Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include "compat.h"
 
 
  44#include "delayed-inode.h"
  45#include "ctree.h"
  46#include "disk-io.h"
  47#include "transaction.h"
  48#include "btrfs_inode.h"
  49#include "ioctl.h"
  50#include "print-tree.h"
 
  51#include "xattr.h"
  52#include "volumes.h"
  53#include "version.h"
  54#include "export.h"
  55#include "compression.h"
 
 
 
 
 
 
 
 
 
  56
 
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/btrfs.h>
  59
  60static const struct super_operations btrfs_super_ops;
  61
  62static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  63				      char nbuf[16])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	char *errstr = NULL;
  66
  67	switch (errno) {
  68	case -EIO:
 
 
 
  69		errstr = "IO failure";
  70		break;
  71	case -ENOMEM:
  72		errstr = "Out of memory";
  73		break;
  74	case -EROFS:
 
 
 
 
 
 
  75		errstr = "Readonly filesystem";
  76		break;
  77	default:
  78		if (nbuf) {
  79			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  80				errstr = nbuf;
  81		}
 
 
 
  82		break;
  83	}
  84
  85	return errstr;
  86}
  87
  88static void __save_error_info(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
  89{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90	/*
  91	 * today we only save the error info into ram.  Long term we'll
  92	 * also send it down to the disk
  93	 */
  94	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95}
  96
  97/* NOTE:
  98 *	We move write_super stuff at umount in order to avoid deadlock
  99 *	for umount hold all lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 100 */
 101static void save_error_info(struct btrfs_fs_info *fs_info)
 102{
 103	__save_error_info(fs_info);
 104}
 
 
 
 
 
 
 105
 106/* btrfs handle error by forcing the filesystem readonly */
 107static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 108{
 109	struct super_block *sb = fs_info->sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111	if (sb->s_flags & MS_RDONLY)
 112		return;
 113
 114	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 115		sb->s_flags |= MS_RDONLY;
 116		printk(KERN_INFO "btrfs is forced readonly\n");
 117	}
 
 118}
 
 119
 120/*
 121 * __btrfs_std_error decodes expected errors from the caller and
 122 * invokes the approciate error response.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123 */
 124void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 125		     unsigned int line, int errno)
 
 126{
 127	struct super_block *sb = fs_info->sb;
 128	char nbuf[16];
 129	const char *errstr;
 
 
 130
 131	/*
 132	 * Special case: if the error is EROFS, and we're already
 133	 * under MS_RDONLY, then it is safe here.
 134	 */
 135	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 136		return;
 137
 138	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 139	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 140		sb->s_id, function, line, errstr);
 141	save_error_info(fs_info);
 142
 143	btrfs_handle_error(fs_info);
 
 
 
 
 
 
 
 
 144}
 145
 146static void btrfs_put_super(struct super_block *sb)
 147{
 148	struct btrfs_root *root = btrfs_sb(sb);
 149	int ret;
 150
 151	ret = close_ctree(root);
 152	sb->s_fs_info = NULL;
 153
 154	(void)ret; /* FIXME: need to fix VFS to return error? */
 155}
 156
 157enum {
 158	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 159	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 160	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 161	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 162	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 163	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 164	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
 165	Opt_inode_cache, Opt_err,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166};
 167
 168static match_table_t tokens = {
 169	{Opt_degraded, "degraded"},
 170	{Opt_subvol, "subvol=%s"},
 171	{Opt_subvolid, "subvolid=%d"},
 172	{Opt_device, "device=%s"},
 173	{Opt_nodatasum, "nodatasum"},
 174	{Opt_nodatacow, "nodatacow"},
 175	{Opt_nobarrier, "nobarrier"},
 176	{Opt_max_inline, "max_inline=%s"},
 177	{Opt_alloc_start, "alloc_start=%s"},
 178	{Opt_thread_pool, "thread_pool=%d"},
 179	{Opt_compress, "compress"},
 180	{Opt_compress_type, "compress=%s"},
 181	{Opt_compress_force, "compress-force"},
 182	{Opt_compress_force_type, "compress-force=%s"},
 183	{Opt_ssd, "ssd"},
 184	{Opt_ssd_spread, "ssd_spread"},
 185	{Opt_nossd, "nossd"},
 186	{Opt_noacl, "noacl"},
 187	{Opt_notreelog, "notreelog"},
 188	{Opt_flushoncommit, "flushoncommit"},
 189	{Opt_ratio, "metadata_ratio=%d"},
 
 
 
 
 
 
 
 
 
 
 
 190	{Opt_discard, "discard"},
 
 
 
 
 
 
 191	{Opt_space_cache, "space_cache"},
 192	{Opt_clear_cache, "clear_cache"},
 
 
 
 
 
 
 
 
 
 
 
 193	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194	{Opt_enospc_debug, "enospc_debug"},
 195	{Opt_subvolrootid, "subvolrootid=%d"},
 196	{Opt_defrag, "autodefrag"},
 197	{Opt_inode_cache, "inode_cache"},
 
 
 
 
 
 
 
 
 
 
 
 
 198	{Opt_err, NULL},
 199};
 200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201/*
 202 * Regular mount options parser.  Everything that is needed only when
 203 * reading in a new superblock is parsed here.
 
 204 */
 205int btrfs_parse_options(struct btrfs_root *root, char *options)
 
 206{
 207	struct btrfs_fs_info *info = root->fs_info;
 208	substring_t args[MAX_OPT_ARGS];
 209	char *p, *num, *orig;
 
 210	int intarg;
 211	int ret = 0;
 212	char *compress_type;
 213	bool compress_force = false;
 214
 215	if (!options)
 216		return 0;
 
 
 
 
 
 
 
 217
 218	/*
 219	 * strsep changes the string, duplicate it because parse_options
 220	 * gets called twice
 221	 */
 222	options = kstrdup(options, GFP_NOFS);
 223	if (!options)
 224		return -ENOMEM;
 225
 226	orig = options;
 227
 228	while ((p = strsep(&options, ",")) != NULL) {
 229		int token;
 230		if (!*p)
 231			continue;
 232
 233		token = match_token(p, tokens, args);
 234		switch (token) {
 235		case Opt_degraded:
 236			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 237			btrfs_set_opt(info->mount_opt, DEGRADED);
 238			break;
 239		case Opt_subvol:
 
 240		case Opt_subvolid:
 241		case Opt_subvolrootid:
 242		case Opt_device:
 243			/*
 244			 * These are parsed by btrfs_parse_early_options
 245			 * and can be happily ignored here.
 246			 */
 247			break;
 248		case Opt_nodatasum:
 249			printk(KERN_INFO "btrfs: setting nodatasum\n");
 250			btrfs_set_opt(info->mount_opt, NODATASUM);
 
 
 
 
 
 
 
 
 
 
 
 251			break;
 252		case Opt_nodatacow:
 253			printk(KERN_INFO "btrfs: setting nodatacow\n");
 
 
 
 
 
 
 
 
 
 
 254			btrfs_set_opt(info->mount_opt, NODATACOW);
 255			btrfs_set_opt(info->mount_opt, NODATASUM);
 256			break;
 
 
 
 
 257		case Opt_compress_force:
 258		case Opt_compress_force_type:
 259			compress_force = true;
 
 260		case Opt_compress:
 261		case Opt_compress_type:
 
 
 
 
 
 
 262			if (token == Opt_compress ||
 263			    token == Opt_compress_force ||
 264			    strcmp(args[0].from, "zlib") == 0) {
 265				compress_type = "zlib";
 
 266				info->compress_type = BTRFS_COMPRESS_ZLIB;
 267			} else if (strcmp(args[0].from, "lzo") == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268				compress_type = "lzo";
 269				info->compress_type = BTRFS_COMPRESS_LZO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270			} else {
 271				ret = -EINVAL;
 272				goto out;
 273			}
 274
 275			btrfs_set_opt(info->mount_opt, COMPRESS);
 276			if (compress_force) {
 277				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 278				pr_info("btrfs: force %s compression\n",
 279					compress_type);
 280			} else
 281				pr_info("btrfs: use %s compression\n",
 282					compress_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283			break;
 284		case Opt_ssd:
 285			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 286			btrfs_set_opt(info->mount_opt, SSD);
 
 287			break;
 288		case Opt_ssd_spread:
 289			printk(KERN_INFO "btrfs: use spread ssd "
 290			       "allocation scheme\n");
 291			btrfs_set_opt(info->mount_opt, SSD);
 292			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 
 293			break;
 294		case Opt_nossd:
 295			printk(KERN_INFO "btrfs: not using ssd allocation "
 296			       "scheme\n");
 297			btrfs_set_opt(info->mount_opt, NOSSD);
 298			btrfs_clear_opt(info->mount_opt, SSD);
 299			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 
 
 
 
 
 
 
 
 300			break;
 301		case Opt_nobarrier:
 302			printk(KERN_INFO "btrfs: turning off barriers\n");
 303			btrfs_set_opt(info->mount_opt, NOBARRIER);
 304			break;
 305		case Opt_thread_pool:
 306			intarg = 0;
 307			match_int(&args[0], &intarg);
 308			if (intarg) {
 309				info->thread_pool_size = intarg;
 310				printk(KERN_INFO "btrfs: thread pool %d\n",
 311				       info->thread_pool_size);
 312			}
 
 313			break;
 314		case Opt_max_inline:
 315			num = match_strdup(&args[0]);
 316			if (num) {
 317				info->max_inline = memparse(num, NULL);
 318				kfree(num);
 319
 320				if (info->max_inline) {
 321					info->max_inline = max_t(u64,
 322						info->max_inline,
 323						root->sectorsize);
 324				}
 325				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 326					(unsigned long long)info->max_inline);
 
 
 
 327			}
 328			break;
 329		case Opt_alloc_start:
 330			num = match_strdup(&args[0]);
 331			if (num) {
 332				info->alloc_start = memparse(num, NULL);
 333				kfree(num);
 334				printk(KERN_INFO
 335					"btrfs: allocations start at %llu\n",
 336					(unsigned long long)info->alloc_start);
 337			}
 338			break;
 
 
 
 
 
 339		case Opt_noacl:
 340			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 341			break;
 342		case Opt_notreelog:
 343			printk(KERN_INFO "btrfs: disabling tree log\n");
 344			btrfs_set_opt(info->mount_opt, NOTREELOG);
 
 
 
 
 
 
 
 
 
 
 
 345			break;
 346		case Opt_flushoncommit:
 347			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 348			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 
 
 
 
 349			break;
 350		case Opt_ratio:
 351			intarg = 0;
 352			match_int(&args[0], &intarg);
 353			if (intarg) {
 354				info->metadata_ratio = intarg;
 355				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 356				       info->metadata_ratio);
 357			}
 358			break;
 359		case Opt_discard:
 360			btrfs_set_opt(info->mount_opt, DISCARD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361			break;
 362		case Opt_space_cache:
 363			printk(KERN_INFO "btrfs: enabling disk space caching\n");
 364			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365			break;
 366		case Opt_inode_cache:
 367			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 368			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 
 
 
 
 
 
 369			break;
 370		case Opt_clear_cache:
 371			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 372			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 373			break;
 374		case Opt_user_subvol_rm_allowed:
 375			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 376			break;
 377		case Opt_enospc_debug:
 378			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 379			break;
 
 
 
 380		case Opt_defrag:
 381			printk(KERN_INFO "btrfs: enabling auto defrag");
 382			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 383			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384		case Opt_err:
 385			printk(KERN_INFO "btrfs: unrecognized mount option "
 386			       "'%s'\n", p);
 387			ret = -EINVAL;
 388			goto out;
 389		default:
 390			break;
 391		}
 392	}
 
 
 
 
 
 
 
 
 
 393out:
 394	kfree(orig);
 
 
 
 
 
 
 
 
 
 
 395	return ret;
 396}
 397
 398/*
 399 * Parse mount options that are required early in the mount process.
 400 *
 401 * All other options will be parsed on much later in the mount process and
 402 * only when we need to allocate a new super block.
 403 */
 404static int btrfs_parse_early_options(const char *options, fmode_t flags,
 405		void *holder, char **subvol_name, u64 *subvol_objectid,
 406		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407{
 408	substring_t args[MAX_OPT_ARGS];
 409	char *opts, *orig, *p;
 410	int error = 0;
 411	int intarg;
 412
 413	if (!options)
 414		goto out;
 415
 416	/*
 417	 * strsep changes the string, duplicate it because parse_options
 418	 * gets called twice
 419	 */
 420	opts = kstrdup(options, GFP_KERNEL);
 421	if (!opts)
 422		return -ENOMEM;
 423	orig = opts;
 424
 425	while ((p = strsep(&opts, ",")) != NULL) {
 426		int token;
 427		if (!*p)
 428			continue;
 429
 430		token = match_token(p, tokens, args);
 431		switch (token) {
 432		case Opt_subvol:
 
 433			*subvol_name = match_strdup(&args[0]);
 434			break;
 435		case Opt_subvolid:
 436			intarg = 0;
 437			error = match_int(&args[0], &intarg);
 438			if (!error) {
 439				/* we want the original fs_tree */
 440				if (!intarg)
 441					*subvol_objectid =
 442						BTRFS_FS_TREE_OBJECTID;
 443				else
 444					*subvol_objectid = intarg;
 445			}
 446			break;
 447		case Opt_subvolrootid:
 448			intarg = 0;
 449			error = match_int(&args[0], &intarg);
 450			if (!error) {
 451				/* we want the original fs_tree */
 452				if (!intarg)
 453					*subvol_rootid =
 454						BTRFS_FS_TREE_OBJECTID;
 455				else
 456					*subvol_rootid = intarg;
 457			}
 458			break;
 459		case Opt_device:
 460			error = btrfs_scan_one_device(match_strdup(&args[0]),
 461					flags, holder, fs_devices);
 462			if (error)
 463				goto out_free_opts;
 
 
 
 
 
 
 464			break;
 465		default:
 466			break;
 467		}
 468	}
 469
 470 out_free_opts:
 471	kfree(orig);
 472 out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	/*
 474	 * If no subvolume name is specified we use the default one.  Allocate
 475	 * a copy of the string "." here so that code later in the
 476	 * mount path doesn't care if it's the default volume or another one.
 477	 */
 478	if (!*subvol_name) {
 479		*subvol_name = kstrdup(".", GFP_KERNEL);
 480		if (!*subvol_name)
 481			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	}
 483	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484}
 485
 486static struct dentry *get_default_root(struct super_block *sb,
 487				       u64 subvol_objectid)
 488{
 489	struct btrfs_root *root = sb->s_fs_info;
 490	struct btrfs_root *new_root;
 491	struct btrfs_dir_item *di;
 492	struct btrfs_path *path;
 493	struct btrfs_key location;
 494	struct inode *inode;
 495	struct dentry *dentry;
 496	u64 dir_id;
 497	int new = 0;
 498
 499	/*
 500	 * We have a specific subvol we want to mount, just setup location and
 501	 * go look up the root.
 502	 */
 503	if (subvol_objectid) {
 504		location.objectid = subvol_objectid;
 505		location.type = BTRFS_ROOT_ITEM_KEY;
 506		location.offset = (u64)-1;
 507		goto find_root;
 508	}
 509
 510	path = btrfs_alloc_path();
 511	if (!path)
 512		return ERR_PTR(-ENOMEM);
 513	path->leave_spinning = 1;
 514
 515	/*
 516	 * Find the "default" dir item which points to the root item that we
 517	 * will mount by default if we haven't been given a specific subvolume
 518	 * to mount.
 519	 */
 520	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
 521	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 522	if (IS_ERR(di)) {
 523		btrfs_free_path(path);
 524		return ERR_CAST(di);
 525	}
 526	if (!di) {
 527		/*
 528		 * Ok the default dir item isn't there.  This is weird since
 529		 * it's always been there, but don't freak out, just try and
 530		 * mount to root most subvolume.
 531		 */
 532		btrfs_free_path(path);
 533		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 534		new_root = root->fs_info->fs_root;
 535		goto setup_root;
 536	}
 537
 538	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 539	btrfs_free_path(path);
 540
 541find_root:
 542	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
 543	if (IS_ERR(new_root))
 544		return ERR_CAST(new_root);
 545
 546	if (btrfs_root_refs(&new_root->root_item) == 0)
 547		return ERR_PTR(-ENOENT);
 548
 549	dir_id = btrfs_root_dirid(&new_root->root_item);
 550setup_root:
 551	location.objectid = dir_id;
 552	location.type = BTRFS_INODE_ITEM_KEY;
 553	location.offset = 0;
 554
 555	inode = btrfs_iget(sb, &location, new_root, &new);
 556	if (IS_ERR(inode))
 557		return ERR_CAST(inode);
 558
 559	/*
 560	 * If we're just mounting the root most subvol put the inode and return
 561	 * a reference to the dentry.  We will have already gotten a reference
 562	 * to the inode in btrfs_fill_super so we're good to go.
 563	 */
 564	if (!new && sb->s_root->d_inode == inode) {
 565		iput(inode);
 566		return dget(sb->s_root);
 567	}
 568
 569	if (new) {
 570		const struct qstr name = { .name = "/", .len = 1 };
 571
 572		/*
 573		 * New inode, we need to make the dentry a sibling of s_root so
 574		 * everything gets cleaned up properly on unmount.
 575		 */
 576		dentry = d_alloc(sb->s_root, &name);
 577		if (!dentry) {
 578			iput(inode);
 579			return ERR_PTR(-ENOMEM);
 580		}
 581		d_splice_alias(inode, dentry);
 582	} else {
 583		/*
 584		 * We found the inode in cache, just find a dentry for it and
 585		 * put the reference to the inode we just got.
 586		 */
 587		dentry = d_find_alias(inode);
 588		iput(inode);
 589	}
 590
 591	return dentry;
 592}
 593
 594static int btrfs_fill_super(struct super_block *sb,
 595			    struct btrfs_fs_devices *fs_devices,
 596			    void *data, int silent)
 597{
 598	struct inode *inode;
 599	struct dentry *root_dentry;
 600	struct btrfs_root *tree_root;
 601	struct btrfs_key key;
 602	int err;
 603
 604	sb->s_maxbytes = MAX_LFS_FILESIZE;
 605	sb->s_magic = BTRFS_SUPER_MAGIC;
 606	sb->s_op = &btrfs_super_ops;
 607	sb->s_d_op = &btrfs_dentry_operations;
 608	sb->s_export_op = &btrfs_export_ops;
 609	sb->s_xattr = btrfs_xattr_handlers;
 610	sb->s_time_gran = 1;
 611#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 612	sb->s_flags |= MS_POSIXACL;
 613#endif
 
 
 614
 615	tree_root = open_ctree(sb, fs_devices, (char *)data);
 
 
 
 
 616
 617	if (IS_ERR(tree_root)) {
 618		printk("btrfs: open_ctree failed\n");
 619		return PTR_ERR(tree_root);
 620	}
 621	sb->s_fs_info = tree_root;
 622
 623	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 624	key.type = BTRFS_INODE_ITEM_KEY;
 625	key.offset = 0;
 626	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
 627	if (IS_ERR(inode)) {
 628		err = PTR_ERR(inode);
 629		goto fail_close;
 630	}
 631
 632	root_dentry = d_alloc_root(inode);
 633	if (!root_dentry) {
 634		iput(inode);
 635		err = -ENOMEM;
 636		goto fail_close;
 637	}
 638
 639	sb->s_root = root_dentry;
 640
 641	save_mount_options(sb, data);
 642	cleancache_init_fs(sb);
 
 643	return 0;
 644
 645fail_close:
 646	close_ctree(tree_root);
 647	return err;
 648}
 649
 650int btrfs_sync_fs(struct super_block *sb, int wait)
 651{
 652	struct btrfs_trans_handle *trans;
 653	struct btrfs_root *root = btrfs_sb(sb);
 654	int ret;
 655
 656	trace_btrfs_sync_fs(wait);
 657
 658	if (!wait) {
 659		filemap_flush(root->fs_info->btree_inode->i_mapping);
 660		return 0;
 661	}
 662
 663	btrfs_start_delalloc_inodes(root, 0);
 664	btrfs_wait_ordered_extents(root, 0, 0);
 665
 666	trans = btrfs_start_transaction(root, 0);
 667	if (IS_ERR(trans))
 668		return PTR_ERR(trans);
 669	ret = btrfs_commit_transaction(trans, root);
 670	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
 674{
 675	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
 676	struct btrfs_fs_info *info = root->fs_info;
 677	char *compress_type;
 678
 679	if (btrfs_test_opt(root, DEGRADED))
 680		seq_puts(seq, ",degraded");
 681	if (btrfs_test_opt(root, NODATASUM))
 682		seq_puts(seq, ",nodatasum");
 683	if (btrfs_test_opt(root, NODATACOW))
 684		seq_puts(seq, ",nodatacow");
 685	if (btrfs_test_opt(root, NOBARRIER))
 686		seq_puts(seq, ",nobarrier");
 687	if (info->max_inline != 8192 * 1024)
 688		seq_printf(seq, ",max_inline=%llu",
 689			   (unsigned long long)info->max_inline);
 690	if (info->alloc_start != 0)
 691		seq_printf(seq, ",alloc_start=%llu",
 692			   (unsigned long long)info->alloc_start);
 693	if (info->thread_pool_size !=  min_t(unsigned long,
 694					     num_online_cpus() + 2, 8))
 695		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 696	if (btrfs_test_opt(root, COMPRESS)) {
 697		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 698			compress_type = "zlib";
 699		else
 700			compress_type = "lzo";
 701		if (btrfs_test_opt(root, FORCE_COMPRESS))
 702			seq_printf(seq, ",compress-force=%s", compress_type);
 703		else
 704			seq_printf(seq, ",compress=%s", compress_type);
 
 
 705	}
 706	if (btrfs_test_opt(root, NOSSD))
 707		seq_puts(seq, ",nossd");
 708	if (btrfs_test_opt(root, SSD_SPREAD))
 709		seq_puts(seq, ",ssd_spread");
 710	else if (btrfs_test_opt(root, SSD))
 711		seq_puts(seq, ",ssd");
 712	if (btrfs_test_opt(root, NOTREELOG))
 713		seq_puts(seq, ",notreelog");
 714	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 
 
 715		seq_puts(seq, ",flushoncommit");
 716	if (btrfs_test_opt(root, DISCARD))
 717		seq_puts(seq, ",discard");
 718	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 
 
 719		seq_puts(seq, ",noacl");
 720	if (btrfs_test_opt(root, SPACE_CACHE))
 721		seq_puts(seq, ",space_cache");
 722	if (btrfs_test_opt(root, CLEAR_CACHE))
 
 
 
 
 
 
 723		seq_puts(seq, ",clear_cache");
 724	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 725		seq_puts(seq, ",user_subvol_rm_allowed");
 726	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 727		seq_puts(seq, ",enospc_debug");
 728	if (btrfs_test_opt(root, AUTO_DEFRAG))
 729		seq_puts(seq, ",autodefrag");
 730	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 731		seq_puts(seq, ",inode_cache");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	return 0;
 733}
 734
 735static int btrfs_test_super(struct super_block *s, void *data)
 736{
 737	struct btrfs_root *test_root = data;
 738	struct btrfs_root *root = btrfs_sb(s);
 739
 740	/*
 741	 * If this super block is going away, return false as it
 742	 * can't match as an existing super block.
 743	 */
 744	if (!atomic_read(&s->s_active))
 745		return 0;
 746	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
 747}
 748
 749static int btrfs_set_super(struct super_block *s, void *data)
 750{
 751	s->s_fs_info = data;
 
 
 
 
 752
 753	return set_anon_super(s, data);
 
 
 
 
 
 
 
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757/*
 758 * Find a superblock for the given device / mount point.
 759 *
 760 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
 761 *	  for multiple device setup.  Make sure to keep it in sync.
 762 */
 763static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
 764		const char *device_name, void *data)
 765{
 766	struct block_device *bdev = NULL;
 767	struct super_block *s;
 768	struct dentry *root;
 769	struct btrfs_fs_devices *fs_devices = NULL;
 770	struct btrfs_root *tree_root = NULL;
 771	struct btrfs_fs_info *fs_info = NULL;
 
 772	fmode_t mode = FMODE_READ;
 773	char *subvol_name = NULL;
 774	u64 subvol_objectid = 0;
 775	u64 subvol_rootid = 0;
 776	int error = 0;
 777
 778	if (!(flags & MS_RDONLY))
 779		mode |= FMODE_WRITE;
 780
 781	error = btrfs_parse_early_options(data, mode, fs_type,
 782					  &subvol_name, &subvol_objectid,
 783					  &subvol_rootid, &fs_devices);
 784	if (error)
 785		return ERR_PTR(error);
 786
 787	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
 788	if (error)
 789		goto error_free_subvol_name;
 790
 791	error = btrfs_open_devices(fs_devices, mode, fs_type);
 792	if (error)
 793		goto error_free_subvol_name;
 794
 795	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
 796		error = -EACCES;
 797		goto error_close_devices;
 798	}
 799
 800	/*
 801	 * Setup a dummy root and fs_info for test/set super.  This is because
 802	 * we don't actually fill this stuff out until open_ctree, but we need
 803	 * it for searching for existing supers, so this lets us do that and
 804	 * then open_ctree will properly initialize everything later.
 
 
 805	 */
 806	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
 807	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
 808	if (!fs_info || !tree_root) {
 809		error = -ENOMEM;
 810		goto error_close_devices;
 
 
 
 
 
 
 
 
 811	}
 812	fs_info->tree_root = tree_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813	fs_info->fs_devices = fs_devices;
 814	tree_root->fs_info = fs_info;
 
 
 
 
 
 
 
 
 
 815
 816	bdev = fs_devices->latest_bdev;
 817	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
 818	if (IS_ERR(s))
 819		goto error_s;
 
 
 
 820
 821	if (s->s_root) {
 822		if ((flags ^ s->s_flags) & MS_RDONLY) {
 823			deactivate_locked_super(s);
 824			error = -EBUSY;
 825			goto error_close_devices;
 826		}
 827
 828		btrfs_close_devices(fs_devices);
 829		kfree(fs_info);
 830		kfree(tree_root);
 
 831	} else {
 832		char b[BDEVNAME_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834		s->s_flags = flags | MS_NOSEC;
 835		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 836		error = btrfs_fill_super(s, fs_devices, data,
 837					 flags & MS_SILENT ? 1 : 0);
 838		if (error) {
 839			deactivate_locked_super(s);
 840			goto error_free_subvol_name;
 841		}
 842
 843		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
 844		s->s_flags |= MS_ACTIVE;
 845	}
 
 
 
 
 
 846
 847	/* if they gave us a subvolume name bind mount into that */
 848	if (strcmp(subvol_name, ".")) {
 849		struct dentry *new_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850
 851		root = get_default_root(s, subvol_rootid);
 852		if (IS_ERR(root)) {
 853			error = PTR_ERR(root);
 854			deactivate_locked_super(s);
 855			goto error_free_subvol_name;
 856		}
 857
 858		mutex_lock(&root->d_inode->i_mutex);
 859		new_root = lookup_one_len(subvol_name, root,
 860				      strlen(subvol_name));
 861		mutex_unlock(&root->d_inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 862
 863		if (IS_ERR(new_root)) {
 864			dput(root);
 865			deactivate_locked_super(s);
 866			error = PTR_ERR(new_root);
 867			goto error_free_subvol_name;
 868		}
 869		if (!new_root->d_inode) {
 870			dput(root);
 871			dput(new_root);
 872			deactivate_locked_super(s);
 873			error = -ENXIO;
 874			goto error_free_subvol_name;
 875		}
 876		dput(root);
 877		root = new_root;
 878	} else {
 879		root = get_default_root(s, subvol_objectid);
 880		if (IS_ERR(root)) {
 881			error = PTR_ERR(root);
 882			deactivate_locked_super(s);
 883			goto error_free_subvol_name;
 884		}
 885	}
 
 
 
 
 
 886
 887	kfree(subvol_name);
 
 
 
 888	return root;
 
 889
 890error_s:
 891	error = PTR_ERR(s);
 892error_close_devices:
 893	btrfs_close_devices(fs_devices);
 894	kfree(fs_info);
 895	kfree(tree_root);
 896error_free_subvol_name:
 897	kfree(subvol_name);
 898	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899}
 900
 901static int btrfs_remount(struct super_block *sb, int *flags, char *data)
 902{
 903	struct btrfs_root *root = btrfs_sb(sb);
 
 
 
 
 
 
 
 904	int ret;
 905
 906	ret = btrfs_parse_options(root, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907	if (ret)
 908		return -EINVAL;
 909
 910	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 911		return 0;
 
 
 
 
 
 
 
 
 
 
 
 912
 913	if (*flags & MS_RDONLY) {
 914		sb->s_flags |= MS_RDONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915
 916		ret =  btrfs_commit_super(root);
 917		WARN_ON(ret);
 
 
 
 
 
 918	} else {
 919		if (root->fs_info->fs_devices->rw_devices == 0)
 920			return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921
 922		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
 923			return -EINVAL;
 
 
 
 
 924
 925		ret = btrfs_cleanup_fs_roots(root->fs_info);
 926		WARN_ON(ret);
 
 927
 928		/* recover relocation */
 
 929		ret = btrfs_recover_relocation(root);
 930		WARN_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932		sb->s_flags &= ~MS_RDONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933	}
 
 
 
 
 
 
 
 
 
 
 934
 935	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938/* Used to sort the devices by max_avail(descending sort) */
 939static int btrfs_cmp_device_free_bytes(const void *dev_info1,
 940				       const void *dev_info2)
 941{
 942	if (((struct btrfs_device_info *)dev_info1)->max_avail >
 943	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 944		return -1;
 945	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
 946		 ((struct btrfs_device_info *)dev_info2)->max_avail)
 947		return 1;
 948	else
 949	return 0;
 950}
 951
 952/*
 953 * sort the devices by max_avail, in which max free extent size of each device
 954 * is stored.(Descending Sort)
 955 */
 956static inline void btrfs_descending_sort_devices(
 957					struct btrfs_device_info *devices,
 958					size_t nr_devices)
 959{
 960	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
 961	     btrfs_cmp_device_free_bytes, NULL);
 962}
 963
 964/*
 965 * The helper to calc the free space on the devices that can be used to store
 966 * file data.
 967 */
 968static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
 
 969{
 970	struct btrfs_fs_info *fs_info = root->fs_info;
 971	struct btrfs_device_info *devices_info;
 972	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 973	struct btrfs_device *device;
 974	u64 skip_space;
 975	u64 type;
 976	u64 avail_space;
 977	u64 used_space;
 978	u64 min_stripe_size;
 979	int min_stripes = 1;
 980	int i = 0, nr_devices;
 981	int ret;
 982
 983	nr_devices = fs_info->fs_devices->rw_devices;
 984	BUG_ON(!nr_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
 987			       GFP_NOFS);
 988	if (!devices_info)
 989		return -ENOMEM;
 990
 991	/* calc min stripe number for data space alloction */
 992	type = btrfs_get_alloc_profile(root, 1);
 
 
 993	if (type & BTRFS_BLOCK_GROUP_RAID0)
 994		min_stripes = 2;
 995	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 996		min_stripes = 2;
 
 
 
 
 997	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 998		min_stripes = 4;
 999
1000	if (type & BTRFS_BLOCK_GROUP_DUP)
1001		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1002	else
1003		min_stripe_size = BTRFS_STRIPE_LEN;
1004
1005	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1006		if (!device->in_fs_metadata)
 
 
 
 
1007			continue;
1008
 
 
 
1009		avail_space = device->total_bytes - device->bytes_used;
1010
1011		/* align with stripe_len */
1012		do_div(avail_space, BTRFS_STRIPE_LEN);
1013		avail_space *= BTRFS_STRIPE_LEN;
1014
1015		/*
1016		 * In order to avoid overwritting the superblock on the drive,
1017		 * btrfs starts at an offset of at least 1MB when doing chunk
1018		 * allocation.
 
 
 
1019		 */
1020		skip_space = 1024 * 1024;
1021
1022		/* user can set the offset in fs_info->alloc_start. */
1023		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1024		    device->total_bytes)
1025			skip_space = max(fs_info->alloc_start, skip_space);
1026
1027		/*
1028		 * btrfs can not use the free space in [0, skip_space - 1],
1029		 * we must subtract it from the total. In order to implement
1030		 * it, we account the used space in this range first.
1031		 */
1032		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1033						     &used_space);
1034		if (ret) {
1035			kfree(devices_info);
1036			return ret;
1037		}
1038
1039		/* calc the free space in [0, skip_space - 1] */
1040		skip_space -= used_space;
1041
1042		/*
1043		 * we can use the free space in [0, skip_space - 1], subtract
1044		 * it from the total.
1045		 */
1046		if (avail_space && avail_space >= skip_space)
1047			avail_space -= skip_space;
1048		else
1049			avail_space = 0;
1050
1051		if (avail_space < min_stripe_size)
1052			continue;
1053
 
 
1054		devices_info[i].dev = device;
1055		devices_info[i].max_avail = avail_space;
1056
1057		i++;
1058	}
 
1059
1060	nr_devices = i;
1061
1062	btrfs_descending_sort_devices(devices_info, nr_devices);
1063
1064	i = nr_devices - 1;
1065	avail_space = 0;
1066	while (nr_devices >= min_stripes) {
 
 
1067		if (devices_info[i].max_avail >= min_stripe_size) {
1068			int j;
1069			u64 alloc_size;
1070
1071			avail_space += devices_info[i].max_avail * min_stripes;
1072			alloc_size = devices_info[i].max_avail;
1073			for (j = i + 1 - min_stripes; j <= i; j++)
1074				devices_info[j].max_avail -= alloc_size;
1075		}
1076		i--;
1077		nr_devices--;
1078	}
1079
1080	kfree(devices_info);
1081	*free_bytes = avail_space;
1082	return 0;
1083}
1084
 
 
 
 
 
 
 
 
 
 
 
 
 
1085static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1086{
1087	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1088	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1089	struct list_head *head = &root->fs_info->space_info;
1090	struct btrfs_space_info *found;
1091	u64 total_used = 0;
1092	u64 total_free_data = 0;
 
1093	int bits = dentry->d_sb->s_blocksize_bits;
1094	__be32 *fsid = (__be32 *)root->fs_info->fsid;
 
 
1095	int ret;
 
 
1096
1097	/* holding chunk_muext to avoid allocating new chunks */
1098	mutex_lock(&root->fs_info->chunk_mutex);
1099	rcu_read_lock();
1100	list_for_each_entry_rcu(found, head, list) {
1101		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
 
 
1102			total_free_data += found->disk_total - found->disk_used;
1103			total_free_data -=
1104				btrfs_account_ro_block_groups_free_space(found);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105		}
1106
1107		total_used += found->disk_used;
1108	}
 
1109	rcu_read_unlock();
1110
1111	buf->f_namelen = BTRFS_NAME_LEN;
1112	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1113	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1114	buf->f_bsize = dentry->d_sb->s_blocksize;
1115	buf->f_type = BTRFS_SUPER_MAGIC;
1116	buf->f_bavail = total_free_data;
1117	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1118	if (ret) {
1119		mutex_unlock(&root->fs_info->chunk_mutex);
 
 
 
 
 
 
 
1120		return ret;
1121	}
1122	buf->f_bavail += total_free_data;
1123	buf->f_bavail = buf->f_bavail >> bits;
1124	mutex_unlock(&root->fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126	/* We treat it as constant endianness (it doesn't matter _which_)
1127	   because we want the fsid to come out the same whether mounted
1128	   on a big-endian or little-endian host */
1129	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1130	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1131	/* Mask in the root object ID too, to disambiguate subvols */
1132	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1133	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
 
 
1134
1135	return 0;
1136}
1137
 
 
 
 
 
 
 
1138static struct file_system_type btrfs_fs_type = {
1139	.owner		= THIS_MODULE,
1140	.name		= "btrfs",
1141	.mount		= btrfs_mount,
1142	.kill_sb	= kill_anon_super,
1143	.fs_flags	= FS_REQUIRES_DEV,
 
 
 
 
 
 
 
 
1144};
1145
 
 
 
 
 
 
 
 
 
 
 
 
 
1146/*
1147 * used by btrfsctl to scan devices when no FS is mounted
1148 */
1149static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1150				unsigned long arg)
1151{
1152	struct btrfs_ioctl_vol_args *vol;
1153	struct btrfs_fs_devices *fs_devices;
1154	int ret = -ENOTTY;
1155
1156	if (!capable(CAP_SYS_ADMIN))
1157		return -EPERM;
1158
1159	vol = memdup_user((void __user *)arg, sizeof(*vol));
1160	if (IS_ERR(vol))
1161		return PTR_ERR(vol);
 
1162
1163	switch (cmd) {
1164	case BTRFS_IOC_SCAN_DEV:
1165		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1166					    &btrfs_fs_type, &fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167		break;
1168	}
1169
1170	kfree(vol);
1171	return ret;
1172}
1173
1174static int btrfs_freeze(struct super_block *sb)
1175{
1176	struct btrfs_root *root = btrfs_sb(sb);
1177	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1178	mutex_lock(&root->fs_info->cleaner_mutex);
1179	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180}
1181
1182static int btrfs_unfreeze(struct super_block *sb)
1183{
1184	struct btrfs_root *root = btrfs_sb(sb);
1185	mutex_unlock(&root->fs_info->cleaner_mutex);
1186	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187	return 0;
1188}
1189
1190static const struct super_operations btrfs_super_ops = {
1191	.drop_inode	= btrfs_drop_inode,
1192	.evict_inode	= btrfs_evict_inode,
1193	.put_super	= btrfs_put_super,
1194	.sync_fs	= btrfs_sync_fs,
1195	.show_options	= btrfs_show_options,
1196	.write_inode	= btrfs_write_inode,
1197	.dirty_inode	= btrfs_dirty_inode,
1198	.alloc_inode	= btrfs_alloc_inode,
1199	.destroy_inode	= btrfs_destroy_inode,
 
1200	.statfs		= btrfs_statfs,
1201	.remount_fs	= btrfs_remount,
1202	.freeze_fs	= btrfs_freeze,
1203	.unfreeze_fs	= btrfs_unfreeze,
1204};
1205
1206static const struct file_operations btrfs_ctl_fops = {
 
1207	.unlocked_ioctl	 = btrfs_control_ioctl,
1208	.compat_ioctl = btrfs_control_ioctl,
1209	.owner	 = THIS_MODULE,
1210	.llseek = noop_llseek,
1211};
1212
1213static struct miscdevice btrfs_misc = {
1214	.minor		= BTRFS_MINOR,
1215	.name		= "btrfs-control",
1216	.fops		= &btrfs_ctl_fops
1217};
1218
1219MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1220MODULE_ALIAS("devname:btrfs-control");
1221
1222static int btrfs_interface_init(void)
1223{
1224	return misc_register(&btrfs_misc);
1225}
1226
1227static void btrfs_interface_exit(void)
 
 
 
 
 
1228{
1229	if (misc_deregister(&btrfs_misc) < 0)
1230		printk(KERN_INFO "misc_deregister failed for control device");
 
 
 
 
 
 
 
 
 
 
 
 
 
1231}
1232
1233static int __init init_btrfs_fs(void)
1234{
1235	int err;
1236
 
 
1237	err = btrfs_init_sysfs();
1238	if (err)
1239		return err;
1240
1241	err = btrfs_init_compress();
1242	if (err)
1243		goto free_sysfs;
1244
1245	err = btrfs_init_cachep();
1246	if (err)
1247		goto free_compress;
1248
1249	err = extent_io_init();
1250	if (err)
1251		goto free_cachep;
1252
1253	err = extent_map_init();
1254	if (err)
1255		goto free_extent_io;
1256
1257	err = btrfs_delayed_inode_init();
 
 
 
 
1258	if (err)
1259		goto free_extent_map;
1260
1261	err = btrfs_interface_init();
 
 
 
 
1262	if (err)
1263		goto free_delayed_inode;
1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265	err = register_filesystem(&btrfs_fs_type);
1266	if (err)
1267		goto unregister_ioctl;
1268
1269	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1270	return 0;
1271
1272unregister_ioctl:
1273	btrfs_interface_exit();
 
 
 
 
 
 
 
 
1274free_delayed_inode:
1275	btrfs_delayed_inode_exit();
 
 
1276free_extent_map:
1277	extent_map_exit();
 
 
1278free_extent_io:
1279	extent_io_exit();
1280free_cachep:
1281	btrfs_destroy_cachep();
1282free_compress:
1283	btrfs_exit_compress();
1284free_sysfs:
1285	btrfs_exit_sysfs();
 
1286	return err;
1287}
1288
1289static void __exit exit_btrfs_fs(void)
1290{
1291	btrfs_destroy_cachep();
 
 
1292	btrfs_delayed_inode_exit();
 
 
1293	extent_map_exit();
 
1294	extent_io_exit();
1295	btrfs_interface_exit();
 
1296	unregister_filesystem(&btrfs_fs_type);
1297	btrfs_exit_sysfs();
1298	btrfs_cleanup_fs_uuids();
1299	btrfs_exit_compress();
1300}
1301
1302module_init(init_btrfs_fs)
1303module_exit(exit_btrfs_fs)
1304
1305MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
 
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
 
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/cleancache.h>
  27#include <linux/ratelimit.h>
  28#include <linux/crc32c.h>
  29#include <linux/btrfs.h>
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
 
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "volumes.h"
 
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "tests/btrfs-tests.h"
  48#include "block-group.h"
  49#include "discard.h"
  50
  51#include "qgroup.h"
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/btrfs.h>
  54
  55static const struct super_operations btrfs_super_ops;
  56
  57/*
  58 * Types for mounting the default subvolume and a subvolume explicitly
  59 * requested by subvol=/path. That way the callchain is straightforward and we
  60 * don't have to play tricks with the mount options and recursive calls to
  61 * btrfs_mount.
  62 *
  63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  64 */
  65static struct file_system_type btrfs_fs_type;
  66static struct file_system_type btrfs_root_fs_type;
  67
  68static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  69
  70/*
  71 * Generally the error codes correspond to their respective errors, but there
  72 * are a few special cases.
  73 *
  74 * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
  75 *          instance will return EUCLEAN if any of the blocks are corrupted in
  76 *          a way that is problematic.  We want to reserve EUCLEAN for these
  77 *          sort of corruptions.
  78 *
  79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
  80 *        need to use EROFS for this case.  We will have no idea of the
  81 *        original failure, that will have been reported at the time we tripped
  82 *        over the error.  Each subsequent error that doesn't have any context
  83 *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
  84 */
  85const char * __attribute_const__ btrfs_decode_error(int errno)
  86{
  87	char *errstr = "unknown";
  88
  89	switch (errno) {
  90	case -ENOENT:		/* -2 */
  91		errstr = "No such entry";
  92		break;
  93	case -EIO:		/* -5 */
  94		errstr = "IO failure";
  95		break;
  96	case -ENOMEM:		/* -12*/
  97		errstr = "Out of memory";
  98		break;
  99	case -EEXIST:		/* -17 */
 100		errstr = "Object already exists";
 101		break;
 102	case -ENOSPC:		/* -28 */
 103		errstr = "No space left";
 104		break;
 105	case -EROFS:		/* -30 */
 106		errstr = "Readonly filesystem";
 107		break;
 108	case -EOPNOTSUPP:	/* -95 */
 109		errstr = "Operation not supported";
 110		break;
 111	case -EUCLEAN:		/* -117 */
 112		errstr = "Filesystem corrupted";
 113		break;
 114	case -EDQUOT:		/* -122 */
 115		errstr = "Quota exceeded";
 116		break;
 117	}
 118
 119	return errstr;
 120}
 121
 122/*
 123 * __btrfs_handle_fs_error decodes expected errors from the caller and
 124 * invokes the appropriate error response.
 125 */
 126__cold
 127void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 128		       unsigned int line, int errno, const char *fmt, ...)
 129{
 130	struct super_block *sb = fs_info->sb;
 131#ifdef CONFIG_PRINTK
 132	const char *errstr;
 133#endif
 134
 135	/*
 136	 * Special case: if the error is EROFS, and we're already
 137	 * under SB_RDONLY, then it is safe here.
 138	 */
 139	if (errno == -EROFS && sb_rdonly(sb))
 140  		return;
 141
 142#ifdef CONFIG_PRINTK
 143	errstr = btrfs_decode_error(errno);
 144	if (fmt) {
 145		struct va_format vaf;
 146		va_list args;
 147
 148		va_start(args, fmt);
 149		vaf.fmt = fmt;
 150		vaf.va = &args;
 151
 152		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 153			sb->s_id, function, line, errno, errstr, &vaf);
 154		va_end(args);
 155	} else {
 156		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 157			sb->s_id, function, line, errno, errstr);
 158	}
 159#endif
 160
 161	/*
 162	 * Today we only save the error info to memory.  Long term we'll
 163	 * also send it down to the disk
 164	 */
 165	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 166
 167	/* Don't go through full error handling during mount */
 168	if (!(sb->s_flags & SB_BORN))
 169		return;
 170
 171	if (sb_rdonly(sb))
 172		return;
 173
 174	btrfs_discard_stop(fs_info);
 175
 176	/* btrfs handle error by forcing the filesystem readonly */
 177	sb->s_flags |= SB_RDONLY;
 178	btrfs_info(fs_info, "forced readonly");
 179	/*
 180	 * Note that a running device replace operation is not canceled here
 181	 * although there is no way to update the progress. It would add the
 182	 * risk of a deadlock, therefore the canceling is omitted. The only
 183	 * penalty is that some I/O remains active until the procedure
 184	 * completes. The next time when the filesystem is mounted writable
 185	 * again, the device replace operation continues.
 186	 */
 187}
 188
 189#ifdef CONFIG_PRINTK
 190static const char * const logtypes[] = {
 191	"emergency",
 192	"alert",
 193	"critical",
 194	"error",
 195	"warning",
 196	"notice",
 197	"info",
 198	"debug",
 199};
 200
 201
 202/*
 203 * Use one ratelimit state per log level so that a flood of less important
 204 * messages doesn't cause more important ones to be dropped.
 205 */
 206static struct ratelimit_state printk_limits[] = {
 207	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 208	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 209	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 210	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 211	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 212	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 213	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 214	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 215};
 216
 217void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 
 218{
 219	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 220	struct va_format vaf;
 221	va_list args;
 222	int kern_level;
 223	const char *type = logtypes[4];
 224	struct ratelimit_state *ratelimit = &printk_limits[4];
 225
 226	va_start(args, fmt);
 227
 228	while ((kern_level = printk_get_level(fmt)) != 0) {
 229		size_t size = printk_skip_level(fmt) - fmt;
 230
 231		if (kern_level >= '0' && kern_level <= '7') {
 232			memcpy(lvl, fmt,  size);
 233			lvl[size] = '\0';
 234			type = logtypes[kern_level - '0'];
 235			ratelimit = &printk_limits[kern_level - '0'];
 236		}
 237		fmt += size;
 238	}
 239
 240	vaf.fmt = fmt;
 241	vaf.va = &args;
 242
 243	if (__ratelimit(ratelimit))
 244		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
 245			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
 246
 247	va_end(args);
 248}
 249#endif
 250
 251/*
 252 * We only mark the transaction aborted and then set the file system read-only.
 253 * This will prevent new transactions from starting or trying to join this
 254 * one.
 255 *
 256 * This means that error recovery at the call site is limited to freeing
 257 * any local memory allocations and passing the error code up without
 258 * further cleanup. The transaction should complete as it normally would
 259 * in the call path but will return -EIO.
 260 *
 261 * We'll complete the cleanup in btrfs_end_transaction and
 262 * btrfs_commit_transaction.
 263 */
 264__cold
 265void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 266			       const char *function,
 267			       unsigned int line, int errno)
 268{
 269	struct btrfs_fs_info *fs_info = trans->fs_info;
 270
 271	WRITE_ONCE(trans->aborted, errno);
 272	/* Nothing used. The other threads that have joined this
 273	 * transaction may be able to continue. */
 274	if (!trans->dirty && list_empty(&trans->new_bgs)) {
 275		const char *errstr;
 276
 277		errstr = btrfs_decode_error(errno);
 278		btrfs_warn(fs_info,
 279		           "%s:%d: Aborting unused transaction(%s).",
 280		           function, line, errstr);
 281		return;
 282	}
 283	WRITE_ONCE(trans->transaction->aborted, errno);
 284	/* Wake up anybody who may be waiting on this transaction */
 285	wake_up(&fs_info->transaction_wait);
 286	wake_up(&fs_info->transaction_blocked_wait);
 287	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 288}
 289/*
 290 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 291 * issues an alert, and either panics or BUGs, depending on mount options.
 292 */
 293__cold
 294void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 295		   unsigned int line, int errno, const char *fmt, ...)
 296{
 297	char *s_id = "<unknown>";
 
 298	const char *errstr;
 299	struct va_format vaf = { .fmt = fmt };
 300	va_list args;
 301
 302	if (fs_info)
 303		s_id = fs_info->sb->s_id;
 
 
 
 
 304
 305	va_start(args, fmt);
 306	vaf.va = &args;
 
 
 307
 308	errstr = btrfs_decode_error(errno);
 309	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
 310		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 311			s_id, function, line, &vaf, errno, errstr);
 312
 313	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 314		   function, line, &vaf, errno, errstr);
 315	va_end(args);
 316	/* Caller calls BUG() */
 317}
 318
 319static void btrfs_put_super(struct super_block *sb)
 320{
 321	close_ctree(btrfs_sb(sb));
 
 
 
 
 
 
 322}
 323
 324enum {
 325	Opt_acl, Opt_noacl,
 326	Opt_clear_cache,
 327	Opt_commit_interval,
 328	Opt_compress,
 329	Opt_compress_force,
 330	Opt_compress_force_type,
 331	Opt_compress_type,
 332	Opt_degraded,
 333	Opt_device,
 334	Opt_fatal_errors,
 335	Opt_flushoncommit, Opt_noflushoncommit,
 336	Opt_inode_cache, Opt_noinode_cache,
 337	Opt_max_inline,
 338	Opt_barrier, Opt_nobarrier,
 339	Opt_datacow, Opt_nodatacow,
 340	Opt_datasum, Opt_nodatasum,
 341	Opt_defrag, Opt_nodefrag,
 342	Opt_discard, Opt_nodiscard,
 343	Opt_discard_mode,
 344	Opt_norecovery,
 345	Opt_ratio,
 346	Opt_rescan_uuid_tree,
 347	Opt_skip_balance,
 348	Opt_space_cache, Opt_no_space_cache,
 349	Opt_space_cache_version,
 350	Opt_ssd, Opt_nossd,
 351	Opt_ssd_spread, Opt_nossd_spread,
 352	Opt_subvol,
 353	Opt_subvol_empty,
 354	Opt_subvolid,
 355	Opt_thread_pool,
 356	Opt_treelog, Opt_notreelog,
 357	Opt_user_subvol_rm_allowed,
 358
 359	/* Rescue options */
 360	Opt_rescue,
 361	Opt_usebackuproot,
 362	Opt_nologreplay,
 363
 364	/* Deprecated options */
 365	Opt_recovery,
 366
 367	/* Debugging options */
 368	Opt_check_integrity,
 369	Opt_check_integrity_including_extent_data,
 370	Opt_check_integrity_print_mask,
 371	Opt_enospc_debug, Opt_noenospc_debug,
 372#ifdef CONFIG_BTRFS_DEBUG
 373	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 374#endif
 375#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 376	Opt_ref_verify,
 377#endif
 378	Opt_err,
 379};
 380
 381static const match_table_t tokens = {
 382	{Opt_acl, "acl"},
 383	{Opt_noacl, "noacl"},
 384	{Opt_clear_cache, "clear_cache"},
 385	{Opt_commit_interval, "commit=%u"},
 
 
 
 
 
 
 386	{Opt_compress, "compress"},
 387	{Opt_compress_type, "compress=%s"},
 388	{Opt_compress_force, "compress-force"},
 389	{Opt_compress_force_type, "compress-force=%s"},
 390	{Opt_degraded, "degraded"},
 391	{Opt_device, "device=%s"},
 392	{Opt_fatal_errors, "fatal_errors=%s"},
 
 
 393	{Opt_flushoncommit, "flushoncommit"},
 394	{Opt_noflushoncommit, "noflushoncommit"},
 395	{Opt_inode_cache, "inode_cache"},
 396	{Opt_noinode_cache, "noinode_cache"},
 397	{Opt_max_inline, "max_inline=%s"},
 398	{Opt_barrier, "barrier"},
 399	{Opt_nobarrier, "nobarrier"},
 400	{Opt_datacow, "datacow"},
 401	{Opt_nodatacow, "nodatacow"},
 402	{Opt_datasum, "datasum"},
 403	{Opt_nodatasum, "nodatasum"},
 404	{Opt_defrag, "autodefrag"},
 405	{Opt_nodefrag, "noautodefrag"},
 406	{Opt_discard, "discard"},
 407	{Opt_discard_mode, "discard=%s"},
 408	{Opt_nodiscard, "nodiscard"},
 409	{Opt_norecovery, "norecovery"},
 410	{Opt_ratio, "metadata_ratio=%u"},
 411	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 412	{Opt_skip_balance, "skip_balance"},
 413	{Opt_space_cache, "space_cache"},
 414	{Opt_no_space_cache, "nospace_cache"},
 415	{Opt_space_cache_version, "space_cache=%s"},
 416	{Opt_ssd, "ssd"},
 417	{Opt_nossd, "nossd"},
 418	{Opt_ssd_spread, "ssd_spread"},
 419	{Opt_nossd_spread, "nossd_spread"},
 420	{Opt_subvol, "subvol=%s"},
 421	{Opt_subvol_empty, "subvol="},
 422	{Opt_subvolid, "subvolid=%s"},
 423	{Opt_thread_pool, "thread_pool=%u"},
 424	{Opt_treelog, "treelog"},
 425	{Opt_notreelog, "notreelog"},
 426	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 427
 428	/* Rescue options */
 429	{Opt_rescue, "rescue=%s"},
 430	/* Deprecated, with alias rescue=nologreplay */
 431	{Opt_nologreplay, "nologreplay"},
 432	/* Deprecated, with alias rescue=usebackuproot */
 433	{Opt_usebackuproot, "usebackuproot"},
 434
 435	/* Deprecated options */
 436	{Opt_recovery, "recovery"},
 437
 438	/* Debugging options */
 439	{Opt_check_integrity, "check_int"},
 440	{Opt_check_integrity_including_extent_data, "check_int_data"},
 441	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 442	{Opt_enospc_debug, "enospc_debug"},
 443	{Opt_noenospc_debug, "noenospc_debug"},
 444#ifdef CONFIG_BTRFS_DEBUG
 445	{Opt_fragment_data, "fragment=data"},
 446	{Opt_fragment_metadata, "fragment=metadata"},
 447	{Opt_fragment_all, "fragment=all"},
 448#endif
 449#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 450	{Opt_ref_verify, "ref_verify"},
 451#endif
 452	{Opt_err, NULL},
 453};
 454
 455static const match_table_t rescue_tokens = {
 456	{Opt_usebackuproot, "usebackuproot"},
 457	{Opt_nologreplay, "nologreplay"},
 458	{Opt_err, NULL},
 459};
 460
 461static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
 462{
 463	char *opts;
 464	char *orig;
 465	char *p;
 466	substring_t args[MAX_OPT_ARGS];
 467	int ret = 0;
 468
 469	opts = kstrdup(options, GFP_KERNEL);
 470	if (!opts)
 471		return -ENOMEM;
 472	orig = opts;
 473
 474	while ((p = strsep(&opts, ":")) != NULL) {
 475		int token;
 476
 477		if (!*p)
 478			continue;
 479		token = match_token(p, rescue_tokens, args);
 480		switch (token){
 481		case Opt_usebackuproot:
 482			btrfs_info(info,
 483				   "trying to use backup root at mount time");
 484			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 485			break;
 486		case Opt_nologreplay:
 487			btrfs_set_and_info(info, NOLOGREPLAY,
 488					   "disabling log replay at mount time");
 489			break;
 490		case Opt_err:
 491			btrfs_info(info, "unrecognized rescue option '%s'", p);
 492			ret = -EINVAL;
 493			goto out;
 494		default:
 495			break;
 496		}
 497
 498	}
 499out:
 500	kfree(orig);
 501	return ret;
 502}
 503
 504/*
 505 * Regular mount options parser.  Everything that is needed only when
 506 * reading in a new superblock is parsed here.
 507 * XXX JDM: This needs to be cleaned up for remount.
 508 */
 509int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 510			unsigned long new_flags)
 511{
 
 512	substring_t args[MAX_OPT_ARGS];
 513	char *p, *num;
 514	u64 cache_gen;
 515	int intarg;
 516	int ret = 0;
 517	char *compress_type;
 518	bool compress_force = false;
 519	enum btrfs_compression_type saved_compress_type;
 520	int saved_compress_level;
 521	bool saved_compress_force;
 522	int no_compress = 0;
 523
 524	cache_gen = btrfs_super_cache_generation(info->super_copy);
 525	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 526		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 527	else if (cache_gen)
 528		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 529
 530	/*
 531	 * Even the options are empty, we still need to do extra check
 532	 * against new flags
 533	 */
 
 534	if (!options)
 535		goto check;
 
 
 536
 537	while ((p = strsep(&options, ",")) != NULL) {
 538		int token;
 539		if (!*p)
 540			continue;
 541
 542		token = match_token(p, tokens, args);
 543		switch (token) {
 544		case Opt_degraded:
 545			btrfs_info(info, "allowing degraded mounts");
 546			btrfs_set_opt(info->mount_opt, DEGRADED);
 547			break;
 548		case Opt_subvol:
 549		case Opt_subvol_empty:
 550		case Opt_subvolid:
 
 551		case Opt_device:
 552			/*
 553			 * These are parsed by btrfs_parse_subvol_options or
 554			 * btrfs_parse_device_options and can be ignored here.
 555			 */
 556			break;
 557		case Opt_nodatasum:
 558			btrfs_set_and_info(info, NODATASUM,
 559					   "setting nodatasum");
 560			break;
 561		case Opt_datasum:
 562			if (btrfs_test_opt(info, NODATASUM)) {
 563				if (btrfs_test_opt(info, NODATACOW))
 564					btrfs_info(info,
 565						   "setting datasum, datacow enabled");
 566				else
 567					btrfs_info(info, "setting datasum");
 568			}
 569			btrfs_clear_opt(info->mount_opt, NODATACOW);
 570			btrfs_clear_opt(info->mount_opt, NODATASUM);
 571			break;
 572		case Opt_nodatacow:
 573			if (!btrfs_test_opt(info, NODATACOW)) {
 574				if (!btrfs_test_opt(info, COMPRESS) ||
 575				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 576					btrfs_info(info,
 577						   "setting nodatacow, compression disabled");
 578				} else {
 579					btrfs_info(info, "setting nodatacow");
 580				}
 581			}
 582			btrfs_clear_opt(info->mount_opt, COMPRESS);
 583			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 584			btrfs_set_opt(info->mount_opt, NODATACOW);
 585			btrfs_set_opt(info->mount_opt, NODATASUM);
 586			break;
 587		case Opt_datacow:
 588			btrfs_clear_and_info(info, NODATACOW,
 589					     "setting datacow");
 590			break;
 591		case Opt_compress_force:
 592		case Opt_compress_force_type:
 593			compress_force = true;
 594			fallthrough;
 595		case Opt_compress:
 596		case Opt_compress_type:
 597			saved_compress_type = btrfs_test_opt(info,
 598							     COMPRESS) ?
 599				info->compress_type : BTRFS_COMPRESS_NONE;
 600			saved_compress_force =
 601				btrfs_test_opt(info, FORCE_COMPRESS);
 602			saved_compress_level = info->compress_level;
 603			if (token == Opt_compress ||
 604			    token == Opt_compress_force ||
 605			    strncmp(args[0].from, "zlib", 4) == 0) {
 606				compress_type = "zlib";
 607
 608				info->compress_type = BTRFS_COMPRESS_ZLIB;
 609				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 610				/*
 611				 * args[0] contains uninitialized data since
 612				 * for these tokens we don't expect any
 613				 * parameter.
 614				 */
 615				if (token != Opt_compress &&
 616				    token != Opt_compress_force)
 617					info->compress_level =
 618					  btrfs_compress_str2level(
 619							BTRFS_COMPRESS_ZLIB,
 620							args[0].from + 4);
 621				btrfs_set_opt(info->mount_opt, COMPRESS);
 622				btrfs_clear_opt(info->mount_opt, NODATACOW);
 623				btrfs_clear_opt(info->mount_opt, NODATASUM);
 624				no_compress = 0;
 625			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 626				compress_type = "lzo";
 627				info->compress_type = BTRFS_COMPRESS_LZO;
 628				info->compress_level = 0;
 629				btrfs_set_opt(info->mount_opt, COMPRESS);
 630				btrfs_clear_opt(info->mount_opt, NODATACOW);
 631				btrfs_clear_opt(info->mount_opt, NODATASUM);
 632				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 633				no_compress = 0;
 634			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 635				compress_type = "zstd";
 636				info->compress_type = BTRFS_COMPRESS_ZSTD;
 637				info->compress_level =
 638					btrfs_compress_str2level(
 639							 BTRFS_COMPRESS_ZSTD,
 640							 args[0].from + 4);
 641				btrfs_set_opt(info->mount_opt, COMPRESS);
 642				btrfs_clear_opt(info->mount_opt, NODATACOW);
 643				btrfs_clear_opt(info->mount_opt, NODATASUM);
 644				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 645				no_compress = 0;
 646			} else if (strncmp(args[0].from, "no", 2) == 0) {
 647				compress_type = "no";
 648				info->compress_level = 0;
 649				info->compress_type = 0;
 650				btrfs_clear_opt(info->mount_opt, COMPRESS);
 651				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 652				compress_force = false;
 653				no_compress++;
 654			} else {
 655				ret = -EINVAL;
 656				goto out;
 657			}
 658
 
 659			if (compress_force) {
 660				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 661			} else {
 662				/*
 663				 * If we remount from compress-force=xxx to
 664				 * compress=xxx, we need clear FORCE_COMPRESS
 665				 * flag, otherwise, there is no way for users
 666				 * to disable forcible compression separately.
 667				 */
 668				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 669			}
 670			if (no_compress == 1) {
 671				btrfs_info(info, "use no compression");
 672			} else if ((info->compress_type != saved_compress_type) ||
 673				   (compress_force != saved_compress_force) ||
 674				   (info->compress_level != saved_compress_level)) {
 675				btrfs_info(info, "%s %s compression, level %d",
 676					   (compress_force) ? "force" : "use",
 677					   compress_type, info->compress_level);
 678			}
 679			compress_force = false;
 680			break;
 681		case Opt_ssd:
 682			btrfs_set_and_info(info, SSD,
 683					   "enabling ssd optimizations");
 684			btrfs_clear_opt(info->mount_opt, NOSSD);
 685			break;
 686		case Opt_ssd_spread:
 687			btrfs_set_and_info(info, SSD,
 688					   "enabling ssd optimizations");
 689			btrfs_set_and_info(info, SSD_SPREAD,
 690					   "using spread ssd allocation scheme");
 691			btrfs_clear_opt(info->mount_opt, NOSSD);
 692			break;
 693		case Opt_nossd:
 
 
 694			btrfs_set_opt(info->mount_opt, NOSSD);
 695			btrfs_clear_and_info(info, SSD,
 696					     "not using ssd optimizations");
 697			fallthrough;
 698		case Opt_nossd_spread:
 699			btrfs_clear_and_info(info, SSD_SPREAD,
 700					     "not using spread ssd allocation scheme");
 701			break;
 702		case Opt_barrier:
 703			btrfs_clear_and_info(info, NOBARRIER,
 704					     "turning on barriers");
 705			break;
 706		case Opt_nobarrier:
 707			btrfs_set_and_info(info, NOBARRIER,
 708					   "turning off barriers");
 709			break;
 710		case Opt_thread_pool:
 711			ret = match_int(&args[0], &intarg);
 712			if (ret) {
 713				goto out;
 714			} else if (intarg == 0) {
 715				ret = -EINVAL;
 716				goto out;
 717			}
 718			info->thread_pool_size = intarg;
 719			break;
 720		case Opt_max_inline:
 721			num = match_strdup(&args[0]);
 722			if (num) {
 723				info->max_inline = memparse(num, NULL);
 724				kfree(num);
 725
 726				if (info->max_inline) {
 727					info->max_inline = min_t(u64,
 728						info->max_inline,
 729						info->sectorsize);
 730				}
 731				btrfs_info(info, "max_inline at %llu",
 732					   info->max_inline);
 733			} else {
 734				ret = -ENOMEM;
 735				goto out;
 736			}
 737			break;
 738		case Opt_acl:
 739#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 740			info->sb->s_flags |= SB_POSIXACL;
 
 
 
 
 
 
 741			break;
 742#else
 743			btrfs_err(info, "support for ACL not compiled in!");
 744			ret = -EINVAL;
 745			goto out;
 746#endif
 747		case Opt_noacl:
 748			info->sb->s_flags &= ~SB_POSIXACL;
 749			break;
 750		case Opt_notreelog:
 751			btrfs_set_and_info(info, NOTREELOG,
 752					   "disabling tree log");
 753			break;
 754		case Opt_treelog:
 755			btrfs_clear_and_info(info, NOTREELOG,
 756					     "enabling tree log");
 757			break;
 758		case Opt_norecovery:
 759		case Opt_nologreplay:
 760			btrfs_warn(info,
 761		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 762			btrfs_set_and_info(info, NOLOGREPLAY,
 763					   "disabling log replay at mount time");
 764			break;
 765		case Opt_flushoncommit:
 766			btrfs_set_and_info(info, FLUSHONCOMMIT,
 767					   "turning on flush-on-commit");
 768			break;
 769		case Opt_noflushoncommit:
 770			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 771					     "turning off flush-on-commit");
 772			break;
 773		case Opt_ratio:
 774			ret = match_int(&args[0], &intarg);
 775			if (ret)
 776				goto out;
 777			info->metadata_ratio = intarg;
 778			btrfs_info(info, "metadata ratio %u",
 779				   info->metadata_ratio);
 
 780			break;
 781		case Opt_discard:
 782		case Opt_discard_mode:
 783			if (token == Opt_discard ||
 784			    strcmp(args[0].from, "sync") == 0) {
 785				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
 786				btrfs_set_and_info(info, DISCARD_SYNC,
 787						   "turning on sync discard");
 788			} else if (strcmp(args[0].from, "async") == 0) {
 789				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
 790				btrfs_set_and_info(info, DISCARD_ASYNC,
 791						   "turning on async discard");
 792			} else {
 793				ret = -EINVAL;
 794				goto out;
 795			}
 796			break;
 797		case Opt_nodiscard:
 798			btrfs_clear_and_info(info, DISCARD_SYNC,
 799					     "turning off discard");
 800			btrfs_clear_and_info(info, DISCARD_ASYNC,
 801					     "turning off async discard");
 802			break;
 803		case Opt_space_cache:
 804		case Opt_space_cache_version:
 805			if (token == Opt_space_cache ||
 806			    strcmp(args[0].from, "v1") == 0) {
 807				btrfs_clear_opt(info->mount_opt,
 808						FREE_SPACE_TREE);
 809				btrfs_set_and_info(info, SPACE_CACHE,
 810					   "enabling disk space caching");
 811			} else if (strcmp(args[0].from, "v2") == 0) {
 812				btrfs_clear_opt(info->mount_opt,
 813						SPACE_CACHE);
 814				btrfs_set_and_info(info, FREE_SPACE_TREE,
 815						   "enabling free space tree");
 816			} else {
 817				ret = -EINVAL;
 818				goto out;
 819			}
 820			break;
 821		case Opt_rescan_uuid_tree:
 822			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 823			break;
 824		case Opt_no_space_cache:
 825			if (btrfs_test_opt(info, SPACE_CACHE)) {
 826				btrfs_clear_and_info(info, SPACE_CACHE,
 827					     "disabling disk space caching");
 828			}
 829			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 830				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 831					     "disabling free space tree");
 832			}
 833			break;
 834		case Opt_inode_cache:
 835			btrfs_warn(info,
 836	"the 'inode_cache' option is deprecated and will have no effect from 5.11");
 837			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 838					   "enabling inode map caching");
 839			break;
 840		case Opt_noinode_cache:
 841			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 842					     "disabling inode map caching");
 843			break;
 844		case Opt_clear_cache:
 845			btrfs_set_and_info(info, CLEAR_CACHE,
 846					   "force clearing of disk cache");
 847			break;
 848		case Opt_user_subvol_rm_allowed:
 849			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 850			break;
 851		case Opt_enospc_debug:
 852			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 853			break;
 854		case Opt_noenospc_debug:
 855			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 856			break;
 857		case Opt_defrag:
 858			btrfs_set_and_info(info, AUTO_DEFRAG,
 859					   "enabling auto defrag");
 860			break;
 861		case Opt_nodefrag:
 862			btrfs_clear_and_info(info, AUTO_DEFRAG,
 863					     "disabling auto defrag");
 864			break;
 865		case Opt_recovery:
 866		case Opt_usebackuproot:
 867			btrfs_warn(info,
 868			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
 869				   token == Opt_recovery ? "recovery" :
 870				   "usebackuproot");
 871			btrfs_info(info,
 872				   "trying to use backup root at mount time");
 873			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 874			break;
 875		case Opt_skip_balance:
 876			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 877			break;
 878#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 879		case Opt_check_integrity_including_extent_data:
 880			btrfs_info(info,
 881				   "enabling check integrity including extent data");
 882			btrfs_set_opt(info->mount_opt,
 883				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 884			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 885			break;
 886		case Opt_check_integrity:
 887			btrfs_info(info, "enabling check integrity");
 888			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 889			break;
 890		case Opt_check_integrity_print_mask:
 891			ret = match_int(&args[0], &intarg);
 892			if (ret)
 893				goto out;
 894			info->check_integrity_print_mask = intarg;
 895			btrfs_info(info, "check_integrity_print_mask 0x%x",
 896				   info->check_integrity_print_mask);
 897			break;
 898#else
 899		case Opt_check_integrity_including_extent_data:
 900		case Opt_check_integrity:
 901		case Opt_check_integrity_print_mask:
 902			btrfs_err(info,
 903				  "support for check_integrity* not compiled in!");
 904			ret = -EINVAL;
 905			goto out;
 906#endif
 907		case Opt_fatal_errors:
 908			if (strcmp(args[0].from, "panic") == 0)
 909				btrfs_set_opt(info->mount_opt,
 910					      PANIC_ON_FATAL_ERROR);
 911			else if (strcmp(args[0].from, "bug") == 0)
 912				btrfs_clear_opt(info->mount_opt,
 913					      PANIC_ON_FATAL_ERROR);
 914			else {
 915				ret = -EINVAL;
 916				goto out;
 917			}
 918			break;
 919		case Opt_commit_interval:
 920			intarg = 0;
 921			ret = match_int(&args[0], &intarg);
 922			if (ret)
 923				goto out;
 924			if (intarg == 0) {
 925				btrfs_info(info,
 926					   "using default commit interval %us",
 927					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 928				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 929			} else if (intarg > 300) {
 930				btrfs_warn(info, "excessive commit interval %d",
 931					   intarg);
 932			}
 933			info->commit_interval = intarg;
 934			break;
 935		case Opt_rescue:
 936			ret = parse_rescue_options(info, args[0].from);
 937			if (ret < 0)
 938				goto out;
 939			break;
 940#ifdef CONFIG_BTRFS_DEBUG
 941		case Opt_fragment_all:
 942			btrfs_info(info, "fragmenting all space");
 943			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 944			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 945			break;
 946		case Opt_fragment_metadata:
 947			btrfs_info(info, "fragmenting metadata");
 948			btrfs_set_opt(info->mount_opt,
 949				      FRAGMENT_METADATA);
 950			break;
 951		case Opt_fragment_data:
 952			btrfs_info(info, "fragmenting data");
 953			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 954			break;
 955#endif
 956#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 957		case Opt_ref_verify:
 958			btrfs_info(info, "doing ref verification");
 959			btrfs_set_opt(info->mount_opt, REF_VERIFY);
 960			break;
 961#endif
 962		case Opt_err:
 963			btrfs_err(info, "unrecognized mount option '%s'", p);
 
 964			ret = -EINVAL;
 965			goto out;
 966		default:
 967			break;
 968		}
 969	}
 970check:
 971	/*
 972	 * Extra check for current option against current flag
 973	 */
 974	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
 975		btrfs_err(info,
 976			  "nologreplay must be used with ro mount option");
 977		ret = -EINVAL;
 978	}
 979out:
 980	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 981	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 982	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 983		btrfs_err(info, "cannot disable free space tree");
 984		ret = -EINVAL;
 985
 986	}
 987	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
 988		btrfs_info(info, "disk space caching is enabled");
 989	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
 990		btrfs_info(info, "using free space tree");
 991	return ret;
 992}
 993
 994/*
 995 * Parse mount options that are required early in the mount process.
 996 *
 997 * All other options will be parsed on much later in the mount process and
 998 * only when we need to allocate a new super block.
 999 */
1000static int btrfs_parse_device_options(const char *options, fmode_t flags,
1001				      void *holder)
1002{
1003	substring_t args[MAX_OPT_ARGS];
1004	char *device_name, *opts, *orig, *p;
1005	struct btrfs_device *device = NULL;
1006	int error = 0;
1007
1008	lockdep_assert_held(&uuid_mutex);
1009
1010	if (!options)
1011		return 0;
1012
1013	/*
1014	 * strsep changes the string, duplicate it because btrfs_parse_options
1015	 * gets called later
1016	 */
1017	opts = kstrdup(options, GFP_KERNEL);
1018	if (!opts)
1019		return -ENOMEM;
1020	orig = opts;
1021
1022	while ((p = strsep(&opts, ",")) != NULL) {
1023		int token;
1024
1025		if (!*p)
1026			continue;
1027
1028		token = match_token(p, tokens, args);
1029		if (token == Opt_device) {
1030			device_name = match_strdup(&args[0]);
1031			if (!device_name) {
1032				error = -ENOMEM;
1033				goto out;
1034			}
1035			device = btrfs_scan_one_device(device_name, flags,
1036					holder);
1037			kfree(device_name);
1038			if (IS_ERR(device)) {
1039				error = PTR_ERR(device);
1040				goto out;
1041			}
1042		}
1043	}
1044
1045out:
1046	kfree(orig);
1047	return error;
1048}
1049
1050/*
1051 * Parse mount options that are related to subvolume id
1052 *
1053 * The value is later passed to mount_subvol()
1054 */
1055static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1056		u64 *subvol_objectid)
1057{
1058	substring_t args[MAX_OPT_ARGS];
1059	char *opts, *orig, *p;
1060	int error = 0;
1061	u64 subvolid;
1062
1063	if (!options)
1064		return 0;
1065
1066	/*
1067	 * strsep changes the string, duplicate it because
1068	 * btrfs_parse_device_options gets called later
1069	 */
1070	opts = kstrdup(options, GFP_KERNEL);
1071	if (!opts)
1072		return -ENOMEM;
1073	orig = opts;
1074
1075	while ((p = strsep(&opts, ",")) != NULL) {
1076		int token;
1077		if (!*p)
1078			continue;
1079
1080		token = match_token(p, tokens, args);
1081		switch (token) {
1082		case Opt_subvol:
1083			kfree(*subvol_name);
1084			*subvol_name = match_strdup(&args[0]);
1085			if (!*subvol_name) {
1086				error = -ENOMEM;
1087				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088			}
1089			break;
1090		case Opt_subvolid:
1091			error = match_u64(&args[0], &subvolid);
 
1092			if (error)
1093				goto out;
1094
1095			/* we want the original fs_tree */
1096			if (subvolid == 0)
1097				subvolid = BTRFS_FS_TREE_OBJECTID;
1098
1099			*subvol_objectid = subvolid;
1100			break;
1101		default:
1102			break;
1103		}
1104	}
1105
1106out:
1107	kfree(orig);
1108	return error;
1109}
1110
1111char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1112					  u64 subvol_objectid)
1113{
1114	struct btrfs_root *root = fs_info->tree_root;
1115	struct btrfs_root *fs_root = NULL;
1116	struct btrfs_root_ref *root_ref;
1117	struct btrfs_inode_ref *inode_ref;
1118	struct btrfs_key key;
1119	struct btrfs_path *path = NULL;
1120	char *name = NULL, *ptr;
1121	u64 dirid;
1122	int len;
1123	int ret;
1124
1125	path = btrfs_alloc_path();
1126	if (!path) {
1127		ret = -ENOMEM;
1128		goto err;
1129	}
1130	path->leave_spinning = 1;
1131
1132	name = kmalloc(PATH_MAX, GFP_KERNEL);
1133	if (!name) {
1134		ret = -ENOMEM;
1135		goto err;
1136	}
1137	ptr = name + PATH_MAX - 1;
1138	ptr[0] = '\0';
1139
1140	/*
1141	 * Walk up the subvolume trees in the tree of tree roots by root
1142	 * backrefs until we hit the top-level subvolume.
 
1143	 */
1144	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1145		key.objectid = subvol_objectid;
1146		key.type = BTRFS_ROOT_BACKREF_KEY;
1147		key.offset = (u64)-1;
1148
1149		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1150		if (ret < 0) {
1151			goto err;
1152		} else if (ret > 0) {
1153			ret = btrfs_previous_item(root, path, subvol_objectid,
1154						  BTRFS_ROOT_BACKREF_KEY);
1155			if (ret < 0) {
1156				goto err;
1157			} else if (ret > 0) {
1158				ret = -ENOENT;
1159				goto err;
1160			}
1161		}
1162
1163		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1164		subvol_objectid = key.offset;
1165
1166		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1167					  struct btrfs_root_ref);
1168		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1169		ptr -= len + 1;
1170		if (ptr < name) {
1171			ret = -ENAMETOOLONG;
1172			goto err;
1173		}
1174		read_extent_buffer(path->nodes[0], ptr + 1,
1175				   (unsigned long)(root_ref + 1), len);
1176		ptr[0] = '/';
1177		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1178		btrfs_release_path(path);
1179
1180		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1181		if (IS_ERR(fs_root)) {
1182			ret = PTR_ERR(fs_root);
1183			fs_root = NULL;
1184			goto err;
1185		}
1186
1187		/*
1188		 * Walk up the filesystem tree by inode refs until we hit the
1189		 * root directory.
1190		 */
1191		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1192			key.objectid = dirid;
1193			key.type = BTRFS_INODE_REF_KEY;
1194			key.offset = (u64)-1;
1195
1196			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1197			if (ret < 0) {
1198				goto err;
1199			} else if (ret > 0) {
1200				ret = btrfs_previous_item(fs_root, path, dirid,
1201							  BTRFS_INODE_REF_KEY);
1202				if (ret < 0) {
1203					goto err;
1204				} else if (ret > 0) {
1205					ret = -ENOENT;
1206					goto err;
1207				}
1208			}
1209
1210			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1211			dirid = key.offset;
1212
1213			inode_ref = btrfs_item_ptr(path->nodes[0],
1214						   path->slots[0],
1215						   struct btrfs_inode_ref);
1216			len = btrfs_inode_ref_name_len(path->nodes[0],
1217						       inode_ref);
1218			ptr -= len + 1;
1219			if (ptr < name) {
1220				ret = -ENAMETOOLONG;
1221				goto err;
1222			}
1223			read_extent_buffer(path->nodes[0], ptr + 1,
1224					   (unsigned long)(inode_ref + 1), len);
1225			ptr[0] = '/';
1226			btrfs_release_path(path);
1227		}
1228		btrfs_put_root(fs_root);
1229		fs_root = NULL;
1230	}
1231
1232	btrfs_free_path(path);
1233	if (ptr == name + PATH_MAX - 1) {
1234		name[0] = '/';
1235		name[1] = '\0';
1236	} else {
1237		memmove(name, ptr, name + PATH_MAX - ptr);
1238	}
1239	return name;
1240
1241err:
1242	btrfs_put_root(fs_root);
1243	btrfs_free_path(path);
1244	kfree(name);
1245	return ERR_PTR(ret);
1246}
1247
1248static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 
1249{
1250	struct btrfs_root *root = fs_info->tree_root;
 
1251	struct btrfs_dir_item *di;
1252	struct btrfs_path *path;
1253	struct btrfs_key location;
 
 
1254	u64 dir_id;
 
 
 
 
 
 
 
 
 
 
 
 
1255
1256	path = btrfs_alloc_path();
1257	if (!path)
1258		return -ENOMEM;
1259	path->leave_spinning = 1;
1260
1261	/*
1262	 * Find the "default" dir item which points to the root item that we
1263	 * will mount by default if we haven't been given a specific subvolume
1264	 * to mount.
1265	 */
1266	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1267	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1268	if (IS_ERR(di)) {
1269		btrfs_free_path(path);
1270		return PTR_ERR(di);
1271	}
1272	if (!di) {
1273		/*
1274		 * Ok the default dir item isn't there.  This is weird since
1275		 * it's always been there, but don't freak out, just try and
1276		 * mount the top-level subvolume.
1277		 */
1278		btrfs_free_path(path);
1279		*objectid = BTRFS_FS_TREE_OBJECTID;
1280		return 0;
 
1281	}
1282
1283	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1284	btrfs_free_path(path);
1285	*objectid = location.objectid;
1286	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287}
1288
1289static int btrfs_fill_super(struct super_block *sb,
1290			    struct btrfs_fs_devices *fs_devices,
1291			    void *data)
1292{
1293	struct inode *inode;
1294	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 
1295	int err;
1296
1297	sb->s_maxbytes = MAX_LFS_FILESIZE;
1298	sb->s_magic = BTRFS_SUPER_MAGIC;
1299	sb->s_op = &btrfs_super_ops;
1300	sb->s_d_op = &btrfs_dentry_operations;
1301	sb->s_export_op = &btrfs_export_ops;
1302	sb->s_xattr = btrfs_xattr_handlers;
1303	sb->s_time_gran = 1;
1304#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1305	sb->s_flags |= SB_POSIXACL;
1306#endif
1307	sb->s_flags |= SB_I_VERSION;
1308	sb->s_iflags |= SB_I_CGROUPWB;
1309
1310	err = super_setup_bdi(sb);
1311	if (err) {
1312		btrfs_err(fs_info, "super_setup_bdi failed");
1313		return err;
1314	}
1315
1316	err = open_ctree(sb, fs_devices, (char *)data);
1317	if (err) {
1318		btrfs_err(fs_info, "open_ctree failed");
1319		return err;
1320	}
1321
1322	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
1323	if (IS_ERR(inode)) {
1324		err = PTR_ERR(inode);
1325		goto fail_close;
1326	}
1327
1328	sb->s_root = d_make_root(inode);
1329	if (!sb->s_root) {
 
1330		err = -ENOMEM;
1331		goto fail_close;
1332	}
1333
 
 
 
1334	cleancache_init_fs(sb);
1335	sb->s_flags |= SB_ACTIVE;
1336	return 0;
1337
1338fail_close:
1339	close_ctree(fs_info);
1340	return err;
1341}
1342
1343int btrfs_sync_fs(struct super_block *sb, int wait)
1344{
1345	struct btrfs_trans_handle *trans;
1346	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1347	struct btrfs_root *root = fs_info->tree_root;
1348
1349	trace_btrfs_sync_fs(fs_info, wait);
1350
1351	if (!wait) {
1352		filemap_flush(fs_info->btree_inode->i_mapping);
1353		return 0;
1354	}
1355
1356	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 
1357
1358	trans = btrfs_attach_transaction_barrier(root);
1359	if (IS_ERR(trans)) {
1360		/* no transaction, don't bother */
1361		if (PTR_ERR(trans) == -ENOENT) {
1362			/*
1363			 * Exit unless we have some pending changes
1364			 * that need to go through commit
1365			 */
1366			if (fs_info->pending_changes == 0)
1367				return 0;
1368			/*
1369			 * A non-blocking test if the fs is frozen. We must not
1370			 * start a new transaction here otherwise a deadlock
1371			 * happens. The pending operations are delayed to the
1372			 * next commit after thawing.
1373			 */
1374			if (sb_start_write_trylock(sb))
1375				sb_end_write(sb);
1376			else
1377				return 0;
1378			trans = btrfs_start_transaction(root, 0);
1379		}
1380		if (IS_ERR(trans))
1381			return PTR_ERR(trans);
1382	}
1383	return btrfs_commit_transaction(trans);
1384}
1385
1386static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1387{
1388	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1389	const char *compress_type;
1390	const char *subvol_name;
1391
1392	if (btrfs_test_opt(info, DEGRADED))
1393		seq_puts(seq, ",degraded");
1394	if (btrfs_test_opt(info, NODATASUM))
1395		seq_puts(seq, ",nodatasum");
1396	if (btrfs_test_opt(info, NODATACOW))
1397		seq_puts(seq, ",nodatacow");
1398	if (btrfs_test_opt(info, NOBARRIER))
1399		seq_puts(seq, ",nobarrier");
1400	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1401		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
 
 
 
1402	if (info->thread_pool_size !=  min_t(unsigned long,
1403					     num_online_cpus() + 2, 8))
1404		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1405	if (btrfs_test_opt(info, COMPRESS)) {
1406		compress_type = btrfs_compress_type2str(info->compress_type);
1407		if (btrfs_test_opt(info, FORCE_COMPRESS))
 
 
 
1408			seq_printf(seq, ",compress-force=%s", compress_type);
1409		else
1410			seq_printf(seq, ",compress=%s", compress_type);
1411		if (info->compress_level)
1412			seq_printf(seq, ":%d", info->compress_level);
1413	}
1414	if (btrfs_test_opt(info, NOSSD))
1415		seq_puts(seq, ",nossd");
1416	if (btrfs_test_opt(info, SSD_SPREAD))
1417		seq_puts(seq, ",ssd_spread");
1418	else if (btrfs_test_opt(info, SSD))
1419		seq_puts(seq, ",ssd");
1420	if (btrfs_test_opt(info, NOTREELOG))
1421		seq_puts(seq, ",notreelog");
1422	if (btrfs_test_opt(info, NOLOGREPLAY))
1423		seq_puts(seq, ",rescue=nologreplay");
1424	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1425		seq_puts(seq, ",flushoncommit");
1426	if (btrfs_test_opt(info, DISCARD_SYNC))
1427		seq_puts(seq, ",discard");
1428	if (btrfs_test_opt(info, DISCARD_ASYNC))
1429		seq_puts(seq, ",discard=async");
1430	if (!(info->sb->s_flags & SB_POSIXACL))
1431		seq_puts(seq, ",noacl");
1432	if (btrfs_test_opt(info, SPACE_CACHE))
1433		seq_puts(seq, ",space_cache");
1434	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1435		seq_puts(seq, ",space_cache=v2");
1436	else
1437		seq_puts(seq, ",nospace_cache");
1438	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1439		seq_puts(seq, ",rescan_uuid_tree");
1440	if (btrfs_test_opt(info, CLEAR_CACHE))
1441		seq_puts(seq, ",clear_cache");
1442	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1443		seq_puts(seq, ",user_subvol_rm_allowed");
1444	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1445		seq_puts(seq, ",enospc_debug");
1446	if (btrfs_test_opt(info, AUTO_DEFRAG))
1447		seq_puts(seq, ",autodefrag");
1448	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1449		seq_puts(seq, ",inode_cache");
1450	if (btrfs_test_opt(info, SKIP_BALANCE))
1451		seq_puts(seq, ",skip_balance");
1452#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1453	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1454		seq_puts(seq, ",check_int_data");
1455	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1456		seq_puts(seq, ",check_int");
1457	if (info->check_integrity_print_mask)
1458		seq_printf(seq, ",check_int_print_mask=%d",
1459				info->check_integrity_print_mask);
1460#endif
1461	if (info->metadata_ratio)
1462		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1463	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1464		seq_puts(seq, ",fatal_errors=panic");
1465	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1466		seq_printf(seq, ",commit=%u", info->commit_interval);
1467#ifdef CONFIG_BTRFS_DEBUG
1468	if (btrfs_test_opt(info, FRAGMENT_DATA))
1469		seq_puts(seq, ",fragment=data");
1470	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1471		seq_puts(seq, ",fragment=metadata");
1472#endif
1473	if (btrfs_test_opt(info, REF_VERIFY))
1474		seq_puts(seq, ",ref_verify");
1475	seq_printf(seq, ",subvolid=%llu",
1476		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1477	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1478			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1479	if (!IS_ERR(subvol_name)) {
1480		seq_puts(seq, ",subvol=");
1481		seq_escape(seq, subvol_name, " \t\n\\");
1482		kfree(subvol_name);
1483	}
1484	return 0;
1485}
1486
1487static int btrfs_test_super(struct super_block *s, void *data)
1488{
1489	struct btrfs_fs_info *p = data;
1490	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1491
1492	return fs_info->fs_devices == p->fs_devices;
 
 
 
 
 
 
1493}
1494
1495static int btrfs_set_super(struct super_block *s, void *data)
1496{
1497	int err = set_anon_super(s, data);
1498	if (!err)
1499		s->s_fs_info = data;
1500	return err;
1501}
1502
1503/*
1504 * subvolumes are identified by ino 256
1505 */
1506static inline int is_subvolume_inode(struct inode *inode)
1507{
1508	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1509		return 1;
1510	return 0;
1511}
1512
1513static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1514				   struct vfsmount *mnt)
1515{
1516	struct dentry *root;
1517	int ret;
1518
1519	if (!subvol_name) {
1520		if (!subvol_objectid) {
1521			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1522							  &subvol_objectid);
1523			if (ret) {
1524				root = ERR_PTR(ret);
1525				goto out;
1526			}
1527		}
1528		subvol_name = btrfs_get_subvol_name_from_objectid(
1529					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1530		if (IS_ERR(subvol_name)) {
1531			root = ERR_CAST(subvol_name);
1532			subvol_name = NULL;
1533			goto out;
1534		}
1535
1536	}
1537
1538	root = mount_subtree(mnt, subvol_name);
1539	/* mount_subtree() drops our reference on the vfsmount. */
1540	mnt = NULL;
1541
1542	if (!IS_ERR(root)) {
1543		struct super_block *s = root->d_sb;
1544		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1545		struct inode *root_inode = d_inode(root);
1546		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1547
1548		ret = 0;
1549		if (!is_subvolume_inode(root_inode)) {
1550			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1551			       subvol_name);
1552			ret = -EINVAL;
1553		}
1554		if (subvol_objectid && root_objectid != subvol_objectid) {
1555			/*
1556			 * This will also catch a race condition where a
1557			 * subvolume which was passed by ID is renamed and
1558			 * another subvolume is renamed over the old location.
1559			 */
1560			btrfs_err(fs_info,
1561				  "subvol '%s' does not match subvolid %llu",
1562				  subvol_name, subvol_objectid);
1563			ret = -EINVAL;
1564		}
1565		if (ret) {
1566			dput(root);
1567			root = ERR_PTR(ret);
1568			deactivate_locked_super(s);
1569		}
1570	}
1571
1572out:
1573	mntput(mnt);
1574	kfree(subvol_name);
1575	return root;
1576}
1577
1578/*
1579 * Find a superblock for the given device / mount point.
1580 *
1581 * Note: This is based on mount_bdev from fs/super.c with a few additions
1582 *       for multiple device setup.  Make sure to keep it in sync.
1583 */
1584static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1585		int flags, const char *device_name, void *data)
1586{
1587	struct block_device *bdev = NULL;
1588	struct super_block *s;
1589	struct btrfs_device *device = NULL;
1590	struct btrfs_fs_devices *fs_devices = NULL;
 
1591	struct btrfs_fs_info *fs_info = NULL;
1592	void *new_sec_opts = NULL;
1593	fmode_t mode = FMODE_READ;
 
 
 
1594	int error = 0;
1595
1596	if (!(flags & SB_RDONLY))
1597		mode |= FMODE_WRITE;
1598
1599	if (data) {
1600		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1601		if (error)
1602			return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
1603	}
1604
1605	/*
1606	 * Setup a dummy root and fs_info for test/set super.  This is because
1607	 * we don't actually fill this stuff out until open_ctree, but we need
1608	 * then open_ctree will properly initialize the file system specific
1609	 * settings later.  btrfs_init_fs_info initializes the static elements
1610	 * of the fs_info (locks and such) to make cleanup easier if we find a
1611	 * superblock with our given fs_devices later on at sget() time.
1612	 */
1613	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1614	if (!fs_info) {
 
1615		error = -ENOMEM;
1616		goto error_sec_opts;
1617	}
1618	btrfs_init_fs_info(fs_info);
1619
1620	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1621	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1622	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1623		error = -ENOMEM;
1624		goto error_fs_info;
1625	}
1626
1627	mutex_lock(&uuid_mutex);
1628	error = btrfs_parse_device_options(data, mode, fs_type);
1629	if (error) {
1630		mutex_unlock(&uuid_mutex);
1631		goto error_fs_info;
1632	}
1633
1634	device = btrfs_scan_one_device(device_name, mode, fs_type);
1635	if (IS_ERR(device)) {
1636		mutex_unlock(&uuid_mutex);
1637		error = PTR_ERR(device);
1638		goto error_fs_info;
1639	}
1640
1641	fs_devices = device->fs_devices;
1642	fs_info->fs_devices = fs_devices;
1643
1644	error = btrfs_open_devices(fs_devices, mode, fs_type);
1645	mutex_unlock(&uuid_mutex);
1646	if (error)
1647		goto error_fs_info;
1648
1649	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1650		error = -EACCES;
1651		goto error_close_devices;
1652	}
1653
1654	bdev = fs_devices->latest_bdev;
1655	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1656		 fs_info);
1657	if (IS_ERR(s)) {
1658		error = PTR_ERR(s);
1659		goto error_close_devices;
1660	}
1661
1662	if (s->s_root) {
 
 
 
 
 
 
1663		btrfs_close_devices(fs_devices);
1664		btrfs_free_fs_info(fs_info);
1665		if ((flags ^ s->s_flags) & SB_RDONLY)
1666			error = -EBUSY;
1667	} else {
1668		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1669		btrfs_sb(s)->bdev_holder = fs_type;
1670		if (!strstr(crc32c_impl(), "generic"))
1671			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1672		error = btrfs_fill_super(s, fs_devices, data);
1673	}
1674	if (!error)
1675		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1676	security_free_mnt_opts(&new_sec_opts);
1677	if (error) {
1678		deactivate_locked_super(s);
1679		return ERR_PTR(error);
1680	}
1681
1682	return dget(s->s_root);
 
 
 
 
 
 
 
1683
1684error_close_devices:
1685	btrfs_close_devices(fs_devices);
1686error_fs_info:
1687	btrfs_free_fs_info(fs_info);
1688error_sec_opts:
1689	security_free_mnt_opts(&new_sec_opts);
1690	return ERR_PTR(error);
1691}
1692
1693/*
1694 * Mount function which is called by VFS layer.
1695 *
1696 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1697 * which needs vfsmount* of device's root (/).  This means device's root has to
1698 * be mounted internally in any case.
1699 *
1700 * Operation flow:
1701 *   1. Parse subvol id related options for later use in mount_subvol().
1702 *
1703 *   2. Mount device's root (/) by calling vfs_kern_mount().
1704 *
1705 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1706 *      first place. In order to avoid calling btrfs_mount() again, we use
1707 *      different file_system_type which is not registered to VFS by
1708 *      register_filesystem() (btrfs_root_fs_type). As a result,
1709 *      btrfs_mount_root() is called. The return value will be used by
1710 *      mount_subtree() in mount_subvol().
1711 *
1712 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1713 *      "btrfs subvolume set-default", mount_subvol() is called always.
1714 */
1715static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1716		const char *device_name, void *data)
1717{
1718	struct vfsmount *mnt_root;
1719	struct dentry *root;
1720	char *subvol_name = NULL;
1721	u64 subvol_objectid = 0;
1722	int error = 0;
1723
1724	error = btrfs_parse_subvol_options(data, &subvol_name,
1725					&subvol_objectid);
1726	if (error) {
1727		kfree(subvol_name);
1728		return ERR_PTR(error);
1729	}
1730
1731	/* mount device's root (/) */
1732	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1733	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1734		if (flags & SB_RDONLY) {
1735			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1736				flags & ~SB_RDONLY, device_name, data);
1737		} else {
1738			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1739				flags | SB_RDONLY, device_name, data);
1740			if (IS_ERR(mnt_root)) {
1741				root = ERR_CAST(mnt_root);
1742				kfree(subvol_name);
1743				goto out;
1744			}
1745
1746			down_write(&mnt_root->mnt_sb->s_umount);
1747			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1748			up_write(&mnt_root->mnt_sb->s_umount);
1749			if (error < 0) {
1750				root = ERR_PTR(error);
1751				mntput(mnt_root);
1752				kfree(subvol_name);
1753				goto out;
1754			}
 
 
 
 
 
 
 
 
 
 
 
 
1755		}
1756	}
1757	if (IS_ERR(mnt_root)) {
1758		root = ERR_CAST(mnt_root);
1759		kfree(subvol_name);
1760		goto out;
1761	}
1762
1763	/* mount_subvol() will free subvol_name and mnt_root */
1764	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1765
1766out:
1767	return root;
1768}
1769
1770static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1771				     u32 new_pool_size, u32 old_pool_size)
1772{
1773	if (new_pool_size == old_pool_size)
1774		return;
1775
1776	fs_info->thread_pool_size = new_pool_size;
1777
1778	btrfs_info(fs_info, "resize thread pool %d -> %d",
1779	       old_pool_size, new_pool_size);
1780
1781	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1782	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1783	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1784	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1785	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1786	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1787				new_pool_size);
1788	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1789	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1790	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1791	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1792	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1793				new_pool_size);
1794}
1795
1796static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1797				       unsigned long old_opts, int flags)
1798{
1799	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1800	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1801	     (flags & SB_RDONLY))) {
1802		/* wait for any defraggers to finish */
1803		wait_event(fs_info->transaction_wait,
1804			   (atomic_read(&fs_info->defrag_running) == 0));
1805		if (flags & SB_RDONLY)
1806			sync_filesystem(fs_info->sb);
1807	}
1808}
1809
1810static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1811					 unsigned long old_opts)
1812{
1813	/*
1814	 * We need to cleanup all defragable inodes if the autodefragment is
1815	 * close or the filesystem is read only.
1816	 */
1817	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1818	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1819		btrfs_cleanup_defrag_inodes(fs_info);
1820	}
1821
1822	/* If we toggled discard async */
1823	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1824	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1825		btrfs_discard_resume(fs_info);
1826	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1827		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1828		btrfs_discard_cleanup(fs_info);
1829}
1830
1831static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1832{
1833	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1834	struct btrfs_root *root = fs_info->tree_root;
1835	unsigned old_flags = sb->s_flags;
1836	unsigned long old_opts = fs_info->mount_opt;
1837	unsigned long old_compress_type = fs_info->compress_type;
1838	u64 old_max_inline = fs_info->max_inline;
1839	u32 old_thread_pool_size = fs_info->thread_pool_size;
1840	u32 old_metadata_ratio = fs_info->metadata_ratio;
1841	int ret;
1842
1843	sync_filesystem(sb);
1844	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1845
1846	if (data) {
1847		void *new_sec_opts = NULL;
1848
1849		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1850		if (!ret)
1851			ret = security_sb_remount(sb, new_sec_opts);
1852		security_free_mnt_opts(&new_sec_opts);
1853		if (ret)
1854			goto restore;
1855	}
1856
1857	ret = btrfs_parse_options(fs_info, data, *flags);
1858	if (ret)
1859		goto restore;
1860
1861	btrfs_remount_begin(fs_info, old_opts, *flags);
1862	btrfs_resize_thread_pool(fs_info,
1863		fs_info->thread_pool_size, old_thread_pool_size);
1864
1865	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1866		goto out;
1867
1868	if (*flags & SB_RDONLY) {
1869		/*
1870		 * this also happens on 'umount -rf' or on shutdown, when
1871		 * the filesystem is busy.
1872		 */
1873		cancel_work_sync(&fs_info->async_reclaim_work);
1874
1875		btrfs_discard_cleanup(fs_info);
1876
1877		/* wait for the uuid_scan task to finish */
1878		down(&fs_info->uuid_tree_rescan_sem);
1879		/* avoid complains from lockdep et al. */
1880		up(&fs_info->uuid_tree_rescan_sem);
1881
1882		sb->s_flags |= SB_RDONLY;
1883
1884		/*
1885		 * Setting SB_RDONLY will put the cleaner thread to
1886		 * sleep at the next loop if it's already active.
1887		 * If it's already asleep, we'll leave unused block
1888		 * groups on disk until we're mounted read-write again
1889		 * unless we clean them up here.
1890		 */
1891		btrfs_delete_unused_bgs(fs_info);
1892
1893		btrfs_dev_replace_suspend_for_unmount(fs_info);
1894		btrfs_scrub_cancel(fs_info);
1895		btrfs_pause_balance(fs_info);
1896
1897		ret = btrfs_commit_super(fs_info);
1898		if (ret)
1899			goto restore;
1900	} else {
1901		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1902			btrfs_err(fs_info,
1903				"Remounting read-write after error is not allowed");
1904			ret = -EINVAL;
1905			goto restore;
1906		}
1907		if (fs_info->fs_devices->rw_devices == 0) {
1908			ret = -EACCES;
1909			goto restore;
1910		}
1911
1912		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1913			btrfs_warn(fs_info,
1914		"too many missing devices, writable remount is not allowed");
1915			ret = -EACCES;
1916			goto restore;
1917		}
1918
1919		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1920			btrfs_warn(fs_info,
1921		"mount required to replay tree-log, cannot remount read-write");
1922			ret = -EINVAL;
1923			goto restore;
1924		}
1925
1926		ret = btrfs_cleanup_fs_roots(fs_info);
1927		if (ret)
1928			goto restore;
1929
1930		/* recover relocation */
1931		mutex_lock(&fs_info->cleaner_mutex);
1932		ret = btrfs_recover_relocation(root);
1933		mutex_unlock(&fs_info->cleaner_mutex);
1934		if (ret)
1935			goto restore;
1936
1937		ret = btrfs_resume_balance_async(fs_info);
1938		if (ret)
1939			goto restore;
1940
1941		ret = btrfs_resume_dev_replace_async(fs_info);
1942		if (ret) {
1943			btrfs_warn(fs_info, "failed to resume dev_replace");
1944			goto restore;
1945		}
1946
1947		btrfs_qgroup_rescan_resume(fs_info);
1948
1949		if (!fs_info->uuid_root) {
1950			btrfs_info(fs_info, "creating UUID tree");
1951			ret = btrfs_create_uuid_tree(fs_info);
1952			if (ret) {
1953				btrfs_warn(fs_info,
1954					   "failed to create the UUID tree %d",
1955					   ret);
1956				goto restore;
1957			}
1958		}
1959		sb->s_flags &= ~SB_RDONLY;
1960
1961		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1962	}
1963out:
1964	/*
1965	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1966	 * since the absence of the flag means it can be toggled off by remount.
1967	 */
1968	*flags |= SB_I_VERSION;
1969
1970	wake_up_process(fs_info->transaction_kthread);
1971	btrfs_remount_cleanup(fs_info, old_opts);
1972	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1973
1974	return 0;
1975
1976restore:
1977	/* We've hit an error - don't reset SB_RDONLY */
1978	if (sb_rdonly(sb))
1979		old_flags |= SB_RDONLY;
1980	sb->s_flags = old_flags;
1981	fs_info->mount_opt = old_opts;
1982	fs_info->compress_type = old_compress_type;
1983	fs_info->max_inline = old_max_inline;
1984	btrfs_resize_thread_pool(fs_info,
1985		old_thread_pool_size, fs_info->thread_pool_size);
1986	fs_info->metadata_ratio = old_metadata_ratio;
1987	btrfs_remount_cleanup(fs_info, old_opts);
1988	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1989
1990	return ret;
1991}
1992
1993/* Used to sort the devices by max_avail(descending sort) */
1994static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1995				       const void *dev_info2)
1996{
1997	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1998	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1999		return -1;
2000	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2001		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2002		return 1;
2003	else
2004	return 0;
2005}
2006
2007/*
2008 * sort the devices by max_avail, in which max free extent size of each device
2009 * is stored.(Descending Sort)
2010 */
2011static inline void btrfs_descending_sort_devices(
2012					struct btrfs_device_info *devices,
2013					size_t nr_devices)
2014{
2015	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2016	     btrfs_cmp_device_free_bytes, NULL);
2017}
2018
2019/*
2020 * The helper to calc the free space on the devices that can be used to store
2021 * file data.
2022 */
2023static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2024					      u64 *free_bytes)
2025{
 
2026	struct btrfs_device_info *devices_info;
2027	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2028	struct btrfs_device *device;
 
2029	u64 type;
2030	u64 avail_space;
 
2031	u64 min_stripe_size;
2032	int num_stripes = 1;
2033	int i = 0, nr_devices;
2034	const struct btrfs_raid_attr *rattr;
2035
2036	/*
2037	 * We aren't under the device list lock, so this is racy-ish, but good
2038	 * enough for our purposes.
2039	 */
2040	nr_devices = fs_info->fs_devices->open_devices;
2041	if (!nr_devices) {
2042		smp_mb();
2043		nr_devices = fs_info->fs_devices->open_devices;
2044		ASSERT(nr_devices);
2045		if (!nr_devices) {
2046			*free_bytes = 0;
2047			return 0;
2048		}
2049	}
2050
2051	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2052			       GFP_KERNEL);
2053	if (!devices_info)
2054		return -ENOMEM;
2055
2056	/* calc min stripe number for data space allocation */
2057	type = btrfs_data_alloc_profile(fs_info);
2058	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2059
2060	if (type & BTRFS_BLOCK_GROUP_RAID0)
2061		num_stripes = nr_devices;
2062	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2063		num_stripes = 2;
2064	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2065		num_stripes = 3;
2066	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2067		num_stripes = 4;
2068	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2069		num_stripes = 4;
2070
2071	/* Adjust for more than 1 stripe per device */
2072	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
 
 
2073
2074	rcu_read_lock();
2075	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2076		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2077						&device->dev_state) ||
2078		    !device->bdev ||
2079		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2080			continue;
2081
2082		if (i >= nr_devices)
2083			break;
2084
2085		avail_space = device->total_bytes - device->bytes_used;
2086
2087		/* align with stripe_len */
2088		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
 
2089
2090		/*
2091		 * In order to avoid overwriting the superblock on the drive,
2092		 * btrfs starts at an offset of at least 1MB when doing chunk
2093		 * allocation.
2094		 *
2095		 * This ensures we have at least min_stripe_size free space
2096		 * after excluding 1MB.
2097		 */
2098		if (avail_space <= SZ_1M + min_stripe_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099			continue;
2100
2101		avail_space -= SZ_1M;
2102
2103		devices_info[i].dev = device;
2104		devices_info[i].max_avail = avail_space;
2105
2106		i++;
2107	}
2108	rcu_read_unlock();
2109
2110	nr_devices = i;
2111
2112	btrfs_descending_sort_devices(devices_info, nr_devices);
2113
2114	i = nr_devices - 1;
2115	avail_space = 0;
2116	while (nr_devices >= rattr->devs_min) {
2117		num_stripes = min(num_stripes, nr_devices);
2118
2119		if (devices_info[i].max_avail >= min_stripe_size) {
2120			int j;
2121			u64 alloc_size;
2122
2123			avail_space += devices_info[i].max_avail * num_stripes;
2124			alloc_size = devices_info[i].max_avail;
2125			for (j = i + 1 - num_stripes; j <= i; j++)
2126				devices_info[j].max_avail -= alloc_size;
2127		}
2128		i--;
2129		nr_devices--;
2130	}
2131
2132	kfree(devices_info);
2133	*free_bytes = avail_space;
2134	return 0;
2135}
2136
2137/*
2138 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2139 *
2140 * If there's a redundant raid level at DATA block groups, use the respective
2141 * multiplier to scale the sizes.
2142 *
2143 * Unused device space usage is based on simulating the chunk allocator
2144 * algorithm that respects the device sizes and order of allocations.  This is
2145 * a close approximation of the actual use but there are other factors that may
2146 * change the result (like a new metadata chunk).
2147 *
2148 * If metadata is exhausted, f_bavail will be 0.
2149 */
2150static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2151{
2152	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2153	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
2154	struct btrfs_space_info *found;
2155	u64 total_used = 0;
2156	u64 total_free_data = 0;
2157	u64 total_free_meta = 0;
2158	int bits = dentry->d_sb->s_blocksize_bits;
2159	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2160	unsigned factor = 1;
2161	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2162	int ret;
2163	u64 thresh = 0;
2164	int mixed = 0;
2165
 
 
2166	rcu_read_lock();
2167	list_for_each_entry_rcu(found, &fs_info->space_info, list) {
2168		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2169			int i;
2170
2171			total_free_data += found->disk_total - found->disk_used;
2172			total_free_data -=
2173				btrfs_account_ro_block_groups_free_space(found);
2174
2175			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2176				if (!list_empty(&found->block_groups[i]))
2177					factor = btrfs_bg_type_to_factor(
2178						btrfs_raid_array[i].bg_flag);
2179			}
2180		}
2181
2182		/*
2183		 * Metadata in mixed block goup profiles are accounted in data
2184		 */
2185		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2186			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2187				mixed = 1;
2188			else
2189				total_free_meta += found->disk_total -
2190					found->disk_used;
2191		}
2192
2193		total_used += found->disk_used;
2194	}
2195
2196	rcu_read_unlock();
2197
2198	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2199	buf->f_blocks >>= bits;
2200	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2201
2202	/* Account global block reserve as used, it's in logical size already */
2203	spin_lock(&block_rsv->lock);
2204	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2205	if (buf->f_bfree >= block_rsv->size >> bits)
2206		buf->f_bfree -= block_rsv->size >> bits;
2207	else
2208		buf->f_bfree = 0;
2209	spin_unlock(&block_rsv->lock);
2210
2211	buf->f_bavail = div_u64(total_free_data, factor);
2212	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2213	if (ret)
2214		return ret;
2215	buf->f_bavail += div_u64(total_free_data, factor);
 
2216	buf->f_bavail = buf->f_bavail >> bits;
2217
2218	/*
2219	 * We calculate the remaining metadata space minus global reserve. If
2220	 * this is (supposedly) smaller than zero, there's no space. But this
2221	 * does not hold in practice, the exhausted state happens where's still
2222	 * some positive delta. So we apply some guesswork and compare the
2223	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2224	 *
2225	 * We probably cannot calculate the exact threshold value because this
2226	 * depends on the internal reservations requested by various
2227	 * operations, so some operations that consume a few metadata will
2228	 * succeed even if the Avail is zero. But this is better than the other
2229	 * way around.
2230	 */
2231	thresh = SZ_4M;
2232
2233	/*
2234	 * We only want to claim there's no available space if we can no longer
2235	 * allocate chunks for our metadata profile and our global reserve will
2236	 * not fit in the free metadata space.  If we aren't ->full then we
2237	 * still can allocate chunks and thus are fine using the currently
2238	 * calculated f_bavail.
2239	 */
2240	if (!mixed && block_rsv->space_info->full &&
2241	    total_free_meta - thresh < block_rsv->size)
2242		buf->f_bavail = 0;
2243
2244	buf->f_type = BTRFS_SUPER_MAGIC;
2245	buf->f_bsize = dentry->d_sb->s_blocksize;
2246	buf->f_namelen = BTRFS_NAME_LEN;
2247
2248	/* We treat it as constant endianness (it doesn't matter _which_)
2249	   because we want the fsid to come out the same whether mounted
2250	   on a big-endian or little-endian host */
2251	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2252	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2253	/* Mask in the root object ID too, to disambiguate subvols */
2254	buf->f_fsid.val[0] ^=
2255		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2256	buf->f_fsid.val[1] ^=
2257		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2258
2259	return 0;
2260}
2261
2262static void btrfs_kill_super(struct super_block *sb)
2263{
2264	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2265	kill_anon_super(sb);
2266	btrfs_free_fs_info(fs_info);
2267}
2268
2269static struct file_system_type btrfs_fs_type = {
2270	.owner		= THIS_MODULE,
2271	.name		= "btrfs",
2272	.mount		= btrfs_mount,
2273	.kill_sb	= btrfs_kill_super,
2274	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2275};
2276
2277static struct file_system_type btrfs_root_fs_type = {
2278	.owner		= THIS_MODULE,
2279	.name		= "btrfs",
2280	.mount		= btrfs_mount_root,
2281	.kill_sb	= btrfs_kill_super,
2282	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2283};
2284
2285MODULE_ALIAS_FS("btrfs");
2286
2287static int btrfs_control_open(struct inode *inode, struct file *file)
2288{
2289	/*
2290	 * The control file's private_data is used to hold the
2291	 * transaction when it is started and is used to keep
2292	 * track of whether a transaction is already in progress.
2293	 */
2294	file->private_data = NULL;
2295	return 0;
2296}
2297
2298/*
2299 * Used by /dev/btrfs-control for devices ioctls.
2300 */
2301static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2302				unsigned long arg)
2303{
2304	struct btrfs_ioctl_vol_args *vol;
2305	struct btrfs_device *device = NULL;
2306	int ret = -ENOTTY;
2307
2308	if (!capable(CAP_SYS_ADMIN))
2309		return -EPERM;
2310
2311	vol = memdup_user((void __user *)arg, sizeof(*vol));
2312	if (IS_ERR(vol))
2313		return PTR_ERR(vol);
2314	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2315
2316	switch (cmd) {
2317	case BTRFS_IOC_SCAN_DEV:
2318		mutex_lock(&uuid_mutex);
2319		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2320					       &btrfs_root_fs_type);
2321		ret = PTR_ERR_OR_ZERO(device);
2322		mutex_unlock(&uuid_mutex);
2323		break;
2324	case BTRFS_IOC_FORGET_DEV:
2325		ret = btrfs_forget_devices(vol->name);
2326		break;
2327	case BTRFS_IOC_DEVICES_READY:
2328		mutex_lock(&uuid_mutex);
2329		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2330					       &btrfs_root_fs_type);
2331		if (IS_ERR(device)) {
2332			mutex_unlock(&uuid_mutex);
2333			ret = PTR_ERR(device);
2334			break;
2335		}
2336		ret = !(device->fs_devices->num_devices ==
2337			device->fs_devices->total_devices);
2338		mutex_unlock(&uuid_mutex);
2339		break;
2340	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2341		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2342		break;
2343	}
2344
2345	kfree(vol);
2346	return ret;
2347}
2348
2349static int btrfs_freeze(struct super_block *sb)
2350{
2351	struct btrfs_trans_handle *trans;
2352	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2353	struct btrfs_root *root = fs_info->tree_root;
2354
2355	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2356	/*
2357	 * We don't need a barrier here, we'll wait for any transaction that
2358	 * could be in progress on other threads (and do delayed iputs that
2359	 * we want to avoid on a frozen filesystem), or do the commit
2360	 * ourselves.
2361	 */
2362	trans = btrfs_attach_transaction_barrier(root);
2363	if (IS_ERR(trans)) {
2364		/* no transaction, don't bother */
2365		if (PTR_ERR(trans) == -ENOENT)
2366			return 0;
2367		return PTR_ERR(trans);
2368	}
2369	return btrfs_commit_transaction(trans);
2370}
2371
2372static int btrfs_unfreeze(struct super_block *sb)
2373{
2374	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2375
2376	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2377	return 0;
2378}
2379
2380static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2381{
2382	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2383	struct btrfs_device *dev, *first_dev = NULL;
2384
2385	/*
2386	 * Lightweight locking of the devices. We should not need
2387	 * device_list_mutex here as we only read the device data and the list
2388	 * is protected by RCU.  Even if a device is deleted during the list
2389	 * traversals, we'll get valid data, the freeing callback will wait at
2390	 * least until the rcu_read_unlock.
2391	 */
2392	rcu_read_lock();
2393	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2394		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2395			continue;
2396		if (!dev->name)
2397			continue;
2398		if (!first_dev || dev->devid < first_dev->devid)
2399			first_dev = dev;
2400	}
2401
2402	if (first_dev)
2403		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2404	else
2405		WARN_ON(1);
2406	rcu_read_unlock();
2407	return 0;
2408}
2409
2410static const struct super_operations btrfs_super_ops = {
2411	.drop_inode	= btrfs_drop_inode,
2412	.evict_inode	= btrfs_evict_inode,
2413	.put_super	= btrfs_put_super,
2414	.sync_fs	= btrfs_sync_fs,
2415	.show_options	= btrfs_show_options,
2416	.show_devname	= btrfs_show_devname,
 
2417	.alloc_inode	= btrfs_alloc_inode,
2418	.destroy_inode	= btrfs_destroy_inode,
2419	.free_inode	= btrfs_free_inode,
2420	.statfs		= btrfs_statfs,
2421	.remount_fs	= btrfs_remount,
2422	.freeze_fs	= btrfs_freeze,
2423	.unfreeze_fs	= btrfs_unfreeze,
2424};
2425
2426static const struct file_operations btrfs_ctl_fops = {
2427	.open = btrfs_control_open,
2428	.unlocked_ioctl	 = btrfs_control_ioctl,
2429	.compat_ioctl = compat_ptr_ioctl,
2430	.owner	 = THIS_MODULE,
2431	.llseek = noop_llseek,
2432};
2433
2434static struct miscdevice btrfs_misc = {
2435	.minor		= BTRFS_MINOR,
2436	.name		= "btrfs-control",
2437	.fops		= &btrfs_ctl_fops
2438};
2439
2440MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2441MODULE_ALIAS("devname:btrfs-control");
2442
2443static int __init btrfs_interface_init(void)
2444{
2445	return misc_register(&btrfs_misc);
2446}
2447
2448static __cold void btrfs_interface_exit(void)
2449{
2450	misc_deregister(&btrfs_misc);
2451}
2452
2453static void __init btrfs_print_mod_info(void)
2454{
2455	static const char options[] = ""
2456#ifdef CONFIG_BTRFS_DEBUG
2457			", debug=on"
2458#endif
2459#ifdef CONFIG_BTRFS_ASSERT
2460			", assert=on"
2461#endif
2462#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2463			", integrity-checker=on"
2464#endif
2465#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2466			", ref-verify=on"
2467#endif
2468			;
2469	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2470}
2471
2472static int __init init_btrfs_fs(void)
2473{
2474	int err;
2475
2476	btrfs_props_init();
2477
2478	err = btrfs_init_sysfs();
2479	if (err)
2480		return err;
2481
2482	btrfs_init_compress();
 
 
2483
2484	err = btrfs_init_cachep();
2485	if (err)
2486		goto free_compress;
2487
2488	err = extent_io_init();
2489	if (err)
2490		goto free_cachep;
2491
2492	err = extent_state_cache_init();
2493	if (err)
2494		goto free_extent_io;
2495
2496	err = extent_map_init();
2497	if (err)
2498		goto free_extent_state_cache;
2499
2500	err = ordered_data_init();
2501	if (err)
2502		goto free_extent_map;
2503
2504	err = btrfs_delayed_inode_init();
2505	if (err)
2506		goto free_ordered_data;
2507
2508	err = btrfs_auto_defrag_init();
2509	if (err)
2510		goto free_delayed_inode;
2511
2512	err = btrfs_delayed_ref_init();
2513	if (err)
2514		goto free_auto_defrag;
2515
2516	err = btrfs_prelim_ref_init();
2517	if (err)
2518		goto free_delayed_ref;
2519
2520	err = btrfs_end_io_wq_init();
2521	if (err)
2522		goto free_prelim_ref;
2523
2524	err = btrfs_interface_init();
2525	if (err)
2526		goto free_end_io_wq;
2527
2528	btrfs_init_lockdep();
2529
2530	btrfs_print_mod_info();
2531
2532	err = btrfs_run_sanity_tests();
2533	if (err)
2534		goto unregister_ioctl;
2535
2536	err = register_filesystem(&btrfs_fs_type);
2537	if (err)
2538		goto unregister_ioctl;
2539
 
2540	return 0;
2541
2542unregister_ioctl:
2543	btrfs_interface_exit();
2544free_end_io_wq:
2545	btrfs_end_io_wq_exit();
2546free_prelim_ref:
2547	btrfs_prelim_ref_exit();
2548free_delayed_ref:
2549	btrfs_delayed_ref_exit();
2550free_auto_defrag:
2551	btrfs_auto_defrag_exit();
2552free_delayed_inode:
2553	btrfs_delayed_inode_exit();
2554free_ordered_data:
2555	ordered_data_exit();
2556free_extent_map:
2557	extent_map_exit();
2558free_extent_state_cache:
2559	extent_state_cache_exit();
2560free_extent_io:
2561	extent_io_exit();
2562free_cachep:
2563	btrfs_destroy_cachep();
2564free_compress:
2565	btrfs_exit_compress();
 
2566	btrfs_exit_sysfs();
2567
2568	return err;
2569}
2570
2571static void __exit exit_btrfs_fs(void)
2572{
2573	btrfs_destroy_cachep();
2574	btrfs_delayed_ref_exit();
2575	btrfs_auto_defrag_exit();
2576	btrfs_delayed_inode_exit();
2577	btrfs_prelim_ref_exit();
2578	ordered_data_exit();
2579	extent_map_exit();
2580	extent_state_cache_exit();
2581	extent_io_exit();
2582	btrfs_interface_exit();
2583	btrfs_end_io_wq_exit();
2584	unregister_filesystem(&btrfs_fs_type);
2585	btrfs_exit_sysfs();
2586	btrfs_cleanup_fs_uuids();
2587	btrfs_exit_compress();
2588}
2589
2590late_initcall(init_btrfs_fs);
2591module_exit(exit_btrfs_fs)
2592
2593MODULE_LICENSE("GPL");
2594MODULE_SOFTDEP("pre: crc32c");
2595MODULE_SOFTDEP("pre: xxhash64");
2596MODULE_SOFTDEP("pre: sha256");
2597MODULE_SOFTDEP("pre: blake2b-256");