilities:
3265 *   a> There is no split required
3266 *   b> Splits in two extents: Split is happening at either end of the extent
3267 *   c> Splits in three extents: Somone is splitting in middle of the extent
3268 *
3269 */
3270static int ext4_split_extent(handle_t *handle,
3271			      struct inode *inode,
3272			      struct ext4_ext_path *path,
3273			      struct ext4_map_blocks *map,
3274			      int split_flag,
3275			      int flags)
3276{
3277	ext4_lblk_t ee_block;
3278	struct ext4_extent *ex;
3279	unsigned int ee_len, depth;
3280	int err = 0;
3281	int uninitialized;
3282	int split_flag1, flags1;
3283	int allocated = map->m_len;
3284
3285	depth = ext_depth(inode);
3286	ex = path[depth].p_ext;
3287	ee_block = le32_to_cpu(ex->ee_block);
3288	ee_len = ext4_ext_get_actual_len(ex);
3289	uninitialized = ext4_ext_is_uninitialized(ex);
3290
3291	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3292		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
 
3293		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3294		if (uninitialized)
3295			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3296				       EXT4_EXT_MARK_UNINIT2;
3297		if (split_flag & EXT4_EXT_DATA_VALID2)
3298			split_flag1 |= EXT4_EXT_DATA_VALID1;
3299		err = ext4_split_extent_at(handle, inode, path,
3300				map->m_lblk + map->m_len, split_flag1, flags1);
3301		if (err)
3302			goto out;
3303	} else {
3304		allocated = ee_len - (map->m_lblk - ee_block);
3305	}
3306	/*
3307	 * Update path is required because previous ext4_split_extent_at() may
3308	 * result in split of original leaf or extent zeroout.
3309	 */
3310	ext4_ext_drop_refs(path);
3311	path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3312	if (IS_ERR(path))
3313		return PTR_ERR(path);
3314	depth = ext_depth(inode);
3315	ex = path[depth].p_ext;
3316	if (!ex) {
3317		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3318				 (unsigned long) map->m_lblk);
3319		return -EIO;
3320	}
3321	uninitialized = ext4_ext_is_uninitialized(ex);
3322	split_flag1 = 0;
3323
3324	if (map->m_lblk >= ee_block) {
3325		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3326		if (uninitialized) {
 
3327			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3328			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3329						     EXT4_EXT_MARK_UNINIT2);
3330		}
3331		err = ext4_split_extent_at(handle, inode, path,
3332				map->m_lblk, split_flag1, flags);
3333		if (err)
3334			goto out;
3335	}
3336
3337	ext4_ext_show_leaf(inode, path);
3338out:
3339	return err ? err : allocated;
3340}
3341
 
3342/*
3343 * This function is called by ext4_ext_map_blocks() if someone tries to write
3344 * to an uninitialized extent. It may result in splitting the uninitialized
3345 * extent into multiple extents (up to three - one initialized and two
3346 * uninitialized).
3347 * There are three possibilities:
3348 *   a> There is no split required: Entire extent should be initialized
3349 *   b> Splits in two extents: Write is happening at either end of the extent
3350 *   c> Splits in three extents: Somone is writing in middle of the extent
3351 *
3352 * Pre-conditions:
3353 *  - The extent pointed to by 'path' is uninitialized.
3354 *  - The extent pointed to by 'path' contains a superset
3355 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3356 *
3357 * Post-conditions on success:
3358 *  - the returned value is the number of blocks beyond map->l_lblk
3359 *    that are allocated and initialized.
3360 *    It is guaranteed to be >= map->m_len.
3361 */
3362static int ext4_ext_convert_to_initialized(handle_t *handle,
3363					   struct inode *inode,
3364					   struct ext4_map_blocks *map,
3365					   struct ext4_ext_path *path,
3366					   int flags)
3367{
3368	struct ext4_sb_info *sbi;
3369	struct ext4_extent_header *eh;
3370	struct ext4_map_blocks split_map;
3371	struct ext4_extent zero_ex;
3372	struct ext4_extent *ex, *abut_ex;
3373	ext4_lblk_t ee_block, eof_block;
3374	unsigned int ee_len, depth, map_len = map->m_len;
3375	int allocated = 0, max_zeroout = 0;
3376	int err = 0;
3377	int split_flag = 0;
3378
3379	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3380		"block %llu, max_blocks %u\n", inode->i_ino,
3381		(unsigned long long)map->m_lblk, map_len);
3382
3383	sbi = EXT4_SB(inode->i_sb);
3384	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3385		inode->i_sb->s_blocksize_bits;
3386	if (eof_block < map->m_lblk + map_len)
3387		eof_block = map->m_lblk + map_len;
3388
3389	depth = ext_depth(inode);
3390	eh = path[depth].p_hdr;
3391	ex = path[depth].p_ext;
3392	ee_block = le32_to_cpu(ex->ee_block);
3393	ee_len = ext4_ext_get_actual_len(ex);
3394	zero_ex.ee_len = 0;
3395
3396	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3397
3398	/* Pre-conditions */
3399	BUG_ON(!ext4_ext_is_uninitialized(ex));
3400	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3401
3402	/*
3403	 * Attempt to transfer newly initialized blocks from the currently
3404	 * uninitialized extent to its neighbor. This is much cheaper
3405	 * than an insertion followed by a merge as those involve costly
3406	 * memmove() calls. Transferring to the left is the common case in
3407	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3408	 * followed by append writes.
3409	 *
3410	 * Limitations of the current logic:
3411	 *  - L1: we do not deal with writes covering the whole extent.
3412	 *    This would require removing the extent if the transfer
3413	 *    is possible.
3414	 *  - L2: we only attempt to merge with an extent stored in the
3415	 *    same extent tree node.
3416	 */
3417	if ((map->m_lblk == ee_block) &&
3418		/* See if we can merge left */
3419		(map_len < ee_len) &&		/*L1*/
3420		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3421		ext4_lblk_t prev_lblk;
3422		ext4_fsblk_t prev_pblk, ee_pblk;
3423		unsigned int prev_len;
3424
3425		abut_ex = ex - 1;
3426		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3427		prev_len = ext4_ext_get_actual_len(abut_ex);
3428		prev_pblk = ext4_ext_pblock(abut_ex);
3429		ee_pblk = ext4_ext_pblock(ex);
3430
3431		/*
3432		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3433		 * upon those conditions:
3434		 * - C1: abut_ex is initialized,
3435		 * - C2: abut_ex is logically abutting ex,
3436		 * - C3: abut_ex is physically abutting ex,
3437		 * - C4: abut_ex can receive the additional blocks without
3438		 *   overflowing the (initialized) length limit.
3439		 */
3440		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3441			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3442			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3443			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3444			err = ext4_ext_get_access(handle, inode, path + depth);
3445			if (err)
3446				goto out;
3447
3448			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3449				map, ex, abut_ex);
3450
3451			/* Shift the start of ex by 'map_len' blocks */
3452			ex->ee_block = cpu_to_le32(ee_block + map_len);
3453			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3454			ex->ee_len = cpu_to_le16(ee_len - map_len);
3455			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3456
3457			/* Extend abut_ex by 'map_len' blocks */
3458			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3459
3460			/* Result: number of initialized blocks past m_lblk */
3461			allocated = map_len;
3462		}
3463	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3464		   (map_len < ee_len) &&	/*L1*/
3465		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3466		/* See if we can merge right */
3467		ext4_lblk_t next_lblk;
3468		ext4_fsblk_t next_pblk, ee_pblk;
3469		unsigned int next_len;
3470
3471		abut_ex = ex + 1;
3472		next_lblk = le32_to_cpu(abut_ex->ee_block);
3473		next_len = ext4_ext_get_actual_len(abut_ex);
3474		next_pblk = ext4_ext_pblock(abut_ex);
3475		ee_pblk = ext4_ext_pblock(ex);
3476
3477		/*
3478		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3479		 * upon those conditions:
3480		 * - C1: abut_ex is initialized,
3481		 * - C2: abut_ex is logically abutting ex,
3482		 * - C3: abut_ex is physically abutting ex,
3483		 * - C4: abut_ex can receive the additional blocks without
3484		 *   overflowing the (initialized) length limit.
3485		 */
3486		if ((!ext4_ext_is_uninitialized(abut_ex)) &&		/*C1*/
3487		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3488		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3489		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3490			err = ext4_ext_get_access(handle, inode, path + depth);
3491			if (err)
3492				goto out;
3493
3494			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3495				map, ex, abut_ex);
3496
3497			/* Shift the start of abut_ex by 'map_len' blocks */
3498			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3499			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3500			ex->ee_len = cpu_to_le16(ee_len - map_len);
3501			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3502
3503			/* Extend abut_ex by 'map_len' blocks */
3504			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3505
3506			/* Result: number of initialized blocks past m_lblk */
3507			allocated = map_len;
3508		}
3509	}
3510	if (allocated) {
3511		/* Mark the block containing both extents as dirty */
3512		ext4_ext_dirty(handle, inode, path + depth);
3513
3514		/* Update path to point to the right extent */
3515		path[depth].p_ext = abut_ex;
3516		goto out;
3517	} else
3518		allocated = ee_len - (map->m_lblk - ee_block);
3519
3520	WARN_ON(map->m_lblk < ee_block);
3521	/*
3522	 * It is safe to convert extent to initialized via explicit
3523	 * zeroout only if extent is fully inside i_size or new_size.
3524	 */
3525	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3526
3527	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3528		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3529			(inode->i_sb->s_blocksize_bits - 10);
3530
3531	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3532	if (max_zeroout && (ee_len <= max_zeroout)) {
3533		err = ext4_ext_zeroout(inode, ex);
3534		if (err)
3535			goto out;
3536		zero_ex.ee_block = ex->ee_block;
3537		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3538		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3539
3540		err = ext4_ext_get_access(handle, inode, path + depth);
3541		if (err)
3542			goto out;
3543		ext4_ext_mark_initialized(ex);
3544		ext4_ext_try_to_merge(handle, inode, path, ex);
3545		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3546		goto out;
3547	}
3548
3549	/*
3550	 * four cases:
3551	 * 1. split the extent into three extents.
3552	 * 2. split the extent into two extents, zeroout the first half.
3553	 * 3. split the extent into two extents, zeroout the second half.
3554	 * 4. split the extent into two extents with out zeroout.
3555	 */
3556	split_map.m_lblk = map->m_lblk;
3557	split_map.m_len = map->m_len;
3558
3559	if (max_zeroout && (allocated > map->m_len)) {
3560		if (allocated <= max_zeroout) {
 
3561			/* case 3 */
3562			zero_ex.ee_block =
3563					 cpu_to_le32(map->m_lblk);
3564			zero_ex.ee_len = cpu_to_le16(allocated);
3565			ext4_ext_store_pblock(&zero_ex,
3566				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3567			err = ext4_ext_zeroout(inode, &zero_ex);
3568			if (err)
3569				goto out;
3570			split_map.m_lblk = map->m_lblk;
3571			split_map.m_len = allocated;
3572		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
 
 
3573			/* case 2 */
3574			if (map->m_lblk != ee_block) {
3575				zero_ex.ee_block = ex->ee_block;
3576				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3577							ee_block);
3578				ext4_ext_store_pblock(&zero_ex,
3579						      ext4_ext_pblock(ex));
3580				err = ext4_ext_zeroout(inode, &zero_ex);
3581				if (err)
3582					goto out;
3583			}
3584
3585			split_map.m_lblk = ee_block;
3586			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3587			allocated = map->m_len;
3588		}
3589	}
3590
3591	allocated = ext4_split_extent(handle, inode, path,
3592				      &split_map, split_flag, flags);
3593	if (allocated < 0)
3594		err = allocated;
3595
3596out:
3597	/* If we have gotten a failure, don't zero out status tree */
3598	if (!err)
3599		err = ext4_zeroout_es(inode, &zero_ex);
3600	return err ? err : allocated;
3601}
3602
3603/*
3604 * This function is called by ext4_ext_map_blocks() from
3605 * ext4_get_blocks_dio_write() when DIO to write
3606 * to an uninitialized extent.
3607 *
3608 * Writing to an uninitialized extent may result in splitting the uninitialized
3609 * extent into multiple initialized/uninitialized extents (up to three)
3610 * There are three possibilities:
3611 *   a> There is no split required: Entire extent should be uninitialized
3612 *   b> Splits in two extents: Write is happening at either end of the extent
3613 *   c> Splits in three extents: Somone is writing in middle of the extent
3614 *
3615 * This works the same way in the case of initialized -> unwritten conversion.
3616 *
3617 * One of more index blocks maybe needed if the extent tree grow after
3618 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3619 * complete, we need to split the uninitialized extent before DIO submit
3620 * the IO. The uninitialized extent called at this time will be split
3621 * into three uninitialized extent(at most). After IO complete, the part
3622 * being filled will be convert to initialized by the end_io callback function
3623 * via ext4_convert_unwritten_extents().
3624 *
3625 * Returns the size of uninitialized extent to be written on success.
3626 */
3627static int ext4_split_convert_extents(handle_t *handle,
3628					struct inode *inode,
3629					struct ext4_map_blocks *map,
3630					struct ext4_ext_path *path,
3631					int flags)
3632{
3633	ext4_lblk_t eof_block;
3634	ext4_lblk_t ee_block;
3635	struct ext4_extent *ex;
3636	unsigned int ee_len;
3637	int split_flag = 0, depth;
3638
3639	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3640		  __func__, inode->i_ino,
3641		  (unsigned long long)map->m_lblk, map->m_len);
3642
3643	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3644		inode->i_sb->s_blocksize_bits;
3645	if (eof_block < map->m_lblk + map->m_len)
3646		eof_block = map->m_lblk + map->m_len;
3647	/*
3648	 * It is safe to convert extent to initialized via explicit
3649	 * zeroout only if extent is fully insde i_size or new_size.
3650	 */
3651	depth = ext_depth(inode);
3652	ex = path[depth].p_ext;
3653	ee_block = le32_to_cpu(ex->ee_block);
3654	ee_len = ext4_ext_get_actual_len(ex);
3655
3656	/* Convert to unwritten */
3657	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3658		split_flag |= EXT4_EXT_DATA_VALID1;
3659	/* Convert to initialized */
3660	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3661		split_flag |= ee_block + ee_len <= eof_block ?
3662			      EXT4_EXT_MAY_ZEROOUT : 0;
3663		split_flag |= (EXT4_EXT_MARK_UNINIT2 | EXT4_EXT_DATA_VALID2);
3664	}
3665	flags |= EXT4_GET_BLOCKS_PRE_IO;
3666	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3667}
3668
3669static int ext4_convert_initialized_extents(handle_t *handle,
3670					    struct inode *inode,
3671					    struct ext4_map_blocks *map,
3672					    struct ext4_ext_path *path)
3673{
3674	struct ext4_extent *ex;
3675	ext4_lblk_t ee_block;
3676	unsigned int ee_len;
3677	int depth;
3678	int err = 0;
3679
3680	depth = ext_depth(inode);
3681	ex = path[depth].p_ext;
3682	ee_block = le32_to_cpu(ex->ee_block);
3683	ee_len = ext4_ext_get_actual_len(ex);
3684
3685	ext_debug("%s: inode %lu, logical"
3686		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3687		  (unsigned long long)ee_block, ee_len);
3688
3689	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3690		err = ext4_split_convert_extents(handle, inode, map, path,
3691				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3692		if (err < 0)
3693			goto out;
3694		ext4_ext_drop_refs(path);
3695		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3696		if (IS_ERR(path)) {
3697			err = PTR_ERR(path);
3698			goto out;
3699		}
3700		depth = ext_depth(inode);
3701		ex = path[depth].p_ext;
3702		if (!ex) {
3703			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3704					 (unsigned long) map->m_lblk);
3705			err = -EIO;
3706			goto out;
3707		}
3708	}
3709
3710	err = ext4_ext_get_access(handle, inode, path + depth);
3711	if (err)
3712		goto out;
3713	/* first mark the extent as uninitialized */
3714	ext4_ext_mark_uninitialized(ex);
3715
3716	/* note: ext4_ext_correct_indexes() isn't needed here because
3717	 * borders are not changed
3718	 */
3719	ext4_ext_try_to_merge(handle, inode, path, ex);
3720
3721	/* Mark modified extent as dirty */
3722	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3723out:
3724	ext4_ext_show_leaf(inode, path);
3725	return err;
3726}
3727
3728
3729static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3730						struct inode *inode,
3731						struct ext4_map_blocks *map,
3732						struct ext4_ext_path *path)
3733{
3734	struct ext4_extent *ex;
3735	ext4_lblk_t ee_block;
3736	unsigned int ee_len;
3737	int depth;
3738	int err = 0;
3739
3740	depth = ext_depth(inode);
3741	ex = path[depth].p_ext;
3742	ee_block = le32_to_cpu(ex->ee_block);
3743	ee_len = ext4_ext_get_actual_len(ex);
3744
3745	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3746		"block %llu, max_blocks %u\n", inode->i_ino,
3747		  (unsigned long long)ee_block, ee_len);
3748
3749	/* If extent is larger than requested it is a clear sign that we still
3750	 * have some extent state machine issues left. So extent_split is still
3751	 * required.
3752	 * TODO: Once all related issues will be fixed this situation should be
3753	 * illegal.
3754	 */
3755	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3756#ifdef EXT4_DEBUG
3757		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3758			     " len %u; IO logical block %llu, len %u\n",
3759			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3760			     (unsigned long long)map->m_lblk, map->m_len);
3761#endif
3762		err = ext4_split_convert_extents(handle, inode, map, path,
3763						 EXT4_GET_BLOCKS_CONVERT);
3764		if (err < 0)
3765			goto out;
3766		ext4_ext_drop_refs(path);
3767		path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3768		if (IS_ERR(path)) {
3769			err = PTR_ERR(path);
3770			goto out;
3771		}
3772		depth = ext_depth(inode);
3773		ex = path[depth].p_ext;
3774	}
3775
3776	err = ext4_ext_get_access(handle, inode, path + depth);
3777	if (err)
3778		goto out;
3779	/* first mark the extent as initialized */
3780	ext4_ext_mark_initialized(ex);
3781
3782	/* note: ext4_ext_correct_indexes() isn't needed here because
3783	 * borders are not changed
3784	 */
3785	ext4_ext_try_to_merge(handle, inode, path, ex);
3786
3787	/* Mark modified extent as dirty */
3788	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3789out:
3790	ext4_ext_show_leaf(inode, path);
3791	return err;
3792}
3793
3794static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3795			sector_t block, int count)
3796{
3797	int i;
3798	for (i = 0; i < count; i++)
3799                unmap_underlying_metadata(bdev, block + i);
3800}
3801
3802/*
3803 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3804 */
3805static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3806			      ext4_lblk_t lblk,
3807			      struct ext4_ext_path *path,
3808			      unsigned int len)
3809{
3810	int i, depth;
3811	struct ext4_extent_header *eh;
3812	struct ext4_extent *last_ex;
3813
3814	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3815		return 0;
3816
3817	depth = ext_depth(inode);
3818	eh = path[depth].p_hdr;
3819
3820	/*
3821	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3822	 * do not care for this case anymore. Simply remove the flag
3823	 * if there are no extents.
3824	 */
3825	if (unlikely(!eh->eh_entries))
3826		goto out;
3827	last_ex = EXT_LAST_EXTENT(eh);
3828	/*
3829	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3830	 * last block in the last extent in the file.  We test this by
3831	 * first checking to see if the caller to
3832	 * ext4_ext_get_blocks() was interested in the last block (or
3833	 * a block beyond the last block) in the current extent.  If
3834	 * this turns out to be false, we can bail out from this
3835	 * function immediately.
3836	 */
3837	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3838	    ext4_ext_get_actual_len(last_ex))
3839		return 0;
3840	/*
3841	 * If the caller does appear to be planning to write at or
3842	 * beyond the end of the current extent, we then test to see
3843	 * if the current extent is the last extent in the file, by
3844	 * checking to make sure it was reached via the rightmost node
3845	 * at each level of the tree.
3846	 */
3847	for (i = depth-1; i >= 0; i--)
3848		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3849			return 0;
3850out:
3851	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3852	return ext4_mark_inode_dirty(handle, inode);
3853}
3854
3855/**
3856 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3857 *
3858 * Return 1 if there is a delalloc block in the range, otherwise 0.
3859 */
3860int ext4_find_delalloc_range(struct inode *inode,
3861			     ext4_lblk_t lblk_start,
3862			     ext4_lblk_t lblk_end)
3863{
3864	struct extent_status es;
3865
3866	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3867	if (es.es_len == 0)
3868		return 0; /* there is no delay extent in this tree */
3869	else if (es.es_lblk <= lblk_start &&
3870		 lblk_start < es.es_lblk + es.es_len)
3871		return 1;
3872	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3873		return 1;
3874	else
3875		return 0;
3876}
3877
3878int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3879{
3880	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3881	ext4_lblk_t lblk_start, lblk_end;
3882	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3883	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3884
3885	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3886}
3887
3888/**
3889 * Determines how many complete clusters (out of those specified by the 'map')
3890 * are under delalloc and were reserved quota for.
3891 * This function is called when we are writing out the blocks that were
3892 * originally written with their allocation delayed, but then the space was
3893 * allocated using fallocate() before the delayed allocation could be resolved.
3894 * The cases to look for are:
3895 * ('=' indicated delayed allocated blocks
3896 *  '-' indicates non-delayed allocated blocks)
3897 * (a) partial clusters towards beginning and/or end outside of allocated range
3898 *     are not delalloc'ed.
3899 *	Ex:
3900 *	|----c---=|====c====|====c====|===-c----|
3901 *	         |++++++ allocated ++++++|
3902 *	==> 4 complete clusters in above example
3903 *
3904 * (b) partial cluster (outside of allocated range) towards either end is
3905 *     marked for delayed allocation. In this case, we will exclude that
3906 *     cluster.
3907 *	Ex:
3908 *	|----====c========|========c========|
3909 *	     |++++++ allocated ++++++|
3910 *	==> 1 complete clusters in above example
3911 *
3912 *	Ex:
3913 *	|================c================|
3914 *            |++++++ allocated ++++++|
3915 *	==> 0 complete clusters in above example
3916 *
3917 * The ext4_da_update_reserve_space will be called only if we
3918 * determine here that there were some "entire" clusters that span
3919 * this 'allocated' range.
3920 * In the non-bigalloc case, this function will just end up returning num_blks
3921 * without ever calling ext4_find_delalloc_range.
3922 */
3923static unsigned int
3924get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3925			   unsigned int num_blks)
3926{
3927	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3928	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3929	ext4_lblk_t lblk_from, lblk_to, c_offset;
3930	unsigned int allocated_clusters = 0;
3931
3932	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3933	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3934
3935	/* max possible clusters for this allocation */
3936	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3937
3938	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3939
3940	/* Check towards left side */
3941	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3942	if (c_offset) {
3943		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3944		lblk_to = lblk_from + c_offset - 1;
3945
3946		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3947			allocated_clusters--;
3948	}
3949
3950	/* Now check towards right. */
3951	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3952	if (allocated_clusters && c_offset) {
3953		lblk_from = lblk_start + num_blks;
3954		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3955
3956		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3957			allocated_clusters--;
3958	}
3959
3960	return allocated_clusters;
3961}
3962
3963static int
3964ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3965			struct ext4_map_blocks *map,
3966			struct ext4_ext_path *path, int flags,
3967			unsigned int allocated, ext4_fsblk_t newblock)
3968{
3969	int ret = 0;
3970	int err = 0;
3971
3972	/*
3973	 * Make sure that the extent is no bigger than we support with
3974	 * uninitialized extent
3975	 */
3976	if (map->m_len > EXT_UNINIT_MAX_LEN)
3977		map->m_len = EXT_UNINIT_MAX_LEN / 2;
3978
3979	ret = ext4_convert_initialized_extents(handle, inode, map,
3980						path);
3981	if (ret >= 0) {
3982		ext4_update_inode_fsync_trans(handle, inode, 1);
3983		err = check_eofblocks_fl(handle, inode, map->m_lblk,
3984					 path, map->m_len);
3985	} else
3986		err = ret;
3987	map->m_flags |= EXT4_MAP_UNWRITTEN;
3988	if (allocated > map->m_len)
3989		allocated = map->m_len;
3990	map->m_len = allocated;
3991
3992	return err ? err : allocated;
3993}
3994
3995static int
3996ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3997			struct ext4_map_blocks *map,
3998			struct ext4_ext_path *path, int flags,
3999			unsigned int allocated, ext4_fsblk_t newblock)
4000{
4001	int ret = 0;
4002	int err = 0;
4003	ext4_io_end_t *io = ext4_inode_aio(inode);
4004
4005	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
4006		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4007		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4008		  flags, allocated);
4009	ext4_ext_show_leaf(inode, path);
4010
4011	/*
4012	 * When writing into uninitialized space, we should not fail to
4013	 * allocate metadata blocks for the new extent block if needed.
4014	 */
4015	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4016
4017	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
4018						    allocated, newblock);
4019
4020	/* get_block() before submit the IO, split the extent */
4021	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4022		ret = ext4_split_convert_extents(handle, inode, map,
4023					 path, flags | EXT4_GET_BLOCKS_CONVERT);
4024		if (ret <= 0)
4025			goto out;
4026		/*
4027		 * Flag the inode(non aio case) or end_io struct (aio case)
4028		 * that this IO needs to conversion to written when IO is
4029		 * completed
4030		 */
4031		if (io)
4032			ext4_set_io_unwritten_flag(inode, io);
4033		else
 
4034			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4035		map->m_flags |= EXT4_MAP_UNWRITTEN;
4036		if (ext4_should_dioread_nolock(inode))
4037			map->m_flags |= EXT4_MAP_UNINIT;
4038		goto out;
4039	}
4040	/* IO end_io complete, convert the filled extent to written */
4041	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
4042		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4043							path);
4044		if (ret >= 0) {
4045			ext4_update_inode_fsync_trans(handle, inode, 1);
4046			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4047						 path, map->m_len);
4048		} else
4049			err = ret;
4050		map->m_flags |= EXT4_MAP_MAPPED;
4051		map->m_pblk = newblock;
4052		if (allocated > map->m_len)
4053			allocated = map->m_len;
4054		map->m_len = allocated;
4055		goto out2;
4056	}
4057	/* buffered IO case */
4058	/*
4059	 * repeat fallocate creation request
4060	 * we already have an unwritten extent
4061	 */
4062	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
4063		map->m_flags |= EXT4_MAP_UNWRITTEN;
4064		goto map_out;
4065	}
4066
4067	/* buffered READ or buffered write_begin() lookup */
4068	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4069		/*
4070		 * We have blocks reserved already.  We
4071		 * return allocated blocks so that delalloc
4072		 * won't do block reservation for us.  But
4073		 * the buffer head will be unmapped so that
4074		 * a read from the block returns 0s.
4075		 */
4076		map->m_flags |= EXT4_MAP_UNWRITTEN;
4077		goto out1;
4078	}
4079
4080	/* buffered write, writepage time, convert*/
4081	ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4082	if (ret >= 0)
4083		ext4_update_inode_fsync_trans(handle, inode, 1);
 
 
 
 
 
 
4084out:
4085	if (ret <= 0) {
4086		err = ret;
4087		goto out2;
4088	} else
4089		allocated = ret;
4090	map->m_flags |= EXT4_MAP_NEW;
4091	/*
4092	 * if we allocated more blocks than requested
4093	 * we need to make sure we unmap the extra block
4094	 * allocated. The actual needed block will get
4095	 * unmapped later when we find the buffer_head marked
4096	 * new.
4097	 */
4098	if (allocated > map->m_len) {
4099		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4100					newblock + map->m_len,
4101					allocated - map->m_len);
4102		allocated = map->m_len;
4103	}
4104	map->m_len = allocated;
4105
4106	/*
4107	 * If we have done fallocate with the offset that is already
4108	 * delayed allocated, we would have block reservation
4109	 * and quota reservation done in the delayed write path.
4110	 * But fallocate would have already updated quota and block
4111	 * count for this offset. So cancel these reservation
4112	 */
4113	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4114		unsigned int reserved_clusters;
4115		reserved_clusters = get_reserved_cluster_alloc(inode,
4116				map->m_lblk, map->m_len);
4117		if (reserved_clusters)
4118			ext4_da_update_reserve_space(inode,
4119						     reserved_clusters,
4120						     0);
4121	}
4122
4123map_out:
4124	map->m_flags |= EXT4_MAP_MAPPED;
4125	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4126		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4127					 map->m_len);
4128		if (err < 0)
4129			goto out2;
4130	}
4131out1:
4132	if (allocated > map->m_len)
4133		allocated = map->m_len;
4134	ext4_ext_show_leaf(inode, path);
4135	map->m_pblk = newblock;
4136	map->m_len = allocated;
4137out2:
 
 
 
 
4138	return err ? err : allocated;
4139}
4140
4141/*
4142 * get_implied_cluster_alloc - check to see if the requested
4143 * allocation (in the map structure) overlaps with a cluster already
4144 * allocated in an extent.
4145 *	@sb	The filesystem superblock structure
4146 *	@map	The requested lblk->pblk mapping
4147 *	@ex	The extent structure which might contain an implied
4148 *			cluster allocation
4149 *
4150 * This function is called by ext4_ext_map_blocks() after we failed to
4151 * find blocks that were already in the inode's extent tree.  Hence,
4152 * we know that the beginning of the requested region cannot overlap
4153 * the extent from the inode's extent tree.  There are three cases we
4154 * want to catch.  The first is this case:
4155 *
4156 *		 |--- cluster # N--|
4157 *    |--- extent ---|	|---- requested region ---|
4158 *			|==========|
4159 *
4160 * The second case that we need to test for is this one:
4161 *
4162 *   |--------- cluster # N ----------------|
4163 *	   |--- requested region --|   |------- extent ----|
4164 *	   |=======================|
4165 *
4166 * The third case is when the requested region lies between two extents
4167 * within the same cluster:
4168 *          |------------- cluster # N-------------|
4169 * |----- ex -----|                  |---- ex_right ----|
4170 *                  |------ requested region ------|
4171 *                  |================|
4172 *
4173 * In each of the above cases, we need to set the map->m_pblk and
4174 * map->m_len so it corresponds to the return the extent labelled as
4175 * "|====|" from cluster #N, since it is already in use for data in
4176 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4177 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4178 * as a new "allocated" block region.  Otherwise, we will return 0 and
4179 * ext4_ext_map_blocks() will then allocate one or more new clusters
4180 * by calling ext4_mb_new_blocks().
4181 */
4182static int get_implied_cluster_alloc(struct super_block *sb,
4183				     struct ext4_map_blocks *map,
4184				     struct ext4_extent *ex,
4185				     struct ext4_ext_path *path)
4186{
4187	struct ext4_sb_info *sbi = EXT4_SB(sb);
4188	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4189	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4190	ext4_lblk_t rr_cluster_start;
4191	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4192	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4193	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4194
4195	/* The extent passed in that we are trying to match */
4196	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4197	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4198
4199	/* The requested region passed into ext4_map_blocks() */
4200	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4201
4202	if ((rr_cluster_start == ex_cluster_end) ||
4203	    (rr_cluster_start == ex_cluster_start)) {
4204		if (rr_cluster_start == ex_cluster_end)
4205			ee_start += ee_len - 1;
4206		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4207		map->m_len = min(map->m_len,
4208				 (unsigned) sbi->s_cluster_ratio - c_offset);
4209		/*
4210		 * Check for and handle this case:
4211		 *
4212		 *   |--------- cluster # N-------------|
4213		 *		       |------- extent ----|
4214		 *	   |--- requested region ---|
4215		 *	   |===========|
4216		 */
4217
4218		if (map->m_lblk < ee_block)
4219			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4220
4221		/*
4222		 * Check for the case where there is already another allocated
4223		 * block to the right of 'ex' but before the end of the cluster.
4224		 *
4225		 *          |------------- cluster # N-------------|
4226		 * |----- ex -----|                  |---- ex_right ----|
4227		 *                  |------ requested region ------|
4228		 *                  |================|
4229		 */
4230		if (map->m_lblk > ee_block) {
4231			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4232			map->m_len = min(map->m_len, next - map->m_lblk);
4233		}
4234
4235		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4236		return 1;
4237	}
4238
4239	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4240	return 0;
4241}
4242
4243
4244/*
4245 * Block allocation/map/preallocation routine for extents based files
4246 *
4247 *
4248 * Need to be called with
4249 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4250 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4251 *
4252 * return > 0, number of of blocks already mapped/allocated
4253 *          if create == 0 and these are pre-allocated blocks
4254 *          	buffer head is unmapped
4255 *          otherwise blocks are mapped
4256 *
4257 * return = 0, if plain look up failed (blocks have not been allocated)
4258 *          buffer head is unmapped
4259 *
4260 * return < 0, error case.
4261 */
4262int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4263			struct ext4_map_blocks *map, int flags)
4264{
4265	struct ext4_ext_path *path = NULL;
4266	struct ext4_extent newex, *ex, *ex2;
4267	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4268	ext4_fsblk_t newblock = 0;
4269	int free_on_err = 0, err = 0, depth, ret;
4270	unsigned int allocated = 0, offset = 0;
4271	unsigned int allocated_clusters = 0;
 
4272	struct ext4_allocation_request ar;
4273	ext4_io_end_t *io = ext4_inode_aio(inode);
4274	ext4_lblk_t cluster_offset;
4275	int set_unwritten = 0;
4276
4277	ext_debug("blocks %u/%u requested for inode %lu\n",
4278		  map->m_lblk, map->m_len, inode->i_ino);
4279	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4281	/* find extent for this block */
4282	path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4283	if (IS_ERR(path)) {
4284		err = PTR_ERR(path);
4285		path = NULL;
4286		goto out2;
4287	}
4288
4289	depth = ext_depth(inode);
4290
4291	/*
4292	 * consistent leaf must not be empty;
4293	 * this situation is possible, though, _during_ tree modification;
4294	 * this is why assert can't be put in ext4_ext_find_extent()
4295	 */
4296	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4297		EXT4_ERROR_INODE(inode, "bad extent address "
4298				 "lblock: %lu, depth: %d pblock %lld",
4299				 (unsigned long) map->m_lblk, depth,
4300				 path[depth].p_block);
4301		err = -EIO;
4302		goto out2;
4303	}
4304
4305	ex = path[depth].p_ext;
4306	if (ex) {
4307		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4308		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4309		unsigned short ee_len;
4310
4311
4312		/*
4313		 * Uninitialized extents are treated as holes, except that
4314		 * we split out initialized portions during a write.
4315		 */
4316		ee_len = ext4_ext_get_actual_len(ex);
4317
4318		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4319
4320		/* if found extent covers block, simply return it */
4321		if (in_range(map->m_lblk, ee_block, ee_len)) {
4322			newblock = map->m_lblk - ee_block + ee_start;
4323			/* number of remaining blocks in the extent */
4324			allocated = ee_len - (map->m_lblk - ee_block);
4325			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4326				  ee_block, ee_len, newblock);
4327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4328			/*
4329			 * If the extent is initialized check whether the
4330			 * caller wants to convert it to unwritten.
4331			 */
4332			if ((!ext4_ext_is_uninitialized(ex)) &&
4333			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4334				allocated = ext4_ext_convert_initialized_extent(
4335						handle, inode, map, path, flags,
4336						allocated, newblock);
4337				goto out2;
4338			} else if (!ext4_ext_is_uninitialized(ex))
4339				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4340
4341			ret = ext4_ext_handle_uninitialized_extents(
4342				handle, inode, map, path, flags,
4343				allocated, newblock);
4344			if (ret < 0)
4345				err = ret;
4346			else
4347				allocated = ret;
4348			goto out2;
4349		}
4350	}
4351
4352	if ((sbi->s_cluster_ratio > 1) &&
4353	    ext4_find_delalloc_cluster(inode, map->m_lblk))
4354		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4355
4356	/*
4357	 * requested block isn't allocated yet;
4358	 * we couldn't try to create block if create flag is zero
4359	 */
4360	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4361		/*
4362		 * put just found gap into cache to speed up
4363		 * subsequent requests
4364		 */
4365		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4366			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4367		goto out2;
4368	}
4369
4370	/*
4371	 * Okay, we need to do block allocation.
4372	 */
4373	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4374	newex.ee_block = cpu_to_le32(map->m_lblk);
4375	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4376
4377	/*
4378	 * If we are doing bigalloc, check to see if the extent returned
4379	 * by ext4_ext_find_extent() implies a cluster we can use.
4380	 */
4381	if (cluster_offset && ex &&
4382	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4383		ar.len = allocated = map->m_len;
4384		newblock = map->m_pblk;
4385		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4386		goto got_allocated_blocks;
4387	}
4388
4389	/* find neighbour allocated blocks */
4390	ar.lleft = map->m_lblk;
4391	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4392	if (err)
4393		goto out2;
4394	ar.lright = map->m_lblk;
4395	ex2 = NULL;
4396	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4397	if (err)
4398		goto out2;
4399
4400	/* Check if the extent after searching to the right implies a
4401	 * cluster we can use. */
4402	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4403	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4404		ar.len = allocated = map->m_len;
4405		newblock = map->m_pblk;
4406		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4407		goto got_allocated_blocks;
4408	}
4409
4410	/*
4411	 * See if request is beyond maximum number of blocks we can have in
4412	 * a single extent. For an initialized extent this limit is
4413	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4414	 * EXT_UNINIT_MAX_LEN.
4415	 */
4416	if (map->m_len > EXT_INIT_MAX_LEN &&
4417	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4418		map->m_len = EXT_INIT_MAX_LEN;
4419	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4420		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4421		map->m_len = EXT_UNINIT_MAX_LEN;
4422
4423	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
 
4424	newex.ee_len = cpu_to_le16(map->m_len);
4425	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4426	if (err)
4427		allocated = ext4_ext_get_actual_len(&newex);
4428	else
4429		allocated = map->m_len;
4430
4431	/* allocate new block */
4432	ar.inode = inode;
4433	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4434	ar.logical = map->m_lblk;
4435	/*
4436	 * We calculate the offset from the beginning of the cluster
4437	 * for the logical block number, since when we allocate a
4438	 * physical cluster, the physical block should start at the
4439	 * same offset from the beginning of the cluster.  This is
4440	 * needed so that future calls to get_implied_cluster_alloc()
4441	 * work correctly.
4442	 */
4443	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4444	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4445	ar.goal -= offset;
4446	ar.logical -= offset;
4447	if (S_ISREG(inode->i_mode))
4448		ar.flags = EXT4_MB_HINT_DATA;
4449	else
4450		/* disable in-core preallocation for non-regular files */
4451		ar.flags = 0;
4452	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4453		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4454	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4455	if (!newblock)
4456		goto out2;
4457	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4458		  ar.goal, newblock, allocated);
4459	free_on_err = 1;
4460	allocated_clusters = ar.len;
4461	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4462	if (ar.len > allocated)
4463		ar.len = allocated;
4464
4465got_allocated_blocks:
4466	/* try to insert new extent into found leaf and return */
4467	ext4_ext_store_pblock(&newex, newblock + offset);
4468	newex.ee_len = cpu_to_le16(ar.len);
4469	/* Mark uninitialized */
4470	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4471		ext4_ext_mark_uninitialized(&newex);
4472		map->m_flags |= EXT4_MAP_UNWRITTEN;
4473		/*
4474		 * io_end structure was created for every IO write to an
4475		 * uninitialized extent. To avoid unnecessary conversion,
4476		 * here we flag the IO that really needs the conversion.
4477		 * For non asycn direct IO case, flag the inode state
4478		 * that we need to perform conversion when IO is done.
4479		 */
4480		if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4481			set_unwritten = 1;
 
 
 
 
 
 
4482		if (ext4_should_dioread_nolock(inode))
4483			map->m_flags |= EXT4_MAP_UNINIT;
4484	}
4485
4486	err = 0;
4487	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4488		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4489					 path, ar.len);
4490	if (!err)
4491		err = ext4_ext_insert_extent(handle, inode, path,
4492					     &newex, flags);
4493
4494	if (!err && set_unwritten) {
4495		if (io)
4496			ext4_set_io_unwritten_flag(inode, io);
4497		else
4498			ext4_set_inode_state(inode,
4499					     EXT4_STATE_DIO_UNWRITTEN);
4500	}
4501
4502	if (err && free_on_err) {
4503		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4504			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4505		/* free data blocks we just allocated */
4506		/* not a good idea to call discard here directly,
4507		 * but otherwise we'd need to call it every free() */
4508		ext4_discard_preallocations(inode);
4509		ext4_free_blocks(handle, inode, NULL, newblock,
4510				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4511		goto out2;
4512	}
4513
4514	/* previous routine could use block we allocated */
4515	newblock = ext4_ext_pblock(&newex);
4516	allocated = ext4_ext_get_actual_len(&newex);
4517	if (allocated > map->m_len)
4518		allocated = map->m_len;
4519	map->m_flags |= EXT4_MAP_NEW;
4520
4521	/*
4522	 * Update reserved blocks/metadata blocks after successful
4523	 * block allocation which had been deferred till now.
4524	 */
4525	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4526		unsigned int reserved_clusters;
4527		/*
4528		 * Check how many clusters we had reserved this allocated range
4529		 */
4530		reserved_clusters = get_reserved_cluster_alloc(inode,
4531						map->m_lblk, allocated);
4532		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4533			if (reserved_clusters) {
4534				/*
4535				 * We have clusters reserved for this range.
4536				 * But since we are not doing actual allocation
4537				 * and are simply using blocks from previously
4538				 * allocated cluster, we should release the
4539				 * reservation and not claim quota.
4540				 */
4541				ext4_da_update_reserve_space(inode,
4542						reserved_clusters, 0);
4543			}
4544		} else {
4545			BUG_ON(allocated_clusters < reserved_clusters);
4546			if (reserved_clusters < allocated_clusters) {
4547				struct ext4_inode_info *ei = EXT4_I(inode);
4548				int reservation = allocated_clusters -
4549						  reserved_clusters;
4550				/*
4551				 * It seems we claimed few clusters outside of
4552				 * the range of this allocation. We should give
4553				 * it back to the reservation pool. This can
4554				 * happen in the following case:
4555				 *
4556				 * * Suppose s_cluster_ratio is 4 (i.e., each
4557				 *   cluster has 4 blocks. Thus, the clusters
4558				 *   are [0-3],[4-7],[8-11]...
4559				 * * First comes delayed allocation write for
4560				 *   logical blocks 10 & 11. Since there were no
4561				 *   previous delayed allocated blocks in the
4562				 *   range [8-11], we would reserve 1 cluster
4563				 *   for this write.
4564				 * * Next comes write for logical blocks 3 to 8.
4565				 *   In this case, we will reserve 2 clusters
4566				 *   (for [0-3] and [4-7]; and not for [8-11] as
4567				 *   that range has a delayed allocated blocks.
4568				 *   Thus total reserved clusters now becomes 3.
4569				 * * Now, during the delayed allocation writeout
4570				 *   time, we will first write blocks [3-8] and
4571				 *   allocate 3 clusters for writing these
4572				 *   blocks. Also, we would claim all these
4573				 *   three clusters above.
4574				 * * Now when we come here to writeout the
4575				 *   blocks [10-11], we would expect to claim
4576				 *   the reservation of 1 cluster we had made
4577				 *   (and we would claim it since there are no
4578				 *   more delayed allocated blocks in the range
4579				 *   [8-11]. But our reserved cluster count had
4580				 *   already gone to 0.
4581				 *
4582				 *   Thus, at the step 4 above when we determine
4583				 *   that there are still some unwritten delayed
4584				 *   allocated blocks outside of our current
4585				 *   block range, we should increment the
4586				 *   reserved clusters count so that when the
4587				 *   remaining blocks finally gets written, we
4588				 *   could claim them.
4589				 */
4590				dquot_reserve_block(inode,
4591						EXT4_C2B(sbi, reservation));
4592				spin_lock(&ei->i_block_reservation_lock);
4593				ei->i_reserved_data_blocks += reservation;
4594				spin_unlock(&ei->i_block_reservation_lock);
4595			}
4596			/*
4597			 * We will claim quota for all newly allocated blocks.
4598			 * We're updating the reserved space *after* the
4599			 * correction above so we do not accidentally free
4600			 * all the metadata reservation because we might
4601			 * actually need it later on.
4602			 */
4603			ext4_da_update_reserve_space(inode, allocated_clusters,
4604							1);
4605		}
4606	}
4607
4608	/*
4609	 * Cache the extent and update transaction to commit on fdatasync only
4610	 * when it is _not_ an uninitialized extent.
4611	 */
4612	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
 
4613		ext4_update_inode_fsync_trans(handle, inode, 1);
4614	else
4615		ext4_update_inode_fsync_trans(handle, inode, 0);
4616out:
4617	if (allocated > map->m_len)
4618		allocated = map->m_len;
4619	ext4_ext_show_leaf(inode, path);
4620	map->m_flags |= EXT4_MAP_MAPPED;
4621	map->m_pblk = newblock;
4622	map->m_len = allocated;
4623out2:
4624	if (path) {
4625		ext4_ext_drop_refs(path);
4626		kfree(path);
4627	}
 
 
4628
4629	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4630				       err ? err : allocated);
4631	ext4_es_lru_add(inode);
4632	return err ? err : allocated;
4633}
4634
4635void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4636{
 
4637	struct super_block *sb = inode->i_sb;
4638	ext4_lblk_t last_block;
 
4639	int err = 0;
4640
4641	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4642	 * TODO: optimization is possible here.
4643	 * Probably we need not scan at all,
4644	 * because page truncation is enough.
4645	 */
4646
4647	/* we have to know where to truncate from in crash case */
4648	EXT4_I(inode)->i_disksize = inode->i_size;
4649	ext4_mark_inode_dirty(handle, inode);
4650
4651	last_block = (inode->i_size + sb->s_blocksize - 1)
4652			>> EXT4_BLOCK_SIZE_BITS(sb);
4653retry:
4654	err = ext4_es_remove_extent(inode, last_block,
4655				    EXT_MAX_BLOCKS - last_block);
4656	if (err == -ENOMEM) {
4657		cond_resched();
4658		congestion_wait(BLK_RW_ASYNC, HZ/50);
4659		goto retry;
4660	}
4661	if (err) {
4662		ext4_std_error(inode->i_sb, err);
4663		return;
4664	}
4665	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4666	ext4_std_error(inode->i_sb, err);
4667}
4668
4669static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4670				  ext4_lblk_t len, int flags, int mode)
4671{
4672	struct inode *inode = file_inode(file);
4673	handle_t *handle;
4674	int ret = 0;
4675	int ret2 = 0;
4676	int retries = 0;
4677	struct ext4_map_blocks map;
4678	unsigned int credits;
4679
4680	map.m_lblk = offset;
4681	/*
4682	 * Don't normalize the request if it can fit in one extent so
4683	 * that it doesn't get unnecessarily split into multiple
4684	 * extents.
4685	 */
4686	if (len <= EXT_UNINIT_MAX_LEN)
4687		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4688
 
4689	/*
4690	 * credits to insert 1 extent into extent tree
 
 
 
 
4691	 */
4692	credits = ext4_chunk_trans_blocks(inode, len);
 
4693
4694retry:
4695	while (ret >= 0 && ret < len) {
4696		map.m_lblk = map.m_lblk + ret;
4697		map.m_len = len = len - ret;
4698		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4699					    credits);
4700		if (IS_ERR(handle)) {
4701			ret = PTR_ERR(handle);
4702			break;
4703		}
4704		ret = ext4_map_blocks(handle, inode, &map, flags);
4705		if (ret <= 0) {
4706			ext4_debug("inode #%lu: block %u: len %u: "
4707				   "ext4_ext_map_blocks returned %d",
4708				   inode->i_ino, map.m_lblk,
4709				   map.m_len, ret);
4710			ext4_mark_inode_dirty(handle, inode);
4711			ret2 = ext4_journal_stop(handle);
4712			break;
4713		}
4714		ret2 = ext4_journal_stop(handle);
4715		if (ret2)
4716			break;
4717	}
4718	if (ret == -ENOSPC &&
4719			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4720		ret = 0;
4721		goto retry;
4722	}
4723
4724	return ret > 0 ? ret2 : ret;
4725}
4726
4727static long ext4_zero_range(struct file *file, loff_t offset,
4728			    loff_t len, int mode)
4729{
4730	struct inode *inode = file_inode(file);
4731	handle_t *handle = NULL;
4732	unsigned int max_blocks;
4733	loff_t new_size = 0;
4734	int ret = 0;
4735	int flags;
4736	int partial;
4737	loff_t start, end;
4738	ext4_lblk_t lblk;
4739	struct address_space *mapping = inode->i_mapping;
4740	unsigned int blkbits = inode->i_blkbits;
4741
4742	trace_ext4_zero_range(inode, offset, len, mode);
4743
4744	if (!S_ISREG(inode->i_mode))
4745		return -EINVAL;
4746
4747	/*
4748	 * Write out all dirty pages to avoid race conditions
4749	 * Then release them.
4750	 */
4751	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4752		ret = filemap_write_and_wait_range(mapping, offset,
4753						   offset + len - 1);
4754		if (ret)
4755			return ret;
4756	}
4757
4758	/*
4759	 * Round up offset. This is not fallocate, we neet to zero out
4760	 * blocks, so convert interior block aligned part of the range to
4761	 * unwritten and possibly manually zero out unaligned parts of the
4762	 * range.
4763	 */
4764	start = round_up(offset, 1 << blkbits);
4765	end = round_down((offset + len), 1 << blkbits);
4766
4767	if (start < offset || end > offset + len)
4768		return -EINVAL;
4769	partial = (offset + len) & ((1 << blkbits) - 1);
4770
4771	lblk = start >> blkbits;
4772	max_blocks = (end >> blkbits);
4773	if (max_blocks < lblk)
4774		max_blocks = 0;
4775	else
4776		max_blocks -= lblk;
4777
4778	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4779		EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4780	if (mode & FALLOC_FL_KEEP_SIZE)
4781		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4782
4783	mutex_lock(&inode->i_mutex);
4784
4785	/*
4786	 * Indirect files do not support unwritten extnets
 
4787	 */
4788	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4789		ret = -EOPNOTSUPP;
4790		goto out_mutex;
4791	}
4792
4793	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4794	     offset + len > i_size_read(inode)) {
4795		new_size = offset + len;
4796		ret = inode_newsize_ok(inode, new_size);
4797		if (ret)
4798			goto out_mutex;
4799		/*
4800		 * If we have a partial block after EOF we have to allocate
4801		 * the entire block.
4802		 */
4803		if (partial)
4804			max_blocks += 1;
4805	}
4806
4807	if (max_blocks > 0) {
4808
4809		/* Now release the pages and zero block aligned part of pages*/
4810		truncate_pagecache_range(inode, start, end - 1);
4811
4812		/* Wait all existing dio workers, newcomers will block on i_mutex */
4813		ext4_inode_block_unlocked_dio(inode);
4814		inode_dio_wait(inode);
4815
4816		/*
4817		 * Remove entire range from the extent status tree.
4818		 */
4819		ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4820		if (ret)
4821			goto out_dio;
4822
4823		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4824					     mode);
4825		if (ret)
4826			goto out_dio;
4827	}
4828
4829	handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4830	if (IS_ERR(handle)) {
4831		ret = PTR_ERR(handle);
4832		ext4_std_error(inode->i_sb, ret);
4833		goto out_dio;
4834	}
4835
4836	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4837
4838	if (new_size) {
4839		if (new_size > i_size_read(inode))
4840			i_size_write(inode, new_size);
4841		if (new_size > EXT4_I(inode)->i_disksize)
4842			ext4_update_i_disksize(inode, new_size);
4843	} else {
4844		/*
4845		* Mark that we allocate beyond EOF so the subsequent truncate
4846		* can proceed even if the new size is the same as i_size.
4847		*/
4848		if ((offset + len) > i_size_read(inode))
4849			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4850	}
4851
4852	ext4_mark_inode_dirty(handle, inode);
4853
4854	/* Zero out partial block at the edges of the range */
4855	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4856
4857	if (file->f_flags & O_SYNC)
4858		ext4_handle_sync(handle);
4859
4860	ext4_journal_stop(handle);
4861out_dio:
4862	ext4_inode_resume_unlocked_dio(inode);
4863out_mutex:
4864	mutex_unlock(&inode->i_mutex);
4865	return ret;
4866}
4867
4868/*
4869 * preallocate space for a file. This implements ext4's fallocate file
4870 * operation, which gets called from sys_fallocate system call.
4871 * For block-mapped files, posix_fallocate should fall back to the method
4872 * of writing zeroes to the required new blocks (the same behavior which is
4873 * expected for file systems which do not support fallocate() system call).
4874 */
4875long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4876{
4877	struct inode *inode = file_inode(file);
4878	handle_t *handle;
4879	loff_t new_size = 0;
4880	unsigned int max_blocks;
4881	int ret = 0;
4882	int flags;
4883	ext4_lblk_t lblk;
4884	struct timespec tv;
4885	unsigned int blkbits = inode->i_blkbits;
4886
4887	/* Return error if mode is not supported */
4888	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4889		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4890		return -EOPNOTSUPP;
4891
4892	if (mode & FALLOC_FL_PUNCH_HOLE)
4893		return ext4_punch_hole(inode, offset, len);
4894
4895	ret = ext4_convert_inline_data(inode);
4896	if (ret)
4897		return ret;
4898
4899	/*
4900	 * currently supporting (pre)allocate mode for extent-based
4901	 * files _only_
4902	 */
4903	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4904		return -EOPNOTSUPP;
4905
4906	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4907		return ext4_collapse_range(inode, offset, len);
 
4908
4909	if (mode & FALLOC_FL_ZERO_RANGE)
4910		return ext4_zero_range(file, offset, len, mode);
4911
4912	trace_ext4_fallocate_enter(inode, offset, len, mode);
4913	lblk = offset >> blkbits;
4914	/*
4915	 * We can't just convert len to max_blocks because
4916	 * If blocksize = 4096 offset = 3072 and len = 2048
4917	 */
4918	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4919		- lblk;
4920
4921	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4922	if (mode & FALLOC_FL_KEEP_SIZE)
4923		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4924
4925	mutex_lock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4926
4927	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4928	     offset + len > i_size_read(inode)) {
4929		new_size = offset + len;
4930		ret = inode_newsize_ok(inode, new_size);
4931		if (ret)
4932			goto out;
4933	}
4934
4935	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4936	if (ret)
4937		goto out;
4938
4939	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4940	if (IS_ERR(handle))
4941		goto out;
4942
4943	tv = inode->i_ctime = ext4_current_time(inode);
4944
4945	if (new_size) {
4946		if (new_size > i_size_read(inode)) {
4947			i_size_write(inode, new_size);
4948			inode->i_mtime = tv;
4949		}
4950		if (new_size > EXT4_I(inode)->i_disksize)
4951			ext4_update_i_disksize(inode, new_size);
4952	} else {
4953		/*
4954		* Mark that we allocate beyond EOF so the subsequent truncate
4955		* can proceed even if the new size is the same as i_size.
4956		*/
4957		if ((offset + len) > i_size_read(inode))
4958			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4959	}
4960	ext4_mark_inode_dirty(handle, inode);
4961	if (file->f_flags & O_SYNC)
4962		ext4_handle_sync(handle);
4963
4964	ext4_journal_stop(handle);
4965out:
4966	mutex_unlock(&inode->i_mutex);
4967	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4968	return ret;
 
4969}
4970
4971/*
4972 * This function convert a range of blocks to written extents
4973 * The caller of this function will pass the start offset and the size.
4974 * all unwritten extents within this range will be converted to
4975 * written extents.
4976 *
4977 * This function is called from the direct IO end io call back
4978 * function, to convert the fallocated extents after IO is completed.
4979 * Returns 0 on success.
4980 */
4981int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4982				   loff_t offset, ssize_t len)
4983{
 
4984	unsigned int max_blocks;
4985	int ret = 0;
4986	int ret2 = 0;
4987	struct ext4_map_blocks map;
4988	unsigned int credits, blkbits = inode->i_blkbits;
4989
4990	map.m_lblk = offset >> blkbits;
4991	/*
4992	 * We can't just convert len to max_blocks because
4993	 * If blocksize = 4096 offset = 3072 and len = 2048
4994	 */
4995	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4996		      map.m_lblk);
4997	/*
4998	 * This is somewhat ugly but the idea is clear: When transaction is
4999	 * reserved, everything goes into it. Otherwise we rather start several
5000	 * smaller transactions for conversion of each extent separately.
5001	 */
5002	if (handle) {
5003		handle = ext4_journal_start_reserved(handle,
5004						     EXT4_HT_EXT_CONVERT);
5005		if (IS_ERR(handle))
5006			return PTR_ERR(handle);
5007		credits = 0;
5008	} else {
5009		/*
5010		 * credits to insert 1 extent into extent tree
5011		 */
5012		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5013	}
5014	while (ret >= 0 && ret < max_blocks) {
5015		map.m_lblk += ret;
5016		map.m_len = (max_blocks -= ret);
5017		if (credits) {
5018			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5019						    credits);
5020			if (IS_ERR(handle)) {
5021				ret = PTR_ERR(handle);
5022				break;
5023			}
5024		}
5025		ret = ext4_map_blocks(handle, inode, &map,
5026				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5027		if (ret <= 0)
5028			ext4_warning(inode->i_sb,
5029				     "inode #%lu: block %u: len %u: "
5030				     "ext4_ext_map_blocks returned %d",
5031				     inode->i_ino, map.m_lblk,
5032				     map.m_len, ret);
 
5033		ext4_mark_inode_dirty(handle, inode);
5034		if (credits)
5035			ret2 = ext4_journal_stop(handle);
5036		if (ret <= 0 || ret2)
5037			break;
5038	}
5039	if (!credits)
5040		ret2 = ext4_journal_stop(handle);
5041	return ret > 0 ? ret2 : ret;
5042}
5043
5044/*
5045 * If newes is not existing extent (newes->ec_pblk equals zero) find
5046 * delayed extent at start of newes and update newes accordingly and
5047 * return start of the next delayed extent.
5048 *
5049 * If newes is existing extent (newes->ec_pblk is not equal zero)
5050 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5051 * extent found. Leave newes unmodified.
5052 */
5053static int ext4_find_delayed_extent(struct inode *inode,
5054				    struct extent_status *newes)
5055{
5056	struct extent_status es;
5057	ext4_lblk_t block, next_del;
 
 
 
 
 
 
5058
5059	if (newes->es_pblk == 0) {
5060		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5061				newes->es_lblk + newes->es_len - 1, &es);
5062
 
5063		/*
5064		 * No extent in extent-tree contains block @newes->es_pblk,
5065		 * then the block may stay in 1)a hole or 2)delayed-extent.
 
 
 
 
 
 
 
 
 
 
5066		 */
5067		if (es.es_len == 0)
5068			/* A hole found. */
5069			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5070
5071		if (es.es_lblk > newes->es_lblk) {
5072			/* A hole found. */
5073			newes->es_len = min(es.es_lblk - newes->es_lblk,
5074					    newes->es_len);
5075			return 0;
 
 
 
 
 
5076		}
5077
5078		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
 
 
5079	}
5080
5081	block = newes->es_lblk + newes->es_len;
5082	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5083	if (es.es_len == 0)
5084		next_del = EXT_MAX_BLOCKS;
5085	else
5086		next_del = es.es_lblk;
 
 
5087
5088	return next_del;
 
 
 
 
 
 
5089}
 
5090/* fiemap flags we can handle specified here */
5091#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5092
5093static int ext4_xattr_fiemap(struct inode *inode,
5094				struct fiemap_extent_info *fieinfo)
5095{
5096	__u64 physical = 0;
5097	__u64 length;
5098	__u32 flags = FIEMAP_EXTENT_LAST;
5099	int blockbits = inode->i_sb->s_blocksize_bits;
5100	int error = 0;
5101
5102	/* in-inode? */
5103	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5104		struct ext4_iloc iloc;
5105		int offset;	/* offset of xattr in inode */
5106
5107		error = ext4_get_inode_loc(inode, &iloc);
5108		if (error)
5109			return error;
5110		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5111		offset = EXT4_GOOD_OLD_INODE_SIZE +
5112				EXT4_I(inode)->i_extra_isize;
5113		physical += offset;
5114		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5115		flags |= FIEMAP_EXTENT_DATA_INLINE;
5116		brelse(iloc.bh);
5117	} else { /* external block */
5118		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5119		length = inode->i_sb->s_blocksize;
5120	}
5121
5122	if (physical)
5123		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5124						length, flags);
5125	return (error < 0 ? error : 0);
5126}
5127
5128int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5129		__u64 start, __u64 len)
 
 
 
 
 
 
 
 
 
 
 
5130{
5131	ext4_lblk_t start_blk;
5132	int error = 0;
5133
5134	if (ext4_has_inline_data(inode)) {
5135		int has_inline = 1;
 
 
 
 
 
 
 
 
 
5136
5137		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
 
5138
5139		if (has_inline)
5140			return error;
5141	}
5142
5143	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5144		error = ext4_ext_precache(inode);
5145		if (error)
5146			return error;
5147	}
5148
5149	/* fallback to generic here if not in extents fmt */
5150	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5151		return generic_block_fiemap(inode, fieinfo, start, len,
5152			ext4_get_block);
5153
5154	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5155		return -EBADR;
5156
5157	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5158		error = ext4_xattr_fiemap(inode, fieinfo);
5159	} else {
5160		ext4_lblk_t len_blks;
5161		__u64 last_blk;
5162
5163		start_blk = start >> inode->i_sb->s_blocksize_bits;
5164		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5165		if (last_blk >= EXT_MAX_BLOCKS)
5166			last_blk = EXT_MAX_BLOCKS-1;
5167		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5168
5169		/*
5170		 * Walk the extent tree gathering extent information
5171		 * and pushing extents back to the user.
5172		 */
5173		error = ext4_fill_fiemap_extents(inode, start_blk,
5174						 len_blks, fieinfo);
5175	}
5176	ext4_es_lru_add(inode);
5177	return error;
5178}
5179
5180/*
5181 * ext4_access_path:
5182 * Function to access the path buffer for marking it dirty.
5183 * It also checks if there are sufficient credits left in the journal handle
5184 * to update path.
5185 */
5186static int
5187ext4_access_path(handle_t *handle, struct inode *inode,
5188		struct ext4_ext_path *path)
5189{
5190	int credits, err;
5191
5192	if (!ext4_handle_valid(handle))
5193		return 0;
5194
5195	/*
5196	 * Check if need to extend journal credits
5197	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5198	 * descriptor) for each block group; assume two block
5199	 * groups
5200	 */
5201	if (handle->h_buffer_credits < 7) {
5202		credits = ext4_writepage_trans_blocks(inode);
5203		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5204		/* EAGAIN is success */
5205		if (err && err != -EAGAIN)
5206			return err;
5207	}
5208
5209	err = ext4_ext_get_access(handle, inode, path);
5210	return err;
5211}
5212
5213/*
5214 * ext4_ext_shift_path_extents:
5215 * Shift the extents of a path structure lying between path[depth].p_ext
5216 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5217 * from starting block for each extent.
5218 */
5219static int
5220ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5221			    struct inode *inode, handle_t *handle,
5222			    ext4_lblk_t *start)
5223{
5224	int depth, err = 0;
5225	struct ext4_extent *ex_start, *ex_last;
5226	bool update = 0;
5227	depth = path->p_depth;
5228
5229	while (depth >= 0) {
5230		if (depth == path->p_depth) {
5231			ex_start = path[depth].p_ext;
5232			if (!ex_start)
5233				return -EIO;
5234
5235			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5236			if (!ex_last)
5237				return -EIO;
5238
5239			err = ext4_access_path(handle, inode, path + depth);
5240			if (err)
5241				goto out;
5242
5243			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5244				update = 1;
5245
5246			*start = le32_to_cpu(ex_last->ee_block) +
5247				ext4_ext_get_actual_len(ex_last);
5248
5249			while (ex_start <= ex_last) {
5250				le32_add_cpu(&ex_start->ee_block, -shift);
5251				/* Try to merge to the left. */
5252				if ((ex_start >
5253				     EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
5254				    ext4_ext_try_to_merge_right(inode,
5255							path, ex_start - 1))
5256					ex_last--;
5257				else
5258					ex_start++;
5259			}
5260			err = ext4_ext_dirty(handle, inode, path + depth);
5261			if (err)
5262				goto out;
5263
5264			if (--depth < 0 || !update)
5265				break;
5266		}
5267
5268		/* Update index too */
5269		err = ext4_access_path(handle, inode, path + depth);
5270		if (err)
5271			goto out;
5272
5273		le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5274		err = ext4_ext_dirty(handle, inode, path + depth);
5275		if (err)
5276			goto out;
5277
5278		/* we are done if current index is not a starting index */
5279		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5280			break;
5281
5282		depth--;
5283	}
5284
5285out:
5286	return err;
5287}
5288
5289/*
5290 * ext4_ext_shift_extents:
5291 * All the extents which lies in the range from start to the last allocated
5292 * block for the file are shifted downwards by shift blocks.
5293 * On success, 0 is returned, error otherwise.
5294 */
5295static int
5296ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5297		       ext4_lblk_t start, ext4_lblk_t shift)
5298{
5299	struct ext4_ext_path *path;
5300	int ret = 0, depth;
5301	struct ext4_extent *extent;
5302	ext4_lblk_t stop_block, current_block;
5303	ext4_lblk_t ex_start, ex_end;
5304
5305	/* Let path point to the last extent */
5306	path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5307	if (IS_ERR(path))
5308		return PTR_ERR(path);
5309
5310	depth = path->p_depth;
5311	extent = path[depth].p_ext;
5312	if (!extent) {
5313		ext4_ext_drop_refs(path);
5314		kfree(path);
5315		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5316	}
5317
5318	stop_block = le32_to_cpu(extent->ee_block) +
5319			ext4_ext_get_actual_len(extent);
5320	ext4_ext_drop_refs(path);
5321	kfree(path);
5322
5323	/* Nothing to shift, if hole is at the end of file */
5324	if (start >= stop_block)
5325		return ret;
5326
5327	/*
5328	 * Don't start shifting extents until we make sure the hole is big
5329	 * enough to accomodate the shift.
5330	 */
5331	path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5332	if (IS_ERR(path))
5333		return PTR_ERR(path);
5334	depth = path->p_depth;
5335	extent =  path[depth].p_ext;
5336	if (extent) {
5337		ex_start = le32_to_cpu(extent->ee_block);
5338		ex_end = le32_to_cpu(extent->ee_block) +
5339			ext4_ext_get_actual_len(extent);
5340	} else {
5341		ex_start = 0;
5342		ex_end = 0;
5343	}
5344	ext4_ext_drop_refs(path);
5345	kfree(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5346
5347	if ((start == ex_start && shift > ex_start) ||
5348	    (shift > start - ex_end))
5349		return -EINVAL;
5350
5351	/* Its safe to start updating extents */
5352	while (start < stop_block) {
5353		path = ext4_ext_find_extent(inode, start, NULL, 0);
5354		if (IS_ERR(path))
5355			return PTR_ERR(path);
5356		depth = path->p_depth;
5357		extent = path[depth].p_ext;
5358		if (!extent) {
5359			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5360					 (unsigned long) start);
5361			return -EIO;
5362		}
5363
5364		current_block = le32_to_cpu(extent->ee_block);
5365		if (start > current_block) {
5366			/* Hole, move to the next extent */
5367			ret = mext_next_extent(inode, path, &extent);
5368			if (ret != 0) {
5369				ext4_ext_drop_refs(path);
5370				kfree(path);
5371				if (ret == 1)
5372					ret = 0;
5373				break;
5374			}
 
 
 
 
5375		}
5376		ret = ext4_ext_shift_path_extents(path, shift, inode,
5377				handle, &start);
5378		ext4_ext_drop_refs(path);
5379		kfree(path);
5380		if (ret)
5381			break;
5382	}
5383
5384	return ret;
5385}
5386
5387/*
5388 * ext4_collapse_range:
5389 * This implements the fallocate's collapse range functionality for ext4
5390 * Returns: 0 and non-zero on error.
5391 */
5392int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5393{
5394	struct super_block *sb = inode->i_sb;
5395	ext4_lblk_t punch_start, punch_stop;
5396	handle_t *handle;
5397	unsigned int credits;
5398	loff_t new_size, ioffset;
5399	int ret;
5400
5401	/* Collapse range works only on fs block size aligned offsets. */
5402	if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5403	    len & (EXT4_BLOCK_SIZE(sb) - 1))
5404		return -EINVAL;
5405
5406	if (!S_ISREG(inode->i_mode))
5407		return -EINVAL;
5408
5409	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1)
5410		return -EOPNOTSUPP;
5411
5412	trace_ext4_collapse_range(inode, offset, len);
5413
5414	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5415	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5416
5417	/* Call ext4_force_commit to flush all data in case of data=journal. */
5418	if (ext4_should_journal_data(inode)) {
5419		ret = ext4_force_commit(inode->i_sb);
5420		if (ret)
5421			return ret;
5422	}
5423
5424	/*
5425	 * Need to round down offset to be aligned with page size boundary
5426	 * for page size > block size.
5427	 */
5428	ioffset = round_down(offset, PAGE_SIZE);
5429
5430	/* Write out all dirty pages */
5431	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5432					   LLONG_MAX);
5433	if (ret)
5434		return ret;
5435
5436	/* Take mutex lock */
5437	mutex_lock(&inode->i_mutex);
5438
5439	/*
5440	 * There is no need to overlap collapse range with EOF, in which case
5441	 * it is effectively a truncate operation
5442	 */
5443	if (offset + len >= i_size_read(inode)) {
5444		ret = -EINVAL;
5445		goto out_mutex;
5446	}
5447
5448	/* Currently just for extent based files */
5449	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5450		ret = -EOPNOTSUPP;
5451		goto out_mutex;
5452	}
5453
5454	truncate_pagecache(inode, ioffset);
5455
5456	/* Wait for existing dio to complete */
5457	ext4_inode_block_unlocked_dio(inode);
5458	inode_dio_wait(inode);
 
 
 
 
 
 
 
 
 
5459
5460	credits = ext4_writepage_trans_blocks(inode);
5461	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5462	if (IS_ERR(handle)) {
5463		ret = PTR_ERR(handle);
5464		goto out_dio;
5465	}
5466
5467	down_write(&EXT4_I(inode)->i_data_sem);
5468	ext4_discard_preallocations(inode);
5469
5470	ret = ext4_es_remove_extent(inode, punch_start,
5471				    EXT_MAX_BLOCKS - punch_start);
5472	if (ret) {
5473		up_write(&EXT4_I(inode)->i_data_sem);
5474		goto out_stop;
5475	}
5476
5477	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5478	if (ret) {
5479		up_write(&EXT4_I(inode)->i_data_sem);
5480		goto out_stop;
5481	}
5482	ext4_discard_preallocations(inode);
5483
5484	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5485				     punch_stop - punch_start);
5486	if (ret) {
5487		up_write(&EXT4_I(inode)->i_data_sem);
5488		goto out_stop;
 
5489	}
5490
5491	new_size = i_size_read(inode) - len;
5492	i_size_write(inode, new_size);
5493	EXT4_I(inode)->i_disksize = new_size;
5494
5495	up_write(&EXT4_I(inode)->i_data_sem);
5496	if (IS_SYNC(inode))
5497		ext4_handle_sync(handle);
5498	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5499	ext4_mark_inode_dirty(handle, inode);
5500
5501out_stop:
5502	ext4_journal_stop(handle);
5503out_dio:
5504	ext4_inode_resume_unlocked_dio(inode);
5505out_mutex:
5506	mutex_unlock(&inode->i_mutex);
5507	return ret;
5508}